PCI: hv: Remove unused hv_set_msi_entry_from_desc()
[sfrench/cifs-2.6.git] / drivers / md / dm-integrity.c
1 /*
2  * Copyright (C) 2016-2017 Red Hat, Inc. All rights reserved.
3  * Copyright (C) 2016-2017 Milan Broz
4  * Copyright (C) 2016-2017 Mikulas Patocka
5  *
6  * This file is released under the GPL.
7  */
8
9 #include "dm-bio-record.h"
10
11 #include <linux/compiler.h>
12 #include <linux/module.h>
13 #include <linux/device-mapper.h>
14 #include <linux/dm-io.h>
15 #include <linux/vmalloc.h>
16 #include <linux/sort.h>
17 #include <linux/rbtree.h>
18 #include <linux/delay.h>
19 #include <linux/random.h>
20 #include <linux/reboot.h>
21 #include <crypto/hash.h>
22 #include <crypto/skcipher.h>
23 #include <linux/async_tx.h>
24 #include <linux/dm-bufio.h>
25
26 #include "dm-audit.h"
27
28 #define DM_MSG_PREFIX "integrity"
29
30 #define DEFAULT_INTERLEAVE_SECTORS      32768
31 #define DEFAULT_JOURNAL_SIZE_FACTOR     7
32 #define DEFAULT_SECTORS_PER_BITMAP_BIT  32768
33 #define DEFAULT_BUFFER_SECTORS          128
34 #define DEFAULT_JOURNAL_WATERMARK       50
35 #define DEFAULT_SYNC_MSEC               10000
36 #define DEFAULT_MAX_JOURNAL_SECTORS     131072
37 #define MIN_LOG2_INTERLEAVE_SECTORS     3
38 #define MAX_LOG2_INTERLEAVE_SECTORS     31
39 #define METADATA_WORKQUEUE_MAX_ACTIVE   16
40 #define RECALC_SECTORS                  32768
41 #define RECALC_WRITE_SUPER              16
42 #define BITMAP_BLOCK_SIZE               4096    /* don't change it */
43 #define BITMAP_FLUSH_INTERVAL           (10 * HZ)
44 #define DISCARD_FILLER                  0xf6
45 #define SALT_SIZE                       16
46
47 /*
48  * Warning - DEBUG_PRINT prints security-sensitive data to the log,
49  * so it should not be enabled in the official kernel
50  */
51 //#define DEBUG_PRINT
52 //#define INTERNAL_VERIFY
53
54 /*
55  * On disk structures
56  */
57
58 #define SB_MAGIC                        "integrt"
59 #define SB_VERSION_1                    1
60 #define SB_VERSION_2                    2
61 #define SB_VERSION_3                    3
62 #define SB_VERSION_4                    4
63 #define SB_VERSION_5                    5
64 #define SB_SECTORS                      8
65 #define MAX_SECTORS_PER_BLOCK           8
66
67 struct superblock {
68         __u8 magic[8];
69         __u8 version;
70         __u8 log2_interleave_sectors;
71         __le16 integrity_tag_size;
72         __le32 journal_sections;
73         __le64 provided_data_sectors;   /* userspace uses this value */
74         __le32 flags;
75         __u8 log2_sectors_per_block;
76         __u8 log2_blocks_per_bitmap_bit;
77         __u8 pad[2];
78         __le64 recalc_sector;
79         __u8 pad2[8];
80         __u8 salt[SALT_SIZE];
81 };
82
83 #define SB_FLAG_HAVE_JOURNAL_MAC        0x1
84 #define SB_FLAG_RECALCULATING           0x2
85 #define SB_FLAG_DIRTY_BITMAP            0x4
86 #define SB_FLAG_FIXED_PADDING           0x8
87 #define SB_FLAG_FIXED_HMAC              0x10
88
89 #define JOURNAL_ENTRY_ROUNDUP           8
90
91 typedef __le64 commit_id_t;
92 #define JOURNAL_MAC_PER_SECTOR          8
93
94 struct journal_entry {
95         union {
96                 struct {
97                         __le32 sector_lo;
98                         __le32 sector_hi;
99                 } s;
100                 __le64 sector;
101         } u;
102         commit_id_t last_bytes[];
103         /* __u8 tag[0]; */
104 };
105
106 #define journal_entry_tag(ic, je)               ((__u8 *)&(je)->last_bytes[(ic)->sectors_per_block])
107
108 #if BITS_PER_LONG == 64
109 #define journal_entry_set_sector(je, x)         do { smp_wmb(); WRITE_ONCE((je)->u.sector, cpu_to_le64(x)); } while (0)
110 #else
111 #define journal_entry_set_sector(je, x)         do { (je)->u.s.sector_lo = cpu_to_le32(x); smp_wmb(); WRITE_ONCE((je)->u.s.sector_hi, cpu_to_le32((x) >> 32)); } while (0)
112 #endif
113 #define journal_entry_get_sector(je)            le64_to_cpu((je)->u.sector)
114 #define journal_entry_is_unused(je)             ((je)->u.s.sector_hi == cpu_to_le32(-1))
115 #define journal_entry_set_unused(je)            do { ((je)->u.s.sector_hi = cpu_to_le32(-1)); } while (0)
116 #define journal_entry_is_inprogress(je)         ((je)->u.s.sector_hi == cpu_to_le32(-2))
117 #define journal_entry_set_inprogress(je)        do { ((je)->u.s.sector_hi = cpu_to_le32(-2)); } while (0)
118
119 #define JOURNAL_BLOCK_SECTORS           8
120 #define JOURNAL_SECTOR_DATA             ((1 << SECTOR_SHIFT) - sizeof(commit_id_t))
121 #define JOURNAL_MAC_SIZE                (JOURNAL_MAC_PER_SECTOR * JOURNAL_BLOCK_SECTORS)
122
123 struct journal_sector {
124         struct_group(sectors,
125                 __u8 entries[JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR];
126                 __u8 mac[JOURNAL_MAC_PER_SECTOR];
127         );
128         commit_id_t commit_id;
129 };
130
131 #define MAX_TAG_SIZE                    (JOURNAL_SECTOR_DATA - JOURNAL_MAC_PER_SECTOR - offsetof(struct journal_entry, last_bytes[MAX_SECTORS_PER_BLOCK]))
132
133 #define METADATA_PADDING_SECTORS        8
134
135 #define N_COMMIT_IDS                    4
136
137 static unsigned char prev_commit_seq(unsigned char seq)
138 {
139         return (seq + N_COMMIT_IDS - 1) % N_COMMIT_IDS;
140 }
141
142 static unsigned char next_commit_seq(unsigned char seq)
143 {
144         return (seq + 1) % N_COMMIT_IDS;
145 }
146
147 /*
148  * In-memory structures
149  */
150
151 struct journal_node {
152         struct rb_node node;
153         sector_t sector;
154 };
155
156 struct alg_spec {
157         char *alg_string;
158         char *key_string;
159         __u8 *key;
160         unsigned key_size;
161 };
162
163 struct dm_integrity_c {
164         struct dm_dev *dev;
165         struct dm_dev *meta_dev;
166         unsigned tag_size;
167         __s8 log2_tag_size;
168         sector_t start;
169         mempool_t journal_io_mempool;
170         struct dm_io_client *io;
171         struct dm_bufio_client *bufio;
172         struct workqueue_struct *metadata_wq;
173         struct superblock *sb;
174         unsigned journal_pages;
175         unsigned n_bitmap_blocks;
176
177         struct page_list *journal;
178         struct page_list *journal_io;
179         struct page_list *journal_xor;
180         struct page_list *recalc_bitmap;
181         struct page_list *may_write_bitmap;
182         struct bitmap_block_status *bbs;
183         unsigned bitmap_flush_interval;
184         int synchronous_mode;
185         struct bio_list synchronous_bios;
186         struct delayed_work bitmap_flush_work;
187
188         struct crypto_skcipher *journal_crypt;
189         struct scatterlist **journal_scatterlist;
190         struct scatterlist **journal_io_scatterlist;
191         struct skcipher_request **sk_requests;
192
193         struct crypto_shash *journal_mac;
194
195         struct journal_node *journal_tree;
196         struct rb_root journal_tree_root;
197
198         sector_t provided_data_sectors;
199
200         unsigned short journal_entry_size;
201         unsigned char journal_entries_per_sector;
202         unsigned char journal_section_entries;
203         unsigned short journal_section_sectors;
204         unsigned journal_sections;
205         unsigned journal_entries;
206         sector_t data_device_sectors;
207         sector_t meta_device_sectors;
208         unsigned initial_sectors;
209         unsigned metadata_run;
210         __s8 log2_metadata_run;
211         __u8 log2_buffer_sectors;
212         __u8 sectors_per_block;
213         __u8 log2_blocks_per_bitmap_bit;
214
215         unsigned char mode;
216
217         int failed;
218
219         struct crypto_shash *internal_hash;
220
221         struct dm_target *ti;
222
223         /* these variables are locked with endio_wait.lock */
224         struct rb_root in_progress;
225         struct list_head wait_list;
226         wait_queue_head_t endio_wait;
227         struct workqueue_struct *wait_wq;
228         struct workqueue_struct *offload_wq;
229
230         unsigned char commit_seq;
231         commit_id_t commit_ids[N_COMMIT_IDS];
232
233         unsigned committed_section;
234         unsigned n_committed_sections;
235
236         unsigned uncommitted_section;
237         unsigned n_uncommitted_sections;
238
239         unsigned free_section;
240         unsigned char free_section_entry;
241         unsigned free_sectors;
242
243         unsigned free_sectors_threshold;
244
245         struct workqueue_struct *commit_wq;
246         struct work_struct commit_work;
247
248         struct workqueue_struct *writer_wq;
249         struct work_struct writer_work;
250
251         struct workqueue_struct *recalc_wq;
252         struct work_struct recalc_work;
253         u8 *recalc_buffer;
254         u8 *recalc_tags;
255
256         struct bio_list flush_bio_list;
257
258         unsigned long autocommit_jiffies;
259         struct timer_list autocommit_timer;
260         unsigned autocommit_msec;
261
262         wait_queue_head_t copy_to_journal_wait;
263
264         struct completion crypto_backoff;
265
266         bool journal_uptodate;
267         bool just_formatted;
268         bool recalculate_flag;
269         bool reset_recalculate_flag;
270         bool discard;
271         bool fix_padding;
272         bool fix_hmac;
273         bool legacy_recalculate;
274
275         struct alg_spec internal_hash_alg;
276         struct alg_spec journal_crypt_alg;
277         struct alg_spec journal_mac_alg;
278
279         atomic64_t number_of_mismatches;
280
281         struct notifier_block reboot_notifier;
282 };
283
284 struct dm_integrity_range {
285         sector_t logical_sector;
286         sector_t n_sectors;
287         bool waiting;
288         union {
289                 struct rb_node node;
290                 struct {
291                         struct task_struct *task;
292                         struct list_head wait_entry;
293                 };
294         };
295 };
296
297 struct dm_integrity_io {
298         struct work_struct work;
299
300         struct dm_integrity_c *ic;
301         enum req_opf op;
302         bool fua;
303
304         struct dm_integrity_range range;
305
306         sector_t metadata_block;
307         unsigned metadata_offset;
308
309         atomic_t in_flight;
310         blk_status_t bi_status;
311
312         struct completion *completion;
313
314         struct dm_bio_details bio_details;
315 };
316
317 struct journal_completion {
318         struct dm_integrity_c *ic;
319         atomic_t in_flight;
320         struct completion comp;
321 };
322
323 struct journal_io {
324         struct dm_integrity_range range;
325         struct journal_completion *comp;
326 };
327
328 struct bitmap_block_status {
329         struct work_struct work;
330         struct dm_integrity_c *ic;
331         unsigned idx;
332         unsigned long *bitmap;
333         struct bio_list bio_queue;
334         spinlock_t bio_queue_lock;
335
336 };
337
338 static struct kmem_cache *journal_io_cache;
339
340 #define JOURNAL_IO_MEMPOOL      32
341
342 #ifdef DEBUG_PRINT
343 #define DEBUG_print(x, ...)     printk(KERN_DEBUG x, ##__VA_ARGS__)
344 static void __DEBUG_bytes(__u8 *bytes, size_t len, const char *msg, ...)
345 {
346         va_list args;
347         va_start(args, msg);
348         vprintk(msg, args);
349         va_end(args);
350         if (len)
351                 pr_cont(":");
352         while (len) {
353                 pr_cont(" %02x", *bytes);
354                 bytes++;
355                 len--;
356         }
357         pr_cont("\n");
358 }
359 #define DEBUG_bytes(bytes, len, msg, ...)       __DEBUG_bytes(bytes, len, KERN_DEBUG msg, ##__VA_ARGS__)
360 #else
361 #define DEBUG_print(x, ...)                     do { } while (0)
362 #define DEBUG_bytes(bytes, len, msg, ...)       do { } while (0)
363 #endif
364
365 static void dm_integrity_prepare(struct request *rq)
366 {
367 }
368
369 static void dm_integrity_complete(struct request *rq, unsigned int nr_bytes)
370 {
371 }
372
373 /*
374  * DM Integrity profile, protection is performed layer above (dm-crypt)
375  */
376 static const struct blk_integrity_profile dm_integrity_profile = {
377         .name                   = "DM-DIF-EXT-TAG",
378         .generate_fn            = NULL,
379         .verify_fn              = NULL,
380         .prepare_fn             = dm_integrity_prepare,
381         .complete_fn            = dm_integrity_complete,
382 };
383
384 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map);
385 static void integrity_bio_wait(struct work_struct *w);
386 static void dm_integrity_dtr(struct dm_target *ti);
387
388 static void dm_integrity_io_error(struct dm_integrity_c *ic, const char *msg, int err)
389 {
390         if (err == -EILSEQ)
391                 atomic64_inc(&ic->number_of_mismatches);
392         if (!cmpxchg(&ic->failed, 0, err))
393                 DMERR("Error on %s: %d", msg, err);
394 }
395
396 static int dm_integrity_failed(struct dm_integrity_c *ic)
397 {
398         return READ_ONCE(ic->failed);
399 }
400
401 static bool dm_integrity_disable_recalculate(struct dm_integrity_c *ic)
402 {
403         if (ic->legacy_recalculate)
404                 return false;
405         if (!(ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) ?
406             ic->internal_hash_alg.key || ic->journal_mac_alg.key :
407             ic->internal_hash_alg.key && !ic->journal_mac_alg.key)
408                 return true;
409         return false;
410 }
411
412 static commit_id_t dm_integrity_commit_id(struct dm_integrity_c *ic, unsigned i,
413                                           unsigned j, unsigned char seq)
414 {
415         /*
416          * Xor the number with section and sector, so that if a piece of
417          * journal is written at wrong place, it is detected.
418          */
419         return ic->commit_ids[seq] ^ cpu_to_le64(((__u64)i << 32) ^ j);
420 }
421
422 static void get_area_and_offset(struct dm_integrity_c *ic, sector_t data_sector,
423                                 sector_t *area, sector_t *offset)
424 {
425         if (!ic->meta_dev) {
426                 __u8 log2_interleave_sectors = ic->sb->log2_interleave_sectors;
427                 *area = data_sector >> log2_interleave_sectors;
428                 *offset = (unsigned)data_sector & ((1U << log2_interleave_sectors) - 1);
429         } else {
430                 *area = 0;
431                 *offset = data_sector;
432         }
433 }
434
435 #define sector_to_block(ic, n)                                          \
436 do {                                                                    \
437         BUG_ON((n) & (unsigned)((ic)->sectors_per_block - 1));          \
438         (n) >>= (ic)->sb->log2_sectors_per_block;                       \
439 } while (0)
440
441 static __u64 get_metadata_sector_and_offset(struct dm_integrity_c *ic, sector_t area,
442                                             sector_t offset, unsigned *metadata_offset)
443 {
444         __u64 ms;
445         unsigned mo;
446
447         ms = area << ic->sb->log2_interleave_sectors;
448         if (likely(ic->log2_metadata_run >= 0))
449                 ms += area << ic->log2_metadata_run;
450         else
451                 ms += area * ic->metadata_run;
452         ms >>= ic->log2_buffer_sectors;
453
454         sector_to_block(ic, offset);
455
456         if (likely(ic->log2_tag_size >= 0)) {
457                 ms += offset >> (SECTOR_SHIFT + ic->log2_buffer_sectors - ic->log2_tag_size);
458                 mo = (offset << ic->log2_tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
459         } else {
460                 ms += (__u64)offset * ic->tag_size >> (SECTOR_SHIFT + ic->log2_buffer_sectors);
461                 mo = (offset * ic->tag_size) & ((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - 1);
462         }
463         *metadata_offset = mo;
464         return ms;
465 }
466
467 static sector_t get_data_sector(struct dm_integrity_c *ic, sector_t area, sector_t offset)
468 {
469         sector_t result;
470
471         if (ic->meta_dev)
472                 return offset;
473
474         result = area << ic->sb->log2_interleave_sectors;
475         if (likely(ic->log2_metadata_run >= 0))
476                 result += (area + 1) << ic->log2_metadata_run;
477         else
478                 result += (area + 1) * ic->metadata_run;
479
480         result += (sector_t)ic->initial_sectors + offset;
481         result += ic->start;
482
483         return result;
484 }
485
486 static void wraparound_section(struct dm_integrity_c *ic, unsigned *sec_ptr)
487 {
488         if (unlikely(*sec_ptr >= ic->journal_sections))
489                 *sec_ptr -= ic->journal_sections;
490 }
491
492 static void sb_set_version(struct dm_integrity_c *ic)
493 {
494         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC))
495                 ic->sb->version = SB_VERSION_5;
496         else if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING))
497                 ic->sb->version = SB_VERSION_4;
498         else if (ic->mode == 'B' || ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP))
499                 ic->sb->version = SB_VERSION_3;
500         else if (ic->meta_dev || ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
501                 ic->sb->version = SB_VERSION_2;
502         else
503                 ic->sb->version = SB_VERSION_1;
504 }
505
506 static int sb_mac(struct dm_integrity_c *ic, bool wr)
507 {
508         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
509         int r;
510         unsigned size = crypto_shash_digestsize(ic->journal_mac);
511
512         if (sizeof(struct superblock) + size > 1 << SECTOR_SHIFT) {
513                 dm_integrity_io_error(ic, "digest is too long", -EINVAL);
514                 return -EINVAL;
515         }
516
517         desc->tfm = ic->journal_mac;
518
519         r = crypto_shash_init(desc);
520         if (unlikely(r < 0)) {
521                 dm_integrity_io_error(ic, "crypto_shash_init", r);
522                 return r;
523         }
524
525         r = crypto_shash_update(desc, (__u8 *)ic->sb, (1 << SECTOR_SHIFT) - size);
526         if (unlikely(r < 0)) {
527                 dm_integrity_io_error(ic, "crypto_shash_update", r);
528                 return r;
529         }
530
531         if (likely(wr)) {
532                 r = crypto_shash_final(desc, (__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size);
533                 if (unlikely(r < 0)) {
534                         dm_integrity_io_error(ic, "crypto_shash_final", r);
535                         return r;
536                 }
537         } else {
538                 __u8 result[HASH_MAX_DIGESTSIZE];
539                 r = crypto_shash_final(desc, result);
540                 if (unlikely(r < 0)) {
541                         dm_integrity_io_error(ic, "crypto_shash_final", r);
542                         return r;
543                 }
544                 if (memcmp((__u8 *)ic->sb + (1 << SECTOR_SHIFT) - size, result, size)) {
545                         dm_integrity_io_error(ic, "superblock mac", -EILSEQ);
546                         dm_audit_log_target(DM_MSG_PREFIX, "mac-superblock", ic->ti, 0);
547                         return -EILSEQ;
548                 }
549         }
550
551         return 0;
552 }
553
554 static int sync_rw_sb(struct dm_integrity_c *ic, int op, int op_flags)
555 {
556         struct dm_io_request io_req;
557         struct dm_io_region io_loc;
558         int r;
559
560         io_req.bi_op = op;
561         io_req.bi_op_flags = op_flags;
562         io_req.mem.type = DM_IO_KMEM;
563         io_req.mem.ptr.addr = ic->sb;
564         io_req.notify.fn = NULL;
565         io_req.client = ic->io;
566         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
567         io_loc.sector = ic->start;
568         io_loc.count = SB_SECTORS;
569
570         if (op == REQ_OP_WRITE) {
571                 sb_set_version(ic);
572                 if (ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
573                         r = sb_mac(ic, true);
574                         if (unlikely(r))
575                                 return r;
576                 }
577         }
578
579         r = dm_io(&io_req, 1, &io_loc, NULL);
580         if (unlikely(r))
581                 return r;
582
583         if (op == REQ_OP_READ) {
584                 if (ic->mode != 'R' && ic->journal_mac && ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
585                         r = sb_mac(ic, false);
586                         if (unlikely(r))
587                                 return r;
588                 }
589         }
590
591         return 0;
592 }
593
594 #define BITMAP_OP_TEST_ALL_SET          0
595 #define BITMAP_OP_TEST_ALL_CLEAR        1
596 #define BITMAP_OP_SET                   2
597 #define BITMAP_OP_CLEAR                 3
598
599 static bool block_bitmap_op(struct dm_integrity_c *ic, struct page_list *bitmap,
600                             sector_t sector, sector_t n_sectors, int mode)
601 {
602         unsigned long bit, end_bit, this_end_bit, page, end_page;
603         unsigned long *data;
604
605         if (unlikely(((sector | n_sectors) & ((1 << ic->sb->log2_sectors_per_block) - 1)) != 0)) {
606                 DMCRIT("invalid bitmap access (%llx,%llx,%d,%d,%d)",
607                         sector,
608                         n_sectors,
609                         ic->sb->log2_sectors_per_block,
610                         ic->log2_blocks_per_bitmap_bit,
611                         mode);
612                 BUG();
613         }
614
615         if (unlikely(!n_sectors))
616                 return true;
617
618         bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
619         end_bit = (sector + n_sectors - 1) >>
620                 (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
621
622         page = bit / (PAGE_SIZE * 8);
623         bit %= PAGE_SIZE * 8;
624
625         end_page = end_bit / (PAGE_SIZE * 8);
626         end_bit %= PAGE_SIZE * 8;
627
628 repeat:
629         if (page < end_page) {
630                 this_end_bit = PAGE_SIZE * 8 - 1;
631         } else {
632                 this_end_bit = end_bit;
633         }
634
635         data = lowmem_page_address(bitmap[page].page);
636
637         if (mode == BITMAP_OP_TEST_ALL_SET) {
638                 while (bit <= this_end_bit) {
639                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
640                                 do {
641                                         if (data[bit / BITS_PER_LONG] != -1)
642                                                 return false;
643                                         bit += BITS_PER_LONG;
644                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
645                                 continue;
646                         }
647                         if (!test_bit(bit, data))
648                                 return false;
649                         bit++;
650                 }
651         } else if (mode == BITMAP_OP_TEST_ALL_CLEAR) {
652                 while (bit <= this_end_bit) {
653                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
654                                 do {
655                                         if (data[bit / BITS_PER_LONG] != 0)
656                                                 return false;
657                                         bit += BITS_PER_LONG;
658                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
659                                 continue;
660                         }
661                         if (test_bit(bit, data))
662                                 return false;
663                         bit++;
664                 }
665         } else if (mode == BITMAP_OP_SET) {
666                 while (bit <= this_end_bit) {
667                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
668                                 do {
669                                         data[bit / BITS_PER_LONG] = -1;
670                                         bit += BITS_PER_LONG;
671                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
672                                 continue;
673                         }
674                         __set_bit(bit, data);
675                         bit++;
676                 }
677         } else if (mode == BITMAP_OP_CLEAR) {
678                 if (!bit && this_end_bit == PAGE_SIZE * 8 - 1)
679                         clear_page(data);
680                 else while (bit <= this_end_bit) {
681                         if (!(bit % BITS_PER_LONG) && this_end_bit >= bit + BITS_PER_LONG - 1) {
682                                 do {
683                                         data[bit / BITS_PER_LONG] = 0;
684                                         bit += BITS_PER_LONG;
685                                 } while (this_end_bit >= bit + BITS_PER_LONG - 1);
686                                 continue;
687                         }
688                         __clear_bit(bit, data);
689                         bit++;
690                 }
691         } else {
692                 BUG();
693         }
694
695         if (unlikely(page < end_page)) {
696                 bit = 0;
697                 page++;
698                 goto repeat;
699         }
700
701         return true;
702 }
703
704 static void block_bitmap_copy(struct dm_integrity_c *ic, struct page_list *dst, struct page_list *src)
705 {
706         unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
707         unsigned i;
708
709         for (i = 0; i < n_bitmap_pages; i++) {
710                 unsigned long *dst_data = lowmem_page_address(dst[i].page);
711                 unsigned long *src_data = lowmem_page_address(src[i].page);
712                 copy_page(dst_data, src_data);
713         }
714 }
715
716 static struct bitmap_block_status *sector_to_bitmap_block(struct dm_integrity_c *ic, sector_t sector)
717 {
718         unsigned bit = sector >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
719         unsigned bitmap_block = bit / (BITMAP_BLOCK_SIZE * 8);
720
721         BUG_ON(bitmap_block >= ic->n_bitmap_blocks);
722         return &ic->bbs[bitmap_block];
723 }
724
725 static void access_journal_check(struct dm_integrity_c *ic, unsigned section, unsigned offset,
726                                  bool e, const char *function)
727 {
728 #if defined(CONFIG_DM_DEBUG) || defined(INTERNAL_VERIFY)
729         unsigned limit = e ? ic->journal_section_entries : ic->journal_section_sectors;
730
731         if (unlikely(section >= ic->journal_sections) ||
732             unlikely(offset >= limit)) {
733                 DMCRIT("%s: invalid access at (%u,%u), limit (%u,%u)",
734                        function, section, offset, ic->journal_sections, limit);
735                 BUG();
736         }
737 #endif
738 }
739
740 static void page_list_location(struct dm_integrity_c *ic, unsigned section, unsigned offset,
741                                unsigned *pl_index, unsigned *pl_offset)
742 {
743         unsigned sector;
744
745         access_journal_check(ic, section, offset, false, "page_list_location");
746
747         sector = section * ic->journal_section_sectors + offset;
748
749         *pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
750         *pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
751 }
752
753 static struct journal_sector *access_page_list(struct dm_integrity_c *ic, struct page_list *pl,
754                                                unsigned section, unsigned offset, unsigned *n_sectors)
755 {
756         unsigned pl_index, pl_offset;
757         char *va;
758
759         page_list_location(ic, section, offset, &pl_index, &pl_offset);
760
761         if (n_sectors)
762                 *n_sectors = (PAGE_SIZE - pl_offset) >> SECTOR_SHIFT;
763
764         va = lowmem_page_address(pl[pl_index].page);
765
766         return (struct journal_sector *)(va + pl_offset);
767 }
768
769 static struct journal_sector *access_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset)
770 {
771         return access_page_list(ic, ic->journal, section, offset, NULL);
772 }
773
774 static struct journal_entry *access_journal_entry(struct dm_integrity_c *ic, unsigned section, unsigned n)
775 {
776         unsigned rel_sector, offset;
777         struct journal_sector *js;
778
779         access_journal_check(ic, section, n, true, "access_journal_entry");
780
781         rel_sector = n % JOURNAL_BLOCK_SECTORS;
782         offset = n / JOURNAL_BLOCK_SECTORS;
783
784         js = access_journal(ic, section, rel_sector);
785         return (struct journal_entry *)((char *)js + offset * ic->journal_entry_size);
786 }
787
788 static struct journal_sector *access_journal_data(struct dm_integrity_c *ic, unsigned section, unsigned n)
789 {
790         n <<= ic->sb->log2_sectors_per_block;
791
792         n += JOURNAL_BLOCK_SECTORS;
793
794         access_journal_check(ic, section, n, false, "access_journal_data");
795
796         return access_journal(ic, section, n);
797 }
798
799 static void section_mac(struct dm_integrity_c *ic, unsigned section, __u8 result[JOURNAL_MAC_SIZE])
800 {
801         SHASH_DESC_ON_STACK(desc, ic->journal_mac);
802         int r;
803         unsigned j, size;
804
805         desc->tfm = ic->journal_mac;
806
807         r = crypto_shash_init(desc);
808         if (unlikely(r < 0)) {
809                 dm_integrity_io_error(ic, "crypto_shash_init", r);
810                 goto err;
811         }
812
813         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
814                 __le64 section_le;
815
816                 r = crypto_shash_update(desc, (__u8 *)&ic->sb->salt, SALT_SIZE);
817                 if (unlikely(r < 0)) {
818                         dm_integrity_io_error(ic, "crypto_shash_update", r);
819                         goto err;
820                 }
821
822                 section_le = cpu_to_le64(section);
823                 r = crypto_shash_update(desc, (__u8 *)&section_le, sizeof section_le);
824                 if (unlikely(r < 0)) {
825                         dm_integrity_io_error(ic, "crypto_shash_update", r);
826                         goto err;
827                 }
828         }
829
830         for (j = 0; j < ic->journal_section_entries; j++) {
831                 struct journal_entry *je = access_journal_entry(ic, section, j);
832                 r = crypto_shash_update(desc, (__u8 *)&je->u.sector, sizeof je->u.sector);
833                 if (unlikely(r < 0)) {
834                         dm_integrity_io_error(ic, "crypto_shash_update", r);
835                         goto err;
836                 }
837         }
838
839         size = crypto_shash_digestsize(ic->journal_mac);
840
841         if (likely(size <= JOURNAL_MAC_SIZE)) {
842                 r = crypto_shash_final(desc, result);
843                 if (unlikely(r < 0)) {
844                         dm_integrity_io_error(ic, "crypto_shash_final", r);
845                         goto err;
846                 }
847                 memset(result + size, 0, JOURNAL_MAC_SIZE - size);
848         } else {
849                 __u8 digest[HASH_MAX_DIGESTSIZE];
850
851                 if (WARN_ON(size > sizeof(digest))) {
852                         dm_integrity_io_error(ic, "digest_size", -EINVAL);
853                         goto err;
854                 }
855                 r = crypto_shash_final(desc, digest);
856                 if (unlikely(r < 0)) {
857                         dm_integrity_io_error(ic, "crypto_shash_final", r);
858                         goto err;
859                 }
860                 memcpy(result, digest, JOURNAL_MAC_SIZE);
861         }
862
863         return;
864 err:
865         memset(result, 0, JOURNAL_MAC_SIZE);
866 }
867
868 static void rw_section_mac(struct dm_integrity_c *ic, unsigned section, bool wr)
869 {
870         __u8 result[JOURNAL_MAC_SIZE];
871         unsigned j;
872
873         if (!ic->journal_mac)
874                 return;
875
876         section_mac(ic, section, result);
877
878         for (j = 0; j < JOURNAL_BLOCK_SECTORS; j++) {
879                 struct journal_sector *js = access_journal(ic, section, j);
880
881                 if (likely(wr))
882                         memcpy(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR);
883                 else {
884                         if (memcmp(&js->mac, result + (j * JOURNAL_MAC_PER_SECTOR), JOURNAL_MAC_PER_SECTOR)) {
885                                 dm_integrity_io_error(ic, "journal mac", -EILSEQ);
886                                 dm_audit_log_target(DM_MSG_PREFIX, "mac-journal", ic->ti, 0);
887                         }
888                 }
889         }
890 }
891
892 static void complete_journal_op(void *context)
893 {
894         struct journal_completion *comp = context;
895         BUG_ON(!atomic_read(&comp->in_flight));
896         if (likely(atomic_dec_and_test(&comp->in_flight)))
897                 complete(&comp->comp);
898 }
899
900 static void xor_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
901                         unsigned n_sections, struct journal_completion *comp)
902 {
903         struct async_submit_ctl submit;
904         size_t n_bytes = (size_t)(n_sections * ic->journal_section_sectors) << SECTOR_SHIFT;
905         unsigned pl_index, pl_offset, section_index;
906         struct page_list *source_pl, *target_pl;
907
908         if (likely(encrypt)) {
909                 source_pl = ic->journal;
910                 target_pl = ic->journal_io;
911         } else {
912                 source_pl = ic->journal_io;
913                 target_pl = ic->journal;
914         }
915
916         page_list_location(ic, section, 0, &pl_index, &pl_offset);
917
918         atomic_add(roundup(pl_offset + n_bytes, PAGE_SIZE) >> PAGE_SHIFT, &comp->in_flight);
919
920         init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL, complete_journal_op, comp, NULL);
921
922         section_index = pl_index;
923
924         do {
925                 size_t this_step;
926                 struct page *src_pages[2];
927                 struct page *dst_page;
928
929                 while (unlikely(pl_index == section_index)) {
930                         unsigned dummy;
931                         if (likely(encrypt))
932                                 rw_section_mac(ic, section, true);
933                         section++;
934                         n_sections--;
935                         if (!n_sections)
936                                 break;
937                         page_list_location(ic, section, 0, &section_index, &dummy);
938                 }
939
940                 this_step = min(n_bytes, (size_t)PAGE_SIZE - pl_offset);
941                 dst_page = target_pl[pl_index].page;
942                 src_pages[0] = source_pl[pl_index].page;
943                 src_pages[1] = ic->journal_xor[pl_index].page;
944
945                 async_xor(dst_page, src_pages, pl_offset, 2, this_step, &submit);
946
947                 pl_index++;
948                 pl_offset = 0;
949                 n_bytes -= this_step;
950         } while (n_bytes);
951
952         BUG_ON(n_sections);
953
954         async_tx_issue_pending_all();
955 }
956
957 static void complete_journal_encrypt(struct crypto_async_request *req, int err)
958 {
959         struct journal_completion *comp = req->data;
960         if (unlikely(err)) {
961                 if (likely(err == -EINPROGRESS)) {
962                         complete(&comp->ic->crypto_backoff);
963                         return;
964                 }
965                 dm_integrity_io_error(comp->ic, "asynchronous encrypt", err);
966         }
967         complete_journal_op(comp);
968 }
969
970 static bool do_crypt(bool encrypt, struct skcipher_request *req, struct journal_completion *comp)
971 {
972         int r;
973         skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
974                                       complete_journal_encrypt, comp);
975         if (likely(encrypt))
976                 r = crypto_skcipher_encrypt(req);
977         else
978                 r = crypto_skcipher_decrypt(req);
979         if (likely(!r))
980                 return false;
981         if (likely(r == -EINPROGRESS))
982                 return true;
983         if (likely(r == -EBUSY)) {
984                 wait_for_completion(&comp->ic->crypto_backoff);
985                 reinit_completion(&comp->ic->crypto_backoff);
986                 return true;
987         }
988         dm_integrity_io_error(comp->ic, "encrypt", r);
989         return false;
990 }
991
992 static void crypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
993                           unsigned n_sections, struct journal_completion *comp)
994 {
995         struct scatterlist **source_sg;
996         struct scatterlist **target_sg;
997
998         atomic_add(2, &comp->in_flight);
999
1000         if (likely(encrypt)) {
1001                 source_sg = ic->journal_scatterlist;
1002                 target_sg = ic->journal_io_scatterlist;
1003         } else {
1004                 source_sg = ic->journal_io_scatterlist;
1005                 target_sg = ic->journal_scatterlist;
1006         }
1007
1008         do {
1009                 struct skcipher_request *req;
1010                 unsigned ivsize;
1011                 char *iv;
1012
1013                 if (likely(encrypt))
1014                         rw_section_mac(ic, section, true);
1015
1016                 req = ic->sk_requests[section];
1017                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
1018                 iv = req->iv;
1019
1020                 memcpy(iv, iv + ivsize, ivsize);
1021
1022                 req->src = source_sg[section];
1023                 req->dst = target_sg[section];
1024
1025                 if (unlikely(do_crypt(encrypt, req, comp)))
1026                         atomic_inc(&comp->in_flight);
1027
1028                 section++;
1029                 n_sections--;
1030         } while (n_sections);
1031
1032         atomic_dec(&comp->in_flight);
1033         complete_journal_op(comp);
1034 }
1035
1036 static void encrypt_journal(struct dm_integrity_c *ic, bool encrypt, unsigned section,
1037                             unsigned n_sections, struct journal_completion *comp)
1038 {
1039         if (ic->journal_xor)
1040                 return xor_journal(ic, encrypt, section, n_sections, comp);
1041         else
1042                 return crypt_journal(ic, encrypt, section, n_sections, comp);
1043 }
1044
1045 static void complete_journal_io(unsigned long error, void *context)
1046 {
1047         struct journal_completion *comp = context;
1048         if (unlikely(error != 0))
1049                 dm_integrity_io_error(comp->ic, "writing journal", -EIO);
1050         complete_journal_op(comp);
1051 }
1052
1053 static void rw_journal_sectors(struct dm_integrity_c *ic, int op, int op_flags,
1054                                unsigned sector, unsigned n_sectors, struct journal_completion *comp)
1055 {
1056         struct dm_io_request io_req;
1057         struct dm_io_region io_loc;
1058         unsigned pl_index, pl_offset;
1059         int r;
1060
1061         if (unlikely(dm_integrity_failed(ic))) {
1062                 if (comp)
1063                         complete_journal_io(-1UL, comp);
1064                 return;
1065         }
1066
1067         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1068         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1069
1070         io_req.bi_op = op;
1071         io_req.bi_op_flags = op_flags;
1072         io_req.mem.type = DM_IO_PAGE_LIST;
1073         if (ic->journal_io)
1074                 io_req.mem.ptr.pl = &ic->journal_io[pl_index];
1075         else
1076                 io_req.mem.ptr.pl = &ic->journal[pl_index];
1077         io_req.mem.offset = pl_offset;
1078         if (likely(comp != NULL)) {
1079                 io_req.notify.fn = complete_journal_io;
1080                 io_req.notify.context = comp;
1081         } else {
1082                 io_req.notify.fn = NULL;
1083         }
1084         io_req.client = ic->io;
1085         io_loc.bdev = ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev;
1086         io_loc.sector = ic->start + SB_SECTORS + sector;
1087         io_loc.count = n_sectors;
1088
1089         r = dm_io(&io_req, 1, &io_loc, NULL);
1090         if (unlikely(r)) {
1091                 dm_integrity_io_error(ic, op == REQ_OP_READ ? "reading journal" : "writing journal", r);
1092                 if (comp) {
1093                         WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1094                         complete_journal_io(-1UL, comp);
1095                 }
1096         }
1097 }
1098
1099 static void rw_journal(struct dm_integrity_c *ic, int op, int op_flags, unsigned section,
1100                        unsigned n_sections, struct journal_completion *comp)
1101 {
1102         unsigned sector, n_sectors;
1103
1104         sector = section * ic->journal_section_sectors;
1105         n_sectors = n_sections * ic->journal_section_sectors;
1106
1107         rw_journal_sectors(ic, op, op_flags, sector, n_sectors, comp);
1108 }
1109
1110 static void write_journal(struct dm_integrity_c *ic, unsigned commit_start, unsigned commit_sections)
1111 {
1112         struct journal_completion io_comp;
1113         struct journal_completion crypt_comp_1;
1114         struct journal_completion crypt_comp_2;
1115         unsigned i;
1116
1117         io_comp.ic = ic;
1118         init_completion(&io_comp.comp);
1119
1120         if (commit_start + commit_sections <= ic->journal_sections) {
1121                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(1);
1122                 if (ic->journal_io) {
1123                         crypt_comp_1.ic = ic;
1124                         init_completion(&crypt_comp_1.comp);
1125                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1126                         encrypt_journal(ic, true, commit_start, commit_sections, &crypt_comp_1);
1127                         wait_for_completion_io(&crypt_comp_1.comp);
1128                 } else {
1129                         for (i = 0; i < commit_sections; i++)
1130                                 rw_section_mac(ic, commit_start + i, true);
1131                 }
1132                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, commit_start,
1133                            commit_sections, &io_comp);
1134         } else {
1135                 unsigned to_end;
1136                 io_comp.in_flight = (atomic_t)ATOMIC_INIT(2);
1137                 to_end = ic->journal_sections - commit_start;
1138                 if (ic->journal_io) {
1139                         crypt_comp_1.ic = ic;
1140                         init_completion(&crypt_comp_1.comp);
1141                         crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1142                         encrypt_journal(ic, true, commit_start, to_end, &crypt_comp_1);
1143                         if (try_wait_for_completion(&crypt_comp_1.comp)) {
1144                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1145                                 reinit_completion(&crypt_comp_1.comp);
1146                                 crypt_comp_1.in_flight = (atomic_t)ATOMIC_INIT(0);
1147                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_1);
1148                                 wait_for_completion_io(&crypt_comp_1.comp);
1149                         } else {
1150                                 crypt_comp_2.ic = ic;
1151                                 init_completion(&crypt_comp_2.comp);
1152                                 crypt_comp_2.in_flight = (atomic_t)ATOMIC_INIT(0);
1153                                 encrypt_journal(ic, true, 0, commit_sections - to_end, &crypt_comp_2);
1154                                 wait_for_completion_io(&crypt_comp_1.comp);
1155                                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1156                                 wait_for_completion_io(&crypt_comp_2.comp);
1157                         }
1158                 } else {
1159                         for (i = 0; i < to_end; i++)
1160                                 rw_section_mac(ic, commit_start + i, true);
1161                         rw_journal(ic, REQ_OP_WRITE, REQ_FUA, commit_start, to_end, &io_comp);
1162                         for (i = 0; i < commit_sections - to_end; i++)
1163                                 rw_section_mac(ic, i, true);
1164                 }
1165                 rw_journal(ic, REQ_OP_WRITE, REQ_FUA, 0, commit_sections - to_end, &io_comp);
1166         }
1167
1168         wait_for_completion_io(&io_comp.comp);
1169 }
1170
1171 static void copy_from_journal(struct dm_integrity_c *ic, unsigned section, unsigned offset,
1172                               unsigned n_sectors, sector_t target, io_notify_fn fn, void *data)
1173 {
1174         struct dm_io_request io_req;
1175         struct dm_io_region io_loc;
1176         int r;
1177         unsigned sector, pl_index, pl_offset;
1178
1179         BUG_ON((target | n_sectors | offset) & (unsigned)(ic->sectors_per_block - 1));
1180
1181         if (unlikely(dm_integrity_failed(ic))) {
1182                 fn(-1UL, data);
1183                 return;
1184         }
1185
1186         sector = section * ic->journal_section_sectors + JOURNAL_BLOCK_SECTORS + offset;
1187
1188         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
1189         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
1190
1191         io_req.bi_op = REQ_OP_WRITE;
1192         io_req.bi_op_flags = 0;
1193         io_req.mem.type = DM_IO_PAGE_LIST;
1194         io_req.mem.ptr.pl = &ic->journal[pl_index];
1195         io_req.mem.offset = pl_offset;
1196         io_req.notify.fn = fn;
1197         io_req.notify.context = data;
1198         io_req.client = ic->io;
1199         io_loc.bdev = ic->dev->bdev;
1200         io_loc.sector = target;
1201         io_loc.count = n_sectors;
1202
1203         r = dm_io(&io_req, 1, &io_loc, NULL);
1204         if (unlikely(r)) {
1205                 WARN_ONCE(1, "asynchronous dm_io failed: %d", r);
1206                 fn(-1UL, data);
1207         }
1208 }
1209
1210 static bool ranges_overlap(struct dm_integrity_range *range1, struct dm_integrity_range *range2)
1211 {
1212         return range1->logical_sector < range2->logical_sector + range2->n_sectors &&
1213                range1->logical_sector + range1->n_sectors > range2->logical_sector;
1214 }
1215
1216 static bool add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range, bool check_waiting)
1217 {
1218         struct rb_node **n = &ic->in_progress.rb_node;
1219         struct rb_node *parent;
1220
1221         BUG_ON((new_range->logical_sector | new_range->n_sectors) & (unsigned)(ic->sectors_per_block - 1));
1222
1223         if (likely(check_waiting)) {
1224                 struct dm_integrity_range *range;
1225                 list_for_each_entry(range, &ic->wait_list, wait_entry) {
1226                         if (unlikely(ranges_overlap(range, new_range)))
1227                                 return false;
1228                 }
1229         }
1230
1231         parent = NULL;
1232
1233         while (*n) {
1234                 struct dm_integrity_range *range = container_of(*n, struct dm_integrity_range, node);
1235
1236                 parent = *n;
1237                 if (new_range->logical_sector + new_range->n_sectors <= range->logical_sector) {
1238                         n = &range->node.rb_left;
1239                 } else if (new_range->logical_sector >= range->logical_sector + range->n_sectors) {
1240                         n = &range->node.rb_right;
1241                 } else {
1242                         return false;
1243                 }
1244         }
1245
1246         rb_link_node(&new_range->node, parent, n);
1247         rb_insert_color(&new_range->node, &ic->in_progress);
1248
1249         return true;
1250 }
1251
1252 static void remove_range_unlocked(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1253 {
1254         rb_erase(&range->node, &ic->in_progress);
1255         while (unlikely(!list_empty(&ic->wait_list))) {
1256                 struct dm_integrity_range *last_range =
1257                         list_first_entry(&ic->wait_list, struct dm_integrity_range, wait_entry);
1258                 struct task_struct *last_range_task;
1259                 last_range_task = last_range->task;
1260                 list_del(&last_range->wait_entry);
1261                 if (!add_new_range(ic, last_range, false)) {
1262                         last_range->task = last_range_task;
1263                         list_add(&last_range->wait_entry, &ic->wait_list);
1264                         break;
1265                 }
1266                 last_range->waiting = false;
1267                 wake_up_process(last_range_task);
1268         }
1269 }
1270
1271 static void remove_range(struct dm_integrity_c *ic, struct dm_integrity_range *range)
1272 {
1273         unsigned long flags;
1274
1275         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1276         remove_range_unlocked(ic, range);
1277         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1278 }
1279
1280 static void wait_and_add_new_range(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1281 {
1282         new_range->waiting = true;
1283         list_add_tail(&new_range->wait_entry, &ic->wait_list);
1284         new_range->task = current;
1285         do {
1286                 __set_current_state(TASK_UNINTERRUPTIBLE);
1287                 spin_unlock_irq(&ic->endio_wait.lock);
1288                 io_schedule();
1289                 spin_lock_irq(&ic->endio_wait.lock);
1290         } while (unlikely(new_range->waiting));
1291 }
1292
1293 static void add_new_range_and_wait(struct dm_integrity_c *ic, struct dm_integrity_range *new_range)
1294 {
1295         if (unlikely(!add_new_range(ic, new_range, true)))
1296                 wait_and_add_new_range(ic, new_range);
1297 }
1298
1299 static void init_journal_node(struct journal_node *node)
1300 {
1301         RB_CLEAR_NODE(&node->node);
1302         node->sector = (sector_t)-1;
1303 }
1304
1305 static void add_journal_node(struct dm_integrity_c *ic, struct journal_node *node, sector_t sector)
1306 {
1307         struct rb_node **link;
1308         struct rb_node *parent;
1309
1310         node->sector = sector;
1311         BUG_ON(!RB_EMPTY_NODE(&node->node));
1312
1313         link = &ic->journal_tree_root.rb_node;
1314         parent = NULL;
1315
1316         while (*link) {
1317                 struct journal_node *j;
1318                 parent = *link;
1319                 j = container_of(parent, struct journal_node, node);
1320                 if (sector < j->sector)
1321                         link = &j->node.rb_left;
1322                 else
1323                         link = &j->node.rb_right;
1324         }
1325
1326         rb_link_node(&node->node, parent, link);
1327         rb_insert_color(&node->node, &ic->journal_tree_root);
1328 }
1329
1330 static void remove_journal_node(struct dm_integrity_c *ic, struct journal_node *node)
1331 {
1332         BUG_ON(RB_EMPTY_NODE(&node->node));
1333         rb_erase(&node->node, &ic->journal_tree_root);
1334         init_journal_node(node);
1335 }
1336
1337 #define NOT_FOUND       (-1U)
1338
1339 static unsigned find_journal_node(struct dm_integrity_c *ic, sector_t sector, sector_t *next_sector)
1340 {
1341         struct rb_node *n = ic->journal_tree_root.rb_node;
1342         unsigned found = NOT_FOUND;
1343         *next_sector = (sector_t)-1;
1344         while (n) {
1345                 struct journal_node *j = container_of(n, struct journal_node, node);
1346                 if (sector == j->sector) {
1347                         found = j - ic->journal_tree;
1348                 }
1349                 if (sector < j->sector) {
1350                         *next_sector = j->sector;
1351                         n = j->node.rb_left;
1352                 } else {
1353                         n = j->node.rb_right;
1354                 }
1355         }
1356
1357         return found;
1358 }
1359
1360 static bool test_journal_node(struct dm_integrity_c *ic, unsigned pos, sector_t sector)
1361 {
1362         struct journal_node *node, *next_node;
1363         struct rb_node *next;
1364
1365         if (unlikely(pos >= ic->journal_entries))
1366                 return false;
1367         node = &ic->journal_tree[pos];
1368         if (unlikely(RB_EMPTY_NODE(&node->node)))
1369                 return false;
1370         if (unlikely(node->sector != sector))
1371                 return false;
1372
1373         next = rb_next(&node->node);
1374         if (unlikely(!next))
1375                 return true;
1376
1377         next_node = container_of(next, struct journal_node, node);
1378         return next_node->sector != sector;
1379 }
1380
1381 static bool find_newer_committed_node(struct dm_integrity_c *ic, struct journal_node *node)
1382 {
1383         struct rb_node *next;
1384         struct journal_node *next_node;
1385         unsigned next_section;
1386
1387         BUG_ON(RB_EMPTY_NODE(&node->node));
1388
1389         next = rb_next(&node->node);
1390         if (unlikely(!next))
1391                 return false;
1392
1393         next_node = container_of(next, struct journal_node, node);
1394
1395         if (next_node->sector != node->sector)
1396                 return false;
1397
1398         next_section = (unsigned)(next_node - ic->journal_tree) / ic->journal_section_entries;
1399         if (next_section >= ic->committed_section &&
1400             next_section < ic->committed_section + ic->n_committed_sections)
1401                 return true;
1402         if (next_section + ic->journal_sections < ic->committed_section + ic->n_committed_sections)
1403                 return true;
1404
1405         return false;
1406 }
1407
1408 #define TAG_READ        0
1409 #define TAG_WRITE       1
1410 #define TAG_CMP         2
1411
1412 static int dm_integrity_rw_tag(struct dm_integrity_c *ic, unsigned char *tag, sector_t *metadata_block,
1413                                unsigned *metadata_offset, unsigned total_size, int op)
1414 {
1415 #define MAY_BE_FILLER           1
1416 #define MAY_BE_HASH             2
1417         unsigned hash_offset = 0;
1418         unsigned may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1419
1420         do {
1421                 unsigned char *data, *dp;
1422                 struct dm_buffer *b;
1423                 unsigned to_copy;
1424                 int r;
1425
1426                 r = dm_integrity_failed(ic);
1427                 if (unlikely(r))
1428                         return r;
1429
1430                 data = dm_bufio_read(ic->bufio, *metadata_block, &b);
1431                 if (IS_ERR(data))
1432                         return PTR_ERR(data);
1433
1434                 to_copy = min((1U << SECTOR_SHIFT << ic->log2_buffer_sectors) - *metadata_offset, total_size);
1435                 dp = data + *metadata_offset;
1436                 if (op == TAG_READ) {
1437                         memcpy(tag, dp, to_copy);
1438                 } else if (op == TAG_WRITE) {
1439                         if (memcmp(dp, tag, to_copy)) {
1440                                 memcpy(dp, tag, to_copy);
1441                                 dm_bufio_mark_partial_buffer_dirty(b, *metadata_offset, *metadata_offset + to_copy);
1442                         }
1443                 } else {
1444                         /* e.g.: op == TAG_CMP */
1445
1446                         if (likely(is_power_of_2(ic->tag_size))) {
1447                                 if (unlikely(memcmp(dp, tag, to_copy)))
1448                                         if (unlikely(!ic->discard) ||
1449                                             unlikely(memchr_inv(dp, DISCARD_FILLER, to_copy) != NULL)) {
1450                                                 goto thorough_test;
1451                                 }
1452                         } else {
1453                                 unsigned i, ts;
1454 thorough_test:
1455                                 ts = total_size;
1456
1457                                 for (i = 0; i < to_copy; i++, ts--) {
1458                                         if (unlikely(dp[i] != tag[i]))
1459                                                 may_be &= ~MAY_BE_HASH;
1460                                         if (likely(dp[i] != DISCARD_FILLER))
1461                                                 may_be &= ~MAY_BE_FILLER;
1462                                         hash_offset++;
1463                                         if (unlikely(hash_offset == ic->tag_size)) {
1464                                                 if (unlikely(!may_be)) {
1465                                                         dm_bufio_release(b);
1466                                                         return ts;
1467                                                 }
1468                                                 hash_offset = 0;
1469                                                 may_be = MAY_BE_HASH | (ic->discard ? MAY_BE_FILLER : 0);
1470                                         }
1471                                 }
1472                         }
1473                 }
1474                 dm_bufio_release(b);
1475
1476                 tag += to_copy;
1477                 *metadata_offset += to_copy;
1478                 if (unlikely(*metadata_offset == 1U << SECTOR_SHIFT << ic->log2_buffer_sectors)) {
1479                         (*metadata_block)++;
1480                         *metadata_offset = 0;
1481                 }
1482
1483                 if (unlikely(!is_power_of_2(ic->tag_size))) {
1484                         hash_offset = (hash_offset + to_copy) % ic->tag_size;
1485                 }
1486
1487                 total_size -= to_copy;
1488         } while (unlikely(total_size));
1489
1490         return 0;
1491 #undef MAY_BE_FILLER
1492 #undef MAY_BE_HASH
1493 }
1494
1495 struct flush_request {
1496         struct dm_io_request io_req;
1497         struct dm_io_region io_reg;
1498         struct dm_integrity_c *ic;
1499         struct completion comp;
1500 };
1501
1502 static void flush_notify(unsigned long error, void *fr_)
1503 {
1504         struct flush_request *fr = fr_;
1505         if (unlikely(error != 0))
1506                 dm_integrity_io_error(fr->ic, "flushing disk cache", -EIO);
1507         complete(&fr->comp);
1508 }
1509
1510 static void dm_integrity_flush_buffers(struct dm_integrity_c *ic, bool flush_data)
1511 {
1512         int r;
1513
1514         struct flush_request fr;
1515
1516         if (!ic->meta_dev)
1517                 flush_data = false;
1518         if (flush_data) {
1519                 fr.io_req.bi_op = REQ_OP_WRITE,
1520                 fr.io_req.bi_op_flags = REQ_PREFLUSH | REQ_SYNC,
1521                 fr.io_req.mem.type = DM_IO_KMEM,
1522                 fr.io_req.mem.ptr.addr = NULL,
1523                 fr.io_req.notify.fn = flush_notify,
1524                 fr.io_req.notify.context = &fr;
1525                 fr.io_req.client = dm_bufio_get_dm_io_client(ic->bufio),
1526                 fr.io_reg.bdev = ic->dev->bdev,
1527                 fr.io_reg.sector = 0,
1528                 fr.io_reg.count = 0,
1529                 fr.ic = ic;
1530                 init_completion(&fr.comp);
1531                 r = dm_io(&fr.io_req, 1, &fr.io_reg, NULL);
1532                 BUG_ON(r);
1533         }
1534
1535         r = dm_bufio_write_dirty_buffers(ic->bufio);
1536         if (unlikely(r))
1537                 dm_integrity_io_error(ic, "writing tags", r);
1538
1539         if (flush_data)
1540                 wait_for_completion(&fr.comp);
1541 }
1542
1543 static void sleep_on_endio_wait(struct dm_integrity_c *ic)
1544 {
1545         DECLARE_WAITQUEUE(wait, current);
1546         __add_wait_queue(&ic->endio_wait, &wait);
1547         __set_current_state(TASK_UNINTERRUPTIBLE);
1548         spin_unlock_irq(&ic->endio_wait.lock);
1549         io_schedule();
1550         spin_lock_irq(&ic->endio_wait.lock);
1551         __remove_wait_queue(&ic->endio_wait, &wait);
1552 }
1553
1554 static void autocommit_fn(struct timer_list *t)
1555 {
1556         struct dm_integrity_c *ic = from_timer(ic, t, autocommit_timer);
1557
1558         if (likely(!dm_integrity_failed(ic)))
1559                 queue_work(ic->commit_wq, &ic->commit_work);
1560 }
1561
1562 static void schedule_autocommit(struct dm_integrity_c *ic)
1563 {
1564         if (!timer_pending(&ic->autocommit_timer))
1565                 mod_timer(&ic->autocommit_timer, jiffies + ic->autocommit_jiffies);
1566 }
1567
1568 static void submit_flush_bio(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1569 {
1570         struct bio *bio;
1571         unsigned long flags;
1572
1573         spin_lock_irqsave(&ic->endio_wait.lock, flags);
1574         bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1575         bio_list_add(&ic->flush_bio_list, bio);
1576         spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1577
1578         queue_work(ic->commit_wq, &ic->commit_work);
1579 }
1580
1581 static void do_endio(struct dm_integrity_c *ic, struct bio *bio)
1582 {
1583         int r = dm_integrity_failed(ic);
1584         if (unlikely(r) && !bio->bi_status)
1585                 bio->bi_status = errno_to_blk_status(r);
1586         if (unlikely(ic->synchronous_mode) && bio_op(bio) == REQ_OP_WRITE) {
1587                 unsigned long flags;
1588                 spin_lock_irqsave(&ic->endio_wait.lock, flags);
1589                 bio_list_add(&ic->synchronous_bios, bio);
1590                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
1591                 spin_unlock_irqrestore(&ic->endio_wait.lock, flags);
1592                 return;
1593         }
1594         bio_endio(bio);
1595 }
1596
1597 static void do_endio_flush(struct dm_integrity_c *ic, struct dm_integrity_io *dio)
1598 {
1599         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1600
1601         if (unlikely(dio->fua) && likely(!bio->bi_status) && likely(!dm_integrity_failed(ic)))
1602                 submit_flush_bio(ic, dio);
1603         else
1604                 do_endio(ic, bio);
1605 }
1606
1607 static void dec_in_flight(struct dm_integrity_io *dio)
1608 {
1609         if (atomic_dec_and_test(&dio->in_flight)) {
1610                 struct dm_integrity_c *ic = dio->ic;
1611                 struct bio *bio;
1612
1613                 remove_range(ic, &dio->range);
1614
1615                 if (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))
1616                         schedule_autocommit(ic);
1617
1618                 bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1619
1620                 if (unlikely(dio->bi_status) && !bio->bi_status)
1621                         bio->bi_status = dio->bi_status;
1622                 if (likely(!bio->bi_status) && unlikely(bio_sectors(bio) != dio->range.n_sectors)) {
1623                         dio->range.logical_sector += dio->range.n_sectors;
1624                         bio_advance(bio, dio->range.n_sectors << SECTOR_SHIFT);
1625                         INIT_WORK(&dio->work, integrity_bio_wait);
1626                         queue_work(ic->offload_wq, &dio->work);
1627                         return;
1628                 }
1629                 do_endio_flush(ic, dio);
1630         }
1631 }
1632
1633 static void integrity_end_io(struct bio *bio)
1634 {
1635         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1636
1637         dm_bio_restore(&dio->bio_details, bio);
1638         if (bio->bi_integrity)
1639                 bio->bi_opf |= REQ_INTEGRITY;
1640
1641         if (dio->completion)
1642                 complete(dio->completion);
1643
1644         dec_in_flight(dio);
1645 }
1646
1647 static void integrity_sector_checksum(struct dm_integrity_c *ic, sector_t sector,
1648                                       const char *data, char *result)
1649 {
1650         __le64 sector_le = cpu_to_le64(sector);
1651         SHASH_DESC_ON_STACK(req, ic->internal_hash);
1652         int r;
1653         unsigned digest_size;
1654
1655         req->tfm = ic->internal_hash;
1656
1657         r = crypto_shash_init(req);
1658         if (unlikely(r < 0)) {
1659                 dm_integrity_io_error(ic, "crypto_shash_init", r);
1660                 goto failed;
1661         }
1662
1663         if (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) {
1664                 r = crypto_shash_update(req, (__u8 *)&ic->sb->salt, SALT_SIZE);
1665                 if (unlikely(r < 0)) {
1666                         dm_integrity_io_error(ic, "crypto_shash_update", r);
1667                         goto failed;
1668                 }
1669         }
1670
1671         r = crypto_shash_update(req, (const __u8 *)&sector_le, sizeof sector_le);
1672         if (unlikely(r < 0)) {
1673                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1674                 goto failed;
1675         }
1676
1677         r = crypto_shash_update(req, data, ic->sectors_per_block << SECTOR_SHIFT);
1678         if (unlikely(r < 0)) {
1679                 dm_integrity_io_error(ic, "crypto_shash_update", r);
1680                 goto failed;
1681         }
1682
1683         r = crypto_shash_final(req, result);
1684         if (unlikely(r < 0)) {
1685                 dm_integrity_io_error(ic, "crypto_shash_final", r);
1686                 goto failed;
1687         }
1688
1689         digest_size = crypto_shash_digestsize(ic->internal_hash);
1690         if (unlikely(digest_size < ic->tag_size))
1691                 memset(result + digest_size, 0, ic->tag_size - digest_size);
1692
1693         return;
1694
1695 failed:
1696         /* this shouldn't happen anyway, the hash functions have no reason to fail */
1697         get_random_bytes(result, ic->tag_size);
1698 }
1699
1700 static void integrity_metadata(struct work_struct *w)
1701 {
1702         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
1703         struct dm_integrity_c *ic = dio->ic;
1704
1705         int r;
1706
1707         if (ic->internal_hash) {
1708                 struct bvec_iter iter;
1709                 struct bio_vec bv;
1710                 unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
1711                 struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
1712                 char *checksums;
1713                 unsigned extra_space = unlikely(digest_size > ic->tag_size) ? digest_size - ic->tag_size : 0;
1714                 char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
1715                 sector_t sector;
1716                 unsigned sectors_to_process;
1717
1718                 if (unlikely(ic->mode == 'R'))
1719                         goto skip_io;
1720
1721                 if (likely(dio->op != REQ_OP_DISCARD))
1722                         checksums = kmalloc((PAGE_SIZE >> SECTOR_SHIFT >> ic->sb->log2_sectors_per_block) * ic->tag_size + extra_space,
1723                                             GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1724                 else
1725                         checksums = kmalloc(PAGE_SIZE, GFP_NOIO | __GFP_NORETRY | __GFP_NOWARN);
1726                 if (!checksums) {
1727                         checksums = checksums_onstack;
1728                         if (WARN_ON(extra_space &&
1729                                     digest_size > sizeof(checksums_onstack))) {
1730                                 r = -EINVAL;
1731                                 goto error;
1732                         }
1733                 }
1734
1735                 if (unlikely(dio->op == REQ_OP_DISCARD)) {
1736                         sector_t bi_sector = dio->bio_details.bi_iter.bi_sector;
1737                         unsigned bi_size = dio->bio_details.bi_iter.bi_size;
1738                         unsigned max_size = likely(checksums != checksums_onstack) ? PAGE_SIZE : HASH_MAX_DIGESTSIZE;
1739                         unsigned max_blocks = max_size / ic->tag_size;
1740                         memset(checksums, DISCARD_FILLER, max_size);
1741
1742                         while (bi_size) {
1743                                 unsigned this_step_blocks = bi_size >> (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1744                                 this_step_blocks = min(this_step_blocks, max_blocks);
1745                                 r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1746                                                         this_step_blocks * ic->tag_size, TAG_WRITE);
1747                                 if (unlikely(r)) {
1748                                         if (likely(checksums != checksums_onstack))
1749                                                 kfree(checksums);
1750                                         goto error;
1751                                 }
1752
1753                                 /*if (bi_size < this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block)) {
1754                                         printk("BUGG: bi_sector: %llx, bi_size: %u\n", bi_sector, bi_size);
1755                                         printk("BUGG: this_step_blocks: %u\n", this_step_blocks);
1756                                         BUG();
1757                                 }*/
1758                                 bi_size -= this_step_blocks << (SECTOR_SHIFT + ic->sb->log2_sectors_per_block);
1759                                 bi_sector += this_step_blocks << ic->sb->log2_sectors_per_block;
1760                         }
1761
1762                         if (likely(checksums != checksums_onstack))
1763                                 kfree(checksums);
1764                         goto skip_io;
1765                 }
1766
1767                 sector = dio->range.logical_sector;
1768                 sectors_to_process = dio->range.n_sectors;
1769
1770                 __bio_for_each_segment(bv, bio, iter, dio->bio_details.bi_iter) {
1771                         unsigned pos;
1772                         char *mem, *checksums_ptr;
1773
1774 again:
1775                         mem = bvec_kmap_local(&bv);
1776                         pos = 0;
1777                         checksums_ptr = checksums;
1778                         do {
1779                                 integrity_sector_checksum(ic, sector, mem + pos, checksums_ptr);
1780                                 checksums_ptr += ic->tag_size;
1781                                 sectors_to_process -= ic->sectors_per_block;
1782                                 pos += ic->sectors_per_block << SECTOR_SHIFT;
1783                                 sector += ic->sectors_per_block;
1784                         } while (pos < bv.bv_len && sectors_to_process && checksums != checksums_onstack);
1785                         kunmap_local(mem);
1786
1787                         r = dm_integrity_rw_tag(ic, checksums, &dio->metadata_block, &dio->metadata_offset,
1788                                                 checksums_ptr - checksums, dio->op == REQ_OP_READ ? TAG_CMP : TAG_WRITE);
1789                         if (unlikely(r)) {
1790                                 if (r > 0) {
1791                                         sector_t s;
1792
1793                                         s = sector - ((r + ic->tag_size - 1) / ic->tag_size);
1794                                         DMERR_LIMIT("%pg: Checksum failed at sector 0x%llx",
1795                                                     bio->bi_bdev, s);
1796                                         r = -EILSEQ;
1797                                         atomic64_inc(&ic->number_of_mismatches);
1798                                         dm_audit_log_bio(DM_MSG_PREFIX, "integrity-checksum",
1799                                                          bio, s, 0);
1800                                 }
1801                                 if (likely(checksums != checksums_onstack))
1802                                         kfree(checksums);
1803                                 goto error;
1804                         }
1805
1806                         if (!sectors_to_process)
1807                                 break;
1808
1809                         if (unlikely(pos < bv.bv_len)) {
1810                                 bv.bv_offset += pos;
1811                                 bv.bv_len -= pos;
1812                                 goto again;
1813                         }
1814                 }
1815
1816                 if (likely(checksums != checksums_onstack))
1817                         kfree(checksums);
1818         } else {
1819                 struct bio_integrity_payload *bip = dio->bio_details.bi_integrity;
1820
1821                 if (bip) {
1822                         struct bio_vec biv;
1823                         struct bvec_iter iter;
1824                         unsigned data_to_process = dio->range.n_sectors;
1825                         sector_to_block(ic, data_to_process);
1826                         data_to_process *= ic->tag_size;
1827
1828                         bip_for_each_vec(biv, bip, iter) {
1829                                 unsigned char *tag;
1830                                 unsigned this_len;
1831
1832                                 BUG_ON(PageHighMem(biv.bv_page));
1833                                 tag = bvec_virt(&biv);
1834                                 this_len = min(biv.bv_len, data_to_process);
1835                                 r = dm_integrity_rw_tag(ic, tag, &dio->metadata_block, &dio->metadata_offset,
1836                                                         this_len, dio->op == REQ_OP_READ ? TAG_READ : TAG_WRITE);
1837                                 if (unlikely(r))
1838                                         goto error;
1839                                 data_to_process -= this_len;
1840                                 if (!data_to_process)
1841                                         break;
1842                         }
1843                 }
1844         }
1845 skip_io:
1846         dec_in_flight(dio);
1847         return;
1848 error:
1849         dio->bi_status = errno_to_blk_status(r);
1850         dec_in_flight(dio);
1851 }
1852
1853 static int dm_integrity_map(struct dm_target *ti, struct bio *bio)
1854 {
1855         struct dm_integrity_c *ic = ti->private;
1856         struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
1857         struct bio_integrity_payload *bip;
1858
1859         sector_t area, offset;
1860
1861         dio->ic = ic;
1862         dio->bi_status = 0;
1863         dio->op = bio_op(bio);
1864
1865         if (unlikely(dio->op == REQ_OP_DISCARD)) {
1866                 if (ti->max_io_len) {
1867                         sector_t sec = dm_target_offset(ti, bio->bi_iter.bi_sector);
1868                         unsigned log2_max_io_len = __fls(ti->max_io_len);
1869                         sector_t start_boundary = sec >> log2_max_io_len;
1870                         sector_t end_boundary = (sec + bio_sectors(bio) - 1) >> log2_max_io_len;
1871                         if (start_boundary < end_boundary) {
1872                                 sector_t len = ti->max_io_len - (sec & (ti->max_io_len - 1));
1873                                 dm_accept_partial_bio(bio, len);
1874                         }
1875                 }
1876         }
1877
1878         if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1879                 submit_flush_bio(ic, dio);
1880                 return DM_MAPIO_SUBMITTED;
1881         }
1882
1883         dio->range.logical_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
1884         dio->fua = dio->op == REQ_OP_WRITE && bio->bi_opf & REQ_FUA;
1885         if (unlikely(dio->fua)) {
1886                 /*
1887                  * Don't pass down the FUA flag because we have to flush
1888                  * disk cache anyway.
1889                  */
1890                 bio->bi_opf &= ~REQ_FUA;
1891         }
1892         if (unlikely(dio->range.logical_sector + bio_sectors(bio) > ic->provided_data_sectors)) {
1893                 DMERR("Too big sector number: 0x%llx + 0x%x > 0x%llx",
1894                       dio->range.logical_sector, bio_sectors(bio),
1895                       ic->provided_data_sectors);
1896                 return DM_MAPIO_KILL;
1897         }
1898         if (unlikely((dio->range.logical_sector | bio_sectors(bio)) & (unsigned)(ic->sectors_per_block - 1))) {
1899                 DMERR("Bio not aligned on %u sectors: 0x%llx, 0x%x",
1900                       ic->sectors_per_block,
1901                       dio->range.logical_sector, bio_sectors(bio));
1902                 return DM_MAPIO_KILL;
1903         }
1904
1905         if (ic->sectors_per_block > 1 && likely(dio->op != REQ_OP_DISCARD)) {
1906                 struct bvec_iter iter;
1907                 struct bio_vec bv;
1908                 bio_for_each_segment(bv, bio, iter) {
1909                         if (unlikely(bv.bv_len & ((ic->sectors_per_block << SECTOR_SHIFT) - 1))) {
1910                                 DMERR("Bio vector (%u,%u) is not aligned on %u-sector boundary",
1911                                         bv.bv_offset, bv.bv_len, ic->sectors_per_block);
1912                                 return DM_MAPIO_KILL;
1913                         }
1914                 }
1915         }
1916
1917         bip = bio_integrity(bio);
1918         if (!ic->internal_hash) {
1919                 if (bip) {
1920                         unsigned wanted_tag_size = bio_sectors(bio) >> ic->sb->log2_sectors_per_block;
1921                         if (ic->log2_tag_size >= 0)
1922                                 wanted_tag_size <<= ic->log2_tag_size;
1923                         else
1924                                 wanted_tag_size *= ic->tag_size;
1925                         if (unlikely(wanted_tag_size != bip->bip_iter.bi_size)) {
1926                                 DMERR("Invalid integrity data size %u, expected %u",
1927                                       bip->bip_iter.bi_size, wanted_tag_size);
1928                                 return DM_MAPIO_KILL;
1929                         }
1930                 }
1931         } else {
1932                 if (unlikely(bip != NULL)) {
1933                         DMERR("Unexpected integrity data when using internal hash");
1934                         return DM_MAPIO_KILL;
1935                 }
1936         }
1937
1938         if (unlikely(ic->mode == 'R') && unlikely(dio->op != REQ_OP_READ))
1939                 return DM_MAPIO_KILL;
1940
1941         get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
1942         dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
1943         bio->bi_iter.bi_sector = get_data_sector(ic, area, offset);
1944
1945         dm_integrity_map_continue(dio, true);
1946         return DM_MAPIO_SUBMITTED;
1947 }
1948
1949 static bool __journal_read_write(struct dm_integrity_io *dio, struct bio *bio,
1950                                  unsigned journal_section, unsigned journal_entry)
1951 {
1952         struct dm_integrity_c *ic = dio->ic;
1953         sector_t logical_sector;
1954         unsigned n_sectors;
1955
1956         logical_sector = dio->range.logical_sector;
1957         n_sectors = dio->range.n_sectors;
1958         do {
1959                 struct bio_vec bv = bio_iovec(bio);
1960                 char *mem;
1961
1962                 if (unlikely(bv.bv_len >> SECTOR_SHIFT > n_sectors))
1963                         bv.bv_len = n_sectors << SECTOR_SHIFT;
1964                 n_sectors -= bv.bv_len >> SECTOR_SHIFT;
1965                 bio_advance_iter(bio, &bio->bi_iter, bv.bv_len);
1966 retry_kmap:
1967                 mem = kmap_local_page(bv.bv_page);
1968                 if (likely(dio->op == REQ_OP_WRITE))
1969                         flush_dcache_page(bv.bv_page);
1970
1971                 do {
1972                         struct journal_entry *je = access_journal_entry(ic, journal_section, journal_entry);
1973
1974                         if (unlikely(dio->op == REQ_OP_READ)) {
1975                                 struct journal_sector *js;
1976                                 char *mem_ptr;
1977                                 unsigned s;
1978
1979                                 if (unlikely(journal_entry_is_inprogress(je))) {
1980                                         flush_dcache_page(bv.bv_page);
1981                                         kunmap_local(mem);
1982
1983                                         __io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
1984                                         goto retry_kmap;
1985                                 }
1986                                 smp_rmb();
1987                                 BUG_ON(journal_entry_get_sector(je) != logical_sector);
1988                                 js = access_journal_data(ic, journal_section, journal_entry);
1989                                 mem_ptr = mem + bv.bv_offset;
1990                                 s = 0;
1991                                 do {
1992                                         memcpy(mem_ptr, js, JOURNAL_SECTOR_DATA);
1993                                         *(commit_id_t *)(mem_ptr + JOURNAL_SECTOR_DATA) = je->last_bytes[s];
1994                                         js++;
1995                                         mem_ptr += 1 << SECTOR_SHIFT;
1996                                 } while (++s < ic->sectors_per_block);
1997 #ifdef INTERNAL_VERIFY
1998                                 if (ic->internal_hash) {
1999                                         char checksums_onstack[max((size_t)HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2000
2001                                         integrity_sector_checksum(ic, logical_sector, mem + bv.bv_offset, checksums_onstack);
2002                                         if (unlikely(memcmp(checksums_onstack, journal_entry_tag(ic, je), ic->tag_size))) {
2003                                                 DMERR_LIMIT("Checksum failed when reading from journal, at sector 0x%llx",
2004                                                             logical_sector);
2005                                                 dm_audit_log_bio(DM_MSG_PREFIX, "journal-checksum",
2006                                                                  bio, logical_sector, 0);
2007                                         }
2008                                 }
2009 #endif
2010                         }
2011
2012                         if (!ic->internal_hash) {
2013                                 struct bio_integrity_payload *bip = bio_integrity(bio);
2014                                 unsigned tag_todo = ic->tag_size;
2015                                 char *tag_ptr = journal_entry_tag(ic, je);
2016
2017                                 if (bip) do {
2018                                         struct bio_vec biv = bvec_iter_bvec(bip->bip_vec, bip->bip_iter);
2019                                         unsigned tag_now = min(biv.bv_len, tag_todo);
2020                                         char *tag_addr;
2021                                         BUG_ON(PageHighMem(biv.bv_page));
2022                                         tag_addr = bvec_virt(&biv);
2023                                         if (likely(dio->op == REQ_OP_WRITE))
2024                                                 memcpy(tag_ptr, tag_addr, tag_now);
2025                                         else
2026                                                 memcpy(tag_addr, tag_ptr, tag_now);
2027                                         bvec_iter_advance(bip->bip_vec, &bip->bip_iter, tag_now);
2028                                         tag_ptr += tag_now;
2029                                         tag_todo -= tag_now;
2030                                 } while (unlikely(tag_todo)); else {
2031                                         if (likely(dio->op == REQ_OP_WRITE))
2032                                                 memset(tag_ptr, 0, tag_todo);
2033                                 }
2034                         }
2035
2036                         if (likely(dio->op == REQ_OP_WRITE)) {
2037                                 struct journal_sector *js;
2038                                 unsigned s;
2039
2040                                 js = access_journal_data(ic, journal_section, journal_entry);
2041                                 memcpy(js, mem + bv.bv_offset, ic->sectors_per_block << SECTOR_SHIFT);
2042
2043                                 s = 0;
2044                                 do {
2045                                         je->last_bytes[s] = js[s].commit_id;
2046                                 } while (++s < ic->sectors_per_block);
2047
2048                                 if (ic->internal_hash) {
2049                                         unsigned digest_size = crypto_shash_digestsize(ic->internal_hash);
2050                                         if (unlikely(digest_size > ic->tag_size)) {
2051                                                 char checksums_onstack[HASH_MAX_DIGESTSIZE];
2052                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, checksums_onstack);
2053                                                 memcpy(journal_entry_tag(ic, je), checksums_onstack, ic->tag_size);
2054                                         } else
2055                                                 integrity_sector_checksum(ic, logical_sector, (char *)js, journal_entry_tag(ic, je));
2056                                 }
2057
2058                                 journal_entry_set_sector(je, logical_sector);
2059                         }
2060                         logical_sector += ic->sectors_per_block;
2061
2062                         journal_entry++;
2063                         if (unlikely(journal_entry == ic->journal_section_entries)) {
2064                                 journal_entry = 0;
2065                                 journal_section++;
2066                                 wraparound_section(ic, &journal_section);
2067                         }
2068
2069                         bv.bv_offset += ic->sectors_per_block << SECTOR_SHIFT;
2070                 } while (bv.bv_len -= ic->sectors_per_block << SECTOR_SHIFT);
2071
2072                 if (unlikely(dio->op == REQ_OP_READ))
2073                         flush_dcache_page(bv.bv_page);
2074                 kunmap_local(mem);
2075         } while (n_sectors);
2076
2077         if (likely(dio->op == REQ_OP_WRITE)) {
2078                 smp_mb();
2079                 if (unlikely(waitqueue_active(&ic->copy_to_journal_wait)))
2080                         wake_up(&ic->copy_to_journal_wait);
2081                 if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold) {
2082                         queue_work(ic->commit_wq, &ic->commit_work);
2083                 } else {
2084                         schedule_autocommit(ic);
2085                 }
2086         } else {
2087                 remove_range(ic, &dio->range);
2088         }
2089
2090         if (unlikely(bio->bi_iter.bi_size)) {
2091                 sector_t area, offset;
2092
2093                 dio->range.logical_sector = logical_sector;
2094                 get_area_and_offset(ic, dio->range.logical_sector, &area, &offset);
2095                 dio->metadata_block = get_metadata_sector_and_offset(ic, area, offset, &dio->metadata_offset);
2096                 return true;
2097         }
2098
2099         return false;
2100 }
2101
2102 static void dm_integrity_map_continue(struct dm_integrity_io *dio, bool from_map)
2103 {
2104         struct dm_integrity_c *ic = dio->ic;
2105         struct bio *bio = dm_bio_from_per_bio_data(dio, sizeof(struct dm_integrity_io));
2106         unsigned journal_section, journal_entry;
2107         unsigned journal_read_pos;
2108         struct completion read_comp;
2109         bool discard_retried = false;
2110         bool need_sync_io = ic->internal_hash && dio->op == REQ_OP_READ;
2111         if (unlikely(dio->op == REQ_OP_DISCARD) && ic->mode != 'D')
2112                 need_sync_io = true;
2113
2114         if (need_sync_io && from_map) {
2115                 INIT_WORK(&dio->work, integrity_bio_wait);
2116                 queue_work(ic->offload_wq, &dio->work);
2117                 return;
2118         }
2119
2120 lock_retry:
2121         spin_lock_irq(&ic->endio_wait.lock);
2122 retry:
2123         if (unlikely(dm_integrity_failed(ic))) {
2124                 spin_unlock_irq(&ic->endio_wait.lock);
2125                 do_endio(ic, bio);
2126                 return;
2127         }
2128         dio->range.n_sectors = bio_sectors(bio);
2129         journal_read_pos = NOT_FOUND;
2130         if (ic->mode == 'J' && likely(dio->op != REQ_OP_DISCARD)) {
2131                 if (dio->op == REQ_OP_WRITE) {
2132                         unsigned next_entry, i, pos;
2133                         unsigned ws, we, range_sectors;
2134
2135                         dio->range.n_sectors = min(dio->range.n_sectors,
2136                                                    (sector_t)ic->free_sectors << ic->sb->log2_sectors_per_block);
2137                         if (unlikely(!dio->range.n_sectors)) {
2138                                 if (from_map)
2139                                         goto offload_to_thread;
2140                                 sleep_on_endio_wait(ic);
2141                                 goto retry;
2142                         }
2143                         range_sectors = dio->range.n_sectors >> ic->sb->log2_sectors_per_block;
2144                         ic->free_sectors -= range_sectors;
2145                         journal_section = ic->free_section;
2146                         journal_entry = ic->free_section_entry;
2147
2148                         next_entry = ic->free_section_entry + range_sectors;
2149                         ic->free_section_entry = next_entry % ic->journal_section_entries;
2150                         ic->free_section += next_entry / ic->journal_section_entries;
2151                         ic->n_uncommitted_sections += next_entry / ic->journal_section_entries;
2152                         wraparound_section(ic, &ic->free_section);
2153
2154                         pos = journal_section * ic->journal_section_entries + journal_entry;
2155                         ws = journal_section;
2156                         we = journal_entry;
2157                         i = 0;
2158                         do {
2159                                 struct journal_entry *je;
2160
2161                                 add_journal_node(ic, &ic->journal_tree[pos], dio->range.logical_sector + i);
2162                                 pos++;
2163                                 if (unlikely(pos >= ic->journal_entries))
2164                                         pos = 0;
2165
2166                                 je = access_journal_entry(ic, ws, we);
2167                                 BUG_ON(!journal_entry_is_unused(je));
2168                                 journal_entry_set_inprogress(je);
2169                                 we++;
2170                                 if (unlikely(we == ic->journal_section_entries)) {
2171                                         we = 0;
2172                                         ws++;
2173                                         wraparound_section(ic, &ws);
2174                                 }
2175                         } while ((i += ic->sectors_per_block) < dio->range.n_sectors);
2176
2177                         spin_unlock_irq(&ic->endio_wait.lock);
2178                         goto journal_read_write;
2179                 } else {
2180                         sector_t next_sector;
2181                         journal_read_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2182                         if (likely(journal_read_pos == NOT_FOUND)) {
2183                                 if (unlikely(dio->range.n_sectors > next_sector - dio->range.logical_sector))
2184                                         dio->range.n_sectors = next_sector - dio->range.logical_sector;
2185                         } else {
2186                                 unsigned i;
2187                                 unsigned jp = journal_read_pos + 1;
2188                                 for (i = ic->sectors_per_block; i < dio->range.n_sectors; i += ic->sectors_per_block, jp++) {
2189                                         if (!test_journal_node(ic, jp, dio->range.logical_sector + i))
2190                                                 break;
2191                                 }
2192                                 dio->range.n_sectors = i;
2193                         }
2194                 }
2195         }
2196         if (unlikely(!add_new_range(ic, &dio->range, true))) {
2197                 /*
2198                  * We must not sleep in the request routine because it could
2199                  * stall bios on current->bio_list.
2200                  * So, we offload the bio to a workqueue if we have to sleep.
2201                  */
2202                 if (from_map) {
2203 offload_to_thread:
2204                         spin_unlock_irq(&ic->endio_wait.lock);
2205                         INIT_WORK(&dio->work, integrity_bio_wait);
2206                         queue_work(ic->wait_wq, &dio->work);
2207                         return;
2208                 }
2209                 if (journal_read_pos != NOT_FOUND)
2210                         dio->range.n_sectors = ic->sectors_per_block;
2211                 wait_and_add_new_range(ic, &dio->range);
2212                 /*
2213                  * wait_and_add_new_range drops the spinlock, so the journal
2214                  * may have been changed arbitrarily. We need to recheck.
2215                  * To simplify the code, we restrict I/O size to just one block.
2216                  */
2217                 if (journal_read_pos != NOT_FOUND) {
2218                         sector_t next_sector;
2219                         unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2220                         if (unlikely(new_pos != journal_read_pos)) {
2221                                 remove_range_unlocked(ic, &dio->range);
2222                                 goto retry;
2223                         }
2224                 }
2225         }
2226         if (ic->mode == 'J' && likely(dio->op == REQ_OP_DISCARD) && !discard_retried) {
2227                 sector_t next_sector;
2228                 unsigned new_pos = find_journal_node(ic, dio->range.logical_sector, &next_sector);
2229                 if (unlikely(new_pos != NOT_FOUND) ||
2230                     unlikely(next_sector < dio->range.logical_sector - dio->range.n_sectors)) {
2231                         remove_range_unlocked(ic, &dio->range);
2232                         spin_unlock_irq(&ic->endio_wait.lock);
2233                         queue_work(ic->commit_wq, &ic->commit_work);
2234                         flush_workqueue(ic->commit_wq);
2235                         queue_work(ic->writer_wq, &ic->writer_work);
2236                         flush_workqueue(ic->writer_wq);
2237                         discard_retried = true;
2238                         goto lock_retry;
2239                 }
2240         }
2241         spin_unlock_irq(&ic->endio_wait.lock);
2242
2243         if (unlikely(journal_read_pos != NOT_FOUND)) {
2244                 journal_section = journal_read_pos / ic->journal_section_entries;
2245                 journal_entry = journal_read_pos % ic->journal_section_entries;
2246                 goto journal_read_write;
2247         }
2248
2249         if (ic->mode == 'B' && (dio->op == REQ_OP_WRITE || unlikely(dio->op == REQ_OP_DISCARD))) {
2250                 if (!block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2251                                      dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2252                         struct bitmap_block_status *bbs;
2253
2254                         bbs = sector_to_bitmap_block(ic, dio->range.logical_sector);
2255                         spin_lock(&bbs->bio_queue_lock);
2256                         bio_list_add(&bbs->bio_queue, bio);
2257                         spin_unlock(&bbs->bio_queue_lock);
2258                         queue_work(ic->writer_wq, &bbs->work);
2259                         return;
2260                 }
2261         }
2262
2263         dio->in_flight = (atomic_t)ATOMIC_INIT(2);
2264
2265         if (need_sync_io) {
2266                 init_completion(&read_comp);
2267                 dio->completion = &read_comp;
2268         } else
2269                 dio->completion = NULL;
2270
2271         dm_bio_record(&dio->bio_details, bio);
2272         bio_set_dev(bio, ic->dev->bdev);
2273         bio->bi_integrity = NULL;
2274         bio->bi_opf &= ~REQ_INTEGRITY;
2275         bio->bi_end_io = integrity_end_io;
2276         bio->bi_iter.bi_size = dio->range.n_sectors << SECTOR_SHIFT;
2277
2278         if (unlikely(dio->op == REQ_OP_DISCARD) && likely(ic->mode != 'D')) {
2279                 integrity_metadata(&dio->work);
2280                 dm_integrity_flush_buffers(ic, false);
2281
2282                 dio->in_flight = (atomic_t)ATOMIC_INIT(1);
2283                 dio->completion = NULL;
2284
2285                 submit_bio_noacct(bio);
2286
2287                 return;
2288         }
2289
2290         submit_bio_noacct(bio);
2291
2292         if (need_sync_io) {
2293                 wait_for_completion_io(&read_comp);
2294                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
2295                     dio->range.logical_sector + dio->range.n_sectors > le64_to_cpu(ic->sb->recalc_sector))
2296                         goto skip_check;
2297                 if (ic->mode == 'B') {
2298                         if (!block_bitmap_op(ic, ic->recalc_bitmap, dio->range.logical_sector,
2299                                              dio->range.n_sectors, BITMAP_OP_TEST_ALL_CLEAR))
2300                                 goto skip_check;
2301                 }
2302
2303                 if (likely(!bio->bi_status))
2304                         integrity_metadata(&dio->work);
2305                 else
2306 skip_check:
2307                         dec_in_flight(dio);
2308
2309         } else {
2310                 INIT_WORK(&dio->work, integrity_metadata);
2311                 queue_work(ic->metadata_wq, &dio->work);
2312         }
2313
2314         return;
2315
2316 journal_read_write:
2317         if (unlikely(__journal_read_write(dio, bio, journal_section, journal_entry)))
2318                 goto lock_retry;
2319
2320         do_endio_flush(ic, dio);
2321 }
2322
2323
2324 static void integrity_bio_wait(struct work_struct *w)
2325 {
2326         struct dm_integrity_io *dio = container_of(w, struct dm_integrity_io, work);
2327
2328         dm_integrity_map_continue(dio, false);
2329 }
2330
2331 static void pad_uncommitted(struct dm_integrity_c *ic)
2332 {
2333         if (ic->free_section_entry) {
2334                 ic->free_sectors -= ic->journal_section_entries - ic->free_section_entry;
2335                 ic->free_section_entry = 0;
2336                 ic->free_section++;
2337                 wraparound_section(ic, &ic->free_section);
2338                 ic->n_uncommitted_sections++;
2339         }
2340         if (WARN_ON(ic->journal_sections * ic->journal_section_entries !=
2341                     (ic->n_uncommitted_sections + ic->n_committed_sections) *
2342                     ic->journal_section_entries + ic->free_sectors)) {
2343                 DMCRIT("journal_sections %u, journal_section_entries %u, "
2344                        "n_uncommitted_sections %u, n_committed_sections %u, "
2345                        "journal_section_entries %u, free_sectors %u",
2346                        ic->journal_sections, ic->journal_section_entries,
2347                        ic->n_uncommitted_sections, ic->n_committed_sections,
2348                        ic->journal_section_entries, ic->free_sectors);
2349         }
2350 }
2351
2352 static void integrity_commit(struct work_struct *w)
2353 {
2354         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, commit_work);
2355         unsigned commit_start, commit_sections;
2356         unsigned i, j, n;
2357         struct bio *flushes;
2358
2359         del_timer(&ic->autocommit_timer);
2360
2361         spin_lock_irq(&ic->endio_wait.lock);
2362         flushes = bio_list_get(&ic->flush_bio_list);
2363         if (unlikely(ic->mode != 'J')) {
2364                 spin_unlock_irq(&ic->endio_wait.lock);
2365                 dm_integrity_flush_buffers(ic, true);
2366                 goto release_flush_bios;
2367         }
2368
2369         pad_uncommitted(ic);
2370         commit_start = ic->uncommitted_section;
2371         commit_sections = ic->n_uncommitted_sections;
2372         spin_unlock_irq(&ic->endio_wait.lock);
2373
2374         if (!commit_sections)
2375                 goto release_flush_bios;
2376
2377         i = commit_start;
2378         for (n = 0; n < commit_sections; n++) {
2379                 for (j = 0; j < ic->journal_section_entries; j++) {
2380                         struct journal_entry *je;
2381                         je = access_journal_entry(ic, i, j);
2382                         io_wait_event(ic->copy_to_journal_wait, !journal_entry_is_inprogress(je));
2383                 }
2384                 for (j = 0; j < ic->journal_section_sectors; j++) {
2385                         struct journal_sector *js;
2386                         js = access_journal(ic, i, j);
2387                         js->commit_id = dm_integrity_commit_id(ic, i, j, ic->commit_seq);
2388                 }
2389                 i++;
2390                 if (unlikely(i >= ic->journal_sections))
2391                         ic->commit_seq = next_commit_seq(ic->commit_seq);
2392                 wraparound_section(ic, &i);
2393         }
2394         smp_rmb();
2395
2396         write_journal(ic, commit_start, commit_sections);
2397
2398         spin_lock_irq(&ic->endio_wait.lock);
2399         ic->uncommitted_section += commit_sections;
2400         wraparound_section(ic, &ic->uncommitted_section);
2401         ic->n_uncommitted_sections -= commit_sections;
2402         ic->n_committed_sections += commit_sections;
2403         spin_unlock_irq(&ic->endio_wait.lock);
2404
2405         if (READ_ONCE(ic->free_sectors) <= ic->free_sectors_threshold)
2406                 queue_work(ic->writer_wq, &ic->writer_work);
2407
2408 release_flush_bios:
2409         while (flushes) {
2410                 struct bio *next = flushes->bi_next;
2411                 flushes->bi_next = NULL;
2412                 do_endio(ic, flushes);
2413                 flushes = next;
2414         }
2415 }
2416
2417 static void complete_copy_from_journal(unsigned long error, void *context)
2418 {
2419         struct journal_io *io = context;
2420         struct journal_completion *comp = io->comp;
2421         struct dm_integrity_c *ic = comp->ic;
2422         remove_range(ic, &io->range);
2423         mempool_free(io, &ic->journal_io_mempool);
2424         if (unlikely(error != 0))
2425                 dm_integrity_io_error(ic, "copying from journal", -EIO);
2426         complete_journal_op(comp);
2427 }
2428
2429 static void restore_last_bytes(struct dm_integrity_c *ic, struct journal_sector *js,
2430                                struct journal_entry *je)
2431 {
2432         unsigned s = 0;
2433         do {
2434                 js->commit_id = je->last_bytes[s];
2435                 js++;
2436         } while (++s < ic->sectors_per_block);
2437 }
2438
2439 static void do_journal_write(struct dm_integrity_c *ic, unsigned write_start,
2440                              unsigned write_sections, bool from_replay)
2441 {
2442         unsigned i, j, n;
2443         struct journal_completion comp;
2444         struct blk_plug plug;
2445
2446         blk_start_plug(&plug);
2447
2448         comp.ic = ic;
2449         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
2450         init_completion(&comp.comp);
2451
2452         i = write_start;
2453         for (n = 0; n < write_sections; n++, i++, wraparound_section(ic, &i)) {
2454 #ifndef INTERNAL_VERIFY
2455                 if (unlikely(from_replay))
2456 #endif
2457                         rw_section_mac(ic, i, false);
2458                 for (j = 0; j < ic->journal_section_entries; j++) {
2459                         struct journal_entry *je = access_journal_entry(ic, i, j);
2460                         sector_t sec, area, offset;
2461                         unsigned k, l, next_loop;
2462                         sector_t metadata_block;
2463                         unsigned metadata_offset;
2464                         struct journal_io *io;
2465
2466                         if (journal_entry_is_unused(je))
2467                                 continue;
2468                         BUG_ON(unlikely(journal_entry_is_inprogress(je)) && !from_replay);
2469                         sec = journal_entry_get_sector(je);
2470                         if (unlikely(from_replay)) {
2471                                 if (unlikely(sec & (unsigned)(ic->sectors_per_block - 1))) {
2472                                         dm_integrity_io_error(ic, "invalid sector in journal", -EIO);
2473                                         sec &= ~(sector_t)(ic->sectors_per_block - 1);
2474                                 }
2475                         }
2476                         if (unlikely(sec >= ic->provided_data_sectors))
2477                                 continue;
2478                         get_area_and_offset(ic, sec, &area, &offset);
2479                         restore_last_bytes(ic, access_journal_data(ic, i, j), je);
2480                         for (k = j + 1; k < ic->journal_section_entries; k++) {
2481                                 struct journal_entry *je2 = access_journal_entry(ic, i, k);
2482                                 sector_t sec2, area2, offset2;
2483                                 if (journal_entry_is_unused(je2))
2484                                         break;
2485                                 BUG_ON(unlikely(journal_entry_is_inprogress(je2)) && !from_replay);
2486                                 sec2 = journal_entry_get_sector(je2);
2487                                 if (unlikely(sec2 >= ic->provided_data_sectors))
2488                                         break;
2489                                 get_area_and_offset(ic, sec2, &area2, &offset2);
2490                                 if (area2 != area || offset2 != offset + ((k - j) << ic->sb->log2_sectors_per_block))
2491                                         break;
2492                                 restore_last_bytes(ic, access_journal_data(ic, i, k), je2);
2493                         }
2494                         next_loop = k - 1;
2495
2496                         io = mempool_alloc(&ic->journal_io_mempool, GFP_NOIO);
2497                         io->comp = &comp;
2498                         io->range.logical_sector = sec;
2499                         io->range.n_sectors = (k - j) << ic->sb->log2_sectors_per_block;
2500
2501                         spin_lock_irq(&ic->endio_wait.lock);
2502                         add_new_range_and_wait(ic, &io->range);
2503
2504                         if (likely(!from_replay)) {
2505                                 struct journal_node *section_node = &ic->journal_tree[i * ic->journal_section_entries];
2506
2507                                 /* don't write if there is newer committed sector */
2508                                 while (j < k && find_newer_committed_node(ic, &section_node[j])) {
2509                                         struct journal_entry *je2 = access_journal_entry(ic, i, j);
2510
2511                                         journal_entry_set_unused(je2);
2512                                         remove_journal_node(ic, &section_node[j]);
2513                                         j++;
2514                                         sec += ic->sectors_per_block;
2515                                         offset += ic->sectors_per_block;
2516                                 }
2517                                 while (j < k && find_newer_committed_node(ic, &section_node[k - 1])) {
2518                                         struct journal_entry *je2 = access_journal_entry(ic, i, k - 1);
2519
2520                                         journal_entry_set_unused(je2);
2521                                         remove_journal_node(ic, &section_node[k - 1]);
2522                                         k--;
2523                                 }
2524                                 if (j == k) {
2525                                         remove_range_unlocked(ic, &io->range);
2526                                         spin_unlock_irq(&ic->endio_wait.lock);
2527                                         mempool_free(io, &ic->journal_io_mempool);
2528                                         goto skip_io;
2529                                 }
2530                                 for (l = j; l < k; l++) {
2531                                         remove_journal_node(ic, &section_node[l]);
2532                                 }
2533                         }
2534                         spin_unlock_irq(&ic->endio_wait.lock);
2535
2536                         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2537                         for (l = j; l < k; l++) {
2538                                 int r;
2539                                 struct journal_entry *je2 = access_journal_entry(ic, i, l);
2540
2541                                 if (
2542 #ifndef INTERNAL_VERIFY
2543                                     unlikely(from_replay) &&
2544 #endif
2545                                     ic->internal_hash) {
2546                                         char test_tag[max_t(size_t, HASH_MAX_DIGESTSIZE, MAX_TAG_SIZE)];
2547
2548                                         integrity_sector_checksum(ic, sec + ((l - j) << ic->sb->log2_sectors_per_block),
2549                                                                   (char *)access_journal_data(ic, i, l), test_tag);
2550                                         if (unlikely(memcmp(test_tag, journal_entry_tag(ic, je2), ic->tag_size))) {
2551                                                 dm_integrity_io_error(ic, "tag mismatch when replaying journal", -EILSEQ);
2552                                                 dm_audit_log_target(DM_MSG_PREFIX, "integrity-replay-journal", ic->ti, 0);
2553                                         }
2554                                 }
2555
2556                                 journal_entry_set_unused(je2);
2557                                 r = dm_integrity_rw_tag(ic, journal_entry_tag(ic, je2), &metadata_block, &metadata_offset,
2558                                                         ic->tag_size, TAG_WRITE);
2559                                 if (unlikely(r)) {
2560                                         dm_integrity_io_error(ic, "reading tags", r);
2561                                 }
2562                         }
2563
2564                         atomic_inc(&comp.in_flight);
2565                         copy_from_journal(ic, i, j << ic->sb->log2_sectors_per_block,
2566                                           (k - j) << ic->sb->log2_sectors_per_block,
2567                                           get_data_sector(ic, area, offset),
2568                                           complete_copy_from_journal, io);
2569 skip_io:
2570                         j = next_loop;
2571                 }
2572         }
2573
2574         dm_bufio_write_dirty_buffers_async(ic->bufio);
2575
2576         blk_finish_plug(&plug);
2577
2578         complete_journal_op(&comp);
2579         wait_for_completion_io(&comp.comp);
2580
2581         dm_integrity_flush_buffers(ic, true);
2582 }
2583
2584 static void integrity_writer(struct work_struct *w)
2585 {
2586         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, writer_work);
2587         unsigned write_start, write_sections;
2588
2589         unsigned prev_free_sectors;
2590
2591         /* the following test is not needed, but it tests the replay code */
2592         if (unlikely(dm_post_suspending(ic->ti)) && !ic->meta_dev)
2593                 return;
2594
2595         spin_lock_irq(&ic->endio_wait.lock);
2596         write_start = ic->committed_section;
2597         write_sections = ic->n_committed_sections;
2598         spin_unlock_irq(&ic->endio_wait.lock);
2599
2600         if (!write_sections)
2601                 return;
2602
2603         do_journal_write(ic, write_start, write_sections, false);
2604
2605         spin_lock_irq(&ic->endio_wait.lock);
2606
2607         ic->committed_section += write_sections;
2608         wraparound_section(ic, &ic->committed_section);
2609         ic->n_committed_sections -= write_sections;
2610
2611         prev_free_sectors = ic->free_sectors;
2612         ic->free_sectors += write_sections * ic->journal_section_entries;
2613         if (unlikely(!prev_free_sectors))
2614                 wake_up_locked(&ic->endio_wait);
2615
2616         spin_unlock_irq(&ic->endio_wait.lock);
2617 }
2618
2619 static void recalc_write_super(struct dm_integrity_c *ic)
2620 {
2621         int r;
2622
2623         dm_integrity_flush_buffers(ic, false);
2624         if (dm_integrity_failed(ic))
2625                 return;
2626
2627         r = sync_rw_sb(ic, REQ_OP_WRITE, 0);
2628         if (unlikely(r))
2629                 dm_integrity_io_error(ic, "writing superblock", r);
2630 }
2631
2632 static void integrity_recalc(struct work_struct *w)
2633 {
2634         struct dm_integrity_c *ic = container_of(w, struct dm_integrity_c, recalc_work);
2635         struct dm_integrity_range range;
2636         struct dm_io_request io_req;
2637         struct dm_io_region io_loc;
2638         sector_t area, offset;
2639         sector_t metadata_block;
2640         unsigned metadata_offset;
2641         sector_t logical_sector, n_sectors;
2642         __u8 *t;
2643         unsigned i;
2644         int r;
2645         unsigned super_counter = 0;
2646
2647         DEBUG_print("start recalculation... (position %llx)\n", le64_to_cpu(ic->sb->recalc_sector));
2648
2649         spin_lock_irq(&ic->endio_wait.lock);
2650
2651 next_chunk:
2652
2653         if (unlikely(dm_post_suspending(ic->ti)))
2654                 goto unlock_ret;
2655
2656         range.logical_sector = le64_to_cpu(ic->sb->recalc_sector);
2657         if (unlikely(range.logical_sector >= ic->provided_data_sectors)) {
2658                 if (ic->mode == 'B') {
2659                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
2660                         DEBUG_print("queue_delayed_work: bitmap_flush_work\n");
2661                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
2662                 }
2663                 goto unlock_ret;
2664         }
2665
2666         get_area_and_offset(ic, range.logical_sector, &area, &offset);
2667         range.n_sectors = min((sector_t)RECALC_SECTORS, ic->provided_data_sectors - range.logical_sector);
2668         if (!ic->meta_dev)
2669                 range.n_sectors = min(range.n_sectors, ((sector_t)1U << ic->sb->log2_interleave_sectors) - (unsigned)offset);
2670
2671         add_new_range_and_wait(ic, &range);
2672         spin_unlock_irq(&ic->endio_wait.lock);
2673         logical_sector = range.logical_sector;
2674         n_sectors = range.n_sectors;
2675
2676         if (ic->mode == 'B') {
2677                 if (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector, n_sectors, BITMAP_OP_TEST_ALL_CLEAR)) {
2678                         goto advance_and_next;
2679                 }
2680                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector,
2681                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2682                         logical_sector += ic->sectors_per_block;
2683                         n_sectors -= ic->sectors_per_block;
2684                         cond_resched();
2685                 }
2686                 while (block_bitmap_op(ic, ic->recalc_bitmap, logical_sector + n_sectors - ic->sectors_per_block,
2687                                        ic->sectors_per_block, BITMAP_OP_TEST_ALL_CLEAR)) {
2688                         n_sectors -= ic->sectors_per_block;
2689                         cond_resched();
2690                 }
2691                 get_area_and_offset(ic, logical_sector, &area, &offset);
2692         }
2693
2694         DEBUG_print("recalculating: %llx, %llx\n", logical_sector, n_sectors);
2695
2696         if (unlikely(++super_counter == RECALC_WRITE_SUPER)) {
2697                 recalc_write_super(ic);
2698                 if (ic->mode == 'B') {
2699                         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2700                 }
2701                 super_counter = 0;
2702         }
2703
2704         if (unlikely(dm_integrity_failed(ic)))
2705                 goto err;
2706
2707         io_req.bi_op = REQ_OP_READ;
2708         io_req.bi_op_flags = 0;
2709         io_req.mem.type = DM_IO_VMA;
2710         io_req.mem.ptr.addr = ic->recalc_buffer;
2711         io_req.notify.fn = NULL;
2712         io_req.client = ic->io;
2713         io_loc.bdev = ic->dev->bdev;
2714         io_loc.sector = get_data_sector(ic, area, offset);
2715         io_loc.count = n_sectors;
2716
2717         r = dm_io(&io_req, 1, &io_loc, NULL);
2718         if (unlikely(r)) {
2719                 dm_integrity_io_error(ic, "reading data", r);
2720                 goto err;
2721         }
2722
2723         t = ic->recalc_tags;
2724         for (i = 0; i < n_sectors; i += ic->sectors_per_block) {
2725                 integrity_sector_checksum(ic, logical_sector + i, ic->recalc_buffer + (i << SECTOR_SHIFT), t);
2726                 t += ic->tag_size;
2727         }
2728
2729         metadata_block = get_metadata_sector_and_offset(ic, area, offset, &metadata_offset);
2730
2731         r = dm_integrity_rw_tag(ic, ic->recalc_tags, &metadata_block, &metadata_offset, t - ic->recalc_tags, TAG_WRITE);
2732         if (unlikely(r)) {
2733                 dm_integrity_io_error(ic, "writing tags", r);
2734                 goto err;
2735         }
2736
2737         if (ic->mode == 'B') {
2738                 sector_t start, end;
2739                 start = (range.logical_sector >>
2740                          (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2741                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2742                 end = ((range.logical_sector + range.n_sectors) >>
2743                        (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)) <<
2744                         (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2745                 block_bitmap_op(ic, ic->recalc_bitmap, start, end - start, BITMAP_OP_CLEAR);
2746         }
2747
2748 advance_and_next:
2749         cond_resched();
2750
2751         spin_lock_irq(&ic->endio_wait.lock);
2752         remove_range_unlocked(ic, &range);
2753         ic->sb->recalc_sector = cpu_to_le64(range.logical_sector + range.n_sectors);
2754         goto next_chunk;
2755
2756 err:
2757         remove_range(ic, &range);
2758         return;
2759
2760 unlock_ret:
2761         spin_unlock_irq(&ic->endio_wait.lock);
2762
2763         recalc_write_super(ic);
2764 }
2765
2766 static void bitmap_block_work(struct work_struct *w)
2767 {
2768         struct bitmap_block_status *bbs = container_of(w, struct bitmap_block_status, work);
2769         struct dm_integrity_c *ic = bbs->ic;
2770         struct bio *bio;
2771         struct bio_list bio_queue;
2772         struct bio_list waiting;
2773
2774         bio_list_init(&waiting);
2775
2776         spin_lock(&bbs->bio_queue_lock);
2777         bio_queue = bbs->bio_queue;
2778         bio_list_init(&bbs->bio_queue);
2779         spin_unlock(&bbs->bio_queue_lock);
2780
2781         while ((bio = bio_list_pop(&bio_queue))) {
2782                 struct dm_integrity_io *dio;
2783
2784                 dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2785
2786                 if (block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2787                                     dio->range.n_sectors, BITMAP_OP_TEST_ALL_SET)) {
2788                         remove_range(ic, &dio->range);
2789                         INIT_WORK(&dio->work, integrity_bio_wait);
2790                         queue_work(ic->offload_wq, &dio->work);
2791                 } else {
2792                         block_bitmap_op(ic, ic->journal, dio->range.logical_sector,
2793                                         dio->range.n_sectors, BITMAP_OP_SET);
2794                         bio_list_add(&waiting, bio);
2795                 }
2796         }
2797
2798         if (bio_list_empty(&waiting))
2799                 return;
2800
2801         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC,
2802                            bbs->idx * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT),
2803                            BITMAP_BLOCK_SIZE >> SECTOR_SHIFT, NULL);
2804
2805         while ((bio = bio_list_pop(&waiting))) {
2806                 struct dm_integrity_io *dio = dm_per_bio_data(bio, sizeof(struct dm_integrity_io));
2807
2808                 block_bitmap_op(ic, ic->may_write_bitmap, dio->range.logical_sector,
2809                                 dio->range.n_sectors, BITMAP_OP_SET);
2810
2811                 remove_range(ic, &dio->range);
2812                 INIT_WORK(&dio->work, integrity_bio_wait);
2813                 queue_work(ic->offload_wq, &dio->work);
2814         }
2815
2816         queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, ic->bitmap_flush_interval);
2817 }
2818
2819 static void bitmap_flush_work(struct work_struct *work)
2820 {
2821         struct dm_integrity_c *ic = container_of(work, struct dm_integrity_c, bitmap_flush_work.work);
2822         struct dm_integrity_range range;
2823         unsigned long limit;
2824         struct bio *bio;
2825
2826         dm_integrity_flush_buffers(ic, false);
2827
2828         range.logical_sector = 0;
2829         range.n_sectors = ic->provided_data_sectors;
2830
2831         spin_lock_irq(&ic->endio_wait.lock);
2832         add_new_range_and_wait(ic, &range);
2833         spin_unlock_irq(&ic->endio_wait.lock);
2834
2835         dm_integrity_flush_buffers(ic, true);
2836
2837         limit = ic->provided_data_sectors;
2838         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
2839                 limit = le64_to_cpu(ic->sb->recalc_sector)
2840                         >> (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit)
2841                         << (ic->sb->log2_sectors_per_block + ic->log2_blocks_per_bitmap_bit);
2842         }
2843         /*DEBUG_print("zeroing journal\n");*/
2844         block_bitmap_op(ic, ic->journal, 0, limit, BITMAP_OP_CLEAR);
2845         block_bitmap_op(ic, ic->may_write_bitmap, 0, limit, BITMAP_OP_CLEAR);
2846
2847         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
2848                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
2849
2850         spin_lock_irq(&ic->endio_wait.lock);
2851         remove_range_unlocked(ic, &range);
2852         while (unlikely((bio = bio_list_pop(&ic->synchronous_bios)) != NULL)) {
2853                 bio_endio(bio);
2854                 spin_unlock_irq(&ic->endio_wait.lock);
2855                 spin_lock_irq(&ic->endio_wait.lock);
2856         }
2857         spin_unlock_irq(&ic->endio_wait.lock);
2858 }
2859
2860
2861 static void init_journal(struct dm_integrity_c *ic, unsigned start_section,
2862                          unsigned n_sections, unsigned char commit_seq)
2863 {
2864         unsigned i, j, n;
2865
2866         if (!n_sections)
2867                 return;
2868
2869         for (n = 0; n < n_sections; n++) {
2870                 i = start_section + n;
2871                 wraparound_section(ic, &i);
2872                 for (j = 0; j < ic->journal_section_sectors; j++) {
2873                         struct journal_sector *js = access_journal(ic, i, j);
2874                         BUILD_BUG_ON(sizeof(js->sectors) != JOURNAL_SECTOR_DATA);
2875                         memset(&js->sectors, 0, sizeof(js->sectors));
2876                         js->commit_id = dm_integrity_commit_id(ic, i, j, commit_seq);
2877                 }
2878                 for (j = 0; j < ic->journal_section_entries; j++) {
2879                         struct journal_entry *je = access_journal_entry(ic, i, j);
2880                         journal_entry_set_unused(je);
2881                 }
2882         }
2883
2884         write_journal(ic, start_section, n_sections);
2885 }
2886
2887 static int find_commit_seq(struct dm_integrity_c *ic, unsigned i, unsigned j, commit_id_t id)
2888 {
2889         unsigned char k;
2890         for (k = 0; k < N_COMMIT_IDS; k++) {
2891                 if (dm_integrity_commit_id(ic, i, j, k) == id)
2892                         return k;
2893         }
2894         dm_integrity_io_error(ic, "journal commit id", -EIO);
2895         return -EIO;
2896 }
2897
2898 static void replay_journal(struct dm_integrity_c *ic)
2899 {
2900         unsigned i, j;
2901         bool used_commit_ids[N_COMMIT_IDS];
2902         unsigned max_commit_id_sections[N_COMMIT_IDS];
2903         unsigned write_start, write_sections;
2904         unsigned continue_section;
2905         bool journal_empty;
2906         unsigned char unused, last_used, want_commit_seq;
2907
2908         if (ic->mode == 'R')
2909                 return;
2910
2911         if (ic->journal_uptodate)
2912                 return;
2913
2914         last_used = 0;
2915         write_start = 0;
2916
2917         if (!ic->just_formatted) {
2918                 DEBUG_print("reading journal\n");
2919                 rw_journal(ic, REQ_OP_READ, 0, 0, ic->journal_sections, NULL);
2920                 if (ic->journal_io)
2921                         DEBUG_bytes(lowmem_page_address(ic->journal_io[0].page), 64, "read journal");
2922                 if (ic->journal_io) {
2923                         struct journal_completion crypt_comp;
2924                         crypt_comp.ic = ic;
2925                         init_completion(&crypt_comp.comp);
2926                         crypt_comp.in_flight = (atomic_t)ATOMIC_INIT(0);
2927                         encrypt_journal(ic, false, 0, ic->journal_sections, &crypt_comp);
2928                         wait_for_completion(&crypt_comp.comp);
2929                 }
2930                 DEBUG_bytes(lowmem_page_address(ic->journal[0].page), 64, "decrypted journal");
2931         }
2932
2933         if (dm_integrity_failed(ic))
2934                 goto clear_journal;
2935
2936         journal_empty = true;
2937         memset(used_commit_ids, 0, sizeof used_commit_ids);
2938         memset(max_commit_id_sections, 0, sizeof max_commit_id_sections);
2939         for (i = 0; i < ic->journal_sections; i++) {
2940                 for (j = 0; j < ic->journal_section_sectors; j++) {
2941                         int k;
2942                         struct journal_sector *js = access_journal(ic, i, j);
2943                         k = find_commit_seq(ic, i, j, js->commit_id);
2944                         if (k < 0)
2945                                 goto clear_journal;
2946                         used_commit_ids[k] = true;
2947                         max_commit_id_sections[k] = i;
2948                 }
2949                 if (journal_empty) {
2950                         for (j = 0; j < ic->journal_section_entries; j++) {
2951                                 struct journal_entry *je = access_journal_entry(ic, i, j);
2952                                 if (!journal_entry_is_unused(je)) {
2953                                         journal_empty = false;
2954                                         break;
2955                                 }
2956                         }
2957                 }
2958         }
2959
2960         if (!used_commit_ids[N_COMMIT_IDS - 1]) {
2961                 unused = N_COMMIT_IDS - 1;
2962                 while (unused && !used_commit_ids[unused - 1])
2963                         unused--;
2964         } else {
2965                 for (unused = 0; unused < N_COMMIT_IDS; unused++)
2966                         if (!used_commit_ids[unused])
2967                                 break;
2968                 if (unused == N_COMMIT_IDS) {
2969                         dm_integrity_io_error(ic, "journal commit ids", -EIO);
2970                         goto clear_journal;
2971                 }
2972         }
2973         DEBUG_print("first unused commit seq %d [%d,%d,%d,%d]\n",
2974                     unused, used_commit_ids[0], used_commit_ids[1],
2975                     used_commit_ids[2], used_commit_ids[3]);
2976
2977         last_used = prev_commit_seq(unused);
2978         want_commit_seq = prev_commit_seq(last_used);
2979
2980         if (!used_commit_ids[want_commit_seq] && used_commit_ids[prev_commit_seq(want_commit_seq)])
2981                 journal_empty = true;
2982
2983         write_start = max_commit_id_sections[last_used] + 1;
2984         if (unlikely(write_start >= ic->journal_sections))
2985                 want_commit_seq = next_commit_seq(want_commit_seq);
2986         wraparound_section(ic, &write_start);
2987
2988         i = write_start;
2989         for (write_sections = 0; write_sections < ic->journal_sections; write_sections++) {
2990                 for (j = 0; j < ic->journal_section_sectors; j++) {
2991                         struct journal_sector *js = access_journal(ic, i, j);
2992
2993                         if (js->commit_id != dm_integrity_commit_id(ic, i, j, want_commit_seq)) {
2994                                 /*
2995                                  * This could be caused by crash during writing.
2996                                  * We won't replay the inconsistent part of the
2997                                  * journal.
2998                                  */
2999                                 DEBUG_print("commit id mismatch at position (%u, %u): %d != %d\n",
3000                                             i, j, find_commit_seq(ic, i, j, js->commit_id), want_commit_seq);
3001                                 goto brk;
3002                         }
3003                 }
3004                 i++;
3005                 if (unlikely(i >= ic->journal_sections))
3006                         want_commit_seq = next_commit_seq(want_commit_seq);
3007                 wraparound_section(ic, &i);
3008         }
3009 brk:
3010
3011         if (!journal_empty) {
3012                 DEBUG_print("replaying %u sections, starting at %u, commit seq %d\n",
3013                             write_sections, write_start, want_commit_seq);
3014                 do_journal_write(ic, write_start, write_sections, true);
3015         }
3016
3017         if (write_sections == ic->journal_sections && (ic->mode == 'J' || journal_empty)) {
3018                 continue_section = write_start;
3019                 ic->commit_seq = want_commit_seq;
3020                 DEBUG_print("continuing from section %u, commit seq %d\n", write_start, ic->commit_seq);
3021         } else {
3022                 unsigned s;
3023                 unsigned char erase_seq;
3024 clear_journal:
3025                 DEBUG_print("clearing journal\n");
3026
3027                 erase_seq = prev_commit_seq(prev_commit_seq(last_used));
3028                 s = write_start;
3029                 init_journal(ic, s, 1, erase_seq);
3030                 s++;
3031                 wraparound_section(ic, &s);
3032                 if (ic->journal_sections >= 2) {
3033                         init_journal(ic, s, ic->journal_sections - 2, erase_seq);
3034                         s += ic->journal_sections - 2;
3035                         wraparound_section(ic, &s);
3036                         init_journal(ic, s, 1, erase_seq);
3037                 }
3038
3039                 continue_section = 0;
3040                 ic->commit_seq = next_commit_seq(erase_seq);
3041         }
3042
3043         ic->committed_section = continue_section;
3044         ic->n_committed_sections = 0;
3045
3046         ic->uncommitted_section = continue_section;
3047         ic->n_uncommitted_sections = 0;
3048
3049         ic->free_section = continue_section;
3050         ic->free_section_entry = 0;
3051         ic->free_sectors = ic->journal_entries;
3052
3053         ic->journal_tree_root = RB_ROOT;
3054         for (i = 0; i < ic->journal_entries; i++)
3055                 init_journal_node(&ic->journal_tree[i]);
3056 }
3057
3058 static void dm_integrity_enter_synchronous_mode(struct dm_integrity_c *ic)
3059 {
3060         DEBUG_print("dm_integrity_enter_synchronous_mode\n");
3061
3062         if (ic->mode == 'B') {
3063                 ic->bitmap_flush_interval = msecs_to_jiffies(10) + 1;
3064                 ic->synchronous_mode = 1;
3065
3066                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3067                 queue_delayed_work(ic->commit_wq, &ic->bitmap_flush_work, 0);
3068                 flush_workqueue(ic->commit_wq);
3069         }
3070 }
3071
3072 static int dm_integrity_reboot(struct notifier_block *n, unsigned long code, void *x)
3073 {
3074         struct dm_integrity_c *ic = container_of(n, struct dm_integrity_c, reboot_notifier);
3075
3076         DEBUG_print("dm_integrity_reboot\n");
3077
3078         dm_integrity_enter_synchronous_mode(ic);
3079
3080         return NOTIFY_DONE;
3081 }
3082
3083 static void dm_integrity_postsuspend(struct dm_target *ti)
3084 {
3085         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3086         int r;
3087
3088         WARN_ON(unregister_reboot_notifier(&ic->reboot_notifier));
3089
3090         del_timer_sync(&ic->autocommit_timer);
3091
3092         if (ic->recalc_wq)
3093                 drain_workqueue(ic->recalc_wq);
3094
3095         if (ic->mode == 'B')
3096                 cancel_delayed_work_sync(&ic->bitmap_flush_work);
3097
3098         queue_work(ic->commit_wq, &ic->commit_work);
3099         drain_workqueue(ic->commit_wq);
3100
3101         if (ic->mode == 'J') {
3102                 if (ic->meta_dev)
3103                         queue_work(ic->writer_wq, &ic->writer_work);
3104                 drain_workqueue(ic->writer_wq);
3105                 dm_integrity_flush_buffers(ic, true);
3106         }
3107
3108         if (ic->mode == 'B') {
3109                 dm_integrity_flush_buffers(ic, true);
3110 #if 1
3111                 /* set to 0 to test bitmap replay code */
3112                 init_journal(ic, 0, ic->journal_sections, 0);
3113                 ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3114                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3115                 if (unlikely(r))
3116                         dm_integrity_io_error(ic, "writing superblock", r);
3117 #endif
3118         }
3119
3120         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
3121
3122         ic->journal_uptodate = true;
3123 }
3124
3125 static void dm_integrity_resume(struct dm_target *ti)
3126 {
3127         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3128         __u64 old_provided_data_sectors = le64_to_cpu(ic->sb->provided_data_sectors);
3129         int r;
3130
3131         DEBUG_print("resume\n");
3132
3133         if (ic->provided_data_sectors != old_provided_data_sectors) {
3134                 if (ic->provided_data_sectors > old_provided_data_sectors &&
3135                     ic->mode == 'B' &&
3136                     ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit) {
3137                         rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3138                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3139                         block_bitmap_op(ic, ic->journal, old_provided_data_sectors,
3140                                         ic->provided_data_sectors - old_provided_data_sectors, BITMAP_OP_SET);
3141                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3142                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3143                 }
3144
3145                 ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3146                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3147                 if (unlikely(r))
3148                         dm_integrity_io_error(ic, "writing superblock", r);
3149         }
3150
3151         if (ic->sb->flags & cpu_to_le32(SB_FLAG_DIRTY_BITMAP)) {
3152                 DEBUG_print("resume dirty_bitmap\n");
3153                 rw_journal_sectors(ic, REQ_OP_READ, 0, 0,
3154                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3155                 if (ic->mode == 'B') {
3156                         if (ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3157                             !ic->reset_recalculate_flag) {
3158                                 block_bitmap_copy(ic, ic->recalc_bitmap, ic->journal);
3159                                 block_bitmap_copy(ic, ic->may_write_bitmap, ic->journal);
3160                                 if (!block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors,
3161                                                      BITMAP_OP_TEST_ALL_CLEAR)) {
3162                                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3163                                         ic->sb->recalc_sector = cpu_to_le64(0);
3164                                 }
3165                         } else {
3166                                 DEBUG_print("non-matching blocks_per_bitmap_bit: %u, %u\n",
3167                                             ic->sb->log2_blocks_per_bitmap_bit, ic->log2_blocks_per_bitmap_bit);
3168                                 ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3169                                 block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3170                                 block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3171                                 block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_SET);
3172                                 rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3173                                                    ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3174                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3175                                 ic->sb->recalc_sector = cpu_to_le64(0);
3176                         }
3177                 } else {
3178                         if (!(ic->sb->log2_blocks_per_bitmap_bit == ic->log2_blocks_per_bitmap_bit &&
3179                               block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_TEST_ALL_CLEAR)) ||
3180                             ic->reset_recalculate_flag) {
3181                                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3182                                 ic->sb->recalc_sector = cpu_to_le64(0);
3183                         }
3184                         init_journal(ic, 0, ic->journal_sections, 0);
3185                         replay_journal(ic);
3186                         ic->sb->flags &= ~cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3187                 }
3188                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3189                 if (unlikely(r))
3190                         dm_integrity_io_error(ic, "writing superblock", r);
3191         } else {
3192                 replay_journal(ic);
3193                 if (ic->reset_recalculate_flag) {
3194                         ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
3195                         ic->sb->recalc_sector = cpu_to_le64(0);
3196                 }
3197                 if (ic->mode == 'B') {
3198                         ic->sb->flags |= cpu_to_le32(SB_FLAG_DIRTY_BITMAP);
3199                         ic->sb->log2_blocks_per_bitmap_bit = ic->log2_blocks_per_bitmap_bit;
3200                         r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
3201                         if (unlikely(r))
3202                                 dm_integrity_io_error(ic, "writing superblock", r);
3203
3204                         block_bitmap_op(ic, ic->journal, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3205                         block_bitmap_op(ic, ic->recalc_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3206                         block_bitmap_op(ic, ic->may_write_bitmap, 0, ic->provided_data_sectors, BITMAP_OP_CLEAR);
3207                         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
3208                             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors) {
3209                                 block_bitmap_op(ic, ic->journal, le64_to_cpu(ic->sb->recalc_sector),
3210                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3211                                 block_bitmap_op(ic, ic->recalc_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3212                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3213                                 block_bitmap_op(ic, ic->may_write_bitmap, le64_to_cpu(ic->sb->recalc_sector),
3214                                                 ic->provided_data_sectors - le64_to_cpu(ic->sb->recalc_sector), BITMAP_OP_SET);
3215                         }
3216                         rw_journal_sectors(ic, REQ_OP_WRITE, REQ_FUA | REQ_SYNC, 0,
3217                                            ic->n_bitmap_blocks * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT), NULL);
3218                 }
3219         }
3220
3221         DEBUG_print("testing recalc: %x\n", ic->sb->flags);
3222         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
3223                 __u64 recalc_pos = le64_to_cpu(ic->sb->recalc_sector);
3224                 DEBUG_print("recalc pos: %llx / %llx\n", recalc_pos, ic->provided_data_sectors);
3225                 if (recalc_pos < ic->provided_data_sectors) {
3226                         queue_work(ic->recalc_wq, &ic->recalc_work);
3227                 } else if (recalc_pos > ic->provided_data_sectors) {
3228                         ic->sb->recalc_sector = cpu_to_le64(ic->provided_data_sectors);
3229                         recalc_write_super(ic);
3230                 }
3231         }
3232
3233         ic->reboot_notifier.notifier_call = dm_integrity_reboot;
3234         ic->reboot_notifier.next = NULL;
3235         ic->reboot_notifier.priority = INT_MAX - 1;     /* be notified after md and before hardware drivers */
3236         WARN_ON(register_reboot_notifier(&ic->reboot_notifier));
3237
3238 #if 0
3239         /* set to 1 to stress test synchronous mode */
3240         dm_integrity_enter_synchronous_mode(ic);
3241 #endif
3242 }
3243
3244 static void dm_integrity_status(struct dm_target *ti, status_type_t type,
3245                                 unsigned status_flags, char *result, unsigned maxlen)
3246 {
3247         struct dm_integrity_c *ic = (struct dm_integrity_c *)ti->private;
3248         unsigned arg_count;
3249         size_t sz = 0;
3250
3251         switch (type) {
3252         case STATUSTYPE_INFO:
3253                 DMEMIT("%llu %llu",
3254                         (unsigned long long)atomic64_read(&ic->number_of_mismatches),
3255                         ic->provided_data_sectors);
3256                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3257                         DMEMIT(" %llu", le64_to_cpu(ic->sb->recalc_sector));
3258                 else
3259                         DMEMIT(" -");
3260                 break;
3261
3262         case STATUSTYPE_TABLE: {
3263                 __u64 watermark_percentage = (__u64)(ic->journal_entries - ic->free_sectors_threshold) * 100;
3264                 watermark_percentage += ic->journal_entries / 2;
3265                 do_div(watermark_percentage, ic->journal_entries);
3266                 arg_count = 3;
3267                 arg_count += !!ic->meta_dev;
3268                 arg_count += ic->sectors_per_block != 1;
3269                 arg_count += !!(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING));
3270                 arg_count += ic->reset_recalculate_flag;
3271                 arg_count += ic->discard;
3272                 arg_count += ic->mode == 'J';
3273                 arg_count += ic->mode == 'J';
3274                 arg_count += ic->mode == 'B';
3275                 arg_count += ic->mode == 'B';
3276                 arg_count += !!ic->internal_hash_alg.alg_string;
3277                 arg_count += !!ic->journal_crypt_alg.alg_string;
3278                 arg_count += !!ic->journal_mac_alg.alg_string;
3279                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0;
3280                 arg_count += (ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0;
3281                 arg_count += ic->legacy_recalculate;
3282                 DMEMIT("%s %llu %u %c %u", ic->dev->name, ic->start,
3283                        ic->tag_size, ic->mode, arg_count);
3284                 if (ic->meta_dev)
3285                         DMEMIT(" meta_device:%s", ic->meta_dev->name);
3286                 if (ic->sectors_per_block != 1)
3287                         DMEMIT(" block_size:%u", ic->sectors_per_block << SECTOR_SHIFT);
3288                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))
3289                         DMEMIT(" recalculate");
3290                 if (ic->reset_recalculate_flag)
3291                         DMEMIT(" reset_recalculate");
3292                 if (ic->discard)
3293                         DMEMIT(" allow_discards");
3294                 DMEMIT(" journal_sectors:%u", ic->initial_sectors - SB_SECTORS);
3295                 DMEMIT(" interleave_sectors:%u", 1U << ic->sb->log2_interleave_sectors);
3296                 DMEMIT(" buffer_sectors:%u", 1U << ic->log2_buffer_sectors);
3297                 if (ic->mode == 'J') {
3298                         DMEMIT(" journal_watermark:%u", (unsigned)watermark_percentage);
3299                         DMEMIT(" commit_time:%u", ic->autocommit_msec);
3300                 }
3301                 if (ic->mode == 'B') {
3302                         DMEMIT(" sectors_per_bit:%llu", (sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit);
3303                         DMEMIT(" bitmap_flush_interval:%u", jiffies_to_msecs(ic->bitmap_flush_interval));
3304                 }
3305                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0)
3306                         DMEMIT(" fix_padding");
3307                 if ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0)
3308                         DMEMIT(" fix_hmac");
3309                 if (ic->legacy_recalculate)
3310                         DMEMIT(" legacy_recalculate");
3311
3312 #define EMIT_ALG(a, n)                                                  \
3313                 do {                                                    \
3314                         if (ic->a.alg_string) {                         \
3315                                 DMEMIT(" %s:%s", n, ic->a.alg_string);  \
3316                                 if (ic->a.key_string)                   \
3317                                         DMEMIT(":%s", ic->a.key_string);\
3318                         }                                               \
3319                 } while (0)
3320                 EMIT_ALG(internal_hash_alg, "internal_hash");
3321                 EMIT_ALG(journal_crypt_alg, "journal_crypt");
3322                 EMIT_ALG(journal_mac_alg, "journal_mac");
3323                 break;
3324         }
3325         case STATUSTYPE_IMA:
3326                 DMEMIT_TARGET_NAME_VERSION(ti->type);
3327                 DMEMIT(",dev_name=%s,start=%llu,tag_size=%u,mode=%c",
3328                         ic->dev->name, ic->start, ic->tag_size, ic->mode);
3329
3330                 if (ic->meta_dev)
3331                         DMEMIT(",meta_device=%s", ic->meta_dev->name);
3332                 if (ic->sectors_per_block != 1)
3333                         DMEMIT(",block_size=%u", ic->sectors_per_block << SECTOR_SHIFT);
3334
3335                 DMEMIT(",recalculate=%c", (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) ?
3336                        'y' : 'n');
3337                 DMEMIT(",allow_discards=%c", ic->discard ? 'y' : 'n');
3338                 DMEMIT(",fix_padding=%c",
3339                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING)) != 0) ? 'y' : 'n');
3340                 DMEMIT(",fix_hmac=%c",
3341                        ((ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_HMAC)) != 0) ? 'y' : 'n');
3342                 DMEMIT(",legacy_recalculate=%c", ic->legacy_recalculate ? 'y' : 'n');
3343
3344                 DMEMIT(",journal_sectors=%u", ic->initial_sectors - SB_SECTORS);
3345                 DMEMIT(",interleave_sectors=%u", 1U << ic->sb->log2_interleave_sectors);
3346                 DMEMIT(",buffer_sectors=%u", 1U << ic->log2_buffer_sectors);
3347                 DMEMIT(";");
3348                 break;
3349         }
3350 }
3351
3352 static int dm_integrity_iterate_devices(struct dm_target *ti,
3353                                         iterate_devices_callout_fn fn, void *data)
3354 {
3355         struct dm_integrity_c *ic = ti->private;
3356
3357         if (!ic->meta_dev)
3358                 return fn(ti, ic->dev, ic->start + ic->initial_sectors + ic->metadata_run, ti->len, data);
3359         else
3360                 return fn(ti, ic->dev, 0, ti->len, data);
3361 }
3362
3363 static void dm_integrity_io_hints(struct dm_target *ti, struct queue_limits *limits)
3364 {
3365         struct dm_integrity_c *ic = ti->private;
3366
3367         if (ic->sectors_per_block > 1) {
3368                 limits->logical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3369                 limits->physical_block_size = ic->sectors_per_block << SECTOR_SHIFT;
3370                 blk_limits_io_min(limits, ic->sectors_per_block << SECTOR_SHIFT);
3371         }
3372 }
3373
3374 static void calculate_journal_section_size(struct dm_integrity_c *ic)
3375 {
3376         unsigned sector_space = JOURNAL_SECTOR_DATA;
3377
3378         ic->journal_sections = le32_to_cpu(ic->sb->journal_sections);
3379         ic->journal_entry_size = roundup(offsetof(struct journal_entry, last_bytes[ic->sectors_per_block]) + ic->tag_size,
3380                                          JOURNAL_ENTRY_ROUNDUP);
3381
3382         if (ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC))
3383                 sector_space -= JOURNAL_MAC_PER_SECTOR;
3384         ic->journal_entries_per_sector = sector_space / ic->journal_entry_size;
3385         ic->journal_section_entries = ic->journal_entries_per_sector * JOURNAL_BLOCK_SECTORS;
3386         ic->journal_section_sectors = (ic->journal_section_entries << ic->sb->log2_sectors_per_block) + JOURNAL_BLOCK_SECTORS;
3387         ic->journal_entries = ic->journal_section_entries * ic->journal_sections;
3388 }
3389
3390 static int calculate_device_limits(struct dm_integrity_c *ic)
3391 {
3392         __u64 initial_sectors;
3393
3394         calculate_journal_section_size(ic);
3395         initial_sectors = SB_SECTORS + (__u64)ic->journal_section_sectors * ic->journal_sections;
3396         if (initial_sectors + METADATA_PADDING_SECTORS >= ic->meta_device_sectors || initial_sectors > UINT_MAX)
3397                 return -EINVAL;
3398         ic->initial_sectors = initial_sectors;
3399
3400         if (!ic->meta_dev) {
3401                 sector_t last_sector, last_area, last_offset;
3402
3403                 /* we have to maintain excessive padding for compatibility with existing volumes */
3404                 __u64 metadata_run_padding =
3405                         ic->sb->flags & cpu_to_le32(SB_FLAG_FIXED_PADDING) ?
3406                         (__u64)(METADATA_PADDING_SECTORS << SECTOR_SHIFT) :
3407                         (__u64)(1 << SECTOR_SHIFT << METADATA_PADDING_SECTORS);
3408
3409                 ic->metadata_run = round_up((__u64)ic->tag_size << (ic->sb->log2_interleave_sectors - ic->sb->log2_sectors_per_block),
3410                                             metadata_run_padding) >> SECTOR_SHIFT;
3411                 if (!(ic->metadata_run & (ic->metadata_run - 1)))
3412                         ic->log2_metadata_run = __ffs(ic->metadata_run);
3413                 else
3414                         ic->log2_metadata_run = -1;
3415
3416                 get_area_and_offset(ic, ic->provided_data_sectors - 1, &last_area, &last_offset);
3417                 last_sector = get_data_sector(ic, last_area, last_offset);
3418                 if (last_sector < ic->start || last_sector >= ic->meta_device_sectors)
3419                         return -EINVAL;
3420         } else {
3421                 __u64 meta_size = (ic->provided_data_sectors >> ic->sb->log2_sectors_per_block) * ic->tag_size;
3422                 meta_size = (meta_size + ((1U << (ic->log2_buffer_sectors + SECTOR_SHIFT)) - 1))
3423                                 >> (ic->log2_buffer_sectors + SECTOR_SHIFT);
3424                 meta_size <<= ic->log2_buffer_sectors;
3425                 if (ic->initial_sectors + meta_size < ic->initial_sectors ||
3426                     ic->initial_sectors + meta_size > ic->meta_device_sectors)
3427                         return -EINVAL;
3428                 ic->metadata_run = 1;
3429                 ic->log2_metadata_run = 0;
3430         }
3431
3432         return 0;
3433 }
3434
3435 static void get_provided_data_sectors(struct dm_integrity_c *ic)
3436 {
3437         if (!ic->meta_dev) {
3438                 int test_bit;
3439                 ic->provided_data_sectors = 0;
3440                 for (test_bit = fls64(ic->meta_device_sectors) - 1; test_bit >= 3; test_bit--) {
3441                         __u64 prev_data_sectors = ic->provided_data_sectors;
3442
3443                         ic->provided_data_sectors |= (sector_t)1 << test_bit;
3444                         if (calculate_device_limits(ic))
3445                                 ic->provided_data_sectors = prev_data_sectors;
3446                 }
3447         } else {
3448                 ic->provided_data_sectors = ic->data_device_sectors;
3449                 ic->provided_data_sectors &= ~(sector_t)(ic->sectors_per_block - 1);
3450         }
3451 }
3452
3453 static int initialize_superblock(struct dm_integrity_c *ic, unsigned journal_sectors, unsigned interleave_sectors)
3454 {
3455         unsigned journal_sections;
3456         int test_bit;
3457
3458         memset(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT);
3459         memcpy(ic->sb->magic, SB_MAGIC, 8);
3460         ic->sb->integrity_tag_size = cpu_to_le16(ic->tag_size);
3461         ic->sb->log2_sectors_per_block = __ffs(ic->sectors_per_block);
3462         if (ic->journal_mac_alg.alg_string)
3463                 ic->sb->flags |= cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC);
3464
3465         calculate_journal_section_size(ic);
3466         journal_sections = journal_sectors / ic->journal_section_sectors;
3467         if (!journal_sections)
3468                 journal_sections = 1;
3469
3470         if (ic->fix_hmac && (ic->internal_hash_alg.alg_string || ic->journal_mac_alg.alg_string)) {
3471                 ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_HMAC);
3472                 get_random_bytes(ic->sb->salt, SALT_SIZE);
3473         }
3474
3475         if (!ic->meta_dev) {
3476                 if (ic->fix_padding)
3477                         ic->sb->flags |= cpu_to_le32(SB_FLAG_FIXED_PADDING);
3478                 ic->sb->journal_sections = cpu_to_le32(journal_sections);
3479                 if (!interleave_sectors)
3480                         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
3481                 ic->sb->log2_interleave_sectors = __fls(interleave_sectors);
3482                 ic->sb->log2_interleave_sectors = max((__u8)MIN_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3483                 ic->sb->log2_interleave_sectors = min((__u8)MAX_LOG2_INTERLEAVE_SECTORS, ic->sb->log2_interleave_sectors);
3484
3485                 get_provided_data_sectors(ic);
3486                 if (!ic->provided_data_sectors)
3487                         return -EINVAL;
3488         } else {
3489                 ic->sb->log2_interleave_sectors = 0;
3490
3491                 get_provided_data_sectors(ic);
3492                 if (!ic->provided_data_sectors)
3493                         return -EINVAL;
3494
3495 try_smaller_buffer:
3496                 ic->sb->journal_sections = cpu_to_le32(0);
3497                 for (test_bit = fls(journal_sections) - 1; test_bit >= 0; test_bit--) {
3498                         __u32 prev_journal_sections = le32_to_cpu(ic->sb->journal_sections);
3499                         __u32 test_journal_sections = prev_journal_sections | (1U << test_bit);
3500                         if (test_journal_sections > journal_sections)
3501                                 continue;
3502                         ic->sb->journal_sections = cpu_to_le32(test_journal_sections);
3503                         if (calculate_device_limits(ic))
3504                                 ic->sb->journal_sections = cpu_to_le32(prev_journal_sections);
3505
3506                 }
3507                 if (!le32_to_cpu(ic->sb->journal_sections)) {
3508                         if (ic->log2_buffer_sectors > 3) {
3509                                 ic->log2_buffer_sectors--;
3510                                 goto try_smaller_buffer;
3511                         }
3512                         return -EINVAL;
3513                 }
3514         }
3515
3516         ic->sb->provided_data_sectors = cpu_to_le64(ic->provided_data_sectors);
3517
3518         sb_set_version(ic);
3519
3520         return 0;
3521 }
3522
3523 static void dm_integrity_set(struct dm_target *ti, struct dm_integrity_c *ic)
3524 {
3525         struct gendisk *disk = dm_disk(dm_table_get_md(ti->table));
3526         struct blk_integrity bi;
3527
3528         memset(&bi, 0, sizeof(bi));
3529         bi.profile = &dm_integrity_profile;
3530         bi.tuple_size = ic->tag_size;
3531         bi.tag_size = bi.tuple_size;
3532         bi.interval_exp = ic->sb->log2_sectors_per_block + SECTOR_SHIFT;
3533
3534         blk_integrity_register(disk, &bi);
3535         blk_queue_max_integrity_segments(disk->queue, UINT_MAX);
3536 }
3537
3538 static void dm_integrity_free_page_list(struct page_list *pl)
3539 {
3540         unsigned i;
3541
3542         if (!pl)
3543                 return;
3544         for (i = 0; pl[i].page; i++)
3545                 __free_page(pl[i].page);
3546         kvfree(pl);
3547 }
3548
3549 static struct page_list *dm_integrity_alloc_page_list(unsigned n_pages)
3550 {
3551         struct page_list *pl;
3552         unsigned i;
3553
3554         pl = kvmalloc_array(n_pages + 1, sizeof(struct page_list), GFP_KERNEL | __GFP_ZERO);
3555         if (!pl)
3556                 return NULL;
3557
3558         for (i = 0; i < n_pages; i++) {
3559                 pl[i].page = alloc_page(GFP_KERNEL);
3560                 if (!pl[i].page) {
3561                         dm_integrity_free_page_list(pl);
3562                         return NULL;
3563                 }
3564                 if (i)
3565                         pl[i - 1].next = &pl[i];
3566         }
3567         pl[i].page = NULL;
3568         pl[i].next = NULL;
3569
3570         return pl;
3571 }
3572
3573 static void dm_integrity_free_journal_scatterlist(struct dm_integrity_c *ic, struct scatterlist **sl)
3574 {
3575         unsigned i;
3576         for (i = 0; i < ic->journal_sections; i++)
3577                 kvfree(sl[i]);
3578         kvfree(sl);
3579 }
3580
3581 static struct scatterlist **dm_integrity_alloc_journal_scatterlist(struct dm_integrity_c *ic,
3582                                                                    struct page_list *pl)
3583 {
3584         struct scatterlist **sl;
3585         unsigned i;
3586
3587         sl = kvmalloc_array(ic->journal_sections,
3588                             sizeof(struct scatterlist *),
3589                             GFP_KERNEL | __GFP_ZERO);
3590         if (!sl)
3591                 return NULL;
3592
3593         for (i = 0; i < ic->journal_sections; i++) {
3594                 struct scatterlist *s;
3595                 unsigned start_index, start_offset;
3596                 unsigned end_index, end_offset;
3597                 unsigned n_pages;
3598                 unsigned idx;
3599
3600                 page_list_location(ic, i, 0, &start_index, &start_offset);
3601                 page_list_location(ic, i, ic->journal_section_sectors - 1,
3602                                    &end_index, &end_offset);
3603
3604                 n_pages = (end_index - start_index + 1);
3605
3606                 s = kvmalloc_array(n_pages, sizeof(struct scatterlist),
3607                                    GFP_KERNEL);
3608                 if (!s) {
3609                         dm_integrity_free_journal_scatterlist(ic, sl);
3610                         return NULL;
3611                 }
3612
3613                 sg_init_table(s, n_pages);
3614                 for (idx = start_index; idx <= end_index; idx++) {
3615                         char *va = lowmem_page_address(pl[idx].page);
3616                         unsigned start = 0, end = PAGE_SIZE;
3617                         if (idx == start_index)
3618                                 start = start_offset;
3619                         if (idx == end_index)
3620                                 end = end_offset + (1 << SECTOR_SHIFT);
3621                         sg_set_buf(&s[idx - start_index], va + start, end - start);
3622                 }
3623
3624                 sl[i] = s;
3625         }
3626
3627         return sl;
3628 }
3629
3630 static void free_alg(struct alg_spec *a)
3631 {
3632         kfree_sensitive(a->alg_string);
3633         kfree_sensitive(a->key);
3634         memset(a, 0, sizeof *a);
3635 }
3636
3637 static int get_alg_and_key(const char *arg, struct alg_spec *a, char **error, char *error_inval)
3638 {
3639         char *k;
3640
3641         free_alg(a);
3642
3643         a->alg_string = kstrdup(strchr(arg, ':') + 1, GFP_KERNEL);
3644         if (!a->alg_string)
3645                 goto nomem;
3646
3647         k = strchr(a->alg_string, ':');
3648         if (k) {
3649                 *k = 0;
3650                 a->key_string = k + 1;
3651                 if (strlen(a->key_string) & 1)
3652                         goto inval;
3653
3654                 a->key_size = strlen(a->key_string) / 2;
3655                 a->key = kmalloc(a->key_size, GFP_KERNEL);
3656                 if (!a->key)
3657                         goto nomem;
3658                 if (hex2bin(a->key, a->key_string, a->key_size))
3659                         goto inval;
3660         }
3661
3662         return 0;
3663 inval:
3664         *error = error_inval;
3665         return -EINVAL;
3666 nomem:
3667         *error = "Out of memory for an argument";
3668         return -ENOMEM;
3669 }
3670
3671 static int get_mac(struct crypto_shash **hash, struct alg_spec *a, char **error,
3672                    char *error_alg, char *error_key)
3673 {
3674         int r;
3675
3676         if (a->alg_string) {
3677                 *hash = crypto_alloc_shash(a->alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3678                 if (IS_ERR(*hash)) {
3679                         *error = error_alg;
3680                         r = PTR_ERR(*hash);
3681                         *hash = NULL;
3682                         return r;
3683                 }
3684
3685                 if (a->key) {
3686                         r = crypto_shash_setkey(*hash, a->key, a->key_size);
3687                         if (r) {
3688                                 *error = error_key;
3689                                 return r;
3690                         }
3691                 } else if (crypto_shash_get_flags(*hash) & CRYPTO_TFM_NEED_KEY) {
3692                         *error = error_key;
3693                         return -ENOKEY;
3694                 }
3695         }
3696
3697         return 0;
3698 }
3699
3700 static int create_journal(struct dm_integrity_c *ic, char **error)
3701 {
3702         int r = 0;
3703         unsigned i;
3704         __u64 journal_pages, journal_desc_size, journal_tree_size;
3705         unsigned char *crypt_data = NULL, *crypt_iv = NULL;
3706         struct skcipher_request *req = NULL;
3707
3708         ic->commit_ids[0] = cpu_to_le64(0x1111111111111111ULL);
3709         ic->commit_ids[1] = cpu_to_le64(0x2222222222222222ULL);
3710         ic->commit_ids[2] = cpu_to_le64(0x3333333333333333ULL);
3711         ic->commit_ids[3] = cpu_to_le64(0x4444444444444444ULL);
3712
3713         journal_pages = roundup((__u64)ic->journal_sections * ic->journal_section_sectors,
3714                                 PAGE_SIZE >> SECTOR_SHIFT) >> (PAGE_SHIFT - SECTOR_SHIFT);
3715         journal_desc_size = journal_pages * sizeof(struct page_list);
3716         if (journal_pages >= totalram_pages() - totalhigh_pages() || journal_desc_size > ULONG_MAX) {
3717                 *error = "Journal doesn't fit into memory";
3718                 r = -ENOMEM;
3719                 goto bad;
3720         }
3721         ic->journal_pages = journal_pages;
3722
3723         ic->journal = dm_integrity_alloc_page_list(ic->journal_pages);
3724         if (!ic->journal) {
3725                 *error = "Could not allocate memory for journal";
3726                 r = -ENOMEM;
3727                 goto bad;
3728         }
3729         if (ic->journal_crypt_alg.alg_string) {
3730                 unsigned ivsize, blocksize;
3731                 struct journal_completion comp;
3732
3733                 comp.ic = ic;
3734                 ic->journal_crypt = crypto_alloc_skcipher(ic->journal_crypt_alg.alg_string, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
3735                 if (IS_ERR(ic->journal_crypt)) {
3736                         *error = "Invalid journal cipher";
3737                         r = PTR_ERR(ic->journal_crypt);
3738                         ic->journal_crypt = NULL;
3739                         goto bad;
3740                 }
3741                 ivsize = crypto_skcipher_ivsize(ic->journal_crypt);
3742                 blocksize = crypto_skcipher_blocksize(ic->journal_crypt);
3743
3744                 if (ic->journal_crypt_alg.key) {
3745                         r = crypto_skcipher_setkey(ic->journal_crypt, ic->journal_crypt_alg.key,
3746                                                    ic->journal_crypt_alg.key_size);
3747                         if (r) {
3748                                 *error = "Error setting encryption key";
3749                                 goto bad;
3750                         }
3751                 }
3752                 DEBUG_print("cipher %s, block size %u iv size %u\n",
3753                             ic->journal_crypt_alg.alg_string, blocksize, ivsize);
3754
3755                 ic->journal_io = dm_integrity_alloc_page_list(ic->journal_pages);
3756                 if (!ic->journal_io) {
3757                         *error = "Could not allocate memory for journal io";
3758                         r = -ENOMEM;
3759                         goto bad;
3760                 }
3761
3762                 if (blocksize == 1) {
3763                         struct scatterlist *sg;
3764
3765                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3766                         if (!req) {
3767                                 *error = "Could not allocate crypt request";
3768                                 r = -ENOMEM;
3769                                 goto bad;
3770                         }
3771
3772                         crypt_iv = kzalloc(ivsize, GFP_KERNEL);
3773                         if (!crypt_iv) {
3774                                 *error = "Could not allocate iv";
3775                                 r = -ENOMEM;
3776                                 goto bad;
3777                         }
3778
3779                         ic->journal_xor = dm_integrity_alloc_page_list(ic->journal_pages);
3780                         if (!ic->journal_xor) {
3781                                 *error = "Could not allocate memory for journal xor";
3782                                 r = -ENOMEM;
3783                                 goto bad;
3784                         }
3785
3786                         sg = kvmalloc_array(ic->journal_pages + 1,
3787                                             sizeof(struct scatterlist),
3788                                             GFP_KERNEL);
3789                         if (!sg) {
3790                                 *error = "Unable to allocate sg list";
3791                                 r = -ENOMEM;
3792                                 goto bad;
3793                         }
3794                         sg_init_table(sg, ic->journal_pages + 1);
3795                         for (i = 0; i < ic->journal_pages; i++) {
3796                                 char *va = lowmem_page_address(ic->journal_xor[i].page);
3797                                 clear_page(va);
3798                                 sg_set_buf(&sg[i], va, PAGE_SIZE);
3799                         }
3800                         sg_set_buf(&sg[i], &ic->commit_ids, sizeof ic->commit_ids);
3801
3802                         skcipher_request_set_crypt(req, sg, sg,
3803                                                    PAGE_SIZE * ic->journal_pages + sizeof ic->commit_ids, crypt_iv);
3804                         init_completion(&comp.comp);
3805                         comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3806                         if (do_crypt(true, req, &comp))
3807                                 wait_for_completion(&comp.comp);
3808                         kvfree(sg);
3809                         r = dm_integrity_failed(ic);
3810                         if (r) {
3811                                 *error = "Unable to encrypt journal";
3812                                 goto bad;
3813                         }
3814                         DEBUG_bytes(lowmem_page_address(ic->journal_xor[0].page), 64, "xor data");
3815
3816                         crypto_free_skcipher(ic->journal_crypt);
3817                         ic->journal_crypt = NULL;
3818                 } else {
3819                         unsigned crypt_len = roundup(ivsize, blocksize);
3820
3821                         req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3822                         if (!req) {
3823                                 *error = "Could not allocate crypt request";
3824                                 r = -ENOMEM;
3825                                 goto bad;
3826                         }
3827
3828                         crypt_iv = kmalloc(ivsize, GFP_KERNEL);
3829                         if (!crypt_iv) {
3830                                 *error = "Could not allocate iv";
3831                                 r = -ENOMEM;
3832                                 goto bad;
3833                         }
3834
3835                         crypt_data = kmalloc(crypt_len, GFP_KERNEL);
3836                         if (!crypt_data) {
3837                                 *error = "Unable to allocate crypt data";
3838                                 r = -ENOMEM;
3839                                 goto bad;
3840                         }
3841
3842                         ic->journal_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal);
3843                         if (!ic->journal_scatterlist) {
3844                                 *error = "Unable to allocate sg list";
3845                                 r = -ENOMEM;
3846                                 goto bad;
3847                         }
3848                         ic->journal_io_scatterlist = dm_integrity_alloc_journal_scatterlist(ic, ic->journal_io);
3849                         if (!ic->journal_io_scatterlist) {
3850                                 *error = "Unable to allocate sg list";
3851                                 r = -ENOMEM;
3852                                 goto bad;
3853                         }
3854                         ic->sk_requests = kvmalloc_array(ic->journal_sections,
3855                                                          sizeof(struct skcipher_request *),
3856                                                          GFP_KERNEL | __GFP_ZERO);
3857                         if (!ic->sk_requests) {
3858                                 *error = "Unable to allocate sk requests";
3859                                 r = -ENOMEM;
3860                                 goto bad;
3861                         }
3862                         for (i = 0; i < ic->journal_sections; i++) {
3863                                 struct scatterlist sg;
3864                                 struct skcipher_request *section_req;
3865                                 __le32 section_le = cpu_to_le32(i);
3866
3867                                 memset(crypt_iv, 0x00, ivsize);
3868                                 memset(crypt_data, 0x00, crypt_len);
3869                                 memcpy(crypt_data, &section_le, min((size_t)crypt_len, sizeof(section_le)));
3870
3871                                 sg_init_one(&sg, crypt_data, crypt_len);
3872                                 skcipher_request_set_crypt(req, &sg, &sg, crypt_len, crypt_iv);
3873                                 init_completion(&comp.comp);
3874                                 comp.in_flight = (atomic_t)ATOMIC_INIT(1);
3875                                 if (do_crypt(true, req, &comp))
3876                                         wait_for_completion(&comp.comp);
3877
3878                                 r = dm_integrity_failed(ic);
3879                                 if (r) {
3880                                         *error = "Unable to generate iv";
3881                                         goto bad;
3882                                 }
3883
3884                                 section_req = skcipher_request_alloc(ic->journal_crypt, GFP_KERNEL);
3885                                 if (!section_req) {
3886                                         *error = "Unable to allocate crypt request";
3887                                         r = -ENOMEM;
3888                                         goto bad;
3889                                 }
3890                                 section_req->iv = kmalloc_array(ivsize, 2,
3891                                                                 GFP_KERNEL);
3892                                 if (!section_req->iv) {
3893                                         skcipher_request_free(section_req);
3894                                         *error = "Unable to allocate iv";
3895                                         r = -ENOMEM;
3896                                         goto bad;
3897                                 }
3898                                 memcpy(section_req->iv + ivsize, crypt_data, ivsize);
3899                                 section_req->cryptlen = (size_t)ic->journal_section_sectors << SECTOR_SHIFT;
3900                                 ic->sk_requests[i] = section_req;
3901                                 DEBUG_bytes(crypt_data, ivsize, "iv(%u)", i);
3902                         }
3903                 }
3904         }
3905
3906         for (i = 0; i < N_COMMIT_IDS; i++) {
3907                 unsigned j;
3908 retest_commit_id:
3909                 for (j = 0; j < i; j++) {
3910                         if (ic->commit_ids[j] == ic->commit_ids[i]) {
3911                                 ic->commit_ids[i] = cpu_to_le64(le64_to_cpu(ic->commit_ids[i]) + 1);
3912                                 goto retest_commit_id;
3913                         }
3914                 }
3915                 DEBUG_print("commit id %u: %016llx\n", i, ic->commit_ids[i]);
3916         }
3917
3918         journal_tree_size = (__u64)ic->journal_entries * sizeof(struct journal_node);
3919         if (journal_tree_size > ULONG_MAX) {
3920                 *error = "Journal doesn't fit into memory";
3921                 r = -ENOMEM;
3922                 goto bad;
3923         }
3924         ic->journal_tree = kvmalloc(journal_tree_size, GFP_KERNEL);
3925         if (!ic->journal_tree) {
3926                 *error = "Could not allocate memory for journal tree";
3927                 r = -ENOMEM;
3928         }
3929 bad:
3930         kfree(crypt_data);
3931         kfree(crypt_iv);
3932         skcipher_request_free(req);
3933
3934         return r;
3935 }
3936
3937 /*
3938  * Construct a integrity mapping
3939  *
3940  * Arguments:
3941  *      device
3942  *      offset from the start of the device
3943  *      tag size
3944  *      D - direct writes, J - journal writes, B - bitmap mode, R - recovery mode
3945  *      number of optional arguments
3946  *      optional arguments:
3947  *              journal_sectors
3948  *              interleave_sectors
3949  *              buffer_sectors
3950  *              journal_watermark
3951  *              commit_time
3952  *              meta_device
3953  *              block_size
3954  *              sectors_per_bit
3955  *              bitmap_flush_interval
3956  *              internal_hash
3957  *              journal_crypt
3958  *              journal_mac
3959  *              recalculate
3960  */
3961 static int dm_integrity_ctr(struct dm_target *ti, unsigned argc, char **argv)
3962 {
3963         struct dm_integrity_c *ic;
3964         char dummy;
3965         int r;
3966         unsigned extra_args;
3967         struct dm_arg_set as;
3968         static const struct dm_arg _args[] = {
3969                 {0, 18, "Invalid number of feature args"},
3970         };
3971         unsigned journal_sectors, interleave_sectors, buffer_sectors, journal_watermark, sync_msec;
3972         bool should_write_sb;
3973         __u64 threshold;
3974         unsigned long long start;
3975         __s8 log2_sectors_per_bitmap_bit = -1;
3976         __s8 log2_blocks_per_bitmap_bit;
3977         __u64 bits_in_journal;
3978         __u64 n_bitmap_bits;
3979
3980 #define DIRECT_ARGUMENTS        4
3981
3982         if (argc <= DIRECT_ARGUMENTS) {
3983                 ti->error = "Invalid argument count";
3984                 return -EINVAL;
3985         }
3986
3987         ic = kzalloc(sizeof(struct dm_integrity_c), GFP_KERNEL);
3988         if (!ic) {
3989                 ti->error = "Cannot allocate integrity context";
3990                 return -ENOMEM;
3991         }
3992         ti->private = ic;
3993         ti->per_io_data_size = sizeof(struct dm_integrity_io);
3994         ic->ti = ti;
3995
3996         ic->in_progress = RB_ROOT;
3997         INIT_LIST_HEAD(&ic->wait_list);
3998         init_waitqueue_head(&ic->endio_wait);
3999         bio_list_init(&ic->flush_bio_list);
4000         init_waitqueue_head(&ic->copy_to_journal_wait);
4001         init_completion(&ic->crypto_backoff);
4002         atomic64_set(&ic->number_of_mismatches, 0);
4003         ic->bitmap_flush_interval = BITMAP_FLUSH_INTERVAL;
4004
4005         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &ic->dev);
4006         if (r) {
4007                 ti->error = "Device lookup failed";
4008                 goto bad;
4009         }
4010
4011         if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1 || start != (sector_t)start) {
4012                 ti->error = "Invalid starting offset";
4013                 r = -EINVAL;
4014                 goto bad;
4015         }
4016         ic->start = start;
4017
4018         if (strcmp(argv[2], "-")) {
4019                 if (sscanf(argv[2], "%u%c", &ic->tag_size, &dummy) != 1 || !ic->tag_size) {
4020                         ti->error = "Invalid tag size";
4021                         r = -EINVAL;
4022                         goto bad;
4023                 }
4024         }
4025
4026         if (!strcmp(argv[3], "J") || !strcmp(argv[3], "B") ||
4027             !strcmp(argv[3], "D") || !strcmp(argv[3], "R")) {
4028                 ic->mode = argv[3][0];
4029         } else {
4030                 ti->error = "Invalid mode (expecting J, B, D, R)";
4031                 r = -EINVAL;
4032                 goto bad;
4033         }
4034
4035         journal_sectors = 0;
4036         interleave_sectors = DEFAULT_INTERLEAVE_SECTORS;
4037         buffer_sectors = DEFAULT_BUFFER_SECTORS;
4038         journal_watermark = DEFAULT_JOURNAL_WATERMARK;
4039         sync_msec = DEFAULT_SYNC_MSEC;
4040         ic->sectors_per_block = 1;
4041
4042         as.argc = argc - DIRECT_ARGUMENTS;
4043         as.argv = argv + DIRECT_ARGUMENTS;
4044         r = dm_read_arg_group(_args, &as, &extra_args, &ti->error);
4045         if (r)
4046                 goto bad;
4047
4048         while (extra_args--) {
4049                 const char *opt_string;
4050                 unsigned val;
4051                 unsigned long long llval;
4052                 opt_string = dm_shift_arg(&as);
4053                 if (!opt_string) {
4054                         r = -EINVAL;
4055                         ti->error = "Not enough feature arguments";
4056                         goto bad;
4057                 }
4058                 if (sscanf(opt_string, "journal_sectors:%u%c", &val, &dummy) == 1)
4059                         journal_sectors = val ? val : 1;
4060                 else if (sscanf(opt_string, "interleave_sectors:%u%c", &val, &dummy) == 1)
4061                         interleave_sectors = val;
4062                 else if (sscanf(opt_string, "buffer_sectors:%u%c", &val, &dummy) == 1)
4063                         buffer_sectors = val;
4064                 else if (sscanf(opt_string, "journal_watermark:%u%c", &val, &dummy) == 1 && val <= 100)
4065                         journal_watermark = val;
4066                 else if (sscanf(opt_string, "commit_time:%u%c", &val, &dummy) == 1)
4067                         sync_msec = val;
4068                 else if (!strncmp(opt_string, "meta_device:", strlen("meta_device:"))) {
4069                         if (ic->meta_dev) {
4070                                 dm_put_device(ti, ic->meta_dev);
4071                                 ic->meta_dev = NULL;
4072                         }
4073                         r = dm_get_device(ti, strchr(opt_string, ':') + 1,
4074                                           dm_table_get_mode(ti->table), &ic->meta_dev);
4075                         if (r) {
4076                                 ti->error = "Device lookup failed";
4077                                 goto bad;
4078                         }
4079                 } else if (sscanf(opt_string, "block_size:%u%c", &val, &dummy) == 1) {
4080                         if (val < 1 << SECTOR_SHIFT ||
4081                             val > MAX_SECTORS_PER_BLOCK << SECTOR_SHIFT ||
4082                             (val & (val -1))) {
4083                                 r = -EINVAL;
4084                                 ti->error = "Invalid block_size argument";
4085                                 goto bad;
4086                         }
4087                         ic->sectors_per_block = val >> SECTOR_SHIFT;
4088                 } else if (sscanf(opt_string, "sectors_per_bit:%llu%c", &llval, &dummy) == 1) {
4089                         log2_sectors_per_bitmap_bit = !llval ? 0 : __ilog2_u64(llval);
4090                 } else if (sscanf(opt_string, "bitmap_flush_interval:%u%c", &val, &dummy) == 1) {
4091                         if (val >= (uint64_t)UINT_MAX * 1000 / HZ) {
4092                                 r = -EINVAL;
4093                                 ti->error = "Invalid bitmap_flush_interval argument";
4094                                 goto bad;
4095                         }
4096                         ic->bitmap_flush_interval = msecs_to_jiffies(val);
4097                 } else if (!strncmp(opt_string, "internal_hash:", strlen("internal_hash:"))) {
4098                         r = get_alg_and_key(opt_string, &ic->internal_hash_alg, &ti->error,
4099                                             "Invalid internal_hash argument");
4100                         if (r)
4101                                 goto bad;
4102                 } else if (!strncmp(opt_string, "journal_crypt:", strlen("journal_crypt:"))) {
4103                         r = get_alg_and_key(opt_string, &ic->journal_crypt_alg, &ti->error,
4104                                             "Invalid journal_crypt argument");
4105                         if (r)
4106                                 goto bad;
4107                 } else if (!strncmp(opt_string, "journal_mac:", strlen("journal_mac:"))) {
4108                         r = get_alg_and_key(opt_string, &ic->journal_mac_alg, &ti->error,
4109                                             "Invalid journal_mac argument");
4110                         if (r)
4111                                 goto bad;
4112                 } else if (!strcmp(opt_string, "recalculate")) {
4113                         ic->recalculate_flag = true;
4114                 } else if (!strcmp(opt_string, "reset_recalculate")) {
4115                         ic->recalculate_flag = true;
4116                         ic->reset_recalculate_flag = true;
4117                 } else if (!strcmp(opt_string, "allow_discards")) {
4118                         ic->discard = true;
4119                 } else if (!strcmp(opt_string, "fix_padding")) {
4120                         ic->fix_padding = true;
4121                 } else if (!strcmp(opt_string, "fix_hmac")) {
4122                         ic->fix_hmac = true;
4123                 } else if (!strcmp(opt_string, "legacy_recalculate")) {
4124                         ic->legacy_recalculate = true;
4125                 } else {
4126                         r = -EINVAL;
4127                         ti->error = "Invalid argument";
4128                         goto bad;
4129                 }
4130         }
4131
4132         ic->data_device_sectors = bdev_nr_sectors(ic->dev->bdev);
4133         if (!ic->meta_dev)
4134                 ic->meta_device_sectors = ic->data_device_sectors;
4135         else
4136                 ic->meta_device_sectors = bdev_nr_sectors(ic->meta_dev->bdev);
4137
4138         if (!journal_sectors) {
4139                 journal_sectors = min((sector_t)DEFAULT_MAX_JOURNAL_SECTORS,
4140                                       ic->data_device_sectors >> DEFAULT_JOURNAL_SIZE_FACTOR);
4141         }
4142
4143         if (!buffer_sectors)
4144                 buffer_sectors = 1;
4145         ic->log2_buffer_sectors = min((int)__fls(buffer_sectors), 31 - SECTOR_SHIFT);
4146
4147         r = get_mac(&ic->internal_hash, &ic->internal_hash_alg, &ti->error,
4148                     "Invalid internal hash", "Error setting internal hash key");
4149         if (r)
4150                 goto bad;
4151
4152         r = get_mac(&ic->journal_mac, &ic->journal_mac_alg, &ti->error,
4153                     "Invalid journal mac", "Error setting journal mac key");
4154         if (r)
4155                 goto bad;
4156
4157         if (!ic->tag_size) {
4158                 if (!ic->internal_hash) {
4159                         ti->error = "Unknown tag size";
4160                         r = -EINVAL;
4161                         goto bad;
4162                 }
4163                 ic->tag_size = crypto_shash_digestsize(ic->internal_hash);
4164         }
4165         if (ic->tag_size > MAX_TAG_SIZE) {
4166                 ti->error = "Too big tag size";
4167                 r = -EINVAL;
4168                 goto bad;
4169         }
4170         if (!(ic->tag_size & (ic->tag_size - 1)))
4171                 ic->log2_tag_size = __ffs(ic->tag_size);
4172         else
4173                 ic->log2_tag_size = -1;
4174
4175         if (ic->mode == 'B' && !ic->internal_hash) {
4176                 r = -EINVAL;
4177                 ti->error = "Bitmap mode can be only used with internal hash";
4178                 goto bad;
4179         }
4180
4181         if (ic->discard && !ic->internal_hash) {
4182                 r = -EINVAL;
4183                 ti->error = "Discard can be only used with internal hash";
4184                 goto bad;
4185         }
4186
4187         ic->autocommit_jiffies = msecs_to_jiffies(sync_msec);
4188         ic->autocommit_msec = sync_msec;
4189         timer_setup(&ic->autocommit_timer, autocommit_fn, 0);
4190
4191         ic->io = dm_io_client_create();
4192         if (IS_ERR(ic->io)) {
4193                 r = PTR_ERR(ic->io);
4194                 ic->io = NULL;
4195                 ti->error = "Cannot allocate dm io";
4196                 goto bad;
4197         }
4198
4199         r = mempool_init_slab_pool(&ic->journal_io_mempool, JOURNAL_IO_MEMPOOL, journal_io_cache);
4200         if (r) {
4201                 ti->error = "Cannot allocate mempool";
4202                 goto bad;
4203         }
4204
4205         ic->metadata_wq = alloc_workqueue("dm-integrity-metadata",
4206                                           WQ_MEM_RECLAIM, METADATA_WORKQUEUE_MAX_ACTIVE);
4207         if (!ic->metadata_wq) {
4208                 ti->error = "Cannot allocate workqueue";
4209                 r = -ENOMEM;
4210                 goto bad;
4211         }
4212
4213         /*
4214          * If this workqueue were percpu, it would cause bio reordering
4215          * and reduced performance.
4216          */
4217         ic->wait_wq = alloc_workqueue("dm-integrity-wait", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4218         if (!ic->wait_wq) {
4219                 ti->error = "Cannot allocate workqueue";
4220                 r = -ENOMEM;
4221                 goto bad;
4222         }
4223
4224         ic->offload_wq = alloc_workqueue("dm-integrity-offload", WQ_MEM_RECLAIM,
4225                                           METADATA_WORKQUEUE_MAX_ACTIVE);
4226         if (!ic->offload_wq) {
4227                 ti->error = "Cannot allocate workqueue";
4228                 r = -ENOMEM;
4229                 goto bad;
4230         }
4231
4232         ic->commit_wq = alloc_workqueue("dm-integrity-commit", WQ_MEM_RECLAIM, 1);
4233         if (!ic->commit_wq) {
4234                 ti->error = "Cannot allocate workqueue";
4235                 r = -ENOMEM;
4236                 goto bad;
4237         }
4238         INIT_WORK(&ic->commit_work, integrity_commit);
4239
4240         if (ic->mode == 'J' || ic->mode == 'B') {
4241                 ic->writer_wq = alloc_workqueue("dm-integrity-writer", WQ_MEM_RECLAIM, 1);
4242                 if (!ic->writer_wq) {
4243                         ti->error = "Cannot allocate workqueue";
4244                         r = -ENOMEM;
4245                         goto bad;
4246                 }
4247                 INIT_WORK(&ic->writer_work, integrity_writer);
4248         }
4249
4250         ic->sb = alloc_pages_exact(SB_SECTORS << SECTOR_SHIFT, GFP_KERNEL);
4251         if (!ic->sb) {
4252                 r = -ENOMEM;
4253                 ti->error = "Cannot allocate superblock area";
4254                 goto bad;
4255         }
4256
4257         r = sync_rw_sb(ic, REQ_OP_READ, 0);
4258         if (r) {
4259                 ti->error = "Error reading superblock";
4260                 goto bad;
4261         }
4262         should_write_sb = false;
4263         if (memcmp(ic->sb->magic, SB_MAGIC, 8)) {
4264                 if (ic->mode != 'R') {
4265                         if (memchr_inv(ic->sb, 0, SB_SECTORS << SECTOR_SHIFT)) {
4266                                 r = -EINVAL;
4267                                 ti->error = "The device is not initialized";
4268                                 goto bad;
4269                         }
4270                 }
4271
4272                 r = initialize_superblock(ic, journal_sectors, interleave_sectors);
4273                 if (r) {
4274                         ti->error = "Could not initialize superblock";
4275                         goto bad;
4276                 }
4277                 if (ic->mode != 'R')
4278                         should_write_sb = true;
4279         }
4280
4281         if (!ic->sb->version || ic->sb->version > SB_VERSION_5) {
4282                 r = -EINVAL;
4283                 ti->error = "Unknown version";
4284                 goto bad;
4285         }
4286         if (le16_to_cpu(ic->sb->integrity_tag_size) != ic->tag_size) {
4287                 r = -EINVAL;
4288                 ti->error = "Tag size doesn't match the information in superblock";
4289                 goto bad;
4290         }
4291         if (ic->sb->log2_sectors_per_block != __ffs(ic->sectors_per_block)) {
4292                 r = -EINVAL;
4293                 ti->error = "Block size doesn't match the information in superblock";
4294                 goto bad;
4295         }
4296         if (!le32_to_cpu(ic->sb->journal_sections)) {
4297                 r = -EINVAL;
4298                 ti->error = "Corrupted superblock, journal_sections is 0";
4299                 goto bad;
4300         }
4301         /* make sure that ti->max_io_len doesn't overflow */
4302         if (!ic->meta_dev) {
4303                 if (ic->sb->log2_interleave_sectors < MIN_LOG2_INTERLEAVE_SECTORS ||
4304                     ic->sb->log2_interleave_sectors > MAX_LOG2_INTERLEAVE_SECTORS) {
4305                         r = -EINVAL;
4306                         ti->error = "Invalid interleave_sectors in the superblock";
4307                         goto bad;
4308                 }
4309         } else {
4310                 if (ic->sb->log2_interleave_sectors) {
4311                         r = -EINVAL;
4312                         ti->error = "Invalid interleave_sectors in the superblock";
4313                         goto bad;
4314                 }
4315         }
4316         if (!!(ic->sb->flags & cpu_to_le32(SB_FLAG_HAVE_JOURNAL_MAC)) != !!ic->journal_mac_alg.alg_string) {
4317                 r = -EINVAL;
4318                 ti->error = "Journal mac mismatch";
4319                 goto bad;
4320         }
4321
4322         get_provided_data_sectors(ic);
4323         if (!ic->provided_data_sectors) {
4324                 r = -EINVAL;
4325                 ti->error = "The device is too small";
4326                 goto bad;
4327         }
4328
4329 try_smaller_buffer:
4330         r = calculate_device_limits(ic);
4331         if (r) {
4332                 if (ic->meta_dev) {
4333                         if (ic->log2_buffer_sectors > 3) {
4334                                 ic->log2_buffer_sectors--;
4335                                 goto try_smaller_buffer;
4336                         }
4337                 }
4338                 ti->error = "The device is too small";
4339                 goto bad;
4340         }
4341
4342         if (log2_sectors_per_bitmap_bit < 0)
4343                 log2_sectors_per_bitmap_bit = __fls(DEFAULT_SECTORS_PER_BITMAP_BIT);
4344         if (log2_sectors_per_bitmap_bit < ic->sb->log2_sectors_per_block)
4345                 log2_sectors_per_bitmap_bit = ic->sb->log2_sectors_per_block;
4346
4347         bits_in_journal = ((__u64)ic->journal_section_sectors * ic->journal_sections) << (SECTOR_SHIFT + 3);
4348         if (bits_in_journal > UINT_MAX)
4349                 bits_in_journal = UINT_MAX;
4350         while (bits_in_journal < (ic->provided_data_sectors + ((sector_t)1 << log2_sectors_per_bitmap_bit) - 1) >> log2_sectors_per_bitmap_bit)
4351                 log2_sectors_per_bitmap_bit++;
4352
4353         log2_blocks_per_bitmap_bit = log2_sectors_per_bitmap_bit - ic->sb->log2_sectors_per_block;
4354         ic->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4355         if (should_write_sb) {
4356                 ic->sb->log2_blocks_per_bitmap_bit = log2_blocks_per_bitmap_bit;
4357         }
4358         n_bitmap_bits = ((ic->provided_data_sectors >> ic->sb->log2_sectors_per_block)
4359                                 + (((sector_t)1 << log2_blocks_per_bitmap_bit) - 1)) >> log2_blocks_per_bitmap_bit;
4360         ic->n_bitmap_blocks = DIV_ROUND_UP(n_bitmap_bits, BITMAP_BLOCK_SIZE * 8);
4361
4362         if (!ic->meta_dev)
4363                 ic->log2_buffer_sectors = min(ic->log2_buffer_sectors, (__u8)__ffs(ic->metadata_run));
4364
4365         if (ti->len > ic->provided_data_sectors) {
4366                 r = -EINVAL;
4367                 ti->error = "Not enough provided sectors for requested mapping size";
4368                 goto bad;
4369         }
4370
4371
4372         threshold = (__u64)ic->journal_entries * (100 - journal_watermark);
4373         threshold += 50;
4374         do_div(threshold, 100);
4375         ic->free_sectors_threshold = threshold;
4376
4377         DEBUG_print("initialized:\n");
4378         DEBUG_print("   integrity_tag_size %u\n", le16_to_cpu(ic->sb->integrity_tag_size));
4379         DEBUG_print("   journal_entry_size %u\n", ic->journal_entry_size);
4380         DEBUG_print("   journal_entries_per_sector %u\n", ic->journal_entries_per_sector);
4381         DEBUG_print("   journal_section_entries %u\n", ic->journal_section_entries);
4382         DEBUG_print("   journal_section_sectors %u\n", ic->journal_section_sectors);
4383         DEBUG_print("   journal_sections %u\n", (unsigned)le32_to_cpu(ic->sb->journal_sections));
4384         DEBUG_print("   journal_entries %u\n", ic->journal_entries);
4385         DEBUG_print("   log2_interleave_sectors %d\n", ic->sb->log2_interleave_sectors);
4386         DEBUG_print("   data_device_sectors 0x%llx\n", bdev_nr_sectors(ic->dev->bdev));
4387         DEBUG_print("   initial_sectors 0x%x\n", ic->initial_sectors);
4388         DEBUG_print("   metadata_run 0x%x\n", ic->metadata_run);
4389         DEBUG_print("   log2_metadata_run %d\n", ic->log2_metadata_run);
4390         DEBUG_print("   provided_data_sectors 0x%llx (%llu)\n", ic->provided_data_sectors, ic->provided_data_sectors);
4391         DEBUG_print("   log2_buffer_sectors %u\n", ic->log2_buffer_sectors);
4392         DEBUG_print("   bits_in_journal %llu\n", bits_in_journal);
4393
4394         if (ic->recalculate_flag && !(ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING))) {
4395                 ic->sb->flags |= cpu_to_le32(SB_FLAG_RECALCULATING);
4396                 ic->sb->recalc_sector = cpu_to_le64(0);
4397         }
4398
4399         if (ic->internal_hash) {
4400                 ic->recalc_wq = alloc_workqueue("dm-integrity-recalc", WQ_MEM_RECLAIM, 1);
4401                 if (!ic->recalc_wq ) {
4402                         ti->error = "Cannot allocate workqueue";
4403                         r = -ENOMEM;
4404                         goto bad;
4405                 }
4406                 INIT_WORK(&ic->recalc_work, integrity_recalc);
4407                 ic->recalc_buffer = vmalloc(RECALC_SECTORS << SECTOR_SHIFT);
4408                 if (!ic->recalc_buffer) {
4409                         ti->error = "Cannot allocate buffer for recalculating";
4410                         r = -ENOMEM;
4411                         goto bad;
4412                 }
4413                 ic->recalc_tags = kvmalloc_array(RECALC_SECTORS >> ic->sb->log2_sectors_per_block,
4414                                                  ic->tag_size, GFP_KERNEL);
4415                 if (!ic->recalc_tags) {
4416                         ti->error = "Cannot allocate tags for recalculating";
4417                         r = -ENOMEM;
4418                         goto bad;
4419                 }
4420         } else {
4421                 if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING)) {
4422                         ti->error = "Recalculate can only be specified with internal_hash";
4423                         r = -EINVAL;
4424                         goto bad;
4425                 }
4426         }
4427
4428         if (ic->sb->flags & cpu_to_le32(SB_FLAG_RECALCULATING) &&
4429             le64_to_cpu(ic->sb->recalc_sector) < ic->provided_data_sectors &&
4430             dm_integrity_disable_recalculate(ic)) {
4431                 ti->error = "Recalculating with HMAC is disabled for security reasons - if you really need it, use the argument \"legacy_recalculate\"";
4432                 r = -EOPNOTSUPP;
4433                 goto bad;
4434         }
4435
4436         ic->bufio = dm_bufio_client_create(ic->meta_dev ? ic->meta_dev->bdev : ic->dev->bdev,
4437                         1U << (SECTOR_SHIFT + ic->log2_buffer_sectors), 1, 0, NULL, NULL);
4438         if (IS_ERR(ic->bufio)) {
4439                 r = PTR_ERR(ic->bufio);
4440                 ti->error = "Cannot initialize dm-bufio";
4441                 ic->bufio = NULL;
4442                 goto bad;
4443         }
4444         dm_bufio_set_sector_offset(ic->bufio, ic->start + ic->initial_sectors);
4445
4446         if (ic->mode != 'R') {
4447                 r = create_journal(ic, &ti->error);
4448                 if (r)
4449                         goto bad;
4450
4451         }
4452
4453         if (ic->mode == 'B') {
4454                 unsigned i;
4455                 unsigned n_bitmap_pages = DIV_ROUND_UP(ic->n_bitmap_blocks, PAGE_SIZE / BITMAP_BLOCK_SIZE);
4456
4457                 ic->recalc_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4458                 if (!ic->recalc_bitmap) {
4459                         r = -ENOMEM;
4460                         goto bad;
4461                 }
4462                 ic->may_write_bitmap = dm_integrity_alloc_page_list(n_bitmap_pages);
4463                 if (!ic->may_write_bitmap) {
4464                         r = -ENOMEM;
4465                         goto bad;
4466                 }
4467                 ic->bbs = kvmalloc_array(ic->n_bitmap_blocks, sizeof(struct bitmap_block_status), GFP_KERNEL);
4468                 if (!ic->bbs) {
4469                         r = -ENOMEM;
4470                         goto bad;
4471                 }
4472                 INIT_DELAYED_WORK(&ic->bitmap_flush_work, bitmap_flush_work);
4473                 for (i = 0; i < ic->n_bitmap_blocks; i++) {
4474                         struct bitmap_block_status *bbs = &ic->bbs[i];
4475                         unsigned sector, pl_index, pl_offset;
4476
4477                         INIT_WORK(&bbs->work, bitmap_block_work);
4478                         bbs->ic = ic;
4479                         bbs->idx = i;
4480                         bio_list_init(&bbs->bio_queue);
4481                         spin_lock_init(&bbs->bio_queue_lock);
4482
4483                         sector = i * (BITMAP_BLOCK_SIZE >> SECTOR_SHIFT);
4484                         pl_index = sector >> (PAGE_SHIFT - SECTOR_SHIFT);
4485                         pl_offset = (sector << SECTOR_SHIFT) & (PAGE_SIZE - 1);
4486
4487                         bbs->bitmap = lowmem_page_address(ic->journal[pl_index].page) + pl_offset;
4488                 }
4489         }
4490
4491         if (should_write_sb) {
4492                 int r;
4493
4494                 init_journal(ic, 0, ic->journal_sections, 0);
4495                 r = dm_integrity_failed(ic);
4496                 if (unlikely(r)) {
4497                         ti->error = "Error initializing journal";
4498                         goto bad;
4499                 }
4500                 r = sync_rw_sb(ic, REQ_OP_WRITE, REQ_FUA);
4501                 if (r) {
4502                         ti->error = "Error initializing superblock";
4503                         goto bad;
4504                 }
4505                 ic->just_formatted = true;
4506         }
4507
4508         if (!ic->meta_dev) {
4509                 r = dm_set_target_max_io_len(ti, 1U << ic->sb->log2_interleave_sectors);
4510                 if (r)
4511                         goto bad;
4512         }
4513         if (ic->mode == 'B') {
4514                 unsigned max_io_len = ((sector_t)ic->sectors_per_block << ic->log2_blocks_per_bitmap_bit) * (BITMAP_BLOCK_SIZE * 8);
4515                 if (!max_io_len)
4516                         max_io_len = 1U << 31;
4517                 DEBUG_print("max_io_len: old %u, new %u\n", ti->max_io_len, max_io_len);
4518                 if (!ti->max_io_len || ti->max_io_len > max_io_len) {
4519                         r = dm_set_target_max_io_len(ti, max_io_len);
4520                         if (r)
4521                                 goto bad;
4522                 }
4523         }
4524
4525         if (!ic->internal_hash)
4526                 dm_integrity_set(ti, ic);
4527
4528         ti->num_flush_bios = 1;
4529         ti->flush_supported = true;
4530         if (ic->discard)
4531                 ti->num_discard_bios = 1;
4532
4533         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
4534         return 0;
4535
4536 bad:
4537         dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
4538         dm_integrity_dtr(ti);
4539         return r;
4540 }
4541
4542 static void dm_integrity_dtr(struct dm_target *ti)
4543 {
4544         struct dm_integrity_c *ic = ti->private;
4545
4546         BUG_ON(!RB_EMPTY_ROOT(&ic->in_progress));
4547         BUG_ON(!list_empty(&ic->wait_list));
4548
4549         if (ic->metadata_wq)
4550                 destroy_workqueue(ic->metadata_wq);
4551         if (ic->wait_wq)
4552                 destroy_workqueue(ic->wait_wq);
4553         if (ic->offload_wq)
4554                 destroy_workqueue(ic->offload_wq);
4555         if (ic->commit_wq)
4556                 destroy_workqueue(ic->commit_wq);
4557         if (ic->writer_wq)
4558                 destroy_workqueue(ic->writer_wq);
4559         if (ic->recalc_wq)
4560                 destroy_workqueue(ic->recalc_wq);
4561         vfree(ic->recalc_buffer);
4562         kvfree(ic->recalc_tags);
4563         kvfree(ic->bbs);
4564         if (ic->bufio)
4565                 dm_bufio_client_destroy(ic->bufio);
4566         mempool_exit(&ic->journal_io_mempool);
4567         if (ic->io)
4568                 dm_io_client_destroy(ic->io);
4569         if (ic->dev)
4570                 dm_put_device(ti, ic->dev);
4571         if (ic->meta_dev)
4572                 dm_put_device(ti, ic->meta_dev);
4573         dm_integrity_free_page_list(ic->journal);
4574         dm_integrity_free_page_list(ic->journal_io);
4575         dm_integrity_free_page_list(ic->journal_xor);
4576         dm_integrity_free_page_list(ic->recalc_bitmap);
4577         dm_integrity_free_page_list(ic->may_write_bitmap);
4578         if (ic->journal_scatterlist)
4579                 dm_integrity_free_journal_scatterlist(ic, ic->journal_scatterlist);
4580         if (ic->journal_io_scatterlist)
4581                 dm_integrity_free_journal_scatterlist(ic, ic->journal_io_scatterlist);
4582         if (ic->sk_requests) {
4583                 unsigned i;
4584
4585                 for (i = 0; i < ic->journal_sections; i++) {
4586                         struct skcipher_request *req = ic->sk_requests[i];
4587                         if (req) {
4588                                 kfree_sensitive(req->iv);
4589                                 skcipher_request_free(req);
4590                         }
4591                 }
4592                 kvfree(ic->sk_requests);
4593         }
4594         kvfree(ic->journal_tree);
4595         if (ic->sb)
4596                 free_pages_exact(ic->sb, SB_SECTORS << SECTOR_SHIFT);
4597
4598         if (ic->internal_hash)
4599                 crypto_free_shash(ic->internal_hash);
4600         free_alg(&ic->internal_hash_alg);
4601
4602         if (ic->journal_crypt)
4603                 crypto_free_skcipher(ic->journal_crypt);
4604         free_alg(&ic->journal_crypt_alg);
4605
4606         if (ic->journal_mac)
4607                 crypto_free_shash(ic->journal_mac);
4608         free_alg(&ic->journal_mac_alg);
4609
4610         kfree(ic);
4611         dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
4612 }
4613
4614 static struct target_type integrity_target = {
4615         .name                   = "integrity",
4616         .version                = {1, 10, 0},
4617         .module                 = THIS_MODULE,
4618         .features               = DM_TARGET_SINGLETON | DM_TARGET_INTEGRITY,
4619         .ctr                    = dm_integrity_ctr,
4620         .dtr                    = dm_integrity_dtr,
4621         .map                    = dm_integrity_map,
4622         .postsuspend            = dm_integrity_postsuspend,
4623         .resume                 = dm_integrity_resume,
4624         .status                 = dm_integrity_status,
4625         .iterate_devices        = dm_integrity_iterate_devices,
4626         .io_hints               = dm_integrity_io_hints,
4627 };
4628
4629 static int __init dm_integrity_init(void)
4630 {
4631         int r;
4632
4633         journal_io_cache = kmem_cache_create("integrity_journal_io",
4634                                              sizeof(struct journal_io), 0, 0, NULL);
4635         if (!journal_io_cache) {
4636                 DMERR("can't allocate journal io cache");
4637                 return -ENOMEM;
4638         }
4639
4640         r = dm_register_target(&integrity_target);
4641
4642         if (r < 0)
4643                 DMERR("register failed %d", r);
4644
4645         return r;
4646 }
4647
4648 static void __exit dm_integrity_exit(void)
4649 {
4650         dm_unregister_target(&integrity_target);
4651         kmem_cache_destroy(journal_io_cache);
4652 }
4653
4654 module_init(dm_integrity_init);
4655 module_exit(dm_integrity_exit);
4656
4657 MODULE_AUTHOR("Milan Broz");
4658 MODULE_AUTHOR("Mikulas Patocka");
4659 MODULE_DESCRIPTION(DM_NAME " target for integrity tags extension");
4660 MODULE_LICENSE("GPL");