ahci: don't ignore result code of ahci_reset_controller()
[sfrench/cifs-2.6.git] / drivers / md / bcache / writeback.c
1 /*
2  * background writeback - scan btree for dirty data and write it to the backing
3  * device
4  *
5  * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6  * Copyright 2012 Google, Inc.
7  */
8
9 #include "bcache.h"
10 #include "btree.h"
11 #include "debug.h"
12 #include "writeback.h"
13
14 #include <linux/delay.h>
15 #include <linux/kthread.h>
16 #include <linux/sched/clock.h>
17 #include <trace/events/bcache.h>
18
19 /* Rate limiting */
20
21 static void __update_writeback_rate(struct cached_dev *dc)
22 {
23         struct cache_set *c = dc->disk.c;
24         uint64_t cache_sectors = c->nbuckets * c->sb.bucket_size;
25         uint64_t cache_dirty_target =
26                 div_u64(cache_sectors * dc->writeback_percent, 100);
27
28         int64_t target = div64_u64(cache_dirty_target * bdev_sectors(dc->bdev),
29                                    c->cached_dev_sectors);
30
31         /* PD controller */
32
33         int64_t dirty = bcache_dev_sectors_dirty(&dc->disk);
34         int64_t derivative = dirty - dc->disk.sectors_dirty_last;
35         int64_t proportional = dirty - target;
36         int64_t change;
37
38         dc->disk.sectors_dirty_last = dirty;
39
40         /* Scale to sectors per second */
41
42         proportional *= dc->writeback_rate_update_seconds;
43         proportional = div_s64(proportional, dc->writeback_rate_p_term_inverse);
44
45         derivative = div_s64(derivative, dc->writeback_rate_update_seconds);
46
47         derivative = ewma_add(dc->disk.sectors_dirty_derivative, derivative,
48                               (dc->writeback_rate_d_term /
49                                dc->writeback_rate_update_seconds) ?: 1, 0);
50
51         derivative *= dc->writeback_rate_d_term;
52         derivative = div_s64(derivative, dc->writeback_rate_p_term_inverse);
53
54         change = proportional + derivative;
55
56         /* Don't increase writeback rate if the device isn't keeping up */
57         if (change > 0 &&
58             time_after64(local_clock(),
59                          dc->writeback_rate.next + NSEC_PER_MSEC))
60                 change = 0;
61
62         dc->writeback_rate.rate =
63                 clamp_t(int64_t, (int64_t) dc->writeback_rate.rate + change,
64                         1, NSEC_PER_MSEC);
65
66         dc->writeback_rate_proportional = proportional;
67         dc->writeback_rate_derivative = derivative;
68         dc->writeback_rate_change = change;
69         dc->writeback_rate_target = target;
70 }
71
72 static void update_writeback_rate(struct work_struct *work)
73 {
74         struct cached_dev *dc = container_of(to_delayed_work(work),
75                                              struct cached_dev,
76                                              writeback_rate_update);
77
78         down_read(&dc->writeback_lock);
79
80         if (atomic_read(&dc->has_dirty) &&
81             dc->writeback_percent)
82                 __update_writeback_rate(dc);
83
84         up_read(&dc->writeback_lock);
85
86         schedule_delayed_work(&dc->writeback_rate_update,
87                               dc->writeback_rate_update_seconds * HZ);
88 }
89
90 static unsigned writeback_delay(struct cached_dev *dc, unsigned sectors)
91 {
92         if (test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) ||
93             !dc->writeback_percent)
94                 return 0;
95
96         return bch_next_delay(&dc->writeback_rate, sectors);
97 }
98
99 struct dirty_io {
100         struct closure          cl;
101         struct cached_dev       *dc;
102         struct bio              bio;
103 };
104
105 static void dirty_init(struct keybuf_key *w)
106 {
107         struct dirty_io *io = w->private;
108         struct bio *bio = &io->bio;
109
110         bio_init(bio, bio->bi_inline_vecs,
111                  DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS));
112         if (!io->dc->writeback_percent)
113                 bio_set_prio(bio, IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0));
114
115         bio->bi_iter.bi_size    = KEY_SIZE(&w->key) << 9;
116         bio->bi_private         = w;
117         bch_bio_map(bio, NULL);
118 }
119
120 static void dirty_io_destructor(struct closure *cl)
121 {
122         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
123         kfree(io);
124 }
125
126 static void write_dirty_finish(struct closure *cl)
127 {
128         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
129         struct keybuf_key *w = io->bio.bi_private;
130         struct cached_dev *dc = io->dc;
131
132         bio_free_pages(&io->bio);
133
134         /* This is kind of a dumb way of signalling errors. */
135         if (KEY_DIRTY(&w->key)) {
136                 int ret;
137                 unsigned i;
138                 struct keylist keys;
139
140                 bch_keylist_init(&keys);
141
142                 bkey_copy(keys.top, &w->key);
143                 SET_KEY_DIRTY(keys.top, false);
144                 bch_keylist_push(&keys);
145
146                 for (i = 0; i < KEY_PTRS(&w->key); i++)
147                         atomic_inc(&PTR_BUCKET(dc->disk.c, &w->key, i)->pin);
148
149                 ret = bch_btree_insert(dc->disk.c, &keys, NULL, &w->key);
150
151                 if (ret)
152                         trace_bcache_writeback_collision(&w->key);
153
154                 atomic_long_inc(ret
155                                 ? &dc->disk.c->writeback_keys_failed
156                                 : &dc->disk.c->writeback_keys_done);
157         }
158
159         bch_keybuf_del(&dc->writeback_keys, w);
160         up(&dc->in_flight);
161
162         closure_return_with_destructor(cl, dirty_io_destructor);
163 }
164
165 static void dirty_endio(struct bio *bio)
166 {
167         struct keybuf_key *w = bio->bi_private;
168         struct dirty_io *io = w->private;
169
170         if (bio->bi_status)
171                 SET_KEY_DIRTY(&w->key, false);
172
173         closure_put(&io->cl);
174 }
175
176 static void write_dirty(struct closure *cl)
177 {
178         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
179         struct keybuf_key *w = io->bio.bi_private;
180
181         dirty_init(w);
182         bio_set_op_attrs(&io->bio, REQ_OP_WRITE, 0);
183         io->bio.bi_iter.bi_sector = KEY_START(&w->key);
184         bio_set_dev(&io->bio, io->dc->bdev);
185         io->bio.bi_end_io       = dirty_endio;
186
187         closure_bio_submit(&io->bio, cl);
188
189         continue_at(cl, write_dirty_finish, system_wq);
190 }
191
192 static void read_dirty_endio(struct bio *bio)
193 {
194         struct keybuf_key *w = bio->bi_private;
195         struct dirty_io *io = w->private;
196
197         bch_count_io_errors(PTR_CACHE(io->dc->disk.c, &w->key, 0),
198                             bio->bi_status, "reading dirty data from cache");
199
200         dirty_endio(bio);
201 }
202
203 static void read_dirty_submit(struct closure *cl)
204 {
205         struct dirty_io *io = container_of(cl, struct dirty_io, cl);
206
207         closure_bio_submit(&io->bio, cl);
208
209         continue_at(cl, write_dirty, system_wq);
210 }
211
212 static void read_dirty(struct cached_dev *dc)
213 {
214         unsigned delay = 0;
215         struct keybuf_key *w;
216         struct dirty_io *io;
217         struct closure cl;
218
219         closure_init_stack(&cl);
220
221         /*
222          * XXX: if we error, background writeback just spins. Should use some
223          * mempools.
224          */
225
226         while (!kthread_should_stop()) {
227
228                 w = bch_keybuf_next(&dc->writeback_keys);
229                 if (!w)
230                         break;
231
232                 BUG_ON(ptr_stale(dc->disk.c, &w->key, 0));
233
234                 if (KEY_START(&w->key) != dc->last_read ||
235                     jiffies_to_msecs(delay) > 50)
236                         while (!kthread_should_stop() && delay)
237                                 delay = schedule_timeout_interruptible(delay);
238
239                 dc->last_read   = KEY_OFFSET(&w->key);
240
241                 io = kzalloc(sizeof(struct dirty_io) + sizeof(struct bio_vec)
242                              * DIV_ROUND_UP(KEY_SIZE(&w->key), PAGE_SECTORS),
243                              GFP_KERNEL);
244                 if (!io)
245                         goto err;
246
247                 w->private      = io;
248                 io->dc          = dc;
249
250                 dirty_init(w);
251                 bio_set_op_attrs(&io->bio, REQ_OP_READ, 0);
252                 io->bio.bi_iter.bi_sector = PTR_OFFSET(&w->key, 0);
253                 bio_set_dev(&io->bio, PTR_CACHE(dc->disk.c, &w->key, 0)->bdev);
254                 io->bio.bi_end_io       = read_dirty_endio;
255
256                 if (bio_alloc_pages(&io->bio, GFP_KERNEL))
257                         goto err_free;
258
259                 trace_bcache_writeback(&w->key);
260
261                 down(&dc->in_flight);
262                 closure_call(&io->cl, read_dirty_submit, NULL, &cl);
263
264                 delay = writeback_delay(dc, KEY_SIZE(&w->key));
265         }
266
267         if (0) {
268 err_free:
269                 kfree(w->private);
270 err:
271                 bch_keybuf_del(&dc->writeback_keys, w);
272         }
273
274         /*
275          * Wait for outstanding writeback IOs to finish (and keybuf slots to be
276          * freed) before refilling again
277          */
278         closure_sync(&cl);
279 }
280
281 /* Scan for dirty data */
282
283 void bcache_dev_sectors_dirty_add(struct cache_set *c, unsigned inode,
284                                   uint64_t offset, int nr_sectors)
285 {
286         struct bcache_device *d = c->devices[inode];
287         unsigned stripe_offset, stripe, sectors_dirty;
288
289         if (!d)
290                 return;
291
292         stripe = offset_to_stripe(d, offset);
293         stripe_offset = offset & (d->stripe_size - 1);
294
295         while (nr_sectors) {
296                 int s = min_t(unsigned, abs(nr_sectors),
297                               d->stripe_size - stripe_offset);
298
299                 if (nr_sectors < 0)
300                         s = -s;
301
302                 if (stripe >= d->nr_stripes)
303                         return;
304
305                 sectors_dirty = atomic_add_return(s,
306                                         d->stripe_sectors_dirty + stripe);
307                 if (sectors_dirty == d->stripe_size)
308                         set_bit(stripe, d->full_dirty_stripes);
309                 else
310                         clear_bit(stripe, d->full_dirty_stripes);
311
312                 nr_sectors -= s;
313                 stripe_offset = 0;
314                 stripe++;
315         }
316 }
317
318 static bool dirty_pred(struct keybuf *buf, struct bkey *k)
319 {
320         struct cached_dev *dc = container_of(buf, struct cached_dev, writeback_keys);
321
322         BUG_ON(KEY_INODE(k) != dc->disk.id);
323
324         return KEY_DIRTY(k);
325 }
326
327 static void refill_full_stripes(struct cached_dev *dc)
328 {
329         struct keybuf *buf = &dc->writeback_keys;
330         unsigned start_stripe, stripe, next_stripe;
331         bool wrapped = false;
332
333         stripe = offset_to_stripe(&dc->disk, KEY_OFFSET(&buf->last_scanned));
334
335         if (stripe >= dc->disk.nr_stripes)
336                 stripe = 0;
337
338         start_stripe = stripe;
339
340         while (1) {
341                 stripe = find_next_bit(dc->disk.full_dirty_stripes,
342                                        dc->disk.nr_stripes, stripe);
343
344                 if (stripe == dc->disk.nr_stripes)
345                         goto next;
346
347                 next_stripe = find_next_zero_bit(dc->disk.full_dirty_stripes,
348                                                  dc->disk.nr_stripes, stripe);
349
350                 buf->last_scanned = KEY(dc->disk.id,
351                                         stripe * dc->disk.stripe_size, 0);
352
353                 bch_refill_keybuf(dc->disk.c, buf,
354                                   &KEY(dc->disk.id,
355                                        next_stripe * dc->disk.stripe_size, 0),
356                                   dirty_pred);
357
358                 if (array_freelist_empty(&buf->freelist))
359                         return;
360
361                 stripe = next_stripe;
362 next:
363                 if (wrapped && stripe > start_stripe)
364                         return;
365
366                 if (stripe == dc->disk.nr_stripes) {
367                         stripe = 0;
368                         wrapped = true;
369                 }
370         }
371 }
372
373 /*
374  * Returns true if we scanned the entire disk
375  */
376 static bool refill_dirty(struct cached_dev *dc)
377 {
378         struct keybuf *buf = &dc->writeback_keys;
379         struct bkey start = KEY(dc->disk.id, 0, 0);
380         struct bkey end = KEY(dc->disk.id, MAX_KEY_OFFSET, 0);
381         struct bkey start_pos;
382
383         /*
384          * make sure keybuf pos is inside the range for this disk - at bringup
385          * we might not be attached yet so this disk's inode nr isn't
386          * initialized then
387          */
388         if (bkey_cmp(&buf->last_scanned, &start) < 0 ||
389             bkey_cmp(&buf->last_scanned, &end) > 0)
390                 buf->last_scanned = start;
391
392         if (dc->partial_stripes_expensive) {
393                 refill_full_stripes(dc);
394                 if (array_freelist_empty(&buf->freelist))
395                         return false;
396         }
397
398         start_pos = buf->last_scanned;
399         bch_refill_keybuf(dc->disk.c, buf, &end, dirty_pred);
400
401         if (bkey_cmp(&buf->last_scanned, &end) < 0)
402                 return false;
403
404         /*
405          * If we get to the end start scanning again from the beginning, and
406          * only scan up to where we initially started scanning from:
407          */
408         buf->last_scanned = start;
409         bch_refill_keybuf(dc->disk.c, buf, &start_pos, dirty_pred);
410
411         return bkey_cmp(&buf->last_scanned, &start_pos) >= 0;
412 }
413
414 static int bch_writeback_thread(void *arg)
415 {
416         struct cached_dev *dc = arg;
417         bool searched_full_index;
418
419         while (!kthread_should_stop()) {
420                 down_write(&dc->writeback_lock);
421                 if (!atomic_read(&dc->has_dirty) ||
422                     (!test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags) &&
423                      !dc->writeback_running)) {
424                         up_write(&dc->writeback_lock);
425                         set_current_state(TASK_INTERRUPTIBLE);
426
427                         if (kthread_should_stop())
428                                 return 0;
429
430                         schedule();
431                         continue;
432                 }
433
434                 searched_full_index = refill_dirty(dc);
435
436                 if (searched_full_index &&
437                     RB_EMPTY_ROOT(&dc->writeback_keys.keys)) {
438                         atomic_set(&dc->has_dirty, 0);
439                         cached_dev_put(dc);
440                         SET_BDEV_STATE(&dc->sb, BDEV_STATE_CLEAN);
441                         bch_write_bdev_super(dc, NULL);
442                 }
443
444                 up_write(&dc->writeback_lock);
445
446                 bch_ratelimit_reset(&dc->writeback_rate);
447                 read_dirty(dc);
448
449                 if (searched_full_index) {
450                         unsigned delay = dc->writeback_delay * HZ;
451
452                         while (delay &&
453                                !kthread_should_stop() &&
454                                !test_bit(BCACHE_DEV_DETACHING, &dc->disk.flags))
455                                 delay = schedule_timeout_interruptible(delay);
456                 }
457         }
458
459         return 0;
460 }
461
462 /* Init */
463
464 struct sectors_dirty_init {
465         struct btree_op op;
466         unsigned        inode;
467 };
468
469 static int sectors_dirty_init_fn(struct btree_op *_op, struct btree *b,
470                                  struct bkey *k)
471 {
472         struct sectors_dirty_init *op = container_of(_op,
473                                                 struct sectors_dirty_init, op);
474         if (KEY_INODE(k) > op->inode)
475                 return MAP_DONE;
476
477         if (KEY_DIRTY(k))
478                 bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
479                                              KEY_START(k), KEY_SIZE(k));
480
481         return MAP_CONTINUE;
482 }
483
484 void bch_sectors_dirty_init(struct cached_dev *dc)
485 {
486         struct sectors_dirty_init op;
487
488         bch_btree_op_init(&op.op, -1);
489         op.inode = dc->disk.id;
490
491         bch_btree_map_keys(&op.op, dc->disk.c, &KEY(op.inode, 0, 0),
492                            sectors_dirty_init_fn, 0);
493
494         dc->disk.sectors_dirty_last = bcache_dev_sectors_dirty(&dc->disk);
495 }
496
497 void bch_cached_dev_writeback_init(struct cached_dev *dc)
498 {
499         sema_init(&dc->in_flight, 64);
500         init_rwsem(&dc->writeback_lock);
501         bch_keybuf_init(&dc->writeback_keys);
502
503         dc->writeback_metadata          = true;
504         dc->writeback_running           = true;
505         dc->writeback_percent           = 10;
506         dc->writeback_delay             = 30;
507         dc->writeback_rate.rate         = 1024;
508
509         dc->writeback_rate_update_seconds = 5;
510         dc->writeback_rate_d_term       = 30;
511         dc->writeback_rate_p_term_inverse = 6000;
512
513         INIT_DELAYED_WORK(&dc->writeback_rate_update, update_writeback_rate);
514 }
515
516 int bch_cached_dev_writeback_start(struct cached_dev *dc)
517 {
518         dc->writeback_thread = kthread_create(bch_writeback_thread, dc,
519                                               "bcache_writeback");
520         if (IS_ERR(dc->writeback_thread))
521                 return PTR_ERR(dc->writeback_thread);
522
523         schedule_delayed_work(&dc->writeback_rate_update,
524                               dc->writeback_rate_update_seconds * HZ);
525
526         bch_writeback_queue(dc);
527
528         return 0;
529 }