Merge tag 'trace-v6.9-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux...
[sfrench/cifs-2.6.git] / drivers / macintosh / windfarm_pm112.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Windfarm PowerMac thermal control.
4  * Control loops for machines with SMU and PPC970MP processors.
5  *
6  * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
7  * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
8  */
9 #include <linux/types.h>
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/device.h>
13 #include <linux/platform_device.h>
14 #include <linux/reboot.h>
15 #include <linux/of.h>
16 #include <linux/slab.h>
17
18 #include <asm/smu.h>
19
20 #include "windfarm.h"
21 #include "windfarm_pid.h"
22
23 #define VERSION "0.2"
24
25 #define DEBUG
26 #undef LOTSA_DEBUG
27
28 #ifdef DEBUG
29 #define DBG(args...)    printk(args)
30 #else
31 #define DBG(args...)    do { } while(0)
32 #endif
33
34 #ifdef LOTSA_DEBUG
35 #define DBG_LOTS(args...)       printk(args)
36 #else
37 #define DBG_LOTS(args...)       do { } while(0)
38 #endif
39
40 /* define this to force CPU overtemp to 60 degree, useful for testing
41  * the overtemp code
42  */
43 #undef HACKED_OVERTEMP
44
45 /* We currently only handle 2 chips, 4 cores... */
46 #define NR_CHIPS        2
47 #define NR_CORES        4
48 #define NR_CPU_FANS     3 * NR_CHIPS
49
50 /* Controls and sensors */
51 static struct wf_sensor *sens_cpu_temp[NR_CORES];
52 static struct wf_sensor *sens_cpu_power[NR_CORES];
53 static struct wf_sensor *hd_temp;
54 static struct wf_sensor *slots_power;
55 static struct wf_sensor *u4_temp;
56
57 static struct wf_control *cpu_fans[NR_CPU_FANS];
58 static char *cpu_fan_names[NR_CPU_FANS] = {
59         "cpu-rear-fan-0",
60         "cpu-rear-fan-1",
61         "cpu-front-fan-0",
62         "cpu-front-fan-1",
63         "cpu-pump-0",
64         "cpu-pump-1",
65 };
66 static struct wf_control *cpufreq_clamp;
67
68 /* Second pump isn't required (and isn't actually present) */
69 #define CPU_FANS_REQD           (NR_CPU_FANS - 2)
70 #define FIRST_PUMP              4
71 #define LAST_PUMP               5
72
73 /* We keep a temperature history for average calculation of 180s */
74 #define CPU_TEMP_HIST_SIZE      180
75
76 /* Scale factor for fan speed, *100 */
77 static int cpu_fan_scale[NR_CPU_FANS] = {
78         100,
79         100,
80         97,             /* inlet fans run at 97% of exhaust fan */
81         97,
82         100,            /* updated later */
83         100,            /* updated later */
84 };
85
86 static struct wf_control *backside_fan;
87 static struct wf_control *slots_fan;
88 static struct wf_control *drive_bay_fan;
89
90 /* PID loop state */
91 static struct wf_cpu_pid_state cpu_pid[NR_CORES];
92 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
93 static int cpu_thist_pt;
94 static s64 cpu_thist_total;
95 static s32 cpu_all_tmax = 100 << 16;
96 static int cpu_last_target;
97 static struct wf_pid_state backside_pid;
98 static int backside_tick;
99 static struct wf_pid_state slots_pid;
100 static bool slots_started;
101 static struct wf_pid_state drive_bay_pid;
102 static int drive_bay_tick;
103
104 static int nr_cores;
105 static int have_all_controls;
106 static int have_all_sensors;
107 static bool started;
108
109 static int failure_state;
110 #define FAILURE_SENSOR          1
111 #define FAILURE_FAN             2
112 #define FAILURE_PERM            4
113 #define FAILURE_LOW_OVERTEMP    8
114 #define FAILURE_HIGH_OVERTEMP   16
115
116 /* Overtemp values */
117 #define LOW_OVER_AVERAGE        0
118 #define LOW_OVER_IMMEDIATE      (10 << 16)
119 #define LOW_OVER_CLEAR          ((-10) << 16)
120 #define HIGH_OVER_IMMEDIATE     (14 << 16)
121 #define HIGH_OVER_AVERAGE       (10 << 16)
122 #define HIGH_OVER_IMMEDIATE     (14 << 16)
123
124
125 /* Implementation... */
126 static int create_cpu_loop(int cpu)
127 {
128         int chip = cpu / 2;
129         int core = cpu & 1;
130         struct smu_sdbp_header *hdr;
131         struct smu_sdbp_cpupiddata *piddata;
132         struct wf_cpu_pid_param pid;
133         struct wf_control *main_fan = cpu_fans[0];
134         s32 tmax;
135         int fmin;
136
137         /* Get FVT params to get Tmax; if not found, assume default */
138         hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
139         if (hdr) {
140                 struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
141                 tmax = fvt->maxtemp << 16;
142         } else
143                 tmax = 95 << 16;        /* default to 95 degrees C */
144
145         /* We keep a global tmax for overtemp calculations */
146         if (tmax < cpu_all_tmax)
147                 cpu_all_tmax = tmax;
148
149         kfree(hdr);
150
151         /* Get PID params from the appropriate SAT */
152         hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
153         if (hdr == NULL) {
154                 printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
155                 return -EINVAL;
156         }
157         piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
158
159         /*
160          * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
161          * 515 for the 2-way.  That appears to be overkill, so for now,
162          * impose a minimum of 750 or 515.
163          */
164         fmin = (nr_cores > 2) ? 750 : 515;
165
166         /* Initialize PID loop */
167         pid.interval = 1;       /* seconds */
168         pid.history_len = piddata->history_len;
169         pid.gd = piddata->gd;
170         pid.gp = piddata->gp;
171         pid.gr = piddata->gr / piddata->history_len;
172         pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
173         pid.ttarget = tmax - (piddata->target_temp_delta << 16);
174         pid.tmax = tmax;
175         pid.min = main_fan->ops->get_min(main_fan);
176         pid.max = main_fan->ops->get_max(main_fan);
177         if (pid.min < fmin)
178                 pid.min = fmin;
179
180         wf_cpu_pid_init(&cpu_pid[cpu], &pid);
181
182         kfree(hdr);
183
184         return 0;
185 }
186
187 static void cpu_max_all_fans(void)
188 {
189         int i;
190
191         /* We max all CPU fans in case of a sensor error. We also do the
192          * cpufreq clamping now, even if it's supposedly done later by the
193          * generic code anyway, we do it earlier here to react faster
194          */
195         if (cpufreq_clamp)
196                 wf_control_set_max(cpufreq_clamp);
197         for (i = 0; i < NR_CPU_FANS; ++i)
198                 if (cpu_fans[i])
199                         wf_control_set_max(cpu_fans[i]);
200 }
201
202 static int cpu_check_overtemp(s32 temp)
203 {
204         int new_state = 0;
205         s32 t_avg, t_old;
206
207         /* First check for immediate overtemps */
208         if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
209                 new_state |= FAILURE_LOW_OVERTEMP;
210                 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
211                         printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
212                                " temperature !\n");
213         }
214         if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
215                 new_state |= FAILURE_HIGH_OVERTEMP;
216                 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
217                         printk(KERN_ERR "windfarm: Critical overtemp due to"
218                                " immediate CPU temperature !\n");
219         }
220
221         /* We calculate a history of max temperatures and use that for the
222          * overtemp management
223          */
224         t_old = cpu_thist[cpu_thist_pt];
225         cpu_thist[cpu_thist_pt] = temp;
226         cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
227         cpu_thist_total -= t_old;
228         cpu_thist_total += temp;
229         t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
230
231         DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
232                  FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
233
234         /* Now check for average overtemps */
235         if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
236                 new_state |= FAILURE_LOW_OVERTEMP;
237                 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
238                         printk(KERN_ERR "windfarm: Overtemp due to average CPU"
239                                " temperature !\n");
240         }
241         if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
242                 new_state |= FAILURE_HIGH_OVERTEMP;
243                 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
244                         printk(KERN_ERR "windfarm: Critical overtemp due to"
245                                " average CPU temperature !\n");
246         }
247
248         /* Now handle overtemp conditions. We don't currently use the windfarm
249          * overtemp handling core as it's not fully suited to the needs of those
250          * new machine. This will be fixed later.
251          */
252         if (new_state) {
253                 /* High overtemp -> immediate shutdown */
254                 if (new_state & FAILURE_HIGH_OVERTEMP)
255                         machine_power_off();
256                 if ((failure_state & new_state) != new_state)
257                         cpu_max_all_fans();
258                 failure_state |= new_state;
259         } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
260                    (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
261                 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
262                 failure_state &= ~FAILURE_LOW_OVERTEMP;
263         }
264
265         return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
266 }
267
268 static void cpu_fans_tick(void)
269 {
270         int err, cpu;
271         s32 greatest_delta = 0;
272         s32 temp, power, t_max = 0;
273         int i, t, target = 0;
274         struct wf_sensor *sr;
275         struct wf_control *ct;
276         struct wf_cpu_pid_state *sp;
277
278         DBG_LOTS(KERN_DEBUG);
279         for (cpu = 0; cpu < nr_cores; ++cpu) {
280                 /* Get CPU core temperature */
281                 sr = sens_cpu_temp[cpu];
282                 err = sr->ops->get_value(sr, &temp);
283                 if (err) {
284                         DBG("\n");
285                         printk(KERN_WARNING "windfarm: CPU %d temperature "
286                                "sensor error %d\n", cpu, err);
287                         failure_state |= FAILURE_SENSOR;
288                         cpu_max_all_fans();
289                         return;
290                 }
291
292                 /* Keep track of highest temp */
293                 t_max = max(t_max, temp);
294
295                 /* Get CPU power */
296                 sr = sens_cpu_power[cpu];
297                 err = sr->ops->get_value(sr, &power);
298                 if (err) {
299                         DBG("\n");
300                         printk(KERN_WARNING "windfarm: CPU %d power "
301                                "sensor error %d\n", cpu, err);
302                         failure_state |= FAILURE_SENSOR;
303                         cpu_max_all_fans();
304                         return;
305                 }
306
307                 /* Run PID */
308                 sp = &cpu_pid[cpu];
309                 t = wf_cpu_pid_run(sp, power, temp);
310
311                 if (cpu == 0 || sp->last_delta > greatest_delta) {
312                         greatest_delta = sp->last_delta;
313                         target = t;
314                 }
315                 DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
316                     cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
317         }
318         DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
319
320         /* Darwin limits decrease to 20 per iteration */
321         if (target < (cpu_last_target - 20))
322                 target = cpu_last_target - 20;
323         cpu_last_target = target;
324         for (cpu = 0; cpu < nr_cores; ++cpu)
325                 cpu_pid[cpu].target = target;
326
327         /* Handle possible overtemps */
328         if (cpu_check_overtemp(t_max))
329                 return;
330
331         /* Set fans */
332         for (i = 0; i < NR_CPU_FANS; ++i) {
333                 ct = cpu_fans[i];
334                 if (ct == NULL)
335                         continue;
336                 err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
337                 if (err) {
338                         printk(KERN_WARNING "windfarm: fan %s reports "
339                                "error %d\n", ct->name, err);
340                         failure_state |= FAILURE_FAN;
341                         break;
342                 }
343         }
344 }
345
346 /* Backside/U4 fan */
347 static struct wf_pid_param backside_param = {
348         .interval       = 5,
349         .history_len    = 2,
350         .gd             = 48 << 20,
351         .gp             = 5 << 20,
352         .gr             = 0,
353         .itarget        = 64 << 16,
354         .additive       = 1,
355 };
356
357 static void backside_fan_tick(void)
358 {
359         s32 temp;
360         int speed;
361         int err;
362
363         if (!backside_fan || !u4_temp)
364                 return;
365         if (!backside_tick) {
366                 /* first time; initialize things */
367                 printk(KERN_INFO "windfarm: Backside control loop started.\n");
368                 backside_param.min = backside_fan->ops->get_min(backside_fan);
369                 backside_param.max = backside_fan->ops->get_max(backside_fan);
370                 wf_pid_init(&backside_pid, &backside_param);
371                 backside_tick = 1;
372         }
373         if (--backside_tick > 0)
374                 return;
375         backside_tick = backside_pid.param.interval;
376
377         err = u4_temp->ops->get_value(u4_temp, &temp);
378         if (err) {
379                 printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
380                        err);
381                 failure_state |= FAILURE_SENSOR;
382                 wf_control_set_max(backside_fan);
383                 return;
384         }
385         speed = wf_pid_run(&backside_pid, temp);
386         DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
387                  FIX32TOPRINT(temp), speed);
388
389         err = backside_fan->ops->set_value(backside_fan, speed);
390         if (err) {
391                 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
392                 failure_state |= FAILURE_FAN;
393         }
394 }
395
396 /* Drive bay fan */
397 static struct wf_pid_param drive_bay_prm = {
398         .interval       = 5,
399         .history_len    = 2,
400         .gd             = 30 << 20,
401         .gp             = 5 << 20,
402         .gr             = 0,
403         .itarget        = 40 << 16,
404         .additive       = 1,
405 };
406
407 static void drive_bay_fan_tick(void)
408 {
409         s32 temp;
410         int speed;
411         int err;
412
413         if (!drive_bay_fan || !hd_temp)
414                 return;
415         if (!drive_bay_tick) {
416                 /* first time; initialize things */
417                 printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
418                 drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
419                 drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
420                 wf_pid_init(&drive_bay_pid, &drive_bay_prm);
421                 drive_bay_tick = 1;
422         }
423         if (--drive_bay_tick > 0)
424                 return;
425         drive_bay_tick = drive_bay_pid.param.interval;
426
427         err = hd_temp->ops->get_value(hd_temp, &temp);
428         if (err) {
429                 printk(KERN_WARNING "windfarm: drive bay temp sensor "
430                        "error %d\n", err);
431                 failure_state |= FAILURE_SENSOR;
432                 wf_control_set_max(drive_bay_fan);
433                 return;
434         }
435         speed = wf_pid_run(&drive_bay_pid, temp);
436         DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
437                  FIX32TOPRINT(temp), speed);
438
439         err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
440         if (err) {
441                 printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
442                 failure_state |= FAILURE_FAN;
443         }
444 }
445
446 /* PCI slots area fan */
447 /* This makes the fan speed proportional to the power consumed */
448 static struct wf_pid_param slots_param = {
449         .interval       = 1,
450         .history_len    = 2,
451         .gd             = 0,
452         .gp             = 0,
453         .gr             = 0x1277952,
454         .itarget        = 0,
455         .min            = 1560,
456         .max            = 3510,
457 };
458
459 static void slots_fan_tick(void)
460 {
461         s32 power;
462         int speed;
463         int err;
464
465         if (!slots_fan || !slots_power)
466                 return;
467         if (!slots_started) {
468                 /* first time; initialize things */
469                 printk(KERN_INFO "windfarm: Slots control loop started.\n");
470                 wf_pid_init(&slots_pid, &slots_param);
471                 slots_started = true;
472         }
473
474         err = slots_power->ops->get_value(slots_power, &power);
475         if (err) {
476                 printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
477                        err);
478                 failure_state |= FAILURE_SENSOR;
479                 wf_control_set_max(slots_fan);
480                 return;
481         }
482         speed = wf_pid_run(&slots_pid, power);
483         DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
484                  FIX32TOPRINT(power), speed);
485
486         err = slots_fan->ops->set_value(slots_fan, speed);
487         if (err) {
488                 printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
489                 failure_state |= FAILURE_FAN;
490         }
491 }
492
493 static void set_fail_state(void)
494 {
495         int i;
496
497         if (cpufreq_clamp)
498                 wf_control_set_max(cpufreq_clamp);
499         for (i = 0; i < NR_CPU_FANS; ++i)
500                 if (cpu_fans[i])
501                         wf_control_set_max(cpu_fans[i]);
502         if (backside_fan)
503                 wf_control_set_max(backside_fan);
504         if (slots_fan)
505                 wf_control_set_max(slots_fan);
506         if (drive_bay_fan)
507                 wf_control_set_max(drive_bay_fan);
508 }
509
510 static void pm112_tick(void)
511 {
512         int i, last_failure;
513
514         if (!started) {
515                 started = true;
516                 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
517                 for (i = 0; i < nr_cores; ++i) {
518                         if (create_cpu_loop(i) < 0) {
519                                 failure_state = FAILURE_PERM;
520                                 set_fail_state();
521                                 break;
522                         }
523                 }
524                 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
525
526 #ifdef HACKED_OVERTEMP
527                 cpu_all_tmax = 60 << 16;
528 #endif
529         }
530
531         /* Permanent failure, bail out */
532         if (failure_state & FAILURE_PERM)
533                 return;
534         /* Clear all failure bits except low overtemp which will be eventually
535          * cleared by the control loop itself
536          */
537         last_failure = failure_state;
538         failure_state &= FAILURE_LOW_OVERTEMP;
539         cpu_fans_tick();
540         backside_fan_tick();
541         slots_fan_tick();
542         drive_bay_fan_tick();
543
544         DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
545                  last_failure, failure_state);
546
547         /* Check for failures. Any failure causes cpufreq clamping */
548         if (failure_state && last_failure == 0 && cpufreq_clamp)
549                 wf_control_set_max(cpufreq_clamp);
550         if (failure_state == 0 && last_failure && cpufreq_clamp)
551                 wf_control_set_min(cpufreq_clamp);
552
553         /* That's it for now, we might want to deal with other failures
554          * differently in the future though
555          */
556 }
557
558 static void pm112_new_control(struct wf_control *ct)
559 {
560         int i, max_exhaust;
561
562         if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
563                 if (wf_get_control(ct) == 0)
564                         cpufreq_clamp = ct;
565         }
566
567         for (i = 0; i < NR_CPU_FANS; ++i) {
568                 if (!strcmp(ct->name, cpu_fan_names[i])) {
569                         if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
570                                 cpu_fans[i] = ct;
571                         break;
572                 }
573         }
574         if (i >= NR_CPU_FANS) {
575                 /* not a CPU fan, try the others */
576                 if (!strcmp(ct->name, "backside-fan")) {
577                         if (backside_fan == NULL && wf_get_control(ct) == 0)
578                                 backside_fan = ct;
579                 } else if (!strcmp(ct->name, "slots-fan")) {
580                         if (slots_fan == NULL && wf_get_control(ct) == 0)
581                                 slots_fan = ct;
582                 } else if (!strcmp(ct->name, "drive-bay-fan")) {
583                         if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
584                                 drive_bay_fan = ct;
585                 }
586                 return;
587         }
588
589         for (i = 0; i < CPU_FANS_REQD; ++i)
590                 if (cpu_fans[i] == NULL)
591                         return;
592
593         /* work out pump scaling factors */
594         max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
595         for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
596                 if ((ct = cpu_fans[i]) != NULL)
597                         cpu_fan_scale[i] =
598                                 ct->ops->get_max(ct) * 100 / max_exhaust;
599
600         have_all_controls = 1;
601 }
602
603 static void pm112_new_sensor(struct wf_sensor *sr)
604 {
605         unsigned int i;
606
607         if (!strncmp(sr->name, "cpu-temp-", 9)) {
608                 i = sr->name[9] - '0';
609                 if (sr->name[10] == 0 && i < NR_CORES &&
610                     sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
611                         sens_cpu_temp[i] = sr;
612
613         } else if (!strncmp(sr->name, "cpu-power-", 10)) {
614                 i = sr->name[10] - '0';
615                 if (sr->name[11] == 0 && i < NR_CORES &&
616                     sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
617                         sens_cpu_power[i] = sr;
618         } else if (!strcmp(sr->name, "hd-temp")) {
619                 if (hd_temp == NULL && wf_get_sensor(sr) == 0)
620                         hd_temp = sr;
621         } else if (!strcmp(sr->name, "slots-power")) {
622                 if (slots_power == NULL && wf_get_sensor(sr) == 0)
623                         slots_power = sr;
624         } else if (!strcmp(sr->name, "backside-temp")) {
625                 if (u4_temp == NULL && wf_get_sensor(sr) == 0)
626                         u4_temp = sr;
627         } else
628                 return;
629
630         /* check if we have all the sensors we need */
631         for (i = 0; i < nr_cores; ++i)
632                 if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
633                         return;
634
635         have_all_sensors = 1;
636 }
637
638 static int pm112_wf_notify(struct notifier_block *self,
639                            unsigned long event, void *data)
640 {
641         switch (event) {
642         case WF_EVENT_NEW_SENSOR:
643                 pm112_new_sensor(data);
644                 break;
645         case WF_EVENT_NEW_CONTROL:
646                 pm112_new_control(data);
647                 break;
648         case WF_EVENT_TICK:
649                 if (have_all_controls && have_all_sensors)
650                         pm112_tick();
651         }
652         return 0;
653 }
654
655 static struct notifier_block pm112_events = {
656         .notifier_call = pm112_wf_notify,
657 };
658
659 static int wf_pm112_probe(struct platform_device *dev)
660 {
661         wf_register_client(&pm112_events);
662         return 0;
663 }
664
665 static void wf_pm112_remove(struct platform_device *dev)
666 {
667         wf_unregister_client(&pm112_events);
668 }
669
670 static struct platform_driver wf_pm112_driver = {
671         .probe = wf_pm112_probe,
672         .remove_new = wf_pm112_remove,
673         .driver = {
674                 .name = "windfarm",
675         },
676 };
677
678 static int __init wf_pm112_init(void)
679 {
680         struct device_node *cpu;
681
682         if (!of_machine_is_compatible("PowerMac11,2"))
683                 return -ENODEV;
684
685         /* Count the number of CPU cores */
686         nr_cores = 0;
687         for_each_node_by_type(cpu, "cpu")
688                 ++nr_cores;
689
690         printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
691
692 #ifdef MODULE
693         request_module("windfarm_smu_controls");
694         request_module("windfarm_smu_sensors");
695         request_module("windfarm_smu_sat");
696         request_module("windfarm_lm75_sensor");
697         request_module("windfarm_max6690_sensor");
698         request_module("windfarm_cpufreq_clamp");
699
700 #endif /* MODULE */
701
702         platform_driver_register(&wf_pm112_driver);
703         return 0;
704 }
705
706 static void __exit wf_pm112_exit(void)
707 {
708         platform_driver_unregister(&wf_pm112_driver);
709 }
710
711 module_init(wf_pm112_init);
712 module_exit(wf_pm112_exit);
713
714 MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
715 MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
716 MODULE_LICENSE("GPL");
717 MODULE_ALIAS("platform:windfarm");