Merge tag 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rdma/rdma
[sfrench/cifs-2.6.git] / drivers / infiniband / hw / hfi1 / init.c
1 /*
2  * Copyright(c) 2015 - 2020 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/pci.h>
49 #include <linux/netdevice.h>
50 #include <linux/vmalloc.h>
51 #include <linux/delay.h>
52 #include <linux/xarray.h>
53 #include <linux/module.h>
54 #include <linux/printk.h>
55 #include <linux/hrtimer.h>
56 #include <linux/bitmap.h>
57 #include <linux/numa.h>
58 #include <rdma/rdma_vt.h>
59
60 #include "hfi.h"
61 #include "device.h"
62 #include "common.h"
63 #include "trace.h"
64 #include "mad.h"
65 #include "sdma.h"
66 #include "debugfs.h"
67 #include "verbs.h"
68 #include "aspm.h"
69 #include "affinity.h"
70 #include "vnic.h"
71 #include "exp_rcv.h"
72 #include "netdev.h"
73
74 #undef pr_fmt
75 #define pr_fmt(fmt) DRIVER_NAME ": " fmt
76
77 /*
78  * min buffers we want to have per context, after driver
79  */
80 #define HFI1_MIN_USER_CTXT_BUFCNT 7
81
82 #define HFI1_MIN_EAGER_BUFFER_SIZE (4 * 1024) /* 4KB */
83 #define HFI1_MAX_EAGER_BUFFER_SIZE (256 * 1024) /* 256KB */
84
85 #define NUM_IB_PORTS 1
86
87 /*
88  * Number of user receive contexts we are configured to use (to allow for more
89  * pio buffers per ctxt, etc.)  Zero means use one user context per CPU.
90  */
91 int num_user_contexts = -1;
92 module_param_named(num_user_contexts, num_user_contexts, int, 0444);
93 MODULE_PARM_DESC(
94         num_user_contexts, "Set max number of user contexts to use (default: -1 will use the real (non-HT) CPU count)");
95
96 uint krcvqs[RXE_NUM_DATA_VL];
97 int krcvqsset;
98 module_param_array(krcvqs, uint, &krcvqsset, S_IRUGO);
99 MODULE_PARM_DESC(krcvqs, "Array of the number of non-control kernel receive queues by VL");
100
101 /* computed based on above array */
102 unsigned long n_krcvqs;
103
104 static unsigned hfi1_rcvarr_split = 25;
105 module_param_named(rcvarr_split, hfi1_rcvarr_split, uint, S_IRUGO);
106 MODULE_PARM_DESC(rcvarr_split, "Percent of context's RcvArray entries used for Eager buffers");
107
108 static uint eager_buffer_size = (8 << 20); /* 8MB */
109 module_param(eager_buffer_size, uint, S_IRUGO);
110 MODULE_PARM_DESC(eager_buffer_size, "Size of the eager buffers, default: 8MB");
111
112 static uint rcvhdrcnt = 2048; /* 2x the max eager buffer count */
113 module_param_named(rcvhdrcnt, rcvhdrcnt, uint, S_IRUGO);
114 MODULE_PARM_DESC(rcvhdrcnt, "Receive header queue count (default 2048)");
115
116 static uint hfi1_hdrq_entsize = 32;
117 module_param_named(hdrq_entsize, hfi1_hdrq_entsize, uint, 0444);
118 MODULE_PARM_DESC(hdrq_entsize, "Size of header queue entries: 2 - 8B, 16 - 64B, 32 - 128B (default)");
119
120 unsigned int user_credit_return_threshold = 33; /* default is 33% */
121 module_param(user_credit_return_threshold, uint, S_IRUGO);
122 MODULE_PARM_DESC(user_credit_return_threshold, "Credit return threshold for user send contexts, return when unreturned credits passes this many blocks (in percent of allocated blocks, 0 is off)");
123
124 DEFINE_XARRAY_FLAGS(hfi1_dev_table, XA_FLAGS_ALLOC | XA_FLAGS_LOCK_IRQ);
125
126 static int hfi1_create_kctxt(struct hfi1_devdata *dd,
127                              struct hfi1_pportdata *ppd)
128 {
129         struct hfi1_ctxtdata *rcd;
130         int ret;
131
132         /* Control context has to be always 0 */
133         BUILD_BUG_ON(HFI1_CTRL_CTXT != 0);
134
135         ret = hfi1_create_ctxtdata(ppd, dd->node, &rcd);
136         if (ret < 0) {
137                 dd_dev_err(dd, "Kernel receive context allocation failed\n");
138                 return ret;
139         }
140
141         /*
142          * Set up the kernel context flags here and now because they use
143          * default values for all receive side memories.  User contexts will
144          * be handled as they are created.
145          */
146         rcd->flags = HFI1_CAP_KGET(MULTI_PKT_EGR) |
147                 HFI1_CAP_KGET(NODROP_RHQ_FULL) |
148                 HFI1_CAP_KGET(NODROP_EGR_FULL) |
149                 HFI1_CAP_KGET(DMA_RTAIL);
150
151         /* Control context must use DMA_RTAIL */
152         if (rcd->ctxt == HFI1_CTRL_CTXT)
153                 rcd->flags |= HFI1_CAP_DMA_RTAIL;
154         rcd->fast_handler = get_dma_rtail_setting(rcd) ?
155                                 handle_receive_interrupt_dma_rtail :
156                                 handle_receive_interrupt_nodma_rtail;
157         rcd->slow_handler = handle_receive_interrupt;
158
159         hfi1_set_seq_cnt(rcd, 1);
160
161         rcd->sc = sc_alloc(dd, SC_ACK, rcd->rcvhdrqentsize, dd->node);
162         if (!rcd->sc) {
163                 dd_dev_err(dd, "Kernel send context allocation failed\n");
164                 return -ENOMEM;
165         }
166         hfi1_init_ctxt(rcd->sc);
167
168         return 0;
169 }
170
171 /*
172  * Create the receive context array and one or more kernel contexts
173  */
174 int hfi1_create_kctxts(struct hfi1_devdata *dd)
175 {
176         u16 i;
177         int ret;
178
179         dd->rcd = kcalloc_node(dd->num_rcv_contexts, sizeof(*dd->rcd),
180                                GFP_KERNEL, dd->node);
181         if (!dd->rcd)
182                 return -ENOMEM;
183
184         for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
185                 ret = hfi1_create_kctxt(dd, dd->pport);
186                 if (ret)
187                         goto bail;
188         }
189
190         return 0;
191 bail:
192         for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i)
193                 hfi1_free_ctxt(dd->rcd[i]);
194
195         /* All the contexts should be freed, free the array */
196         kfree(dd->rcd);
197         dd->rcd = NULL;
198         return ret;
199 }
200
201 /*
202  * Helper routines for the receive context reference count (rcd and uctxt).
203  */
204 static void hfi1_rcd_init(struct hfi1_ctxtdata *rcd)
205 {
206         kref_init(&rcd->kref);
207 }
208
209 /**
210  * hfi1_rcd_free - When reference is zero clean up.
211  * @kref: pointer to an initialized rcd data structure
212  *
213  */
214 static void hfi1_rcd_free(struct kref *kref)
215 {
216         unsigned long flags;
217         struct hfi1_ctxtdata *rcd =
218                 container_of(kref, struct hfi1_ctxtdata, kref);
219
220         spin_lock_irqsave(&rcd->dd->uctxt_lock, flags);
221         rcd->dd->rcd[rcd->ctxt] = NULL;
222         spin_unlock_irqrestore(&rcd->dd->uctxt_lock, flags);
223
224         hfi1_free_ctxtdata(rcd->dd, rcd);
225
226         kfree(rcd);
227 }
228
229 /**
230  * hfi1_rcd_put - decrement reference for rcd
231  * @rcd: pointer to an initialized rcd data structure
232  *
233  * Use this to put a reference after the init.
234  */
235 int hfi1_rcd_put(struct hfi1_ctxtdata *rcd)
236 {
237         if (rcd)
238                 return kref_put(&rcd->kref, hfi1_rcd_free);
239
240         return 0;
241 }
242
243 /**
244  * hfi1_rcd_get - increment reference for rcd
245  * @rcd: pointer to an initialized rcd data structure
246  *
247  * Use this to get a reference after the init.
248  *
249  * Return : reflect kref_get_unless_zero(), which returns non-zero on
250  * increment, otherwise 0.
251  */
252 int hfi1_rcd_get(struct hfi1_ctxtdata *rcd)
253 {
254         return kref_get_unless_zero(&rcd->kref);
255 }
256
257 /**
258  * allocate_rcd_index - allocate an rcd index from the rcd array
259  * @dd: pointer to a valid devdata structure
260  * @rcd: rcd data structure to assign
261  * @index: pointer to index that is allocated
262  *
263  * Find an empty index in the rcd array, and assign the given rcd to it.
264  * If the array is full, we are EBUSY.
265  *
266  */
267 static int allocate_rcd_index(struct hfi1_devdata *dd,
268                               struct hfi1_ctxtdata *rcd, u16 *index)
269 {
270         unsigned long flags;
271         u16 ctxt;
272
273         spin_lock_irqsave(&dd->uctxt_lock, flags);
274         for (ctxt = 0; ctxt < dd->num_rcv_contexts; ctxt++)
275                 if (!dd->rcd[ctxt])
276                         break;
277
278         if (ctxt < dd->num_rcv_contexts) {
279                 rcd->ctxt = ctxt;
280                 dd->rcd[ctxt] = rcd;
281                 hfi1_rcd_init(rcd);
282         }
283         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
284
285         if (ctxt >= dd->num_rcv_contexts)
286                 return -EBUSY;
287
288         *index = ctxt;
289
290         return 0;
291 }
292
293 /**
294  * hfi1_rcd_get_by_index_safe - validate the ctxt index before accessing the
295  * array
296  * @dd: pointer to a valid devdata structure
297  * @ctxt: the index of an possilbe rcd
298  *
299  * This is a wrapper for hfi1_rcd_get_by_index() to validate that the given
300  * ctxt index is valid.
301  *
302  * The caller is responsible for making the _put().
303  *
304  */
305 struct hfi1_ctxtdata *hfi1_rcd_get_by_index_safe(struct hfi1_devdata *dd,
306                                                  u16 ctxt)
307 {
308         if (ctxt < dd->num_rcv_contexts)
309                 return hfi1_rcd_get_by_index(dd, ctxt);
310
311         return NULL;
312 }
313
314 /**
315  * hfi1_rcd_get_by_index
316  * @dd: pointer to a valid devdata structure
317  * @ctxt: the index of an possilbe rcd
318  *
319  * We need to protect access to the rcd array.  If access is needed to
320  * one or more index, get the protecting spinlock and then increment the
321  * kref.
322  *
323  * The caller is responsible for making the _put().
324  *
325  */
326 struct hfi1_ctxtdata *hfi1_rcd_get_by_index(struct hfi1_devdata *dd, u16 ctxt)
327 {
328         unsigned long flags;
329         struct hfi1_ctxtdata *rcd = NULL;
330
331         spin_lock_irqsave(&dd->uctxt_lock, flags);
332         if (dd->rcd[ctxt]) {
333                 rcd = dd->rcd[ctxt];
334                 if (!hfi1_rcd_get(rcd))
335                         rcd = NULL;
336         }
337         spin_unlock_irqrestore(&dd->uctxt_lock, flags);
338
339         return rcd;
340 }
341
342 /*
343  * Common code for user and kernel context create and setup.
344  * NOTE: the initial kref is done here (hf1_rcd_init()).
345  */
346 int hfi1_create_ctxtdata(struct hfi1_pportdata *ppd, int numa,
347                          struct hfi1_ctxtdata **context)
348 {
349         struct hfi1_devdata *dd = ppd->dd;
350         struct hfi1_ctxtdata *rcd;
351         unsigned kctxt_ngroups = 0;
352         u32 base;
353
354         if (dd->rcv_entries.nctxt_extra >
355             dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt)
356                 kctxt_ngroups = (dd->rcv_entries.nctxt_extra -
357                          (dd->num_rcv_contexts - dd->first_dyn_alloc_ctxt));
358         rcd = kzalloc_node(sizeof(*rcd), GFP_KERNEL, numa);
359         if (rcd) {
360                 u32 rcvtids, max_entries;
361                 u16 ctxt;
362                 int ret;
363
364                 ret = allocate_rcd_index(dd, rcd, &ctxt);
365                 if (ret) {
366                         *context = NULL;
367                         kfree(rcd);
368                         return ret;
369                 }
370
371                 INIT_LIST_HEAD(&rcd->qp_wait_list);
372                 hfi1_exp_tid_group_init(rcd);
373                 rcd->ppd = ppd;
374                 rcd->dd = dd;
375                 rcd->numa_id = numa;
376                 rcd->rcv_array_groups = dd->rcv_entries.ngroups;
377                 rcd->rhf_rcv_function_map = normal_rhf_rcv_functions;
378                 rcd->msix_intr = CCE_NUM_MSIX_VECTORS;
379
380                 mutex_init(&rcd->exp_mutex);
381                 spin_lock_init(&rcd->exp_lock);
382                 INIT_LIST_HEAD(&rcd->flow_queue.queue_head);
383                 INIT_LIST_HEAD(&rcd->rarr_queue.queue_head);
384
385                 hfi1_cdbg(PROC, "setting up context %u\n", rcd->ctxt);
386
387                 /*
388                  * Calculate the context's RcvArray entry starting point.
389                  * We do this here because we have to take into account all
390                  * the RcvArray entries that previous context would have
391                  * taken and we have to account for any extra groups assigned
392                  * to the static (kernel) or dynamic (vnic/user) contexts.
393                  */
394                 if (ctxt < dd->first_dyn_alloc_ctxt) {
395                         if (ctxt < kctxt_ngroups) {
396                                 base = ctxt * (dd->rcv_entries.ngroups + 1);
397                                 rcd->rcv_array_groups++;
398                         } else {
399                                 base = kctxt_ngroups +
400                                         (ctxt * dd->rcv_entries.ngroups);
401                         }
402                 } else {
403                         u16 ct = ctxt - dd->first_dyn_alloc_ctxt;
404
405                         base = ((dd->n_krcv_queues * dd->rcv_entries.ngroups) +
406                                 kctxt_ngroups);
407                         if (ct < dd->rcv_entries.nctxt_extra) {
408                                 base += ct * (dd->rcv_entries.ngroups + 1);
409                                 rcd->rcv_array_groups++;
410                         } else {
411                                 base += dd->rcv_entries.nctxt_extra +
412                                         (ct * dd->rcv_entries.ngroups);
413                         }
414                 }
415                 rcd->eager_base = base * dd->rcv_entries.group_size;
416
417                 rcd->rcvhdrq_cnt = rcvhdrcnt;
418                 rcd->rcvhdrqentsize = hfi1_hdrq_entsize;
419                 rcd->rhf_offset =
420                         rcd->rcvhdrqentsize - sizeof(u64) / sizeof(u32);
421                 /*
422                  * Simple Eager buffer allocation: we have already pre-allocated
423                  * the number of RcvArray entry groups. Each ctxtdata structure
424                  * holds the number of groups for that context.
425                  *
426                  * To follow CSR requirements and maintain cacheline alignment,
427                  * make sure all sizes and bases are multiples of group_size.
428                  *
429                  * The expected entry count is what is left after assigning
430                  * eager.
431                  */
432                 max_entries = rcd->rcv_array_groups *
433                         dd->rcv_entries.group_size;
434                 rcvtids = ((max_entries * hfi1_rcvarr_split) / 100);
435                 rcd->egrbufs.count = round_down(rcvtids,
436                                                 dd->rcv_entries.group_size);
437                 if (rcd->egrbufs.count > MAX_EAGER_ENTRIES) {
438                         dd_dev_err(dd, "ctxt%u: requested too many RcvArray entries.\n",
439                                    rcd->ctxt);
440                         rcd->egrbufs.count = MAX_EAGER_ENTRIES;
441                 }
442                 hfi1_cdbg(PROC,
443                           "ctxt%u: max Eager buffer RcvArray entries: %u\n",
444                           rcd->ctxt, rcd->egrbufs.count);
445
446                 /*
447                  * Allocate array that will hold the eager buffer accounting
448                  * data.
449                  * This will allocate the maximum possible buffer count based
450                  * on the value of the RcvArray split parameter.
451                  * The resulting value will be rounded down to the closest
452                  * multiple of dd->rcv_entries.group_size.
453                  */
454                 rcd->egrbufs.buffers =
455                         kcalloc_node(rcd->egrbufs.count,
456                                      sizeof(*rcd->egrbufs.buffers),
457                                      GFP_KERNEL, numa);
458                 if (!rcd->egrbufs.buffers)
459                         goto bail;
460                 rcd->egrbufs.rcvtids =
461                         kcalloc_node(rcd->egrbufs.count,
462                                      sizeof(*rcd->egrbufs.rcvtids),
463                                      GFP_KERNEL, numa);
464                 if (!rcd->egrbufs.rcvtids)
465                         goto bail;
466                 rcd->egrbufs.size = eager_buffer_size;
467                 /*
468                  * The size of the buffers programmed into the RcvArray
469                  * entries needs to be big enough to handle the highest
470                  * MTU supported.
471                  */
472                 if (rcd->egrbufs.size < hfi1_max_mtu) {
473                         rcd->egrbufs.size = __roundup_pow_of_two(hfi1_max_mtu);
474                         hfi1_cdbg(PROC,
475                                   "ctxt%u: eager bufs size too small. Adjusting to %u\n",
476                                     rcd->ctxt, rcd->egrbufs.size);
477                 }
478                 rcd->egrbufs.rcvtid_size = HFI1_MAX_EAGER_BUFFER_SIZE;
479
480                 /* Applicable only for statically created kernel contexts */
481                 if (ctxt < dd->first_dyn_alloc_ctxt) {
482                         rcd->opstats = kzalloc_node(sizeof(*rcd->opstats),
483                                                     GFP_KERNEL, numa);
484                         if (!rcd->opstats)
485                                 goto bail;
486
487                         /* Initialize TID flow generations for the context */
488                         hfi1_kern_init_ctxt_generations(rcd);
489                 }
490
491                 *context = rcd;
492                 return 0;
493         }
494
495 bail:
496         *context = NULL;
497         hfi1_free_ctxt(rcd);
498         return -ENOMEM;
499 }
500
501 /**
502  * hfi1_free_ctxt
503  * @rcd: pointer to an initialized rcd data structure
504  *
505  * This wrapper is the free function that matches hfi1_create_ctxtdata().
506  * When a context is done being used (kernel or user), this function is called
507  * for the "final" put to match the kref init from hf1i_create_ctxtdata().
508  * Other users of the context do a get/put sequence to make sure that the
509  * structure isn't removed while in use.
510  */
511 void hfi1_free_ctxt(struct hfi1_ctxtdata *rcd)
512 {
513         hfi1_rcd_put(rcd);
514 }
515
516 /*
517  * Select the largest ccti value over all SLs to determine the intra-
518  * packet gap for the link.
519  *
520  * called with cca_timer_lock held (to protect access to cca_timer
521  * array), and rcu_read_lock() (to protect access to cc_state).
522  */
523 void set_link_ipg(struct hfi1_pportdata *ppd)
524 {
525         struct hfi1_devdata *dd = ppd->dd;
526         struct cc_state *cc_state;
527         int i;
528         u16 cce, ccti_limit, max_ccti = 0;
529         u16 shift, mult;
530         u64 src;
531         u32 current_egress_rate; /* Mbits /sec */
532         u32 max_pkt_time;
533         /*
534          * max_pkt_time is the maximum packet egress time in units
535          * of the fabric clock period 1/(805 MHz).
536          */
537
538         cc_state = get_cc_state(ppd);
539
540         if (!cc_state)
541                 /*
542                  * This should _never_ happen - rcu_read_lock() is held,
543                  * and set_link_ipg() should not be called if cc_state
544                  * is NULL.
545                  */
546                 return;
547
548         for (i = 0; i < OPA_MAX_SLS; i++) {
549                 u16 ccti = ppd->cca_timer[i].ccti;
550
551                 if (ccti > max_ccti)
552                         max_ccti = ccti;
553         }
554
555         ccti_limit = cc_state->cct.ccti_limit;
556         if (max_ccti > ccti_limit)
557                 max_ccti = ccti_limit;
558
559         cce = cc_state->cct.entries[max_ccti].entry;
560         shift = (cce & 0xc000) >> 14;
561         mult = (cce & 0x3fff);
562
563         current_egress_rate = active_egress_rate(ppd);
564
565         max_pkt_time = egress_cycles(ppd->ibmaxlen, current_egress_rate);
566
567         src = (max_pkt_time >> shift) * mult;
568
569         src &= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SMASK;
570         src <<= SEND_STATIC_RATE_CONTROL_CSR_SRC_RELOAD_SHIFT;
571
572         write_csr(dd, SEND_STATIC_RATE_CONTROL, src);
573 }
574
575 static enum hrtimer_restart cca_timer_fn(struct hrtimer *t)
576 {
577         struct cca_timer *cca_timer;
578         struct hfi1_pportdata *ppd;
579         int sl;
580         u16 ccti_timer, ccti_min;
581         struct cc_state *cc_state;
582         unsigned long flags;
583         enum hrtimer_restart ret = HRTIMER_NORESTART;
584
585         cca_timer = container_of(t, struct cca_timer, hrtimer);
586         ppd = cca_timer->ppd;
587         sl = cca_timer->sl;
588
589         rcu_read_lock();
590
591         cc_state = get_cc_state(ppd);
592
593         if (!cc_state) {
594                 rcu_read_unlock();
595                 return HRTIMER_NORESTART;
596         }
597
598         /*
599          * 1) decrement ccti for SL
600          * 2) calculate IPG for link (set_link_ipg())
601          * 3) restart timer, unless ccti is at min value
602          */
603
604         ccti_min = cc_state->cong_setting.entries[sl].ccti_min;
605         ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer;
606
607         spin_lock_irqsave(&ppd->cca_timer_lock, flags);
608
609         if (cca_timer->ccti > ccti_min) {
610                 cca_timer->ccti--;
611                 set_link_ipg(ppd);
612         }
613
614         if (cca_timer->ccti > ccti_min) {
615                 unsigned long nsec = 1024 * ccti_timer;
616                 /* ccti_timer is in units of 1.024 usec */
617                 hrtimer_forward_now(t, ns_to_ktime(nsec));
618                 ret = HRTIMER_RESTART;
619         }
620
621         spin_unlock_irqrestore(&ppd->cca_timer_lock, flags);
622         rcu_read_unlock();
623         return ret;
624 }
625
626 /*
627  * Common code for initializing the physical port structure.
628  */
629 void hfi1_init_pportdata(struct pci_dev *pdev, struct hfi1_pportdata *ppd,
630                          struct hfi1_devdata *dd, u8 hw_pidx, u32 port)
631 {
632         int i;
633         uint default_pkey_idx;
634         struct cc_state *cc_state;
635
636         ppd->dd = dd;
637         ppd->hw_pidx = hw_pidx;
638         ppd->port = port; /* IB port number, not index */
639         ppd->prev_link_width = LINK_WIDTH_DEFAULT;
640         /*
641          * There are C_VL_COUNT number of PortVLXmitWait counters.
642          * Adding 1 to C_VL_COUNT to include the PortXmitWait counter.
643          */
644         for (i = 0; i < C_VL_COUNT + 1; i++) {
645                 ppd->port_vl_xmit_wait_last[i] = 0;
646                 ppd->vl_xmit_flit_cnt[i] = 0;
647         }
648
649         default_pkey_idx = 1;
650
651         ppd->pkeys[default_pkey_idx] = DEFAULT_P_KEY;
652         ppd->part_enforce |= HFI1_PART_ENFORCE_IN;
653
654         if (loopback) {
655                 dd_dev_err(dd, "Faking data partition 0x8001 in idx %u\n",
656                            !default_pkey_idx);
657                 ppd->pkeys[!default_pkey_idx] = 0x8001;
658         }
659
660         INIT_WORK(&ppd->link_vc_work, handle_verify_cap);
661         INIT_WORK(&ppd->link_up_work, handle_link_up);
662         INIT_WORK(&ppd->link_down_work, handle_link_down);
663         INIT_WORK(&ppd->freeze_work, handle_freeze);
664         INIT_WORK(&ppd->link_downgrade_work, handle_link_downgrade);
665         INIT_WORK(&ppd->sma_message_work, handle_sma_message);
666         INIT_WORK(&ppd->link_bounce_work, handle_link_bounce);
667         INIT_DELAYED_WORK(&ppd->start_link_work, handle_start_link);
668         INIT_WORK(&ppd->linkstate_active_work, receive_interrupt_work);
669         INIT_WORK(&ppd->qsfp_info.qsfp_work, qsfp_event);
670
671         mutex_init(&ppd->hls_lock);
672         spin_lock_init(&ppd->qsfp_info.qsfp_lock);
673
674         ppd->qsfp_info.ppd = ppd;
675         ppd->sm_trap_qp = 0x0;
676         ppd->sa_qp = 0x1;
677
678         ppd->hfi1_wq = NULL;
679
680         spin_lock_init(&ppd->cca_timer_lock);
681
682         for (i = 0; i < OPA_MAX_SLS; i++) {
683                 hrtimer_init(&ppd->cca_timer[i].hrtimer, CLOCK_MONOTONIC,
684                              HRTIMER_MODE_REL);
685                 ppd->cca_timer[i].ppd = ppd;
686                 ppd->cca_timer[i].sl = i;
687                 ppd->cca_timer[i].ccti = 0;
688                 ppd->cca_timer[i].hrtimer.function = cca_timer_fn;
689         }
690
691         ppd->cc_max_table_entries = IB_CC_TABLE_CAP_DEFAULT;
692
693         spin_lock_init(&ppd->cc_state_lock);
694         spin_lock_init(&ppd->cc_log_lock);
695         cc_state = kzalloc(sizeof(*cc_state), GFP_KERNEL);
696         RCU_INIT_POINTER(ppd->cc_state, cc_state);
697         if (!cc_state)
698                 goto bail;
699         return;
700
701 bail:
702         dd_dev_err(dd, "Congestion Control Agent disabled for port %d\n", port);
703 }
704
705 /*
706  * Do initialization for device that is only needed on
707  * first detect, not on resets.
708  */
709 static int loadtime_init(struct hfi1_devdata *dd)
710 {
711         return 0;
712 }
713
714 /**
715  * init_after_reset - re-initialize after a reset
716  * @dd: the hfi1_ib device
717  *
718  * sanity check at least some of the values after reset, and
719  * ensure no receive or transmit (explicitly, in case reset
720  * failed
721  */
722 static int init_after_reset(struct hfi1_devdata *dd)
723 {
724         int i;
725         struct hfi1_ctxtdata *rcd;
726         /*
727          * Ensure chip does no sends or receives, tail updates, or
728          * pioavail updates while we re-initialize.  This is mostly
729          * for the driver data structures, not chip registers.
730          */
731         for (i = 0; i < dd->num_rcv_contexts; i++) {
732                 rcd = hfi1_rcd_get_by_index(dd, i);
733                 hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
734                              HFI1_RCVCTRL_INTRAVAIL_DIS |
735                              HFI1_RCVCTRL_TAILUPD_DIS, rcd);
736                 hfi1_rcd_put(rcd);
737         }
738         pio_send_control(dd, PSC_GLOBAL_DISABLE);
739         for (i = 0; i < dd->num_send_contexts; i++)
740                 sc_disable(dd->send_contexts[i].sc);
741
742         return 0;
743 }
744
745 static void enable_chip(struct hfi1_devdata *dd)
746 {
747         struct hfi1_ctxtdata *rcd;
748         u32 rcvmask;
749         u16 i;
750
751         /* enable PIO send */
752         pio_send_control(dd, PSC_GLOBAL_ENABLE);
753
754         /*
755          * Enable kernel ctxts' receive and receive interrupt.
756          * Other ctxts done as user opens and initializes them.
757          */
758         for (i = 0; i < dd->first_dyn_alloc_ctxt; ++i) {
759                 rcd = hfi1_rcd_get_by_index(dd, i);
760                 if (!rcd)
761                         continue;
762                 rcvmask = HFI1_RCVCTRL_CTXT_ENB | HFI1_RCVCTRL_INTRAVAIL_ENB;
763                 rcvmask |= HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ?
764                         HFI1_RCVCTRL_TAILUPD_ENB : HFI1_RCVCTRL_TAILUPD_DIS;
765                 if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
766                         rcvmask |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
767                 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_RHQ_FULL))
768                         rcvmask |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
769                 if (HFI1_CAP_KGET_MASK(rcd->flags, NODROP_EGR_FULL))
770                         rcvmask |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
771                 if (HFI1_CAP_IS_KSET(TID_RDMA))
772                         rcvmask |= HFI1_RCVCTRL_TIDFLOW_ENB;
773                 hfi1_rcvctrl(dd, rcvmask, rcd);
774                 sc_enable(rcd->sc);
775                 hfi1_rcd_put(rcd);
776         }
777 }
778
779 /**
780  * create_workqueues - create per port workqueues
781  * @dd: the hfi1_ib device
782  */
783 static int create_workqueues(struct hfi1_devdata *dd)
784 {
785         int pidx;
786         struct hfi1_pportdata *ppd;
787
788         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
789                 ppd = dd->pport + pidx;
790                 if (!ppd->hfi1_wq) {
791                         ppd->hfi1_wq =
792                                 alloc_workqueue(
793                                     "hfi%d_%d",
794                                     WQ_SYSFS | WQ_HIGHPRI | WQ_CPU_INTENSIVE |
795                                     WQ_MEM_RECLAIM,
796                                     HFI1_MAX_ACTIVE_WORKQUEUE_ENTRIES,
797                                     dd->unit, pidx);
798                         if (!ppd->hfi1_wq)
799                                 goto wq_error;
800                 }
801                 if (!ppd->link_wq) {
802                         /*
803                          * Make the link workqueue single-threaded to enforce
804                          * serialization.
805                          */
806                         ppd->link_wq =
807                                 alloc_workqueue(
808                                     "hfi_link_%d_%d",
809                                     WQ_SYSFS | WQ_MEM_RECLAIM | WQ_UNBOUND,
810                                     1, /* max_active */
811                                     dd->unit, pidx);
812                         if (!ppd->link_wq)
813                                 goto wq_error;
814                 }
815         }
816         return 0;
817 wq_error:
818         pr_err("alloc_workqueue failed for port %d\n", pidx + 1);
819         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
820                 ppd = dd->pport + pidx;
821                 if (ppd->hfi1_wq) {
822                         destroy_workqueue(ppd->hfi1_wq);
823                         ppd->hfi1_wq = NULL;
824                 }
825                 if (ppd->link_wq) {
826                         destroy_workqueue(ppd->link_wq);
827                         ppd->link_wq = NULL;
828                 }
829         }
830         return -ENOMEM;
831 }
832
833 /**
834  * destroy_workqueues - destroy per port workqueues
835  * @dd: the hfi1_ib device
836  */
837 static void destroy_workqueues(struct hfi1_devdata *dd)
838 {
839         int pidx;
840         struct hfi1_pportdata *ppd;
841
842         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
843                 ppd = dd->pport + pidx;
844
845                 if (ppd->hfi1_wq) {
846                         destroy_workqueue(ppd->hfi1_wq);
847                         ppd->hfi1_wq = NULL;
848                 }
849                 if (ppd->link_wq) {
850                         destroy_workqueue(ppd->link_wq);
851                         ppd->link_wq = NULL;
852                 }
853         }
854 }
855
856 /**
857  * enable_general_intr() - Enable the IRQs that will be handled by the
858  * general interrupt handler.
859  * @dd: valid devdata
860  *
861  */
862 static void enable_general_intr(struct hfi1_devdata *dd)
863 {
864         set_intr_bits(dd, CCE_ERR_INT, MISC_ERR_INT, true);
865         set_intr_bits(dd, PIO_ERR_INT, TXE_ERR_INT, true);
866         set_intr_bits(dd, IS_SENDCTXT_ERR_START, IS_SENDCTXT_ERR_END, true);
867         set_intr_bits(dd, PBC_INT, GPIO_ASSERT_INT, true);
868         set_intr_bits(dd, TCRIT_INT, TCRIT_INT, true);
869         set_intr_bits(dd, IS_DC_START, IS_DC_END, true);
870         set_intr_bits(dd, IS_SENDCREDIT_START, IS_SENDCREDIT_END, true);
871 }
872
873 /**
874  * hfi1_init - do the actual initialization sequence on the chip
875  * @dd: the hfi1_ib device
876  * @reinit: re-initializing, so don't allocate new memory
877  *
878  * Do the actual initialization sequence on the chip.  This is done
879  * both from the init routine called from the PCI infrastructure, and
880  * when we reset the chip, or detect that it was reset internally,
881  * or it's administratively re-enabled.
882  *
883  * Memory allocation here and in called routines is only done in
884  * the first case (reinit == 0).  We have to be careful, because even
885  * without memory allocation, we need to re-write all the chip registers
886  * TIDs, etc. after the reset or enable has completed.
887  */
888 int hfi1_init(struct hfi1_devdata *dd, int reinit)
889 {
890         int ret = 0, pidx, lastfail = 0;
891         unsigned long len;
892         u16 i;
893         struct hfi1_ctxtdata *rcd;
894         struct hfi1_pportdata *ppd;
895
896         /* Set up send low level handlers */
897         dd->process_pio_send = hfi1_verbs_send_pio;
898         dd->process_dma_send = hfi1_verbs_send_dma;
899         dd->pio_inline_send = pio_copy;
900         dd->process_vnic_dma_send = hfi1_vnic_send_dma;
901
902         if (is_ax(dd)) {
903                 atomic_set(&dd->drop_packet, DROP_PACKET_ON);
904                 dd->do_drop = true;
905         } else {
906                 atomic_set(&dd->drop_packet, DROP_PACKET_OFF);
907                 dd->do_drop = false;
908         }
909
910         /* make sure the link is not "up" */
911         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
912                 ppd = dd->pport + pidx;
913                 ppd->linkup = 0;
914         }
915
916         if (reinit)
917                 ret = init_after_reset(dd);
918         else
919                 ret = loadtime_init(dd);
920         if (ret)
921                 goto done;
922
923         /* allocate dummy tail memory for all receive contexts */
924         dd->rcvhdrtail_dummy_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
925                                                          sizeof(u64),
926                                                          &dd->rcvhdrtail_dummy_dma,
927                                                          GFP_KERNEL);
928
929         if (!dd->rcvhdrtail_dummy_kvaddr) {
930                 dd_dev_err(dd, "cannot allocate dummy tail memory\n");
931                 ret = -ENOMEM;
932                 goto done;
933         }
934
935         /* dd->rcd can be NULL if early initialization failed */
936         for (i = 0; dd->rcd && i < dd->first_dyn_alloc_ctxt; ++i) {
937                 /*
938                  * Set up the (kernel) rcvhdr queue and egr TIDs.  If doing
939                  * re-init, the simplest way to handle this is to free
940                  * existing, and re-allocate.
941                  * Need to re-create rest of ctxt 0 ctxtdata as well.
942                  */
943                 rcd = hfi1_rcd_get_by_index(dd, i);
944                 if (!rcd)
945                         continue;
946
947                 rcd->do_interrupt = &handle_receive_interrupt;
948
949                 lastfail = hfi1_create_rcvhdrq(dd, rcd);
950                 if (!lastfail)
951                         lastfail = hfi1_setup_eagerbufs(rcd);
952                 if (!lastfail)
953                         lastfail = hfi1_kern_exp_rcv_init(rcd, reinit);
954                 if (lastfail) {
955                         dd_dev_err(dd,
956                                    "failed to allocate kernel ctxt's rcvhdrq and/or egr bufs\n");
957                         ret = lastfail;
958                 }
959                 /* enable IRQ */
960                 hfi1_rcd_put(rcd);
961         }
962
963         /* Allocate enough memory for user event notification. */
964         len = PAGE_ALIGN(chip_rcv_contexts(dd) * HFI1_MAX_SHARED_CTXTS *
965                          sizeof(*dd->events));
966         dd->events = vmalloc_user(len);
967         if (!dd->events)
968                 dd_dev_err(dd, "Failed to allocate user events page\n");
969         /*
970          * Allocate a page for device and port status.
971          * Page will be shared amongst all user processes.
972          */
973         dd->status = vmalloc_user(PAGE_SIZE);
974         if (!dd->status)
975                 dd_dev_err(dd, "Failed to allocate dev status page\n");
976         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
977                 ppd = dd->pport + pidx;
978                 if (dd->status)
979                         /* Currently, we only have one port */
980                         ppd->statusp = &dd->status->port;
981
982                 set_mtu(ppd);
983         }
984
985         /* enable chip even if we have an error, so we can debug cause */
986         enable_chip(dd);
987
988 done:
989         /*
990          * Set status even if port serdes is not initialized
991          * so that diags will work.
992          */
993         if (dd->status)
994                 dd->status->dev |= HFI1_STATUS_CHIP_PRESENT |
995                         HFI1_STATUS_INITTED;
996         if (!ret) {
997                 /* enable all interrupts from the chip */
998                 enable_general_intr(dd);
999                 init_qsfp_int(dd);
1000
1001                 /* chip is OK for user apps; mark it as initialized */
1002                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1003                         ppd = dd->pport + pidx;
1004
1005                         /*
1006                          * start the serdes - must be after interrupts are
1007                          * enabled so we are notified when the link goes up
1008                          */
1009                         lastfail = bringup_serdes(ppd);
1010                         if (lastfail)
1011                                 dd_dev_info(dd,
1012                                             "Failed to bring up port %u\n",
1013                                             ppd->port);
1014
1015                         /*
1016                          * Set status even if port serdes is not initialized
1017                          * so that diags will work.
1018                          */
1019                         if (ppd->statusp)
1020                                 *ppd->statusp |= HFI1_STATUS_CHIP_PRESENT |
1021                                                         HFI1_STATUS_INITTED;
1022                         if (!ppd->link_speed_enabled)
1023                                 continue;
1024                 }
1025         }
1026
1027         /* if ret is non-zero, we probably should do some cleanup here... */
1028         return ret;
1029 }
1030
1031 struct hfi1_devdata *hfi1_lookup(int unit)
1032 {
1033         return xa_load(&hfi1_dev_table, unit);
1034 }
1035
1036 /*
1037  * Stop the timers during unit shutdown, or after an error late
1038  * in initialization.
1039  */
1040 static void stop_timers(struct hfi1_devdata *dd)
1041 {
1042         struct hfi1_pportdata *ppd;
1043         int pidx;
1044
1045         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1046                 ppd = dd->pport + pidx;
1047                 if (ppd->led_override_timer.function) {
1048                         del_timer_sync(&ppd->led_override_timer);
1049                         atomic_set(&ppd->led_override_timer_active, 0);
1050                 }
1051         }
1052 }
1053
1054 /**
1055  * shutdown_device - shut down a device
1056  * @dd: the hfi1_ib device
1057  *
1058  * This is called to make the device quiet when we are about to
1059  * unload the driver, and also when the device is administratively
1060  * disabled.   It does not free any data structures.
1061  * Everything it does has to be setup again by hfi1_init(dd, 1)
1062  */
1063 static void shutdown_device(struct hfi1_devdata *dd)
1064 {
1065         struct hfi1_pportdata *ppd;
1066         struct hfi1_ctxtdata *rcd;
1067         unsigned pidx;
1068         int i;
1069
1070         if (dd->flags & HFI1_SHUTDOWN)
1071                 return;
1072         dd->flags |= HFI1_SHUTDOWN;
1073
1074         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1075                 ppd = dd->pport + pidx;
1076
1077                 ppd->linkup = 0;
1078                 if (ppd->statusp)
1079                         *ppd->statusp &= ~(HFI1_STATUS_IB_CONF |
1080                                            HFI1_STATUS_IB_READY);
1081         }
1082         dd->flags &= ~HFI1_INITTED;
1083
1084         /* mask and clean up interrupts */
1085         set_intr_bits(dd, IS_FIRST_SOURCE, IS_LAST_SOURCE, false);
1086         msix_clean_up_interrupts(dd);
1087
1088         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1089                 ppd = dd->pport + pidx;
1090                 for (i = 0; i < dd->num_rcv_contexts; i++) {
1091                         rcd = hfi1_rcd_get_by_index(dd, i);
1092                         hfi1_rcvctrl(dd, HFI1_RCVCTRL_TAILUPD_DIS |
1093                                      HFI1_RCVCTRL_CTXT_DIS |
1094                                      HFI1_RCVCTRL_INTRAVAIL_DIS |
1095                                      HFI1_RCVCTRL_PKEY_DIS |
1096                                      HFI1_RCVCTRL_ONE_PKT_EGR_DIS, rcd);
1097                         hfi1_rcd_put(rcd);
1098                 }
1099                 /*
1100                  * Gracefully stop all sends allowing any in progress to
1101                  * trickle out first.
1102                  */
1103                 for (i = 0; i < dd->num_send_contexts; i++)
1104                         sc_flush(dd->send_contexts[i].sc);
1105         }
1106
1107         /*
1108          * Enough for anything that's going to trickle out to have actually
1109          * done so.
1110          */
1111         udelay(20);
1112
1113         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1114                 ppd = dd->pport + pidx;
1115
1116                 /* disable all contexts */
1117                 for (i = 0; i < dd->num_send_contexts; i++)
1118                         sc_disable(dd->send_contexts[i].sc);
1119                 /* disable the send device */
1120                 pio_send_control(dd, PSC_GLOBAL_DISABLE);
1121
1122                 shutdown_led_override(ppd);
1123
1124                 /*
1125                  * Clear SerdesEnable.
1126                  * We can't count on interrupts since we are stopping.
1127                  */
1128                 hfi1_quiet_serdes(ppd);
1129                 if (ppd->hfi1_wq)
1130                         flush_workqueue(ppd->hfi1_wq);
1131                 if (ppd->link_wq)
1132                         flush_workqueue(ppd->link_wq);
1133         }
1134         sdma_exit(dd);
1135 }
1136
1137 /**
1138  * hfi1_free_ctxtdata - free a context's allocated data
1139  * @dd: the hfi1_ib device
1140  * @rcd: the ctxtdata structure
1141  *
1142  * free up any allocated data for a context
1143  * It should never change any chip state, or global driver state.
1144  */
1145 void hfi1_free_ctxtdata(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1146 {
1147         u32 e;
1148
1149         if (!rcd)
1150                 return;
1151
1152         if (rcd->rcvhdrq) {
1153                 dma_free_coherent(&dd->pcidev->dev, rcvhdrq_size(rcd),
1154                                   rcd->rcvhdrq, rcd->rcvhdrq_dma);
1155                 rcd->rcvhdrq = NULL;
1156                 if (hfi1_rcvhdrtail_kvaddr(rcd)) {
1157                         dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
1158                                           (void *)hfi1_rcvhdrtail_kvaddr(rcd),
1159                                           rcd->rcvhdrqtailaddr_dma);
1160                         rcd->rcvhdrtail_kvaddr = NULL;
1161                 }
1162         }
1163
1164         /* all the RcvArray entries should have been cleared by now */
1165         kfree(rcd->egrbufs.rcvtids);
1166         rcd->egrbufs.rcvtids = NULL;
1167
1168         for (e = 0; e < rcd->egrbufs.alloced; e++) {
1169                 if (rcd->egrbufs.buffers[e].dma)
1170                         dma_free_coherent(&dd->pcidev->dev,
1171                                           rcd->egrbufs.buffers[e].len,
1172                                           rcd->egrbufs.buffers[e].addr,
1173                                           rcd->egrbufs.buffers[e].dma);
1174         }
1175         kfree(rcd->egrbufs.buffers);
1176         rcd->egrbufs.alloced = 0;
1177         rcd->egrbufs.buffers = NULL;
1178
1179         sc_free(rcd->sc);
1180         rcd->sc = NULL;
1181
1182         vfree(rcd->subctxt_uregbase);
1183         vfree(rcd->subctxt_rcvegrbuf);
1184         vfree(rcd->subctxt_rcvhdr_base);
1185         kfree(rcd->opstats);
1186
1187         rcd->subctxt_uregbase = NULL;
1188         rcd->subctxt_rcvegrbuf = NULL;
1189         rcd->subctxt_rcvhdr_base = NULL;
1190         rcd->opstats = NULL;
1191 }
1192
1193 /*
1194  * Release our hold on the shared asic data.  If we are the last one,
1195  * return the structure to be finalized outside the lock.  Must be
1196  * holding hfi1_dev_table lock.
1197  */
1198 static struct hfi1_asic_data *release_asic_data(struct hfi1_devdata *dd)
1199 {
1200         struct hfi1_asic_data *ad;
1201         int other;
1202
1203         if (!dd->asic_data)
1204                 return NULL;
1205         dd->asic_data->dds[dd->hfi1_id] = NULL;
1206         other = dd->hfi1_id ? 0 : 1;
1207         ad = dd->asic_data;
1208         dd->asic_data = NULL;
1209         /* return NULL if the other dd still has a link */
1210         return ad->dds[other] ? NULL : ad;
1211 }
1212
1213 static void finalize_asic_data(struct hfi1_devdata *dd,
1214                                struct hfi1_asic_data *ad)
1215 {
1216         clean_up_i2c(dd, ad);
1217         kfree(ad);
1218 }
1219
1220 /**
1221  * hfi1_free_devdata - cleans up and frees per-unit data structure
1222  * @dd: pointer to a valid devdata structure
1223  *
1224  * It cleans up and frees all data structures set up by
1225  * by hfi1_alloc_devdata().
1226  */
1227 void hfi1_free_devdata(struct hfi1_devdata *dd)
1228 {
1229         struct hfi1_asic_data *ad;
1230         unsigned long flags;
1231
1232         xa_lock_irqsave(&hfi1_dev_table, flags);
1233         __xa_erase(&hfi1_dev_table, dd->unit);
1234         ad = release_asic_data(dd);
1235         xa_unlock_irqrestore(&hfi1_dev_table, flags);
1236
1237         finalize_asic_data(dd, ad);
1238         free_platform_config(dd);
1239         rcu_barrier(); /* wait for rcu callbacks to complete */
1240         free_percpu(dd->int_counter);
1241         free_percpu(dd->rcv_limit);
1242         free_percpu(dd->send_schedule);
1243         free_percpu(dd->tx_opstats);
1244         dd->int_counter   = NULL;
1245         dd->rcv_limit     = NULL;
1246         dd->send_schedule = NULL;
1247         dd->tx_opstats    = NULL;
1248         kfree(dd->comp_vect);
1249         dd->comp_vect = NULL;
1250         sdma_clean(dd, dd->num_sdma);
1251         rvt_dealloc_device(&dd->verbs_dev.rdi);
1252 }
1253
1254 /**
1255  * hfi1_alloc_devdata - Allocate our primary per-unit data structure.
1256  * @pdev: Valid PCI device
1257  * @extra: How many bytes to alloc past the default
1258  *
1259  * Must be done via verbs allocator, because the verbs cleanup process
1260  * both does cleanup and free of the data structure.
1261  * "extra" is for chip-specific data.
1262  */
1263 static struct hfi1_devdata *hfi1_alloc_devdata(struct pci_dev *pdev,
1264                                                size_t extra)
1265 {
1266         struct hfi1_devdata *dd;
1267         int ret, nports;
1268
1269         /* extra is * number of ports */
1270         nports = extra / sizeof(struct hfi1_pportdata);
1271
1272         dd = (struct hfi1_devdata *)rvt_alloc_device(sizeof(*dd) + extra,
1273                                                      nports);
1274         if (!dd)
1275                 return ERR_PTR(-ENOMEM);
1276         dd->num_pports = nports;
1277         dd->pport = (struct hfi1_pportdata *)(dd + 1);
1278         dd->pcidev = pdev;
1279         pci_set_drvdata(pdev, dd);
1280
1281         ret = xa_alloc_irq(&hfi1_dev_table, &dd->unit, dd, xa_limit_32b,
1282                         GFP_KERNEL);
1283         if (ret < 0) {
1284                 dev_err(&pdev->dev,
1285                         "Could not allocate unit ID: error %d\n", -ret);
1286                 goto bail;
1287         }
1288         rvt_set_ibdev_name(&dd->verbs_dev.rdi, "%s_%d", class_name(), dd->unit);
1289         /*
1290          * If the BIOS does not have the NUMA node information set, select
1291          * NUMA 0 so we get consistent performance.
1292          */
1293         dd->node = pcibus_to_node(pdev->bus);
1294         if (dd->node == NUMA_NO_NODE) {
1295                 dd_dev_err(dd, "Invalid PCI NUMA node. Performance may be affected\n");
1296                 dd->node = 0;
1297         }
1298
1299         /*
1300          * Initialize all locks for the device. This needs to be as early as
1301          * possible so locks are usable.
1302          */
1303         spin_lock_init(&dd->sc_lock);
1304         spin_lock_init(&dd->sendctrl_lock);
1305         spin_lock_init(&dd->rcvctrl_lock);
1306         spin_lock_init(&dd->uctxt_lock);
1307         spin_lock_init(&dd->hfi1_diag_trans_lock);
1308         spin_lock_init(&dd->sc_init_lock);
1309         spin_lock_init(&dd->dc8051_memlock);
1310         seqlock_init(&dd->sc2vl_lock);
1311         spin_lock_init(&dd->sde_map_lock);
1312         spin_lock_init(&dd->pio_map_lock);
1313         mutex_init(&dd->dc8051_lock);
1314         init_waitqueue_head(&dd->event_queue);
1315         spin_lock_init(&dd->irq_src_lock);
1316
1317         dd->int_counter = alloc_percpu(u64);
1318         if (!dd->int_counter) {
1319                 ret = -ENOMEM;
1320                 goto bail;
1321         }
1322
1323         dd->rcv_limit = alloc_percpu(u64);
1324         if (!dd->rcv_limit) {
1325                 ret = -ENOMEM;
1326                 goto bail;
1327         }
1328
1329         dd->send_schedule = alloc_percpu(u64);
1330         if (!dd->send_schedule) {
1331                 ret = -ENOMEM;
1332                 goto bail;
1333         }
1334
1335         dd->tx_opstats = alloc_percpu(struct hfi1_opcode_stats_perctx);
1336         if (!dd->tx_opstats) {
1337                 ret = -ENOMEM;
1338                 goto bail;
1339         }
1340
1341         dd->comp_vect = kzalloc(sizeof(*dd->comp_vect), GFP_KERNEL);
1342         if (!dd->comp_vect) {
1343                 ret = -ENOMEM;
1344                 goto bail;
1345         }
1346
1347         atomic_set(&dd->ipoib_rsm_usr_num, 0);
1348         return dd;
1349
1350 bail:
1351         hfi1_free_devdata(dd);
1352         return ERR_PTR(ret);
1353 }
1354
1355 /*
1356  * Called from freeze mode handlers, and from PCI error
1357  * reporting code.  Should be paranoid about state of
1358  * system and data structures.
1359  */
1360 void hfi1_disable_after_error(struct hfi1_devdata *dd)
1361 {
1362         if (dd->flags & HFI1_INITTED) {
1363                 u32 pidx;
1364
1365                 dd->flags &= ~HFI1_INITTED;
1366                 if (dd->pport)
1367                         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1368                                 struct hfi1_pportdata *ppd;
1369
1370                                 ppd = dd->pport + pidx;
1371                                 if (dd->flags & HFI1_PRESENT)
1372                                         set_link_state(ppd, HLS_DN_DISABLE);
1373
1374                                 if (ppd->statusp)
1375                                         *ppd->statusp &= ~HFI1_STATUS_IB_READY;
1376                         }
1377         }
1378
1379         /*
1380          * Mark as having had an error for driver, and also
1381          * for /sys and status word mapped to user programs.
1382          * This marks unit as not usable, until reset.
1383          */
1384         if (dd->status)
1385                 dd->status->dev |= HFI1_STATUS_HWERROR;
1386 }
1387
1388 static void remove_one(struct pci_dev *);
1389 static int init_one(struct pci_dev *, const struct pci_device_id *);
1390 static void shutdown_one(struct pci_dev *);
1391
1392 #define DRIVER_LOAD_MSG "Intel " DRIVER_NAME " loaded: "
1393 #define PFX DRIVER_NAME ": "
1394
1395 const struct pci_device_id hfi1_pci_tbl[] = {
1396         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL0) },
1397         { PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL1) },
1398         { 0, }
1399 };
1400
1401 MODULE_DEVICE_TABLE(pci, hfi1_pci_tbl);
1402
1403 static struct pci_driver hfi1_pci_driver = {
1404         .name = DRIVER_NAME,
1405         .probe = init_one,
1406         .remove = remove_one,
1407         .shutdown = shutdown_one,
1408         .id_table = hfi1_pci_tbl,
1409         .err_handler = &hfi1_pci_err_handler,
1410 };
1411
1412 static void __init compute_krcvqs(void)
1413 {
1414         int i;
1415
1416         for (i = 0; i < krcvqsset; i++)
1417                 n_krcvqs += krcvqs[i];
1418 }
1419
1420 /*
1421  * Do all the generic driver unit- and chip-independent memory
1422  * allocation and initialization.
1423  */
1424 static int __init hfi1_mod_init(void)
1425 {
1426         int ret;
1427
1428         ret = dev_init();
1429         if (ret)
1430                 goto bail;
1431
1432         ret = node_affinity_init();
1433         if (ret)
1434                 goto bail;
1435
1436         /* validate max MTU before any devices start */
1437         if (!valid_opa_max_mtu(hfi1_max_mtu)) {
1438                 pr_err("Invalid max_mtu 0x%x, using 0x%x instead\n",
1439                        hfi1_max_mtu, HFI1_DEFAULT_MAX_MTU);
1440                 hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU;
1441         }
1442         /* valid CUs run from 1-128 in powers of 2 */
1443         if (hfi1_cu > 128 || !is_power_of_2(hfi1_cu))
1444                 hfi1_cu = 1;
1445         /* valid credit return threshold is 0-100, variable is unsigned */
1446         if (user_credit_return_threshold > 100)
1447                 user_credit_return_threshold = 100;
1448
1449         compute_krcvqs();
1450         /*
1451          * sanitize receive interrupt count, time must wait until after
1452          * the hardware type is known
1453          */
1454         if (rcv_intr_count > RCV_HDR_HEAD_COUNTER_MASK)
1455                 rcv_intr_count = RCV_HDR_HEAD_COUNTER_MASK;
1456         /* reject invalid combinations */
1457         if (rcv_intr_count == 0 && rcv_intr_timeout == 0) {
1458                 pr_err("Invalid mode: both receive interrupt count and available timeout are zero - setting interrupt count to 1\n");
1459                 rcv_intr_count = 1;
1460         }
1461         if (rcv_intr_count > 1 && rcv_intr_timeout == 0) {
1462                 /*
1463                  * Avoid indefinite packet delivery by requiring a timeout
1464                  * if count is > 1.
1465                  */
1466                 pr_err("Invalid mode: receive interrupt count greater than 1 and available timeout is zero - setting available timeout to 1\n");
1467                 rcv_intr_timeout = 1;
1468         }
1469         if (rcv_intr_dynamic && !(rcv_intr_count > 1 && rcv_intr_timeout > 0)) {
1470                 /*
1471                  * The dynamic algorithm expects a non-zero timeout
1472                  * and a count > 1.
1473                  */
1474                 pr_err("Invalid mode: dynamic receive interrupt mitigation with invalid count and timeout - turning dynamic off\n");
1475                 rcv_intr_dynamic = 0;
1476         }
1477
1478         /* sanitize link CRC options */
1479         link_crc_mask &= SUPPORTED_CRCS;
1480
1481         ret = opfn_init();
1482         if (ret < 0) {
1483                 pr_err("Failed to allocate opfn_wq");
1484                 goto bail_dev;
1485         }
1486
1487         /*
1488          * These must be called before the driver is registered with
1489          * the PCI subsystem.
1490          */
1491         hfi1_dbg_init();
1492         ret = pci_register_driver(&hfi1_pci_driver);
1493         if (ret < 0) {
1494                 pr_err("Unable to register driver: error %d\n", -ret);
1495                 goto bail_dev;
1496         }
1497         goto bail; /* all OK */
1498
1499 bail_dev:
1500         hfi1_dbg_exit();
1501         dev_cleanup();
1502 bail:
1503         return ret;
1504 }
1505
1506 module_init(hfi1_mod_init);
1507
1508 /*
1509  * Do the non-unit driver cleanup, memory free, etc. at unload.
1510  */
1511 static void __exit hfi1_mod_cleanup(void)
1512 {
1513         pci_unregister_driver(&hfi1_pci_driver);
1514         opfn_exit();
1515         node_affinity_destroy_all();
1516         hfi1_dbg_exit();
1517
1518         WARN_ON(!xa_empty(&hfi1_dev_table));
1519         dispose_firmware();     /* asymmetric with obtain_firmware() */
1520         dev_cleanup();
1521 }
1522
1523 module_exit(hfi1_mod_cleanup);
1524
1525 /* this can only be called after a successful initialization */
1526 static void cleanup_device_data(struct hfi1_devdata *dd)
1527 {
1528         int ctxt;
1529         int pidx;
1530
1531         /* users can't do anything more with chip */
1532         for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1533                 struct hfi1_pportdata *ppd = &dd->pport[pidx];
1534                 struct cc_state *cc_state;
1535                 int i;
1536
1537                 if (ppd->statusp)
1538                         *ppd->statusp &= ~HFI1_STATUS_CHIP_PRESENT;
1539
1540                 for (i = 0; i < OPA_MAX_SLS; i++)
1541                         hrtimer_cancel(&ppd->cca_timer[i].hrtimer);
1542
1543                 spin_lock(&ppd->cc_state_lock);
1544                 cc_state = get_cc_state_protected(ppd);
1545                 RCU_INIT_POINTER(ppd->cc_state, NULL);
1546                 spin_unlock(&ppd->cc_state_lock);
1547
1548                 if (cc_state)
1549                         kfree_rcu(cc_state, rcu);
1550         }
1551
1552         free_credit_return(dd);
1553
1554         if (dd->rcvhdrtail_dummy_kvaddr) {
1555                 dma_free_coherent(&dd->pcidev->dev, sizeof(u64),
1556                                   (void *)dd->rcvhdrtail_dummy_kvaddr,
1557                                   dd->rcvhdrtail_dummy_dma);
1558                 dd->rcvhdrtail_dummy_kvaddr = NULL;
1559         }
1560
1561         /*
1562          * Free any resources still in use (usually just kernel contexts)
1563          * at unload; we do for ctxtcnt, because that's what we allocate.
1564          */
1565         for (ctxt = 0; dd->rcd && ctxt < dd->num_rcv_contexts; ctxt++) {
1566                 struct hfi1_ctxtdata *rcd = dd->rcd[ctxt];
1567
1568                 if (rcd) {
1569                         hfi1_free_ctxt_rcv_groups(rcd);
1570                         hfi1_free_ctxt(rcd);
1571                 }
1572         }
1573
1574         kfree(dd->rcd);
1575         dd->rcd = NULL;
1576
1577         free_pio_map(dd);
1578         /* must follow rcv context free - need to remove rcv's hooks */
1579         for (ctxt = 0; ctxt < dd->num_send_contexts; ctxt++)
1580                 sc_free(dd->send_contexts[ctxt].sc);
1581         dd->num_send_contexts = 0;
1582         kfree(dd->send_contexts);
1583         dd->send_contexts = NULL;
1584         kfree(dd->hw_to_sw);
1585         dd->hw_to_sw = NULL;
1586         kfree(dd->boardname);
1587         vfree(dd->events);
1588         vfree(dd->status);
1589 }
1590
1591 /*
1592  * Clean up on unit shutdown, or error during unit load after
1593  * successful initialization.
1594  */
1595 static void postinit_cleanup(struct hfi1_devdata *dd)
1596 {
1597         hfi1_start_cleanup(dd);
1598         hfi1_comp_vectors_clean_up(dd);
1599         hfi1_dev_affinity_clean_up(dd);
1600
1601         hfi1_pcie_ddcleanup(dd);
1602         hfi1_pcie_cleanup(dd->pcidev);
1603
1604         cleanup_device_data(dd);
1605
1606         hfi1_free_devdata(dd);
1607 }
1608
1609 static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
1610 {
1611         int ret = 0, j, pidx, initfail;
1612         struct hfi1_devdata *dd;
1613         struct hfi1_pportdata *ppd;
1614
1615         /* First, lock the non-writable module parameters */
1616         HFI1_CAP_LOCK();
1617
1618         /* Validate dev ids */
1619         if (!(ent->device == PCI_DEVICE_ID_INTEL0 ||
1620               ent->device == PCI_DEVICE_ID_INTEL1)) {
1621                 dev_err(&pdev->dev, "Failing on unknown Intel deviceid 0x%x\n",
1622                         ent->device);
1623                 ret = -ENODEV;
1624                 goto bail;
1625         }
1626
1627         /* Allocate the dd so we can get to work */
1628         dd = hfi1_alloc_devdata(pdev, NUM_IB_PORTS *
1629                                 sizeof(struct hfi1_pportdata));
1630         if (IS_ERR(dd)) {
1631                 ret = PTR_ERR(dd);
1632                 goto bail;
1633         }
1634
1635         /* Validate some global module parameters */
1636         ret = hfi1_validate_rcvhdrcnt(dd, rcvhdrcnt);
1637         if (ret)
1638                 goto bail;
1639
1640         /* use the encoding function as a sanitization check */
1641         if (!encode_rcv_header_entry_size(hfi1_hdrq_entsize)) {
1642                 dd_dev_err(dd, "Invalid HdrQ Entry size %u\n",
1643                            hfi1_hdrq_entsize);
1644                 ret = -EINVAL;
1645                 goto bail;
1646         }
1647
1648         /* The receive eager buffer size must be set before the receive
1649          * contexts are created.
1650          *
1651          * Set the eager buffer size.  Validate that it falls in a range
1652          * allowed by the hardware - all powers of 2 between the min and
1653          * max.  The maximum valid MTU is within the eager buffer range
1654          * so we do not need to cap the max_mtu by an eager buffer size
1655          * setting.
1656          */
1657         if (eager_buffer_size) {
1658                 if (!is_power_of_2(eager_buffer_size))
1659                         eager_buffer_size =
1660                                 roundup_pow_of_two(eager_buffer_size);
1661                 eager_buffer_size =
1662                         clamp_val(eager_buffer_size,
1663                                   MIN_EAGER_BUFFER * 8,
1664                                   MAX_EAGER_BUFFER_TOTAL);
1665                 dd_dev_info(dd, "Eager buffer size %u\n",
1666                             eager_buffer_size);
1667         } else {
1668                 dd_dev_err(dd, "Invalid Eager buffer size of 0\n");
1669                 ret = -EINVAL;
1670                 goto bail;
1671         }
1672
1673         /* restrict value of hfi1_rcvarr_split */
1674         hfi1_rcvarr_split = clamp_val(hfi1_rcvarr_split, 0, 100);
1675
1676         ret = hfi1_pcie_init(dd);
1677         if (ret)
1678                 goto bail;
1679
1680         /*
1681          * Do device-specific initialization, function table setup, dd
1682          * allocation, etc.
1683          */
1684         ret = hfi1_init_dd(dd);
1685         if (ret)
1686                 goto clean_bail; /* error already printed */
1687
1688         ret = create_workqueues(dd);
1689         if (ret)
1690                 goto clean_bail;
1691
1692         /* do the generic initialization */
1693         initfail = hfi1_init(dd, 0);
1694
1695         ret = hfi1_register_ib_device(dd);
1696
1697         /*
1698          * Now ready for use.  this should be cleared whenever we
1699          * detect a reset, or initiate one.  If earlier failure,
1700          * we still create devices, so diags, etc. can be used
1701          * to determine cause of problem.
1702          */
1703         if (!initfail && !ret) {
1704                 dd->flags |= HFI1_INITTED;
1705                 /* create debufs files after init and ib register */
1706                 hfi1_dbg_ibdev_init(&dd->verbs_dev);
1707         }
1708
1709         j = hfi1_device_create(dd);
1710         if (j)
1711                 dd_dev_err(dd, "Failed to create /dev devices: %d\n", -j);
1712
1713         if (initfail || ret) {
1714                 msix_clean_up_interrupts(dd);
1715                 stop_timers(dd);
1716                 flush_workqueue(ib_wq);
1717                 for (pidx = 0; pidx < dd->num_pports; ++pidx) {
1718                         hfi1_quiet_serdes(dd->pport + pidx);
1719                         ppd = dd->pport + pidx;
1720                         if (ppd->hfi1_wq) {
1721                                 destroy_workqueue(ppd->hfi1_wq);
1722                                 ppd->hfi1_wq = NULL;
1723                         }
1724                         if (ppd->link_wq) {
1725                                 destroy_workqueue(ppd->link_wq);
1726                                 ppd->link_wq = NULL;
1727                         }
1728                 }
1729                 if (!j)
1730                         hfi1_device_remove(dd);
1731                 if (!ret)
1732                         hfi1_unregister_ib_device(dd);
1733                 postinit_cleanup(dd);
1734                 if (initfail)
1735                         ret = initfail;
1736                 goto bail;      /* everything already cleaned */
1737         }
1738
1739         sdma_start(dd);
1740
1741         return 0;
1742
1743 clean_bail:
1744         hfi1_pcie_cleanup(pdev);
1745 bail:
1746         return ret;
1747 }
1748
1749 static void wait_for_clients(struct hfi1_devdata *dd)
1750 {
1751         /*
1752          * Remove the device init value and complete the device if there is
1753          * no clients or wait for active clients to finish.
1754          */
1755         if (atomic_dec_and_test(&dd->user_refcount))
1756                 complete(&dd->user_comp);
1757
1758         wait_for_completion(&dd->user_comp);
1759 }
1760
1761 static void remove_one(struct pci_dev *pdev)
1762 {
1763         struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1764
1765         /* close debugfs files before ib unregister */
1766         hfi1_dbg_ibdev_exit(&dd->verbs_dev);
1767
1768         /* remove the /dev hfi1 interface */
1769         hfi1_device_remove(dd);
1770
1771         /* wait for existing user space clients to finish */
1772         wait_for_clients(dd);
1773
1774         /* unregister from IB core */
1775         hfi1_unregister_ib_device(dd);
1776
1777         /* free netdev data */
1778         hfi1_free_rx(dd);
1779
1780         /*
1781          * Disable the IB link, disable interrupts on the device,
1782          * clear dma engines, etc.
1783          */
1784         shutdown_device(dd);
1785         destroy_workqueues(dd);
1786
1787         stop_timers(dd);
1788
1789         /* wait until all of our (qsfp) queue_work() calls complete */
1790         flush_workqueue(ib_wq);
1791
1792         postinit_cleanup(dd);
1793 }
1794
1795 static void shutdown_one(struct pci_dev *pdev)
1796 {
1797         struct hfi1_devdata *dd = pci_get_drvdata(pdev);
1798
1799         shutdown_device(dd);
1800 }
1801
1802 /**
1803  * hfi1_create_rcvhdrq - create a receive header queue
1804  * @dd: the hfi1_ib device
1805  * @rcd: the context data
1806  *
1807  * This must be contiguous memory (from an i/o perspective), and must be
1808  * DMA'able (which means for some systems, it will go through an IOMMU,
1809  * or be forced into a low address range).
1810  */
1811 int hfi1_create_rcvhdrq(struct hfi1_devdata *dd, struct hfi1_ctxtdata *rcd)
1812 {
1813         unsigned amt;
1814
1815         if (!rcd->rcvhdrq) {
1816                 gfp_t gfp_flags;
1817
1818                 amt = rcvhdrq_size(rcd);
1819
1820                 if (rcd->ctxt < dd->first_dyn_alloc_ctxt || rcd->is_vnic)
1821                         gfp_flags = GFP_KERNEL;
1822                 else
1823                         gfp_flags = GFP_USER;
1824                 rcd->rcvhdrq = dma_alloc_coherent(&dd->pcidev->dev, amt,
1825                                                   &rcd->rcvhdrq_dma,
1826                                                   gfp_flags | __GFP_COMP);
1827
1828                 if (!rcd->rcvhdrq) {
1829                         dd_dev_err(dd,
1830                                    "attempt to allocate %d bytes for ctxt %u rcvhdrq failed\n",
1831                                    amt, rcd->ctxt);
1832                         goto bail;
1833                 }
1834
1835                 if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ||
1836                     HFI1_CAP_UGET_MASK(rcd->flags, DMA_RTAIL)) {
1837                         rcd->rcvhdrtail_kvaddr = dma_alloc_coherent(&dd->pcidev->dev,
1838                                                                     PAGE_SIZE,
1839                                                                     &rcd->rcvhdrqtailaddr_dma,
1840                                                                     gfp_flags);
1841                         if (!rcd->rcvhdrtail_kvaddr)
1842                                 goto bail_free;
1843                 }
1844         }
1845
1846         set_hdrq_regs(rcd->dd, rcd->ctxt, rcd->rcvhdrqentsize,
1847                       rcd->rcvhdrq_cnt);
1848
1849         return 0;
1850
1851 bail_free:
1852         dd_dev_err(dd,
1853                    "attempt to allocate 1 page for ctxt %u rcvhdrqtailaddr failed\n",
1854                    rcd->ctxt);
1855         dma_free_coherent(&dd->pcidev->dev, amt, rcd->rcvhdrq,
1856                           rcd->rcvhdrq_dma);
1857         rcd->rcvhdrq = NULL;
1858 bail:
1859         return -ENOMEM;
1860 }
1861
1862 /**
1863  * hfi1_setup_eagerbufs - llocate eager buffers, both kernel and user
1864  * contexts.
1865  * @rcd: the context we are setting up.
1866  *
1867  * Allocate the eager TID buffers and program them into hip.
1868  * They are no longer completely contiguous, we do multiple allocation
1869  * calls.  Otherwise we get the OOM code involved, by asking for too
1870  * much per call, with disastrous results on some kernels.
1871  */
1872 int hfi1_setup_eagerbufs(struct hfi1_ctxtdata *rcd)
1873 {
1874         struct hfi1_devdata *dd = rcd->dd;
1875         u32 max_entries, egrtop, alloced_bytes = 0;
1876         gfp_t gfp_flags;
1877         u16 order, idx = 0;
1878         int ret = 0;
1879         u16 round_mtu = roundup_pow_of_two(hfi1_max_mtu);
1880
1881         /*
1882          * GFP_USER, but without GFP_FS, so buffer cache can be
1883          * coalesced (we hope); otherwise, even at order 4,
1884          * heavy filesystem activity makes these fail, and we can
1885          * use compound pages.
1886          */
1887         gfp_flags = __GFP_RECLAIM | __GFP_IO | __GFP_COMP;
1888
1889         /*
1890          * The minimum size of the eager buffers is a groups of MTU-sized
1891          * buffers.
1892          * The global eager_buffer_size parameter is checked against the
1893          * theoretical lower limit of the value. Here, we check against the
1894          * MTU.
1895          */
1896         if (rcd->egrbufs.size < (round_mtu * dd->rcv_entries.group_size))
1897                 rcd->egrbufs.size = round_mtu * dd->rcv_entries.group_size;
1898         /*
1899          * If using one-pkt-per-egr-buffer, lower the eager buffer
1900          * size to the max MTU (page-aligned).
1901          */
1902         if (!HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR))
1903                 rcd->egrbufs.rcvtid_size = round_mtu;
1904
1905         /*
1906          * Eager buffers sizes of 1MB or less require smaller TID sizes
1907          * to satisfy the "multiple of 8 RcvArray entries" requirement.
1908          */
1909         if (rcd->egrbufs.size <= (1 << 20))
1910                 rcd->egrbufs.rcvtid_size = max((unsigned long)round_mtu,
1911                         rounddown_pow_of_two(rcd->egrbufs.size / 8));
1912
1913         while (alloced_bytes < rcd->egrbufs.size &&
1914                rcd->egrbufs.alloced < rcd->egrbufs.count) {
1915                 rcd->egrbufs.buffers[idx].addr =
1916                         dma_alloc_coherent(&dd->pcidev->dev,
1917                                            rcd->egrbufs.rcvtid_size,
1918                                            &rcd->egrbufs.buffers[idx].dma,
1919                                            gfp_flags);
1920                 if (rcd->egrbufs.buffers[idx].addr) {
1921                         rcd->egrbufs.buffers[idx].len =
1922                                 rcd->egrbufs.rcvtid_size;
1923                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].addr =
1924                                 rcd->egrbufs.buffers[idx].addr;
1925                         rcd->egrbufs.rcvtids[rcd->egrbufs.alloced].dma =
1926                                 rcd->egrbufs.buffers[idx].dma;
1927                         rcd->egrbufs.alloced++;
1928                         alloced_bytes += rcd->egrbufs.rcvtid_size;
1929                         idx++;
1930                 } else {
1931                         u32 new_size, i, j;
1932                         u64 offset = 0;
1933
1934                         /*
1935                          * Fail the eager buffer allocation if:
1936                          *   - we are already using the lowest acceptable size
1937                          *   - we are using one-pkt-per-egr-buffer (this implies
1938                          *     that we are accepting only one size)
1939                          */
1940                         if (rcd->egrbufs.rcvtid_size == round_mtu ||
1941                             !HFI1_CAP_KGET_MASK(rcd->flags, MULTI_PKT_EGR)) {
1942                                 dd_dev_err(dd, "ctxt%u: Failed to allocate eager buffers\n",
1943                                            rcd->ctxt);
1944                                 ret = -ENOMEM;
1945                                 goto bail_rcvegrbuf_phys;
1946                         }
1947
1948                         new_size = rcd->egrbufs.rcvtid_size / 2;
1949
1950                         /*
1951                          * If the first attempt to allocate memory failed, don't
1952                          * fail everything but continue with the next lower
1953                          * size.
1954                          */
1955                         if (idx == 0) {
1956                                 rcd->egrbufs.rcvtid_size = new_size;
1957                                 continue;
1958                         }
1959
1960                         /*
1961                          * Re-partition already allocated buffers to a smaller
1962                          * size.
1963                          */
1964                         rcd->egrbufs.alloced = 0;
1965                         for (i = 0, j = 0, offset = 0; j < idx; i++) {
1966                                 if (i >= rcd->egrbufs.count)
1967                                         break;
1968                                 rcd->egrbufs.rcvtids[i].dma =
1969                                         rcd->egrbufs.buffers[j].dma + offset;
1970                                 rcd->egrbufs.rcvtids[i].addr =
1971                                         rcd->egrbufs.buffers[j].addr + offset;
1972                                 rcd->egrbufs.alloced++;
1973                                 if ((rcd->egrbufs.buffers[j].dma + offset +
1974                                      new_size) ==
1975                                     (rcd->egrbufs.buffers[j].dma +
1976                                      rcd->egrbufs.buffers[j].len)) {
1977                                         j++;
1978                                         offset = 0;
1979                                 } else {
1980                                         offset += new_size;
1981                                 }
1982                         }
1983                         rcd->egrbufs.rcvtid_size = new_size;
1984                 }
1985         }
1986         rcd->egrbufs.numbufs = idx;
1987         rcd->egrbufs.size = alloced_bytes;
1988
1989         hfi1_cdbg(PROC,
1990                   "ctxt%u: Alloced %u rcv tid entries @ %uKB, total %uKB\n",
1991                   rcd->ctxt, rcd->egrbufs.alloced,
1992                   rcd->egrbufs.rcvtid_size / 1024, rcd->egrbufs.size / 1024);
1993
1994         /*
1995          * Set the contexts rcv array head update threshold to the closest
1996          * power of 2 (so we can use a mask instead of modulo) below half
1997          * the allocated entries.
1998          */
1999         rcd->egrbufs.threshold =
2000                 rounddown_pow_of_two(rcd->egrbufs.alloced / 2);
2001         /*
2002          * Compute the expected RcvArray entry base. This is done after
2003          * allocating the eager buffers in order to maximize the
2004          * expected RcvArray entries for the context.
2005          */
2006         max_entries = rcd->rcv_array_groups * dd->rcv_entries.group_size;
2007         egrtop = roundup(rcd->egrbufs.alloced, dd->rcv_entries.group_size);
2008         rcd->expected_count = max_entries - egrtop;
2009         if (rcd->expected_count > MAX_TID_PAIR_ENTRIES * 2)
2010                 rcd->expected_count = MAX_TID_PAIR_ENTRIES * 2;
2011
2012         rcd->expected_base = rcd->eager_base + egrtop;
2013         hfi1_cdbg(PROC, "ctxt%u: eager:%u, exp:%u, egrbase:%u, expbase:%u\n",
2014                   rcd->ctxt, rcd->egrbufs.alloced, rcd->expected_count,
2015                   rcd->eager_base, rcd->expected_base);
2016
2017         if (!hfi1_rcvbuf_validate(rcd->egrbufs.rcvtid_size, PT_EAGER, &order)) {
2018                 hfi1_cdbg(PROC,
2019                           "ctxt%u: current Eager buffer size is invalid %u\n",
2020                           rcd->ctxt, rcd->egrbufs.rcvtid_size);
2021                 ret = -EINVAL;
2022                 goto bail_rcvegrbuf_phys;
2023         }
2024
2025         for (idx = 0; idx < rcd->egrbufs.alloced; idx++) {
2026                 hfi1_put_tid(dd, rcd->eager_base + idx, PT_EAGER,
2027                              rcd->egrbufs.rcvtids[idx].dma, order);
2028                 cond_resched();
2029         }
2030
2031         return 0;
2032
2033 bail_rcvegrbuf_phys:
2034         for (idx = 0; idx < rcd->egrbufs.alloced &&
2035              rcd->egrbufs.buffers[idx].addr;
2036              idx++) {
2037                 dma_free_coherent(&dd->pcidev->dev,
2038                                   rcd->egrbufs.buffers[idx].len,
2039                                   rcd->egrbufs.buffers[idx].addr,
2040                                   rcd->egrbufs.buffers[idx].dma);
2041                 rcd->egrbufs.buffers[idx].addr = NULL;
2042                 rcd->egrbufs.buffers[idx].dma = 0;
2043                 rcd->egrbufs.buffers[idx].len = 0;
2044         }
2045
2046         return ret;
2047 }