Input: wm97xx: add new AC97 bus support
[sfrench/cifs-2.6.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53
54 #include "core_priv.h"
55
56 static const char * const ib_events[] = {
57         [IB_EVENT_CQ_ERR]               = "CQ error",
58         [IB_EVENT_QP_FATAL]             = "QP fatal error",
59         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
60         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
61         [IB_EVENT_COMM_EST]             = "communication established",
62         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
63         [IB_EVENT_PATH_MIG]             = "path migration successful",
64         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
65         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
66         [IB_EVENT_PORT_ACTIVE]          = "port active",
67         [IB_EVENT_PORT_ERR]             = "port error",
68         [IB_EVENT_LID_CHANGE]           = "LID change",
69         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
70         [IB_EVENT_SM_CHANGE]            = "SM change",
71         [IB_EVENT_SRQ_ERR]              = "SRQ error",
72         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
73         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
74         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
75         [IB_EVENT_GID_CHANGE]           = "GID changed",
76 };
77
78 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
79 {
80         size_t index = event;
81
82         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
83                         ib_events[index] : "unrecognized event";
84 }
85 EXPORT_SYMBOL(ib_event_msg);
86
87 static const char * const wc_statuses[] = {
88         [IB_WC_SUCCESS]                 = "success",
89         [IB_WC_LOC_LEN_ERR]             = "local length error",
90         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
91         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
92         [IB_WC_LOC_PROT_ERR]            = "local protection error",
93         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
94         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
95         [IB_WC_BAD_RESP_ERR]            = "bad response error",
96         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
97         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
98         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
99         [IB_WC_REM_OP_ERR]              = "remote operation error",
100         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
101         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
102         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
103         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
104         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
105         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
106         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
107         [IB_WC_FATAL_ERR]               = "fatal error",
108         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
109         [IB_WC_GENERAL_ERR]             = "general error",
110 };
111
112 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
113 {
114         size_t index = status;
115
116         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
117                         wc_statuses[index] : "unrecognized status";
118 }
119 EXPORT_SYMBOL(ib_wc_status_msg);
120
121 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
122 {
123         switch (rate) {
124         case IB_RATE_2_5_GBPS: return  1;
125         case IB_RATE_5_GBPS:   return  2;
126         case IB_RATE_10_GBPS:  return  4;
127         case IB_RATE_20_GBPS:  return  8;
128         case IB_RATE_30_GBPS:  return 12;
129         case IB_RATE_40_GBPS:  return 16;
130         case IB_RATE_60_GBPS:  return 24;
131         case IB_RATE_80_GBPS:  return 32;
132         case IB_RATE_120_GBPS: return 48;
133         default:               return -1;
134         }
135 }
136 EXPORT_SYMBOL(ib_rate_to_mult);
137
138 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
139 {
140         switch (mult) {
141         case 1:  return IB_RATE_2_5_GBPS;
142         case 2:  return IB_RATE_5_GBPS;
143         case 4:  return IB_RATE_10_GBPS;
144         case 8:  return IB_RATE_20_GBPS;
145         case 12: return IB_RATE_30_GBPS;
146         case 16: return IB_RATE_40_GBPS;
147         case 24: return IB_RATE_60_GBPS;
148         case 32: return IB_RATE_80_GBPS;
149         case 48: return IB_RATE_120_GBPS;
150         default: return IB_RATE_PORT_CURRENT;
151         }
152 }
153 EXPORT_SYMBOL(mult_to_ib_rate);
154
155 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
156 {
157         switch (rate) {
158         case IB_RATE_2_5_GBPS: return 2500;
159         case IB_RATE_5_GBPS:   return 5000;
160         case IB_RATE_10_GBPS:  return 10000;
161         case IB_RATE_20_GBPS:  return 20000;
162         case IB_RATE_30_GBPS:  return 30000;
163         case IB_RATE_40_GBPS:  return 40000;
164         case IB_RATE_60_GBPS:  return 60000;
165         case IB_RATE_80_GBPS:  return 80000;
166         case IB_RATE_120_GBPS: return 120000;
167         case IB_RATE_14_GBPS:  return 14062;
168         case IB_RATE_56_GBPS:  return 56250;
169         case IB_RATE_112_GBPS: return 112500;
170         case IB_RATE_168_GBPS: return 168750;
171         case IB_RATE_25_GBPS:  return 25781;
172         case IB_RATE_100_GBPS: return 103125;
173         case IB_RATE_200_GBPS: return 206250;
174         case IB_RATE_300_GBPS: return 309375;
175         default:               return -1;
176         }
177 }
178 EXPORT_SYMBOL(ib_rate_to_mbps);
179
180 __attribute_const__ enum rdma_transport_type
181 rdma_node_get_transport(enum rdma_node_type node_type)
182 {
183
184         if (node_type == RDMA_NODE_USNIC)
185                 return RDMA_TRANSPORT_USNIC;
186         if (node_type == RDMA_NODE_USNIC_UDP)
187                 return RDMA_TRANSPORT_USNIC_UDP;
188         if (node_type == RDMA_NODE_RNIC)
189                 return RDMA_TRANSPORT_IWARP;
190
191         return RDMA_TRANSPORT_IB;
192 }
193 EXPORT_SYMBOL(rdma_node_get_transport);
194
195 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
196 {
197         enum rdma_transport_type lt;
198         if (device->get_link_layer)
199                 return device->get_link_layer(device, port_num);
200
201         lt = rdma_node_get_transport(device->node_type);
202         if (lt == RDMA_TRANSPORT_IB)
203                 return IB_LINK_LAYER_INFINIBAND;
204
205         return IB_LINK_LAYER_ETHERNET;
206 }
207 EXPORT_SYMBOL(rdma_port_get_link_layer);
208
209 /* Protection domains */
210
211 /**
212  * ib_alloc_pd - Allocates an unused protection domain.
213  * @device: The device on which to allocate the protection domain.
214  *
215  * A protection domain object provides an association between QPs, shared
216  * receive queues, address handles, memory regions, and memory windows.
217  *
218  * Every PD has a local_dma_lkey which can be used as the lkey value for local
219  * memory operations.
220  */
221 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
222                 const char *caller)
223 {
224         struct ib_pd *pd;
225         int mr_access_flags = 0;
226
227         pd = device->alloc_pd(device, NULL, NULL);
228         if (IS_ERR(pd))
229                 return pd;
230
231         pd->device = device;
232         pd->uobject = NULL;
233         pd->__internal_mr = NULL;
234         atomic_set(&pd->usecnt, 0);
235         pd->flags = flags;
236
237         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
238                 pd->local_dma_lkey = device->local_dma_lkey;
239         else
240                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
241
242         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
243                 pr_warn("%s: enabling unsafe global rkey\n", caller);
244                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
245         }
246
247         if (mr_access_flags) {
248                 struct ib_mr *mr;
249
250                 mr = pd->device->get_dma_mr(pd, mr_access_flags);
251                 if (IS_ERR(mr)) {
252                         ib_dealloc_pd(pd);
253                         return ERR_CAST(mr);
254                 }
255
256                 mr->device      = pd->device;
257                 mr->pd          = pd;
258                 mr->uobject     = NULL;
259                 mr->need_inval  = false;
260
261                 pd->__internal_mr = mr;
262
263                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
264                         pd->local_dma_lkey = pd->__internal_mr->lkey;
265
266                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
267                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
268         }
269
270         return pd;
271 }
272 EXPORT_SYMBOL(__ib_alloc_pd);
273
274 /**
275  * ib_dealloc_pd - Deallocates a protection domain.
276  * @pd: The protection domain to deallocate.
277  *
278  * It is an error to call this function while any resources in the pd still
279  * exist.  The caller is responsible to synchronously destroy them and
280  * guarantee no new allocations will happen.
281  */
282 void ib_dealloc_pd(struct ib_pd *pd)
283 {
284         int ret;
285
286         if (pd->__internal_mr) {
287                 ret = pd->device->dereg_mr(pd->__internal_mr);
288                 WARN_ON(ret);
289                 pd->__internal_mr = NULL;
290         }
291
292         /* uverbs manipulates usecnt with proper locking, while the kabi
293            requires the caller to guarantee we can't race here. */
294         WARN_ON(atomic_read(&pd->usecnt));
295
296         /* Making delalloc_pd a void return is a WIP, no driver should return
297            an error here. */
298         ret = pd->device->dealloc_pd(pd);
299         WARN_ONCE(ret, "Infiniband HW driver failed dealloc_pd");
300 }
301 EXPORT_SYMBOL(ib_dealloc_pd);
302
303 /* Address handles */
304
305 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr)
306 {
307         struct ib_ah *ah;
308
309         ah = pd->device->create_ah(pd, ah_attr, NULL);
310
311         if (!IS_ERR(ah)) {
312                 ah->device  = pd->device;
313                 ah->pd      = pd;
314                 ah->uobject = NULL;
315                 ah->type    = ah_attr->type;
316                 atomic_inc(&pd->usecnt);
317         }
318
319         return ah;
320 }
321 EXPORT_SYMBOL(rdma_create_ah);
322
323 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
324 {
325         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
326         struct iphdr ip4h_checked;
327         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
328
329         /* If it's IPv6, the version must be 6, otherwise, the first
330          * 20 bytes (before the IPv4 header) are garbled.
331          */
332         if (ip6h->version != 6)
333                 return (ip4h->version == 4) ? 4 : 0;
334         /* version may be 6 or 4 because the first 20 bytes could be garbled */
335
336         /* RoCE v2 requires no options, thus header length
337          * must be 5 words
338          */
339         if (ip4h->ihl != 5)
340                 return 6;
341
342         /* Verify checksum.
343          * We can't write on scattered buffers so we need to copy to
344          * temp buffer.
345          */
346         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
347         ip4h_checked.check = 0;
348         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
349         /* if IPv4 header checksum is OK, believe it */
350         if (ip4h->check == ip4h_checked.check)
351                 return 4;
352         return 6;
353 }
354 EXPORT_SYMBOL(ib_get_rdma_header_version);
355
356 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
357                                                      u8 port_num,
358                                                      const struct ib_grh *grh)
359 {
360         int grh_version;
361
362         if (rdma_protocol_ib(device, port_num))
363                 return RDMA_NETWORK_IB;
364
365         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
366
367         if (grh_version == 4)
368                 return RDMA_NETWORK_IPV4;
369
370         if (grh->next_hdr == IPPROTO_UDP)
371                 return RDMA_NETWORK_IPV6;
372
373         return RDMA_NETWORK_ROCE_V1;
374 }
375
376 struct find_gid_index_context {
377         u16 vlan_id;
378         enum ib_gid_type gid_type;
379 };
380
381 static bool find_gid_index(const union ib_gid *gid,
382                            const struct ib_gid_attr *gid_attr,
383                            void *context)
384 {
385         struct find_gid_index_context *ctx =
386                 (struct find_gid_index_context *)context;
387
388         if (ctx->gid_type != gid_attr->gid_type)
389                 return false;
390
391         if ((!!(ctx->vlan_id != 0xffff) == !is_vlan_dev(gid_attr->ndev)) ||
392             (is_vlan_dev(gid_attr->ndev) &&
393              vlan_dev_vlan_id(gid_attr->ndev) != ctx->vlan_id))
394                 return false;
395
396         return true;
397 }
398
399 static int get_sgid_index_from_eth(struct ib_device *device, u8 port_num,
400                                    u16 vlan_id, const union ib_gid *sgid,
401                                    enum ib_gid_type gid_type,
402                                    u16 *gid_index)
403 {
404         struct find_gid_index_context context = {.vlan_id = vlan_id,
405                                                  .gid_type = gid_type};
406
407         return ib_find_gid_by_filter(device, sgid, port_num, find_gid_index,
408                                      &context, gid_index);
409 }
410
411 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
412                               enum rdma_network_type net_type,
413                               union ib_gid *sgid, union ib_gid *dgid)
414 {
415         struct sockaddr_in  src_in;
416         struct sockaddr_in  dst_in;
417         __be32 src_saddr, dst_saddr;
418
419         if (!sgid || !dgid)
420                 return -EINVAL;
421
422         if (net_type == RDMA_NETWORK_IPV4) {
423                 memcpy(&src_in.sin_addr.s_addr,
424                        &hdr->roce4grh.saddr, 4);
425                 memcpy(&dst_in.sin_addr.s_addr,
426                        &hdr->roce4grh.daddr, 4);
427                 src_saddr = src_in.sin_addr.s_addr;
428                 dst_saddr = dst_in.sin_addr.s_addr;
429                 ipv6_addr_set_v4mapped(src_saddr,
430                                        (struct in6_addr *)sgid);
431                 ipv6_addr_set_v4mapped(dst_saddr,
432                                        (struct in6_addr *)dgid);
433                 return 0;
434         } else if (net_type == RDMA_NETWORK_IPV6 ||
435                    net_type == RDMA_NETWORK_IB) {
436                 *dgid = hdr->ibgrh.dgid;
437                 *sgid = hdr->ibgrh.sgid;
438                 return 0;
439         } else {
440                 return -EINVAL;
441         }
442 }
443 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
444
445 /*
446  * This function creates ah from the incoming packet.
447  * Incoming packet has dgid of the receiver node on which this code is
448  * getting executed and, sgid contains the GID of the sender.
449  *
450  * When resolving mac address of destination, the arrived dgid is used
451  * as sgid and, sgid is used as dgid because sgid contains destinations
452  * GID whom to respond to.
453  *
454  * This is why when calling rdma_addr_find_l2_eth_by_grh() function, the
455  * position of arguments dgid and sgid do not match the order of the
456  * parameters.
457  */
458 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
459                        const struct ib_wc *wc, const struct ib_grh *grh,
460                        struct rdma_ah_attr *ah_attr)
461 {
462         u32 flow_class;
463         u16 gid_index;
464         int ret;
465         enum rdma_network_type net_type = RDMA_NETWORK_IB;
466         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
467         int hoplimit = 0xff;
468         union ib_gid dgid;
469         union ib_gid sgid;
470
471         might_sleep();
472
473         memset(ah_attr, 0, sizeof *ah_attr);
474         ah_attr->type = rdma_ah_find_type(device, port_num);
475         if (rdma_cap_eth_ah(device, port_num)) {
476                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
477                         net_type = wc->network_hdr_type;
478                 else
479                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
480                 gid_type = ib_network_to_gid_type(net_type);
481         }
482         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
483                                         &sgid, &dgid);
484         if (ret)
485                 return ret;
486
487         if (rdma_protocol_roce(device, port_num)) {
488                 int if_index = 0;
489                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
490                                 wc->vlan_id : 0xffff;
491                 struct net_device *idev;
492                 struct net_device *resolved_dev;
493
494                 if (!(wc->wc_flags & IB_WC_GRH))
495                         return -EPROTOTYPE;
496
497                 if (!device->get_netdev)
498                         return -EOPNOTSUPP;
499
500                 idev = device->get_netdev(device, port_num);
501                 if (!idev)
502                         return -ENODEV;
503
504                 ret = rdma_addr_find_l2_eth_by_grh(&dgid, &sgid,
505                                                    ah_attr->roce.dmac,
506                                                    wc->wc_flags & IB_WC_WITH_VLAN ?
507                                                    NULL : &vlan_id,
508                                                    &if_index, &hoplimit);
509                 if (ret) {
510                         dev_put(idev);
511                         return ret;
512                 }
513
514                 resolved_dev = dev_get_by_index(&init_net, if_index);
515                 rcu_read_lock();
516                 if (resolved_dev != idev && !rdma_is_upper_dev_rcu(idev,
517                                                                    resolved_dev))
518                         ret = -EHOSTUNREACH;
519                 rcu_read_unlock();
520                 dev_put(idev);
521                 dev_put(resolved_dev);
522                 if (ret)
523                         return ret;
524
525                 ret = get_sgid_index_from_eth(device, port_num, vlan_id,
526                                               &dgid, gid_type, &gid_index);
527                 if (ret)
528                         return ret;
529         }
530
531         rdma_ah_set_dlid(ah_attr, wc->slid);
532         rdma_ah_set_sl(ah_attr, wc->sl);
533         rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
534         rdma_ah_set_port_num(ah_attr, port_num);
535
536         if (wc->wc_flags & IB_WC_GRH) {
537                 if (!rdma_cap_eth_ah(device, port_num)) {
538                         if (dgid.global.interface_id != cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
539                                 ret = ib_find_cached_gid_by_port(device, &dgid,
540                                                                  IB_GID_TYPE_IB,
541                                                                  port_num, NULL,
542                                                                  &gid_index);
543                                 if (ret)
544                                         return ret;
545                         } else {
546                                 gid_index = 0;
547                         }
548                 }
549
550                 flow_class = be32_to_cpu(grh->version_tclass_flow);
551                 rdma_ah_set_grh(ah_attr, &sgid,
552                                 flow_class & 0xFFFFF,
553                                 (u8)gid_index, hoplimit,
554                                 (flow_class >> 20) & 0xFF);
555
556         }
557         return 0;
558 }
559 EXPORT_SYMBOL(ib_init_ah_from_wc);
560
561 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
562                                    const struct ib_grh *grh, u8 port_num)
563 {
564         struct rdma_ah_attr ah_attr;
565         int ret;
566
567         ret = ib_init_ah_from_wc(pd->device, port_num, wc, grh, &ah_attr);
568         if (ret)
569                 return ERR_PTR(ret);
570
571         return rdma_create_ah(pd, &ah_attr);
572 }
573 EXPORT_SYMBOL(ib_create_ah_from_wc);
574
575 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
576 {
577         if (ah->type != ah_attr->type)
578                 return -EINVAL;
579
580         return ah->device->modify_ah ?
581                 ah->device->modify_ah(ah, ah_attr) :
582                 -ENOSYS;
583 }
584 EXPORT_SYMBOL(rdma_modify_ah);
585
586 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
587 {
588         return ah->device->query_ah ?
589                 ah->device->query_ah(ah, ah_attr) :
590                 -ENOSYS;
591 }
592 EXPORT_SYMBOL(rdma_query_ah);
593
594 int rdma_destroy_ah(struct ib_ah *ah)
595 {
596         struct ib_pd *pd;
597         int ret;
598
599         pd = ah->pd;
600         ret = ah->device->destroy_ah(ah);
601         if (!ret)
602                 atomic_dec(&pd->usecnt);
603
604         return ret;
605 }
606 EXPORT_SYMBOL(rdma_destroy_ah);
607
608 /* Shared receive queues */
609
610 struct ib_srq *ib_create_srq(struct ib_pd *pd,
611                              struct ib_srq_init_attr *srq_init_attr)
612 {
613         struct ib_srq *srq;
614
615         if (!pd->device->create_srq)
616                 return ERR_PTR(-ENOSYS);
617
618         srq = pd->device->create_srq(pd, srq_init_attr, NULL);
619
620         if (!IS_ERR(srq)) {
621                 srq->device        = pd->device;
622                 srq->pd            = pd;
623                 srq->uobject       = NULL;
624                 srq->event_handler = srq_init_attr->event_handler;
625                 srq->srq_context   = srq_init_attr->srq_context;
626                 srq->srq_type      = srq_init_attr->srq_type;
627                 if (ib_srq_has_cq(srq->srq_type)) {
628                         srq->ext.cq   = srq_init_attr->ext.cq;
629                         atomic_inc(&srq->ext.cq->usecnt);
630                 }
631                 if (srq->srq_type == IB_SRQT_XRC) {
632                         srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
633                         atomic_inc(&srq->ext.xrc.xrcd->usecnt);
634                 }
635                 atomic_inc(&pd->usecnt);
636                 atomic_set(&srq->usecnt, 0);
637         }
638
639         return srq;
640 }
641 EXPORT_SYMBOL(ib_create_srq);
642
643 int ib_modify_srq(struct ib_srq *srq,
644                   struct ib_srq_attr *srq_attr,
645                   enum ib_srq_attr_mask srq_attr_mask)
646 {
647         return srq->device->modify_srq ?
648                 srq->device->modify_srq(srq, srq_attr, srq_attr_mask, NULL) :
649                 -ENOSYS;
650 }
651 EXPORT_SYMBOL(ib_modify_srq);
652
653 int ib_query_srq(struct ib_srq *srq,
654                  struct ib_srq_attr *srq_attr)
655 {
656         return srq->device->query_srq ?
657                 srq->device->query_srq(srq, srq_attr) : -ENOSYS;
658 }
659 EXPORT_SYMBOL(ib_query_srq);
660
661 int ib_destroy_srq(struct ib_srq *srq)
662 {
663         struct ib_pd *pd;
664         enum ib_srq_type srq_type;
665         struct ib_xrcd *uninitialized_var(xrcd);
666         struct ib_cq *uninitialized_var(cq);
667         int ret;
668
669         if (atomic_read(&srq->usecnt))
670                 return -EBUSY;
671
672         pd = srq->pd;
673         srq_type = srq->srq_type;
674         if (ib_srq_has_cq(srq_type))
675                 cq = srq->ext.cq;
676         if (srq_type == IB_SRQT_XRC)
677                 xrcd = srq->ext.xrc.xrcd;
678
679         ret = srq->device->destroy_srq(srq);
680         if (!ret) {
681                 atomic_dec(&pd->usecnt);
682                 if (srq_type == IB_SRQT_XRC)
683                         atomic_dec(&xrcd->usecnt);
684                 if (ib_srq_has_cq(srq_type))
685                         atomic_dec(&cq->usecnt);
686         }
687
688         return ret;
689 }
690 EXPORT_SYMBOL(ib_destroy_srq);
691
692 /* Queue pairs */
693
694 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
695 {
696         struct ib_qp *qp = context;
697         unsigned long flags;
698
699         spin_lock_irqsave(&qp->device->event_handler_lock, flags);
700         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
701                 if (event->element.qp->event_handler)
702                         event->element.qp->event_handler(event, event->element.qp->qp_context);
703         spin_unlock_irqrestore(&qp->device->event_handler_lock, flags);
704 }
705
706 static void __ib_insert_xrcd_qp(struct ib_xrcd *xrcd, struct ib_qp *qp)
707 {
708         mutex_lock(&xrcd->tgt_qp_mutex);
709         list_add(&qp->xrcd_list, &xrcd->tgt_qp_list);
710         mutex_unlock(&xrcd->tgt_qp_mutex);
711 }
712
713 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
714                                   void (*event_handler)(struct ib_event *, void *),
715                                   void *qp_context)
716 {
717         struct ib_qp *qp;
718         unsigned long flags;
719         int err;
720
721         qp = kzalloc(sizeof *qp, GFP_KERNEL);
722         if (!qp)
723                 return ERR_PTR(-ENOMEM);
724
725         qp->real_qp = real_qp;
726         err = ib_open_shared_qp_security(qp, real_qp->device);
727         if (err) {
728                 kfree(qp);
729                 return ERR_PTR(err);
730         }
731
732         qp->real_qp = real_qp;
733         atomic_inc(&real_qp->usecnt);
734         qp->device = real_qp->device;
735         qp->event_handler = event_handler;
736         qp->qp_context = qp_context;
737         qp->qp_num = real_qp->qp_num;
738         qp->qp_type = real_qp->qp_type;
739
740         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
741         list_add(&qp->open_list, &real_qp->open_list);
742         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
743
744         return qp;
745 }
746
747 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
748                          struct ib_qp_open_attr *qp_open_attr)
749 {
750         struct ib_qp *qp, *real_qp;
751
752         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
753                 return ERR_PTR(-EINVAL);
754
755         qp = ERR_PTR(-EINVAL);
756         mutex_lock(&xrcd->tgt_qp_mutex);
757         list_for_each_entry(real_qp, &xrcd->tgt_qp_list, xrcd_list) {
758                 if (real_qp->qp_num == qp_open_attr->qp_num) {
759                         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
760                                           qp_open_attr->qp_context);
761                         break;
762                 }
763         }
764         mutex_unlock(&xrcd->tgt_qp_mutex);
765         return qp;
766 }
767 EXPORT_SYMBOL(ib_open_qp);
768
769 static struct ib_qp *ib_create_xrc_qp(struct ib_qp *qp,
770                 struct ib_qp_init_attr *qp_init_attr)
771 {
772         struct ib_qp *real_qp = qp;
773
774         qp->event_handler = __ib_shared_qp_event_handler;
775         qp->qp_context = qp;
776         qp->pd = NULL;
777         qp->send_cq = qp->recv_cq = NULL;
778         qp->srq = NULL;
779         qp->xrcd = qp_init_attr->xrcd;
780         atomic_inc(&qp_init_attr->xrcd->usecnt);
781         INIT_LIST_HEAD(&qp->open_list);
782
783         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
784                           qp_init_attr->qp_context);
785         if (!IS_ERR(qp))
786                 __ib_insert_xrcd_qp(qp_init_attr->xrcd, real_qp);
787         else
788                 real_qp->device->destroy_qp(real_qp);
789         return qp;
790 }
791
792 struct ib_qp *ib_create_qp(struct ib_pd *pd,
793                            struct ib_qp_init_attr *qp_init_attr)
794 {
795         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
796         struct ib_qp *qp;
797         int ret;
798
799         if (qp_init_attr->rwq_ind_tbl &&
800             (qp_init_attr->recv_cq ||
801             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
802             qp_init_attr->cap.max_recv_sge))
803                 return ERR_PTR(-EINVAL);
804
805         /*
806          * If the callers is using the RDMA API calculate the resources
807          * needed for the RDMA READ/WRITE operations.
808          *
809          * Note that these callers need to pass in a port number.
810          */
811         if (qp_init_attr->cap.max_rdma_ctxs)
812                 rdma_rw_init_qp(device, qp_init_attr);
813
814         qp = device->create_qp(pd, qp_init_attr, NULL);
815         if (IS_ERR(qp))
816                 return qp;
817
818         ret = ib_create_qp_security(qp, device);
819         if (ret) {
820                 ib_destroy_qp(qp);
821                 return ERR_PTR(ret);
822         }
823
824         qp->device     = device;
825         qp->real_qp    = qp;
826         qp->uobject    = NULL;
827         qp->qp_type    = qp_init_attr->qp_type;
828         qp->rwq_ind_tbl = qp_init_attr->rwq_ind_tbl;
829
830         atomic_set(&qp->usecnt, 0);
831         qp->mrs_used = 0;
832         spin_lock_init(&qp->mr_lock);
833         INIT_LIST_HEAD(&qp->rdma_mrs);
834         INIT_LIST_HEAD(&qp->sig_mrs);
835         qp->port = 0;
836
837         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT)
838                 return ib_create_xrc_qp(qp, qp_init_attr);
839
840         qp->event_handler = qp_init_attr->event_handler;
841         qp->qp_context = qp_init_attr->qp_context;
842         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
843                 qp->recv_cq = NULL;
844                 qp->srq = NULL;
845         } else {
846                 qp->recv_cq = qp_init_attr->recv_cq;
847                 if (qp_init_attr->recv_cq)
848                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
849                 qp->srq = qp_init_attr->srq;
850                 if (qp->srq)
851                         atomic_inc(&qp_init_attr->srq->usecnt);
852         }
853
854         qp->pd      = pd;
855         qp->send_cq = qp_init_attr->send_cq;
856         qp->xrcd    = NULL;
857
858         atomic_inc(&pd->usecnt);
859         if (qp_init_attr->send_cq)
860                 atomic_inc(&qp_init_attr->send_cq->usecnt);
861         if (qp_init_attr->rwq_ind_tbl)
862                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
863
864         if (qp_init_attr->cap.max_rdma_ctxs) {
865                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
866                 if (ret) {
867                         pr_err("failed to init MR pool ret= %d\n", ret);
868                         ib_destroy_qp(qp);
869                         return ERR_PTR(ret);
870                 }
871         }
872
873         /*
874          * Note: all hw drivers guarantee that max_send_sge is lower than
875          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
876          * max_send_sge <= max_sge_rd.
877          */
878         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
879         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
880                                  device->attrs.max_sge_rd);
881
882         return qp;
883 }
884 EXPORT_SYMBOL(ib_create_qp);
885
886 static const struct {
887         int                     valid;
888         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
889         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
890 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
891         [IB_QPS_RESET] = {
892                 [IB_QPS_RESET] = { .valid = 1 },
893                 [IB_QPS_INIT]  = {
894                         .valid = 1,
895                         .req_param = {
896                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
897                                                 IB_QP_PORT                      |
898                                                 IB_QP_QKEY),
899                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
900                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
901                                                 IB_QP_PORT                      |
902                                                 IB_QP_ACCESS_FLAGS),
903                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
904                                                 IB_QP_PORT                      |
905                                                 IB_QP_ACCESS_FLAGS),
906                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
907                                                 IB_QP_PORT                      |
908                                                 IB_QP_ACCESS_FLAGS),
909                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
910                                                 IB_QP_PORT                      |
911                                                 IB_QP_ACCESS_FLAGS),
912                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
913                                                 IB_QP_QKEY),
914                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
915                                                 IB_QP_QKEY),
916                         }
917                 },
918         },
919         [IB_QPS_INIT]  = {
920                 [IB_QPS_RESET] = { .valid = 1 },
921                 [IB_QPS_ERR] =   { .valid = 1 },
922                 [IB_QPS_INIT]  = {
923                         .valid = 1,
924                         .opt_param = {
925                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
926                                                 IB_QP_PORT                      |
927                                                 IB_QP_QKEY),
928                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
929                                                 IB_QP_PORT                      |
930                                                 IB_QP_ACCESS_FLAGS),
931                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
932                                                 IB_QP_PORT                      |
933                                                 IB_QP_ACCESS_FLAGS),
934                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
935                                                 IB_QP_PORT                      |
936                                                 IB_QP_ACCESS_FLAGS),
937                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
938                                                 IB_QP_PORT                      |
939                                                 IB_QP_ACCESS_FLAGS),
940                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
941                                                 IB_QP_QKEY),
942                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
943                                                 IB_QP_QKEY),
944                         }
945                 },
946                 [IB_QPS_RTR]   = {
947                         .valid = 1,
948                         .req_param = {
949                                 [IB_QPT_UC]  = (IB_QP_AV                        |
950                                                 IB_QP_PATH_MTU                  |
951                                                 IB_QP_DEST_QPN                  |
952                                                 IB_QP_RQ_PSN),
953                                 [IB_QPT_RC]  = (IB_QP_AV                        |
954                                                 IB_QP_PATH_MTU                  |
955                                                 IB_QP_DEST_QPN                  |
956                                                 IB_QP_RQ_PSN                    |
957                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
958                                                 IB_QP_MIN_RNR_TIMER),
959                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
960                                                 IB_QP_PATH_MTU                  |
961                                                 IB_QP_DEST_QPN                  |
962                                                 IB_QP_RQ_PSN),
963                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
964                                                 IB_QP_PATH_MTU                  |
965                                                 IB_QP_DEST_QPN                  |
966                                                 IB_QP_RQ_PSN                    |
967                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
968                                                 IB_QP_MIN_RNR_TIMER),
969                         },
970                         .opt_param = {
971                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
972                                                  IB_QP_QKEY),
973                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
974                                                  IB_QP_ACCESS_FLAGS             |
975                                                  IB_QP_PKEY_INDEX),
976                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
977                                                  IB_QP_ACCESS_FLAGS             |
978                                                  IB_QP_PKEY_INDEX),
979                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
980                                                  IB_QP_ACCESS_FLAGS             |
981                                                  IB_QP_PKEY_INDEX),
982                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
983                                                  IB_QP_ACCESS_FLAGS             |
984                                                  IB_QP_PKEY_INDEX),
985                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
986                                                  IB_QP_QKEY),
987                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
988                                                  IB_QP_QKEY),
989                          },
990                 },
991         },
992         [IB_QPS_RTR]   = {
993                 [IB_QPS_RESET] = { .valid = 1 },
994                 [IB_QPS_ERR] =   { .valid = 1 },
995                 [IB_QPS_RTS]   = {
996                         .valid = 1,
997                         .req_param = {
998                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
999                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1000                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1001                                                 IB_QP_RETRY_CNT                 |
1002                                                 IB_QP_RNR_RETRY                 |
1003                                                 IB_QP_SQ_PSN                    |
1004                                                 IB_QP_MAX_QP_RD_ATOMIC),
1005                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1006                                                 IB_QP_RETRY_CNT                 |
1007                                                 IB_QP_RNR_RETRY                 |
1008                                                 IB_QP_SQ_PSN                    |
1009                                                 IB_QP_MAX_QP_RD_ATOMIC),
1010                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1011                                                 IB_QP_SQ_PSN),
1012                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1013                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1014                         },
1015                         .opt_param = {
1016                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1017                                                  IB_QP_QKEY),
1018                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1019                                                  IB_QP_ALT_PATH                 |
1020                                                  IB_QP_ACCESS_FLAGS             |
1021                                                  IB_QP_PATH_MIG_STATE),
1022                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1023                                                  IB_QP_ALT_PATH                 |
1024                                                  IB_QP_ACCESS_FLAGS             |
1025                                                  IB_QP_MIN_RNR_TIMER            |
1026                                                  IB_QP_PATH_MIG_STATE),
1027                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1028                                                  IB_QP_ALT_PATH                 |
1029                                                  IB_QP_ACCESS_FLAGS             |
1030                                                  IB_QP_PATH_MIG_STATE),
1031                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1032                                                  IB_QP_ALT_PATH                 |
1033                                                  IB_QP_ACCESS_FLAGS             |
1034                                                  IB_QP_MIN_RNR_TIMER            |
1035                                                  IB_QP_PATH_MIG_STATE),
1036                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1037                                                  IB_QP_QKEY),
1038                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1039                                                  IB_QP_QKEY),
1040                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1041                          }
1042                 }
1043         },
1044         [IB_QPS_RTS]   = {
1045                 [IB_QPS_RESET] = { .valid = 1 },
1046                 [IB_QPS_ERR] =   { .valid = 1 },
1047                 [IB_QPS_RTS]   = {
1048                         .valid = 1,
1049                         .opt_param = {
1050                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1051                                                 IB_QP_QKEY),
1052                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1053                                                 IB_QP_ACCESS_FLAGS              |
1054                                                 IB_QP_ALT_PATH                  |
1055                                                 IB_QP_PATH_MIG_STATE),
1056                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1057                                                 IB_QP_ACCESS_FLAGS              |
1058                                                 IB_QP_ALT_PATH                  |
1059                                                 IB_QP_PATH_MIG_STATE            |
1060                                                 IB_QP_MIN_RNR_TIMER),
1061                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1062                                                 IB_QP_ACCESS_FLAGS              |
1063                                                 IB_QP_ALT_PATH                  |
1064                                                 IB_QP_PATH_MIG_STATE),
1065                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1066                                                 IB_QP_ACCESS_FLAGS              |
1067                                                 IB_QP_ALT_PATH                  |
1068                                                 IB_QP_PATH_MIG_STATE            |
1069                                                 IB_QP_MIN_RNR_TIMER),
1070                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1071                                                 IB_QP_QKEY),
1072                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1073                                                 IB_QP_QKEY),
1074                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1075                         }
1076                 },
1077                 [IB_QPS_SQD]   = {
1078                         .valid = 1,
1079                         .opt_param = {
1080                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1081                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1082                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1083                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1084                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1085                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1086                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1087                         }
1088                 },
1089         },
1090         [IB_QPS_SQD]   = {
1091                 [IB_QPS_RESET] = { .valid = 1 },
1092                 [IB_QPS_ERR] =   { .valid = 1 },
1093                 [IB_QPS_RTS]   = {
1094                         .valid = 1,
1095                         .opt_param = {
1096                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1097                                                 IB_QP_QKEY),
1098                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1099                                                 IB_QP_ALT_PATH                  |
1100                                                 IB_QP_ACCESS_FLAGS              |
1101                                                 IB_QP_PATH_MIG_STATE),
1102                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1103                                                 IB_QP_ALT_PATH                  |
1104                                                 IB_QP_ACCESS_FLAGS              |
1105                                                 IB_QP_MIN_RNR_TIMER             |
1106                                                 IB_QP_PATH_MIG_STATE),
1107                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1108                                                 IB_QP_ALT_PATH                  |
1109                                                 IB_QP_ACCESS_FLAGS              |
1110                                                 IB_QP_PATH_MIG_STATE),
1111                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1112                                                 IB_QP_ALT_PATH                  |
1113                                                 IB_QP_ACCESS_FLAGS              |
1114                                                 IB_QP_MIN_RNR_TIMER             |
1115                                                 IB_QP_PATH_MIG_STATE),
1116                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1117                                                 IB_QP_QKEY),
1118                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1119                                                 IB_QP_QKEY),
1120                         }
1121                 },
1122                 [IB_QPS_SQD]   = {
1123                         .valid = 1,
1124                         .opt_param = {
1125                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1126                                                 IB_QP_QKEY),
1127                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1128                                                 IB_QP_ALT_PATH                  |
1129                                                 IB_QP_ACCESS_FLAGS              |
1130                                                 IB_QP_PKEY_INDEX                |
1131                                                 IB_QP_PATH_MIG_STATE),
1132                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1133                                                 IB_QP_AV                        |
1134                                                 IB_QP_TIMEOUT                   |
1135                                                 IB_QP_RETRY_CNT                 |
1136                                                 IB_QP_RNR_RETRY                 |
1137                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1138                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1139                                                 IB_QP_ALT_PATH                  |
1140                                                 IB_QP_ACCESS_FLAGS              |
1141                                                 IB_QP_PKEY_INDEX                |
1142                                                 IB_QP_MIN_RNR_TIMER             |
1143                                                 IB_QP_PATH_MIG_STATE),
1144                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1145                                                 IB_QP_AV                        |
1146                                                 IB_QP_TIMEOUT                   |
1147                                                 IB_QP_RETRY_CNT                 |
1148                                                 IB_QP_RNR_RETRY                 |
1149                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1150                                                 IB_QP_ALT_PATH                  |
1151                                                 IB_QP_ACCESS_FLAGS              |
1152                                                 IB_QP_PKEY_INDEX                |
1153                                                 IB_QP_PATH_MIG_STATE),
1154                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1155                                                 IB_QP_AV                        |
1156                                                 IB_QP_TIMEOUT                   |
1157                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1158                                                 IB_QP_ALT_PATH                  |
1159                                                 IB_QP_ACCESS_FLAGS              |
1160                                                 IB_QP_PKEY_INDEX                |
1161                                                 IB_QP_MIN_RNR_TIMER             |
1162                                                 IB_QP_PATH_MIG_STATE),
1163                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1164                                                 IB_QP_QKEY),
1165                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1166                                                 IB_QP_QKEY),
1167                         }
1168                 }
1169         },
1170         [IB_QPS_SQE]   = {
1171                 [IB_QPS_RESET] = { .valid = 1 },
1172                 [IB_QPS_ERR] =   { .valid = 1 },
1173                 [IB_QPS_RTS]   = {
1174                         .valid = 1,
1175                         .opt_param = {
1176                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1177                                                 IB_QP_QKEY),
1178                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1179                                                 IB_QP_ACCESS_FLAGS),
1180                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1181                                                 IB_QP_QKEY),
1182                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1183                                                 IB_QP_QKEY),
1184                         }
1185                 }
1186         },
1187         [IB_QPS_ERR] = {
1188                 [IB_QPS_RESET] = { .valid = 1 },
1189                 [IB_QPS_ERR] =   { .valid = 1 }
1190         }
1191 };
1192
1193 int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1194                        enum ib_qp_type type, enum ib_qp_attr_mask mask,
1195                        enum rdma_link_layer ll)
1196 {
1197         enum ib_qp_attr_mask req_param, opt_param;
1198
1199         if (cur_state  < 0 || cur_state  > IB_QPS_ERR ||
1200             next_state < 0 || next_state > IB_QPS_ERR)
1201                 return 0;
1202
1203         if (mask & IB_QP_CUR_STATE  &&
1204             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1205             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1206                 return 0;
1207
1208         if (!qp_state_table[cur_state][next_state].valid)
1209                 return 0;
1210
1211         req_param = qp_state_table[cur_state][next_state].req_param[type];
1212         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1213
1214         if ((mask & req_param) != req_param)
1215                 return 0;
1216
1217         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1218                 return 0;
1219
1220         return 1;
1221 }
1222 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1223
1224 int ib_resolve_eth_dmac(struct ib_device *device,
1225                         struct rdma_ah_attr *ah_attr)
1226 {
1227         int           ret = 0;
1228         struct ib_global_route *grh;
1229
1230         if (!rdma_is_port_valid(device, rdma_ah_get_port_num(ah_attr)))
1231                 return -EINVAL;
1232
1233         if (ah_attr->type != RDMA_AH_ATTR_TYPE_ROCE)
1234                 return 0;
1235
1236         grh = rdma_ah_retrieve_grh(ah_attr);
1237
1238         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw)) {
1239                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
1240                                 ah_attr->roce.dmac);
1241                 return 0;
1242         }
1243         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1244                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1245                         __be32 addr = 0;
1246
1247                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1248                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1249                 } else {
1250                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1251                                         (char *)ah_attr->roce.dmac);
1252                 }
1253         } else {
1254                 union ib_gid            sgid;
1255                 struct ib_gid_attr      sgid_attr;
1256                 int                     ifindex;
1257                 int                     hop_limit;
1258
1259                 ret = ib_query_gid(device,
1260                                    rdma_ah_get_port_num(ah_attr),
1261                                    grh->sgid_index,
1262                                    &sgid, &sgid_attr);
1263
1264                 if (ret || !sgid_attr.ndev) {
1265                         if (!ret)
1266                                 ret = -ENXIO;
1267                         goto out;
1268                 }
1269
1270                 ifindex = sgid_attr.ndev->ifindex;
1271
1272                 ret =
1273                 rdma_addr_find_l2_eth_by_grh(&sgid, &grh->dgid,
1274                                              ah_attr->roce.dmac,
1275                                              NULL, &ifindex, &hop_limit);
1276
1277                 dev_put(sgid_attr.ndev);
1278
1279                 grh->hop_limit = hop_limit;
1280         }
1281 out:
1282         return ret;
1283 }
1284 EXPORT_SYMBOL(ib_resolve_eth_dmac);
1285
1286 /**
1287  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1288  * @qp: The QP to modify.
1289  * @attr: On input, specifies the QP attributes to modify.  On output,
1290  *   the current values of selected QP attributes are returned.
1291  * @attr_mask: A bit-mask used to specify which attributes of the QP
1292  *   are being modified.
1293  * @udata: pointer to user's input output buffer information
1294  *   are being modified.
1295  * It returns 0 on success and returns appropriate error code on error.
1296  */
1297 int ib_modify_qp_with_udata(struct ib_qp *qp, struct ib_qp_attr *attr,
1298                             int attr_mask, struct ib_udata *udata)
1299 {
1300         int ret;
1301
1302         if (attr_mask & IB_QP_AV) {
1303                 ret = ib_resolve_eth_dmac(qp->device, &attr->ah_attr);
1304                 if (ret)
1305                         return ret;
1306         }
1307         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1308         if (!ret && (attr_mask & IB_QP_PORT))
1309                 qp->port = attr->port_num;
1310
1311         return ret;
1312 }
1313 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1314
1315 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1316 {
1317         int rc;
1318         u32 netdev_speed;
1319         struct net_device *netdev;
1320         struct ethtool_link_ksettings lksettings;
1321
1322         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1323                 return -EINVAL;
1324
1325         if (!dev->get_netdev)
1326                 return -EOPNOTSUPP;
1327
1328         netdev = dev->get_netdev(dev, port_num);
1329         if (!netdev)
1330                 return -ENODEV;
1331
1332         rtnl_lock();
1333         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1334         rtnl_unlock();
1335
1336         dev_put(netdev);
1337
1338         if (!rc) {
1339                 netdev_speed = lksettings.base.speed;
1340         } else {
1341                 netdev_speed = SPEED_1000;
1342                 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1343                         netdev_speed);
1344         }
1345
1346         if (netdev_speed <= SPEED_1000) {
1347                 *width = IB_WIDTH_1X;
1348                 *speed = IB_SPEED_SDR;
1349         } else if (netdev_speed <= SPEED_10000) {
1350                 *width = IB_WIDTH_1X;
1351                 *speed = IB_SPEED_FDR10;
1352         } else if (netdev_speed <= SPEED_20000) {
1353                 *width = IB_WIDTH_4X;
1354                 *speed = IB_SPEED_DDR;
1355         } else if (netdev_speed <= SPEED_25000) {
1356                 *width = IB_WIDTH_1X;
1357                 *speed = IB_SPEED_EDR;
1358         } else if (netdev_speed <= SPEED_40000) {
1359                 *width = IB_WIDTH_4X;
1360                 *speed = IB_SPEED_FDR10;
1361         } else {
1362                 *width = IB_WIDTH_4X;
1363                 *speed = IB_SPEED_EDR;
1364         }
1365
1366         return 0;
1367 }
1368 EXPORT_SYMBOL(ib_get_eth_speed);
1369
1370 int ib_modify_qp(struct ib_qp *qp,
1371                  struct ib_qp_attr *qp_attr,
1372                  int qp_attr_mask)
1373 {
1374         return ib_modify_qp_with_udata(qp, qp_attr, qp_attr_mask, NULL);
1375 }
1376 EXPORT_SYMBOL(ib_modify_qp);
1377
1378 int ib_query_qp(struct ib_qp *qp,
1379                 struct ib_qp_attr *qp_attr,
1380                 int qp_attr_mask,
1381                 struct ib_qp_init_attr *qp_init_attr)
1382 {
1383         return qp->device->query_qp ?
1384                 qp->device->query_qp(qp->real_qp, qp_attr, qp_attr_mask, qp_init_attr) :
1385                 -ENOSYS;
1386 }
1387 EXPORT_SYMBOL(ib_query_qp);
1388
1389 int ib_close_qp(struct ib_qp *qp)
1390 {
1391         struct ib_qp *real_qp;
1392         unsigned long flags;
1393
1394         real_qp = qp->real_qp;
1395         if (real_qp == qp)
1396                 return -EINVAL;
1397
1398         spin_lock_irqsave(&real_qp->device->event_handler_lock, flags);
1399         list_del(&qp->open_list);
1400         spin_unlock_irqrestore(&real_qp->device->event_handler_lock, flags);
1401
1402         atomic_dec(&real_qp->usecnt);
1403         ib_close_shared_qp_security(qp->qp_sec);
1404         kfree(qp);
1405
1406         return 0;
1407 }
1408 EXPORT_SYMBOL(ib_close_qp);
1409
1410 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1411 {
1412         struct ib_xrcd *xrcd;
1413         struct ib_qp *real_qp;
1414         int ret;
1415
1416         real_qp = qp->real_qp;
1417         xrcd = real_qp->xrcd;
1418
1419         mutex_lock(&xrcd->tgt_qp_mutex);
1420         ib_close_qp(qp);
1421         if (atomic_read(&real_qp->usecnt) == 0)
1422                 list_del(&real_qp->xrcd_list);
1423         else
1424                 real_qp = NULL;
1425         mutex_unlock(&xrcd->tgt_qp_mutex);
1426
1427         if (real_qp) {
1428                 ret = ib_destroy_qp(real_qp);
1429                 if (!ret)
1430                         atomic_dec(&xrcd->usecnt);
1431                 else
1432                         __ib_insert_xrcd_qp(xrcd, real_qp);
1433         }
1434
1435         return 0;
1436 }
1437
1438 int ib_destroy_qp(struct ib_qp *qp)
1439 {
1440         struct ib_pd *pd;
1441         struct ib_cq *scq, *rcq;
1442         struct ib_srq *srq;
1443         struct ib_rwq_ind_table *ind_tbl;
1444         struct ib_qp_security *sec;
1445         int ret;
1446
1447         WARN_ON_ONCE(qp->mrs_used > 0);
1448
1449         if (atomic_read(&qp->usecnt))
1450                 return -EBUSY;
1451
1452         if (qp->real_qp != qp)
1453                 return __ib_destroy_shared_qp(qp);
1454
1455         pd   = qp->pd;
1456         scq  = qp->send_cq;
1457         rcq  = qp->recv_cq;
1458         srq  = qp->srq;
1459         ind_tbl = qp->rwq_ind_tbl;
1460         sec  = qp->qp_sec;
1461         if (sec)
1462                 ib_destroy_qp_security_begin(sec);
1463
1464         if (!qp->uobject)
1465                 rdma_rw_cleanup_mrs(qp);
1466
1467         ret = qp->device->destroy_qp(qp);
1468         if (!ret) {
1469                 if (pd)
1470                         atomic_dec(&pd->usecnt);
1471                 if (scq)
1472                         atomic_dec(&scq->usecnt);
1473                 if (rcq)
1474                         atomic_dec(&rcq->usecnt);
1475                 if (srq)
1476                         atomic_dec(&srq->usecnt);
1477                 if (ind_tbl)
1478                         atomic_dec(&ind_tbl->usecnt);
1479                 if (sec)
1480                         ib_destroy_qp_security_end(sec);
1481         } else {
1482                 if (sec)
1483                         ib_destroy_qp_security_abort(sec);
1484         }
1485
1486         return ret;
1487 }
1488 EXPORT_SYMBOL(ib_destroy_qp);
1489
1490 /* Completion queues */
1491
1492 struct ib_cq *ib_create_cq(struct ib_device *device,
1493                            ib_comp_handler comp_handler,
1494                            void (*event_handler)(struct ib_event *, void *),
1495                            void *cq_context,
1496                            const struct ib_cq_init_attr *cq_attr)
1497 {
1498         struct ib_cq *cq;
1499
1500         cq = device->create_cq(device, cq_attr, NULL, NULL);
1501
1502         if (!IS_ERR(cq)) {
1503                 cq->device        = device;
1504                 cq->uobject       = NULL;
1505                 cq->comp_handler  = comp_handler;
1506                 cq->event_handler = event_handler;
1507                 cq->cq_context    = cq_context;
1508                 atomic_set(&cq->usecnt, 0);
1509         }
1510
1511         return cq;
1512 }
1513 EXPORT_SYMBOL(ib_create_cq);
1514
1515 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period)
1516 {
1517         return cq->device->modify_cq ?
1518                 cq->device->modify_cq(cq, cq_count, cq_period) : -ENOSYS;
1519 }
1520 EXPORT_SYMBOL(ib_modify_cq);
1521
1522 int ib_destroy_cq(struct ib_cq *cq)
1523 {
1524         if (atomic_read(&cq->usecnt))
1525                 return -EBUSY;
1526
1527         return cq->device->destroy_cq(cq);
1528 }
1529 EXPORT_SYMBOL(ib_destroy_cq);
1530
1531 int ib_resize_cq(struct ib_cq *cq, int cqe)
1532 {
1533         return cq->device->resize_cq ?
1534                 cq->device->resize_cq(cq, cqe, NULL) : -ENOSYS;
1535 }
1536 EXPORT_SYMBOL(ib_resize_cq);
1537
1538 /* Memory regions */
1539
1540 int ib_dereg_mr(struct ib_mr *mr)
1541 {
1542         struct ib_pd *pd = mr->pd;
1543         int ret;
1544
1545         ret = mr->device->dereg_mr(mr);
1546         if (!ret)
1547                 atomic_dec(&pd->usecnt);
1548
1549         return ret;
1550 }
1551 EXPORT_SYMBOL(ib_dereg_mr);
1552
1553 /**
1554  * ib_alloc_mr() - Allocates a memory region
1555  * @pd:            protection domain associated with the region
1556  * @mr_type:       memory region type
1557  * @max_num_sg:    maximum sg entries available for registration.
1558  *
1559  * Notes:
1560  * Memory registeration page/sg lists must not exceed max_num_sg.
1561  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
1562  * max_num_sg * used_page_size.
1563  *
1564  */
1565 struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
1566                           enum ib_mr_type mr_type,
1567                           u32 max_num_sg)
1568 {
1569         struct ib_mr *mr;
1570
1571         if (!pd->device->alloc_mr)
1572                 return ERR_PTR(-ENOSYS);
1573
1574         mr = pd->device->alloc_mr(pd, mr_type, max_num_sg);
1575         if (!IS_ERR(mr)) {
1576                 mr->device  = pd->device;
1577                 mr->pd      = pd;
1578                 mr->uobject = NULL;
1579                 atomic_inc(&pd->usecnt);
1580                 mr->need_inval = false;
1581         }
1582
1583         return mr;
1584 }
1585 EXPORT_SYMBOL(ib_alloc_mr);
1586
1587 /* "Fast" memory regions */
1588
1589 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
1590                             int mr_access_flags,
1591                             struct ib_fmr_attr *fmr_attr)
1592 {
1593         struct ib_fmr *fmr;
1594
1595         if (!pd->device->alloc_fmr)
1596                 return ERR_PTR(-ENOSYS);
1597
1598         fmr = pd->device->alloc_fmr(pd, mr_access_flags, fmr_attr);
1599         if (!IS_ERR(fmr)) {
1600                 fmr->device = pd->device;
1601                 fmr->pd     = pd;
1602                 atomic_inc(&pd->usecnt);
1603         }
1604
1605         return fmr;
1606 }
1607 EXPORT_SYMBOL(ib_alloc_fmr);
1608
1609 int ib_unmap_fmr(struct list_head *fmr_list)
1610 {
1611         struct ib_fmr *fmr;
1612
1613         if (list_empty(fmr_list))
1614                 return 0;
1615
1616         fmr = list_entry(fmr_list->next, struct ib_fmr, list);
1617         return fmr->device->unmap_fmr(fmr_list);
1618 }
1619 EXPORT_SYMBOL(ib_unmap_fmr);
1620
1621 int ib_dealloc_fmr(struct ib_fmr *fmr)
1622 {
1623         struct ib_pd *pd;
1624         int ret;
1625
1626         pd = fmr->pd;
1627         ret = fmr->device->dealloc_fmr(fmr);
1628         if (!ret)
1629                 atomic_dec(&pd->usecnt);
1630
1631         return ret;
1632 }
1633 EXPORT_SYMBOL(ib_dealloc_fmr);
1634
1635 /* Multicast groups */
1636
1637 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
1638 {
1639         struct ib_qp_init_attr init_attr = {};
1640         struct ib_qp_attr attr = {};
1641         int num_eth_ports = 0;
1642         int port;
1643
1644         /* If QP state >= init, it is assigned to a port and we can check this
1645          * port only.
1646          */
1647         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
1648                 if (attr.qp_state >= IB_QPS_INIT) {
1649                         if (qp->device->get_link_layer(qp->device, attr.port_num) !=
1650                             IB_LINK_LAYER_INFINIBAND)
1651                                 return true;
1652                         goto lid_check;
1653                 }
1654         }
1655
1656         /* Can't get a quick answer, iterate over all ports */
1657         for (port = 0; port < qp->device->phys_port_cnt; port++)
1658                 if (qp->device->get_link_layer(qp->device, port) !=
1659                     IB_LINK_LAYER_INFINIBAND)
1660                         num_eth_ports++;
1661
1662         /* If we have at lease one Ethernet port, RoCE annex declares that
1663          * multicast LID should be ignored. We can't tell at this step if the
1664          * QP belongs to an IB or Ethernet port.
1665          */
1666         if (num_eth_ports)
1667                 return true;
1668
1669         /* If all the ports are IB, we can check according to IB spec. */
1670 lid_check:
1671         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
1672                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
1673 }
1674
1675 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1676 {
1677         int ret;
1678
1679         if (!qp->device->attach_mcast)
1680                 return -ENOSYS;
1681
1682         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1683             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1684                 return -EINVAL;
1685
1686         ret = qp->device->attach_mcast(qp, gid, lid);
1687         if (!ret)
1688                 atomic_inc(&qp->usecnt);
1689         return ret;
1690 }
1691 EXPORT_SYMBOL(ib_attach_mcast);
1692
1693 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
1694 {
1695         int ret;
1696
1697         if (!qp->device->detach_mcast)
1698                 return -ENOSYS;
1699
1700         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
1701             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
1702                 return -EINVAL;
1703
1704         ret = qp->device->detach_mcast(qp, gid, lid);
1705         if (!ret)
1706                 atomic_dec(&qp->usecnt);
1707         return ret;
1708 }
1709 EXPORT_SYMBOL(ib_detach_mcast);
1710
1711 struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device)
1712 {
1713         struct ib_xrcd *xrcd;
1714
1715         if (!device->alloc_xrcd)
1716                 return ERR_PTR(-ENOSYS);
1717
1718         xrcd = device->alloc_xrcd(device, NULL, NULL);
1719         if (!IS_ERR(xrcd)) {
1720                 xrcd->device = device;
1721                 xrcd->inode = NULL;
1722                 atomic_set(&xrcd->usecnt, 0);
1723                 mutex_init(&xrcd->tgt_qp_mutex);
1724                 INIT_LIST_HEAD(&xrcd->tgt_qp_list);
1725         }
1726
1727         return xrcd;
1728 }
1729 EXPORT_SYMBOL(ib_alloc_xrcd);
1730
1731 int ib_dealloc_xrcd(struct ib_xrcd *xrcd)
1732 {
1733         struct ib_qp *qp;
1734         int ret;
1735
1736         if (atomic_read(&xrcd->usecnt))
1737                 return -EBUSY;
1738
1739         while (!list_empty(&xrcd->tgt_qp_list)) {
1740                 qp = list_entry(xrcd->tgt_qp_list.next, struct ib_qp, xrcd_list);
1741                 ret = ib_destroy_qp(qp);
1742                 if (ret)
1743                         return ret;
1744         }
1745
1746         return xrcd->device->dealloc_xrcd(xrcd);
1747 }
1748 EXPORT_SYMBOL(ib_dealloc_xrcd);
1749
1750 /**
1751  * ib_create_wq - Creates a WQ associated with the specified protection
1752  * domain.
1753  * @pd: The protection domain associated with the WQ.
1754  * @wq_init_attr: A list of initial attributes required to create the
1755  * WQ. If WQ creation succeeds, then the attributes are updated to
1756  * the actual capabilities of the created WQ.
1757  *
1758  * wq_init_attr->max_wr and wq_init_attr->max_sge determine
1759  * the requested size of the WQ, and set to the actual values allocated
1760  * on return.
1761  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
1762  * at least as large as the requested values.
1763  */
1764 struct ib_wq *ib_create_wq(struct ib_pd *pd,
1765                            struct ib_wq_init_attr *wq_attr)
1766 {
1767         struct ib_wq *wq;
1768
1769         if (!pd->device->create_wq)
1770                 return ERR_PTR(-ENOSYS);
1771
1772         wq = pd->device->create_wq(pd, wq_attr, NULL);
1773         if (!IS_ERR(wq)) {
1774                 wq->event_handler = wq_attr->event_handler;
1775                 wq->wq_context = wq_attr->wq_context;
1776                 wq->wq_type = wq_attr->wq_type;
1777                 wq->cq = wq_attr->cq;
1778                 wq->device = pd->device;
1779                 wq->pd = pd;
1780                 wq->uobject = NULL;
1781                 atomic_inc(&pd->usecnt);
1782                 atomic_inc(&wq_attr->cq->usecnt);
1783                 atomic_set(&wq->usecnt, 0);
1784         }
1785         return wq;
1786 }
1787 EXPORT_SYMBOL(ib_create_wq);
1788
1789 /**
1790  * ib_destroy_wq - Destroys the specified WQ.
1791  * @wq: The WQ to destroy.
1792  */
1793 int ib_destroy_wq(struct ib_wq *wq)
1794 {
1795         int err;
1796         struct ib_cq *cq = wq->cq;
1797         struct ib_pd *pd = wq->pd;
1798
1799         if (atomic_read(&wq->usecnt))
1800                 return -EBUSY;
1801
1802         err = wq->device->destroy_wq(wq);
1803         if (!err) {
1804                 atomic_dec(&pd->usecnt);
1805                 atomic_dec(&cq->usecnt);
1806         }
1807         return err;
1808 }
1809 EXPORT_SYMBOL(ib_destroy_wq);
1810
1811 /**
1812  * ib_modify_wq - Modifies the specified WQ.
1813  * @wq: The WQ to modify.
1814  * @wq_attr: On input, specifies the WQ attributes to modify.
1815  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
1816  *   are being modified.
1817  * On output, the current values of selected WQ attributes are returned.
1818  */
1819 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
1820                  u32 wq_attr_mask)
1821 {
1822         int err;
1823
1824         if (!wq->device->modify_wq)
1825                 return -ENOSYS;
1826
1827         err = wq->device->modify_wq(wq, wq_attr, wq_attr_mask, NULL);
1828         return err;
1829 }
1830 EXPORT_SYMBOL(ib_modify_wq);
1831
1832 /*
1833  * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
1834  * @device: The device on which to create the rwq indirection table.
1835  * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
1836  * create the Indirection Table.
1837  *
1838  * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
1839  *      than the created ib_rwq_ind_table object and the caller is responsible
1840  *      for its memory allocation/free.
1841  */
1842 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device,
1843                                                  struct ib_rwq_ind_table_init_attr *init_attr)
1844 {
1845         struct ib_rwq_ind_table *rwq_ind_table;
1846         int i;
1847         u32 table_size;
1848
1849         if (!device->create_rwq_ind_table)
1850                 return ERR_PTR(-ENOSYS);
1851
1852         table_size = (1 << init_attr->log_ind_tbl_size);
1853         rwq_ind_table = device->create_rwq_ind_table(device,
1854                                 init_attr, NULL);
1855         if (IS_ERR(rwq_ind_table))
1856                 return rwq_ind_table;
1857
1858         rwq_ind_table->ind_tbl = init_attr->ind_tbl;
1859         rwq_ind_table->log_ind_tbl_size = init_attr->log_ind_tbl_size;
1860         rwq_ind_table->device = device;
1861         rwq_ind_table->uobject = NULL;
1862         atomic_set(&rwq_ind_table->usecnt, 0);
1863
1864         for (i = 0; i < table_size; i++)
1865                 atomic_inc(&rwq_ind_table->ind_tbl[i]->usecnt);
1866
1867         return rwq_ind_table;
1868 }
1869 EXPORT_SYMBOL(ib_create_rwq_ind_table);
1870
1871 /*
1872  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
1873  * @wq_ind_table: The Indirection Table to destroy.
1874 */
1875 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
1876 {
1877         int err, i;
1878         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
1879         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
1880
1881         if (atomic_read(&rwq_ind_table->usecnt))
1882                 return -EBUSY;
1883
1884         err = rwq_ind_table->device->destroy_rwq_ind_table(rwq_ind_table);
1885         if (!err) {
1886                 for (i = 0; i < table_size; i++)
1887                         atomic_dec(&ind_tbl[i]->usecnt);
1888         }
1889
1890         return err;
1891 }
1892 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
1893
1894 struct ib_flow *ib_create_flow(struct ib_qp *qp,
1895                                struct ib_flow_attr *flow_attr,
1896                                int domain)
1897 {
1898         struct ib_flow *flow_id;
1899         if (!qp->device->create_flow)
1900                 return ERR_PTR(-ENOSYS);
1901
1902         flow_id = qp->device->create_flow(qp, flow_attr, domain);
1903         if (!IS_ERR(flow_id)) {
1904                 atomic_inc(&qp->usecnt);
1905                 flow_id->qp = qp;
1906         }
1907         return flow_id;
1908 }
1909 EXPORT_SYMBOL(ib_create_flow);
1910
1911 int ib_destroy_flow(struct ib_flow *flow_id)
1912 {
1913         int err;
1914         struct ib_qp *qp = flow_id->qp;
1915
1916         err = qp->device->destroy_flow(flow_id);
1917         if (!err)
1918                 atomic_dec(&qp->usecnt);
1919         return err;
1920 }
1921 EXPORT_SYMBOL(ib_destroy_flow);
1922
1923 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
1924                        struct ib_mr_status *mr_status)
1925 {
1926         return mr->device->check_mr_status ?
1927                 mr->device->check_mr_status(mr, check_mask, mr_status) : -ENOSYS;
1928 }
1929 EXPORT_SYMBOL(ib_check_mr_status);
1930
1931 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
1932                          int state)
1933 {
1934         if (!device->set_vf_link_state)
1935                 return -ENOSYS;
1936
1937         return device->set_vf_link_state(device, vf, port, state);
1938 }
1939 EXPORT_SYMBOL(ib_set_vf_link_state);
1940
1941 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
1942                      struct ifla_vf_info *info)
1943 {
1944         if (!device->get_vf_config)
1945                 return -ENOSYS;
1946
1947         return device->get_vf_config(device, vf, port, info);
1948 }
1949 EXPORT_SYMBOL(ib_get_vf_config);
1950
1951 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
1952                     struct ifla_vf_stats *stats)
1953 {
1954         if (!device->get_vf_stats)
1955                 return -ENOSYS;
1956
1957         return device->get_vf_stats(device, vf, port, stats);
1958 }
1959 EXPORT_SYMBOL(ib_get_vf_stats);
1960
1961 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
1962                    int type)
1963 {
1964         if (!device->set_vf_guid)
1965                 return -ENOSYS;
1966
1967         return device->set_vf_guid(device, vf, port, guid, type);
1968 }
1969 EXPORT_SYMBOL(ib_set_vf_guid);
1970
1971 /**
1972  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
1973  *     and set it the memory region.
1974  * @mr:            memory region
1975  * @sg:            dma mapped scatterlist
1976  * @sg_nents:      number of entries in sg
1977  * @sg_offset:     offset in bytes into sg
1978  * @page_size:     page vector desired page size
1979  *
1980  * Constraints:
1981  * - The first sg element is allowed to have an offset.
1982  * - Each sg element must either be aligned to page_size or virtually
1983  *   contiguous to the previous element. In case an sg element has a
1984  *   non-contiguous offset, the mapping prefix will not include it.
1985  * - The last sg element is allowed to have length less than page_size.
1986  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
1987  *   then only max_num_sg entries will be mapped.
1988  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
1989  *   constraints holds and the page_size argument is ignored.
1990  *
1991  * Returns the number of sg elements that were mapped to the memory region.
1992  *
1993  * After this completes successfully, the  memory region
1994  * is ready for registration.
1995  */
1996 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
1997                  unsigned int *sg_offset, unsigned int page_size)
1998 {
1999         if (unlikely(!mr->device->map_mr_sg))
2000                 return -ENOSYS;
2001
2002         mr->page_size = page_size;
2003
2004         return mr->device->map_mr_sg(mr, sg, sg_nents, sg_offset);
2005 }
2006 EXPORT_SYMBOL(ib_map_mr_sg);
2007
2008 /**
2009  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2010  *     to a page vector
2011  * @mr:            memory region
2012  * @sgl:           dma mapped scatterlist
2013  * @sg_nents:      number of entries in sg
2014  * @sg_offset_p:   IN:  start offset in bytes into sg
2015  *                 OUT: offset in bytes for element n of the sg of the first
2016  *                      byte that has not been processed where n is the return
2017  *                      value of this function.
2018  * @set_page:      driver page assignment function pointer
2019  *
2020  * Core service helper for drivers to convert the largest
2021  * prefix of given sg list to a page vector. The sg list
2022  * prefix converted is the prefix that meet the requirements
2023  * of ib_map_mr_sg.
2024  *
2025  * Returns the number of sg elements that were assigned to
2026  * a page vector.
2027  */
2028 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2029                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2030 {
2031         struct scatterlist *sg;
2032         u64 last_end_dma_addr = 0;
2033         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2034         unsigned int last_page_off = 0;
2035         u64 page_mask = ~((u64)mr->page_size - 1);
2036         int i, ret;
2037
2038         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2039                 return -EINVAL;
2040
2041         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2042         mr->length = 0;
2043
2044         for_each_sg(sgl, sg, sg_nents, i) {
2045                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2046                 u64 prev_addr = dma_addr;
2047                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2048                 u64 end_dma_addr = dma_addr + dma_len;
2049                 u64 page_addr = dma_addr & page_mask;
2050
2051                 /*
2052                  * For the second and later elements, check whether either the
2053                  * end of element i-1 or the start of element i is not aligned
2054                  * on a page boundary.
2055                  */
2056                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2057                         /* Stop mapping if there is a gap. */
2058                         if (last_end_dma_addr != dma_addr)
2059                                 break;
2060
2061                         /*
2062                          * Coalesce this element with the last. If it is small
2063                          * enough just update mr->length. Otherwise start
2064                          * mapping from the next page.
2065                          */
2066                         goto next_page;
2067                 }
2068
2069                 do {
2070                         ret = set_page(mr, page_addr);
2071                         if (unlikely(ret < 0)) {
2072                                 sg_offset = prev_addr - sg_dma_address(sg);
2073                                 mr->length += prev_addr - dma_addr;
2074                                 if (sg_offset_p)
2075                                         *sg_offset_p = sg_offset;
2076                                 return i || sg_offset ? i : ret;
2077                         }
2078                         prev_addr = page_addr;
2079 next_page:
2080                         page_addr += mr->page_size;
2081                 } while (page_addr < end_dma_addr);
2082
2083                 mr->length += dma_len;
2084                 last_end_dma_addr = end_dma_addr;
2085                 last_page_off = end_dma_addr & ~page_mask;
2086
2087                 sg_offset = 0;
2088         }
2089
2090         if (sg_offset_p)
2091                 *sg_offset_p = 0;
2092         return i;
2093 }
2094 EXPORT_SYMBOL(ib_sg_to_pages);
2095
2096 struct ib_drain_cqe {
2097         struct ib_cqe cqe;
2098         struct completion done;
2099 };
2100
2101 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2102 {
2103         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2104                                                 cqe);
2105
2106         complete(&cqe->done);
2107 }
2108
2109 /*
2110  * Post a WR and block until its completion is reaped for the SQ.
2111  */
2112 static void __ib_drain_sq(struct ib_qp *qp)
2113 {
2114         struct ib_cq *cq = qp->send_cq;
2115         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2116         struct ib_drain_cqe sdrain;
2117         struct ib_send_wr swr = {}, *bad_swr;
2118         int ret;
2119
2120         swr.wr_cqe = &sdrain.cqe;
2121         sdrain.cqe.done = ib_drain_qp_done;
2122         init_completion(&sdrain.done);
2123
2124         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2125         if (ret) {
2126                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2127                 return;
2128         }
2129
2130         ret = ib_post_send(qp, &swr, &bad_swr);
2131         if (ret) {
2132                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2133                 return;
2134         }
2135
2136         if (cq->poll_ctx == IB_POLL_DIRECT)
2137                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2138                         ib_process_cq_direct(cq, -1);
2139         else
2140                 wait_for_completion(&sdrain.done);
2141 }
2142
2143 /*
2144  * Post a WR and block until its completion is reaped for the RQ.
2145  */
2146 static void __ib_drain_rq(struct ib_qp *qp)
2147 {
2148         struct ib_cq *cq = qp->recv_cq;
2149         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2150         struct ib_drain_cqe rdrain;
2151         struct ib_recv_wr rwr = {}, *bad_rwr;
2152         int ret;
2153
2154         rwr.wr_cqe = &rdrain.cqe;
2155         rdrain.cqe.done = ib_drain_qp_done;
2156         init_completion(&rdrain.done);
2157
2158         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2159         if (ret) {
2160                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2161                 return;
2162         }
2163
2164         ret = ib_post_recv(qp, &rwr, &bad_rwr);
2165         if (ret) {
2166                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2167                 return;
2168         }
2169
2170         if (cq->poll_ctx == IB_POLL_DIRECT)
2171                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2172                         ib_process_cq_direct(cq, -1);
2173         else
2174                 wait_for_completion(&rdrain.done);
2175 }
2176
2177 /**
2178  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2179  *                 application.
2180  * @qp:            queue pair to drain
2181  *
2182  * If the device has a provider-specific drain function, then
2183  * call that.  Otherwise call the generic drain function
2184  * __ib_drain_sq().
2185  *
2186  * The caller must:
2187  *
2188  * ensure there is room in the CQ and SQ for the drain work request and
2189  * completion.
2190  *
2191  * allocate the CQ using ib_alloc_cq().
2192  *
2193  * ensure that there are no other contexts that are posting WRs concurrently.
2194  * Otherwise the drain is not guaranteed.
2195  */
2196 void ib_drain_sq(struct ib_qp *qp)
2197 {
2198         if (qp->device->drain_sq)
2199                 qp->device->drain_sq(qp);
2200         else
2201                 __ib_drain_sq(qp);
2202 }
2203 EXPORT_SYMBOL(ib_drain_sq);
2204
2205 /**
2206  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2207  *                 application.
2208  * @qp:            queue pair to drain
2209  *
2210  * If the device has a provider-specific drain function, then
2211  * call that.  Otherwise call the generic drain function
2212  * __ib_drain_rq().
2213  *
2214  * The caller must:
2215  *
2216  * ensure there is room in the CQ and RQ for the drain work request and
2217  * completion.
2218  *
2219  * allocate the CQ using ib_alloc_cq().
2220  *
2221  * ensure that there are no other contexts that are posting WRs concurrently.
2222  * Otherwise the drain is not guaranteed.
2223  */
2224 void ib_drain_rq(struct ib_qp *qp)
2225 {
2226         if (qp->device->drain_rq)
2227                 qp->device->drain_rq(qp);
2228         else
2229                 __ib_drain_rq(qp);
2230 }
2231 EXPORT_SYMBOL(ib_drain_rq);
2232
2233 /**
2234  * ib_drain_qp() - Block until all CQEs have been consumed by the
2235  *                 application on both the RQ and SQ.
2236  * @qp:            queue pair to drain
2237  *
2238  * The caller must:
2239  *
2240  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2241  * and completions.
2242  *
2243  * allocate the CQs using ib_alloc_cq().
2244  *
2245  * ensure that there are no other contexts that are posting WRs concurrently.
2246  * Otherwise the drain is not guaranteed.
2247  */
2248 void ib_drain_qp(struct ib_qp *qp)
2249 {
2250         ib_drain_sq(qp);
2251         if (!qp->srq)
2252                 ib_drain_rq(qp);
2253 }
2254 EXPORT_SYMBOL(ib_drain_qp);