splice: change exported internal do_splice() helper to take kernel offset
[sfrench/cifs-2.6.git] / drivers / infiniband / core / verbs.c
1 /*
2  * Copyright (c) 2004 Mellanox Technologies Ltd.  All rights reserved.
3  * Copyright (c) 2004 Infinicon Corporation.  All rights reserved.
4  * Copyright (c) 2004 Intel Corporation.  All rights reserved.
5  * Copyright (c) 2004 Topspin Corporation.  All rights reserved.
6  * Copyright (c) 2004 Voltaire Corporation.  All rights reserved.
7  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8  * Copyright (c) 2005, 2006 Cisco Systems.  All rights reserved.
9  *
10  * This software is available to you under a choice of one of two
11  * licenses.  You may choose to be licensed under the terms of the GNU
12  * General Public License (GPL) Version 2, available from the file
13  * COPYING in the main directory of this source tree, or the
14  * OpenIB.org BSD license below:
15  *
16  *     Redistribution and use in source and binary forms, with or
17  *     without modification, are permitted provided that the following
18  *     conditions are met:
19  *
20  *      - Redistributions of source code must retain the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer.
23  *
24  *      - Redistributions in binary form must reproduce the above
25  *        copyright notice, this list of conditions and the following
26  *        disclaimer in the documentation and/or other materials
27  *        provided with the distribution.
28  *
29  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36  * SOFTWARE.
37  */
38
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
44 #include <linux/in.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
48
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
52 #include <rdma/rw.h>
53 #include <rdma/lag.h>
54
55 #include "core_priv.h"
56 #include <trace/events/rdma_core.h>
57
58 static int ib_resolve_eth_dmac(struct ib_device *device,
59                                struct rdma_ah_attr *ah_attr);
60
61 static const char * const ib_events[] = {
62         [IB_EVENT_CQ_ERR]               = "CQ error",
63         [IB_EVENT_QP_FATAL]             = "QP fatal error",
64         [IB_EVENT_QP_REQ_ERR]           = "QP request error",
65         [IB_EVENT_QP_ACCESS_ERR]        = "QP access error",
66         [IB_EVENT_COMM_EST]             = "communication established",
67         [IB_EVENT_SQ_DRAINED]           = "send queue drained",
68         [IB_EVENT_PATH_MIG]             = "path migration successful",
69         [IB_EVENT_PATH_MIG_ERR]         = "path migration error",
70         [IB_EVENT_DEVICE_FATAL]         = "device fatal error",
71         [IB_EVENT_PORT_ACTIVE]          = "port active",
72         [IB_EVENT_PORT_ERR]             = "port error",
73         [IB_EVENT_LID_CHANGE]           = "LID change",
74         [IB_EVENT_PKEY_CHANGE]          = "P_key change",
75         [IB_EVENT_SM_CHANGE]            = "SM change",
76         [IB_EVENT_SRQ_ERR]              = "SRQ error",
77         [IB_EVENT_SRQ_LIMIT_REACHED]    = "SRQ limit reached",
78         [IB_EVENT_QP_LAST_WQE_REACHED]  = "last WQE reached",
79         [IB_EVENT_CLIENT_REREGISTER]    = "client reregister",
80         [IB_EVENT_GID_CHANGE]           = "GID changed",
81 };
82
83 const char *__attribute_const__ ib_event_msg(enum ib_event_type event)
84 {
85         size_t index = event;
86
87         return (index < ARRAY_SIZE(ib_events) && ib_events[index]) ?
88                         ib_events[index] : "unrecognized event";
89 }
90 EXPORT_SYMBOL(ib_event_msg);
91
92 static const char * const wc_statuses[] = {
93         [IB_WC_SUCCESS]                 = "success",
94         [IB_WC_LOC_LEN_ERR]             = "local length error",
95         [IB_WC_LOC_QP_OP_ERR]           = "local QP operation error",
96         [IB_WC_LOC_EEC_OP_ERR]          = "local EE context operation error",
97         [IB_WC_LOC_PROT_ERR]            = "local protection error",
98         [IB_WC_WR_FLUSH_ERR]            = "WR flushed",
99         [IB_WC_MW_BIND_ERR]             = "memory management operation error",
100         [IB_WC_BAD_RESP_ERR]            = "bad response error",
101         [IB_WC_LOC_ACCESS_ERR]          = "local access error",
102         [IB_WC_REM_INV_REQ_ERR]         = "invalid request error",
103         [IB_WC_REM_ACCESS_ERR]          = "remote access error",
104         [IB_WC_REM_OP_ERR]              = "remote operation error",
105         [IB_WC_RETRY_EXC_ERR]           = "transport retry counter exceeded",
106         [IB_WC_RNR_RETRY_EXC_ERR]       = "RNR retry counter exceeded",
107         [IB_WC_LOC_RDD_VIOL_ERR]        = "local RDD violation error",
108         [IB_WC_REM_INV_RD_REQ_ERR]      = "remote invalid RD request",
109         [IB_WC_REM_ABORT_ERR]           = "operation aborted",
110         [IB_WC_INV_EECN_ERR]            = "invalid EE context number",
111         [IB_WC_INV_EEC_STATE_ERR]       = "invalid EE context state",
112         [IB_WC_FATAL_ERR]               = "fatal error",
113         [IB_WC_RESP_TIMEOUT_ERR]        = "response timeout error",
114         [IB_WC_GENERAL_ERR]             = "general error",
115 };
116
117 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status)
118 {
119         size_t index = status;
120
121         return (index < ARRAY_SIZE(wc_statuses) && wc_statuses[index]) ?
122                         wc_statuses[index] : "unrecognized status";
123 }
124 EXPORT_SYMBOL(ib_wc_status_msg);
125
126 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate)
127 {
128         switch (rate) {
129         case IB_RATE_2_5_GBPS: return   1;
130         case IB_RATE_5_GBPS:   return   2;
131         case IB_RATE_10_GBPS:  return   4;
132         case IB_RATE_20_GBPS:  return   8;
133         case IB_RATE_30_GBPS:  return  12;
134         case IB_RATE_40_GBPS:  return  16;
135         case IB_RATE_60_GBPS:  return  24;
136         case IB_RATE_80_GBPS:  return  32;
137         case IB_RATE_120_GBPS: return  48;
138         case IB_RATE_14_GBPS:  return   6;
139         case IB_RATE_56_GBPS:  return  22;
140         case IB_RATE_112_GBPS: return  45;
141         case IB_RATE_168_GBPS: return  67;
142         case IB_RATE_25_GBPS:  return  10;
143         case IB_RATE_100_GBPS: return  40;
144         case IB_RATE_200_GBPS: return  80;
145         case IB_RATE_300_GBPS: return 120;
146         case IB_RATE_28_GBPS:  return  11;
147         case IB_RATE_50_GBPS:  return  20;
148         case IB_RATE_400_GBPS: return 160;
149         case IB_RATE_600_GBPS: return 240;
150         default:               return  -1;
151         }
152 }
153 EXPORT_SYMBOL(ib_rate_to_mult);
154
155 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult)
156 {
157         switch (mult) {
158         case 1:   return IB_RATE_2_5_GBPS;
159         case 2:   return IB_RATE_5_GBPS;
160         case 4:   return IB_RATE_10_GBPS;
161         case 8:   return IB_RATE_20_GBPS;
162         case 12:  return IB_RATE_30_GBPS;
163         case 16:  return IB_RATE_40_GBPS;
164         case 24:  return IB_RATE_60_GBPS;
165         case 32:  return IB_RATE_80_GBPS;
166         case 48:  return IB_RATE_120_GBPS;
167         case 6:   return IB_RATE_14_GBPS;
168         case 22:  return IB_RATE_56_GBPS;
169         case 45:  return IB_RATE_112_GBPS;
170         case 67:  return IB_RATE_168_GBPS;
171         case 10:  return IB_RATE_25_GBPS;
172         case 40:  return IB_RATE_100_GBPS;
173         case 80:  return IB_RATE_200_GBPS;
174         case 120: return IB_RATE_300_GBPS;
175         case 11:  return IB_RATE_28_GBPS;
176         case 20:  return IB_RATE_50_GBPS;
177         case 160: return IB_RATE_400_GBPS;
178         case 240: return IB_RATE_600_GBPS;
179         default:  return IB_RATE_PORT_CURRENT;
180         }
181 }
182 EXPORT_SYMBOL(mult_to_ib_rate);
183
184 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate)
185 {
186         switch (rate) {
187         case IB_RATE_2_5_GBPS: return 2500;
188         case IB_RATE_5_GBPS:   return 5000;
189         case IB_RATE_10_GBPS:  return 10000;
190         case IB_RATE_20_GBPS:  return 20000;
191         case IB_RATE_30_GBPS:  return 30000;
192         case IB_RATE_40_GBPS:  return 40000;
193         case IB_RATE_60_GBPS:  return 60000;
194         case IB_RATE_80_GBPS:  return 80000;
195         case IB_RATE_120_GBPS: return 120000;
196         case IB_RATE_14_GBPS:  return 14062;
197         case IB_RATE_56_GBPS:  return 56250;
198         case IB_RATE_112_GBPS: return 112500;
199         case IB_RATE_168_GBPS: return 168750;
200         case IB_RATE_25_GBPS:  return 25781;
201         case IB_RATE_100_GBPS: return 103125;
202         case IB_RATE_200_GBPS: return 206250;
203         case IB_RATE_300_GBPS: return 309375;
204         case IB_RATE_28_GBPS:  return 28125;
205         case IB_RATE_50_GBPS:  return 53125;
206         case IB_RATE_400_GBPS: return 425000;
207         case IB_RATE_600_GBPS: return 637500;
208         default:               return -1;
209         }
210 }
211 EXPORT_SYMBOL(ib_rate_to_mbps);
212
213 __attribute_const__ enum rdma_transport_type
214 rdma_node_get_transport(unsigned int node_type)
215 {
216
217         if (node_type == RDMA_NODE_USNIC)
218                 return RDMA_TRANSPORT_USNIC;
219         if (node_type == RDMA_NODE_USNIC_UDP)
220                 return RDMA_TRANSPORT_USNIC_UDP;
221         if (node_type == RDMA_NODE_RNIC)
222                 return RDMA_TRANSPORT_IWARP;
223         if (node_type == RDMA_NODE_UNSPECIFIED)
224                 return RDMA_TRANSPORT_UNSPECIFIED;
225
226         return RDMA_TRANSPORT_IB;
227 }
228 EXPORT_SYMBOL(rdma_node_get_transport);
229
230 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, u8 port_num)
231 {
232         enum rdma_transport_type lt;
233         if (device->ops.get_link_layer)
234                 return device->ops.get_link_layer(device, port_num);
235
236         lt = rdma_node_get_transport(device->node_type);
237         if (lt == RDMA_TRANSPORT_IB)
238                 return IB_LINK_LAYER_INFINIBAND;
239
240         return IB_LINK_LAYER_ETHERNET;
241 }
242 EXPORT_SYMBOL(rdma_port_get_link_layer);
243
244 /* Protection domains */
245
246 /**
247  * ib_alloc_pd - Allocates an unused protection domain.
248  * @device: The device on which to allocate the protection domain.
249  * @flags: protection domain flags
250  * @caller: caller's build-time module name
251  *
252  * A protection domain object provides an association between QPs, shared
253  * receive queues, address handles, memory regions, and memory windows.
254  *
255  * Every PD has a local_dma_lkey which can be used as the lkey value for local
256  * memory operations.
257  */
258 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags,
259                 const char *caller)
260 {
261         struct ib_pd *pd;
262         int mr_access_flags = 0;
263         int ret;
264
265         pd = rdma_zalloc_drv_obj(device, ib_pd);
266         if (!pd)
267                 return ERR_PTR(-ENOMEM);
268
269         pd->device = device;
270         pd->uobject = NULL;
271         pd->__internal_mr = NULL;
272         atomic_set(&pd->usecnt, 0);
273         pd->flags = flags;
274
275         pd->res.type = RDMA_RESTRACK_PD;
276         rdma_restrack_set_task(&pd->res, caller);
277
278         ret = device->ops.alloc_pd(pd, NULL);
279         if (ret) {
280                 kfree(pd);
281                 return ERR_PTR(ret);
282         }
283         rdma_restrack_kadd(&pd->res);
284
285         if (device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY)
286                 pd->local_dma_lkey = device->local_dma_lkey;
287         else
288                 mr_access_flags |= IB_ACCESS_LOCAL_WRITE;
289
290         if (flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
291                 pr_warn("%s: enabling unsafe global rkey\n", caller);
292                 mr_access_flags |= IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE;
293         }
294
295         if (mr_access_flags) {
296                 struct ib_mr *mr;
297
298                 mr = pd->device->ops.get_dma_mr(pd, mr_access_flags);
299                 if (IS_ERR(mr)) {
300                         ib_dealloc_pd(pd);
301                         return ERR_CAST(mr);
302                 }
303
304                 mr->device      = pd->device;
305                 mr->pd          = pd;
306                 mr->type        = IB_MR_TYPE_DMA;
307                 mr->uobject     = NULL;
308                 mr->need_inval  = false;
309
310                 pd->__internal_mr = mr;
311
312                 if (!(device->attrs.device_cap_flags & IB_DEVICE_LOCAL_DMA_LKEY))
313                         pd->local_dma_lkey = pd->__internal_mr->lkey;
314
315                 if (flags & IB_PD_UNSAFE_GLOBAL_RKEY)
316                         pd->unsafe_global_rkey = pd->__internal_mr->rkey;
317         }
318
319         return pd;
320 }
321 EXPORT_SYMBOL(__ib_alloc_pd);
322
323 /**
324  * ib_dealloc_pd_user - Deallocates a protection domain.
325  * @pd: The protection domain to deallocate.
326  * @udata: Valid user data or NULL for kernel object
327  *
328  * It is an error to call this function while any resources in the pd still
329  * exist.  The caller is responsible to synchronously destroy them and
330  * guarantee no new allocations will happen.
331  */
332 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata)
333 {
334         int ret;
335
336         if (pd->__internal_mr) {
337                 ret = pd->device->ops.dereg_mr(pd->__internal_mr, NULL);
338                 WARN_ON(ret);
339                 pd->__internal_mr = NULL;
340         }
341
342         /* uverbs manipulates usecnt with proper locking, while the kabi
343            requires the caller to guarantee we can't race here. */
344         WARN_ON(atomic_read(&pd->usecnt));
345
346         rdma_restrack_del(&pd->res);
347         pd->device->ops.dealloc_pd(pd, udata);
348         kfree(pd);
349 }
350 EXPORT_SYMBOL(ib_dealloc_pd_user);
351
352 /* Address handles */
353
354 /**
355  * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
356  * @dest:       Pointer to destination ah_attr. Contents of the destination
357  *              pointer is assumed to be invalid and attribute are overwritten.
358  * @src:        Pointer to source ah_attr.
359  */
360 void rdma_copy_ah_attr(struct rdma_ah_attr *dest,
361                        const struct rdma_ah_attr *src)
362 {
363         *dest = *src;
364         if (dest->grh.sgid_attr)
365                 rdma_hold_gid_attr(dest->grh.sgid_attr);
366 }
367 EXPORT_SYMBOL(rdma_copy_ah_attr);
368
369 /**
370  * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
371  * @old:        Pointer to existing ah_attr which needs to be replaced.
372  *              old is assumed to be valid or zero'd
373  * @new:        Pointer to the new ah_attr.
374  *
375  * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
376  * old the ah_attr is valid; after that it copies the new attribute and holds
377  * the reference to the replaced ah_attr.
378  */
379 void rdma_replace_ah_attr(struct rdma_ah_attr *old,
380                           const struct rdma_ah_attr *new)
381 {
382         rdma_destroy_ah_attr(old);
383         *old = *new;
384         if (old->grh.sgid_attr)
385                 rdma_hold_gid_attr(old->grh.sgid_attr);
386 }
387 EXPORT_SYMBOL(rdma_replace_ah_attr);
388
389 /**
390  * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
391  * @dest:       Pointer to destination ah_attr to copy to.
392  *              dest is assumed to be valid or zero'd
393  * @src:        Pointer to the new ah_attr.
394  *
395  * rdma_move_ah_attr() first releases any reference in the destination ah_attr
396  * if it is valid. This also transfers ownership of internal references from
397  * src to dest, making src invalid in the process. No new reference of the src
398  * ah_attr is taken.
399  */
400 void rdma_move_ah_attr(struct rdma_ah_attr *dest, struct rdma_ah_attr *src)
401 {
402         rdma_destroy_ah_attr(dest);
403         *dest = *src;
404         src->grh.sgid_attr = NULL;
405 }
406 EXPORT_SYMBOL(rdma_move_ah_attr);
407
408 /*
409  * Validate that the rdma_ah_attr is valid for the device before passing it
410  * off to the driver.
411  */
412 static int rdma_check_ah_attr(struct ib_device *device,
413                               struct rdma_ah_attr *ah_attr)
414 {
415         if (!rdma_is_port_valid(device, ah_attr->port_num))
416                 return -EINVAL;
417
418         if ((rdma_is_grh_required(device, ah_attr->port_num) ||
419              ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) &&
420             !(ah_attr->ah_flags & IB_AH_GRH))
421                 return -EINVAL;
422
423         if (ah_attr->grh.sgid_attr) {
424                 /*
425                  * Make sure the passed sgid_attr is consistent with the
426                  * parameters
427                  */
428                 if (ah_attr->grh.sgid_attr->index != ah_attr->grh.sgid_index ||
429                     ah_attr->grh.sgid_attr->port_num != ah_attr->port_num)
430                         return -EINVAL;
431         }
432         return 0;
433 }
434
435 /*
436  * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
437  * On success the caller is responsible to call rdma_unfill_sgid_attr().
438  */
439 static int rdma_fill_sgid_attr(struct ib_device *device,
440                                struct rdma_ah_attr *ah_attr,
441                                const struct ib_gid_attr **old_sgid_attr)
442 {
443         const struct ib_gid_attr *sgid_attr;
444         struct ib_global_route *grh;
445         int ret;
446
447         *old_sgid_attr = ah_attr->grh.sgid_attr;
448
449         ret = rdma_check_ah_attr(device, ah_attr);
450         if (ret)
451                 return ret;
452
453         if (!(ah_attr->ah_flags & IB_AH_GRH))
454                 return 0;
455
456         grh = rdma_ah_retrieve_grh(ah_attr);
457         if (grh->sgid_attr)
458                 return 0;
459
460         sgid_attr =
461                 rdma_get_gid_attr(device, ah_attr->port_num, grh->sgid_index);
462         if (IS_ERR(sgid_attr))
463                 return PTR_ERR(sgid_attr);
464
465         /* Move ownerhip of the kref into the ah_attr */
466         grh->sgid_attr = sgid_attr;
467         return 0;
468 }
469
470 static void rdma_unfill_sgid_attr(struct rdma_ah_attr *ah_attr,
471                                   const struct ib_gid_attr *old_sgid_attr)
472 {
473         /*
474          * Fill didn't change anything, the caller retains ownership of
475          * whatever it passed
476          */
477         if (ah_attr->grh.sgid_attr == old_sgid_attr)
478                 return;
479
480         /*
481          * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
482          * doesn't see any change in the rdma_ah_attr. If we get here
483          * old_sgid_attr is NULL.
484          */
485         rdma_destroy_ah_attr(ah_attr);
486 }
487
488 static const struct ib_gid_attr *
489 rdma_update_sgid_attr(struct rdma_ah_attr *ah_attr,
490                       const struct ib_gid_attr *old_attr)
491 {
492         if (old_attr)
493                 rdma_put_gid_attr(old_attr);
494         if (ah_attr->ah_flags & IB_AH_GRH) {
495                 rdma_hold_gid_attr(ah_attr->grh.sgid_attr);
496                 return ah_attr->grh.sgid_attr;
497         }
498         return NULL;
499 }
500
501 static struct ib_ah *_rdma_create_ah(struct ib_pd *pd,
502                                      struct rdma_ah_attr *ah_attr,
503                                      u32 flags,
504                                      struct ib_udata *udata,
505                                      struct net_device *xmit_slave)
506 {
507         struct rdma_ah_init_attr init_attr = {};
508         struct ib_device *device = pd->device;
509         struct ib_ah *ah;
510         int ret;
511
512         might_sleep_if(flags & RDMA_CREATE_AH_SLEEPABLE);
513
514         if (!device->ops.create_ah)
515                 return ERR_PTR(-EOPNOTSUPP);
516
517         ah = rdma_zalloc_drv_obj_gfp(
518                 device, ib_ah,
519                 (flags & RDMA_CREATE_AH_SLEEPABLE) ? GFP_KERNEL : GFP_ATOMIC);
520         if (!ah)
521                 return ERR_PTR(-ENOMEM);
522
523         ah->device = device;
524         ah->pd = pd;
525         ah->type = ah_attr->type;
526         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, NULL);
527         init_attr.ah_attr = ah_attr;
528         init_attr.flags = flags;
529         init_attr.xmit_slave = xmit_slave;
530
531         ret = device->ops.create_ah(ah, &init_attr, udata);
532         if (ret) {
533                 kfree(ah);
534                 return ERR_PTR(ret);
535         }
536
537         atomic_inc(&pd->usecnt);
538         return ah;
539 }
540
541 /**
542  * rdma_create_ah - Creates an address handle for the
543  * given address vector.
544  * @pd: The protection domain associated with the address handle.
545  * @ah_attr: The attributes of the address vector.
546  * @flags: Create address handle flags (see enum rdma_create_ah_flags).
547  *
548  * It returns 0 on success and returns appropriate error code on error.
549  * The address handle is used to reference a local or global destination
550  * in all UD QP post sends.
551  */
552 struct ib_ah *rdma_create_ah(struct ib_pd *pd, struct rdma_ah_attr *ah_attr,
553                              u32 flags)
554 {
555         const struct ib_gid_attr *old_sgid_attr;
556         struct net_device *slave;
557         struct ib_ah *ah;
558         int ret;
559
560         ret = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
561         if (ret)
562                 return ERR_PTR(ret);
563         slave = rdma_lag_get_ah_roce_slave(pd->device, ah_attr,
564                                            (flags & RDMA_CREATE_AH_SLEEPABLE) ?
565                                            GFP_KERNEL : GFP_ATOMIC);
566         if (IS_ERR(slave)) {
567                 rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
568                 return (void *)slave;
569         }
570         ah = _rdma_create_ah(pd, ah_attr, flags, NULL, slave);
571         rdma_lag_put_ah_roce_slave(slave);
572         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
573         return ah;
574 }
575 EXPORT_SYMBOL(rdma_create_ah);
576
577 /**
578  * rdma_create_user_ah - Creates an address handle for the
579  * given address vector.
580  * It resolves destination mac address for ah attribute of RoCE type.
581  * @pd: The protection domain associated with the address handle.
582  * @ah_attr: The attributes of the address vector.
583  * @udata: pointer to user's input output buffer information need by
584  *         provider driver.
585  *
586  * It returns 0 on success and returns appropriate error code on error.
587  * The address handle is used to reference a local or global destination
588  * in all UD QP post sends.
589  */
590 struct ib_ah *rdma_create_user_ah(struct ib_pd *pd,
591                                   struct rdma_ah_attr *ah_attr,
592                                   struct ib_udata *udata)
593 {
594         const struct ib_gid_attr *old_sgid_attr;
595         struct ib_ah *ah;
596         int err;
597
598         err = rdma_fill_sgid_attr(pd->device, ah_attr, &old_sgid_attr);
599         if (err)
600                 return ERR_PTR(err);
601
602         if (ah_attr->type == RDMA_AH_ATTR_TYPE_ROCE) {
603                 err = ib_resolve_eth_dmac(pd->device, ah_attr);
604                 if (err) {
605                         ah = ERR_PTR(err);
606                         goto out;
607                 }
608         }
609
610         ah = _rdma_create_ah(pd, ah_attr, RDMA_CREATE_AH_SLEEPABLE,
611                              udata, NULL);
612
613 out:
614         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
615         return ah;
616 }
617 EXPORT_SYMBOL(rdma_create_user_ah);
618
619 int ib_get_rdma_header_version(const union rdma_network_hdr *hdr)
620 {
621         const struct iphdr *ip4h = (struct iphdr *)&hdr->roce4grh;
622         struct iphdr ip4h_checked;
623         const struct ipv6hdr *ip6h = (struct ipv6hdr *)&hdr->ibgrh;
624
625         /* If it's IPv6, the version must be 6, otherwise, the first
626          * 20 bytes (before the IPv4 header) are garbled.
627          */
628         if (ip6h->version != 6)
629                 return (ip4h->version == 4) ? 4 : 0;
630         /* version may be 6 or 4 because the first 20 bytes could be garbled */
631
632         /* RoCE v2 requires no options, thus header length
633          * must be 5 words
634          */
635         if (ip4h->ihl != 5)
636                 return 6;
637
638         /* Verify checksum.
639          * We can't write on scattered buffers so we need to copy to
640          * temp buffer.
641          */
642         memcpy(&ip4h_checked, ip4h, sizeof(ip4h_checked));
643         ip4h_checked.check = 0;
644         ip4h_checked.check = ip_fast_csum((u8 *)&ip4h_checked, 5);
645         /* if IPv4 header checksum is OK, believe it */
646         if (ip4h->check == ip4h_checked.check)
647                 return 4;
648         return 6;
649 }
650 EXPORT_SYMBOL(ib_get_rdma_header_version);
651
652 static enum rdma_network_type ib_get_net_type_by_grh(struct ib_device *device,
653                                                      u8 port_num,
654                                                      const struct ib_grh *grh)
655 {
656         int grh_version;
657
658         if (rdma_protocol_ib(device, port_num))
659                 return RDMA_NETWORK_IB;
660
661         grh_version = ib_get_rdma_header_version((union rdma_network_hdr *)grh);
662
663         if (grh_version == 4)
664                 return RDMA_NETWORK_IPV4;
665
666         if (grh->next_hdr == IPPROTO_UDP)
667                 return RDMA_NETWORK_IPV6;
668
669         return RDMA_NETWORK_ROCE_V1;
670 }
671
672 struct find_gid_index_context {
673         u16 vlan_id;
674         enum ib_gid_type gid_type;
675 };
676
677 static bool find_gid_index(const union ib_gid *gid,
678                            const struct ib_gid_attr *gid_attr,
679                            void *context)
680 {
681         struct find_gid_index_context *ctx = context;
682         u16 vlan_id = 0xffff;
683         int ret;
684
685         if (ctx->gid_type != gid_attr->gid_type)
686                 return false;
687
688         ret = rdma_read_gid_l2_fields(gid_attr, &vlan_id, NULL);
689         if (ret)
690                 return false;
691
692         return ctx->vlan_id == vlan_id;
693 }
694
695 static const struct ib_gid_attr *
696 get_sgid_attr_from_eth(struct ib_device *device, u8 port_num,
697                        u16 vlan_id, const union ib_gid *sgid,
698                        enum ib_gid_type gid_type)
699 {
700         struct find_gid_index_context context = {.vlan_id = vlan_id,
701                                                  .gid_type = gid_type};
702
703         return rdma_find_gid_by_filter(device, sgid, port_num, find_gid_index,
704                                        &context);
705 }
706
707 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr *hdr,
708                               enum rdma_network_type net_type,
709                               union ib_gid *sgid, union ib_gid *dgid)
710 {
711         struct sockaddr_in  src_in;
712         struct sockaddr_in  dst_in;
713         __be32 src_saddr, dst_saddr;
714
715         if (!sgid || !dgid)
716                 return -EINVAL;
717
718         if (net_type == RDMA_NETWORK_IPV4) {
719                 memcpy(&src_in.sin_addr.s_addr,
720                        &hdr->roce4grh.saddr, 4);
721                 memcpy(&dst_in.sin_addr.s_addr,
722                        &hdr->roce4grh.daddr, 4);
723                 src_saddr = src_in.sin_addr.s_addr;
724                 dst_saddr = dst_in.sin_addr.s_addr;
725                 ipv6_addr_set_v4mapped(src_saddr,
726                                        (struct in6_addr *)sgid);
727                 ipv6_addr_set_v4mapped(dst_saddr,
728                                        (struct in6_addr *)dgid);
729                 return 0;
730         } else if (net_type == RDMA_NETWORK_IPV6 ||
731                    net_type == RDMA_NETWORK_IB) {
732                 *dgid = hdr->ibgrh.dgid;
733                 *sgid = hdr->ibgrh.sgid;
734                 return 0;
735         } else {
736                 return -EINVAL;
737         }
738 }
739 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr);
740
741 /* Resolve destination mac address and hop limit for unicast destination
742  * GID entry, considering the source GID entry as well.
743  * ah_attribute must have have valid port_num, sgid_index.
744  */
745 static int ib_resolve_unicast_gid_dmac(struct ib_device *device,
746                                        struct rdma_ah_attr *ah_attr)
747 {
748         struct ib_global_route *grh = rdma_ah_retrieve_grh(ah_attr);
749         const struct ib_gid_attr *sgid_attr = grh->sgid_attr;
750         int hop_limit = 0xff;
751         int ret = 0;
752
753         /* If destination is link local and source GID is RoCEv1,
754          * IP stack is not used.
755          */
756         if (rdma_link_local_addr((struct in6_addr *)grh->dgid.raw) &&
757             sgid_attr->gid_type == IB_GID_TYPE_ROCE) {
758                 rdma_get_ll_mac((struct in6_addr *)grh->dgid.raw,
759                                 ah_attr->roce.dmac);
760                 return ret;
761         }
762
763         ret = rdma_addr_find_l2_eth_by_grh(&sgid_attr->gid, &grh->dgid,
764                                            ah_attr->roce.dmac,
765                                            sgid_attr, &hop_limit);
766
767         grh->hop_limit = hop_limit;
768         return ret;
769 }
770
771 /*
772  * This function initializes address handle attributes from the incoming packet.
773  * Incoming packet has dgid of the receiver node on which this code is
774  * getting executed and, sgid contains the GID of the sender.
775  *
776  * When resolving mac address of destination, the arrived dgid is used
777  * as sgid and, sgid is used as dgid because sgid contains destinations
778  * GID whom to respond to.
779  *
780  * On success the caller is responsible to call rdma_destroy_ah_attr on the
781  * attr.
782  */
783 int ib_init_ah_attr_from_wc(struct ib_device *device, u8 port_num,
784                             const struct ib_wc *wc, const struct ib_grh *grh,
785                             struct rdma_ah_attr *ah_attr)
786 {
787         u32 flow_class;
788         int ret;
789         enum rdma_network_type net_type = RDMA_NETWORK_IB;
790         enum ib_gid_type gid_type = IB_GID_TYPE_IB;
791         const struct ib_gid_attr *sgid_attr;
792         int hoplimit = 0xff;
793         union ib_gid dgid;
794         union ib_gid sgid;
795
796         might_sleep();
797
798         memset(ah_attr, 0, sizeof *ah_attr);
799         ah_attr->type = rdma_ah_find_type(device, port_num);
800         if (rdma_cap_eth_ah(device, port_num)) {
801                 if (wc->wc_flags & IB_WC_WITH_NETWORK_HDR_TYPE)
802                         net_type = wc->network_hdr_type;
803                 else
804                         net_type = ib_get_net_type_by_grh(device, port_num, grh);
805                 gid_type = ib_network_to_gid_type(net_type);
806         }
807         ret = ib_get_gids_from_rdma_hdr((union rdma_network_hdr *)grh, net_type,
808                                         &sgid, &dgid);
809         if (ret)
810                 return ret;
811
812         rdma_ah_set_sl(ah_attr, wc->sl);
813         rdma_ah_set_port_num(ah_attr, port_num);
814
815         if (rdma_protocol_roce(device, port_num)) {
816                 u16 vlan_id = wc->wc_flags & IB_WC_WITH_VLAN ?
817                                 wc->vlan_id : 0xffff;
818
819                 if (!(wc->wc_flags & IB_WC_GRH))
820                         return -EPROTOTYPE;
821
822                 sgid_attr = get_sgid_attr_from_eth(device, port_num,
823                                                    vlan_id, &dgid,
824                                                    gid_type);
825                 if (IS_ERR(sgid_attr))
826                         return PTR_ERR(sgid_attr);
827
828                 flow_class = be32_to_cpu(grh->version_tclass_flow);
829                 rdma_move_grh_sgid_attr(ah_attr,
830                                         &sgid,
831                                         flow_class & 0xFFFFF,
832                                         hoplimit,
833                                         (flow_class >> 20) & 0xFF,
834                                         sgid_attr);
835
836                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
837                 if (ret)
838                         rdma_destroy_ah_attr(ah_attr);
839
840                 return ret;
841         } else {
842                 rdma_ah_set_dlid(ah_attr, wc->slid);
843                 rdma_ah_set_path_bits(ah_attr, wc->dlid_path_bits);
844
845                 if ((wc->wc_flags & IB_WC_GRH) == 0)
846                         return 0;
847
848                 if (dgid.global.interface_id !=
849                                         cpu_to_be64(IB_SA_WELL_KNOWN_GUID)) {
850                         sgid_attr = rdma_find_gid_by_port(
851                                 device, &dgid, IB_GID_TYPE_IB, port_num, NULL);
852                 } else
853                         sgid_attr = rdma_get_gid_attr(device, port_num, 0);
854
855                 if (IS_ERR(sgid_attr))
856                         return PTR_ERR(sgid_attr);
857                 flow_class = be32_to_cpu(grh->version_tclass_flow);
858                 rdma_move_grh_sgid_attr(ah_attr,
859                                         &sgid,
860                                         flow_class & 0xFFFFF,
861                                         hoplimit,
862                                         (flow_class >> 20) & 0xFF,
863                                         sgid_attr);
864
865                 return 0;
866         }
867 }
868 EXPORT_SYMBOL(ib_init_ah_attr_from_wc);
869
870 /**
871  * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
872  * of the reference
873  *
874  * @attr:       Pointer to AH attribute structure
875  * @dgid:       Destination GID
876  * @flow_label: Flow label
877  * @hop_limit:  Hop limit
878  * @traffic_class: traffic class
879  * @sgid_attr:  Pointer to SGID attribute
880  *
881  * This takes ownership of the sgid_attr reference. The caller must ensure
882  * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
883  * calling this function.
884  */
885 void rdma_move_grh_sgid_attr(struct rdma_ah_attr *attr, union ib_gid *dgid,
886                              u32 flow_label, u8 hop_limit, u8 traffic_class,
887                              const struct ib_gid_attr *sgid_attr)
888 {
889         rdma_ah_set_grh(attr, dgid, flow_label, sgid_attr->index, hop_limit,
890                         traffic_class);
891         attr->grh.sgid_attr = sgid_attr;
892 }
893 EXPORT_SYMBOL(rdma_move_grh_sgid_attr);
894
895 /**
896  * rdma_destroy_ah_attr - Release reference to SGID attribute of
897  * ah attribute.
898  * @ah_attr: Pointer to ah attribute
899  *
900  * Release reference to the SGID attribute of the ah attribute if it is
901  * non NULL. It is safe to call this multiple times, and safe to call it on
902  * a zero initialized ah_attr.
903  */
904 void rdma_destroy_ah_attr(struct rdma_ah_attr *ah_attr)
905 {
906         if (ah_attr->grh.sgid_attr) {
907                 rdma_put_gid_attr(ah_attr->grh.sgid_attr);
908                 ah_attr->grh.sgid_attr = NULL;
909         }
910 }
911 EXPORT_SYMBOL(rdma_destroy_ah_attr);
912
913 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
914                                    const struct ib_grh *grh, u8 port_num)
915 {
916         struct rdma_ah_attr ah_attr;
917         struct ib_ah *ah;
918         int ret;
919
920         ret = ib_init_ah_attr_from_wc(pd->device, port_num, wc, grh, &ah_attr);
921         if (ret)
922                 return ERR_PTR(ret);
923
924         ah = rdma_create_ah(pd, &ah_attr, RDMA_CREATE_AH_SLEEPABLE);
925
926         rdma_destroy_ah_attr(&ah_attr);
927         return ah;
928 }
929 EXPORT_SYMBOL(ib_create_ah_from_wc);
930
931 int rdma_modify_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
932 {
933         const struct ib_gid_attr *old_sgid_attr;
934         int ret;
935
936         if (ah->type != ah_attr->type)
937                 return -EINVAL;
938
939         ret = rdma_fill_sgid_attr(ah->device, ah_attr, &old_sgid_attr);
940         if (ret)
941                 return ret;
942
943         ret = ah->device->ops.modify_ah ?
944                 ah->device->ops.modify_ah(ah, ah_attr) :
945                 -EOPNOTSUPP;
946
947         ah->sgid_attr = rdma_update_sgid_attr(ah_attr, ah->sgid_attr);
948         rdma_unfill_sgid_attr(ah_attr, old_sgid_attr);
949         return ret;
950 }
951 EXPORT_SYMBOL(rdma_modify_ah);
952
953 int rdma_query_ah(struct ib_ah *ah, struct rdma_ah_attr *ah_attr)
954 {
955         ah_attr->grh.sgid_attr = NULL;
956
957         return ah->device->ops.query_ah ?
958                 ah->device->ops.query_ah(ah, ah_attr) :
959                 -EOPNOTSUPP;
960 }
961 EXPORT_SYMBOL(rdma_query_ah);
962
963 int rdma_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata)
964 {
965         const struct ib_gid_attr *sgid_attr = ah->sgid_attr;
966         struct ib_pd *pd;
967
968         might_sleep_if(flags & RDMA_DESTROY_AH_SLEEPABLE);
969
970         pd = ah->pd;
971
972         ah->device->ops.destroy_ah(ah, flags);
973         atomic_dec(&pd->usecnt);
974         if (sgid_attr)
975                 rdma_put_gid_attr(sgid_attr);
976
977         kfree(ah);
978         return 0;
979 }
980 EXPORT_SYMBOL(rdma_destroy_ah_user);
981
982 /* Shared receive queues */
983
984 /**
985  * ib_create_srq_user - Creates a SRQ associated with the specified protection
986  *   domain.
987  * @pd: The protection domain associated with the SRQ.
988  * @srq_init_attr: A list of initial attributes required to create the
989  *   SRQ.  If SRQ creation succeeds, then the attributes are updated to
990  *   the actual capabilities of the created SRQ.
991  * @uobject: uobject pointer if this is not a kernel SRQ
992  * @udata: udata pointer if this is not a kernel SRQ
993  *
994  * srq_attr->max_wr and srq_attr->max_sge are read the determine the
995  * requested size of the SRQ, and set to the actual values allocated
996  * on return.  If ib_create_srq() succeeds, then max_wr and max_sge
997  * will always be at least as large as the requested values.
998  */
999 struct ib_srq *ib_create_srq_user(struct ib_pd *pd,
1000                                   struct ib_srq_init_attr *srq_init_attr,
1001                                   struct ib_usrq_object *uobject,
1002                                   struct ib_udata *udata)
1003 {
1004         struct ib_srq *srq;
1005         int ret;
1006
1007         srq = rdma_zalloc_drv_obj(pd->device, ib_srq);
1008         if (!srq)
1009                 return ERR_PTR(-ENOMEM);
1010
1011         srq->device = pd->device;
1012         srq->pd = pd;
1013         srq->event_handler = srq_init_attr->event_handler;
1014         srq->srq_context = srq_init_attr->srq_context;
1015         srq->srq_type = srq_init_attr->srq_type;
1016         srq->uobject = uobject;
1017
1018         if (ib_srq_has_cq(srq->srq_type)) {
1019                 srq->ext.cq = srq_init_attr->ext.cq;
1020                 atomic_inc(&srq->ext.cq->usecnt);
1021         }
1022         if (srq->srq_type == IB_SRQT_XRC) {
1023                 srq->ext.xrc.xrcd = srq_init_attr->ext.xrc.xrcd;
1024                 atomic_inc(&srq->ext.xrc.xrcd->usecnt);
1025         }
1026         atomic_inc(&pd->usecnt);
1027
1028         ret = pd->device->ops.create_srq(srq, srq_init_attr, udata);
1029         if (ret) {
1030                 atomic_dec(&srq->pd->usecnt);
1031                 if (srq->srq_type == IB_SRQT_XRC)
1032                         atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1033                 if (ib_srq_has_cq(srq->srq_type))
1034                         atomic_dec(&srq->ext.cq->usecnt);
1035                 kfree(srq);
1036                 return ERR_PTR(ret);
1037         }
1038
1039         return srq;
1040 }
1041 EXPORT_SYMBOL(ib_create_srq_user);
1042
1043 int ib_modify_srq(struct ib_srq *srq,
1044                   struct ib_srq_attr *srq_attr,
1045                   enum ib_srq_attr_mask srq_attr_mask)
1046 {
1047         return srq->device->ops.modify_srq ?
1048                 srq->device->ops.modify_srq(srq, srq_attr, srq_attr_mask,
1049                                             NULL) : -EOPNOTSUPP;
1050 }
1051 EXPORT_SYMBOL(ib_modify_srq);
1052
1053 int ib_query_srq(struct ib_srq *srq,
1054                  struct ib_srq_attr *srq_attr)
1055 {
1056         return srq->device->ops.query_srq ?
1057                 srq->device->ops.query_srq(srq, srq_attr) : -EOPNOTSUPP;
1058 }
1059 EXPORT_SYMBOL(ib_query_srq);
1060
1061 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata)
1062 {
1063         if (atomic_read(&srq->usecnt))
1064                 return -EBUSY;
1065
1066         srq->device->ops.destroy_srq(srq, udata);
1067
1068         atomic_dec(&srq->pd->usecnt);
1069         if (srq->srq_type == IB_SRQT_XRC)
1070                 atomic_dec(&srq->ext.xrc.xrcd->usecnt);
1071         if (ib_srq_has_cq(srq->srq_type))
1072                 atomic_dec(&srq->ext.cq->usecnt);
1073         kfree(srq);
1074
1075         return 0;
1076 }
1077 EXPORT_SYMBOL(ib_destroy_srq_user);
1078
1079 /* Queue pairs */
1080
1081 static void __ib_shared_qp_event_handler(struct ib_event *event, void *context)
1082 {
1083         struct ib_qp *qp = context;
1084         unsigned long flags;
1085
1086         spin_lock_irqsave(&qp->device->qp_open_list_lock, flags);
1087         list_for_each_entry(event->element.qp, &qp->open_list, open_list)
1088                 if (event->element.qp->event_handler)
1089                         event->element.qp->event_handler(event, event->element.qp->qp_context);
1090         spin_unlock_irqrestore(&qp->device->qp_open_list_lock, flags);
1091 }
1092
1093 static struct ib_qp *__ib_open_qp(struct ib_qp *real_qp,
1094                                   void (*event_handler)(struct ib_event *, void *),
1095                                   void *qp_context)
1096 {
1097         struct ib_qp *qp;
1098         unsigned long flags;
1099         int err;
1100
1101         qp = kzalloc(sizeof *qp, GFP_KERNEL);
1102         if (!qp)
1103                 return ERR_PTR(-ENOMEM);
1104
1105         qp->real_qp = real_qp;
1106         err = ib_open_shared_qp_security(qp, real_qp->device);
1107         if (err) {
1108                 kfree(qp);
1109                 return ERR_PTR(err);
1110         }
1111
1112         qp->real_qp = real_qp;
1113         atomic_inc(&real_qp->usecnt);
1114         qp->device = real_qp->device;
1115         qp->event_handler = event_handler;
1116         qp->qp_context = qp_context;
1117         qp->qp_num = real_qp->qp_num;
1118         qp->qp_type = real_qp->qp_type;
1119
1120         spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1121         list_add(&qp->open_list, &real_qp->open_list);
1122         spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1123
1124         return qp;
1125 }
1126
1127 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
1128                          struct ib_qp_open_attr *qp_open_attr)
1129 {
1130         struct ib_qp *qp, *real_qp;
1131
1132         if (qp_open_attr->qp_type != IB_QPT_XRC_TGT)
1133                 return ERR_PTR(-EINVAL);
1134
1135         down_read(&xrcd->tgt_qps_rwsem);
1136         real_qp = xa_load(&xrcd->tgt_qps, qp_open_attr->qp_num);
1137         if (!real_qp) {
1138                 up_read(&xrcd->tgt_qps_rwsem);
1139                 return ERR_PTR(-EINVAL);
1140         }
1141         qp = __ib_open_qp(real_qp, qp_open_attr->event_handler,
1142                           qp_open_attr->qp_context);
1143         up_read(&xrcd->tgt_qps_rwsem);
1144         return qp;
1145 }
1146 EXPORT_SYMBOL(ib_open_qp);
1147
1148 static struct ib_qp *create_xrc_qp_user(struct ib_qp *qp,
1149                                         struct ib_qp_init_attr *qp_init_attr)
1150 {
1151         struct ib_qp *real_qp = qp;
1152         int err;
1153
1154         qp->event_handler = __ib_shared_qp_event_handler;
1155         qp->qp_context = qp;
1156         qp->pd = NULL;
1157         qp->send_cq = qp->recv_cq = NULL;
1158         qp->srq = NULL;
1159         qp->xrcd = qp_init_attr->xrcd;
1160         atomic_inc(&qp_init_attr->xrcd->usecnt);
1161         INIT_LIST_HEAD(&qp->open_list);
1162
1163         qp = __ib_open_qp(real_qp, qp_init_attr->event_handler,
1164                           qp_init_attr->qp_context);
1165         if (IS_ERR(qp))
1166                 return qp;
1167
1168         err = xa_err(xa_store(&qp_init_attr->xrcd->tgt_qps, real_qp->qp_num,
1169                               real_qp, GFP_KERNEL));
1170         if (err) {
1171                 ib_close_qp(qp);
1172                 return ERR_PTR(err);
1173         }
1174         return qp;
1175 }
1176
1177 /**
1178  * ib_create_qp - Creates a kernel QP associated with the specified protection
1179  *   domain.
1180  * @pd: The protection domain associated with the QP.
1181  * @qp_init_attr: A list of initial attributes required to create the
1182  *   QP.  If QP creation succeeds, then the attributes are updated to
1183  *   the actual capabilities of the created QP.
1184  *
1185  * NOTE: for user qp use ib_create_qp_user with valid udata!
1186  */
1187 struct ib_qp *ib_create_qp(struct ib_pd *pd,
1188                            struct ib_qp_init_attr *qp_init_attr)
1189 {
1190         struct ib_device *device = pd ? pd->device : qp_init_attr->xrcd->device;
1191         struct ib_qp *qp;
1192         int ret;
1193
1194         if (qp_init_attr->rwq_ind_tbl &&
1195             (qp_init_attr->recv_cq ||
1196             qp_init_attr->srq || qp_init_attr->cap.max_recv_wr ||
1197             qp_init_attr->cap.max_recv_sge))
1198                 return ERR_PTR(-EINVAL);
1199
1200         if ((qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN) &&
1201             !(device->attrs.device_cap_flags & IB_DEVICE_INTEGRITY_HANDOVER))
1202                 return ERR_PTR(-EINVAL);
1203
1204         /*
1205          * If the callers is using the RDMA API calculate the resources
1206          * needed for the RDMA READ/WRITE operations.
1207          *
1208          * Note that these callers need to pass in a port number.
1209          */
1210         if (qp_init_attr->cap.max_rdma_ctxs)
1211                 rdma_rw_init_qp(device, qp_init_attr);
1212
1213         qp = _ib_create_qp(device, pd, qp_init_attr, NULL, NULL);
1214         if (IS_ERR(qp))
1215                 return qp;
1216
1217         ret = ib_create_qp_security(qp, device);
1218         if (ret)
1219                 goto err;
1220
1221         if (qp_init_attr->qp_type == IB_QPT_XRC_TGT) {
1222                 struct ib_qp *xrc_qp =
1223                         create_xrc_qp_user(qp, qp_init_attr);
1224
1225                 if (IS_ERR(xrc_qp)) {
1226                         ret = PTR_ERR(xrc_qp);
1227                         goto err;
1228                 }
1229                 return xrc_qp;
1230         }
1231
1232         qp->event_handler = qp_init_attr->event_handler;
1233         qp->qp_context = qp_init_attr->qp_context;
1234         if (qp_init_attr->qp_type == IB_QPT_XRC_INI) {
1235                 qp->recv_cq = NULL;
1236                 qp->srq = NULL;
1237         } else {
1238                 qp->recv_cq = qp_init_attr->recv_cq;
1239                 if (qp_init_attr->recv_cq)
1240                         atomic_inc(&qp_init_attr->recv_cq->usecnt);
1241                 qp->srq = qp_init_attr->srq;
1242                 if (qp->srq)
1243                         atomic_inc(&qp_init_attr->srq->usecnt);
1244         }
1245
1246         qp->send_cq = qp_init_attr->send_cq;
1247         qp->xrcd    = NULL;
1248
1249         atomic_inc(&pd->usecnt);
1250         if (qp_init_attr->send_cq)
1251                 atomic_inc(&qp_init_attr->send_cq->usecnt);
1252         if (qp_init_attr->rwq_ind_tbl)
1253                 atomic_inc(&qp->rwq_ind_tbl->usecnt);
1254
1255         if (qp_init_attr->cap.max_rdma_ctxs) {
1256                 ret = rdma_rw_init_mrs(qp, qp_init_attr);
1257                 if (ret)
1258                         goto err;
1259         }
1260
1261         /*
1262          * Note: all hw drivers guarantee that max_send_sge is lower than
1263          * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1264          * max_send_sge <= max_sge_rd.
1265          */
1266         qp->max_write_sge = qp_init_attr->cap.max_send_sge;
1267         qp->max_read_sge = min_t(u32, qp_init_attr->cap.max_send_sge,
1268                                  device->attrs.max_sge_rd);
1269         if (qp_init_attr->create_flags & IB_QP_CREATE_INTEGRITY_EN)
1270                 qp->integrity_en = true;
1271
1272         return qp;
1273
1274 err:
1275         ib_destroy_qp(qp);
1276         return ERR_PTR(ret);
1277
1278 }
1279 EXPORT_SYMBOL(ib_create_qp);
1280
1281 static const struct {
1282         int                     valid;
1283         enum ib_qp_attr_mask    req_param[IB_QPT_MAX];
1284         enum ib_qp_attr_mask    opt_param[IB_QPT_MAX];
1285 } qp_state_table[IB_QPS_ERR + 1][IB_QPS_ERR + 1] = {
1286         [IB_QPS_RESET] = {
1287                 [IB_QPS_RESET] = { .valid = 1 },
1288                 [IB_QPS_INIT]  = {
1289                         .valid = 1,
1290                         .req_param = {
1291                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1292                                                 IB_QP_PORT                      |
1293                                                 IB_QP_QKEY),
1294                                 [IB_QPT_RAW_PACKET] = IB_QP_PORT,
1295                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1296                                                 IB_QP_PORT                      |
1297                                                 IB_QP_ACCESS_FLAGS),
1298                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1299                                                 IB_QP_PORT                      |
1300                                                 IB_QP_ACCESS_FLAGS),
1301                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1302                                                 IB_QP_PORT                      |
1303                                                 IB_QP_ACCESS_FLAGS),
1304                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1305                                                 IB_QP_PORT                      |
1306                                                 IB_QP_ACCESS_FLAGS),
1307                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1308                                                 IB_QP_QKEY),
1309                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1310                                                 IB_QP_QKEY),
1311                         }
1312                 },
1313         },
1314         [IB_QPS_INIT]  = {
1315                 [IB_QPS_RESET] = { .valid = 1 },
1316                 [IB_QPS_ERR] =   { .valid = 1 },
1317                 [IB_QPS_INIT]  = {
1318                         .valid = 1,
1319                         .opt_param = {
1320                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1321                                                 IB_QP_PORT                      |
1322                                                 IB_QP_QKEY),
1323                                 [IB_QPT_UC]  = (IB_QP_PKEY_INDEX                |
1324                                                 IB_QP_PORT                      |
1325                                                 IB_QP_ACCESS_FLAGS),
1326                                 [IB_QPT_RC]  = (IB_QP_PKEY_INDEX                |
1327                                                 IB_QP_PORT                      |
1328                                                 IB_QP_ACCESS_FLAGS),
1329                                 [IB_QPT_XRC_INI] = (IB_QP_PKEY_INDEX            |
1330                                                 IB_QP_PORT                      |
1331                                                 IB_QP_ACCESS_FLAGS),
1332                                 [IB_QPT_XRC_TGT] = (IB_QP_PKEY_INDEX            |
1333                                                 IB_QP_PORT                      |
1334                                                 IB_QP_ACCESS_FLAGS),
1335                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1336                                                 IB_QP_QKEY),
1337                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1338                                                 IB_QP_QKEY),
1339                         }
1340                 },
1341                 [IB_QPS_RTR]   = {
1342                         .valid = 1,
1343                         .req_param = {
1344                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1345                                                 IB_QP_PATH_MTU                  |
1346                                                 IB_QP_DEST_QPN                  |
1347                                                 IB_QP_RQ_PSN),
1348                                 [IB_QPT_RC]  = (IB_QP_AV                        |
1349                                                 IB_QP_PATH_MTU                  |
1350                                                 IB_QP_DEST_QPN                  |
1351                                                 IB_QP_RQ_PSN                    |
1352                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1353                                                 IB_QP_MIN_RNR_TIMER),
1354                                 [IB_QPT_XRC_INI] = (IB_QP_AV                    |
1355                                                 IB_QP_PATH_MTU                  |
1356                                                 IB_QP_DEST_QPN                  |
1357                                                 IB_QP_RQ_PSN),
1358                                 [IB_QPT_XRC_TGT] = (IB_QP_AV                    |
1359                                                 IB_QP_PATH_MTU                  |
1360                                                 IB_QP_DEST_QPN                  |
1361                                                 IB_QP_RQ_PSN                    |
1362                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1363                                                 IB_QP_MIN_RNR_TIMER),
1364                         },
1365                         .opt_param = {
1366                                  [IB_QPT_UD]  = (IB_QP_PKEY_INDEX               |
1367                                                  IB_QP_QKEY),
1368                                  [IB_QPT_UC]  = (IB_QP_ALT_PATH                 |
1369                                                  IB_QP_ACCESS_FLAGS             |
1370                                                  IB_QP_PKEY_INDEX),
1371                                  [IB_QPT_RC]  = (IB_QP_ALT_PATH                 |
1372                                                  IB_QP_ACCESS_FLAGS             |
1373                                                  IB_QP_PKEY_INDEX),
1374                                  [IB_QPT_XRC_INI] = (IB_QP_ALT_PATH             |
1375                                                  IB_QP_ACCESS_FLAGS             |
1376                                                  IB_QP_PKEY_INDEX),
1377                                  [IB_QPT_XRC_TGT] = (IB_QP_ALT_PATH             |
1378                                                  IB_QP_ACCESS_FLAGS             |
1379                                                  IB_QP_PKEY_INDEX),
1380                                  [IB_QPT_SMI] = (IB_QP_PKEY_INDEX               |
1381                                                  IB_QP_QKEY),
1382                                  [IB_QPT_GSI] = (IB_QP_PKEY_INDEX               |
1383                                                  IB_QP_QKEY),
1384                          },
1385                 },
1386         },
1387         [IB_QPS_RTR]   = {
1388                 [IB_QPS_RESET] = { .valid = 1 },
1389                 [IB_QPS_ERR] =   { .valid = 1 },
1390                 [IB_QPS_RTS]   = {
1391                         .valid = 1,
1392                         .req_param = {
1393                                 [IB_QPT_UD]  = IB_QP_SQ_PSN,
1394                                 [IB_QPT_UC]  = IB_QP_SQ_PSN,
1395                                 [IB_QPT_RC]  = (IB_QP_TIMEOUT                   |
1396                                                 IB_QP_RETRY_CNT                 |
1397                                                 IB_QP_RNR_RETRY                 |
1398                                                 IB_QP_SQ_PSN                    |
1399                                                 IB_QP_MAX_QP_RD_ATOMIC),
1400                                 [IB_QPT_XRC_INI] = (IB_QP_TIMEOUT               |
1401                                                 IB_QP_RETRY_CNT                 |
1402                                                 IB_QP_RNR_RETRY                 |
1403                                                 IB_QP_SQ_PSN                    |
1404                                                 IB_QP_MAX_QP_RD_ATOMIC),
1405                                 [IB_QPT_XRC_TGT] = (IB_QP_TIMEOUT               |
1406                                                 IB_QP_SQ_PSN),
1407                                 [IB_QPT_SMI] = IB_QP_SQ_PSN,
1408                                 [IB_QPT_GSI] = IB_QP_SQ_PSN,
1409                         },
1410                         .opt_param = {
1411                                  [IB_QPT_UD]  = (IB_QP_CUR_STATE                |
1412                                                  IB_QP_QKEY),
1413                                  [IB_QPT_UC]  = (IB_QP_CUR_STATE                |
1414                                                  IB_QP_ALT_PATH                 |
1415                                                  IB_QP_ACCESS_FLAGS             |
1416                                                  IB_QP_PATH_MIG_STATE),
1417                                  [IB_QPT_RC]  = (IB_QP_CUR_STATE                |
1418                                                  IB_QP_ALT_PATH                 |
1419                                                  IB_QP_ACCESS_FLAGS             |
1420                                                  IB_QP_MIN_RNR_TIMER            |
1421                                                  IB_QP_PATH_MIG_STATE),
1422                                  [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE            |
1423                                                  IB_QP_ALT_PATH                 |
1424                                                  IB_QP_ACCESS_FLAGS             |
1425                                                  IB_QP_PATH_MIG_STATE),
1426                                  [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE            |
1427                                                  IB_QP_ALT_PATH                 |
1428                                                  IB_QP_ACCESS_FLAGS             |
1429                                                  IB_QP_MIN_RNR_TIMER            |
1430                                                  IB_QP_PATH_MIG_STATE),
1431                                  [IB_QPT_SMI] = (IB_QP_CUR_STATE                |
1432                                                  IB_QP_QKEY),
1433                                  [IB_QPT_GSI] = (IB_QP_CUR_STATE                |
1434                                                  IB_QP_QKEY),
1435                                  [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1436                          }
1437                 }
1438         },
1439         [IB_QPS_RTS]   = {
1440                 [IB_QPS_RESET] = { .valid = 1 },
1441                 [IB_QPS_ERR] =   { .valid = 1 },
1442                 [IB_QPS_RTS]   = {
1443                         .valid = 1,
1444                         .opt_param = {
1445                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1446                                                 IB_QP_QKEY),
1447                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1448                                                 IB_QP_ACCESS_FLAGS              |
1449                                                 IB_QP_ALT_PATH                  |
1450                                                 IB_QP_PATH_MIG_STATE),
1451                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1452                                                 IB_QP_ACCESS_FLAGS              |
1453                                                 IB_QP_ALT_PATH                  |
1454                                                 IB_QP_PATH_MIG_STATE            |
1455                                                 IB_QP_MIN_RNR_TIMER),
1456                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1457                                                 IB_QP_ACCESS_FLAGS              |
1458                                                 IB_QP_ALT_PATH                  |
1459                                                 IB_QP_PATH_MIG_STATE),
1460                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1461                                                 IB_QP_ACCESS_FLAGS              |
1462                                                 IB_QP_ALT_PATH                  |
1463                                                 IB_QP_PATH_MIG_STATE            |
1464                                                 IB_QP_MIN_RNR_TIMER),
1465                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1466                                                 IB_QP_QKEY),
1467                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1468                                                 IB_QP_QKEY),
1469                                 [IB_QPT_RAW_PACKET] = IB_QP_RATE_LIMIT,
1470                         }
1471                 },
1472                 [IB_QPS_SQD]   = {
1473                         .valid = 1,
1474                         .opt_param = {
1475                                 [IB_QPT_UD]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1476                                 [IB_QPT_UC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1477                                 [IB_QPT_RC]  = IB_QP_EN_SQD_ASYNC_NOTIFY,
1478                                 [IB_QPT_XRC_INI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1479                                 [IB_QPT_XRC_TGT] = IB_QP_EN_SQD_ASYNC_NOTIFY, /* ??? */
1480                                 [IB_QPT_SMI] = IB_QP_EN_SQD_ASYNC_NOTIFY,
1481                                 [IB_QPT_GSI] = IB_QP_EN_SQD_ASYNC_NOTIFY
1482                         }
1483                 },
1484         },
1485         [IB_QPS_SQD]   = {
1486                 [IB_QPS_RESET] = { .valid = 1 },
1487                 [IB_QPS_ERR] =   { .valid = 1 },
1488                 [IB_QPS_RTS]   = {
1489                         .valid = 1,
1490                         .opt_param = {
1491                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1492                                                 IB_QP_QKEY),
1493                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1494                                                 IB_QP_ALT_PATH                  |
1495                                                 IB_QP_ACCESS_FLAGS              |
1496                                                 IB_QP_PATH_MIG_STATE),
1497                                 [IB_QPT_RC]  = (IB_QP_CUR_STATE                 |
1498                                                 IB_QP_ALT_PATH                  |
1499                                                 IB_QP_ACCESS_FLAGS              |
1500                                                 IB_QP_MIN_RNR_TIMER             |
1501                                                 IB_QP_PATH_MIG_STATE),
1502                                 [IB_QPT_XRC_INI] = (IB_QP_CUR_STATE             |
1503                                                 IB_QP_ALT_PATH                  |
1504                                                 IB_QP_ACCESS_FLAGS              |
1505                                                 IB_QP_PATH_MIG_STATE),
1506                                 [IB_QPT_XRC_TGT] = (IB_QP_CUR_STATE             |
1507                                                 IB_QP_ALT_PATH                  |
1508                                                 IB_QP_ACCESS_FLAGS              |
1509                                                 IB_QP_MIN_RNR_TIMER             |
1510                                                 IB_QP_PATH_MIG_STATE),
1511                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1512                                                 IB_QP_QKEY),
1513                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1514                                                 IB_QP_QKEY),
1515                         }
1516                 },
1517                 [IB_QPS_SQD]   = {
1518                         .valid = 1,
1519                         .opt_param = {
1520                                 [IB_QPT_UD]  = (IB_QP_PKEY_INDEX                |
1521                                                 IB_QP_QKEY),
1522                                 [IB_QPT_UC]  = (IB_QP_AV                        |
1523                                                 IB_QP_ALT_PATH                  |
1524                                                 IB_QP_ACCESS_FLAGS              |
1525                                                 IB_QP_PKEY_INDEX                |
1526                                                 IB_QP_PATH_MIG_STATE),
1527                                 [IB_QPT_RC]  = (IB_QP_PORT                      |
1528                                                 IB_QP_AV                        |
1529                                                 IB_QP_TIMEOUT                   |
1530                                                 IB_QP_RETRY_CNT                 |
1531                                                 IB_QP_RNR_RETRY                 |
1532                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1533                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1534                                                 IB_QP_ALT_PATH                  |
1535                                                 IB_QP_ACCESS_FLAGS              |
1536                                                 IB_QP_PKEY_INDEX                |
1537                                                 IB_QP_MIN_RNR_TIMER             |
1538                                                 IB_QP_PATH_MIG_STATE),
1539                                 [IB_QPT_XRC_INI] = (IB_QP_PORT                  |
1540                                                 IB_QP_AV                        |
1541                                                 IB_QP_TIMEOUT                   |
1542                                                 IB_QP_RETRY_CNT                 |
1543                                                 IB_QP_RNR_RETRY                 |
1544                                                 IB_QP_MAX_QP_RD_ATOMIC          |
1545                                                 IB_QP_ALT_PATH                  |
1546                                                 IB_QP_ACCESS_FLAGS              |
1547                                                 IB_QP_PKEY_INDEX                |
1548                                                 IB_QP_PATH_MIG_STATE),
1549                                 [IB_QPT_XRC_TGT] = (IB_QP_PORT                  |
1550                                                 IB_QP_AV                        |
1551                                                 IB_QP_TIMEOUT                   |
1552                                                 IB_QP_MAX_DEST_RD_ATOMIC        |
1553                                                 IB_QP_ALT_PATH                  |
1554                                                 IB_QP_ACCESS_FLAGS              |
1555                                                 IB_QP_PKEY_INDEX                |
1556                                                 IB_QP_MIN_RNR_TIMER             |
1557                                                 IB_QP_PATH_MIG_STATE),
1558                                 [IB_QPT_SMI] = (IB_QP_PKEY_INDEX                |
1559                                                 IB_QP_QKEY),
1560                                 [IB_QPT_GSI] = (IB_QP_PKEY_INDEX                |
1561                                                 IB_QP_QKEY),
1562                         }
1563                 }
1564         },
1565         [IB_QPS_SQE]   = {
1566                 [IB_QPS_RESET] = { .valid = 1 },
1567                 [IB_QPS_ERR] =   { .valid = 1 },
1568                 [IB_QPS_RTS]   = {
1569                         .valid = 1,
1570                         .opt_param = {
1571                                 [IB_QPT_UD]  = (IB_QP_CUR_STATE                 |
1572                                                 IB_QP_QKEY),
1573                                 [IB_QPT_UC]  = (IB_QP_CUR_STATE                 |
1574                                                 IB_QP_ACCESS_FLAGS),
1575                                 [IB_QPT_SMI] = (IB_QP_CUR_STATE                 |
1576                                                 IB_QP_QKEY),
1577                                 [IB_QPT_GSI] = (IB_QP_CUR_STATE                 |
1578                                                 IB_QP_QKEY),
1579                         }
1580                 }
1581         },
1582         [IB_QPS_ERR] = {
1583                 [IB_QPS_RESET] = { .valid = 1 },
1584                 [IB_QPS_ERR] =   { .valid = 1 }
1585         }
1586 };
1587
1588 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
1589                         enum ib_qp_type type, enum ib_qp_attr_mask mask)
1590 {
1591         enum ib_qp_attr_mask req_param, opt_param;
1592
1593         if (mask & IB_QP_CUR_STATE  &&
1594             cur_state != IB_QPS_RTR && cur_state != IB_QPS_RTS &&
1595             cur_state != IB_QPS_SQD && cur_state != IB_QPS_SQE)
1596                 return false;
1597
1598         if (!qp_state_table[cur_state][next_state].valid)
1599                 return false;
1600
1601         req_param = qp_state_table[cur_state][next_state].req_param[type];
1602         opt_param = qp_state_table[cur_state][next_state].opt_param[type];
1603
1604         if ((mask & req_param) != req_param)
1605                 return false;
1606
1607         if (mask & ~(req_param | opt_param | IB_QP_STATE))
1608                 return false;
1609
1610         return true;
1611 }
1612 EXPORT_SYMBOL(ib_modify_qp_is_ok);
1613
1614 /**
1615  * ib_resolve_eth_dmac - Resolve destination mac address
1616  * @device:             Device to consider
1617  * @ah_attr:            address handle attribute which describes the
1618  *                      source and destination parameters
1619  * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1620  * returns 0 on success or appropriate error code. It initializes the
1621  * necessary ah_attr fields when call is successful.
1622  */
1623 static int ib_resolve_eth_dmac(struct ib_device *device,
1624                                struct rdma_ah_attr *ah_attr)
1625 {
1626         int ret = 0;
1627
1628         if (rdma_is_multicast_addr((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1629                 if (ipv6_addr_v4mapped((struct in6_addr *)ah_attr->grh.dgid.raw)) {
1630                         __be32 addr = 0;
1631
1632                         memcpy(&addr, ah_attr->grh.dgid.raw + 12, 4);
1633                         ip_eth_mc_map(addr, (char *)ah_attr->roce.dmac);
1634                 } else {
1635                         ipv6_eth_mc_map((struct in6_addr *)ah_attr->grh.dgid.raw,
1636                                         (char *)ah_attr->roce.dmac);
1637                 }
1638         } else {
1639                 ret = ib_resolve_unicast_gid_dmac(device, ah_attr);
1640         }
1641         return ret;
1642 }
1643
1644 static bool is_qp_type_connected(const struct ib_qp *qp)
1645 {
1646         return (qp->qp_type == IB_QPT_UC ||
1647                 qp->qp_type == IB_QPT_RC ||
1648                 qp->qp_type == IB_QPT_XRC_INI ||
1649                 qp->qp_type == IB_QPT_XRC_TGT);
1650 }
1651
1652 /**
1653  * IB core internal function to perform QP attributes modification.
1654  */
1655 static int _ib_modify_qp(struct ib_qp *qp, struct ib_qp_attr *attr,
1656                          int attr_mask, struct ib_udata *udata)
1657 {
1658         u8 port = attr_mask & IB_QP_PORT ? attr->port_num : qp->port;
1659         const struct ib_gid_attr *old_sgid_attr_av;
1660         const struct ib_gid_attr *old_sgid_attr_alt_av;
1661         int ret;
1662
1663         attr->xmit_slave = NULL;
1664         if (attr_mask & IB_QP_AV) {
1665                 ret = rdma_fill_sgid_attr(qp->device, &attr->ah_attr,
1666                                           &old_sgid_attr_av);
1667                 if (ret)
1668                         return ret;
1669
1670                 if (attr->ah_attr.type == RDMA_AH_ATTR_TYPE_ROCE &&
1671                     is_qp_type_connected(qp)) {
1672                         struct net_device *slave;
1673
1674                         /*
1675                          * If the user provided the qp_attr then we have to
1676                          * resolve it. Kerne users have to provide already
1677                          * resolved rdma_ah_attr's.
1678                          */
1679                         if (udata) {
1680                                 ret = ib_resolve_eth_dmac(qp->device,
1681                                                           &attr->ah_attr);
1682                                 if (ret)
1683                                         goto out_av;
1684                         }
1685                         slave = rdma_lag_get_ah_roce_slave(qp->device,
1686                                                            &attr->ah_attr,
1687                                                            GFP_KERNEL);
1688                         if (IS_ERR(slave))
1689                                 goto out_av;
1690                         attr->xmit_slave = slave;
1691                 }
1692         }
1693         if (attr_mask & IB_QP_ALT_PATH) {
1694                 /*
1695                  * FIXME: This does not track the migration state, so if the
1696                  * user loads a new alternate path after the HW has migrated
1697                  * from primary->alternate we will keep the wrong
1698                  * references. This is OK for IB because the reference
1699                  * counting does not serve any functional purpose.
1700                  */
1701                 ret = rdma_fill_sgid_attr(qp->device, &attr->alt_ah_attr,
1702                                           &old_sgid_attr_alt_av);
1703                 if (ret)
1704                         goto out_av;
1705
1706                 /*
1707                  * Today the core code can only handle alternate paths and APM
1708                  * for IB. Ban them in roce mode.
1709                  */
1710                 if (!(rdma_protocol_ib(qp->device,
1711                                        attr->alt_ah_attr.port_num) &&
1712                       rdma_protocol_ib(qp->device, port))) {
1713                         ret = -EINVAL;
1714                         goto out;
1715                 }
1716         }
1717
1718         if (rdma_ib_or_roce(qp->device, port)) {
1719                 if (attr_mask & IB_QP_RQ_PSN && attr->rq_psn & ~0xffffff) {
1720                         dev_warn(&qp->device->dev,
1721                                  "%s rq_psn overflow, masking to 24 bits\n",
1722                                  __func__);
1723                         attr->rq_psn &= 0xffffff;
1724                 }
1725
1726                 if (attr_mask & IB_QP_SQ_PSN && attr->sq_psn & ~0xffffff) {
1727                         dev_warn(&qp->device->dev,
1728                                  " %s sq_psn overflow, masking to 24 bits\n",
1729                                  __func__);
1730                         attr->sq_psn &= 0xffffff;
1731                 }
1732         }
1733
1734         /*
1735          * Bind this qp to a counter automatically based on the rdma counter
1736          * rules. This only set in RST2INIT with port specified
1737          */
1738         if (!qp->counter && (attr_mask & IB_QP_PORT) &&
1739             ((attr_mask & IB_QP_STATE) && attr->qp_state == IB_QPS_INIT))
1740                 rdma_counter_bind_qp_auto(qp, attr->port_num);
1741
1742         ret = ib_security_modify_qp(qp, attr, attr_mask, udata);
1743         if (ret)
1744                 goto out;
1745
1746         if (attr_mask & IB_QP_PORT)
1747                 qp->port = attr->port_num;
1748         if (attr_mask & IB_QP_AV)
1749                 qp->av_sgid_attr =
1750                         rdma_update_sgid_attr(&attr->ah_attr, qp->av_sgid_attr);
1751         if (attr_mask & IB_QP_ALT_PATH)
1752                 qp->alt_path_sgid_attr = rdma_update_sgid_attr(
1753                         &attr->alt_ah_attr, qp->alt_path_sgid_attr);
1754
1755 out:
1756         if (attr_mask & IB_QP_ALT_PATH)
1757                 rdma_unfill_sgid_attr(&attr->alt_ah_attr, old_sgid_attr_alt_av);
1758 out_av:
1759         if (attr_mask & IB_QP_AV) {
1760                 rdma_lag_put_ah_roce_slave(attr->xmit_slave);
1761                 rdma_unfill_sgid_attr(&attr->ah_attr, old_sgid_attr_av);
1762         }
1763         return ret;
1764 }
1765
1766 /**
1767  * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1768  * @ib_qp: The QP to modify.
1769  * @attr: On input, specifies the QP attributes to modify.  On output,
1770  *   the current values of selected QP attributes are returned.
1771  * @attr_mask: A bit-mask used to specify which attributes of the QP
1772  *   are being modified.
1773  * @udata: pointer to user's input output buffer information
1774  *   are being modified.
1775  * It returns 0 on success and returns appropriate error code on error.
1776  */
1777 int ib_modify_qp_with_udata(struct ib_qp *ib_qp, struct ib_qp_attr *attr,
1778                             int attr_mask, struct ib_udata *udata)
1779 {
1780         return _ib_modify_qp(ib_qp->real_qp, attr, attr_mask, udata);
1781 }
1782 EXPORT_SYMBOL(ib_modify_qp_with_udata);
1783
1784 int ib_get_eth_speed(struct ib_device *dev, u8 port_num, u8 *speed, u8 *width)
1785 {
1786         int rc;
1787         u32 netdev_speed;
1788         struct net_device *netdev;
1789         struct ethtool_link_ksettings lksettings;
1790
1791         if (rdma_port_get_link_layer(dev, port_num) != IB_LINK_LAYER_ETHERNET)
1792                 return -EINVAL;
1793
1794         netdev = ib_device_get_netdev(dev, port_num);
1795         if (!netdev)
1796                 return -ENODEV;
1797
1798         rtnl_lock();
1799         rc = __ethtool_get_link_ksettings(netdev, &lksettings);
1800         rtnl_unlock();
1801
1802         dev_put(netdev);
1803
1804         if (!rc && lksettings.base.speed != (u32)SPEED_UNKNOWN) {
1805                 netdev_speed = lksettings.base.speed;
1806         } else {
1807                 netdev_speed = SPEED_1000;
1808                 pr_warn("%s speed is unknown, defaulting to %d\n", netdev->name,
1809                         netdev_speed);
1810         }
1811
1812         if (netdev_speed <= SPEED_1000) {
1813                 *width = IB_WIDTH_1X;
1814                 *speed = IB_SPEED_SDR;
1815         } else if (netdev_speed <= SPEED_10000) {
1816                 *width = IB_WIDTH_1X;
1817                 *speed = IB_SPEED_FDR10;
1818         } else if (netdev_speed <= SPEED_20000) {
1819                 *width = IB_WIDTH_4X;
1820                 *speed = IB_SPEED_DDR;
1821         } else if (netdev_speed <= SPEED_25000) {
1822                 *width = IB_WIDTH_1X;
1823                 *speed = IB_SPEED_EDR;
1824         } else if (netdev_speed <= SPEED_40000) {
1825                 *width = IB_WIDTH_4X;
1826                 *speed = IB_SPEED_FDR10;
1827         } else {
1828                 *width = IB_WIDTH_4X;
1829                 *speed = IB_SPEED_EDR;
1830         }
1831
1832         return 0;
1833 }
1834 EXPORT_SYMBOL(ib_get_eth_speed);
1835
1836 int ib_modify_qp(struct ib_qp *qp,
1837                  struct ib_qp_attr *qp_attr,
1838                  int qp_attr_mask)
1839 {
1840         return _ib_modify_qp(qp->real_qp, qp_attr, qp_attr_mask, NULL);
1841 }
1842 EXPORT_SYMBOL(ib_modify_qp);
1843
1844 int ib_query_qp(struct ib_qp *qp,
1845                 struct ib_qp_attr *qp_attr,
1846                 int qp_attr_mask,
1847                 struct ib_qp_init_attr *qp_init_attr)
1848 {
1849         qp_attr->ah_attr.grh.sgid_attr = NULL;
1850         qp_attr->alt_ah_attr.grh.sgid_attr = NULL;
1851
1852         return qp->device->ops.query_qp ?
1853                 qp->device->ops.query_qp(qp->real_qp, qp_attr, qp_attr_mask,
1854                                          qp_init_attr) : -EOPNOTSUPP;
1855 }
1856 EXPORT_SYMBOL(ib_query_qp);
1857
1858 int ib_close_qp(struct ib_qp *qp)
1859 {
1860         struct ib_qp *real_qp;
1861         unsigned long flags;
1862
1863         real_qp = qp->real_qp;
1864         if (real_qp == qp)
1865                 return -EINVAL;
1866
1867         spin_lock_irqsave(&real_qp->device->qp_open_list_lock, flags);
1868         list_del(&qp->open_list);
1869         spin_unlock_irqrestore(&real_qp->device->qp_open_list_lock, flags);
1870
1871         atomic_dec(&real_qp->usecnt);
1872         if (qp->qp_sec)
1873                 ib_close_shared_qp_security(qp->qp_sec);
1874         kfree(qp);
1875
1876         return 0;
1877 }
1878 EXPORT_SYMBOL(ib_close_qp);
1879
1880 static int __ib_destroy_shared_qp(struct ib_qp *qp)
1881 {
1882         struct ib_xrcd *xrcd;
1883         struct ib_qp *real_qp;
1884         int ret;
1885
1886         real_qp = qp->real_qp;
1887         xrcd = real_qp->xrcd;
1888         down_write(&xrcd->tgt_qps_rwsem);
1889         ib_close_qp(qp);
1890         if (atomic_read(&real_qp->usecnt) == 0)
1891                 xa_erase(&xrcd->tgt_qps, real_qp->qp_num);
1892         else
1893                 real_qp = NULL;
1894         up_write(&xrcd->tgt_qps_rwsem);
1895
1896         if (real_qp) {
1897                 ret = ib_destroy_qp(real_qp);
1898                 if (!ret)
1899                         atomic_dec(&xrcd->usecnt);
1900         }
1901
1902         return 0;
1903 }
1904
1905 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata)
1906 {
1907         const struct ib_gid_attr *alt_path_sgid_attr = qp->alt_path_sgid_attr;
1908         const struct ib_gid_attr *av_sgid_attr = qp->av_sgid_attr;
1909         struct ib_pd *pd;
1910         struct ib_cq *scq, *rcq;
1911         struct ib_srq *srq;
1912         struct ib_rwq_ind_table *ind_tbl;
1913         struct ib_qp_security *sec;
1914         int ret;
1915
1916         WARN_ON_ONCE(qp->mrs_used > 0);
1917
1918         if (atomic_read(&qp->usecnt))
1919                 return -EBUSY;
1920
1921         if (qp->real_qp != qp)
1922                 return __ib_destroy_shared_qp(qp);
1923
1924         pd   = qp->pd;
1925         scq  = qp->send_cq;
1926         rcq  = qp->recv_cq;
1927         srq  = qp->srq;
1928         ind_tbl = qp->rwq_ind_tbl;
1929         sec  = qp->qp_sec;
1930         if (sec)
1931                 ib_destroy_qp_security_begin(sec);
1932
1933         if (!qp->uobject)
1934                 rdma_rw_cleanup_mrs(qp);
1935
1936         rdma_counter_unbind_qp(qp, true);
1937         rdma_restrack_del(&qp->res);
1938         ret = qp->device->ops.destroy_qp(qp, udata);
1939         if (!ret) {
1940                 if (alt_path_sgid_attr)
1941                         rdma_put_gid_attr(alt_path_sgid_attr);
1942                 if (av_sgid_attr)
1943                         rdma_put_gid_attr(av_sgid_attr);
1944                 if (pd)
1945                         atomic_dec(&pd->usecnt);
1946                 if (scq)
1947                         atomic_dec(&scq->usecnt);
1948                 if (rcq)
1949                         atomic_dec(&rcq->usecnt);
1950                 if (srq)
1951                         atomic_dec(&srq->usecnt);
1952                 if (ind_tbl)
1953                         atomic_dec(&ind_tbl->usecnt);
1954                 if (sec)
1955                         ib_destroy_qp_security_end(sec);
1956         } else {
1957                 if (sec)
1958                         ib_destroy_qp_security_abort(sec);
1959         }
1960
1961         return ret;
1962 }
1963 EXPORT_SYMBOL(ib_destroy_qp_user);
1964
1965 /* Completion queues */
1966
1967 struct ib_cq *__ib_create_cq(struct ib_device *device,
1968                              ib_comp_handler comp_handler,
1969                              void (*event_handler)(struct ib_event *, void *),
1970                              void *cq_context,
1971                              const struct ib_cq_init_attr *cq_attr,
1972                              const char *caller)
1973 {
1974         struct ib_cq *cq;
1975         int ret;
1976
1977         cq = rdma_zalloc_drv_obj(device, ib_cq);
1978         if (!cq)
1979                 return ERR_PTR(-ENOMEM);
1980
1981         cq->device = device;
1982         cq->uobject = NULL;
1983         cq->comp_handler = comp_handler;
1984         cq->event_handler = event_handler;
1985         cq->cq_context = cq_context;
1986         atomic_set(&cq->usecnt, 0);
1987         cq->res.type = RDMA_RESTRACK_CQ;
1988         rdma_restrack_set_task(&cq->res, caller);
1989
1990         ret = device->ops.create_cq(cq, cq_attr, NULL);
1991         if (ret) {
1992                 kfree(cq);
1993                 return ERR_PTR(ret);
1994         }
1995
1996         rdma_restrack_kadd(&cq->res);
1997         return cq;
1998 }
1999 EXPORT_SYMBOL(__ib_create_cq);
2000
2001 int rdma_set_cq_moderation(struct ib_cq *cq, u16 cq_count, u16 cq_period)
2002 {
2003         if (cq->shared)
2004                 return -EOPNOTSUPP;
2005
2006         return cq->device->ops.modify_cq ?
2007                 cq->device->ops.modify_cq(cq, cq_count,
2008                                           cq_period) : -EOPNOTSUPP;
2009 }
2010 EXPORT_SYMBOL(rdma_set_cq_moderation);
2011
2012 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata)
2013 {
2014         if (WARN_ON_ONCE(cq->shared))
2015                 return -EOPNOTSUPP;
2016
2017         if (atomic_read(&cq->usecnt))
2018                 return -EBUSY;
2019
2020         rdma_restrack_del(&cq->res);
2021         cq->device->ops.destroy_cq(cq, udata);
2022         kfree(cq);
2023         return 0;
2024 }
2025 EXPORT_SYMBOL(ib_destroy_cq_user);
2026
2027 int ib_resize_cq(struct ib_cq *cq, int cqe)
2028 {
2029         if (cq->shared)
2030                 return -EOPNOTSUPP;
2031
2032         return cq->device->ops.resize_cq ?
2033                 cq->device->ops.resize_cq(cq, cqe, NULL) : -EOPNOTSUPP;
2034 }
2035 EXPORT_SYMBOL(ib_resize_cq);
2036
2037 /* Memory regions */
2038
2039 struct ib_mr *ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
2040                              u64 virt_addr, int access_flags)
2041 {
2042         struct ib_mr *mr;
2043
2044         if (access_flags & IB_ACCESS_ON_DEMAND) {
2045                 if (!(pd->device->attrs.device_cap_flags &
2046                       IB_DEVICE_ON_DEMAND_PAGING)) {
2047                         pr_debug("ODP support not available\n");
2048                         return ERR_PTR(-EINVAL);
2049                 }
2050         }
2051
2052         mr = pd->device->ops.reg_user_mr(pd, start, length, virt_addr,
2053                                          access_flags, NULL);
2054
2055         if (IS_ERR(mr))
2056                 return mr;
2057
2058         mr->device = pd->device;
2059         mr->pd = pd;
2060         mr->dm = NULL;
2061         atomic_inc(&pd->usecnt);
2062         mr->res.type = RDMA_RESTRACK_MR;
2063         rdma_restrack_kadd(&mr->res);
2064
2065         return mr;
2066 }
2067 EXPORT_SYMBOL(ib_reg_user_mr);
2068
2069 int ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
2070                  u32 flags, struct ib_sge *sg_list, u32 num_sge)
2071 {
2072         if (!pd->device->ops.advise_mr)
2073                 return -EOPNOTSUPP;
2074
2075         if (!num_sge)
2076                 return 0;
2077
2078         return pd->device->ops.advise_mr(pd, advice, flags, sg_list, num_sge,
2079                                          NULL);
2080 }
2081 EXPORT_SYMBOL(ib_advise_mr);
2082
2083 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata)
2084 {
2085         struct ib_pd *pd = mr->pd;
2086         struct ib_dm *dm = mr->dm;
2087         struct ib_sig_attrs *sig_attrs = mr->sig_attrs;
2088         int ret;
2089
2090         trace_mr_dereg(mr);
2091         rdma_restrack_del(&mr->res);
2092         ret = mr->device->ops.dereg_mr(mr, udata);
2093         if (!ret) {
2094                 atomic_dec(&pd->usecnt);
2095                 if (dm)
2096                         atomic_dec(&dm->usecnt);
2097                 kfree(sig_attrs);
2098         }
2099
2100         return ret;
2101 }
2102 EXPORT_SYMBOL(ib_dereg_mr_user);
2103
2104 /**
2105  * ib_alloc_mr() - Allocates a memory region
2106  * @pd:            protection domain associated with the region
2107  * @mr_type:       memory region type
2108  * @max_num_sg:    maximum sg entries available for registration.
2109  *
2110  * Notes:
2111  * Memory registeration page/sg lists must not exceed max_num_sg.
2112  * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2113  * max_num_sg * used_page_size.
2114  *
2115  */
2116 struct ib_mr *ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
2117                           u32 max_num_sg)
2118 {
2119         struct ib_mr *mr;
2120
2121         if (!pd->device->ops.alloc_mr) {
2122                 mr = ERR_PTR(-EOPNOTSUPP);
2123                 goto out;
2124         }
2125
2126         if (mr_type == IB_MR_TYPE_INTEGRITY) {
2127                 WARN_ON_ONCE(1);
2128                 mr = ERR_PTR(-EINVAL);
2129                 goto out;
2130         }
2131
2132         mr = pd->device->ops.alloc_mr(pd, mr_type, max_num_sg);
2133         if (IS_ERR(mr))
2134                 goto out;
2135
2136         mr->device = pd->device;
2137         mr->pd = pd;
2138         mr->dm = NULL;
2139         mr->uobject = NULL;
2140         atomic_inc(&pd->usecnt);
2141         mr->need_inval = false;
2142         mr->res.type = RDMA_RESTRACK_MR;
2143         rdma_restrack_kadd(&mr->res);
2144         mr->type = mr_type;
2145         mr->sig_attrs = NULL;
2146
2147 out:
2148         trace_mr_alloc(pd, mr_type, max_num_sg, mr);
2149         return mr;
2150 }
2151 EXPORT_SYMBOL(ib_alloc_mr);
2152
2153 /**
2154  * ib_alloc_mr_integrity() - Allocates an integrity memory region
2155  * @pd:                      protection domain associated with the region
2156  * @max_num_data_sg:         maximum data sg entries available for registration
2157  * @max_num_meta_sg:         maximum metadata sg entries available for
2158  *                           registration
2159  *
2160  * Notes:
2161  * Memory registration page/sg lists must not exceed max_num_sg,
2162  * also the integrity page/sg lists must not exceed max_num_meta_sg.
2163  *
2164  */
2165 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd,
2166                                     u32 max_num_data_sg,
2167                                     u32 max_num_meta_sg)
2168 {
2169         struct ib_mr *mr;
2170         struct ib_sig_attrs *sig_attrs;
2171
2172         if (!pd->device->ops.alloc_mr_integrity ||
2173             !pd->device->ops.map_mr_sg_pi) {
2174                 mr = ERR_PTR(-EOPNOTSUPP);
2175                 goto out;
2176         }
2177
2178         if (!max_num_meta_sg) {
2179                 mr = ERR_PTR(-EINVAL);
2180                 goto out;
2181         }
2182
2183         sig_attrs = kzalloc(sizeof(struct ib_sig_attrs), GFP_KERNEL);
2184         if (!sig_attrs) {
2185                 mr = ERR_PTR(-ENOMEM);
2186                 goto out;
2187         }
2188
2189         mr = pd->device->ops.alloc_mr_integrity(pd, max_num_data_sg,
2190                                                 max_num_meta_sg);
2191         if (IS_ERR(mr)) {
2192                 kfree(sig_attrs);
2193                 goto out;
2194         }
2195
2196         mr->device = pd->device;
2197         mr->pd = pd;
2198         mr->dm = NULL;
2199         mr->uobject = NULL;
2200         atomic_inc(&pd->usecnt);
2201         mr->need_inval = false;
2202         mr->res.type = RDMA_RESTRACK_MR;
2203         rdma_restrack_kadd(&mr->res);
2204         mr->type = IB_MR_TYPE_INTEGRITY;
2205         mr->sig_attrs = sig_attrs;
2206
2207 out:
2208         trace_mr_integ_alloc(pd, max_num_data_sg, max_num_meta_sg, mr);
2209         return mr;
2210 }
2211 EXPORT_SYMBOL(ib_alloc_mr_integrity);
2212
2213 /* Multicast groups */
2214
2215 static bool is_valid_mcast_lid(struct ib_qp *qp, u16 lid)
2216 {
2217         struct ib_qp_init_attr init_attr = {};
2218         struct ib_qp_attr attr = {};
2219         int num_eth_ports = 0;
2220         int port;
2221
2222         /* If QP state >= init, it is assigned to a port and we can check this
2223          * port only.
2224          */
2225         if (!ib_query_qp(qp, &attr, IB_QP_STATE | IB_QP_PORT, &init_attr)) {
2226                 if (attr.qp_state >= IB_QPS_INIT) {
2227                         if (rdma_port_get_link_layer(qp->device, attr.port_num) !=
2228                             IB_LINK_LAYER_INFINIBAND)
2229                                 return true;
2230                         goto lid_check;
2231                 }
2232         }
2233
2234         /* Can't get a quick answer, iterate over all ports */
2235         for (port = 0; port < qp->device->phys_port_cnt; port++)
2236                 if (rdma_port_get_link_layer(qp->device, port) !=
2237                     IB_LINK_LAYER_INFINIBAND)
2238                         num_eth_ports++;
2239
2240         /* If we have at lease one Ethernet port, RoCE annex declares that
2241          * multicast LID should be ignored. We can't tell at this step if the
2242          * QP belongs to an IB or Ethernet port.
2243          */
2244         if (num_eth_ports)
2245                 return true;
2246
2247         /* If all the ports are IB, we can check according to IB spec. */
2248 lid_check:
2249         return !(lid < be16_to_cpu(IB_MULTICAST_LID_BASE) ||
2250                  lid == be16_to_cpu(IB_LID_PERMISSIVE));
2251 }
2252
2253 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2254 {
2255         int ret;
2256
2257         if (!qp->device->ops.attach_mcast)
2258                 return -EOPNOTSUPP;
2259
2260         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2261             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2262                 return -EINVAL;
2263
2264         ret = qp->device->ops.attach_mcast(qp, gid, lid);
2265         if (!ret)
2266                 atomic_inc(&qp->usecnt);
2267         return ret;
2268 }
2269 EXPORT_SYMBOL(ib_attach_mcast);
2270
2271 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid)
2272 {
2273         int ret;
2274
2275         if (!qp->device->ops.detach_mcast)
2276                 return -EOPNOTSUPP;
2277
2278         if (!rdma_is_multicast_addr((struct in6_addr *)gid->raw) ||
2279             qp->qp_type != IB_QPT_UD || !is_valid_mcast_lid(qp, lid))
2280                 return -EINVAL;
2281
2282         ret = qp->device->ops.detach_mcast(qp, gid, lid);
2283         if (!ret)
2284                 atomic_dec(&qp->usecnt);
2285         return ret;
2286 }
2287 EXPORT_SYMBOL(ib_detach_mcast);
2288
2289 /**
2290  * ib_alloc_xrcd_user - Allocates an XRC domain.
2291  * @device: The device on which to allocate the XRC domain.
2292  * @inode: inode to connect XRCD
2293  * @udata: Valid user data or NULL for kernel object
2294  */
2295 struct ib_xrcd *ib_alloc_xrcd_user(struct ib_device *device,
2296                                    struct inode *inode, struct ib_udata *udata)
2297 {
2298         struct ib_xrcd *xrcd;
2299         int ret;
2300
2301         if (!device->ops.alloc_xrcd)
2302                 return ERR_PTR(-EOPNOTSUPP);
2303
2304         xrcd = rdma_zalloc_drv_obj(device, ib_xrcd);
2305         if (!xrcd)
2306                 return ERR_PTR(-ENOMEM);
2307
2308         xrcd->device = device;
2309         xrcd->inode = inode;
2310         atomic_set(&xrcd->usecnt, 0);
2311         init_rwsem(&xrcd->tgt_qps_rwsem);
2312         xa_init(&xrcd->tgt_qps);
2313
2314         ret = device->ops.alloc_xrcd(xrcd, udata);
2315         if (ret)
2316                 goto err;
2317         return xrcd;
2318 err:
2319         kfree(xrcd);
2320         return ERR_PTR(ret);
2321 }
2322 EXPORT_SYMBOL(ib_alloc_xrcd_user);
2323
2324 /**
2325  * ib_dealloc_xrcd_user - Deallocates an XRC domain.
2326  * @xrcd: The XRC domain to deallocate.
2327  * @udata: Valid user data or NULL for kernel object
2328  */
2329 int ib_dealloc_xrcd_user(struct ib_xrcd *xrcd, struct ib_udata *udata)
2330 {
2331         if (atomic_read(&xrcd->usecnt))
2332                 return -EBUSY;
2333
2334         WARN_ON(!xa_empty(&xrcd->tgt_qps));
2335         xrcd->device->ops.dealloc_xrcd(xrcd, udata);
2336         kfree(xrcd);
2337         return 0;
2338 }
2339 EXPORT_SYMBOL(ib_dealloc_xrcd_user);
2340
2341 /**
2342  * ib_create_wq - Creates a WQ associated with the specified protection
2343  * domain.
2344  * @pd: The protection domain associated with the WQ.
2345  * @wq_attr: A list of initial attributes required to create the
2346  * WQ. If WQ creation succeeds, then the attributes are updated to
2347  * the actual capabilities of the created WQ.
2348  *
2349  * wq_attr->max_wr and wq_attr->max_sge determine
2350  * the requested size of the WQ, and set to the actual values allocated
2351  * on return.
2352  * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2353  * at least as large as the requested values.
2354  */
2355 struct ib_wq *ib_create_wq(struct ib_pd *pd,
2356                            struct ib_wq_init_attr *wq_attr)
2357 {
2358         struct ib_wq *wq;
2359
2360         if (!pd->device->ops.create_wq)
2361                 return ERR_PTR(-EOPNOTSUPP);
2362
2363         wq = pd->device->ops.create_wq(pd, wq_attr, NULL);
2364         if (!IS_ERR(wq)) {
2365                 wq->event_handler = wq_attr->event_handler;
2366                 wq->wq_context = wq_attr->wq_context;
2367                 wq->wq_type = wq_attr->wq_type;
2368                 wq->cq = wq_attr->cq;
2369                 wq->device = pd->device;
2370                 wq->pd = pd;
2371                 wq->uobject = NULL;
2372                 atomic_inc(&pd->usecnt);
2373                 atomic_inc(&wq_attr->cq->usecnt);
2374                 atomic_set(&wq->usecnt, 0);
2375         }
2376         return wq;
2377 }
2378 EXPORT_SYMBOL(ib_create_wq);
2379
2380 /**
2381  * ib_destroy_wq - Destroys the specified user WQ.
2382  * @wq: The WQ to destroy.
2383  * @udata: Valid user data
2384  */
2385 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata)
2386 {
2387         struct ib_cq *cq = wq->cq;
2388         struct ib_pd *pd = wq->pd;
2389
2390         if (atomic_read(&wq->usecnt))
2391                 return -EBUSY;
2392
2393         wq->device->ops.destroy_wq(wq, udata);
2394         atomic_dec(&pd->usecnt);
2395         atomic_dec(&cq->usecnt);
2396
2397         return 0;
2398 }
2399 EXPORT_SYMBOL(ib_destroy_wq);
2400
2401 /**
2402  * ib_modify_wq - Modifies the specified WQ.
2403  * @wq: The WQ to modify.
2404  * @wq_attr: On input, specifies the WQ attributes to modify.
2405  * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2406  *   are being modified.
2407  * On output, the current values of selected WQ attributes are returned.
2408  */
2409 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *wq_attr,
2410                  u32 wq_attr_mask)
2411 {
2412         int err;
2413
2414         if (!wq->device->ops.modify_wq)
2415                 return -EOPNOTSUPP;
2416
2417         err = wq->device->ops.modify_wq(wq, wq_attr, wq_attr_mask, NULL);
2418         return err;
2419 }
2420 EXPORT_SYMBOL(ib_modify_wq);
2421
2422 /*
2423  * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2424  * @wq_ind_table: The Indirection Table to destroy.
2425 */
2426 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *rwq_ind_table)
2427 {
2428         int err, i;
2429         u32 table_size = (1 << rwq_ind_table->log_ind_tbl_size);
2430         struct ib_wq **ind_tbl = rwq_ind_table->ind_tbl;
2431
2432         if (atomic_read(&rwq_ind_table->usecnt))
2433                 return -EBUSY;
2434
2435         err = rwq_ind_table->device->ops.destroy_rwq_ind_table(rwq_ind_table);
2436         if (!err) {
2437                 for (i = 0; i < table_size; i++)
2438                         atomic_dec(&ind_tbl[i]->usecnt);
2439         }
2440
2441         return err;
2442 }
2443 EXPORT_SYMBOL(ib_destroy_rwq_ind_table);
2444
2445 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
2446                        struct ib_mr_status *mr_status)
2447 {
2448         if (!mr->device->ops.check_mr_status)
2449                 return -EOPNOTSUPP;
2450
2451         return mr->device->ops.check_mr_status(mr, check_mask, mr_status);
2452 }
2453 EXPORT_SYMBOL(ib_check_mr_status);
2454
2455 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port,
2456                          int state)
2457 {
2458         if (!device->ops.set_vf_link_state)
2459                 return -EOPNOTSUPP;
2460
2461         return device->ops.set_vf_link_state(device, vf, port, state);
2462 }
2463 EXPORT_SYMBOL(ib_set_vf_link_state);
2464
2465 int ib_get_vf_config(struct ib_device *device, int vf, u8 port,
2466                      struct ifla_vf_info *info)
2467 {
2468         if (!device->ops.get_vf_config)
2469                 return -EOPNOTSUPP;
2470
2471         return device->ops.get_vf_config(device, vf, port, info);
2472 }
2473 EXPORT_SYMBOL(ib_get_vf_config);
2474
2475 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port,
2476                     struct ifla_vf_stats *stats)
2477 {
2478         if (!device->ops.get_vf_stats)
2479                 return -EOPNOTSUPP;
2480
2481         return device->ops.get_vf_stats(device, vf, port, stats);
2482 }
2483 EXPORT_SYMBOL(ib_get_vf_stats);
2484
2485 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid,
2486                    int type)
2487 {
2488         if (!device->ops.set_vf_guid)
2489                 return -EOPNOTSUPP;
2490
2491         return device->ops.set_vf_guid(device, vf, port, guid, type);
2492 }
2493 EXPORT_SYMBOL(ib_set_vf_guid);
2494
2495 int ib_get_vf_guid(struct ib_device *device, int vf, u8 port,
2496                    struct ifla_vf_guid *node_guid,
2497                    struct ifla_vf_guid *port_guid)
2498 {
2499         if (!device->ops.get_vf_guid)
2500                 return -EOPNOTSUPP;
2501
2502         return device->ops.get_vf_guid(device, vf, port, node_guid, port_guid);
2503 }
2504 EXPORT_SYMBOL(ib_get_vf_guid);
2505 /**
2506  * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2507  *     information) and set an appropriate memory region for registration.
2508  * @mr:             memory region
2509  * @data_sg:        dma mapped scatterlist for data
2510  * @data_sg_nents:  number of entries in data_sg
2511  * @data_sg_offset: offset in bytes into data_sg
2512  * @meta_sg:        dma mapped scatterlist for metadata
2513  * @meta_sg_nents:  number of entries in meta_sg
2514  * @meta_sg_offset: offset in bytes into meta_sg
2515  * @page_size:      page vector desired page size
2516  *
2517  * Constraints:
2518  * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2519  *
2520  * Return: 0 on success.
2521  *
2522  * After this completes successfully, the  memory region
2523  * is ready for registration.
2524  */
2525 int ib_map_mr_sg_pi(struct ib_mr *mr, struct scatterlist *data_sg,
2526                     int data_sg_nents, unsigned int *data_sg_offset,
2527                     struct scatterlist *meta_sg, int meta_sg_nents,
2528                     unsigned int *meta_sg_offset, unsigned int page_size)
2529 {
2530         if (unlikely(!mr->device->ops.map_mr_sg_pi ||
2531                      WARN_ON_ONCE(mr->type != IB_MR_TYPE_INTEGRITY)))
2532                 return -EOPNOTSUPP;
2533
2534         mr->page_size = page_size;
2535
2536         return mr->device->ops.map_mr_sg_pi(mr, data_sg, data_sg_nents,
2537                                             data_sg_offset, meta_sg,
2538                                             meta_sg_nents, meta_sg_offset);
2539 }
2540 EXPORT_SYMBOL(ib_map_mr_sg_pi);
2541
2542 /**
2543  * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2544  *     and set it the memory region.
2545  * @mr:            memory region
2546  * @sg:            dma mapped scatterlist
2547  * @sg_nents:      number of entries in sg
2548  * @sg_offset:     offset in bytes into sg
2549  * @page_size:     page vector desired page size
2550  *
2551  * Constraints:
2552  *
2553  * - The first sg element is allowed to have an offset.
2554  * - Each sg element must either be aligned to page_size or virtually
2555  *   contiguous to the previous element. In case an sg element has a
2556  *   non-contiguous offset, the mapping prefix will not include it.
2557  * - The last sg element is allowed to have length less than page_size.
2558  * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2559  *   then only max_num_sg entries will be mapped.
2560  * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2561  *   constraints holds and the page_size argument is ignored.
2562  *
2563  * Returns the number of sg elements that were mapped to the memory region.
2564  *
2565  * After this completes successfully, the  memory region
2566  * is ready for registration.
2567  */
2568 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents,
2569                  unsigned int *sg_offset, unsigned int page_size)
2570 {
2571         if (unlikely(!mr->device->ops.map_mr_sg))
2572                 return -EOPNOTSUPP;
2573
2574         mr->page_size = page_size;
2575
2576         return mr->device->ops.map_mr_sg(mr, sg, sg_nents, sg_offset);
2577 }
2578 EXPORT_SYMBOL(ib_map_mr_sg);
2579
2580 /**
2581  * ib_sg_to_pages() - Convert the largest prefix of a sg list
2582  *     to a page vector
2583  * @mr:            memory region
2584  * @sgl:           dma mapped scatterlist
2585  * @sg_nents:      number of entries in sg
2586  * @sg_offset_p:   ==== =======================================================
2587  *                 IN   start offset in bytes into sg
2588  *                 OUT  offset in bytes for element n of the sg of the first
2589  *                      byte that has not been processed where n is the return
2590  *                      value of this function.
2591  *                 ==== =======================================================
2592  * @set_page:      driver page assignment function pointer
2593  *
2594  * Core service helper for drivers to convert the largest
2595  * prefix of given sg list to a page vector. The sg list
2596  * prefix converted is the prefix that meet the requirements
2597  * of ib_map_mr_sg.
2598  *
2599  * Returns the number of sg elements that were assigned to
2600  * a page vector.
2601  */
2602 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents,
2603                 unsigned int *sg_offset_p, int (*set_page)(struct ib_mr *, u64))
2604 {
2605         struct scatterlist *sg;
2606         u64 last_end_dma_addr = 0;
2607         unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2608         unsigned int last_page_off = 0;
2609         u64 page_mask = ~((u64)mr->page_size - 1);
2610         int i, ret;
2611
2612         if (unlikely(sg_nents <= 0 || sg_offset > sg_dma_len(&sgl[0])))
2613                 return -EINVAL;
2614
2615         mr->iova = sg_dma_address(&sgl[0]) + sg_offset;
2616         mr->length = 0;
2617
2618         for_each_sg(sgl, sg, sg_nents, i) {
2619                 u64 dma_addr = sg_dma_address(sg) + sg_offset;
2620                 u64 prev_addr = dma_addr;
2621                 unsigned int dma_len = sg_dma_len(sg) - sg_offset;
2622                 u64 end_dma_addr = dma_addr + dma_len;
2623                 u64 page_addr = dma_addr & page_mask;
2624
2625                 /*
2626                  * For the second and later elements, check whether either the
2627                  * end of element i-1 or the start of element i is not aligned
2628                  * on a page boundary.
2629                  */
2630                 if (i && (last_page_off != 0 || page_addr != dma_addr)) {
2631                         /* Stop mapping if there is a gap. */
2632                         if (last_end_dma_addr != dma_addr)
2633                                 break;
2634
2635                         /*
2636                          * Coalesce this element with the last. If it is small
2637                          * enough just update mr->length. Otherwise start
2638                          * mapping from the next page.
2639                          */
2640                         goto next_page;
2641                 }
2642
2643                 do {
2644                         ret = set_page(mr, page_addr);
2645                         if (unlikely(ret < 0)) {
2646                                 sg_offset = prev_addr - sg_dma_address(sg);
2647                                 mr->length += prev_addr - dma_addr;
2648                                 if (sg_offset_p)
2649                                         *sg_offset_p = sg_offset;
2650                                 return i || sg_offset ? i : ret;
2651                         }
2652                         prev_addr = page_addr;
2653 next_page:
2654                         page_addr += mr->page_size;
2655                 } while (page_addr < end_dma_addr);
2656
2657                 mr->length += dma_len;
2658                 last_end_dma_addr = end_dma_addr;
2659                 last_page_off = end_dma_addr & ~page_mask;
2660
2661                 sg_offset = 0;
2662         }
2663
2664         if (sg_offset_p)
2665                 *sg_offset_p = 0;
2666         return i;
2667 }
2668 EXPORT_SYMBOL(ib_sg_to_pages);
2669
2670 struct ib_drain_cqe {
2671         struct ib_cqe cqe;
2672         struct completion done;
2673 };
2674
2675 static void ib_drain_qp_done(struct ib_cq *cq, struct ib_wc *wc)
2676 {
2677         struct ib_drain_cqe *cqe = container_of(wc->wr_cqe, struct ib_drain_cqe,
2678                                                 cqe);
2679
2680         complete(&cqe->done);
2681 }
2682
2683 /*
2684  * Post a WR and block until its completion is reaped for the SQ.
2685  */
2686 static void __ib_drain_sq(struct ib_qp *qp)
2687 {
2688         struct ib_cq *cq = qp->send_cq;
2689         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2690         struct ib_drain_cqe sdrain;
2691         struct ib_rdma_wr swr = {
2692                 .wr = {
2693                         .next = NULL,
2694                         { .wr_cqe       = &sdrain.cqe, },
2695                         .opcode = IB_WR_RDMA_WRITE,
2696                 },
2697         };
2698         int ret;
2699
2700         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2701         if (ret) {
2702                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2703                 return;
2704         }
2705
2706         sdrain.cqe.done = ib_drain_qp_done;
2707         init_completion(&sdrain.done);
2708
2709         ret = ib_post_send(qp, &swr.wr, NULL);
2710         if (ret) {
2711                 WARN_ONCE(ret, "failed to drain send queue: %d\n", ret);
2712                 return;
2713         }
2714
2715         if (cq->poll_ctx == IB_POLL_DIRECT)
2716                 while (wait_for_completion_timeout(&sdrain.done, HZ / 10) <= 0)
2717                         ib_process_cq_direct(cq, -1);
2718         else
2719                 wait_for_completion(&sdrain.done);
2720 }
2721
2722 /*
2723  * Post a WR and block until its completion is reaped for the RQ.
2724  */
2725 static void __ib_drain_rq(struct ib_qp *qp)
2726 {
2727         struct ib_cq *cq = qp->recv_cq;
2728         struct ib_qp_attr attr = { .qp_state = IB_QPS_ERR };
2729         struct ib_drain_cqe rdrain;
2730         struct ib_recv_wr rwr = {};
2731         int ret;
2732
2733         ret = ib_modify_qp(qp, &attr, IB_QP_STATE);
2734         if (ret) {
2735                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2736                 return;
2737         }
2738
2739         rwr.wr_cqe = &rdrain.cqe;
2740         rdrain.cqe.done = ib_drain_qp_done;
2741         init_completion(&rdrain.done);
2742
2743         ret = ib_post_recv(qp, &rwr, NULL);
2744         if (ret) {
2745                 WARN_ONCE(ret, "failed to drain recv queue: %d\n", ret);
2746                 return;
2747         }
2748
2749         if (cq->poll_ctx == IB_POLL_DIRECT)
2750                 while (wait_for_completion_timeout(&rdrain.done, HZ / 10) <= 0)
2751                         ib_process_cq_direct(cq, -1);
2752         else
2753                 wait_for_completion(&rdrain.done);
2754 }
2755
2756 /**
2757  * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2758  *                 application.
2759  * @qp:            queue pair to drain
2760  *
2761  * If the device has a provider-specific drain function, then
2762  * call that.  Otherwise call the generic drain function
2763  * __ib_drain_sq().
2764  *
2765  * The caller must:
2766  *
2767  * ensure there is room in the CQ and SQ for the drain work request and
2768  * completion.
2769  *
2770  * allocate the CQ using ib_alloc_cq().
2771  *
2772  * ensure that there are no other contexts that are posting WRs concurrently.
2773  * Otherwise the drain is not guaranteed.
2774  */
2775 void ib_drain_sq(struct ib_qp *qp)
2776 {
2777         if (qp->device->ops.drain_sq)
2778                 qp->device->ops.drain_sq(qp);
2779         else
2780                 __ib_drain_sq(qp);
2781         trace_cq_drain_complete(qp->send_cq);
2782 }
2783 EXPORT_SYMBOL(ib_drain_sq);
2784
2785 /**
2786  * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2787  *                 application.
2788  * @qp:            queue pair to drain
2789  *
2790  * If the device has a provider-specific drain function, then
2791  * call that.  Otherwise call the generic drain function
2792  * __ib_drain_rq().
2793  *
2794  * The caller must:
2795  *
2796  * ensure there is room in the CQ and RQ for the drain work request and
2797  * completion.
2798  *
2799  * allocate the CQ using ib_alloc_cq().
2800  *
2801  * ensure that there are no other contexts that are posting WRs concurrently.
2802  * Otherwise the drain is not guaranteed.
2803  */
2804 void ib_drain_rq(struct ib_qp *qp)
2805 {
2806         if (qp->device->ops.drain_rq)
2807                 qp->device->ops.drain_rq(qp);
2808         else
2809                 __ib_drain_rq(qp);
2810         trace_cq_drain_complete(qp->recv_cq);
2811 }
2812 EXPORT_SYMBOL(ib_drain_rq);
2813
2814 /**
2815  * ib_drain_qp() - Block until all CQEs have been consumed by the
2816  *                 application on both the RQ and SQ.
2817  * @qp:            queue pair to drain
2818  *
2819  * The caller must:
2820  *
2821  * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2822  * and completions.
2823  *
2824  * allocate the CQs using ib_alloc_cq().
2825  *
2826  * ensure that there are no other contexts that are posting WRs concurrently.
2827  * Otherwise the drain is not guaranteed.
2828  */
2829 void ib_drain_qp(struct ib_qp *qp)
2830 {
2831         ib_drain_sq(qp);
2832         if (!qp->srq)
2833                 ib_drain_rq(qp);
2834 }
2835 EXPORT_SYMBOL(ib_drain_qp);
2836
2837 struct net_device *rdma_alloc_netdev(struct ib_device *device, u8 port_num,
2838                                      enum rdma_netdev_t type, const char *name,
2839                                      unsigned char name_assign_type,
2840                                      void (*setup)(struct net_device *))
2841 {
2842         struct rdma_netdev_alloc_params params;
2843         struct net_device *netdev;
2844         int rc;
2845
2846         if (!device->ops.rdma_netdev_get_params)
2847                 return ERR_PTR(-EOPNOTSUPP);
2848
2849         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2850                                                 &params);
2851         if (rc)
2852                 return ERR_PTR(rc);
2853
2854         netdev = alloc_netdev_mqs(params.sizeof_priv, name, name_assign_type,
2855                                   setup, params.txqs, params.rxqs);
2856         if (!netdev)
2857                 return ERR_PTR(-ENOMEM);
2858
2859         return netdev;
2860 }
2861 EXPORT_SYMBOL(rdma_alloc_netdev);
2862
2863 int rdma_init_netdev(struct ib_device *device, u8 port_num,
2864                      enum rdma_netdev_t type, const char *name,
2865                      unsigned char name_assign_type,
2866                      void (*setup)(struct net_device *),
2867                      struct net_device *netdev)
2868 {
2869         struct rdma_netdev_alloc_params params;
2870         int rc;
2871
2872         if (!device->ops.rdma_netdev_get_params)
2873                 return -EOPNOTSUPP;
2874
2875         rc = device->ops.rdma_netdev_get_params(device, port_num, type,
2876                                                 &params);
2877         if (rc)
2878                 return rc;
2879
2880         return params.initialize_rdma_netdev(device, port_num,
2881                                              netdev, params.param);
2882 }
2883 EXPORT_SYMBOL(rdma_init_netdev);
2884
2885 void __rdma_block_iter_start(struct ib_block_iter *biter,
2886                              struct scatterlist *sglist, unsigned int nents,
2887                              unsigned long pgsz)
2888 {
2889         memset(biter, 0, sizeof(struct ib_block_iter));
2890         biter->__sg = sglist;
2891         biter->__sg_nents = nents;
2892
2893         /* Driver provides best block size to use */
2894         biter->__pg_bit = __fls(pgsz);
2895 }
2896 EXPORT_SYMBOL(__rdma_block_iter_start);
2897
2898 bool __rdma_block_iter_next(struct ib_block_iter *biter)
2899 {
2900         unsigned int block_offset;
2901
2902         if (!biter->__sg_nents || !biter->__sg)
2903                 return false;
2904
2905         biter->__dma_addr = sg_dma_address(biter->__sg) + biter->__sg_advance;
2906         block_offset = biter->__dma_addr & (BIT_ULL(biter->__pg_bit) - 1);
2907         biter->__sg_advance += BIT_ULL(biter->__pg_bit) - block_offset;
2908
2909         if (biter->__sg_advance >= sg_dma_len(biter->__sg)) {
2910                 biter->__sg_advance = 0;
2911                 biter->__sg = sg_next(biter->__sg);
2912                 biter->__sg_nents--;
2913         }
2914
2915         return true;
2916 }
2917 EXPORT_SYMBOL(__rdma_block_iter_next);