PCI: hv: Remove unused hv_set_msi_entry_from_desc()
[sfrench/cifs-2.6.git] / drivers / iio / magnetometer / rm3100-core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PNI RM3100 3-axis geomagnetic sensor driver core.
4  *
5  * Copyright (C) 2018 Song Qiang <songqiang1304521@gmail.com>
6  *
7  * User Manual available at
8  * <https://www.pnicorp.com/download/rm3100-user-manual/>
9  *
10  * TODO: event generation, pm.
11  */
12
13 #include <linux/delay.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/triggered_buffer.h>
23 #include <linux/iio/trigger_consumer.h>
24
25 #include <asm/unaligned.h>
26
27 #include "rm3100.h"
28
29 /* Cycle Count Registers. */
30 #define RM3100_REG_CC_X                 0x05
31 #define RM3100_REG_CC_Y                 0x07
32 #define RM3100_REG_CC_Z                 0x09
33
34 /* Poll Measurement Mode register. */
35 #define RM3100_REG_POLL                 0x00
36 #define         RM3100_POLL_X           BIT(4)
37 #define         RM3100_POLL_Y           BIT(5)
38 #define         RM3100_POLL_Z           BIT(6)
39
40 /* Continuous Measurement Mode register. */
41 #define RM3100_REG_CMM                  0x01
42 #define         RM3100_CMM_START        BIT(0)
43 #define         RM3100_CMM_X            BIT(4)
44 #define         RM3100_CMM_Y            BIT(5)
45 #define         RM3100_CMM_Z            BIT(6)
46
47 /* TiMe Rate Configuration register. */
48 #define RM3100_REG_TMRC                 0x0B
49 #define RM3100_TMRC_OFFSET              0x92
50
51 /* Result Status register. */
52 #define RM3100_REG_STATUS               0x34
53 #define         RM3100_STATUS_DRDY      BIT(7)
54
55 /* Measurement result registers. */
56 #define RM3100_REG_MX2                  0x24
57 #define RM3100_REG_MY2                  0x27
58 #define RM3100_REG_MZ2                  0x2a
59
60 #define RM3100_W_REG_START              RM3100_REG_POLL
61 #define RM3100_W_REG_END                RM3100_REG_TMRC
62 #define RM3100_R_REG_START              RM3100_REG_POLL
63 #define RM3100_R_REG_END                RM3100_REG_STATUS
64 #define RM3100_V_REG_START              RM3100_REG_POLL
65 #define RM3100_V_REG_END                RM3100_REG_STATUS
66
67 /*
68  * This is computed by hand, is the sum of channel storage bits and padding
69  * bits, which is 4+4+4+12=24 in here.
70  */
71 #define RM3100_SCAN_BYTES               24
72
73 #define RM3100_CMM_AXIS_SHIFT           4
74
75 struct rm3100_data {
76         struct regmap *regmap;
77         struct completion measuring_done;
78         bool use_interrupt;
79         int conversion_time;
80         int scale;
81         /* Ensure naturally aligned timestamp */
82         u8 buffer[RM3100_SCAN_BYTES] __aligned(8);
83         struct iio_trigger *drdy_trig;
84
85         /*
86          * This lock is for protecting the consistency of series of i2c
87          * operations, that is, to make sure a measurement process will
88          * not be interrupted by a set frequency operation, which should
89          * be taken where a series of i2c operation starts, released where
90          * the operation ends.
91          */
92         struct mutex lock;
93 };
94
95 static const struct regmap_range rm3100_readable_ranges[] = {
96         regmap_reg_range(RM3100_R_REG_START, RM3100_R_REG_END),
97 };
98
99 const struct regmap_access_table rm3100_readable_table = {
100         .yes_ranges = rm3100_readable_ranges,
101         .n_yes_ranges = ARRAY_SIZE(rm3100_readable_ranges),
102 };
103 EXPORT_SYMBOL_GPL(rm3100_readable_table);
104
105 static const struct regmap_range rm3100_writable_ranges[] = {
106         regmap_reg_range(RM3100_W_REG_START, RM3100_W_REG_END),
107 };
108
109 const struct regmap_access_table rm3100_writable_table = {
110         .yes_ranges = rm3100_writable_ranges,
111         .n_yes_ranges = ARRAY_SIZE(rm3100_writable_ranges),
112 };
113 EXPORT_SYMBOL_GPL(rm3100_writable_table);
114
115 static const struct regmap_range rm3100_volatile_ranges[] = {
116         regmap_reg_range(RM3100_V_REG_START, RM3100_V_REG_END),
117 };
118
119 const struct regmap_access_table rm3100_volatile_table = {
120         .yes_ranges = rm3100_volatile_ranges,
121         .n_yes_ranges = ARRAY_SIZE(rm3100_volatile_ranges),
122 };
123 EXPORT_SYMBOL_GPL(rm3100_volatile_table);
124
125 static irqreturn_t rm3100_thread_fn(int irq, void *d)
126 {
127         struct iio_dev *indio_dev = d;
128         struct rm3100_data *data = iio_priv(indio_dev);
129
130         /*
131          * Write operation to any register or read operation
132          * to first byte of results will clear the interrupt.
133          */
134         regmap_write(data->regmap, RM3100_REG_POLL, 0);
135
136         return IRQ_HANDLED;
137 }
138
139 static irqreturn_t rm3100_irq_handler(int irq, void *d)
140 {
141         struct iio_dev *indio_dev = d;
142         struct rm3100_data *data = iio_priv(indio_dev);
143
144         switch (indio_dev->currentmode) {
145         case INDIO_DIRECT_MODE:
146                 complete(&data->measuring_done);
147                 break;
148         case INDIO_BUFFER_TRIGGERED:
149                 iio_trigger_poll(data->drdy_trig);
150                 break;
151         default:
152                 dev_err(indio_dev->dev.parent,
153                         "device mode out of control, current mode: %d",
154                         indio_dev->currentmode);
155         }
156
157         return IRQ_WAKE_THREAD;
158 }
159
160 static int rm3100_wait_measurement(struct rm3100_data *data)
161 {
162         struct regmap *regmap = data->regmap;
163         unsigned int val;
164         int tries = 20;
165         int ret;
166
167         /*
168          * A read cycle of 400kbits i2c bus is about 20us, plus the time
169          * used for scheduling, a read cycle of fast mode of this device
170          * can reach 1.7ms, it may be possible for data to arrive just
171          * after we check the RM3100_REG_STATUS. In this case, irq_handler is
172          * called before measuring_done is reinitialized, it will wait
173          * forever for data that has already been ready.
174          * Reinitialize measuring_done before looking up makes sure we
175          * will always capture interrupt no matter when it happens.
176          */
177         if (data->use_interrupt)
178                 reinit_completion(&data->measuring_done);
179
180         ret = regmap_read(regmap, RM3100_REG_STATUS, &val);
181         if (ret < 0)
182                 return ret;
183
184         if ((val & RM3100_STATUS_DRDY) != RM3100_STATUS_DRDY) {
185                 if (data->use_interrupt) {
186                         ret = wait_for_completion_timeout(&data->measuring_done,
187                                 msecs_to_jiffies(data->conversion_time));
188                         if (!ret)
189                                 return -ETIMEDOUT;
190                 } else {
191                         do {
192                                 usleep_range(1000, 5000);
193
194                                 ret = regmap_read(regmap, RM3100_REG_STATUS,
195                                                   &val);
196                                 if (ret < 0)
197                                         return ret;
198
199                                 if (val & RM3100_STATUS_DRDY)
200                                         break;
201                         } while (--tries);
202                         if (!tries)
203                                 return -ETIMEDOUT;
204                 }
205         }
206         return 0;
207 }
208
209 static int rm3100_read_mag(struct rm3100_data *data, int idx, int *val)
210 {
211         struct regmap *regmap = data->regmap;
212         u8 buffer[3];
213         int ret;
214
215         mutex_lock(&data->lock);
216         ret = regmap_write(regmap, RM3100_REG_POLL, BIT(4 + idx));
217         if (ret < 0)
218                 goto unlock_return;
219
220         ret = rm3100_wait_measurement(data);
221         if (ret < 0)
222                 goto unlock_return;
223
224         ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * idx, buffer, 3);
225         if (ret < 0)
226                 goto unlock_return;
227         mutex_unlock(&data->lock);
228
229         *val = sign_extend32(get_unaligned_be24(&buffer[0]), 23);
230
231         return IIO_VAL_INT;
232
233 unlock_return:
234         mutex_unlock(&data->lock);
235         return ret;
236 }
237
238 #define RM3100_CHANNEL(axis, idx)                                       \
239         {                                                               \
240                 .type = IIO_MAGN,                                       \
241                 .modified = 1,                                          \
242                 .channel2 = IIO_MOD_##axis,                             \
243                 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),           \
244                 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |  \
245                         BIT(IIO_CHAN_INFO_SAMP_FREQ),                   \
246                 .scan_index = idx,                                      \
247                 .scan_type = {                                          \
248                         .sign = 's',                                    \
249                         .realbits = 24,                                 \
250                         .storagebits = 32,                              \
251                         .shift = 8,                                     \
252                         .endianness = IIO_BE,                           \
253                 },                                                      \
254         }
255
256 static const struct iio_chan_spec rm3100_channels[] = {
257         RM3100_CHANNEL(X, 0),
258         RM3100_CHANNEL(Y, 1),
259         RM3100_CHANNEL(Z, 2),
260         IIO_CHAN_SOFT_TIMESTAMP(3),
261 };
262
263 static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
264         "600 300 150 75 37 18 9 4.5 2.3 1.2 0.6 0.3 0.015 0.075"
265 );
266
267 static struct attribute *rm3100_attributes[] = {
268         &iio_const_attr_sampling_frequency_available.dev_attr.attr,
269         NULL,
270 };
271
272 static const struct attribute_group rm3100_attribute_group = {
273         .attrs = rm3100_attributes,
274 };
275
276 #define RM3100_SAMP_NUM                 14
277
278 /*
279  * Frequency : rm3100_samp_rates[][0].rm3100_samp_rates[][1]Hz.
280  * Time between reading: rm3100_sam_rates[][2]ms.
281  * The first one is actually 1.7ms.
282  */
283 static const int rm3100_samp_rates[RM3100_SAMP_NUM][3] = {
284         {600, 0, 2}, {300, 0, 3}, {150, 0, 7}, {75, 0, 13}, {37, 0, 27},
285         {18, 0, 55}, {9, 0, 110}, {4, 500000, 220}, {2, 300000, 440},
286         {1, 200000, 800}, {0, 600000, 1600}, {0, 300000, 3300},
287         {0, 15000, 6700},  {0, 75000, 13000}
288 };
289
290 static int rm3100_get_samp_freq(struct rm3100_data *data, int *val, int *val2)
291 {
292         unsigned int tmp;
293         int ret;
294
295         mutex_lock(&data->lock);
296         ret = regmap_read(data->regmap, RM3100_REG_TMRC, &tmp);
297         mutex_unlock(&data->lock);
298         if (ret < 0)
299                 return ret;
300         *val = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][0];
301         *val2 = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][1];
302
303         return IIO_VAL_INT_PLUS_MICRO;
304 }
305
306 static int rm3100_set_cycle_count(struct rm3100_data *data, int val)
307 {
308         int ret;
309         u8 i;
310
311         for (i = 0; i < 3; i++) {
312                 ret = regmap_write(data->regmap, RM3100_REG_CC_X + 2 * i, val);
313                 if (ret < 0)
314                         return ret;
315         }
316
317         /*
318          * The scale of this sensor depends on the cycle count value, these
319          * three values are corresponding to the cycle count value 50, 100,
320          * 200. scale = output / gain * 10^4.
321          */
322         switch (val) {
323         case 50:
324                 data->scale = 500;
325                 break;
326         case 100:
327                 data->scale = 263;
328                 break;
329         /*
330          * case 200:
331          * This function will never be called by users' code, so here we
332          * assume that it will never get a wrong parameter.
333          */
334         default:
335                 data->scale = 133;
336         }
337
338         return 0;
339 }
340
341 static int rm3100_set_samp_freq(struct iio_dev *indio_dev, int val, int val2)
342 {
343         struct rm3100_data *data = iio_priv(indio_dev);
344         struct regmap *regmap = data->regmap;
345         unsigned int cycle_count;
346         int ret;
347         int i;
348
349         mutex_lock(&data->lock);
350         /* All cycle count registers use the same value. */
351         ret = regmap_read(regmap, RM3100_REG_CC_X, &cycle_count);
352         if (ret < 0)
353                 goto unlock_return;
354
355         for (i = 0; i < RM3100_SAMP_NUM; i++) {
356                 if (val == rm3100_samp_rates[i][0] &&
357                     val2 == rm3100_samp_rates[i][1])
358                         break;
359         }
360         if (i == RM3100_SAMP_NUM) {
361                 ret = -EINVAL;
362                 goto unlock_return;
363         }
364
365         ret = regmap_write(regmap, RM3100_REG_TMRC, i + RM3100_TMRC_OFFSET);
366         if (ret < 0)
367                 goto unlock_return;
368
369         /* Checking if cycle count registers need changing. */
370         if (val == 600 && cycle_count == 200) {
371                 ret = rm3100_set_cycle_count(data, 100);
372                 if (ret < 0)
373                         goto unlock_return;
374         } else if (val != 600 && cycle_count == 100) {
375                 ret = rm3100_set_cycle_count(data, 200);
376                 if (ret < 0)
377                         goto unlock_return;
378         }
379
380         if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) {
381                 /* Writing TMRC registers requires CMM reset. */
382                 ret = regmap_write(regmap, RM3100_REG_CMM, 0);
383                 if (ret < 0)
384                         goto unlock_return;
385                 ret = regmap_write(data->regmap, RM3100_REG_CMM,
386                         (*indio_dev->active_scan_mask & 0x7) <<
387                         RM3100_CMM_AXIS_SHIFT | RM3100_CMM_START);
388                 if (ret < 0)
389                         goto unlock_return;
390         }
391         mutex_unlock(&data->lock);
392
393         data->conversion_time = rm3100_samp_rates[i][2] * 2;
394         return 0;
395
396 unlock_return:
397         mutex_unlock(&data->lock);
398         return ret;
399 }
400
401 static int rm3100_read_raw(struct iio_dev *indio_dev,
402                            const struct iio_chan_spec *chan,
403                            int *val, int *val2, long mask)
404 {
405         struct rm3100_data *data = iio_priv(indio_dev);
406         int ret;
407
408         switch (mask) {
409         case IIO_CHAN_INFO_RAW:
410                 ret = iio_device_claim_direct_mode(indio_dev);
411                 if (ret < 0)
412                         return ret;
413
414                 ret = rm3100_read_mag(data, chan->scan_index, val);
415                 iio_device_release_direct_mode(indio_dev);
416
417                 return ret;
418         case IIO_CHAN_INFO_SCALE:
419                 *val = 0;
420                 *val2 = data->scale;
421
422                 return IIO_VAL_INT_PLUS_MICRO;
423         case IIO_CHAN_INFO_SAMP_FREQ:
424                 return rm3100_get_samp_freq(data, val, val2);
425         default:
426                 return -EINVAL;
427         }
428 }
429
430 static int rm3100_write_raw(struct iio_dev *indio_dev,
431                             struct iio_chan_spec const *chan,
432                             int val, int val2, long mask)
433 {
434         switch (mask) {
435         case IIO_CHAN_INFO_SAMP_FREQ:
436                 return rm3100_set_samp_freq(indio_dev, val, val2);
437         default:
438                 return -EINVAL;
439         }
440 }
441
442 static const struct iio_info rm3100_info = {
443         .attrs = &rm3100_attribute_group,
444         .read_raw = rm3100_read_raw,
445         .write_raw = rm3100_write_raw,
446 };
447
448 static int rm3100_buffer_preenable(struct iio_dev *indio_dev)
449 {
450         struct rm3100_data *data = iio_priv(indio_dev);
451
452         /* Starting channels enabled. */
453         return regmap_write(data->regmap, RM3100_REG_CMM,
454                 (*indio_dev->active_scan_mask & 0x7) << RM3100_CMM_AXIS_SHIFT |
455                 RM3100_CMM_START);
456 }
457
458 static int rm3100_buffer_postdisable(struct iio_dev *indio_dev)
459 {
460         struct rm3100_data *data = iio_priv(indio_dev);
461
462         return regmap_write(data->regmap, RM3100_REG_CMM, 0);
463 }
464
465 static const struct iio_buffer_setup_ops rm3100_buffer_ops = {
466         .preenable = rm3100_buffer_preenable,
467         .postdisable = rm3100_buffer_postdisable,
468 };
469
470 static irqreturn_t rm3100_trigger_handler(int irq, void *p)
471 {
472         struct iio_poll_func *pf = p;
473         struct iio_dev *indio_dev = pf->indio_dev;
474         unsigned long scan_mask = *indio_dev->active_scan_mask;
475         unsigned int mask_len = indio_dev->masklength;
476         struct rm3100_data *data = iio_priv(indio_dev);
477         struct regmap *regmap = data->regmap;
478         int ret, i, bit;
479
480         mutex_lock(&data->lock);
481         switch (scan_mask) {
482         case BIT(0) | BIT(1) | BIT(2):
483                 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
484                 mutex_unlock(&data->lock);
485                 if (ret < 0)
486                         goto done;
487                 /* Convert XXXYYYZZZxxx to XXXxYYYxZZZx. x for paddings. */
488                 for (i = 2; i > 0; i--)
489                         memmove(data->buffer + i * 4, data->buffer + i * 3, 3);
490                 break;
491         case BIT(0) | BIT(1):
492                 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 6);
493                 mutex_unlock(&data->lock);
494                 if (ret < 0)
495                         goto done;
496                 memmove(data->buffer + 4, data->buffer + 3, 3);
497                 break;
498         case BIT(1) | BIT(2):
499                 ret = regmap_bulk_read(regmap, RM3100_REG_MY2, data->buffer, 6);
500                 mutex_unlock(&data->lock);
501                 if (ret < 0)
502                         goto done;
503                 memmove(data->buffer + 4, data->buffer + 3, 3);
504                 break;
505         case BIT(0) | BIT(2):
506                 ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
507                 mutex_unlock(&data->lock);
508                 if (ret < 0)
509                         goto done;
510                 memmove(data->buffer + 4, data->buffer + 6, 3);
511                 break;
512         default:
513                 for_each_set_bit(bit, &scan_mask, mask_len) {
514                         ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * bit,
515                                                data->buffer, 3);
516                         if (ret < 0) {
517                                 mutex_unlock(&data->lock);
518                                 goto done;
519                         }
520                 }
521                 mutex_unlock(&data->lock);
522         }
523         /*
524          * Always using the same buffer so that we wouldn't need to set the
525          * paddings to 0 in case of leaking any data.
526          */
527         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
528                                            pf->timestamp);
529 done:
530         iio_trigger_notify_done(indio_dev->trig);
531
532         return IRQ_HANDLED;
533 }
534
535 int rm3100_common_probe(struct device *dev, struct regmap *regmap, int irq)
536 {
537         struct iio_dev *indio_dev;
538         struct rm3100_data *data;
539         unsigned int tmp;
540         int ret;
541
542         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
543         if (!indio_dev)
544                 return -ENOMEM;
545
546         data = iio_priv(indio_dev);
547         data->regmap = regmap;
548
549         mutex_init(&data->lock);
550
551         indio_dev->name = "rm3100";
552         indio_dev->info = &rm3100_info;
553         indio_dev->channels = rm3100_channels;
554         indio_dev->num_channels = ARRAY_SIZE(rm3100_channels);
555         indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_TRIGGERED;
556         indio_dev->currentmode = INDIO_DIRECT_MODE;
557
558         if (!irq)
559                 data->use_interrupt = false;
560         else {
561                 data->use_interrupt = true;
562
563                 init_completion(&data->measuring_done);
564                 ret = devm_request_threaded_irq(dev,
565                                                 irq,
566                                                 rm3100_irq_handler,
567                                                 rm3100_thread_fn,
568                                                 IRQF_TRIGGER_HIGH |
569                                                 IRQF_ONESHOT,
570                                                 indio_dev->name,
571                                                 indio_dev);
572                 if (ret < 0) {
573                         dev_err(dev, "request irq line failed.\n");
574                         return ret;
575                 }
576
577                 data->drdy_trig = devm_iio_trigger_alloc(dev, "%s-drdy%d",
578                                                          indio_dev->name,
579                                                          iio_device_id(indio_dev));
580                 if (!data->drdy_trig)
581                         return -ENOMEM;
582
583                 ret = devm_iio_trigger_register(dev, data->drdy_trig);
584                 if (ret < 0)
585                         return ret;
586         }
587
588         ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
589                                               &iio_pollfunc_store_time,
590                                               rm3100_trigger_handler,
591                                               &rm3100_buffer_ops);
592         if (ret < 0)
593                 return ret;
594
595         ret = regmap_read(regmap, RM3100_REG_TMRC, &tmp);
596         if (ret < 0)
597                 return ret;
598         /* Initializing max wait time, which is double conversion time. */
599         data->conversion_time = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][2]
600                                 * 2;
601
602         /* Cycle count values may not be what we want. */
603         if ((tmp - RM3100_TMRC_OFFSET) == 0)
604                 rm3100_set_cycle_count(data, 100);
605         else
606                 rm3100_set_cycle_count(data, 200);
607
608         return devm_iio_device_register(dev, indio_dev);
609 }
610 EXPORT_SYMBOL_GPL(rm3100_common_probe);
611
612 MODULE_AUTHOR("Song Qiang <songqiang1304521@gmail.com>");
613 MODULE_DESCRIPTION("PNI RM3100 3-axis magnetometer i2c driver");
614 MODULE_LICENSE("GPL v2");