Merge tag '6.6-rc-smb3-client-fixes-part2' of git://git.samba.org/sfrench/cifs-2.6
[sfrench/cifs-2.6.git] / drivers / i2c / busses / i2c-bcm-iproc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 // Copyright (C) 2014 Broadcom Corporation
3
4 #include <linux/delay.h>
5 #include <linux/i2c.h>
6 #include <linux/interrupt.h>
7 #include <linux/io.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/of.h>
11 #include <linux/platform_device.h>
12 #include <linux/slab.h>
13
14 #define IDM_CTRL_DIRECT_OFFSET       0x00
15 #define CFG_OFFSET                   0x00
16 #define CFG_RESET_SHIFT              31
17 #define CFG_EN_SHIFT                 30
18 #define CFG_SLAVE_ADDR_0_SHIFT       28
19 #define CFG_M_RETRY_CNT_SHIFT        16
20 #define CFG_M_RETRY_CNT_MASK         0x0f
21
22 #define TIM_CFG_OFFSET               0x04
23 #define TIM_CFG_MODE_400_SHIFT       31
24 #define TIM_RAND_SLAVE_STRETCH_SHIFT      24
25 #define TIM_RAND_SLAVE_STRETCH_MASK       0x7f
26 #define TIM_PERIODIC_SLAVE_STRETCH_SHIFT  16
27 #define TIM_PERIODIC_SLAVE_STRETCH_MASK   0x7f
28
29 #define S_CFG_SMBUS_ADDR_OFFSET           0x08
30 #define S_CFG_EN_NIC_SMB_ADDR3_SHIFT      31
31 #define S_CFG_NIC_SMB_ADDR3_SHIFT         24
32 #define S_CFG_NIC_SMB_ADDR3_MASK          0x7f
33 #define S_CFG_EN_NIC_SMB_ADDR2_SHIFT      23
34 #define S_CFG_NIC_SMB_ADDR2_SHIFT         16
35 #define S_CFG_NIC_SMB_ADDR2_MASK          0x7f
36 #define S_CFG_EN_NIC_SMB_ADDR1_SHIFT      15
37 #define S_CFG_NIC_SMB_ADDR1_SHIFT         8
38 #define S_CFG_NIC_SMB_ADDR1_MASK          0x7f
39 #define S_CFG_EN_NIC_SMB_ADDR0_SHIFT      7
40 #define S_CFG_NIC_SMB_ADDR0_SHIFT         0
41 #define S_CFG_NIC_SMB_ADDR0_MASK          0x7f
42
43 #define M_FIFO_CTRL_OFFSET           0x0c
44 #define M_FIFO_RX_FLUSH_SHIFT        31
45 #define M_FIFO_TX_FLUSH_SHIFT        30
46 #define M_FIFO_RX_CNT_SHIFT          16
47 #define M_FIFO_RX_CNT_MASK           0x7f
48 #define M_FIFO_RX_THLD_SHIFT         8
49 #define M_FIFO_RX_THLD_MASK          0x3f
50
51 #define S_FIFO_CTRL_OFFSET           0x10
52 #define S_FIFO_RX_FLUSH_SHIFT        31
53 #define S_FIFO_TX_FLUSH_SHIFT        30
54 #define S_FIFO_RX_CNT_SHIFT          16
55 #define S_FIFO_RX_CNT_MASK           0x7f
56 #define S_FIFO_RX_THLD_SHIFT         8
57 #define S_FIFO_RX_THLD_MASK          0x3f
58
59 #define M_CMD_OFFSET                 0x30
60 #define M_CMD_START_BUSY_SHIFT       31
61 #define M_CMD_STATUS_SHIFT           25
62 #define M_CMD_STATUS_MASK            0x07
63 #define M_CMD_STATUS_SUCCESS         0x0
64 #define M_CMD_STATUS_LOST_ARB        0x1
65 #define M_CMD_STATUS_NACK_ADDR       0x2
66 #define M_CMD_STATUS_NACK_DATA       0x3
67 #define M_CMD_STATUS_TIMEOUT         0x4
68 #define M_CMD_STATUS_FIFO_UNDERRUN   0x5
69 #define M_CMD_STATUS_RX_FIFO_FULL    0x6
70 #define M_CMD_PROTOCOL_SHIFT         9
71 #define M_CMD_PROTOCOL_MASK          0xf
72 #define M_CMD_PROTOCOL_QUICK         0x0
73 #define M_CMD_PROTOCOL_BLK_WR        0x7
74 #define M_CMD_PROTOCOL_BLK_RD        0x8
75 #define M_CMD_PROTOCOL_PROCESS       0xa
76 #define M_CMD_PEC_SHIFT              8
77 #define M_CMD_RD_CNT_SHIFT           0
78 #define M_CMD_RD_CNT_MASK            0xff
79
80 #define S_CMD_OFFSET                 0x34
81 #define S_CMD_START_BUSY_SHIFT       31
82 #define S_CMD_STATUS_SHIFT           23
83 #define S_CMD_STATUS_MASK            0x07
84 #define S_CMD_STATUS_SUCCESS         0x0
85 #define S_CMD_STATUS_TIMEOUT         0x5
86 #define S_CMD_STATUS_MASTER_ABORT    0x7
87
88 #define IE_OFFSET                    0x38
89 #define IE_M_RX_FIFO_FULL_SHIFT      31
90 #define IE_M_RX_THLD_SHIFT           30
91 #define IE_M_START_BUSY_SHIFT        28
92 #define IE_M_TX_UNDERRUN_SHIFT       27
93 #define IE_S_RX_FIFO_FULL_SHIFT      26
94 #define IE_S_RX_THLD_SHIFT           25
95 #define IE_S_RX_EVENT_SHIFT          24
96 #define IE_S_START_BUSY_SHIFT        23
97 #define IE_S_TX_UNDERRUN_SHIFT       22
98 #define IE_S_RD_EVENT_SHIFT          21
99
100 #define IS_OFFSET                    0x3c
101 #define IS_M_RX_FIFO_FULL_SHIFT      31
102 #define IS_M_RX_THLD_SHIFT           30
103 #define IS_M_START_BUSY_SHIFT        28
104 #define IS_M_TX_UNDERRUN_SHIFT       27
105 #define IS_S_RX_FIFO_FULL_SHIFT      26
106 #define IS_S_RX_THLD_SHIFT           25
107 #define IS_S_RX_EVENT_SHIFT          24
108 #define IS_S_START_BUSY_SHIFT        23
109 #define IS_S_TX_UNDERRUN_SHIFT       22
110 #define IS_S_RD_EVENT_SHIFT          21
111
112 #define M_TX_OFFSET                  0x40
113 #define M_TX_WR_STATUS_SHIFT         31
114 #define M_TX_DATA_SHIFT              0
115 #define M_TX_DATA_MASK               0xff
116
117 #define M_RX_OFFSET                  0x44
118 #define M_RX_STATUS_SHIFT            30
119 #define M_RX_STATUS_MASK             0x03
120 #define M_RX_PEC_ERR_SHIFT           29
121 #define M_RX_DATA_SHIFT              0
122 #define M_RX_DATA_MASK               0xff
123
124 #define S_TX_OFFSET                  0x48
125 #define S_TX_WR_STATUS_SHIFT         31
126 #define S_TX_DATA_SHIFT              0
127 #define S_TX_DATA_MASK               0xff
128
129 #define S_RX_OFFSET                  0x4c
130 #define S_RX_STATUS_SHIFT            30
131 #define S_RX_STATUS_MASK             0x03
132 #define S_RX_PEC_ERR_SHIFT           29
133 #define S_RX_DATA_SHIFT              0
134 #define S_RX_DATA_MASK               0xff
135
136 #define I2C_TIMEOUT_MSEC             50000
137 #define M_TX_RX_FIFO_SIZE            64
138 #define M_RX_FIFO_MAX_THLD_VALUE     (M_TX_RX_FIFO_SIZE - 1)
139
140 #define M_RX_MAX_READ_LEN            255
141 #define M_RX_FIFO_THLD_VALUE         50
142
143 #define IE_M_ALL_INTERRUPT_SHIFT     27
144 #define IE_M_ALL_INTERRUPT_MASK      0x1e
145
146 #define SLAVE_READ_WRITE_BIT_MASK    0x1
147 #define SLAVE_READ_WRITE_BIT_SHIFT   0x1
148 #define SLAVE_MAX_SIZE_TRANSACTION   64
149 #define SLAVE_CLOCK_STRETCH_TIME     25
150
151 #define IE_S_ALL_INTERRUPT_SHIFT     21
152 #define IE_S_ALL_INTERRUPT_MASK      0x3f
153 /*
154  * It takes ~18us to reading 10bytes of data, hence to keep tasklet
155  * running for less time, max slave read per tasklet is set to 10 bytes.
156  */
157 #define MAX_SLAVE_RX_PER_INT         10
158
159 enum i2c_slave_read_status {
160         I2C_SLAVE_RX_FIFO_EMPTY = 0,
161         I2C_SLAVE_RX_START,
162         I2C_SLAVE_RX_DATA,
163         I2C_SLAVE_RX_END,
164 };
165
166 enum bus_speed_index {
167         I2C_SPD_100K = 0,
168         I2C_SPD_400K,
169 };
170
171 enum bcm_iproc_i2c_type {
172         IPROC_I2C,
173         IPROC_I2C_NIC
174 };
175
176 struct bcm_iproc_i2c_dev {
177         struct device *device;
178         enum bcm_iproc_i2c_type type;
179         int irq;
180
181         void __iomem *base;
182         void __iomem *idm_base;
183
184         u32 ape_addr_mask;
185
186         /* lock for indirect access through IDM */
187         spinlock_t idm_lock;
188
189         struct i2c_adapter adapter;
190         unsigned int bus_speed;
191
192         struct completion done;
193         int xfer_is_done;
194
195         struct i2c_msg *msg;
196
197         struct i2c_client *slave;
198
199         /* bytes that have been transferred */
200         unsigned int tx_bytes;
201         /* bytes that have been read */
202         unsigned int rx_bytes;
203         unsigned int thld_bytes;
204
205         bool slave_rx_only;
206         bool rx_start_rcvd;
207         bool slave_read_complete;
208         u32 tx_underrun;
209         u32 slave_int_mask;
210         struct tasklet_struct slave_rx_tasklet;
211 };
212
213 /* tasklet to process slave rx data */
214 static void slave_rx_tasklet_fn(unsigned long);
215
216 /*
217  * Can be expanded in the future if more interrupt status bits are utilized
218  */
219 #define ISR_MASK (BIT(IS_M_START_BUSY_SHIFT) | BIT(IS_M_TX_UNDERRUN_SHIFT)\
220                 | BIT(IS_M_RX_THLD_SHIFT))
221
222 #define ISR_MASK_SLAVE (BIT(IS_S_START_BUSY_SHIFT)\
223                 | BIT(IS_S_RX_EVENT_SHIFT) | BIT(IS_S_RD_EVENT_SHIFT)\
224                 | BIT(IS_S_TX_UNDERRUN_SHIFT) | BIT(IS_S_RX_FIFO_FULL_SHIFT)\
225                 | BIT(IS_S_RX_THLD_SHIFT))
226
227 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave);
228 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave);
229 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
230                                          bool enable);
231
232 static inline u32 iproc_i2c_rd_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
233                                    u32 offset)
234 {
235         u32 val;
236         unsigned long flags;
237
238         if (iproc_i2c->idm_base) {
239                 spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
240                 writel(iproc_i2c->ape_addr_mask,
241                        iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
242                 val = readl(iproc_i2c->base + offset);
243                 spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
244         } else {
245                 val = readl(iproc_i2c->base + offset);
246         }
247
248         return val;
249 }
250
251 static inline void iproc_i2c_wr_reg(struct bcm_iproc_i2c_dev *iproc_i2c,
252                                     u32 offset, u32 val)
253 {
254         unsigned long flags;
255
256         if (iproc_i2c->idm_base) {
257                 spin_lock_irqsave(&iproc_i2c->idm_lock, flags);
258                 writel(iproc_i2c->ape_addr_mask,
259                        iproc_i2c->idm_base + IDM_CTRL_DIRECT_OFFSET);
260                 writel(val, iproc_i2c->base + offset);
261                 spin_unlock_irqrestore(&iproc_i2c->idm_lock, flags);
262         } else {
263                 writel(val, iproc_i2c->base + offset);
264         }
265 }
266
267 static void bcm_iproc_i2c_slave_init(
268         struct bcm_iproc_i2c_dev *iproc_i2c, bool need_reset)
269 {
270         u32 val;
271
272         iproc_i2c->tx_underrun = 0;
273         if (need_reset) {
274                 /* put controller in reset */
275                 val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
276                 val |= BIT(CFG_RESET_SHIFT);
277                 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
278
279                 /* wait 100 usec per spec */
280                 udelay(100);
281
282                 /* bring controller out of reset */
283                 val &= ~(BIT(CFG_RESET_SHIFT));
284                 iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
285         }
286
287         /* flush TX/RX FIFOs */
288         val = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
289         iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
290
291         /* Maximum slave stretch time */
292         val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
293         val &= ~(TIM_RAND_SLAVE_STRETCH_MASK << TIM_RAND_SLAVE_STRETCH_SHIFT);
294         val |= (SLAVE_CLOCK_STRETCH_TIME << TIM_RAND_SLAVE_STRETCH_SHIFT);
295         iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
296
297         /* Configure the slave address */
298         val = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
299         val |= BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
300         val &= ~(S_CFG_NIC_SMB_ADDR3_MASK << S_CFG_NIC_SMB_ADDR3_SHIFT);
301         val |= (iproc_i2c->slave->addr << S_CFG_NIC_SMB_ADDR3_SHIFT);
302         iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, val);
303
304         /* clear all pending slave interrupts */
305         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
306
307         /* Enable interrupt register to indicate a valid byte in receive fifo */
308         val = BIT(IE_S_RX_EVENT_SHIFT);
309         /* Enable interrupt register to indicate Slave Rx FIFO Full */
310         val |= BIT(IE_S_RX_FIFO_FULL_SHIFT);
311         /* Enable interrupt register to indicate a Master read transaction */
312         val |= BIT(IE_S_RD_EVENT_SHIFT);
313         /* Enable interrupt register for the Slave BUSY command */
314         val |= BIT(IE_S_START_BUSY_SHIFT);
315         iproc_i2c->slave_int_mask = val;
316         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
317 }
318
319 static void bcm_iproc_i2c_check_slave_status(
320         struct bcm_iproc_i2c_dev *iproc_i2c)
321 {
322         u32 val;
323
324         val = iproc_i2c_rd_reg(iproc_i2c, S_CMD_OFFSET);
325         /* status is valid only when START_BUSY is cleared after it was set */
326         if (val & BIT(S_CMD_START_BUSY_SHIFT))
327                 return;
328
329         val = (val >> S_CMD_STATUS_SHIFT) & S_CMD_STATUS_MASK;
330         if (val == S_CMD_STATUS_TIMEOUT || val == S_CMD_STATUS_MASTER_ABORT) {
331                 dev_err(iproc_i2c->device, (val == S_CMD_STATUS_TIMEOUT) ?
332                         "slave random stretch time timeout\n" :
333                         "Master aborted read transaction\n");
334                 /* re-initialize i2c for recovery */
335                 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
336                 bcm_iproc_i2c_slave_init(iproc_i2c, true);
337                 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
338         }
339 }
340
341 static void bcm_iproc_i2c_slave_read(struct bcm_iproc_i2c_dev *iproc_i2c)
342 {
343         u8 rx_data, rx_status;
344         u32 rx_bytes = 0;
345         u32 val;
346
347         while (rx_bytes < MAX_SLAVE_RX_PER_INT) {
348                 val = iproc_i2c_rd_reg(iproc_i2c, S_RX_OFFSET);
349                 rx_status = (val >> S_RX_STATUS_SHIFT) & S_RX_STATUS_MASK;
350                 rx_data = ((val >> S_RX_DATA_SHIFT) & S_RX_DATA_MASK);
351
352                 if (rx_status == I2C_SLAVE_RX_START) {
353                         /* Start of SMBUS Master write */
354                         i2c_slave_event(iproc_i2c->slave,
355                                         I2C_SLAVE_WRITE_REQUESTED, &rx_data);
356                         iproc_i2c->rx_start_rcvd = true;
357                         iproc_i2c->slave_read_complete = false;
358                 } else if (rx_status == I2C_SLAVE_RX_DATA &&
359                            iproc_i2c->rx_start_rcvd) {
360                         /* Middle of SMBUS Master write */
361                         i2c_slave_event(iproc_i2c->slave,
362                                         I2C_SLAVE_WRITE_RECEIVED, &rx_data);
363                 } else if (rx_status == I2C_SLAVE_RX_END &&
364                            iproc_i2c->rx_start_rcvd) {
365                         /* End of SMBUS Master write */
366                         if (iproc_i2c->slave_rx_only)
367                                 i2c_slave_event(iproc_i2c->slave,
368                                                 I2C_SLAVE_WRITE_RECEIVED,
369                                                 &rx_data);
370
371                         i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP,
372                                         &rx_data);
373                 } else if (rx_status == I2C_SLAVE_RX_FIFO_EMPTY) {
374                         iproc_i2c->rx_start_rcvd = false;
375                         iproc_i2c->slave_read_complete = true;
376                         break;
377                 }
378
379                 rx_bytes++;
380         }
381 }
382
383 static void slave_rx_tasklet_fn(unsigned long data)
384 {
385         struct bcm_iproc_i2c_dev *iproc_i2c = (struct bcm_iproc_i2c_dev *)data;
386         u32 int_clr;
387
388         bcm_iproc_i2c_slave_read(iproc_i2c);
389
390         /* clear pending IS_S_RX_EVENT_SHIFT interrupt */
391         int_clr = BIT(IS_S_RX_EVENT_SHIFT);
392
393         if (!iproc_i2c->slave_rx_only && iproc_i2c->slave_read_complete) {
394                 /*
395                  * In case of single byte master-read request,
396                  * IS_S_TX_UNDERRUN_SHIFT event is generated before
397                  * IS_S_START_BUSY_SHIFT event. Hence start slave data send
398                  * from first IS_S_TX_UNDERRUN_SHIFT event.
399                  *
400                  * This means don't send any data from slave when
401                  * IS_S_RD_EVENT_SHIFT event is generated else it will increment
402                  * eeprom or other backend slave driver read pointer twice.
403                  */
404                 iproc_i2c->tx_underrun = 0;
405                 iproc_i2c->slave_int_mask |= BIT(IE_S_TX_UNDERRUN_SHIFT);
406
407                 /* clear IS_S_RD_EVENT_SHIFT interrupt */
408                 int_clr |= BIT(IS_S_RD_EVENT_SHIFT);
409         }
410
411         /* clear slave interrupt */
412         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, int_clr);
413         /* enable slave interrupts */
414         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, iproc_i2c->slave_int_mask);
415 }
416
417 static bool bcm_iproc_i2c_slave_isr(struct bcm_iproc_i2c_dev *iproc_i2c,
418                                     u32 status)
419 {
420         u32 val;
421         u8 value;
422
423         /*
424          * Slave events in case of master-write, master-write-read and,
425          * master-read
426          *
427          * Master-write     : only IS_S_RX_EVENT_SHIFT event
428          * Master-write-read: both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
429          *                    events
430          * Master-read      : both IS_S_RX_EVENT_SHIFT and IS_S_RD_EVENT_SHIFT
431          *                    events or only IS_S_RD_EVENT_SHIFT
432          *
433          * iproc has a slave rx fifo size of 64 bytes. Rx fifo full interrupt
434          * (IS_S_RX_FIFO_FULL_SHIFT) will be generated when RX fifo becomes
435          * full. This can happen if Master issues write requests of more than
436          * 64 bytes.
437          */
438         if (status & BIT(IS_S_RX_EVENT_SHIFT) ||
439             status & BIT(IS_S_RD_EVENT_SHIFT) ||
440             status & BIT(IS_S_RX_FIFO_FULL_SHIFT)) {
441                 /* disable slave interrupts */
442                 val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
443                 val &= ~iproc_i2c->slave_int_mask;
444                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
445
446                 if (status & BIT(IS_S_RD_EVENT_SHIFT))
447                         /* Master-write-read request */
448                         iproc_i2c->slave_rx_only = false;
449                 else
450                         /* Master-write request only */
451                         iproc_i2c->slave_rx_only = true;
452
453                 /* schedule tasklet to read data later */
454                 tasklet_schedule(&iproc_i2c->slave_rx_tasklet);
455
456                 /*
457                  * clear only IS_S_RX_EVENT_SHIFT and
458                  * IS_S_RX_FIFO_FULL_SHIFT interrupt.
459                  */
460                 val = BIT(IS_S_RX_EVENT_SHIFT);
461                 if (status & BIT(IS_S_RX_FIFO_FULL_SHIFT))
462                         val |= BIT(IS_S_RX_FIFO_FULL_SHIFT);
463                 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, val);
464         }
465
466         if (status & BIT(IS_S_TX_UNDERRUN_SHIFT)) {
467                 iproc_i2c->tx_underrun++;
468                 if (iproc_i2c->tx_underrun == 1)
469                         /* Start of SMBUS for Master Read */
470                         i2c_slave_event(iproc_i2c->slave,
471                                         I2C_SLAVE_READ_REQUESTED,
472                                         &value);
473                 else
474                         /* Master read other than start */
475                         i2c_slave_event(iproc_i2c->slave,
476                                         I2C_SLAVE_READ_PROCESSED,
477                                         &value);
478
479                 iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, value);
480                 /* start transfer */
481                 val = BIT(S_CMD_START_BUSY_SHIFT);
482                 iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
483
484                 /* clear interrupt */
485                 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
486                                  BIT(IS_S_TX_UNDERRUN_SHIFT));
487         }
488
489         /* Stop received from master in case of master read transaction */
490         if (status & BIT(IS_S_START_BUSY_SHIFT)) {
491                 /*
492                  * Disable interrupt for TX FIFO becomes empty and
493                  * less than PKT_LENGTH bytes were output on the SMBUS
494                  */
495                 iproc_i2c->slave_int_mask &= ~BIT(IE_S_TX_UNDERRUN_SHIFT);
496                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
497                                  iproc_i2c->slave_int_mask);
498
499                 /* End of SMBUS for Master Read */
500                 val = BIT(S_TX_WR_STATUS_SHIFT);
501                 iproc_i2c_wr_reg(iproc_i2c, S_TX_OFFSET, val);
502
503                 val = BIT(S_CMD_START_BUSY_SHIFT);
504                 iproc_i2c_wr_reg(iproc_i2c, S_CMD_OFFSET, val);
505
506                 /* flush TX FIFOs */
507                 val = iproc_i2c_rd_reg(iproc_i2c, S_FIFO_CTRL_OFFSET);
508                 val |= (BIT(S_FIFO_TX_FLUSH_SHIFT));
509                 iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, val);
510
511                 i2c_slave_event(iproc_i2c->slave, I2C_SLAVE_STOP, &value);
512
513                 /* clear interrupt */
514                 iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET,
515                                  BIT(IS_S_START_BUSY_SHIFT));
516         }
517
518         /* check slave transmit status only if slave is transmitting */
519         if (!iproc_i2c->slave_rx_only)
520                 bcm_iproc_i2c_check_slave_status(iproc_i2c);
521
522         return true;
523 }
524
525 static void bcm_iproc_i2c_read_valid_bytes(struct bcm_iproc_i2c_dev *iproc_i2c)
526 {
527         struct i2c_msg *msg = iproc_i2c->msg;
528         uint32_t val;
529
530         /* Read valid data from RX FIFO */
531         while (iproc_i2c->rx_bytes < msg->len) {
532                 val = iproc_i2c_rd_reg(iproc_i2c, M_RX_OFFSET);
533
534                 /* rx fifo empty */
535                 if (!((val >> M_RX_STATUS_SHIFT) & M_RX_STATUS_MASK))
536                         break;
537
538                 msg->buf[iproc_i2c->rx_bytes] =
539                         (val >> M_RX_DATA_SHIFT) & M_RX_DATA_MASK;
540                 iproc_i2c->rx_bytes++;
541         }
542 }
543
544 static void bcm_iproc_i2c_send(struct bcm_iproc_i2c_dev *iproc_i2c)
545 {
546         struct i2c_msg *msg = iproc_i2c->msg;
547         unsigned int tx_bytes = msg->len - iproc_i2c->tx_bytes;
548         unsigned int i;
549         u32 val;
550
551         /* can only fill up to the FIFO size */
552         tx_bytes = min_t(unsigned int, tx_bytes, M_TX_RX_FIFO_SIZE);
553         for (i = 0; i < tx_bytes; i++) {
554                 /* start from where we left over */
555                 unsigned int idx = iproc_i2c->tx_bytes + i;
556
557                 val = msg->buf[idx];
558
559                 /* mark the last byte */
560                 if (idx == msg->len - 1) {
561                         val |= BIT(M_TX_WR_STATUS_SHIFT);
562
563                         if (iproc_i2c->irq) {
564                                 u32 tmp;
565
566                                 /*
567                                  * Since this is the last byte, we should now
568                                  * disable TX FIFO underrun interrupt
569                                  */
570                                 tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
571                                 tmp &= ~BIT(IE_M_TX_UNDERRUN_SHIFT);
572                                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET,
573                                                  tmp);
574                         }
575                 }
576
577                 /* load data into TX FIFO */
578                 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
579         }
580
581         /* update number of transferred bytes */
582         iproc_i2c->tx_bytes += tx_bytes;
583 }
584
585 static void bcm_iproc_i2c_read(struct bcm_iproc_i2c_dev *iproc_i2c)
586 {
587         struct i2c_msg *msg = iproc_i2c->msg;
588         u32 bytes_left, val;
589
590         bcm_iproc_i2c_read_valid_bytes(iproc_i2c);
591         bytes_left = msg->len - iproc_i2c->rx_bytes;
592         if (bytes_left == 0) {
593                 if (iproc_i2c->irq) {
594                         /* finished reading all data, disable rx thld event */
595                         val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
596                         val &= ~BIT(IS_M_RX_THLD_SHIFT);
597                         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
598                 }
599         } else if (bytes_left < iproc_i2c->thld_bytes) {
600                 /* set bytes left as threshold */
601                 val = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
602                 val &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
603                 val |= (bytes_left << M_FIFO_RX_THLD_SHIFT);
604                 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
605                 iproc_i2c->thld_bytes = bytes_left;
606         }
607         /*
608          * bytes_left >= iproc_i2c->thld_bytes,
609          * hence no need to change the THRESHOLD SET.
610          * It will remain as iproc_i2c->thld_bytes itself
611          */
612 }
613
614 static void bcm_iproc_i2c_process_m_event(struct bcm_iproc_i2c_dev *iproc_i2c,
615                                           u32 status)
616 {
617         /* TX FIFO is empty and we have more data to send */
618         if (status & BIT(IS_M_TX_UNDERRUN_SHIFT))
619                 bcm_iproc_i2c_send(iproc_i2c);
620
621         /* RX FIFO threshold is reached and data needs to be read out */
622         if (status & BIT(IS_M_RX_THLD_SHIFT))
623                 bcm_iproc_i2c_read(iproc_i2c);
624
625         /* transfer is done */
626         if (status & BIT(IS_M_START_BUSY_SHIFT)) {
627                 iproc_i2c->xfer_is_done = 1;
628                 if (iproc_i2c->irq)
629                         complete(&iproc_i2c->done);
630         }
631 }
632
633 static irqreturn_t bcm_iproc_i2c_isr(int irq, void *data)
634 {
635         struct bcm_iproc_i2c_dev *iproc_i2c = data;
636         u32 slave_status;
637         u32 status;
638         bool ret;
639
640         status = iproc_i2c_rd_reg(iproc_i2c, IS_OFFSET);
641         /* process only slave interrupt which are enabled */
642         slave_status = status & iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET) &
643                        ISR_MASK_SLAVE;
644
645         if (slave_status) {
646                 ret = bcm_iproc_i2c_slave_isr(iproc_i2c, slave_status);
647                 if (ret)
648                         return IRQ_HANDLED;
649                 else
650                         return IRQ_NONE;
651         }
652
653         status &= ISR_MASK;
654         if (!status)
655                 return IRQ_NONE;
656
657         /* process all master based events */
658         bcm_iproc_i2c_process_m_event(iproc_i2c, status);
659         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
660
661         return IRQ_HANDLED;
662 }
663
664 static int bcm_iproc_i2c_init(struct bcm_iproc_i2c_dev *iproc_i2c)
665 {
666         u32 val;
667
668         /* put controller in reset */
669         val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
670         val |= BIT(CFG_RESET_SHIFT);
671         val &= ~(BIT(CFG_EN_SHIFT));
672         iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
673
674         /* wait 100 usec per spec */
675         udelay(100);
676
677         /* bring controller out of reset */
678         val &= ~(BIT(CFG_RESET_SHIFT));
679         iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
680
681         /* flush TX/RX FIFOs and set RX FIFO threshold to zero */
682         val = (BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT));
683         iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
684         /* disable all interrupts */
685         val = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
686         val &= ~(IE_M_ALL_INTERRUPT_MASK <<
687                         IE_M_ALL_INTERRUPT_SHIFT);
688         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val);
689
690         /* clear all pending interrupts */
691         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, 0xffffffff);
692
693         return 0;
694 }
695
696 static void bcm_iproc_i2c_enable_disable(struct bcm_iproc_i2c_dev *iproc_i2c,
697                                          bool enable)
698 {
699         u32 val;
700
701         val = iproc_i2c_rd_reg(iproc_i2c, CFG_OFFSET);
702         if (enable)
703                 val |= BIT(CFG_EN_SHIFT);
704         else
705                 val &= ~BIT(CFG_EN_SHIFT);
706         iproc_i2c_wr_reg(iproc_i2c, CFG_OFFSET, val);
707 }
708
709 static int bcm_iproc_i2c_check_status(struct bcm_iproc_i2c_dev *iproc_i2c,
710                                       struct i2c_msg *msg)
711 {
712         u32 val;
713
714         val = iproc_i2c_rd_reg(iproc_i2c, M_CMD_OFFSET);
715         val = (val >> M_CMD_STATUS_SHIFT) & M_CMD_STATUS_MASK;
716
717         switch (val) {
718         case M_CMD_STATUS_SUCCESS:
719                 return 0;
720
721         case M_CMD_STATUS_LOST_ARB:
722                 dev_dbg(iproc_i2c->device, "lost bus arbitration\n");
723                 return -EAGAIN;
724
725         case M_CMD_STATUS_NACK_ADDR:
726                 dev_dbg(iproc_i2c->device, "NAK addr:0x%02x\n", msg->addr);
727                 return -ENXIO;
728
729         case M_CMD_STATUS_NACK_DATA:
730                 dev_dbg(iproc_i2c->device, "NAK data\n");
731                 return -ENXIO;
732
733         case M_CMD_STATUS_TIMEOUT:
734                 dev_dbg(iproc_i2c->device, "bus timeout\n");
735                 return -ETIMEDOUT;
736
737         case M_CMD_STATUS_FIFO_UNDERRUN:
738                 dev_dbg(iproc_i2c->device, "FIFO under-run\n");
739                 return -ENXIO;
740
741         case M_CMD_STATUS_RX_FIFO_FULL:
742                 dev_dbg(iproc_i2c->device, "RX FIFO full\n");
743                 return -ETIMEDOUT;
744
745         default:
746                 dev_dbg(iproc_i2c->device, "unknown error code=%d\n", val);
747
748                 /* re-initialize i2c for recovery */
749                 bcm_iproc_i2c_enable_disable(iproc_i2c, false);
750                 bcm_iproc_i2c_init(iproc_i2c);
751                 bcm_iproc_i2c_enable_disable(iproc_i2c, true);
752
753                 return -EIO;
754         }
755 }
756
757 static int bcm_iproc_i2c_xfer_wait(struct bcm_iproc_i2c_dev *iproc_i2c,
758                                    struct i2c_msg *msg,
759                                    u32 cmd)
760 {
761         unsigned long time_left = msecs_to_jiffies(I2C_TIMEOUT_MSEC);
762         u32 val, status;
763         int ret;
764
765         iproc_i2c_wr_reg(iproc_i2c, M_CMD_OFFSET, cmd);
766
767         if (iproc_i2c->irq) {
768                 time_left = wait_for_completion_timeout(&iproc_i2c->done,
769                                                         time_left);
770                 /* disable all interrupts */
771                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
772                 /* read it back to flush the write */
773                 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
774                 /* make sure the interrupt handler isn't running */
775                 synchronize_irq(iproc_i2c->irq);
776
777         } else { /* polling mode */
778                 unsigned long timeout = jiffies + time_left;
779
780                 do {
781                         status = iproc_i2c_rd_reg(iproc_i2c,
782                                                   IS_OFFSET) & ISR_MASK;
783                         bcm_iproc_i2c_process_m_event(iproc_i2c, status);
784                         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, status);
785
786                         if (time_after(jiffies, timeout)) {
787                                 time_left = 0;
788                                 break;
789                         }
790
791                         cpu_relax();
792                         cond_resched();
793                 } while (!iproc_i2c->xfer_is_done);
794         }
795
796         if (!time_left && !iproc_i2c->xfer_is_done) {
797                 dev_err(iproc_i2c->device, "transaction timed out\n");
798
799                 /* flush both TX/RX FIFOs */
800                 val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
801                 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
802                 return -ETIMEDOUT;
803         }
804
805         ret = bcm_iproc_i2c_check_status(iproc_i2c, msg);
806         if (ret) {
807                 /* flush both TX/RX FIFOs */
808                 val = BIT(M_FIFO_RX_FLUSH_SHIFT) | BIT(M_FIFO_TX_FLUSH_SHIFT);
809                 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, val);
810                 return ret;
811         }
812
813         return 0;
814 }
815
816 /*
817  * If 'process_call' is true, then this is a multi-msg transfer that requires
818  * a repeated start between the messages.
819  * More specifically, it must be a write (reg) followed by a read (data).
820  * The i2c quirks are set to enforce this rule.
821  */
822 static int bcm_iproc_i2c_xfer_internal(struct bcm_iproc_i2c_dev *iproc_i2c,
823                                         struct i2c_msg *msgs, bool process_call)
824 {
825         int i;
826         u8 addr;
827         u32 val, tmp, val_intr_en;
828         unsigned int tx_bytes;
829         struct i2c_msg *msg = &msgs[0];
830
831         /* check if bus is busy */
832         if (!!(iproc_i2c_rd_reg(iproc_i2c,
833                                 M_CMD_OFFSET) & BIT(M_CMD_START_BUSY_SHIFT))) {
834                 dev_warn(iproc_i2c->device, "bus is busy\n");
835                 return -EBUSY;
836         }
837
838         iproc_i2c->msg = msg;
839
840         /* format and load slave address into the TX FIFO */
841         addr = i2c_8bit_addr_from_msg(msg);
842         iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, addr);
843
844         /*
845          * For a write transaction, load data into the TX FIFO. Only allow
846          * loading up to TX FIFO size - 1 bytes of data since the first byte
847          * has been used up by the slave address
848          */
849         tx_bytes = min_t(unsigned int, msg->len, M_TX_RX_FIFO_SIZE - 1);
850         if (!(msg->flags & I2C_M_RD)) {
851                 for (i = 0; i < tx_bytes; i++) {
852                         val = msg->buf[i];
853
854                         /* mark the last byte */
855                         if (!process_call && (i == msg->len - 1))
856                                 val |= BIT(M_TX_WR_STATUS_SHIFT);
857
858                         iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
859                 }
860                 iproc_i2c->tx_bytes = tx_bytes;
861         }
862
863         /* Process the read message if this is process call */
864         if (process_call) {
865                 msg++;
866                 iproc_i2c->msg = msg;  /* point to second msg */
867
868                 /*
869                  * The last byte to be sent out should be a slave
870                  * address with read operation
871                  */
872                 addr = i2c_8bit_addr_from_msg(msg);
873                 /* mark it the last byte out */
874                 val = addr | BIT(M_TX_WR_STATUS_SHIFT);
875                 iproc_i2c_wr_reg(iproc_i2c, M_TX_OFFSET, val);
876         }
877
878         /* mark as incomplete before starting the transaction */
879         if (iproc_i2c->irq)
880                 reinit_completion(&iproc_i2c->done);
881
882         iproc_i2c->xfer_is_done = 0;
883
884         /*
885          * Enable the "start busy" interrupt, which will be triggered after the
886          * transaction is done, i.e., the internal start_busy bit, transitions
887          * from 1 to 0.
888          */
889         val_intr_en = BIT(IE_M_START_BUSY_SHIFT);
890
891         /*
892          * If TX data size is larger than the TX FIFO, need to enable TX
893          * underrun interrupt, which will be triggerred when the TX FIFO is
894          * empty. When that happens we can then pump more data into the FIFO
895          */
896         if (!process_call && !(msg->flags & I2C_M_RD) &&
897             msg->len > iproc_i2c->tx_bytes)
898                 val_intr_en |= BIT(IE_M_TX_UNDERRUN_SHIFT);
899
900         /*
901          * Now we can activate the transfer. For a read operation, specify the
902          * number of bytes to read
903          */
904         val = BIT(M_CMD_START_BUSY_SHIFT);
905
906         if (msg->len == 0) {
907                 /* SMBUS QUICK Command (Read/Write) */
908                 val |= (M_CMD_PROTOCOL_QUICK << M_CMD_PROTOCOL_SHIFT);
909         } else if (msg->flags & I2C_M_RD) {
910                 u32 protocol;
911
912                 iproc_i2c->rx_bytes = 0;
913                 if (msg->len > M_RX_FIFO_MAX_THLD_VALUE)
914                         iproc_i2c->thld_bytes = M_RX_FIFO_THLD_VALUE;
915                 else
916                         iproc_i2c->thld_bytes = msg->len;
917
918                 /* set threshold value */
919                 tmp = iproc_i2c_rd_reg(iproc_i2c, M_FIFO_CTRL_OFFSET);
920                 tmp &= ~(M_FIFO_RX_THLD_MASK << M_FIFO_RX_THLD_SHIFT);
921                 tmp |= iproc_i2c->thld_bytes << M_FIFO_RX_THLD_SHIFT;
922                 iproc_i2c_wr_reg(iproc_i2c, M_FIFO_CTRL_OFFSET, tmp);
923
924                 /* enable the RX threshold interrupt */
925                 val_intr_en |= BIT(IE_M_RX_THLD_SHIFT);
926
927                 protocol = process_call ?
928                                 M_CMD_PROTOCOL_PROCESS : M_CMD_PROTOCOL_BLK_RD;
929
930                 val |= (protocol << M_CMD_PROTOCOL_SHIFT) |
931                        (msg->len << M_CMD_RD_CNT_SHIFT);
932         } else {
933                 val |= (M_CMD_PROTOCOL_BLK_WR << M_CMD_PROTOCOL_SHIFT);
934         }
935
936         if (iproc_i2c->irq)
937                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, val_intr_en);
938
939         return bcm_iproc_i2c_xfer_wait(iproc_i2c, msg, val);
940 }
941
942 static int bcm_iproc_i2c_xfer(struct i2c_adapter *adapter,
943                               struct i2c_msg msgs[], int num)
944 {
945         struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(adapter);
946         bool process_call = false;
947         int ret;
948
949         if (num == 2) {
950                 /* Repeated start, use process call */
951                 process_call = true;
952                 if (msgs[1].flags & I2C_M_NOSTART) {
953                         dev_err(iproc_i2c->device, "Invalid repeated start\n");
954                         return -EOPNOTSUPP;
955                 }
956         }
957
958         ret = bcm_iproc_i2c_xfer_internal(iproc_i2c, msgs, process_call);
959         if (ret) {
960                 dev_dbg(iproc_i2c->device, "xfer failed\n");
961                 return ret;
962         }
963
964         return num;
965 }
966
967 static uint32_t bcm_iproc_i2c_functionality(struct i2c_adapter *adap)
968 {
969         u32 val;
970
971         val = I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
972
973         if (adap->algo->reg_slave)
974                 val |= I2C_FUNC_SLAVE;
975
976         return val;
977 }
978
979 static struct i2c_algorithm bcm_iproc_algo = {
980         .master_xfer = bcm_iproc_i2c_xfer,
981         .functionality = bcm_iproc_i2c_functionality,
982         .reg_slave = bcm_iproc_i2c_reg_slave,
983         .unreg_slave = bcm_iproc_i2c_unreg_slave,
984 };
985
986 static const struct i2c_adapter_quirks bcm_iproc_i2c_quirks = {
987         .flags = I2C_AQ_COMB_WRITE_THEN_READ,
988         .max_comb_1st_msg_len = M_TX_RX_FIFO_SIZE,
989         .max_read_len = M_RX_MAX_READ_LEN,
990 };
991
992 static int bcm_iproc_i2c_cfg_speed(struct bcm_iproc_i2c_dev *iproc_i2c)
993 {
994         unsigned int bus_speed;
995         u32 val;
996         int ret = of_property_read_u32(iproc_i2c->device->of_node,
997                                        "clock-frequency", &bus_speed);
998         if (ret < 0) {
999                 dev_info(iproc_i2c->device,
1000                         "unable to interpret clock-frequency DT property\n");
1001                 bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1002         }
1003
1004         if (bus_speed < I2C_MAX_STANDARD_MODE_FREQ) {
1005                 dev_err(iproc_i2c->device, "%d Hz bus speed not supported\n",
1006                         bus_speed);
1007                 dev_err(iproc_i2c->device,
1008                         "valid speeds are 100khz and 400khz\n");
1009                 return -EINVAL;
1010         } else if (bus_speed < I2C_MAX_FAST_MODE_FREQ) {
1011                 bus_speed = I2C_MAX_STANDARD_MODE_FREQ;
1012         } else {
1013                 bus_speed = I2C_MAX_FAST_MODE_FREQ;
1014         }
1015
1016         iproc_i2c->bus_speed = bus_speed;
1017         val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1018         val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1019         val |= (bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1020         iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1021
1022         dev_info(iproc_i2c->device, "bus set to %u Hz\n", bus_speed);
1023
1024         return 0;
1025 }
1026
1027 static int bcm_iproc_i2c_probe(struct platform_device *pdev)
1028 {
1029         int irq, ret = 0;
1030         struct bcm_iproc_i2c_dev *iproc_i2c;
1031         struct i2c_adapter *adap;
1032
1033         iproc_i2c = devm_kzalloc(&pdev->dev, sizeof(*iproc_i2c),
1034                                  GFP_KERNEL);
1035         if (!iproc_i2c)
1036                 return -ENOMEM;
1037
1038         platform_set_drvdata(pdev, iproc_i2c);
1039         iproc_i2c->device = &pdev->dev;
1040         iproc_i2c->type =
1041                 (enum bcm_iproc_i2c_type)of_device_get_match_data(&pdev->dev);
1042         init_completion(&iproc_i2c->done);
1043
1044         iproc_i2c->base = devm_platform_ioremap_resource(pdev, 0);
1045         if (IS_ERR(iproc_i2c->base))
1046                 return PTR_ERR(iproc_i2c->base);
1047
1048         if (iproc_i2c->type == IPROC_I2C_NIC) {
1049                 iproc_i2c->idm_base = devm_platform_ioremap_resource(pdev, 1);
1050                 if (IS_ERR(iproc_i2c->idm_base))
1051                         return PTR_ERR(iproc_i2c->idm_base);
1052
1053                 ret = of_property_read_u32(iproc_i2c->device->of_node,
1054                                            "brcm,ape-hsls-addr-mask",
1055                                            &iproc_i2c->ape_addr_mask);
1056                 if (ret < 0) {
1057                         dev_err(iproc_i2c->device,
1058                                 "'brcm,ape-hsls-addr-mask' missing\n");
1059                         return -EINVAL;
1060                 }
1061
1062                 spin_lock_init(&iproc_i2c->idm_lock);
1063
1064                 /* no slave support */
1065                 bcm_iproc_algo.reg_slave = NULL;
1066                 bcm_iproc_algo.unreg_slave = NULL;
1067         }
1068
1069         ret = bcm_iproc_i2c_init(iproc_i2c);
1070         if (ret)
1071                 return ret;
1072
1073         ret = bcm_iproc_i2c_cfg_speed(iproc_i2c);
1074         if (ret)
1075                 return ret;
1076
1077         irq = platform_get_irq(pdev, 0);
1078         if (irq > 0) {
1079                 ret = devm_request_irq(iproc_i2c->device, irq,
1080                                        bcm_iproc_i2c_isr, 0, pdev->name,
1081                                        iproc_i2c);
1082                 if (ret < 0) {
1083                         dev_err(iproc_i2c->device,
1084                                 "unable to request irq %i\n", irq);
1085                         return ret;
1086                 }
1087
1088                 iproc_i2c->irq = irq;
1089         } else {
1090                 dev_warn(iproc_i2c->device,
1091                          "no irq resource, falling back to poll mode\n");
1092         }
1093
1094         bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1095
1096         adap = &iproc_i2c->adapter;
1097         i2c_set_adapdata(adap, iproc_i2c);
1098         snprintf(adap->name, sizeof(adap->name),
1099                 "Broadcom iProc (%s)",
1100                 of_node_full_name(iproc_i2c->device->of_node));
1101         adap->algo = &bcm_iproc_algo;
1102         adap->quirks = &bcm_iproc_i2c_quirks;
1103         adap->dev.parent = &pdev->dev;
1104         adap->dev.of_node = pdev->dev.of_node;
1105
1106         return i2c_add_adapter(adap);
1107 }
1108
1109 static void bcm_iproc_i2c_remove(struct platform_device *pdev)
1110 {
1111         struct bcm_iproc_i2c_dev *iproc_i2c = platform_get_drvdata(pdev);
1112
1113         if (iproc_i2c->irq) {
1114                 /*
1115                  * Make sure there's no pending interrupt when we remove the
1116                  * adapter
1117                  */
1118                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1119                 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1120                 synchronize_irq(iproc_i2c->irq);
1121         }
1122
1123         i2c_del_adapter(&iproc_i2c->adapter);
1124         bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1125 }
1126
1127 static int bcm_iproc_i2c_suspend(struct device *dev)
1128 {
1129         struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1130
1131         if (iproc_i2c->irq) {
1132                 /*
1133                  * Make sure there's no pending interrupt when we go into
1134                  * suspend
1135                  */
1136                 iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, 0);
1137                 iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1138                 synchronize_irq(iproc_i2c->irq);
1139         }
1140
1141         /* now disable the controller */
1142         bcm_iproc_i2c_enable_disable(iproc_i2c, false);
1143
1144         return 0;
1145 }
1146
1147 static int bcm_iproc_i2c_resume(struct device *dev)
1148 {
1149         struct bcm_iproc_i2c_dev *iproc_i2c = dev_get_drvdata(dev);
1150         int ret;
1151         u32 val;
1152
1153         /*
1154          * Power domain could have been shut off completely in system deep
1155          * sleep, so re-initialize the block here
1156          */
1157         ret = bcm_iproc_i2c_init(iproc_i2c);
1158         if (ret)
1159                 return ret;
1160
1161         /* configure to the desired bus speed */
1162         val = iproc_i2c_rd_reg(iproc_i2c, TIM_CFG_OFFSET);
1163         val &= ~BIT(TIM_CFG_MODE_400_SHIFT);
1164         val |= (iproc_i2c->bus_speed == I2C_MAX_FAST_MODE_FREQ) << TIM_CFG_MODE_400_SHIFT;
1165         iproc_i2c_wr_reg(iproc_i2c, TIM_CFG_OFFSET, val);
1166
1167         bcm_iproc_i2c_enable_disable(iproc_i2c, true);
1168
1169         return 0;
1170 }
1171
1172 static const struct dev_pm_ops bcm_iproc_i2c_pm_ops = {
1173         .suspend_late = &bcm_iproc_i2c_suspend,
1174         .resume_early = &bcm_iproc_i2c_resume
1175 };
1176
1177 static int bcm_iproc_i2c_reg_slave(struct i2c_client *slave)
1178 {
1179         struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1180
1181         if (iproc_i2c->slave)
1182                 return -EBUSY;
1183
1184         if (slave->flags & I2C_CLIENT_TEN)
1185                 return -EAFNOSUPPORT;
1186
1187         iproc_i2c->slave = slave;
1188
1189         tasklet_init(&iproc_i2c->slave_rx_tasklet, slave_rx_tasklet_fn,
1190                      (unsigned long)iproc_i2c);
1191
1192         bcm_iproc_i2c_slave_init(iproc_i2c, false);
1193         return 0;
1194 }
1195
1196 static int bcm_iproc_i2c_unreg_slave(struct i2c_client *slave)
1197 {
1198         u32 tmp;
1199         struct bcm_iproc_i2c_dev *iproc_i2c = i2c_get_adapdata(slave->adapter);
1200
1201         if (!iproc_i2c->slave)
1202                 return -EINVAL;
1203
1204         disable_irq(iproc_i2c->irq);
1205
1206         tasklet_kill(&iproc_i2c->slave_rx_tasklet);
1207
1208         /* disable all slave interrupts */
1209         tmp = iproc_i2c_rd_reg(iproc_i2c, IE_OFFSET);
1210         tmp &= ~(IE_S_ALL_INTERRUPT_MASK <<
1211                         IE_S_ALL_INTERRUPT_SHIFT);
1212         iproc_i2c_wr_reg(iproc_i2c, IE_OFFSET, tmp);
1213
1214         /* Erase the slave address programmed */
1215         tmp = iproc_i2c_rd_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET);
1216         tmp &= ~BIT(S_CFG_EN_NIC_SMB_ADDR3_SHIFT);
1217         iproc_i2c_wr_reg(iproc_i2c, S_CFG_SMBUS_ADDR_OFFSET, tmp);
1218
1219         /* flush TX/RX FIFOs */
1220         tmp = (BIT(S_FIFO_RX_FLUSH_SHIFT) | BIT(S_FIFO_TX_FLUSH_SHIFT));
1221         iproc_i2c_wr_reg(iproc_i2c, S_FIFO_CTRL_OFFSET, tmp);
1222
1223         /* clear all pending slave interrupts */
1224         iproc_i2c_wr_reg(iproc_i2c, IS_OFFSET, ISR_MASK_SLAVE);
1225
1226         iproc_i2c->slave = NULL;
1227
1228         enable_irq(iproc_i2c->irq);
1229
1230         return 0;
1231 }
1232
1233 static const struct of_device_id bcm_iproc_i2c_of_match[] = {
1234         {
1235                 .compatible = "brcm,iproc-i2c",
1236                 .data = (int *)IPROC_I2C,
1237         }, {
1238                 .compatible = "brcm,iproc-nic-i2c",
1239                 .data = (int *)IPROC_I2C_NIC,
1240         },
1241         { /* sentinel */ }
1242 };
1243 MODULE_DEVICE_TABLE(of, bcm_iproc_i2c_of_match);
1244
1245 static struct platform_driver bcm_iproc_i2c_driver = {
1246         .driver = {
1247                 .name = "bcm-iproc-i2c",
1248                 .of_match_table = bcm_iproc_i2c_of_match,
1249                 .pm = pm_sleep_ptr(&bcm_iproc_i2c_pm_ops),
1250         },
1251         .probe = bcm_iproc_i2c_probe,
1252         .remove_new = bcm_iproc_i2c_remove,
1253 };
1254 module_platform_driver(bcm_iproc_i2c_driver);
1255
1256 MODULE_AUTHOR("Ray Jui <rjui@broadcom.com>");
1257 MODULE_DESCRIPTION("Broadcom iProc I2C Driver");
1258 MODULE_LICENSE("GPL v2");