Merge tag 'pull-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / drivers / gpu / drm / vc4 / vc4_hvs.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2015 Broadcom
4  */
5
6 /**
7  * DOC: VC4 HVS module.
8  *
9  * The Hardware Video Scaler (HVS) is the piece of hardware that does
10  * translation, scaling, colorspace conversion, and compositing of
11  * pixels stored in framebuffers into a FIFO of pixels going out to
12  * the Pixel Valve (CRTC).  It operates at the system clock rate (the
13  * system audio clock gate, specifically), which is much higher than
14  * the pixel clock rate.
15  *
16  * There is a single global HVS, with multiple output FIFOs that can
17  * be consumed by the PVs.  This file just manages the resources for
18  * the HVS, while the vc4_crtc.c code actually drives HVS setup for
19  * each CRTC.
20  */
21
22 #include <linux/bitfield.h>
23 #include <linux/clk.h>
24 #include <linux/component.h>
25 #include <linux/platform_device.h>
26
27 #include <drm/drm_atomic_helper.h>
28 #include <drm/drm_vblank.h>
29
30 #include "vc4_drv.h"
31 #include "vc4_regs.h"
32
33 static const struct debugfs_reg32 hvs_regs[] = {
34         VC4_REG32(SCALER_DISPCTRL),
35         VC4_REG32(SCALER_DISPSTAT),
36         VC4_REG32(SCALER_DISPID),
37         VC4_REG32(SCALER_DISPECTRL),
38         VC4_REG32(SCALER_DISPPROF),
39         VC4_REG32(SCALER_DISPDITHER),
40         VC4_REG32(SCALER_DISPEOLN),
41         VC4_REG32(SCALER_DISPLIST0),
42         VC4_REG32(SCALER_DISPLIST1),
43         VC4_REG32(SCALER_DISPLIST2),
44         VC4_REG32(SCALER_DISPLSTAT),
45         VC4_REG32(SCALER_DISPLACT0),
46         VC4_REG32(SCALER_DISPLACT1),
47         VC4_REG32(SCALER_DISPLACT2),
48         VC4_REG32(SCALER_DISPCTRL0),
49         VC4_REG32(SCALER_DISPBKGND0),
50         VC4_REG32(SCALER_DISPSTAT0),
51         VC4_REG32(SCALER_DISPBASE0),
52         VC4_REG32(SCALER_DISPCTRL1),
53         VC4_REG32(SCALER_DISPBKGND1),
54         VC4_REG32(SCALER_DISPSTAT1),
55         VC4_REG32(SCALER_DISPBASE1),
56         VC4_REG32(SCALER_DISPCTRL2),
57         VC4_REG32(SCALER_DISPBKGND2),
58         VC4_REG32(SCALER_DISPSTAT2),
59         VC4_REG32(SCALER_DISPBASE2),
60         VC4_REG32(SCALER_DISPALPHA2),
61         VC4_REG32(SCALER_OLEDOFFS),
62         VC4_REG32(SCALER_OLEDCOEF0),
63         VC4_REG32(SCALER_OLEDCOEF1),
64         VC4_REG32(SCALER_OLEDCOEF2),
65 };
66
67 void vc4_hvs_dump_state(struct vc4_hvs *hvs)
68 {
69         struct drm_printer p = drm_info_printer(&hvs->pdev->dev);
70         int i;
71
72         drm_print_regset32(&p, &hvs->regset);
73
74         DRM_INFO("HVS ctx:\n");
75         for (i = 0; i < 64; i += 4) {
76                 DRM_INFO("0x%08x (%s): 0x%08x 0x%08x 0x%08x 0x%08x\n",
77                          i * 4, i < HVS_BOOTLOADER_DLIST_END ? "B" : "D",
78                          readl((u32 __iomem *)hvs->dlist + i + 0),
79                          readl((u32 __iomem *)hvs->dlist + i + 1),
80                          readl((u32 __iomem *)hvs->dlist + i + 2),
81                          readl((u32 __iomem *)hvs->dlist + i + 3));
82         }
83 }
84
85 static int vc4_hvs_debugfs_underrun(struct seq_file *m, void *data)
86 {
87         struct drm_info_node *node = m->private;
88         struct drm_device *dev = node->minor->dev;
89         struct vc4_dev *vc4 = to_vc4_dev(dev);
90         struct drm_printer p = drm_seq_file_printer(m);
91
92         drm_printf(&p, "%d\n", atomic_read(&vc4->underrun));
93
94         return 0;
95 }
96
97 /* The filter kernel is composed of dwords each containing 3 9-bit
98  * signed integers packed next to each other.
99  */
100 #define VC4_INT_TO_COEFF(coeff) (coeff & 0x1ff)
101 #define VC4_PPF_FILTER_WORD(c0, c1, c2)                         \
102         ((((c0) & 0x1ff) << 0) |                                \
103          (((c1) & 0x1ff) << 9) |                                \
104          (((c2) & 0x1ff) << 18))
105
106 /* The whole filter kernel is arranged as the coefficients 0-16 going
107  * up, then a pad, then 17-31 going down and reversed within the
108  * dwords.  This means that a linear phase kernel (where it's
109  * symmetrical at the boundary between 15 and 16) has the last 5
110  * dwords matching the first 5, but reversed.
111  */
112 #define VC4_LINEAR_PHASE_KERNEL(c0, c1, c2, c3, c4, c5, c6, c7, c8,     \
113                                 c9, c10, c11, c12, c13, c14, c15)       \
114         {VC4_PPF_FILTER_WORD(c0, c1, c2),                               \
115          VC4_PPF_FILTER_WORD(c3, c4, c5),                               \
116          VC4_PPF_FILTER_WORD(c6, c7, c8),                               \
117          VC4_PPF_FILTER_WORD(c9, c10, c11),                             \
118          VC4_PPF_FILTER_WORD(c12, c13, c14),                            \
119          VC4_PPF_FILTER_WORD(c15, c15, 0)}
120
121 #define VC4_LINEAR_PHASE_KERNEL_DWORDS 6
122 #define VC4_KERNEL_DWORDS (VC4_LINEAR_PHASE_KERNEL_DWORDS * 2 - 1)
123
124 /* Recommended B=1/3, C=1/3 filter choice from Mitchell/Netravali.
125  * http://www.cs.utexas.edu/~fussell/courses/cs384g/lectures/mitchell/Mitchell.pdf
126  */
127 static const u32 mitchell_netravali_1_3_1_3_kernel[] =
128         VC4_LINEAR_PHASE_KERNEL(0, -2, -6, -8, -10, -8, -3, 2, 18,
129                                 50, 82, 119, 155, 187, 213, 227);
130
131 static int vc4_hvs_upload_linear_kernel(struct vc4_hvs *hvs,
132                                         struct drm_mm_node *space,
133                                         const u32 *kernel)
134 {
135         int ret, i;
136         u32 __iomem *dst_kernel;
137
138         ret = drm_mm_insert_node(&hvs->dlist_mm, space, VC4_KERNEL_DWORDS);
139         if (ret) {
140                 DRM_ERROR("Failed to allocate space for filter kernel: %d\n",
141                           ret);
142                 return ret;
143         }
144
145         dst_kernel = hvs->dlist + space->start;
146
147         for (i = 0; i < VC4_KERNEL_DWORDS; i++) {
148                 if (i < VC4_LINEAR_PHASE_KERNEL_DWORDS)
149                         writel(kernel[i], &dst_kernel[i]);
150                 else {
151                         writel(kernel[VC4_KERNEL_DWORDS - i - 1],
152                                &dst_kernel[i]);
153                 }
154         }
155
156         return 0;
157 }
158
159 static void vc4_hvs_lut_load(struct vc4_hvs *hvs,
160                              struct vc4_crtc *vc4_crtc)
161 {
162         struct drm_crtc *crtc = &vc4_crtc->base;
163         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
164         u32 i;
165
166         /* The LUT memory is laid out with each HVS channel in order,
167          * each of which takes 256 writes for R, 256 for G, then 256
168          * for B.
169          */
170         HVS_WRITE(SCALER_GAMADDR,
171                   SCALER_GAMADDR_AUTOINC |
172                   (vc4_state->assigned_channel * 3 * crtc->gamma_size));
173
174         for (i = 0; i < crtc->gamma_size; i++)
175                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_r[i]);
176         for (i = 0; i < crtc->gamma_size; i++)
177                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_g[i]);
178         for (i = 0; i < crtc->gamma_size; i++)
179                 HVS_WRITE(SCALER_GAMDATA, vc4_crtc->lut_b[i]);
180 }
181
182 static void vc4_hvs_update_gamma_lut(struct vc4_hvs *hvs,
183                                      struct vc4_crtc *vc4_crtc)
184 {
185         struct drm_crtc_state *crtc_state = vc4_crtc->base.state;
186         struct drm_color_lut *lut = crtc_state->gamma_lut->data;
187         u32 length = drm_color_lut_size(crtc_state->gamma_lut);
188         u32 i;
189
190         for (i = 0; i < length; i++) {
191                 vc4_crtc->lut_r[i] = drm_color_lut_extract(lut[i].red, 8);
192                 vc4_crtc->lut_g[i] = drm_color_lut_extract(lut[i].green, 8);
193                 vc4_crtc->lut_b[i] = drm_color_lut_extract(lut[i].blue, 8);
194         }
195
196         vc4_hvs_lut_load(hvs, vc4_crtc);
197 }
198
199 u8 vc4_hvs_get_fifo_frame_count(struct vc4_hvs *hvs, unsigned int fifo)
200 {
201         u8 field = 0;
202
203         switch (fifo) {
204         case 0:
205                 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
206                                       SCALER_DISPSTAT1_FRCNT0);
207                 break;
208         case 1:
209                 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT1),
210                                       SCALER_DISPSTAT1_FRCNT1);
211                 break;
212         case 2:
213                 field = VC4_GET_FIELD(HVS_READ(SCALER_DISPSTAT2),
214                                       SCALER_DISPSTAT2_FRCNT2);
215                 break;
216         }
217
218         return field;
219 }
220
221 int vc4_hvs_get_fifo_from_output(struct vc4_hvs *hvs, unsigned int output)
222 {
223         struct vc4_dev *vc4 = hvs->vc4;
224         u32 reg;
225         int ret;
226
227         if (!vc4->is_vc5)
228                 return output;
229
230         switch (output) {
231         case 0:
232                 return 0;
233
234         case 1:
235                 return 1;
236
237         case 2:
238                 reg = HVS_READ(SCALER_DISPECTRL);
239                 ret = FIELD_GET(SCALER_DISPECTRL_DSP2_MUX_MASK, reg);
240                 if (ret == 0)
241                         return 2;
242
243                 return 0;
244
245         case 3:
246                 reg = HVS_READ(SCALER_DISPCTRL);
247                 ret = FIELD_GET(SCALER_DISPCTRL_DSP3_MUX_MASK, reg);
248                 if (ret == 3)
249                         return -EPIPE;
250
251                 return ret;
252
253         case 4:
254                 reg = HVS_READ(SCALER_DISPEOLN);
255                 ret = FIELD_GET(SCALER_DISPEOLN_DSP4_MUX_MASK, reg);
256                 if (ret == 3)
257                         return -EPIPE;
258
259                 return ret;
260
261         case 5:
262                 reg = HVS_READ(SCALER_DISPDITHER);
263                 ret = FIELD_GET(SCALER_DISPDITHER_DSP5_MUX_MASK, reg);
264                 if (ret == 3)
265                         return -EPIPE;
266
267                 return ret;
268
269         default:
270                 return -EPIPE;
271         }
272 }
273
274 static int vc4_hvs_init_channel(struct vc4_hvs *hvs, struct drm_crtc *crtc,
275                                 struct drm_display_mode *mode, bool oneshot)
276 {
277         struct vc4_dev *vc4 = hvs->vc4;
278         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
279         struct vc4_crtc_state *vc4_crtc_state = to_vc4_crtc_state(crtc->state);
280         unsigned int chan = vc4_crtc_state->assigned_channel;
281         bool interlace = mode->flags & DRM_MODE_FLAG_INTERLACE;
282         u32 dispbkgndx;
283         u32 dispctrl;
284
285         HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
286         HVS_WRITE(SCALER_DISPCTRLX(chan), SCALER_DISPCTRLX_RESET);
287         HVS_WRITE(SCALER_DISPCTRLX(chan), 0);
288
289         /* Turn on the scaler, which will wait for vstart to start
290          * compositing.
291          * When feeding the transposer, we should operate in oneshot
292          * mode.
293          */
294         dispctrl = SCALER_DISPCTRLX_ENABLE;
295
296         if (!vc4->is_vc5)
297                 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
298                                           SCALER_DISPCTRLX_WIDTH) |
299                             VC4_SET_FIELD(mode->vdisplay,
300                                           SCALER_DISPCTRLX_HEIGHT) |
301                             (oneshot ? SCALER_DISPCTRLX_ONESHOT : 0);
302         else
303                 dispctrl |= VC4_SET_FIELD(mode->hdisplay,
304                                           SCALER5_DISPCTRLX_WIDTH) |
305                             VC4_SET_FIELD(mode->vdisplay,
306                                           SCALER5_DISPCTRLX_HEIGHT) |
307                             (oneshot ? SCALER5_DISPCTRLX_ONESHOT : 0);
308
309         HVS_WRITE(SCALER_DISPCTRLX(chan), dispctrl);
310
311         dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(chan));
312         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
313         dispbkgndx &= ~SCALER_DISPBKGND_INTERLACE;
314
315         HVS_WRITE(SCALER_DISPBKGNDX(chan), dispbkgndx |
316                   SCALER_DISPBKGND_AUTOHS |
317                   ((!vc4->is_vc5) ? SCALER_DISPBKGND_GAMMA : 0) |
318                   (interlace ? SCALER_DISPBKGND_INTERLACE : 0));
319
320         /* Reload the LUT, since the SRAMs would have been disabled if
321          * all CRTCs had SCALER_DISPBKGND_GAMMA unset at once.
322          */
323         vc4_hvs_lut_load(hvs, vc4_crtc);
324
325         return 0;
326 }
327
328 void vc4_hvs_stop_channel(struct vc4_hvs *hvs, unsigned int chan)
329 {
330         if (HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_ENABLE)
331                 return;
332
333         HVS_WRITE(SCALER_DISPCTRLX(chan),
334                   HVS_READ(SCALER_DISPCTRLX(chan)) | SCALER_DISPCTRLX_RESET);
335         HVS_WRITE(SCALER_DISPCTRLX(chan),
336                   HVS_READ(SCALER_DISPCTRLX(chan)) & ~SCALER_DISPCTRLX_ENABLE);
337
338         /* Once we leave, the scaler should be disabled and its fifo empty. */
339         WARN_ON_ONCE(HVS_READ(SCALER_DISPCTRLX(chan)) & SCALER_DISPCTRLX_RESET);
340
341         WARN_ON_ONCE(VC4_GET_FIELD(HVS_READ(SCALER_DISPSTATX(chan)),
342                                    SCALER_DISPSTATX_MODE) !=
343                      SCALER_DISPSTATX_MODE_DISABLED);
344
345         WARN_ON_ONCE((HVS_READ(SCALER_DISPSTATX(chan)) &
346                       (SCALER_DISPSTATX_FULL | SCALER_DISPSTATX_EMPTY)) !=
347                      SCALER_DISPSTATX_EMPTY);
348 }
349
350 int vc4_hvs_atomic_check(struct drm_crtc *crtc, struct drm_atomic_state *state)
351 {
352         struct drm_crtc_state *crtc_state = drm_atomic_get_new_crtc_state(state, crtc);
353         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc_state);
354         struct drm_device *dev = crtc->dev;
355         struct vc4_dev *vc4 = to_vc4_dev(dev);
356         struct drm_plane *plane;
357         unsigned long flags;
358         const struct drm_plane_state *plane_state;
359         u32 dlist_count = 0;
360         int ret;
361
362         /* The pixelvalve can only feed one encoder (and encoders are
363          * 1:1 with connectors.)
364          */
365         if (hweight32(crtc_state->connector_mask) > 1)
366                 return -EINVAL;
367
368         drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state)
369                 dlist_count += vc4_plane_dlist_size(plane_state);
370
371         dlist_count++; /* Account for SCALER_CTL0_END. */
372
373         spin_lock_irqsave(&vc4->hvs->mm_lock, flags);
374         ret = drm_mm_insert_node(&vc4->hvs->dlist_mm, &vc4_state->mm,
375                                  dlist_count);
376         spin_unlock_irqrestore(&vc4->hvs->mm_lock, flags);
377         if (ret)
378                 return ret;
379
380         return 0;
381 }
382
383 static void vc4_hvs_install_dlist(struct drm_crtc *crtc)
384 {
385         struct drm_device *dev = crtc->dev;
386         struct vc4_dev *vc4 = to_vc4_dev(dev);
387         struct vc4_hvs *hvs = vc4->hvs;
388         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
389
390         HVS_WRITE(SCALER_DISPLISTX(vc4_state->assigned_channel),
391                   vc4_state->mm.start);
392 }
393
394 static void vc4_hvs_update_dlist(struct drm_crtc *crtc)
395 {
396         struct drm_device *dev = crtc->dev;
397         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
398         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
399         unsigned long flags;
400
401         if (crtc->state->event) {
402                 crtc->state->event->pipe = drm_crtc_index(crtc);
403
404                 WARN_ON(drm_crtc_vblank_get(crtc) != 0);
405
406                 spin_lock_irqsave(&dev->event_lock, flags);
407
408                 if (!vc4_crtc->feeds_txp || vc4_state->txp_armed) {
409                         vc4_crtc->event = crtc->state->event;
410                         crtc->state->event = NULL;
411                 }
412
413                 spin_unlock_irqrestore(&dev->event_lock, flags);
414         }
415
416         spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
417         vc4_crtc->current_dlist = vc4_state->mm.start;
418         spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
419 }
420
421 void vc4_hvs_atomic_begin(struct drm_crtc *crtc,
422                           struct drm_atomic_state *state)
423 {
424         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
425         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
426         unsigned long flags;
427
428         spin_lock_irqsave(&vc4_crtc->irq_lock, flags);
429         vc4_crtc->current_hvs_channel = vc4_state->assigned_channel;
430         spin_unlock_irqrestore(&vc4_crtc->irq_lock, flags);
431 }
432
433 void vc4_hvs_atomic_enable(struct drm_crtc *crtc,
434                            struct drm_atomic_state *state)
435 {
436         struct drm_device *dev = crtc->dev;
437         struct vc4_dev *vc4 = to_vc4_dev(dev);
438         struct drm_display_mode *mode = &crtc->state->adjusted_mode;
439         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
440         bool oneshot = vc4_crtc->feeds_txp;
441
442         vc4_hvs_install_dlist(crtc);
443         vc4_hvs_update_dlist(crtc);
444         vc4_hvs_init_channel(vc4->hvs, crtc, mode, oneshot);
445 }
446
447 void vc4_hvs_atomic_disable(struct drm_crtc *crtc,
448                             struct drm_atomic_state *state)
449 {
450         struct drm_device *dev = crtc->dev;
451         struct vc4_dev *vc4 = to_vc4_dev(dev);
452         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state, crtc);
453         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(old_state);
454         unsigned int chan = vc4_state->assigned_channel;
455
456         vc4_hvs_stop_channel(vc4->hvs, chan);
457 }
458
459 void vc4_hvs_atomic_flush(struct drm_crtc *crtc,
460                           struct drm_atomic_state *state)
461 {
462         struct drm_crtc_state *old_state = drm_atomic_get_old_crtc_state(state,
463                                                                          crtc);
464         struct drm_device *dev = crtc->dev;
465         struct vc4_dev *vc4 = to_vc4_dev(dev);
466         struct vc4_hvs *hvs = vc4->hvs;
467         struct vc4_crtc *vc4_crtc = to_vc4_crtc(crtc);
468         struct vc4_crtc_state *vc4_state = to_vc4_crtc_state(crtc->state);
469         unsigned int channel = vc4_state->assigned_channel;
470         struct drm_plane *plane;
471         struct vc4_plane_state *vc4_plane_state;
472         bool debug_dump_regs = false;
473         bool enable_bg_fill = false;
474         u32 __iomem *dlist_start = vc4->hvs->dlist + vc4_state->mm.start;
475         u32 __iomem *dlist_next = dlist_start;
476
477         if (debug_dump_regs) {
478                 DRM_INFO("CRTC %d HVS before:\n", drm_crtc_index(crtc));
479                 vc4_hvs_dump_state(hvs);
480         }
481
482         /* Copy all the active planes' dlist contents to the hardware dlist. */
483         drm_atomic_crtc_for_each_plane(plane, crtc) {
484                 /* Is this the first active plane? */
485                 if (dlist_next == dlist_start) {
486                         /* We need to enable background fill when a plane
487                          * could be alpha blending from the background, i.e.
488                          * where no other plane is underneath. It suffices to
489                          * consider the first active plane here since we set
490                          * needs_bg_fill such that either the first plane
491                          * already needs it or all planes on top blend from
492                          * the first or a lower plane.
493                          */
494                         vc4_plane_state = to_vc4_plane_state(plane->state);
495                         enable_bg_fill = vc4_plane_state->needs_bg_fill;
496                 }
497
498                 dlist_next += vc4_plane_write_dlist(plane, dlist_next);
499         }
500
501         writel(SCALER_CTL0_END, dlist_next);
502         dlist_next++;
503
504         WARN_ON_ONCE(dlist_next - dlist_start != vc4_state->mm.size);
505
506         if (enable_bg_fill)
507                 /* This sets a black background color fill, as is the case
508                  * with other DRM drivers.
509                  */
510                 HVS_WRITE(SCALER_DISPBKGNDX(channel),
511                           HVS_READ(SCALER_DISPBKGNDX(channel)) |
512                           SCALER_DISPBKGND_FILL);
513
514         /* Only update DISPLIST if the CRTC was already running and is not
515          * being disabled.
516          * vc4_crtc_enable() takes care of updating the dlist just after
517          * re-enabling VBLANK interrupts and before enabling the engine.
518          * If the CRTC is being disabled, there's no point in updating this
519          * information.
520          */
521         if (crtc->state->active && old_state->active) {
522                 vc4_hvs_install_dlist(crtc);
523                 vc4_hvs_update_dlist(crtc);
524         }
525
526         if (crtc->state->color_mgmt_changed) {
527                 u32 dispbkgndx = HVS_READ(SCALER_DISPBKGNDX(channel));
528
529                 if (crtc->state->gamma_lut) {
530                         vc4_hvs_update_gamma_lut(hvs, vc4_crtc);
531                         dispbkgndx |= SCALER_DISPBKGND_GAMMA;
532                 } else {
533                         /* Unsetting DISPBKGND_GAMMA skips the gamma lut step
534                          * in hardware, which is the same as a linear lut that
535                          * DRM expects us to use in absence of a user lut.
536                          */
537                         dispbkgndx &= ~SCALER_DISPBKGND_GAMMA;
538                 }
539                 HVS_WRITE(SCALER_DISPBKGNDX(channel), dispbkgndx);
540         }
541
542         if (debug_dump_regs) {
543                 DRM_INFO("CRTC %d HVS after:\n", drm_crtc_index(crtc));
544                 vc4_hvs_dump_state(hvs);
545         }
546 }
547
548 void vc4_hvs_mask_underrun(struct vc4_hvs *hvs, int channel)
549 {
550         u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
551
552         dispctrl &= ~SCALER_DISPCTRL_DSPEISLUR(channel);
553
554         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
555 }
556
557 void vc4_hvs_unmask_underrun(struct vc4_hvs *hvs, int channel)
558 {
559         u32 dispctrl = HVS_READ(SCALER_DISPCTRL);
560
561         dispctrl |= SCALER_DISPCTRL_DSPEISLUR(channel);
562
563         HVS_WRITE(SCALER_DISPSTAT,
564                   SCALER_DISPSTAT_EUFLOW(channel));
565         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
566 }
567
568 static void vc4_hvs_report_underrun(struct drm_device *dev)
569 {
570         struct vc4_dev *vc4 = to_vc4_dev(dev);
571
572         atomic_inc(&vc4->underrun);
573         DRM_DEV_ERROR(dev->dev, "HVS underrun\n");
574 }
575
576 static irqreturn_t vc4_hvs_irq_handler(int irq, void *data)
577 {
578         struct drm_device *dev = data;
579         struct vc4_dev *vc4 = to_vc4_dev(dev);
580         struct vc4_hvs *hvs = vc4->hvs;
581         irqreturn_t irqret = IRQ_NONE;
582         int channel;
583         u32 control;
584         u32 status;
585
586         status = HVS_READ(SCALER_DISPSTAT);
587         control = HVS_READ(SCALER_DISPCTRL);
588
589         for (channel = 0; channel < SCALER_CHANNELS_COUNT; channel++) {
590                 /* Interrupt masking is not always honored, so check it here. */
591                 if (status & SCALER_DISPSTAT_EUFLOW(channel) &&
592                     control & SCALER_DISPCTRL_DSPEISLUR(channel)) {
593                         vc4_hvs_mask_underrun(hvs, channel);
594                         vc4_hvs_report_underrun(dev);
595
596                         irqret = IRQ_HANDLED;
597                 }
598         }
599
600         /* Clear every per-channel interrupt flag. */
601         HVS_WRITE(SCALER_DISPSTAT, SCALER_DISPSTAT_IRQMASK(0) |
602                                    SCALER_DISPSTAT_IRQMASK(1) |
603                                    SCALER_DISPSTAT_IRQMASK(2));
604
605         return irqret;
606 }
607
608 static int vc4_hvs_bind(struct device *dev, struct device *master, void *data)
609 {
610         struct platform_device *pdev = to_platform_device(dev);
611         struct drm_device *drm = dev_get_drvdata(master);
612         struct vc4_dev *vc4 = to_vc4_dev(drm);
613         struct vc4_hvs *hvs = NULL;
614         int ret;
615         u32 dispctrl;
616         u32 reg;
617
618         hvs = devm_kzalloc(&pdev->dev, sizeof(*hvs), GFP_KERNEL);
619         if (!hvs)
620                 return -ENOMEM;
621
622         hvs->vc4 = vc4;
623         hvs->pdev = pdev;
624
625         hvs->regs = vc4_ioremap_regs(pdev, 0);
626         if (IS_ERR(hvs->regs))
627                 return PTR_ERR(hvs->regs);
628
629         hvs->regset.base = hvs->regs;
630         hvs->regset.regs = hvs_regs;
631         hvs->regset.nregs = ARRAY_SIZE(hvs_regs);
632
633         if (vc4->is_vc5) {
634                 hvs->core_clk = devm_clk_get(&pdev->dev, NULL);
635                 if (IS_ERR(hvs->core_clk)) {
636                         dev_err(&pdev->dev, "Couldn't get core clock\n");
637                         return PTR_ERR(hvs->core_clk);
638                 }
639
640                 ret = clk_prepare_enable(hvs->core_clk);
641                 if (ret) {
642                         dev_err(&pdev->dev, "Couldn't enable the core clock\n");
643                         return ret;
644                 }
645         }
646
647         if (!vc4->is_vc5)
648                 hvs->dlist = hvs->regs + SCALER_DLIST_START;
649         else
650                 hvs->dlist = hvs->regs + SCALER5_DLIST_START;
651
652         spin_lock_init(&hvs->mm_lock);
653
654         /* Set up the HVS display list memory manager.  We never
655          * overwrite the setup from the bootloader (just 128b out of
656          * our 16K), since we don't want to scramble the screen when
657          * transitioning from the firmware's boot setup to runtime.
658          */
659         drm_mm_init(&hvs->dlist_mm,
660                     HVS_BOOTLOADER_DLIST_END,
661                     (SCALER_DLIST_SIZE >> 2) - HVS_BOOTLOADER_DLIST_END);
662
663         /* Set up the HVS LBM memory manager.  We could have some more
664          * complicated data structure that allowed reuse of LBM areas
665          * between planes when they don't overlap on the screen, but
666          * for now we just allocate globally.
667          */
668         if (!vc4->is_vc5)
669                 /* 48k words of 2x12-bit pixels */
670                 drm_mm_init(&hvs->lbm_mm, 0, 48 * 1024);
671         else
672                 /* 60k words of 4x12-bit pixels */
673                 drm_mm_init(&hvs->lbm_mm, 0, 60 * 1024);
674
675         /* Upload filter kernels.  We only have the one for now, so we
676          * keep it around for the lifetime of the driver.
677          */
678         ret = vc4_hvs_upload_linear_kernel(hvs,
679                                            &hvs->mitchell_netravali_filter,
680                                            mitchell_netravali_1_3_1_3_kernel);
681         if (ret)
682                 return ret;
683
684         vc4->hvs = hvs;
685
686         reg = HVS_READ(SCALER_DISPECTRL);
687         reg &= ~SCALER_DISPECTRL_DSP2_MUX_MASK;
688         HVS_WRITE(SCALER_DISPECTRL,
689                   reg | VC4_SET_FIELD(0, SCALER_DISPECTRL_DSP2_MUX));
690
691         reg = HVS_READ(SCALER_DISPCTRL);
692         reg &= ~SCALER_DISPCTRL_DSP3_MUX_MASK;
693         HVS_WRITE(SCALER_DISPCTRL,
694                   reg | VC4_SET_FIELD(3, SCALER_DISPCTRL_DSP3_MUX));
695
696         reg = HVS_READ(SCALER_DISPEOLN);
697         reg &= ~SCALER_DISPEOLN_DSP4_MUX_MASK;
698         HVS_WRITE(SCALER_DISPEOLN,
699                   reg | VC4_SET_FIELD(3, SCALER_DISPEOLN_DSP4_MUX));
700
701         reg = HVS_READ(SCALER_DISPDITHER);
702         reg &= ~SCALER_DISPDITHER_DSP5_MUX_MASK;
703         HVS_WRITE(SCALER_DISPDITHER,
704                   reg | VC4_SET_FIELD(3, SCALER_DISPDITHER_DSP5_MUX));
705
706         dispctrl = HVS_READ(SCALER_DISPCTRL);
707
708         dispctrl |= SCALER_DISPCTRL_ENABLE;
709         dispctrl |= SCALER_DISPCTRL_DISPEIRQ(0) |
710                     SCALER_DISPCTRL_DISPEIRQ(1) |
711                     SCALER_DISPCTRL_DISPEIRQ(2);
712
713         dispctrl &= ~(SCALER_DISPCTRL_DMAEIRQ |
714                       SCALER_DISPCTRL_SLVWREIRQ |
715                       SCALER_DISPCTRL_SLVRDEIRQ |
716                       SCALER_DISPCTRL_DSPEIEOF(0) |
717                       SCALER_DISPCTRL_DSPEIEOF(1) |
718                       SCALER_DISPCTRL_DSPEIEOF(2) |
719                       SCALER_DISPCTRL_DSPEIEOLN(0) |
720                       SCALER_DISPCTRL_DSPEIEOLN(1) |
721                       SCALER_DISPCTRL_DSPEIEOLN(2) |
722                       SCALER_DISPCTRL_DSPEISLUR(0) |
723                       SCALER_DISPCTRL_DSPEISLUR(1) |
724                       SCALER_DISPCTRL_DSPEISLUR(2) |
725                       SCALER_DISPCTRL_SCLEIRQ);
726
727         HVS_WRITE(SCALER_DISPCTRL, dispctrl);
728
729         ret = devm_request_irq(dev, platform_get_irq(pdev, 0),
730                                vc4_hvs_irq_handler, 0, "vc4 hvs", drm);
731         if (ret)
732                 return ret;
733
734         vc4_debugfs_add_regset32(drm, "hvs_regs", &hvs->regset);
735         vc4_debugfs_add_file(drm, "hvs_underrun", vc4_hvs_debugfs_underrun,
736                              NULL);
737
738         return 0;
739 }
740
741 static void vc4_hvs_unbind(struct device *dev, struct device *master,
742                            void *data)
743 {
744         struct drm_device *drm = dev_get_drvdata(master);
745         struct vc4_dev *vc4 = to_vc4_dev(drm);
746         struct vc4_hvs *hvs = vc4->hvs;
747
748         if (drm_mm_node_allocated(&vc4->hvs->mitchell_netravali_filter))
749                 drm_mm_remove_node(&vc4->hvs->mitchell_netravali_filter);
750
751         drm_mm_takedown(&vc4->hvs->dlist_mm);
752         drm_mm_takedown(&vc4->hvs->lbm_mm);
753
754         clk_disable_unprepare(hvs->core_clk);
755
756         vc4->hvs = NULL;
757 }
758
759 static const struct component_ops vc4_hvs_ops = {
760         .bind   = vc4_hvs_bind,
761         .unbind = vc4_hvs_unbind,
762 };
763
764 static int vc4_hvs_dev_probe(struct platform_device *pdev)
765 {
766         return component_add(&pdev->dev, &vc4_hvs_ops);
767 }
768
769 static int vc4_hvs_dev_remove(struct platform_device *pdev)
770 {
771         component_del(&pdev->dev, &vc4_hvs_ops);
772         return 0;
773 }
774
775 static const struct of_device_id vc4_hvs_dt_match[] = {
776         { .compatible = "brcm,bcm2711-hvs" },
777         { .compatible = "brcm,bcm2835-hvs" },
778         {}
779 };
780
781 struct platform_driver vc4_hvs_driver = {
782         .probe = vc4_hvs_dev_probe,
783         .remove = vc4_hvs_dev_remove,
784         .driver = {
785                 .name = "vc4_hvs",
786                 .of_match_table = vc4_hvs_dt_match,
787         },
788 };