drm/i915: move modesetting output/encoder code under display/
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_psr.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23
24 #include <drm/drm_atomic_helper.h>
25
26 #include "display/intel_dp.h"
27
28 #include "i915_drv.h"
29 #include "intel_drv.h"
30 #include "intel_psr.h"
31 #include "intel_sprite.h"
32
33 /**
34  * DOC: Panel Self Refresh (PSR/SRD)
35  *
36  * Since Haswell Display controller supports Panel Self-Refresh on display
37  * panels witch have a remote frame buffer (RFB) implemented according to PSR
38  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
39  * when system is idle but display is on as it eliminates display refresh
40  * request to DDR memory completely as long as the frame buffer for that
41  * display is unchanged.
42  *
43  * Panel Self Refresh must be supported by both Hardware (source) and
44  * Panel (sink).
45  *
46  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
47  * to power down the link and memory controller. For DSI panels the same idea
48  * is called "manual mode".
49  *
50  * The implementation uses the hardware-based PSR support which automatically
51  * enters/exits self-refresh mode. The hardware takes care of sending the
52  * required DP aux message and could even retrain the link (that part isn't
53  * enabled yet though). The hardware also keeps track of any frontbuffer
54  * changes to know when to exit self-refresh mode again. Unfortunately that
55  * part doesn't work too well, hence why the i915 PSR support uses the
56  * software frontbuffer tracking to make sure it doesn't miss a screen
57  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
58  * get called by the frontbuffer tracking code. Note that because of locking
59  * issues the self-refresh re-enable code is done from a work queue, which
60  * must be correctly synchronized/cancelled when shutting down the pipe."
61  */
62
63 static bool psr_global_enabled(u32 debug)
64 {
65         switch (debug & I915_PSR_DEBUG_MODE_MASK) {
66         case I915_PSR_DEBUG_DEFAULT:
67                 return i915_modparams.enable_psr;
68         case I915_PSR_DEBUG_DISABLE:
69                 return false;
70         default:
71                 return true;
72         }
73 }
74
75 static bool intel_psr2_enabled(struct drm_i915_private *dev_priv,
76                                const struct intel_crtc_state *crtc_state)
77 {
78         /* Cannot enable DSC and PSR2 simultaneously */
79         WARN_ON(crtc_state->dsc_params.compression_enable &&
80                 crtc_state->has_psr2);
81
82         switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
83         case I915_PSR_DEBUG_DISABLE:
84         case I915_PSR_DEBUG_FORCE_PSR1:
85                 return false;
86         default:
87                 return crtc_state->has_psr2;
88         }
89 }
90
91 static int edp_psr_shift(enum transcoder cpu_transcoder)
92 {
93         switch (cpu_transcoder) {
94         case TRANSCODER_A:
95                 return EDP_PSR_TRANSCODER_A_SHIFT;
96         case TRANSCODER_B:
97                 return EDP_PSR_TRANSCODER_B_SHIFT;
98         case TRANSCODER_C:
99                 return EDP_PSR_TRANSCODER_C_SHIFT;
100         default:
101                 MISSING_CASE(cpu_transcoder);
102                 /* fallthrough */
103         case TRANSCODER_EDP:
104                 return EDP_PSR_TRANSCODER_EDP_SHIFT;
105         }
106 }
107
108 void intel_psr_irq_control(struct drm_i915_private *dev_priv, u32 debug)
109 {
110         u32 debug_mask, mask;
111         enum transcoder cpu_transcoder;
112         u32 transcoders = BIT(TRANSCODER_EDP);
113
114         if (INTEL_GEN(dev_priv) >= 8)
115                 transcoders |= BIT(TRANSCODER_A) |
116                                BIT(TRANSCODER_B) |
117                                BIT(TRANSCODER_C);
118
119         debug_mask = 0;
120         mask = 0;
121         for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
122                 int shift = edp_psr_shift(cpu_transcoder);
123
124                 mask |= EDP_PSR_ERROR(shift);
125                 debug_mask |= EDP_PSR_POST_EXIT(shift) |
126                               EDP_PSR_PRE_ENTRY(shift);
127         }
128
129         if (debug & I915_PSR_DEBUG_IRQ)
130                 mask |= debug_mask;
131
132         I915_WRITE(EDP_PSR_IMR, ~mask);
133 }
134
135 static void psr_event_print(u32 val, bool psr2_enabled)
136 {
137         DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
138         if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
139                 DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
140         if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
141                 DRM_DEBUG_KMS("\tPSR2 disabled\n");
142         if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
143                 DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
144         if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
145                 DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
146         if (val & PSR_EVENT_GRAPHICS_RESET)
147                 DRM_DEBUG_KMS("\tGraphics reset\n");
148         if (val & PSR_EVENT_PCH_INTERRUPT)
149                 DRM_DEBUG_KMS("\tPCH interrupt\n");
150         if (val & PSR_EVENT_MEMORY_UP)
151                 DRM_DEBUG_KMS("\tMemory up\n");
152         if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
153                 DRM_DEBUG_KMS("\tFront buffer modification\n");
154         if (val & PSR_EVENT_WD_TIMER_EXPIRE)
155                 DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
156         if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
157                 DRM_DEBUG_KMS("\tPIPE registers updated\n");
158         if (val & PSR_EVENT_REGISTER_UPDATE)
159                 DRM_DEBUG_KMS("\tRegister updated\n");
160         if (val & PSR_EVENT_HDCP_ENABLE)
161                 DRM_DEBUG_KMS("\tHDCP enabled\n");
162         if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
163                 DRM_DEBUG_KMS("\tKVMR session enabled\n");
164         if (val & PSR_EVENT_VBI_ENABLE)
165                 DRM_DEBUG_KMS("\tVBI enabled\n");
166         if (val & PSR_EVENT_LPSP_MODE_EXIT)
167                 DRM_DEBUG_KMS("\tLPSP mode exited\n");
168         if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
169                 DRM_DEBUG_KMS("\tPSR disabled\n");
170 }
171
172 void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
173 {
174         u32 transcoders = BIT(TRANSCODER_EDP);
175         enum transcoder cpu_transcoder;
176         ktime_t time_ns =  ktime_get();
177         u32 mask = 0;
178
179         if (INTEL_GEN(dev_priv) >= 8)
180                 transcoders |= BIT(TRANSCODER_A) |
181                                BIT(TRANSCODER_B) |
182                                BIT(TRANSCODER_C);
183
184         for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
185                 int shift = edp_psr_shift(cpu_transcoder);
186
187                 if (psr_iir & EDP_PSR_ERROR(shift)) {
188                         DRM_WARN("[transcoder %s] PSR aux error\n",
189                                  transcoder_name(cpu_transcoder));
190
191                         dev_priv->psr.irq_aux_error = true;
192
193                         /*
194                          * If this interruption is not masked it will keep
195                          * interrupting so fast that it prevents the scheduled
196                          * work to run.
197                          * Also after a PSR error, we don't want to arm PSR
198                          * again so we don't care about unmask the interruption
199                          * or unset irq_aux_error.
200                          */
201                         mask |= EDP_PSR_ERROR(shift);
202                 }
203
204                 if (psr_iir & EDP_PSR_PRE_ENTRY(shift)) {
205                         dev_priv->psr.last_entry_attempt = time_ns;
206                         DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
207                                       transcoder_name(cpu_transcoder));
208                 }
209
210                 if (psr_iir & EDP_PSR_POST_EXIT(shift)) {
211                         dev_priv->psr.last_exit = time_ns;
212                         DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
213                                       transcoder_name(cpu_transcoder));
214
215                         if (INTEL_GEN(dev_priv) >= 9) {
216                                 u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
217                                 bool psr2_enabled = dev_priv->psr.psr2_enabled;
218
219                                 I915_WRITE(PSR_EVENT(cpu_transcoder), val);
220                                 psr_event_print(val, psr2_enabled);
221                         }
222                 }
223         }
224
225         if (mask) {
226                 mask |= I915_READ(EDP_PSR_IMR);
227                 I915_WRITE(EDP_PSR_IMR, mask);
228
229                 schedule_work(&dev_priv->psr.work);
230         }
231 }
232
233 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
234 {
235         u8 alpm_caps = 0;
236
237         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
238                               &alpm_caps) != 1)
239                 return false;
240         return alpm_caps & DP_ALPM_CAP;
241 }
242
243 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
244 {
245         u8 val = 8; /* assume the worst if we can't read the value */
246
247         if (drm_dp_dpcd_readb(&intel_dp->aux,
248                               DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
249                 val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
250         else
251                 DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
252         return val;
253 }
254
255 static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
256 {
257         u16 val;
258         ssize_t r;
259
260         /*
261          * Returning the default X granularity if granularity not required or
262          * if DPCD read fails
263          */
264         if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
265                 return 4;
266
267         r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
268         if (r != 2)
269                 DRM_DEBUG_KMS("Unable to read DP_PSR2_SU_X_GRANULARITY\n");
270
271         /*
272          * Spec says that if the value read is 0 the default granularity should
273          * be used instead.
274          */
275         if (r != 2 || val == 0)
276                 val = 4;
277
278         return val;
279 }
280
281 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
282 {
283         struct drm_i915_private *dev_priv =
284                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
285
286         drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
287                          sizeof(intel_dp->psr_dpcd));
288
289         if (!intel_dp->psr_dpcd[0])
290                 return;
291         DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
292                       intel_dp->psr_dpcd[0]);
293
294         if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
295                 DRM_DEBUG_KMS("PSR support not currently available for this panel\n");
296                 return;
297         }
298
299         if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
300                 DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
301                 return;
302         }
303
304         dev_priv->psr.sink_support = true;
305         dev_priv->psr.sink_sync_latency =
306                 intel_dp_get_sink_sync_latency(intel_dp);
307
308         WARN_ON(dev_priv->psr.dp);
309         dev_priv->psr.dp = intel_dp;
310
311         if (INTEL_GEN(dev_priv) >= 9 &&
312             (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
313                 bool y_req = intel_dp->psr_dpcd[1] &
314                              DP_PSR2_SU_Y_COORDINATE_REQUIRED;
315                 bool alpm = intel_dp_get_alpm_status(intel_dp);
316
317                 /*
318                  * All panels that supports PSR version 03h (PSR2 +
319                  * Y-coordinate) can handle Y-coordinates in VSC but we are
320                  * only sure that it is going to be used when required by the
321                  * panel. This way panel is capable to do selective update
322                  * without a aux frame sync.
323                  *
324                  * To support PSR version 02h and PSR version 03h without
325                  * Y-coordinate requirement panels we would need to enable
326                  * GTC first.
327                  */
328                 dev_priv->psr.sink_psr2_support = y_req && alpm;
329                 DRM_DEBUG_KMS("PSR2 %ssupported\n",
330                               dev_priv->psr.sink_psr2_support ? "" : "not ");
331
332                 if (dev_priv->psr.sink_psr2_support) {
333                         dev_priv->psr.colorimetry_support =
334                                 intel_dp_get_colorimetry_status(intel_dp);
335                         dev_priv->psr.su_x_granularity =
336                                 intel_dp_get_su_x_granulartiy(intel_dp);
337                 }
338         }
339 }
340
341 static void intel_psr_setup_vsc(struct intel_dp *intel_dp,
342                                 const struct intel_crtc_state *crtc_state)
343 {
344         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
345         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
346         struct dp_sdp psr_vsc;
347
348         if (dev_priv->psr.psr2_enabled) {
349                 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
350                 memset(&psr_vsc, 0, sizeof(psr_vsc));
351                 psr_vsc.sdp_header.HB0 = 0;
352                 psr_vsc.sdp_header.HB1 = 0x7;
353                 if (dev_priv->psr.colorimetry_support) {
354                         psr_vsc.sdp_header.HB2 = 0x5;
355                         psr_vsc.sdp_header.HB3 = 0x13;
356                 } else {
357                         psr_vsc.sdp_header.HB2 = 0x4;
358                         psr_vsc.sdp_header.HB3 = 0xe;
359                 }
360         } else {
361                 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
362                 memset(&psr_vsc, 0, sizeof(psr_vsc));
363                 psr_vsc.sdp_header.HB0 = 0;
364                 psr_vsc.sdp_header.HB1 = 0x7;
365                 psr_vsc.sdp_header.HB2 = 0x2;
366                 psr_vsc.sdp_header.HB3 = 0x8;
367         }
368
369         intel_dig_port->write_infoframe(&intel_dig_port->base,
370                                         crtc_state,
371                                         DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
372 }
373
374 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
375 {
376         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
377         u32 aux_clock_divider, aux_ctl;
378         int i;
379         static const u8 aux_msg[] = {
380                 [0] = DP_AUX_NATIVE_WRITE << 4,
381                 [1] = DP_SET_POWER >> 8,
382                 [2] = DP_SET_POWER & 0xff,
383                 [3] = 1 - 1,
384                 [4] = DP_SET_POWER_D0,
385         };
386         u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
387                            EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
388                            EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
389                            EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
390
391         BUILD_BUG_ON(sizeof(aux_msg) > 20);
392         for (i = 0; i < sizeof(aux_msg); i += 4)
393                 I915_WRITE(EDP_PSR_AUX_DATA(i >> 2),
394                            intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
395
396         aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
397
398         /* Start with bits set for DDI_AUX_CTL register */
399         aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
400                                              aux_clock_divider);
401
402         /* Select only valid bits for SRD_AUX_CTL */
403         aux_ctl &= psr_aux_mask;
404         I915_WRITE(EDP_PSR_AUX_CTL, aux_ctl);
405 }
406
407 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
408 {
409         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
410         u8 dpcd_val = DP_PSR_ENABLE;
411
412         /* Enable ALPM at sink for psr2 */
413         if (dev_priv->psr.psr2_enabled) {
414                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
415                                    DP_ALPM_ENABLE);
416                 dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
417         } else {
418                 if (dev_priv->psr.link_standby)
419                         dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
420
421                 if (INTEL_GEN(dev_priv) >= 8)
422                         dpcd_val |= DP_PSR_CRC_VERIFICATION;
423         }
424
425         drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
426
427         drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
428 }
429
430 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
431 {
432         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
433         u32 val = 0;
434
435         if (INTEL_GEN(dev_priv) >= 11)
436                 val |= EDP_PSR_TP4_TIME_0US;
437
438         if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
439                 val |= EDP_PSR_TP1_TIME_0us;
440         else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
441                 val |= EDP_PSR_TP1_TIME_100us;
442         else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
443                 val |= EDP_PSR_TP1_TIME_500us;
444         else
445                 val |= EDP_PSR_TP1_TIME_2500us;
446
447         if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
448                 val |= EDP_PSR_TP2_TP3_TIME_0us;
449         else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
450                 val |= EDP_PSR_TP2_TP3_TIME_100us;
451         else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
452                 val |= EDP_PSR_TP2_TP3_TIME_500us;
453         else
454                 val |= EDP_PSR_TP2_TP3_TIME_2500us;
455
456         if (intel_dp_source_supports_hbr2(intel_dp) &&
457             drm_dp_tps3_supported(intel_dp->dpcd))
458                 val |= EDP_PSR_TP1_TP3_SEL;
459         else
460                 val |= EDP_PSR_TP1_TP2_SEL;
461
462         return val;
463 }
464
465 static void hsw_activate_psr1(struct intel_dp *intel_dp)
466 {
467         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
468         u32 max_sleep_time = 0x1f;
469         u32 val = EDP_PSR_ENABLE;
470
471         /* Let's use 6 as the minimum to cover all known cases including the
472          * off-by-one issue that HW has in some cases.
473          */
474         int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
475
476         /* sink_sync_latency of 8 means source has to wait for more than 8
477          * frames, we'll go with 9 frames for now
478          */
479         idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
480         val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
481
482         val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
483         if (IS_HASWELL(dev_priv))
484                 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
485
486         if (dev_priv->psr.link_standby)
487                 val |= EDP_PSR_LINK_STANDBY;
488
489         val |= intel_psr1_get_tp_time(intel_dp);
490
491         if (INTEL_GEN(dev_priv) >= 8)
492                 val |= EDP_PSR_CRC_ENABLE;
493
494         val |= I915_READ(EDP_PSR_CTL) & EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK;
495         I915_WRITE(EDP_PSR_CTL, val);
496 }
497
498 static void hsw_activate_psr2(struct intel_dp *intel_dp)
499 {
500         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
501         u32 val;
502
503         /* Let's use 6 as the minimum to cover all known cases including the
504          * off-by-one issue that HW has in some cases.
505          */
506         int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
507
508         idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
509         val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
510
511         val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
512         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
513                 val |= EDP_Y_COORDINATE_ENABLE;
514
515         val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
516
517         if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
518             dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
519                 val |= EDP_PSR2_TP2_TIME_50us;
520         else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
521                 val |= EDP_PSR2_TP2_TIME_100us;
522         else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
523                 val |= EDP_PSR2_TP2_TIME_500us;
524         else
525                 val |= EDP_PSR2_TP2_TIME_2500us;
526
527         /*
528          * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
529          * recommending keep this bit unset while PSR2 is enabled.
530          */
531         I915_WRITE(EDP_PSR_CTL, 0);
532
533         I915_WRITE(EDP_PSR2_CTL, val);
534 }
535
536 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
537                                     struct intel_crtc_state *crtc_state)
538 {
539         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
540         int crtc_hdisplay = crtc_state->base.adjusted_mode.crtc_hdisplay;
541         int crtc_vdisplay = crtc_state->base.adjusted_mode.crtc_vdisplay;
542         int psr_max_h = 0, psr_max_v = 0;
543
544         if (!dev_priv->psr.sink_psr2_support)
545                 return false;
546
547         /*
548          * DSC and PSR2 cannot be enabled simultaneously. If a requested
549          * resolution requires DSC to be enabled, priority is given to DSC
550          * over PSR2.
551          */
552         if (crtc_state->dsc_params.compression_enable) {
553                 DRM_DEBUG_KMS("PSR2 cannot be enabled since DSC is enabled\n");
554                 return false;
555         }
556
557         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
558                 psr_max_h = 4096;
559                 psr_max_v = 2304;
560         } else if (IS_GEN(dev_priv, 9)) {
561                 psr_max_h = 3640;
562                 psr_max_v = 2304;
563         }
564
565         if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
566                 DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
567                               crtc_hdisplay, crtc_vdisplay,
568                               psr_max_h, psr_max_v);
569                 return false;
570         }
571
572         /*
573          * HW sends SU blocks of size four scan lines, which means the starting
574          * X coordinate and Y granularity requirements will always be met. We
575          * only need to validate the SU block width is a multiple of
576          * x granularity.
577          */
578         if (crtc_hdisplay % dev_priv->psr.su_x_granularity) {
579                 DRM_DEBUG_KMS("PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
580                               crtc_hdisplay, dev_priv->psr.su_x_granularity);
581                 return false;
582         }
583
584         if (crtc_state->crc_enabled) {
585                 DRM_DEBUG_KMS("PSR2 not enabled because it would inhibit pipe CRC calculation\n");
586                 return false;
587         }
588
589         return true;
590 }
591
592 void intel_psr_compute_config(struct intel_dp *intel_dp,
593                               struct intel_crtc_state *crtc_state)
594 {
595         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
596         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
597         const struct drm_display_mode *adjusted_mode =
598                 &crtc_state->base.adjusted_mode;
599         int psr_setup_time;
600
601         if (!CAN_PSR(dev_priv))
602                 return;
603
604         if (intel_dp != dev_priv->psr.dp)
605                 return;
606
607         /*
608          * HSW spec explicitly says PSR is tied to port A.
609          * BDW+ platforms with DDI implementation of PSR have different
610          * PSR registers per transcoder and we only implement transcoder EDP
611          * ones. Since by Display design transcoder EDP is tied to port A
612          * we can safely escape based on the port A.
613          */
614         if (dig_port->base.port != PORT_A) {
615                 DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
616                 return;
617         }
618
619         if (dev_priv->psr.sink_not_reliable) {
620                 DRM_DEBUG_KMS("PSR sink implementation is not reliable\n");
621                 return;
622         }
623
624         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
625                 DRM_DEBUG_KMS("PSR condition failed: Interlaced mode enabled\n");
626                 return;
627         }
628
629         psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
630         if (psr_setup_time < 0) {
631                 DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
632                               intel_dp->psr_dpcd[1]);
633                 return;
634         }
635
636         if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
637             adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
638                 DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
639                               psr_setup_time);
640                 return;
641         }
642
643         crtc_state->has_psr = true;
644         crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
645 }
646
647 static void intel_psr_activate(struct intel_dp *intel_dp)
648 {
649         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
650
651         if (INTEL_GEN(dev_priv) >= 9)
652                 WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
653         WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
654         WARN_ON(dev_priv->psr.active);
655         lockdep_assert_held(&dev_priv->psr.lock);
656
657         /* psr1 and psr2 are mutually exclusive.*/
658         if (dev_priv->psr.psr2_enabled)
659                 hsw_activate_psr2(intel_dp);
660         else
661                 hsw_activate_psr1(intel_dp);
662
663         dev_priv->psr.active = true;
664 }
665
666 static i915_reg_t gen9_chicken_trans_reg(struct drm_i915_private *dev_priv,
667                                          enum transcoder cpu_transcoder)
668 {
669         static const i915_reg_t regs[] = {
670                 [TRANSCODER_A] = CHICKEN_TRANS_A,
671                 [TRANSCODER_B] = CHICKEN_TRANS_B,
672                 [TRANSCODER_C] = CHICKEN_TRANS_C,
673                 [TRANSCODER_EDP] = CHICKEN_TRANS_EDP,
674         };
675
676         WARN_ON(INTEL_GEN(dev_priv) < 9);
677
678         if (WARN_ON(cpu_transcoder >= ARRAY_SIZE(regs) ||
679                     !regs[cpu_transcoder].reg))
680                 cpu_transcoder = TRANSCODER_A;
681
682         return regs[cpu_transcoder];
683 }
684
685 static void intel_psr_enable_source(struct intel_dp *intel_dp,
686                                     const struct intel_crtc_state *crtc_state)
687 {
688         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
689         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
690         u32 mask;
691
692         /* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
693          * use hardcoded values PSR AUX transactions
694          */
695         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
696                 hsw_psr_setup_aux(intel_dp);
697
698         if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) &&
699                                            !IS_GEMINILAKE(dev_priv))) {
700                 i915_reg_t reg = gen9_chicken_trans_reg(dev_priv,
701                                                         cpu_transcoder);
702                 u32 chicken = I915_READ(reg);
703
704                 chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
705                            PSR2_ADD_VERTICAL_LINE_COUNT;
706                 I915_WRITE(reg, chicken);
707         }
708
709         /*
710          * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
711          * mask LPSP to avoid dependency on other drivers that might block
712          * runtime_pm besides preventing  other hw tracking issues now we
713          * can rely on frontbuffer tracking.
714          */
715         mask = EDP_PSR_DEBUG_MASK_MEMUP |
716                EDP_PSR_DEBUG_MASK_HPD |
717                EDP_PSR_DEBUG_MASK_LPSP |
718                EDP_PSR_DEBUG_MASK_MAX_SLEEP;
719
720         if (INTEL_GEN(dev_priv) < 11)
721                 mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
722
723         I915_WRITE(EDP_PSR_DEBUG, mask);
724 }
725
726 static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
727                                     const struct intel_crtc_state *crtc_state)
728 {
729         struct intel_dp *intel_dp = dev_priv->psr.dp;
730
731         WARN_ON(dev_priv->psr.enabled);
732
733         dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
734         dev_priv->psr.busy_frontbuffer_bits = 0;
735         dev_priv->psr.pipe = to_intel_crtc(crtc_state->base.crtc)->pipe;
736
737         DRM_DEBUG_KMS("Enabling PSR%s\n",
738                       dev_priv->psr.psr2_enabled ? "2" : "1");
739         intel_psr_setup_vsc(intel_dp, crtc_state);
740         intel_psr_enable_sink(intel_dp);
741         intel_psr_enable_source(intel_dp, crtc_state);
742         dev_priv->psr.enabled = true;
743
744         intel_psr_activate(intel_dp);
745 }
746
747 /**
748  * intel_psr_enable - Enable PSR
749  * @intel_dp: Intel DP
750  * @crtc_state: new CRTC state
751  *
752  * This function can only be called after the pipe is fully trained and enabled.
753  */
754 void intel_psr_enable(struct intel_dp *intel_dp,
755                       const struct intel_crtc_state *crtc_state)
756 {
757         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
758
759         if (!crtc_state->has_psr)
760                 return;
761
762         if (WARN_ON(!CAN_PSR(dev_priv)))
763                 return;
764
765         WARN_ON(dev_priv->drrs.dp);
766
767         mutex_lock(&dev_priv->psr.lock);
768
769         if (!psr_global_enabled(dev_priv->psr.debug)) {
770                 DRM_DEBUG_KMS("PSR disabled by flag\n");
771                 goto unlock;
772         }
773
774         intel_psr_enable_locked(dev_priv, crtc_state);
775
776 unlock:
777         mutex_unlock(&dev_priv->psr.lock);
778 }
779
780 static void intel_psr_exit(struct drm_i915_private *dev_priv)
781 {
782         u32 val;
783
784         if (!dev_priv->psr.active) {
785                 if (INTEL_GEN(dev_priv) >= 9)
786                         WARN_ON(I915_READ(EDP_PSR2_CTL) & EDP_PSR2_ENABLE);
787                 WARN_ON(I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE);
788                 return;
789         }
790
791         if (dev_priv->psr.psr2_enabled) {
792                 val = I915_READ(EDP_PSR2_CTL);
793                 WARN_ON(!(val & EDP_PSR2_ENABLE));
794                 I915_WRITE(EDP_PSR2_CTL, val & ~EDP_PSR2_ENABLE);
795         } else {
796                 val = I915_READ(EDP_PSR_CTL);
797                 WARN_ON(!(val & EDP_PSR_ENABLE));
798                 I915_WRITE(EDP_PSR_CTL, val & ~EDP_PSR_ENABLE);
799         }
800         dev_priv->psr.active = false;
801 }
802
803 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
804 {
805         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
806         i915_reg_t psr_status;
807         u32 psr_status_mask;
808
809         lockdep_assert_held(&dev_priv->psr.lock);
810
811         if (!dev_priv->psr.enabled)
812                 return;
813
814         DRM_DEBUG_KMS("Disabling PSR%s\n",
815                       dev_priv->psr.psr2_enabled ? "2" : "1");
816
817         intel_psr_exit(dev_priv);
818
819         if (dev_priv->psr.psr2_enabled) {
820                 psr_status = EDP_PSR2_STATUS;
821                 psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
822         } else {
823                 psr_status = EDP_PSR_STATUS;
824                 psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
825         }
826
827         /* Wait till PSR is idle */
828         if (intel_wait_for_register(&dev_priv->uncore,
829                                     psr_status, psr_status_mask, 0, 2000))
830                 DRM_ERROR("Timed out waiting PSR idle state\n");
831
832         /* Disable PSR on Sink */
833         drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
834
835         dev_priv->psr.enabled = false;
836 }
837
838 /**
839  * intel_psr_disable - Disable PSR
840  * @intel_dp: Intel DP
841  * @old_crtc_state: old CRTC state
842  *
843  * This function needs to be called before disabling pipe.
844  */
845 void intel_psr_disable(struct intel_dp *intel_dp,
846                        const struct intel_crtc_state *old_crtc_state)
847 {
848         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
849
850         if (!old_crtc_state->has_psr)
851                 return;
852
853         if (WARN_ON(!CAN_PSR(dev_priv)))
854                 return;
855
856         mutex_lock(&dev_priv->psr.lock);
857
858         intel_psr_disable_locked(intel_dp);
859
860         mutex_unlock(&dev_priv->psr.lock);
861         cancel_work_sync(&dev_priv->psr.work);
862 }
863
864 static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv)
865 {
866         /*
867          * Display WA #0884: all
868          * This documented WA for bxt can be safely applied
869          * broadly so we can force HW tracking to exit PSR
870          * instead of disabling and re-enabling.
871          * Workaround tells us to write 0 to CUR_SURFLIVE_A,
872          * but it makes more sense write to the current active
873          * pipe.
874          */
875         I915_WRITE(CURSURFLIVE(dev_priv->psr.pipe), 0);
876 }
877
878 /**
879  * intel_psr_update - Update PSR state
880  * @intel_dp: Intel DP
881  * @crtc_state: new CRTC state
882  *
883  * This functions will update PSR states, disabling, enabling or switching PSR
884  * version when executing fastsets. For full modeset, intel_psr_disable() and
885  * intel_psr_enable() should be called instead.
886  */
887 void intel_psr_update(struct intel_dp *intel_dp,
888                       const struct intel_crtc_state *crtc_state)
889 {
890         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
891         struct i915_psr *psr = &dev_priv->psr;
892         bool enable, psr2_enable;
893
894         if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp)
895                 return;
896
897         mutex_lock(&dev_priv->psr.lock);
898
899         enable = crtc_state->has_psr && psr_global_enabled(psr->debug);
900         psr2_enable = intel_psr2_enabled(dev_priv, crtc_state);
901
902         if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) {
903                 /* Force a PSR exit when enabling CRC to avoid CRC timeouts */
904                 if (crtc_state->crc_enabled && psr->enabled)
905                         psr_force_hw_tracking_exit(dev_priv);
906
907                 goto unlock;
908         }
909
910         if (psr->enabled)
911                 intel_psr_disable_locked(intel_dp);
912
913         if (enable)
914                 intel_psr_enable_locked(dev_priv, crtc_state);
915
916 unlock:
917         mutex_unlock(&dev_priv->psr.lock);
918 }
919
920 /**
921  * intel_psr_wait_for_idle - wait for PSR1 to idle
922  * @new_crtc_state: new CRTC state
923  * @out_value: PSR status in case of failure
924  *
925  * This function is expected to be called from pipe_update_start() where it is
926  * not expected to race with PSR enable or disable.
927  *
928  * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
929  */
930 int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
931                             u32 *out_value)
932 {
933         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
934         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
935
936         if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
937                 return 0;
938
939         /* FIXME: Update this for PSR2 if we need to wait for idle */
940         if (READ_ONCE(dev_priv->psr.psr2_enabled))
941                 return 0;
942
943         /*
944          * From bspec: Panel Self Refresh (BDW+)
945          * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
946          * exit training time + 1.5 ms of aux channel handshake. 50 ms is
947          * defensive enough to cover everything.
948          */
949
950         return __intel_wait_for_register(&dev_priv->uncore, EDP_PSR_STATUS,
951                                          EDP_PSR_STATUS_STATE_MASK,
952                                          EDP_PSR_STATUS_STATE_IDLE, 2, 50,
953                                          out_value);
954 }
955
956 static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
957 {
958         i915_reg_t reg;
959         u32 mask;
960         int err;
961
962         if (!dev_priv->psr.enabled)
963                 return false;
964
965         if (dev_priv->psr.psr2_enabled) {
966                 reg = EDP_PSR2_STATUS;
967                 mask = EDP_PSR2_STATUS_STATE_MASK;
968         } else {
969                 reg = EDP_PSR_STATUS;
970                 mask = EDP_PSR_STATUS_STATE_MASK;
971         }
972
973         mutex_unlock(&dev_priv->psr.lock);
974
975         err = intel_wait_for_register(&dev_priv->uncore, reg, mask, 0, 50);
976         if (err)
977                 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
978
979         /* After the unlocked wait, verify that PSR is still wanted! */
980         mutex_lock(&dev_priv->psr.lock);
981         return err == 0 && dev_priv->psr.enabled;
982 }
983
984 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
985 {
986         struct drm_device *dev = &dev_priv->drm;
987         struct drm_modeset_acquire_ctx ctx;
988         struct drm_atomic_state *state;
989         struct drm_crtc *crtc;
990         int err;
991
992         state = drm_atomic_state_alloc(dev);
993         if (!state)
994                 return -ENOMEM;
995
996         drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
997         state->acquire_ctx = &ctx;
998
999 retry:
1000         drm_for_each_crtc(crtc, dev) {
1001                 struct drm_crtc_state *crtc_state;
1002                 struct intel_crtc_state *intel_crtc_state;
1003
1004                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
1005                 if (IS_ERR(crtc_state)) {
1006                         err = PTR_ERR(crtc_state);
1007                         goto error;
1008                 }
1009
1010                 intel_crtc_state = to_intel_crtc_state(crtc_state);
1011
1012                 if (crtc_state->active && intel_crtc_state->has_psr) {
1013                         /* Mark mode as changed to trigger a pipe->update() */
1014                         crtc_state->mode_changed = true;
1015                         break;
1016                 }
1017         }
1018
1019         err = drm_atomic_commit(state);
1020
1021 error:
1022         if (err == -EDEADLK) {
1023                 drm_atomic_state_clear(state);
1024                 err = drm_modeset_backoff(&ctx);
1025                 if (!err)
1026                         goto retry;
1027         }
1028
1029         drm_modeset_drop_locks(&ctx);
1030         drm_modeset_acquire_fini(&ctx);
1031         drm_atomic_state_put(state);
1032
1033         return err;
1034 }
1035
1036 int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val)
1037 {
1038         const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1039         u32 old_mode;
1040         int ret;
1041
1042         if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1043             mode > I915_PSR_DEBUG_FORCE_PSR1) {
1044                 DRM_DEBUG_KMS("Invalid debug mask %llx\n", val);
1045                 return -EINVAL;
1046         }
1047
1048         ret = mutex_lock_interruptible(&dev_priv->psr.lock);
1049         if (ret)
1050                 return ret;
1051
1052         old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1053         dev_priv->psr.debug = val;
1054         intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
1055
1056         mutex_unlock(&dev_priv->psr.lock);
1057
1058         if (old_mode != mode)
1059                 ret = intel_psr_fastset_force(dev_priv);
1060
1061         return ret;
1062 }
1063
1064 static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
1065 {
1066         struct i915_psr *psr = &dev_priv->psr;
1067
1068         intel_psr_disable_locked(psr->dp);
1069         psr->sink_not_reliable = true;
1070         /* let's make sure that sink is awaken */
1071         drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1072 }
1073
1074 static void intel_psr_work(struct work_struct *work)
1075 {
1076         struct drm_i915_private *dev_priv =
1077                 container_of(work, typeof(*dev_priv), psr.work);
1078
1079         mutex_lock(&dev_priv->psr.lock);
1080
1081         if (!dev_priv->psr.enabled)
1082                 goto unlock;
1083
1084         if (READ_ONCE(dev_priv->psr.irq_aux_error))
1085                 intel_psr_handle_irq(dev_priv);
1086
1087         /*
1088          * We have to make sure PSR is ready for re-enable
1089          * otherwise it keeps disabled until next full enable/disable cycle.
1090          * PSR might take some time to get fully disabled
1091          * and be ready for re-enable.
1092          */
1093         if (!__psr_wait_for_idle_locked(dev_priv))
1094                 goto unlock;
1095
1096         /*
1097          * The delayed work can race with an invalidate hence we need to
1098          * recheck. Since psr_flush first clears this and then reschedules we
1099          * won't ever miss a flush when bailing out here.
1100          */
1101         if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
1102                 goto unlock;
1103
1104         intel_psr_activate(dev_priv->psr.dp);
1105 unlock:
1106         mutex_unlock(&dev_priv->psr.lock);
1107 }
1108
1109 /**
1110  * intel_psr_invalidate - Invalidade PSR
1111  * @dev_priv: i915 device
1112  * @frontbuffer_bits: frontbuffer plane tracking bits
1113  * @origin: which operation caused the invalidate
1114  *
1115  * Since the hardware frontbuffer tracking has gaps we need to integrate
1116  * with the software frontbuffer tracking. This function gets called every
1117  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1118  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1119  *
1120  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1121  */
1122 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1123                           unsigned frontbuffer_bits, enum fb_op_origin origin)
1124 {
1125         if (!CAN_PSR(dev_priv))
1126                 return;
1127
1128         if (origin == ORIGIN_FLIP)
1129                 return;
1130
1131         mutex_lock(&dev_priv->psr.lock);
1132         if (!dev_priv->psr.enabled) {
1133                 mutex_unlock(&dev_priv->psr.lock);
1134                 return;
1135         }
1136
1137         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1138         dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1139
1140         if (frontbuffer_bits)
1141                 intel_psr_exit(dev_priv);
1142
1143         mutex_unlock(&dev_priv->psr.lock);
1144 }
1145
1146 /**
1147  * intel_psr_flush - Flush PSR
1148  * @dev_priv: i915 device
1149  * @frontbuffer_bits: frontbuffer plane tracking bits
1150  * @origin: which operation caused the flush
1151  *
1152  * Since the hardware frontbuffer tracking has gaps we need to integrate
1153  * with the software frontbuffer tracking. This function gets called every
1154  * time frontbuffer rendering has completed and flushed out to memory. PSR
1155  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1156  *
1157  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1158  */
1159 void intel_psr_flush(struct drm_i915_private *dev_priv,
1160                      unsigned frontbuffer_bits, enum fb_op_origin origin)
1161 {
1162         if (!CAN_PSR(dev_priv))
1163                 return;
1164
1165         if (origin == ORIGIN_FLIP)
1166                 return;
1167
1168         mutex_lock(&dev_priv->psr.lock);
1169         if (!dev_priv->psr.enabled) {
1170                 mutex_unlock(&dev_priv->psr.lock);
1171                 return;
1172         }
1173
1174         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1175         dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1176
1177         /* By definition flush = invalidate + flush */
1178         if (frontbuffer_bits)
1179                 psr_force_hw_tracking_exit(dev_priv);
1180
1181         if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1182                 schedule_work(&dev_priv->psr.work);
1183         mutex_unlock(&dev_priv->psr.lock);
1184 }
1185
1186 /**
1187  * intel_psr_init - Init basic PSR work and mutex.
1188  * @dev_priv: i915 device private
1189  *
1190  * This function is  called only once at driver load to initialize basic
1191  * PSR stuff.
1192  */
1193 void intel_psr_init(struct drm_i915_private *dev_priv)
1194 {
1195         u32 val;
1196
1197         if (!HAS_PSR(dev_priv))
1198                 return;
1199
1200         dev_priv->psr_mmio_base = IS_HASWELL(dev_priv) ?
1201                 HSW_EDP_PSR_BASE : BDW_EDP_PSR_BASE;
1202
1203         if (!dev_priv->psr.sink_support)
1204                 return;
1205
1206         if (i915_modparams.enable_psr == -1)
1207                 if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1208                         i915_modparams.enable_psr = 0;
1209
1210         /*
1211          * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
1212          * will still keep the error set even after the reset done in the
1213          * irq_preinstall and irq_uninstall hooks.
1214          * And enabling in this situation cause the screen to freeze in the
1215          * first time that PSR HW tries to activate so lets keep PSR disabled
1216          * to avoid any rendering problems.
1217          */
1218         val = I915_READ(EDP_PSR_IIR);
1219         val &= EDP_PSR_ERROR(edp_psr_shift(TRANSCODER_EDP));
1220         if (val) {
1221                 DRM_DEBUG_KMS("PSR interruption error set\n");
1222                 dev_priv->psr.sink_not_reliable = true;
1223         }
1224
1225         /* Set link_standby x link_off defaults */
1226         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1227                 /* HSW and BDW require workarounds that we don't implement. */
1228                 dev_priv->psr.link_standby = false;
1229         else
1230                 /* For new platforms let's respect VBT back again */
1231                 dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
1232
1233         INIT_WORK(&dev_priv->psr.work, intel_psr_work);
1234         mutex_init(&dev_priv->psr.lock);
1235 }
1236
1237 void intel_psr_short_pulse(struct intel_dp *intel_dp)
1238 {
1239         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1240         struct i915_psr *psr = &dev_priv->psr;
1241         u8 val;
1242         const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1243                           DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1244                           DP_PSR_LINK_CRC_ERROR;
1245
1246         if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1247                 return;
1248
1249         mutex_lock(&psr->lock);
1250
1251         if (!psr->enabled || psr->dp != intel_dp)
1252                 goto exit;
1253
1254         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_STATUS, &val) != 1) {
1255                 DRM_ERROR("PSR_STATUS dpcd read failed\n");
1256                 goto exit;
1257         }
1258
1259         if ((val & DP_PSR_SINK_STATE_MASK) == DP_PSR_SINK_INTERNAL_ERROR) {
1260                 DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n");
1261                 intel_psr_disable_locked(intel_dp);
1262                 psr->sink_not_reliable = true;
1263         }
1264
1265         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ERROR_STATUS, &val) != 1) {
1266                 DRM_ERROR("PSR_ERROR_STATUS dpcd read failed\n");
1267                 goto exit;
1268         }
1269
1270         if (val & DP_PSR_RFB_STORAGE_ERROR)
1271                 DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n");
1272         if (val & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1273                 DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n");
1274         if (val & DP_PSR_LINK_CRC_ERROR)
1275                 DRM_ERROR("PSR Link CRC error, disabling PSR\n");
1276
1277         if (val & ~errors)
1278                 DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n",
1279                           val & ~errors);
1280         if (val & errors) {
1281                 intel_psr_disable_locked(intel_dp);
1282                 psr->sink_not_reliable = true;
1283         }
1284         /* clear status register */
1285         drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, val);
1286 exit:
1287         mutex_unlock(&psr->lock);
1288 }
1289
1290 bool intel_psr_enabled(struct intel_dp *intel_dp)
1291 {
1292         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1293         bool ret;
1294
1295         if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1296                 return false;
1297
1298         mutex_lock(&dev_priv->psr.lock);
1299         ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
1300         mutex_unlock(&dev_priv->psr.lock);
1301
1302         return ret;
1303 }