5154661a38cf76eb7f300d0def2094d08f7844f1
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include <drm/drmP.h>
137 #include <drm/i915_drm.h>
138 #include "i915_drv.h"
139 #include "intel_mocs.h"
140
141 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
142 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
143 #define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_ACTIVE_IDLE | \
161           GEN8_CTX_STATUS_PREEMPTED | \
162           GEN8_CTX_STATUS_ELEMENT_SWITCH)
163
164 #define CTX_LRI_HEADER_0                0x01
165 #define CTX_CONTEXT_CONTROL             0x02
166 #define CTX_RING_HEAD                   0x04
167 #define CTX_RING_TAIL                   0x06
168 #define CTX_RING_BUFFER_START           0x08
169 #define CTX_RING_BUFFER_CONTROL         0x0a
170 #define CTX_BB_HEAD_U                   0x0c
171 #define CTX_BB_HEAD_L                   0x0e
172 #define CTX_BB_STATE                    0x10
173 #define CTX_SECOND_BB_HEAD_U            0x12
174 #define CTX_SECOND_BB_HEAD_L            0x14
175 #define CTX_SECOND_BB_STATE             0x16
176 #define CTX_BB_PER_CTX_PTR              0x18
177 #define CTX_RCS_INDIRECT_CTX            0x1a
178 #define CTX_RCS_INDIRECT_CTX_OFFSET     0x1c
179 #define CTX_LRI_HEADER_1                0x21
180 #define CTX_CTX_TIMESTAMP               0x22
181 #define CTX_PDP3_UDW                    0x24
182 #define CTX_PDP3_LDW                    0x26
183 #define CTX_PDP2_UDW                    0x28
184 #define CTX_PDP2_LDW                    0x2a
185 #define CTX_PDP1_UDW                    0x2c
186 #define CTX_PDP1_LDW                    0x2e
187 #define CTX_PDP0_UDW                    0x30
188 #define CTX_PDP0_LDW                    0x32
189 #define CTX_LRI_HEADER_2                0x41
190 #define CTX_R_PWR_CLK_STATE             0x42
191 #define CTX_GPGPU_CSR_BASE_ADDRESS      0x44
192
193 #define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
194         (reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
195         (reg_state)[(pos)+1] = (val); \
196 } while (0)
197
198 #define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do {                \
199         const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
200         reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
201         reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
202 } while (0)
203
204 #define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
205         reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
206         reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
207 } while (0)
208
209 #define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x17
210 #define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT        0x26
211
212 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
213 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
214
215 #define WA_TAIL_DWORDS 2
216
217 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
218                                             struct intel_engine_cs *engine);
219 static void execlists_init_reg_state(u32 *reg_state,
220                                      struct i915_gem_context *ctx,
221                                      struct intel_engine_cs *engine,
222                                      struct intel_ring *ring);
223
224 /**
225  * intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
226  * @dev_priv: i915 device private
227  * @enable_execlists: value of i915.enable_execlists module parameter.
228  *
229  * Only certain platforms support Execlists (the prerequisites being
230  * support for Logical Ring Contexts and Aliasing PPGTT or better).
231  *
232  * Return: 1 if Execlists is supported and has to be enabled.
233  */
234 int intel_sanitize_enable_execlists(struct drm_i915_private *dev_priv, int enable_execlists)
235 {
236         /* On platforms with execlist available, vGPU will only
237          * support execlist mode, no ring buffer mode.
238          */
239         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) && intel_vgpu_active(dev_priv))
240                 return 1;
241
242         if (INTEL_GEN(dev_priv) >= 9)
243                 return 1;
244
245         if (enable_execlists == 0)
246                 return 0;
247
248         if (HAS_LOGICAL_RING_CONTEXTS(dev_priv) &&
249             USES_PPGTT(dev_priv) &&
250             i915.use_mmio_flip >= 0)
251                 return 1;
252
253         return 0;
254 }
255
256 /**
257  * intel_lr_context_descriptor_update() - calculate & cache the descriptor
258  *                                        descriptor for a pinned context
259  * @ctx: Context to work on
260  * @engine: Engine the descriptor will be used with
261  *
262  * The context descriptor encodes various attributes of a context,
263  * including its GTT address and some flags. Because it's fairly
264  * expensive to calculate, we'll just do it once and cache the result,
265  * which remains valid until the context is unpinned.
266  *
267  * This is what a descriptor looks like, from LSB to MSB::
268  *
269  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
270  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
271  *      bits 32-52:    ctx ID, a globally unique tag
272  *      bits 53-54:    mbz, reserved for use by hardware
273  *      bits 55-63:    group ID, currently unused and set to 0
274  */
275 static void
276 intel_lr_context_descriptor_update(struct i915_gem_context *ctx,
277                                    struct intel_engine_cs *engine)
278 {
279         struct intel_context *ce = &ctx->engine[engine->id];
280         u64 desc;
281
282         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
283
284         desc = ctx->desc_template;                              /* bits  0-11 */
285         desc |= i915_ggtt_offset(ce->state) + LRC_PPHWSP_PN * PAGE_SIZE;
286                                                                 /* bits 12-31 */
287         desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;           /* bits 32-52 */
288
289         ce->lrc_desc = desc;
290 }
291
292 uint64_t intel_lr_context_descriptor(struct i915_gem_context *ctx,
293                                      struct intel_engine_cs *engine)
294 {
295         return ctx->engine[engine->id].lrc_desc;
296 }
297
298 static inline void
299 execlists_context_status_change(struct drm_i915_gem_request *rq,
300                                 unsigned long status)
301 {
302         /*
303          * Only used when GVT-g is enabled now. When GVT-g is disabled,
304          * The compiler should eliminate this function as dead-code.
305          */
306         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
307                 return;
308
309         atomic_notifier_call_chain(&rq->ctx->status_notifier, status, rq);
310 }
311
312 static void
313 execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
314 {
315         ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
316         ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
317         ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
318         ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
319 }
320
321 static u64 execlists_update_context(struct drm_i915_gem_request *rq)
322 {
323         struct intel_context *ce = &rq->ctx->engine[rq->engine->id];
324         struct i915_hw_ppgtt *ppgtt =
325                 rq->ctx->ppgtt ?: rq->i915->mm.aliasing_ppgtt;
326         u32 *reg_state = ce->lrc_reg_state;
327
328         reg_state[CTX_RING_TAIL+1] = rq->tail;
329
330         /* True 32b PPGTT with dynamic page allocation: update PDP
331          * registers and point the unallocated PDPs to scratch page.
332          * PML4 is allocated during ppgtt init, so this is not needed
333          * in 48-bit mode.
334          */
335         if (ppgtt && !i915_vm_is_48bit(&ppgtt->base))
336                 execlists_update_context_pdps(ppgtt, reg_state);
337
338         return ce->lrc_desc;
339 }
340
341 static void execlists_submit_ports(struct intel_engine_cs *engine)
342 {
343         struct drm_i915_private *dev_priv = engine->i915;
344         struct execlist_port *port = engine->execlist_port;
345         u32 __iomem *elsp =
346                 dev_priv->regs + i915_mmio_reg_offset(RING_ELSP(engine));
347         u64 desc[2];
348
349         GEM_BUG_ON(port[0].count > 1);
350         if (!port[0].count)
351                 execlists_context_status_change(port[0].request,
352                                                 INTEL_CONTEXT_SCHEDULE_IN);
353         desc[0] = execlists_update_context(port[0].request);
354         GEM_DEBUG_EXEC(port[0].context_id = upper_32_bits(desc[0]));
355         port[0].count++;
356
357         if (port[1].request) {
358                 GEM_BUG_ON(port[1].count);
359                 execlists_context_status_change(port[1].request,
360                                                 INTEL_CONTEXT_SCHEDULE_IN);
361                 desc[1] = execlists_update_context(port[1].request);
362                 GEM_DEBUG_EXEC(port[1].context_id = upper_32_bits(desc[1]));
363                 port[1].count = 1;
364         } else {
365                 desc[1] = 0;
366         }
367         GEM_BUG_ON(desc[0] == desc[1]);
368
369         /* You must always write both descriptors in the order below. */
370         writel(upper_32_bits(desc[1]), elsp);
371         writel(lower_32_bits(desc[1]), elsp);
372
373         writel(upper_32_bits(desc[0]), elsp);
374         /* The context is automatically loaded after the following */
375         writel(lower_32_bits(desc[0]), elsp);
376 }
377
378 static bool ctx_single_port_submission(const struct i915_gem_context *ctx)
379 {
380         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
381                 i915_gem_context_force_single_submission(ctx));
382 }
383
384 static bool can_merge_ctx(const struct i915_gem_context *prev,
385                           const struct i915_gem_context *next)
386 {
387         if (prev != next)
388                 return false;
389
390         if (ctx_single_port_submission(prev))
391                 return false;
392
393         return true;
394 }
395
396 static void execlists_dequeue(struct intel_engine_cs *engine)
397 {
398         struct drm_i915_gem_request *last;
399         struct execlist_port *port = engine->execlist_port;
400         unsigned long flags;
401         struct rb_node *rb;
402         bool submit = false;
403
404         last = port->request;
405         if (last)
406                 /* WaIdleLiteRestore:bdw,skl
407                  * Apply the wa NOOPs to prevent ring:HEAD == req:TAIL
408                  * as we resubmit the request. See gen8_emit_breadcrumb()
409                  * for where we prepare the padding after the end of the
410                  * request.
411                  */
412                 last->tail = last->wa_tail;
413
414         GEM_BUG_ON(port[1].request);
415
416         /* Hardware submission is through 2 ports. Conceptually each port
417          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
418          * static for a context, and unique to each, so we only execute
419          * requests belonging to a single context from each ring. RING_HEAD
420          * is maintained by the CS in the context image, it marks the place
421          * where it got up to last time, and through RING_TAIL we tell the CS
422          * where we want to execute up to this time.
423          *
424          * In this list the requests are in order of execution. Consecutive
425          * requests from the same context are adjacent in the ringbuffer. We
426          * can combine these requests into a single RING_TAIL update:
427          *
428          *              RING_HEAD...req1...req2
429          *                                    ^- RING_TAIL
430          * since to execute req2 the CS must first execute req1.
431          *
432          * Our goal then is to point each port to the end of a consecutive
433          * sequence of requests as being the most optimal (fewest wake ups
434          * and context switches) submission.
435          */
436
437         spin_lock_irqsave(&engine->timeline->lock, flags);
438         rb = engine->execlist_first;
439         while (rb) {
440                 struct drm_i915_gem_request *cursor =
441                         rb_entry(rb, typeof(*cursor), priotree.node);
442
443                 /* Can we combine this request with the current port? It has to
444                  * be the same context/ringbuffer and not have any exceptions
445                  * (e.g. GVT saying never to combine contexts).
446                  *
447                  * If we can combine the requests, we can execute both by
448                  * updating the RING_TAIL to point to the end of the second
449                  * request, and so we never need to tell the hardware about
450                  * the first.
451                  */
452                 if (last && !can_merge_ctx(cursor->ctx, last->ctx)) {
453                         /* If we are on the second port and cannot combine
454                          * this request with the last, then we are done.
455                          */
456                         if (port != engine->execlist_port)
457                                 break;
458
459                         /* If GVT overrides us we only ever submit port[0],
460                          * leaving port[1] empty. Note that we also have
461                          * to be careful that we don't queue the same
462                          * context (even though a different request) to
463                          * the second port.
464                          */
465                         if (ctx_single_port_submission(last->ctx) ||
466                             ctx_single_port_submission(cursor->ctx))
467                                 break;
468
469                         GEM_BUG_ON(last->ctx == cursor->ctx);
470
471                         i915_gem_request_assign(&port->request, last);
472                         port++;
473                 }
474
475                 rb = rb_next(rb);
476                 rb_erase(&cursor->priotree.node, &engine->execlist_queue);
477                 RB_CLEAR_NODE(&cursor->priotree.node);
478                 cursor->priotree.priority = INT_MAX;
479
480                 __i915_gem_request_submit(cursor);
481                 last = cursor;
482                 submit = true;
483         }
484         if (submit) {
485                 i915_gem_request_assign(&port->request, last);
486                 engine->execlist_first = rb;
487         }
488         spin_unlock_irqrestore(&engine->timeline->lock, flags);
489
490         if (submit)
491                 execlists_submit_ports(engine);
492 }
493
494 static bool execlists_elsp_idle(struct intel_engine_cs *engine)
495 {
496         return !engine->execlist_port[0].request;
497 }
498
499 /**
500  * intel_execlists_idle() - Determine if all engine submission ports are idle
501  * @dev_priv: i915 device private
502  *
503  * Return true if there are no requests pending on any of the submission ports
504  * of any engines.
505  */
506 bool intel_execlists_idle(struct drm_i915_private *dev_priv)
507 {
508         struct intel_engine_cs *engine;
509         enum intel_engine_id id;
510
511         if (!i915.enable_execlists)
512                 return true;
513
514         for_each_engine(engine, dev_priv, id) {
515                 /* Interrupt/tasklet pending? */
516                 if (test_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted))
517                         return false;
518
519                 /* Both ports drained, no more ELSP submission? */
520                 if (!execlists_elsp_idle(engine))
521                         return false;
522         }
523
524         return true;
525 }
526
527 static bool execlists_elsp_ready(const struct intel_engine_cs *engine)
528 {
529         const struct execlist_port *port = engine->execlist_port;
530
531         return port[0].count + port[1].count < 2;
532 }
533
534 /*
535  * Check the unread Context Status Buffers and manage the submission of new
536  * contexts to the ELSP accordingly.
537  */
538 static void intel_lrc_irq_handler(unsigned long data)
539 {
540         struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
541         struct execlist_port *port = engine->execlist_port;
542         struct drm_i915_private *dev_priv = engine->i915;
543
544         intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
545
546         while (test_and_clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted)) {
547                 u32 __iomem *csb_mmio =
548                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_PTR(engine));
549                 u32 __iomem *buf =
550                         dev_priv->regs + i915_mmio_reg_offset(RING_CONTEXT_STATUS_BUF_LO(engine, 0));
551                 unsigned int csb, head, tail;
552
553                 csb = readl(csb_mmio);
554                 head = GEN8_CSB_READ_PTR(csb);
555                 tail = GEN8_CSB_WRITE_PTR(csb);
556                 if (head == tail)
557                         break;
558
559                 if (tail < head)
560                         tail += GEN8_CSB_ENTRIES;
561                 do {
562                         unsigned int idx = ++head % GEN8_CSB_ENTRIES;
563                         unsigned int status = readl(buf + 2 * idx);
564
565                         /* We are flying near dragons again.
566                          *
567                          * We hold a reference to the request in execlist_port[]
568                          * but no more than that. We are operating in softirq
569                          * context and so cannot hold any mutex or sleep. That
570                          * prevents us stopping the requests we are processing
571                          * in port[] from being retired simultaneously (the
572                          * breadcrumb will be complete before we see the
573                          * context-switch). As we only hold the reference to the
574                          * request, any pointer chasing underneath the request
575                          * is subject to a potential use-after-free. Thus we
576                          * store all of the bookkeeping within port[] as
577                          * required, and avoid using unguarded pointers beneath
578                          * request itself. The same applies to the atomic
579                          * status notifier.
580                          */
581
582                         if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
583                                 continue;
584
585                         /* Check the context/desc id for this event matches */
586                         GEM_DEBUG_BUG_ON(readl(buf + 2 * idx + 1) !=
587                                          port[0].context_id);
588
589                         GEM_BUG_ON(port[0].count == 0);
590                         if (--port[0].count == 0) {
591                                 GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
592                                 execlists_context_status_change(port[0].request,
593                                                                 INTEL_CONTEXT_SCHEDULE_OUT);
594
595                                 i915_gem_request_put(port[0].request);
596                                 port[0] = port[1];
597                                 memset(&port[1], 0, sizeof(port[1]));
598                         }
599
600                         GEM_BUG_ON(port[0].count == 0 &&
601                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
602                 } while (head < tail);
603
604                 writel(_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
605                                      GEN8_CSB_WRITE_PTR(csb) << 8),
606                        csb_mmio);
607         }
608
609         if (execlists_elsp_ready(engine))
610                 execlists_dequeue(engine);
611
612         intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
613 }
614
615 static bool insert_request(struct i915_priotree *pt, struct rb_root *root)
616 {
617         struct rb_node **p, *rb;
618         bool first = true;
619
620         /* most positive priority is scheduled first, equal priorities fifo */
621         rb = NULL;
622         p = &root->rb_node;
623         while (*p) {
624                 struct i915_priotree *pos;
625
626                 rb = *p;
627                 pos = rb_entry(rb, typeof(*pos), node);
628                 if (pt->priority > pos->priority) {
629                         p = &rb->rb_left;
630                 } else {
631                         p = &rb->rb_right;
632                         first = false;
633                 }
634         }
635         rb_link_node(&pt->node, rb, p);
636         rb_insert_color(&pt->node, root);
637
638         return first;
639 }
640
641 static void execlists_submit_request(struct drm_i915_gem_request *request)
642 {
643         struct intel_engine_cs *engine = request->engine;
644         unsigned long flags;
645
646         /* Will be called from irq-context when using foreign fences. */
647         spin_lock_irqsave(&engine->timeline->lock, flags);
648
649         if (insert_request(&request->priotree, &engine->execlist_queue)) {
650                 engine->execlist_first = &request->priotree.node;
651                 if (execlists_elsp_ready(engine))
652                         tasklet_hi_schedule(&engine->irq_tasklet);
653         }
654
655         spin_unlock_irqrestore(&engine->timeline->lock, flags);
656 }
657
658 static struct intel_engine_cs *
659 pt_lock_engine(struct i915_priotree *pt, struct intel_engine_cs *locked)
660 {
661         struct intel_engine_cs *engine;
662
663         engine = container_of(pt,
664                               struct drm_i915_gem_request,
665                               priotree)->engine;
666         if (engine != locked) {
667                 if (locked)
668                         spin_unlock_irq(&locked->timeline->lock);
669                 spin_lock_irq(&engine->timeline->lock);
670         }
671
672         return engine;
673 }
674
675 static void execlists_schedule(struct drm_i915_gem_request *request, int prio)
676 {
677         struct intel_engine_cs *engine = NULL;
678         struct i915_dependency *dep, *p;
679         struct i915_dependency stack;
680         LIST_HEAD(dfs);
681
682         if (prio <= READ_ONCE(request->priotree.priority))
683                 return;
684
685         /* Need BKL in order to use the temporary link inside i915_dependency */
686         lockdep_assert_held(&request->i915->drm.struct_mutex);
687
688         stack.signaler = &request->priotree;
689         list_add(&stack.dfs_link, &dfs);
690
691         /* Recursively bump all dependent priorities to match the new request.
692          *
693          * A naive approach would be to use recursion:
694          * static void update_priorities(struct i915_priotree *pt, prio) {
695          *      list_for_each_entry(dep, &pt->signalers_list, signal_link)
696          *              update_priorities(dep->signal, prio)
697          *      insert_request(pt);
698          * }
699          * but that may have unlimited recursion depth and so runs a very
700          * real risk of overunning the kernel stack. Instead, we build
701          * a flat list of all dependencies starting with the current request.
702          * As we walk the list of dependencies, we add all of its dependencies
703          * to the end of the list (this may include an already visited
704          * request) and continue to walk onwards onto the new dependencies. The
705          * end result is a topological list of requests in reverse order, the
706          * last element in the list is the request we must execute first.
707          */
708         list_for_each_entry_safe(dep, p, &dfs, dfs_link) {
709                 struct i915_priotree *pt = dep->signaler;
710
711                 list_for_each_entry(p, &pt->signalers_list, signal_link)
712                         if (prio > READ_ONCE(p->signaler->priority))
713                                 list_move_tail(&p->dfs_link, &dfs);
714
715                 list_safe_reset_next(dep, p, dfs_link);
716                 if (!RB_EMPTY_NODE(&pt->node))
717                         continue;
718
719                 engine = pt_lock_engine(pt, engine);
720
721                 /* If it is not already in the rbtree, we can update the
722                  * priority inplace and skip over it (and its dependencies)
723                  * if it is referenced *again* as we descend the dfs.
724                  */
725                 if (prio > pt->priority && RB_EMPTY_NODE(&pt->node)) {
726                         pt->priority = prio;
727                         list_del_init(&dep->dfs_link);
728                 }
729         }
730
731         /* Fifo and depth-first replacement ensure our deps execute before us */
732         list_for_each_entry_safe_reverse(dep, p, &dfs, dfs_link) {
733                 struct i915_priotree *pt = dep->signaler;
734
735                 INIT_LIST_HEAD(&dep->dfs_link);
736
737                 engine = pt_lock_engine(pt, engine);
738
739                 if (prio <= pt->priority)
740                         continue;
741
742                 GEM_BUG_ON(RB_EMPTY_NODE(&pt->node));
743
744                 pt->priority = prio;
745                 rb_erase(&pt->node, &engine->execlist_queue);
746                 if (insert_request(pt, &engine->execlist_queue))
747                         engine->execlist_first = &pt->node;
748         }
749
750         if (engine)
751                 spin_unlock_irq(&engine->timeline->lock);
752
753         /* XXX Do we need to preempt to make room for us and our deps? */
754 }
755
756 static int execlists_context_pin(struct intel_engine_cs *engine,
757                                  struct i915_gem_context *ctx)
758 {
759         struct intel_context *ce = &ctx->engine[engine->id];
760         unsigned int flags;
761         void *vaddr;
762         int ret;
763
764         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
765
766         if (ce->pin_count++)
767                 return 0;
768
769         if (!ce->state) {
770                 ret = execlists_context_deferred_alloc(ctx, engine);
771                 if (ret)
772                         goto err;
773         }
774         GEM_BUG_ON(!ce->state);
775
776         flags = PIN_GLOBAL | PIN_HIGH;
777         if (ctx->ggtt_offset_bias)
778                 flags |= PIN_OFFSET_BIAS | ctx->ggtt_offset_bias;
779
780         ret = i915_vma_pin(ce->state, 0, GEN8_LR_CONTEXT_ALIGN, flags);
781         if (ret)
782                 goto err;
783
784         vaddr = i915_gem_object_pin_map(ce->state->obj, I915_MAP_WB);
785         if (IS_ERR(vaddr)) {
786                 ret = PTR_ERR(vaddr);
787                 goto unpin_vma;
788         }
789
790         ret = intel_ring_pin(ce->ring, ctx->ggtt_offset_bias);
791         if (ret)
792                 goto unpin_map;
793
794         intel_lr_context_descriptor_update(ctx, engine);
795
796         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
797         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
798                 i915_ggtt_offset(ce->ring->vma);
799
800         ce->state->obj->mm.dirty = true;
801
802         i915_gem_context_get(ctx);
803         return 0;
804
805 unpin_map:
806         i915_gem_object_unpin_map(ce->state->obj);
807 unpin_vma:
808         __i915_vma_unpin(ce->state);
809 err:
810         ce->pin_count = 0;
811         return ret;
812 }
813
814 static void execlists_context_unpin(struct intel_engine_cs *engine,
815                                     struct i915_gem_context *ctx)
816 {
817         struct intel_context *ce = &ctx->engine[engine->id];
818
819         lockdep_assert_held(&ctx->i915->drm.struct_mutex);
820         GEM_BUG_ON(ce->pin_count == 0);
821
822         if (--ce->pin_count)
823                 return;
824
825         intel_ring_unpin(ce->ring);
826
827         i915_gem_object_unpin_map(ce->state->obj);
828         i915_vma_unpin(ce->state);
829
830         i915_gem_context_put(ctx);
831 }
832
833 static int execlists_request_alloc(struct drm_i915_gem_request *request)
834 {
835         struct intel_engine_cs *engine = request->engine;
836         struct intel_context *ce = &request->ctx->engine[engine->id];
837         u32 *cs;
838         int ret;
839
840         GEM_BUG_ON(!ce->pin_count);
841
842         /* Flush enough space to reduce the likelihood of waiting after
843          * we start building the request - in which case we will just
844          * have to repeat work.
845          */
846         request->reserved_space += EXECLISTS_REQUEST_SIZE;
847
848         GEM_BUG_ON(!ce->ring);
849         request->ring = ce->ring;
850
851         if (i915.enable_guc_submission) {
852                 /*
853                  * Check that the GuC has space for the request before
854                  * going any further, as the i915_add_request() call
855                  * later on mustn't fail ...
856                  */
857                 ret = i915_guc_wq_reserve(request);
858                 if (ret)
859                         goto err;
860         }
861
862         cs = intel_ring_begin(request, 0);
863         if (IS_ERR(cs)) {
864                 ret = PTR_ERR(cs);
865                 goto err_unreserve;
866         }
867
868         if (!ce->initialised) {
869                 ret = engine->init_context(request);
870                 if (ret)
871                         goto err_unreserve;
872
873                 ce->initialised = true;
874         }
875
876         /* Note that after this point, we have committed to using
877          * this request as it is being used to both track the
878          * state of engine initialisation and liveness of the
879          * golden renderstate above. Think twice before you try
880          * to cancel/unwind this request now.
881          */
882
883         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
884         return 0;
885
886 err_unreserve:
887         if (i915.enable_guc_submission)
888                 i915_guc_wq_unreserve(request);
889 err:
890         return ret;
891 }
892
893 /*
894  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
895  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
896  * but there is a slight complication as this is applied in WA batch where the
897  * values are only initialized once so we cannot take register value at the
898  * beginning and reuse it further; hence we save its value to memory, upload a
899  * constant value with bit21 set and then we restore it back with the saved value.
900  * To simplify the WA, a constant value is formed by using the default value
901  * of this register. This shouldn't be a problem because we are only modifying
902  * it for a short period and this batch in non-premptible. We can ofcourse
903  * use additional instructions that read the actual value of the register
904  * at that time and set our bit of interest but it makes the WA complicated.
905  *
906  * This WA is also required for Gen9 so extracting as a function avoids
907  * code duplication.
908  */
909 static u32 *
910 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
911 {
912         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
913         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
914         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
915         *batch++ = 0;
916
917         *batch++ = MI_LOAD_REGISTER_IMM(1);
918         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
919         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
920
921         *batch++ = GFX_OP_PIPE_CONTROL(6);
922         *batch++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_DC_FLUSH_ENABLE;
923         *batch++ = 0;
924         *batch++ = 0;
925         *batch++ = 0;
926         *batch++ = 0;
927
928         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
929         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
930         *batch++ = i915_ggtt_offset(engine->scratch) + 256;
931         *batch++ = 0;
932
933         return batch;
934 }
935
936 /*
937  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
938  * initialized at the beginning and shared across all contexts but this field
939  * helps us to have multiple batches at different offsets and select them based
940  * on a criteria. At the moment this batch always start at the beginning of the page
941  * and at this point we don't have multiple wa_ctx batch buffers.
942  *
943  * The number of WA applied are not known at the beginning; we use this field
944  * to return the no of DWORDS written.
945  *
946  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
947  * so it adds NOOPs as padding to make it cacheline aligned.
948  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
949  * makes a complete batch buffer.
950  */
951 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
952 {
953         /* WaDisableCtxRestoreArbitration:bdw,chv */
954         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
955
956         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
957         if (IS_BROADWELL(engine->i915))
958                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
959
960         *batch++ = GFX_OP_PIPE_CONTROL(6);
961         *batch++ = PIPE_CONTROL_FLUSH_L3 | PIPE_CONTROL_GLOBAL_GTT_IVB |
962                    PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE;
963         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
964         /* Actual scratch location is at 128 bytes offset */
965         *batch++ = i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
966         *batch++ = 0;
967         *batch++ = 0;
968         *batch++ = 0;
969
970         /* Pad to end of cacheline */
971         while ((unsigned long)batch % CACHELINE_BYTES)
972                 *batch++ = MI_NOOP;
973
974         /*
975          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
976          * execution depends on the length specified in terms of cache lines
977          * in the register CTX_RCS_INDIRECT_CTX
978          */
979
980         return batch;
981 }
982
983 /*
984  *  This batch is started immediately after indirect_ctx batch. Since we ensure
985  *  that indirect_ctx ends on a cacheline this batch is aligned automatically.
986  *
987  *  The number of DWORDS written are returned using this field.
988  *
989  *  This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
990  *  to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
991  */
992 static u32 *gen8_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
993 {
994         /* WaDisableCtxRestoreArbitration:bdw,chv */
995         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
996         *batch++ = MI_BATCH_BUFFER_END;
997
998         return batch;
999 }
1000
1001 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1002 {
1003         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1004         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1005
1006         /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1007         *batch++ = MI_LOAD_REGISTER_IMM(1);
1008         *batch++ = i915_mmio_reg_offset(COMMON_SLICE_CHICKEN2);
1009         *batch++ = _MASKED_BIT_DISABLE(
1010                         GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE);
1011         *batch++ = MI_NOOP;
1012
1013         /* WaClearSlmSpaceAtContextSwitch:kbl */
1014         /* Actual scratch location is at 128 bytes offset */
1015         if (IS_KBL_REVID(engine->i915, 0, KBL_REVID_A0)) {
1016                 *batch++ = GFX_OP_PIPE_CONTROL(6);
1017                 *batch++ = PIPE_CONTROL_FLUSH_L3 | PIPE_CONTROL_GLOBAL_GTT_IVB |
1018                            PIPE_CONTROL_CS_STALL | PIPE_CONTROL_QW_WRITE;
1019                 *batch++ = i915_ggtt_offset(engine->scratch) +
1020                            2 * CACHELINE_BYTES;
1021                 *batch++ = 0;
1022                 *batch++ = 0;
1023                 *batch++ = 0;
1024         }
1025
1026         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1027         if (HAS_POOLED_EU(engine->i915)) {
1028                 /*
1029                  * EU pool configuration is setup along with golden context
1030                  * during context initialization. This value depends on
1031                  * device type (2x6 or 3x6) and needs to be updated based
1032                  * on which subslice is disabled especially for 2x6
1033                  * devices, however it is safe to load default
1034                  * configuration of 3x6 device instead of masking off
1035                  * corresponding bits because HW ignores bits of a disabled
1036                  * subslice and drops down to appropriate config. Please
1037                  * see render_state_setup() in i915_gem_render_state.c for
1038                  * possible configurations, to avoid duplication they are
1039                  * not shown here again.
1040                  */
1041                 *batch++ = GEN9_MEDIA_POOL_STATE;
1042                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1043                 *batch++ = 0x00777000;
1044                 *batch++ = 0;
1045                 *batch++ = 0;
1046                 *batch++ = 0;
1047         }
1048
1049         /* Pad to end of cacheline */
1050         while ((unsigned long)batch % CACHELINE_BYTES)
1051                 *batch++ = MI_NOOP;
1052
1053         return batch;
1054 }
1055
1056 static u32 *gen9_init_perctx_bb(struct intel_engine_cs *engine, u32 *batch)
1057 {
1058         *batch++ = MI_BATCH_BUFFER_END;
1059
1060         return batch;
1061 }
1062
1063 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1064
1065 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1066 {
1067         struct drm_i915_gem_object *obj;
1068         struct i915_vma *vma;
1069         int err;
1070
1071         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1072         if (IS_ERR(obj))
1073                 return PTR_ERR(obj);
1074
1075         vma = i915_vma_instance(obj, &engine->i915->ggtt.base, NULL);
1076         if (IS_ERR(vma)) {
1077                 err = PTR_ERR(vma);
1078                 goto err;
1079         }
1080
1081         err = i915_vma_pin(vma, 0, PAGE_SIZE, PIN_GLOBAL | PIN_HIGH);
1082         if (err)
1083                 goto err;
1084
1085         engine->wa_ctx.vma = vma;
1086         return 0;
1087
1088 err:
1089         i915_gem_object_put(obj);
1090         return err;
1091 }
1092
1093 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1094 {
1095         i915_vma_unpin_and_release(&engine->wa_ctx.vma);
1096 }
1097
1098 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1099
1100 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1101 {
1102         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1103         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1104                                             &wa_ctx->per_ctx };
1105         wa_bb_func_t wa_bb_fn[2];
1106         struct page *page;
1107         void *batch, *batch_ptr;
1108         unsigned int i;
1109         int ret;
1110
1111         if (WARN_ON(engine->id != RCS || !engine->scratch))
1112                 return -EINVAL;
1113
1114         switch (INTEL_GEN(engine->i915)) {
1115         case 9:
1116                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1117                 wa_bb_fn[1] = gen9_init_perctx_bb;
1118                 break;
1119         case 8:
1120                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1121                 wa_bb_fn[1] = gen8_init_perctx_bb;
1122                 break;
1123         default:
1124                 MISSING_CASE(INTEL_GEN(engine->i915));
1125                 return 0;
1126         }
1127
1128         ret = lrc_setup_wa_ctx(engine);
1129         if (ret) {
1130                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1131                 return ret;
1132         }
1133
1134         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1135         batch = batch_ptr = kmap_atomic(page);
1136
1137         /*
1138          * Emit the two workaround batch buffers, recording the offset from the
1139          * start of the workaround batch buffer object for each and their
1140          * respective sizes.
1141          */
1142         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1143                 wa_bb[i]->offset = batch_ptr - batch;
1144                 if (WARN_ON(!IS_ALIGNED(wa_bb[i]->offset, CACHELINE_BYTES))) {
1145                         ret = -EINVAL;
1146                         break;
1147                 }
1148                 batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1149                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1150         }
1151
1152         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1153
1154         kunmap_atomic(batch);
1155         if (ret)
1156                 lrc_destroy_wa_ctx(engine);
1157
1158         return ret;
1159 }
1160
1161 static u32 port_seqno(struct execlist_port *port)
1162 {
1163         return port->request ? port->request->global_seqno : 0;
1164 }
1165
1166 static int gen8_init_common_ring(struct intel_engine_cs *engine)
1167 {
1168         struct drm_i915_private *dev_priv = engine->i915;
1169         int ret;
1170
1171         ret = intel_mocs_init_engine(engine);
1172         if (ret)
1173                 return ret;
1174
1175         intel_engine_reset_breadcrumbs(engine);
1176         intel_engine_init_hangcheck(engine);
1177
1178         I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
1179         I915_WRITE(RING_MODE_GEN7(engine),
1180                    _MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
1181                    _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1182         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
1183                    engine->status_page.ggtt_offset);
1184         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
1185
1186         DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
1187
1188         /* After a GPU reset, we may have requests to replay */
1189         clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1190         if (!execlists_elsp_idle(engine)) {
1191                 DRM_DEBUG_DRIVER("Restarting %s from requests [0x%x, 0x%x]\n",
1192                                  engine->name,
1193                                  port_seqno(&engine->execlist_port[0]),
1194                                  port_seqno(&engine->execlist_port[1]));
1195                 engine->execlist_port[0].count = 0;
1196                 engine->execlist_port[1].count = 0;
1197                 execlists_submit_ports(engine);
1198         }
1199
1200         return 0;
1201 }
1202
1203 static int gen8_init_render_ring(struct intel_engine_cs *engine)
1204 {
1205         struct drm_i915_private *dev_priv = engine->i915;
1206         int ret;
1207
1208         ret = gen8_init_common_ring(engine);
1209         if (ret)
1210                 return ret;
1211
1212         /* We need to disable the AsyncFlip performance optimisations in order
1213          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
1214          * programmed to '1' on all products.
1215          *
1216          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
1217          */
1218         I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
1219
1220         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
1221
1222         return init_workarounds_ring(engine);
1223 }
1224
1225 static int gen9_init_render_ring(struct intel_engine_cs *engine)
1226 {
1227         int ret;
1228
1229         ret = gen8_init_common_ring(engine);
1230         if (ret)
1231                 return ret;
1232
1233         return init_workarounds_ring(engine);
1234 }
1235
1236 static void reset_common_ring(struct intel_engine_cs *engine,
1237                               struct drm_i915_gem_request *request)
1238 {
1239         struct execlist_port *port = engine->execlist_port;
1240         struct intel_context *ce;
1241
1242         /* If the request was innocent, we leave the request in the ELSP
1243          * and will try to replay it on restarting. The context image may
1244          * have been corrupted by the reset, in which case we may have
1245          * to service a new GPU hang, but more likely we can continue on
1246          * without impact.
1247          *
1248          * If the request was guilty, we presume the context is corrupt
1249          * and have to at least restore the RING register in the context
1250          * image back to the expected values to skip over the guilty request.
1251          */
1252         if (!request || request->fence.error != -EIO)
1253                 return;
1254
1255         /* We want a simple context + ring to execute the breadcrumb update.
1256          * We cannot rely on the context being intact across the GPU hang,
1257          * so clear it and rebuild just what we need for the breadcrumb.
1258          * All pending requests for this context will be zapped, and any
1259          * future request will be after userspace has had the opportunity
1260          * to recreate its own state.
1261          */
1262         ce = &request->ctx->engine[engine->id];
1263         execlists_init_reg_state(ce->lrc_reg_state,
1264                                  request->ctx, engine, ce->ring);
1265
1266         /* Move the RING_HEAD onto the breadcrumb, past the hanging batch */
1267         ce->lrc_reg_state[CTX_RING_BUFFER_START+1] =
1268                 i915_ggtt_offset(ce->ring->vma);
1269         ce->lrc_reg_state[CTX_RING_HEAD+1] = request->postfix;
1270
1271         request->ring->head = request->postfix;
1272         request->ring->last_retired_head = -1;
1273         intel_ring_update_space(request->ring);
1274
1275         if (i915.enable_guc_submission)
1276                 return;
1277
1278         /* Catch up with any missed context-switch interrupts */
1279         if (request->ctx != port[0].request->ctx) {
1280                 i915_gem_request_put(port[0].request);
1281                 port[0] = port[1];
1282                 memset(&port[1], 0, sizeof(port[1]));
1283         }
1284
1285         GEM_BUG_ON(request->ctx != port[0].request->ctx);
1286
1287         /* Reset WaIdleLiteRestore:bdw,skl as well */
1288         request->tail = request->wa_tail - WA_TAIL_DWORDS * sizeof(u32);
1289 }
1290
1291 static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
1292 {
1293         struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
1294         struct intel_engine_cs *engine = req->engine;
1295         const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
1296         u32 *cs;
1297         int i;
1298
1299         cs = intel_ring_begin(req, num_lri_cmds * 2 + 2);
1300         if (IS_ERR(cs))
1301                 return PTR_ERR(cs);
1302
1303         *cs++ = MI_LOAD_REGISTER_IMM(num_lri_cmds);
1304         for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
1305                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1306
1307                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, i));
1308                 *cs++ = upper_32_bits(pd_daddr);
1309                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, i));
1310                 *cs++ = lower_32_bits(pd_daddr);
1311         }
1312
1313         *cs++ = MI_NOOP;
1314         intel_ring_advance(req, cs);
1315
1316         return 0;
1317 }
1318
1319 static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
1320                               u64 offset, u32 len,
1321                               unsigned int dispatch_flags)
1322 {
1323         bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
1324         u32 *cs;
1325         int ret;
1326
1327         /* Don't rely in hw updating PDPs, specially in lite-restore.
1328          * Ideally, we should set Force PD Restore in ctx descriptor,
1329          * but we can't. Force Restore would be a second option, but
1330          * it is unsafe in case of lite-restore (because the ctx is
1331          * not idle). PML4 is allocated during ppgtt init so this is
1332          * not needed in 48-bit.*/
1333         if (req->ctx->ppgtt &&
1334             (intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
1335                 if (!i915_vm_is_48bit(&req->ctx->ppgtt->base) &&
1336                     !intel_vgpu_active(req->i915)) {
1337                         ret = intel_logical_ring_emit_pdps(req);
1338                         if (ret)
1339                                 return ret;
1340                 }
1341
1342                 req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
1343         }
1344
1345         cs = intel_ring_begin(req, 4);
1346         if (IS_ERR(cs))
1347                 return PTR_ERR(cs);
1348
1349         /* FIXME(BDW): Address space and security selectors. */
1350         *cs++ = MI_BATCH_BUFFER_START_GEN8 | (ppgtt << 8) | (dispatch_flags &
1351                 I915_DISPATCH_RS ? MI_BATCH_RESOURCE_STREAMER : 0);
1352         *cs++ = lower_32_bits(offset);
1353         *cs++ = upper_32_bits(offset);
1354         *cs++ = MI_NOOP;
1355         intel_ring_advance(req, cs);
1356
1357         return 0;
1358 }
1359
1360 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
1361 {
1362         struct drm_i915_private *dev_priv = engine->i915;
1363         I915_WRITE_IMR(engine,
1364                        ~(engine->irq_enable_mask | engine->irq_keep_mask));
1365         POSTING_READ_FW(RING_IMR(engine->mmio_base));
1366 }
1367
1368 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
1369 {
1370         struct drm_i915_private *dev_priv = engine->i915;
1371         I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
1372 }
1373
1374 static int gen8_emit_flush(struct drm_i915_gem_request *request, u32 mode)
1375 {
1376         u32 cmd, *cs;
1377
1378         cs = intel_ring_begin(request, 4);
1379         if (IS_ERR(cs))
1380                 return PTR_ERR(cs);
1381
1382         cmd = MI_FLUSH_DW + 1;
1383
1384         /* We always require a command barrier so that subsequent
1385          * commands, such as breadcrumb interrupts, are strictly ordered
1386          * wrt the contents of the write cache being flushed to memory
1387          * (and thus being coherent from the CPU).
1388          */
1389         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
1390
1391         if (mode & EMIT_INVALIDATE) {
1392                 cmd |= MI_INVALIDATE_TLB;
1393                 if (request->engine->id == VCS)
1394                         cmd |= MI_INVALIDATE_BSD;
1395         }
1396
1397         *cs++ = cmd;
1398         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
1399         *cs++ = 0; /* upper addr */
1400         *cs++ = 0; /* value */
1401         intel_ring_advance(request, cs);
1402
1403         return 0;
1404 }
1405
1406 static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
1407                                   u32 mode)
1408 {
1409         struct intel_engine_cs *engine = request->engine;
1410         u32 scratch_addr =
1411                 i915_ggtt_offset(engine->scratch) + 2 * CACHELINE_BYTES;
1412         bool vf_flush_wa = false, dc_flush_wa = false;
1413         u32 *cs, flags = 0;
1414         int len;
1415
1416         flags |= PIPE_CONTROL_CS_STALL;
1417
1418         if (mode & EMIT_FLUSH) {
1419                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
1420                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
1421                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
1422                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
1423         }
1424
1425         if (mode & EMIT_INVALIDATE) {
1426                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
1427                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
1428                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
1429                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
1430                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
1431                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
1432                 flags |= PIPE_CONTROL_QW_WRITE;
1433                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
1434
1435                 /*
1436                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
1437                  * pipe control.
1438                  */
1439                 if (IS_GEN9(request->i915))
1440                         vf_flush_wa = true;
1441
1442                 /* WaForGAMHang:kbl */
1443                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
1444                         dc_flush_wa = true;
1445         }
1446
1447         len = 6;
1448
1449         if (vf_flush_wa)
1450                 len += 6;
1451
1452         if (dc_flush_wa)
1453                 len += 12;
1454
1455         cs = intel_ring_begin(request, len);
1456         if (IS_ERR(cs))
1457                 return PTR_ERR(cs);
1458
1459         if (vf_flush_wa) {
1460                 *cs++ = GFX_OP_PIPE_CONTROL(6);
1461                 *cs++ = 0;
1462                 *cs++ = 0;
1463                 *cs++ = 0;
1464                 *cs++ = 0;
1465                 *cs++ = 0;
1466         }
1467
1468         if (dc_flush_wa) {
1469                 *cs++ = GFX_OP_PIPE_CONTROL(6);
1470                 *cs++ = PIPE_CONTROL_DC_FLUSH_ENABLE;
1471                 *cs++ = 0;
1472                 *cs++ = 0;
1473                 *cs++ = 0;
1474                 *cs++ = 0;
1475         }
1476
1477         *cs++ = GFX_OP_PIPE_CONTROL(6);
1478         *cs++ = flags;
1479         *cs++ = scratch_addr;
1480         *cs++ = 0;
1481         *cs++ = 0;
1482         *cs++ = 0;
1483
1484         if (dc_flush_wa) {
1485                 *cs++ = GFX_OP_PIPE_CONTROL(6);
1486                 *cs++ = PIPE_CONTROL_CS_STALL;
1487                 *cs++ = 0;
1488                 *cs++ = 0;
1489                 *cs++ = 0;
1490                 *cs++ = 0;
1491         }
1492
1493         intel_ring_advance(request, cs);
1494
1495         return 0;
1496 }
1497
1498 /*
1499  * Reserve space for 2 NOOPs at the end of each request to be
1500  * used as a workaround for not being allowed to do lite
1501  * restore with HEAD==TAIL (WaIdleLiteRestore).
1502  */
1503 static void gen8_emit_wa_tail(struct drm_i915_gem_request *request, u32 *cs)
1504 {
1505         *cs++ = MI_NOOP;
1506         *cs++ = MI_NOOP;
1507         request->wa_tail = intel_ring_offset(request, cs);
1508 }
1509
1510 static void gen8_emit_breadcrumb(struct drm_i915_gem_request *request, u32 *cs)
1511 {
1512         /* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
1513         BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
1514
1515         *cs++ = (MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW;
1516         *cs++ = intel_hws_seqno_address(request->engine) | MI_FLUSH_DW_USE_GTT;
1517         *cs++ = 0;
1518         *cs++ = request->global_seqno;
1519         *cs++ = MI_USER_INTERRUPT;
1520         *cs++ = MI_NOOP;
1521         request->tail = intel_ring_offset(request, cs);
1522
1523         gen8_emit_wa_tail(request, cs);
1524 }
1525
1526 static const int gen8_emit_breadcrumb_sz = 6 + WA_TAIL_DWORDS;
1527
1528 static void gen8_emit_breadcrumb_render(struct drm_i915_gem_request *request,
1529                                         u32 *cs)
1530 {
1531         /* We're using qword write, seqno should be aligned to 8 bytes. */
1532         BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
1533
1534         /* w/a for post sync ops following a GPGPU operation we
1535          * need a prior CS_STALL, which is emitted by the flush
1536          * following the batch.
1537          */
1538         *cs++ = GFX_OP_PIPE_CONTROL(6);
1539         *cs++ = PIPE_CONTROL_GLOBAL_GTT_IVB | PIPE_CONTROL_CS_STALL |
1540                 PIPE_CONTROL_QW_WRITE;
1541         *cs++ = intel_hws_seqno_address(request->engine);
1542         *cs++ = 0;
1543         *cs++ = request->global_seqno;
1544         /* We're thrashing one dword of HWS. */
1545         *cs++ = 0;
1546         *cs++ = MI_USER_INTERRUPT;
1547         *cs++ = MI_NOOP;
1548         request->tail = intel_ring_offset(request, cs);
1549
1550         gen8_emit_wa_tail(request, cs);
1551 }
1552
1553 static const int gen8_emit_breadcrumb_render_sz = 8 + WA_TAIL_DWORDS;
1554
1555 static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
1556 {
1557         int ret;
1558
1559         ret = intel_ring_workarounds_emit(req);
1560         if (ret)
1561                 return ret;
1562
1563         ret = intel_rcs_context_init_mocs(req);
1564         /*
1565          * Failing to program the MOCS is non-fatal.The system will not
1566          * run at peak performance. So generate an error and carry on.
1567          */
1568         if (ret)
1569                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
1570
1571         return i915_gem_render_state_emit(req);
1572 }
1573
1574 /**
1575  * intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
1576  * @engine: Engine Command Streamer.
1577  */
1578 void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
1579 {
1580         struct drm_i915_private *dev_priv;
1581
1582         /*
1583          * Tasklet cannot be active at this point due intel_mark_active/idle
1584          * so this is just for documentation.
1585          */
1586         if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
1587                 tasklet_kill(&engine->irq_tasklet);
1588
1589         dev_priv = engine->i915;
1590
1591         if (engine->buffer) {
1592                 WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
1593         }
1594
1595         if (engine->cleanup)
1596                 engine->cleanup(engine);
1597
1598         if (engine->status_page.vma) {
1599                 i915_gem_object_unpin_map(engine->status_page.vma->obj);
1600                 engine->status_page.vma = NULL;
1601         }
1602
1603         intel_engine_cleanup_common(engine);
1604
1605         lrc_destroy_wa_ctx(engine);
1606         engine->i915 = NULL;
1607         dev_priv->engine[engine->id] = NULL;
1608         kfree(engine);
1609 }
1610
1611 void intel_execlists_enable_submission(struct drm_i915_private *dev_priv)
1612 {
1613         struct intel_engine_cs *engine;
1614         enum intel_engine_id id;
1615
1616         for_each_engine(engine, dev_priv, id) {
1617                 engine->submit_request = execlists_submit_request;
1618                 engine->schedule = execlists_schedule;
1619         }
1620 }
1621
1622 static void
1623 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
1624 {
1625         /* Default vfuncs which can be overriden by each engine. */
1626         engine->init_hw = gen8_init_common_ring;
1627         engine->reset_hw = reset_common_ring;
1628
1629         engine->context_pin = execlists_context_pin;
1630         engine->context_unpin = execlists_context_unpin;
1631
1632         engine->request_alloc = execlists_request_alloc;
1633
1634         engine->emit_flush = gen8_emit_flush;
1635         engine->emit_breadcrumb = gen8_emit_breadcrumb;
1636         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_sz;
1637         engine->submit_request = execlists_submit_request;
1638         engine->schedule = execlists_schedule;
1639
1640         engine->irq_enable = gen8_logical_ring_enable_irq;
1641         engine->irq_disable = gen8_logical_ring_disable_irq;
1642         engine->emit_bb_start = gen8_emit_bb_start;
1643 }
1644
1645 static inline void
1646 logical_ring_default_irqs(struct intel_engine_cs *engine)
1647 {
1648         unsigned shift = engine->irq_shift;
1649         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
1650         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
1651 }
1652
1653 static int
1654 lrc_setup_hws(struct intel_engine_cs *engine, struct i915_vma *vma)
1655 {
1656         const int hws_offset = LRC_PPHWSP_PN * PAGE_SIZE;
1657         void *hws;
1658
1659         /* The HWSP is part of the default context object in LRC mode. */
1660         hws = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
1661         if (IS_ERR(hws))
1662                 return PTR_ERR(hws);
1663
1664         engine->status_page.page_addr = hws + hws_offset;
1665         engine->status_page.ggtt_offset = i915_ggtt_offset(vma) + hws_offset;
1666         engine->status_page.vma = vma;
1667
1668         return 0;
1669 }
1670
1671 static void
1672 logical_ring_setup(struct intel_engine_cs *engine)
1673 {
1674         struct drm_i915_private *dev_priv = engine->i915;
1675         enum forcewake_domains fw_domains;
1676
1677         intel_engine_setup_common(engine);
1678
1679         /* Intentionally left blank. */
1680         engine->buffer = NULL;
1681
1682         fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
1683                                                     RING_ELSP(engine),
1684                                                     FW_REG_WRITE);
1685
1686         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1687                                                      RING_CONTEXT_STATUS_PTR(engine),
1688                                                      FW_REG_READ | FW_REG_WRITE);
1689
1690         fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
1691                                                      RING_CONTEXT_STATUS_BUF_BASE(engine),
1692                                                      FW_REG_READ);
1693
1694         engine->fw_domains = fw_domains;
1695
1696         tasklet_init(&engine->irq_tasklet,
1697                      intel_lrc_irq_handler, (unsigned long)engine);
1698
1699         logical_ring_default_vfuncs(engine);
1700         logical_ring_default_irqs(engine);
1701 }
1702
1703 static int
1704 logical_ring_init(struct intel_engine_cs *engine)
1705 {
1706         struct i915_gem_context *dctx = engine->i915->kernel_context;
1707         int ret;
1708
1709         ret = intel_engine_init_common(engine);
1710         if (ret)
1711                 goto error;
1712
1713         /* And setup the hardware status page. */
1714         ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
1715         if (ret) {
1716                 DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
1717                 goto error;
1718         }
1719
1720         return 0;
1721
1722 error:
1723         intel_logical_ring_cleanup(engine);
1724         return ret;
1725 }
1726
1727 int logical_render_ring_init(struct intel_engine_cs *engine)
1728 {
1729         struct drm_i915_private *dev_priv = engine->i915;
1730         int ret;
1731
1732         logical_ring_setup(engine);
1733
1734         if (HAS_L3_DPF(dev_priv))
1735                 engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
1736
1737         /* Override some for render ring. */
1738         if (INTEL_GEN(dev_priv) >= 9)
1739                 engine->init_hw = gen9_init_render_ring;
1740         else
1741                 engine->init_hw = gen8_init_render_ring;
1742         engine->init_context = gen8_init_rcs_context;
1743         engine->emit_flush = gen8_emit_flush_render;
1744         engine->emit_breadcrumb = gen8_emit_breadcrumb_render;
1745         engine->emit_breadcrumb_sz = gen8_emit_breadcrumb_render_sz;
1746
1747         ret = intel_engine_create_scratch(engine, PAGE_SIZE);
1748         if (ret)
1749                 return ret;
1750
1751         ret = intel_init_workaround_bb(engine);
1752         if (ret) {
1753                 /*
1754                  * We continue even if we fail to initialize WA batch
1755                  * because we only expect rare glitches but nothing
1756                  * critical to prevent us from using GPU
1757                  */
1758                 DRM_ERROR("WA batch buffer initialization failed: %d\n",
1759                           ret);
1760         }
1761
1762         return logical_ring_init(engine);
1763 }
1764
1765 int logical_xcs_ring_init(struct intel_engine_cs *engine)
1766 {
1767         logical_ring_setup(engine);
1768
1769         return logical_ring_init(engine);
1770 }
1771
1772 static u32
1773 make_rpcs(struct drm_i915_private *dev_priv)
1774 {
1775         u32 rpcs = 0;
1776
1777         /*
1778          * No explicit RPCS request is needed to ensure full
1779          * slice/subslice/EU enablement prior to Gen9.
1780         */
1781         if (INTEL_GEN(dev_priv) < 9)
1782                 return 0;
1783
1784         /*
1785          * Starting in Gen9, render power gating can leave
1786          * slice/subslice/EU in a partially enabled state. We
1787          * must make an explicit request through RPCS for full
1788          * enablement.
1789         */
1790         if (INTEL_INFO(dev_priv)->sseu.has_slice_pg) {
1791                 rpcs |= GEN8_RPCS_S_CNT_ENABLE;
1792                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.slice_mask) <<
1793                         GEN8_RPCS_S_CNT_SHIFT;
1794                 rpcs |= GEN8_RPCS_ENABLE;
1795         }
1796
1797         if (INTEL_INFO(dev_priv)->sseu.has_subslice_pg) {
1798                 rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
1799                 rpcs |= hweight8(INTEL_INFO(dev_priv)->sseu.subslice_mask) <<
1800                         GEN8_RPCS_SS_CNT_SHIFT;
1801                 rpcs |= GEN8_RPCS_ENABLE;
1802         }
1803
1804         if (INTEL_INFO(dev_priv)->sseu.has_eu_pg) {
1805                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1806                         GEN8_RPCS_EU_MIN_SHIFT;
1807                 rpcs |= INTEL_INFO(dev_priv)->sseu.eu_per_subslice <<
1808                         GEN8_RPCS_EU_MAX_SHIFT;
1809                 rpcs |= GEN8_RPCS_ENABLE;
1810         }
1811
1812         return rpcs;
1813 }
1814
1815 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
1816 {
1817         u32 indirect_ctx_offset;
1818
1819         switch (INTEL_GEN(engine->i915)) {
1820         default:
1821                 MISSING_CASE(INTEL_GEN(engine->i915));
1822                 /* fall through */
1823         case 9:
1824                 indirect_ctx_offset =
1825                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1826                 break;
1827         case 8:
1828                 indirect_ctx_offset =
1829                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
1830                 break;
1831         }
1832
1833         return indirect_ctx_offset;
1834 }
1835
1836 static void execlists_init_reg_state(u32 *reg_state,
1837                                      struct i915_gem_context *ctx,
1838                                      struct intel_engine_cs *engine,
1839                                      struct intel_ring *ring)
1840 {
1841         struct drm_i915_private *dev_priv = engine->i915;
1842         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt ?: dev_priv->mm.aliasing_ppgtt;
1843
1844         /* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
1845          * commands followed by (reg, value) pairs. The values we are setting here are
1846          * only for the first context restore: on a subsequent save, the GPU will
1847          * recreate this batchbuffer with new values (including all the missing
1848          * MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
1849         reg_state[CTX_LRI_HEADER_0] =
1850                 MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
1851         ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
1852                        RING_CONTEXT_CONTROL(engine),
1853                        _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
1854                                           CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
1855                                           (HAS_RESOURCE_STREAMER(dev_priv) ?
1856                                            CTX_CTRL_RS_CTX_ENABLE : 0)));
1857         ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
1858                        0);
1859         ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
1860                        0);
1861         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
1862                        RING_START(engine->mmio_base), 0);
1863         ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
1864                        RING_CTL(engine->mmio_base),
1865                        RING_CTL_SIZE(ring->size) | RING_VALID);
1866         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
1867                        RING_BBADDR_UDW(engine->mmio_base), 0);
1868         ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
1869                        RING_BBADDR(engine->mmio_base), 0);
1870         ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
1871                        RING_BBSTATE(engine->mmio_base),
1872                        RING_BB_PPGTT);
1873         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
1874                        RING_SBBADDR_UDW(engine->mmio_base), 0);
1875         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
1876                        RING_SBBADDR(engine->mmio_base), 0);
1877         ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
1878                        RING_SBBSTATE(engine->mmio_base), 0);
1879         if (engine->id == RCS) {
1880                 ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
1881                                RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
1882                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
1883                                RING_INDIRECT_CTX(engine->mmio_base), 0);
1884                 ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
1885                                RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
1886                 if (engine->wa_ctx.vma) {
1887                         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1888                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
1889
1890                         reg_state[CTX_RCS_INDIRECT_CTX+1] =
1891                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
1892                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
1893
1894                         reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
1895                                 intel_lr_indirect_ctx_offset(engine) << 6;
1896
1897                         reg_state[CTX_BB_PER_CTX_PTR+1] =
1898                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
1899                 }
1900         }
1901         reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
1902         ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
1903                        RING_CTX_TIMESTAMP(engine->mmio_base), 0);
1904         /* PDP values well be assigned later if needed */
1905         ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
1906                        0);
1907         ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
1908                        0);
1909         ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
1910                        0);
1911         ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
1912                        0);
1913         ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
1914                        0);
1915         ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
1916                        0);
1917         ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
1918                        0);
1919         ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
1920                        0);
1921
1922         if (ppgtt && i915_vm_is_48bit(&ppgtt->base)) {
1923                 /* 64b PPGTT (48bit canonical)
1924                  * PDP0_DESCRIPTOR contains the base address to PML4 and
1925                  * other PDP Descriptors are ignored.
1926                  */
1927                 ASSIGN_CTX_PML4(ppgtt, reg_state);
1928         }
1929
1930         if (engine->id == RCS) {
1931                 reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
1932                 ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
1933                                make_rpcs(dev_priv));
1934         }
1935 }
1936
1937 static int
1938 populate_lr_context(struct i915_gem_context *ctx,
1939                     struct drm_i915_gem_object *ctx_obj,
1940                     struct intel_engine_cs *engine,
1941                     struct intel_ring *ring)
1942 {
1943         void *vaddr;
1944         int ret;
1945
1946         ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
1947         if (ret) {
1948                 DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
1949                 return ret;
1950         }
1951
1952         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
1953         if (IS_ERR(vaddr)) {
1954                 ret = PTR_ERR(vaddr);
1955                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
1956                 return ret;
1957         }
1958         ctx_obj->mm.dirty = true;
1959
1960         /* The second page of the context object contains some fields which must
1961          * be set up prior to the first execution. */
1962
1963         execlists_init_reg_state(vaddr + LRC_STATE_PN * PAGE_SIZE,
1964                                  ctx, engine, ring);
1965
1966         i915_gem_object_unpin_map(ctx_obj);
1967
1968         return 0;
1969 }
1970
1971 /**
1972  * intel_lr_context_size() - return the size of the context for an engine
1973  * @engine: which engine to find the context size for
1974  *
1975  * Each engine may require a different amount of space for a context image,
1976  * so when allocating (or copying) an image, this function can be used to
1977  * find the right size for the specific engine.
1978  *
1979  * Return: size (in bytes) of an engine-specific context image
1980  *
1981  * Note: this size includes the HWSP, which is part of the context image
1982  * in LRC mode, but does not include the "shared data page" used with
1983  * GuC submission. The caller should account for this if using the GuC.
1984  */
1985 uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
1986 {
1987         int ret = 0;
1988
1989         WARN_ON(INTEL_GEN(engine->i915) < 8);
1990
1991         switch (engine->id) {
1992         case RCS:
1993                 if (INTEL_GEN(engine->i915) >= 9)
1994                         ret = GEN9_LR_CONTEXT_RENDER_SIZE;
1995                 else
1996                         ret = GEN8_LR_CONTEXT_RENDER_SIZE;
1997                 break;
1998         case VCS:
1999         case BCS:
2000         case VECS:
2001         case VCS2:
2002                 ret = GEN8_LR_CONTEXT_OTHER_SIZE;
2003                 break;
2004         }
2005
2006         return ret;
2007 }
2008
2009 static int execlists_context_deferred_alloc(struct i915_gem_context *ctx,
2010                                             struct intel_engine_cs *engine)
2011 {
2012         struct drm_i915_gem_object *ctx_obj;
2013         struct intel_context *ce = &ctx->engine[engine->id];
2014         struct i915_vma *vma;
2015         uint32_t context_size;
2016         struct intel_ring *ring;
2017         int ret;
2018
2019         WARN_ON(ce->state);
2020
2021         context_size = round_up(intel_lr_context_size(engine),
2022                                 I915_GTT_PAGE_SIZE);
2023
2024         /* One extra page as the sharing data between driver and GuC */
2025         context_size += PAGE_SIZE * LRC_PPHWSP_PN;
2026
2027         ctx_obj = i915_gem_object_create(ctx->i915, context_size);
2028         if (IS_ERR(ctx_obj)) {
2029                 DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
2030                 return PTR_ERR(ctx_obj);
2031         }
2032
2033         vma = i915_vma_instance(ctx_obj, &ctx->i915->ggtt.base, NULL);
2034         if (IS_ERR(vma)) {
2035                 ret = PTR_ERR(vma);
2036                 goto error_deref_obj;
2037         }
2038
2039         ring = intel_engine_create_ring(engine, ctx->ring_size);
2040         if (IS_ERR(ring)) {
2041                 ret = PTR_ERR(ring);
2042                 goto error_deref_obj;
2043         }
2044
2045         ret = populate_lr_context(ctx, ctx_obj, engine, ring);
2046         if (ret) {
2047                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2048                 goto error_ring_free;
2049         }
2050
2051         ce->ring = ring;
2052         ce->state = vma;
2053         ce->initialised = engine->init_context == NULL;
2054
2055         return 0;
2056
2057 error_ring_free:
2058         intel_ring_free(ring);
2059 error_deref_obj:
2060         i915_gem_object_put(ctx_obj);
2061         return ret;
2062 }
2063
2064 void intel_lr_context_resume(struct drm_i915_private *dev_priv)
2065 {
2066         struct intel_engine_cs *engine;
2067         struct i915_gem_context *ctx;
2068         enum intel_engine_id id;
2069
2070         /* Because we emit WA_TAIL_DWORDS there may be a disparity
2071          * between our bookkeeping in ce->ring->head and ce->ring->tail and
2072          * that stored in context. As we only write new commands from
2073          * ce->ring->tail onwards, everything before that is junk. If the GPU
2074          * starts reading from its RING_HEAD from the context, it may try to
2075          * execute that junk and die.
2076          *
2077          * So to avoid that we reset the context images upon resume. For
2078          * simplicity, we just zero everything out.
2079          */
2080         list_for_each_entry(ctx, &dev_priv->context_list, link) {
2081                 for_each_engine(engine, dev_priv, id) {
2082                         struct intel_context *ce = &ctx->engine[engine->id];
2083                         u32 *reg;
2084
2085                         if (!ce->state)
2086                                 continue;
2087
2088                         reg = i915_gem_object_pin_map(ce->state->obj,
2089                                                       I915_MAP_WB);
2090                         if (WARN_ON(IS_ERR(reg)))
2091                                 continue;
2092
2093                         reg += LRC_STATE_PN * PAGE_SIZE / sizeof(*reg);
2094                         reg[CTX_RING_HEAD+1] = 0;
2095                         reg[CTX_RING_TAIL+1] = 0;
2096
2097                         ce->state->obj->mm.dirty = true;
2098                         i915_gem_object_unpin_map(ce->state->obj);
2099
2100                         ce->ring->head = ce->ring->tail = 0;
2101                         ce->ring->last_retired_head = -1;
2102                         intel_ring_update_space(ce->ring);
2103                 }
2104         }
2105 }