Merge tag 'reset-for-v5.3' of git://git.pengutronix.de/git/pza/linux into arm/drivers
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/dma-fence-array.h>
26 #include <linux/irq_work.h>
27 #include <linux/prefetch.h>
28 #include <linux/sched.h>
29 #include <linux/sched/clock.h>
30 #include <linux/sched/signal.h>
31
32 #include "i915_active.h"
33 #include "i915_drv.h"
34 #include "i915_globals.h"
35 #include "i915_reset.h"
36 #include "intel_pm.h"
37
38 struct execute_cb {
39         struct list_head link;
40         struct irq_work work;
41         struct i915_sw_fence *fence;
42 };
43
44 static struct i915_global_request {
45         struct i915_global base;
46         struct kmem_cache *slab_requests;
47         struct kmem_cache *slab_dependencies;
48         struct kmem_cache *slab_execute_cbs;
49 } global;
50
51 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
52 {
53         return "i915";
54 }
55
56 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
57 {
58         /*
59          * The timeline struct (as part of the ppgtt underneath a context)
60          * may be freed when the request is no longer in use by the GPU.
61          * We could extend the life of a context to beyond that of all
62          * fences, possibly keeping the hw resource around indefinitely,
63          * or we just give them a false name. Since
64          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
65          * lie seems justifiable.
66          */
67         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
68                 return "signaled";
69
70         return to_request(fence)->gem_context->name ?: "[i915]";
71 }
72
73 static bool i915_fence_signaled(struct dma_fence *fence)
74 {
75         return i915_request_completed(to_request(fence));
76 }
77
78 static bool i915_fence_enable_signaling(struct dma_fence *fence)
79 {
80         return i915_request_enable_breadcrumb(to_request(fence));
81 }
82
83 static signed long i915_fence_wait(struct dma_fence *fence,
84                                    bool interruptible,
85                                    signed long timeout)
86 {
87         return i915_request_wait(to_request(fence),
88                                  interruptible | I915_WAIT_PRIORITY,
89                                  timeout);
90 }
91
92 static void i915_fence_release(struct dma_fence *fence)
93 {
94         struct i915_request *rq = to_request(fence);
95
96         /*
97          * The request is put onto a RCU freelist (i.e. the address
98          * is immediately reused), mark the fences as being freed now.
99          * Otherwise the debugobjects for the fences are only marked as
100          * freed when the slab cache itself is freed, and so we would get
101          * caught trying to reuse dead objects.
102          */
103         i915_sw_fence_fini(&rq->submit);
104         i915_sw_fence_fini(&rq->semaphore);
105
106         kmem_cache_free(global.slab_requests, rq);
107 }
108
109 const struct dma_fence_ops i915_fence_ops = {
110         .get_driver_name = i915_fence_get_driver_name,
111         .get_timeline_name = i915_fence_get_timeline_name,
112         .enable_signaling = i915_fence_enable_signaling,
113         .signaled = i915_fence_signaled,
114         .wait = i915_fence_wait,
115         .release = i915_fence_release,
116 };
117
118 static inline void
119 i915_request_remove_from_client(struct i915_request *request)
120 {
121         struct drm_i915_file_private *file_priv;
122
123         file_priv = request->file_priv;
124         if (!file_priv)
125                 return;
126
127         spin_lock(&file_priv->mm.lock);
128         if (request->file_priv) {
129                 list_del(&request->client_link);
130                 request->file_priv = NULL;
131         }
132         spin_unlock(&file_priv->mm.lock);
133 }
134
135 static void reserve_gt(struct drm_i915_private *i915)
136 {
137         if (!i915->gt.active_requests++)
138                 i915_gem_unpark(i915);
139 }
140
141 static void unreserve_gt(struct drm_i915_private *i915)
142 {
143         GEM_BUG_ON(!i915->gt.active_requests);
144         if (!--i915->gt.active_requests)
145                 i915_gem_park(i915);
146 }
147
148 static void advance_ring(struct i915_request *request)
149 {
150         struct intel_ring *ring = request->ring;
151         unsigned int tail;
152
153         /*
154          * We know the GPU must have read the request to have
155          * sent us the seqno + interrupt, so use the position
156          * of tail of the request to update the last known position
157          * of the GPU head.
158          *
159          * Note this requires that we are always called in request
160          * completion order.
161          */
162         GEM_BUG_ON(!list_is_first(&request->ring_link, &ring->request_list));
163         if (list_is_last(&request->ring_link, &ring->request_list)) {
164                 /*
165                  * We may race here with execlists resubmitting this request
166                  * as we retire it. The resubmission will move the ring->tail
167                  * forwards (to request->wa_tail). We either read the
168                  * current value that was written to hw, or the value that
169                  * is just about to be. Either works, if we miss the last two
170                  * noops - they are safe to be replayed on a reset.
171                  */
172                 tail = READ_ONCE(request->tail);
173                 list_del(&ring->active_link);
174         } else {
175                 tail = request->postfix;
176         }
177         list_del_init(&request->ring_link);
178
179         ring->head = tail;
180 }
181
182 static void free_capture_list(struct i915_request *request)
183 {
184         struct i915_capture_list *capture;
185
186         capture = request->capture_list;
187         while (capture) {
188                 struct i915_capture_list *next = capture->next;
189
190                 kfree(capture);
191                 capture = next;
192         }
193 }
194
195 static void __retire_engine_request(struct intel_engine_cs *engine,
196                                     struct i915_request *rq)
197 {
198         GEM_TRACE("%s(%s) fence %llx:%lld, current %d\n",
199                   __func__, engine->name,
200                   rq->fence.context, rq->fence.seqno,
201                   hwsp_seqno(rq));
202
203         GEM_BUG_ON(!i915_request_completed(rq));
204
205         local_irq_disable();
206
207         spin_lock(&engine->timeline.lock);
208         GEM_BUG_ON(!list_is_first(&rq->link, &engine->timeline.requests));
209         list_del_init(&rq->link);
210         spin_unlock(&engine->timeline.lock);
211
212         spin_lock(&rq->lock);
213         i915_request_mark_complete(rq);
214         if (!i915_request_signaled(rq))
215                 dma_fence_signal_locked(&rq->fence);
216         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &rq->fence.flags))
217                 i915_request_cancel_breadcrumb(rq);
218         if (rq->waitboost) {
219                 GEM_BUG_ON(!atomic_read(&rq->i915->gt_pm.rps.num_waiters));
220                 atomic_dec(&rq->i915->gt_pm.rps.num_waiters);
221         }
222         spin_unlock(&rq->lock);
223
224         local_irq_enable();
225
226         /*
227          * The backing object for the context is done after switching to the
228          * *next* context. Therefore we cannot retire the previous context until
229          * the next context has already started running. However, since we
230          * cannot take the required locks at i915_request_submit() we
231          * defer the unpinning of the active context to now, retirement of
232          * the subsequent request.
233          */
234         if (engine->last_retired_context)
235                 intel_context_unpin(engine->last_retired_context);
236         engine->last_retired_context = rq->hw_context;
237 }
238
239 static void __retire_engine_upto(struct intel_engine_cs *engine,
240                                  struct i915_request *rq)
241 {
242         struct i915_request *tmp;
243
244         if (list_empty(&rq->link))
245                 return;
246
247         do {
248                 tmp = list_first_entry(&engine->timeline.requests,
249                                        typeof(*tmp), link);
250
251                 GEM_BUG_ON(tmp->engine != engine);
252                 __retire_engine_request(engine, tmp);
253         } while (tmp != rq);
254 }
255
256 static void i915_request_retire(struct i915_request *request)
257 {
258         struct i915_active_request *active, *next;
259
260         GEM_TRACE("%s fence %llx:%lld, current %d\n",
261                   request->engine->name,
262                   request->fence.context, request->fence.seqno,
263                   hwsp_seqno(request));
264
265         lockdep_assert_held(&request->i915->drm.struct_mutex);
266         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
267         GEM_BUG_ON(!i915_request_completed(request));
268
269         trace_i915_request_retire(request);
270
271         advance_ring(request);
272         free_capture_list(request);
273
274         /*
275          * Walk through the active list, calling retire on each. This allows
276          * objects to track their GPU activity and mark themselves as idle
277          * when their *last* active request is completed (updating state
278          * tracking lists for eviction, active references for GEM, etc).
279          *
280          * As the ->retire() may free the node, we decouple it first and
281          * pass along the auxiliary information (to avoid dereferencing
282          * the node after the callback).
283          */
284         list_for_each_entry_safe(active, next, &request->active_list, link) {
285                 /*
286                  * In microbenchmarks or focusing upon time inside the kernel,
287                  * we may spend an inordinate amount of time simply handling
288                  * the retirement of requests and processing their callbacks.
289                  * Of which, this loop itself is particularly hot due to the
290                  * cache misses when jumping around the list of
291                  * i915_active_request.  So we try to keep this loop as
292                  * streamlined as possible and also prefetch the next
293                  * i915_active_request to try and hide the likely cache miss.
294                  */
295                 prefetchw(next);
296
297                 INIT_LIST_HEAD(&active->link);
298                 RCU_INIT_POINTER(active->request, NULL);
299
300                 active->retire(active, request);
301         }
302
303         i915_request_remove_from_client(request);
304
305         intel_context_unpin(request->hw_context);
306
307         __retire_engine_upto(request->engine, request);
308
309         unreserve_gt(request->i915);
310
311         i915_sched_node_fini(&request->sched);
312         i915_request_put(request);
313 }
314
315 void i915_request_retire_upto(struct i915_request *rq)
316 {
317         struct intel_ring *ring = rq->ring;
318         struct i915_request *tmp;
319
320         GEM_TRACE("%s fence %llx:%lld, current %d\n",
321                   rq->engine->name,
322                   rq->fence.context, rq->fence.seqno,
323                   hwsp_seqno(rq));
324
325         lockdep_assert_held(&rq->i915->drm.struct_mutex);
326         GEM_BUG_ON(!i915_request_completed(rq));
327
328         if (list_empty(&rq->ring_link))
329                 return;
330
331         do {
332                 tmp = list_first_entry(&ring->request_list,
333                                        typeof(*tmp), ring_link);
334
335                 i915_request_retire(tmp);
336         } while (tmp != rq);
337 }
338
339 static void irq_execute_cb(struct irq_work *wrk)
340 {
341         struct execute_cb *cb = container_of(wrk, typeof(*cb), work);
342
343         i915_sw_fence_complete(cb->fence);
344         kmem_cache_free(global.slab_execute_cbs, cb);
345 }
346
347 static void __notify_execute_cb(struct i915_request *rq)
348 {
349         struct execute_cb *cb;
350
351         lockdep_assert_held(&rq->lock);
352
353         if (list_empty(&rq->execute_cb))
354                 return;
355
356         list_for_each_entry(cb, &rq->execute_cb, link)
357                 irq_work_queue(&cb->work);
358
359         /*
360          * XXX Rollback on __i915_request_unsubmit()
361          *
362          * In the future, perhaps when we have an active time-slicing scheduler,
363          * it will be interesting to unsubmit parallel execution and remove
364          * busywaits from the GPU until their master is restarted. This is
365          * quite hairy, we have to carefully rollback the fence and do a
366          * preempt-to-idle cycle on the target engine, all the while the
367          * master execute_cb may refire.
368          */
369         INIT_LIST_HEAD(&rq->execute_cb);
370 }
371
372 static int
373 i915_request_await_execution(struct i915_request *rq,
374                              struct i915_request *signal,
375                              gfp_t gfp)
376 {
377         struct execute_cb *cb;
378
379         if (i915_request_is_active(signal))
380                 return 0;
381
382         cb = kmem_cache_alloc(global.slab_execute_cbs, gfp);
383         if (!cb)
384                 return -ENOMEM;
385
386         cb->fence = &rq->submit;
387         i915_sw_fence_await(cb->fence);
388         init_irq_work(&cb->work, irq_execute_cb);
389
390         spin_lock_irq(&signal->lock);
391         if (i915_request_is_active(signal)) {
392                 i915_sw_fence_complete(cb->fence);
393                 kmem_cache_free(global.slab_execute_cbs, cb);
394         } else {
395                 list_add_tail(&cb->link, &signal->execute_cb);
396         }
397         spin_unlock_irq(&signal->lock);
398
399         return 0;
400 }
401
402 static void move_to_timeline(struct i915_request *request,
403                              struct i915_timeline *timeline)
404 {
405         GEM_BUG_ON(request->timeline == &request->engine->timeline);
406         lockdep_assert_held(&request->engine->timeline.lock);
407
408         spin_lock(&request->timeline->lock);
409         list_move_tail(&request->link, &timeline->requests);
410         spin_unlock(&request->timeline->lock);
411 }
412
413 void __i915_request_submit(struct i915_request *request)
414 {
415         struct intel_engine_cs *engine = request->engine;
416
417         GEM_TRACE("%s fence %llx:%lld -> current %d\n",
418                   engine->name,
419                   request->fence.context, request->fence.seqno,
420                   hwsp_seqno(request));
421
422         GEM_BUG_ON(!irqs_disabled());
423         lockdep_assert_held(&engine->timeline.lock);
424
425         if (i915_gem_context_is_banned(request->gem_context))
426                 i915_request_skip(request, -EIO);
427
428         /*
429          * Are we using semaphores when the gpu is already saturated?
430          *
431          * Using semaphores incurs a cost in having the GPU poll a
432          * memory location, busywaiting for it to change. The continual
433          * memory reads can have a noticeable impact on the rest of the
434          * system with the extra bus traffic, stalling the cpu as it too
435          * tries to access memory across the bus (perf stat -e bus-cycles).
436          *
437          * If we installed a semaphore on this request and we only submit
438          * the request after the signaler completed, that indicates the
439          * system is overloaded and using semaphores at this time only
440          * increases the amount of work we are doing. If so, we disable
441          * further use of semaphores until we are idle again, whence we
442          * optimistically try again.
443          */
444         if (request->sched.semaphores &&
445             i915_sw_fence_signaled(&request->semaphore))
446                 request->hw_context->saturated |= request->sched.semaphores;
447
448         /* We may be recursing from the signal callback of another i915 fence */
449         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
450
451         GEM_BUG_ON(test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
452         set_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
453
454         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags) &&
455             !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &request->fence.flags) &&
456             !i915_request_enable_breadcrumb(request))
457                 intel_engine_queue_breadcrumbs(engine);
458
459         __notify_execute_cb(request);
460
461         spin_unlock(&request->lock);
462
463         engine->emit_fini_breadcrumb(request,
464                                      request->ring->vaddr + request->postfix);
465
466         /* Transfer from per-context onto the global per-engine timeline */
467         move_to_timeline(request, &engine->timeline);
468
469         trace_i915_request_execute(request);
470 }
471
472 void i915_request_submit(struct i915_request *request)
473 {
474         struct intel_engine_cs *engine = request->engine;
475         unsigned long flags;
476
477         /* Will be called from irq-context when using foreign fences. */
478         spin_lock_irqsave(&engine->timeline.lock, flags);
479
480         __i915_request_submit(request);
481
482         spin_unlock_irqrestore(&engine->timeline.lock, flags);
483 }
484
485 void __i915_request_unsubmit(struct i915_request *request)
486 {
487         struct intel_engine_cs *engine = request->engine;
488
489         GEM_TRACE("%s fence %llx:%lld, current %d\n",
490                   engine->name,
491                   request->fence.context, request->fence.seqno,
492                   hwsp_seqno(request));
493
494         GEM_BUG_ON(!irqs_disabled());
495         lockdep_assert_held(&engine->timeline.lock);
496
497         /*
498          * Only unwind in reverse order, required so that the per-context list
499          * is kept in seqno/ring order.
500          */
501
502         /* We may be recursing from the signal callback of another i915 fence */
503         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
504
505         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
506                 i915_request_cancel_breadcrumb(request);
507
508         GEM_BUG_ON(!test_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags));
509         clear_bit(I915_FENCE_FLAG_ACTIVE, &request->fence.flags);
510
511         spin_unlock(&request->lock);
512
513         /* Transfer back from the global per-engine timeline to per-context */
514         move_to_timeline(request, request->timeline);
515
516         /*
517          * We don't need to wake_up any waiters on request->execute, they
518          * will get woken by any other event or us re-adding this request
519          * to the engine timeline (__i915_request_submit()). The waiters
520          * should be quite adapt at finding that the request now has a new
521          * global_seqno to the one they went to sleep on.
522          */
523 }
524
525 void i915_request_unsubmit(struct i915_request *request)
526 {
527         struct intel_engine_cs *engine = request->engine;
528         unsigned long flags;
529
530         /* Will be called from irq-context when using foreign fences. */
531         spin_lock_irqsave(&engine->timeline.lock, flags);
532
533         __i915_request_unsubmit(request);
534
535         spin_unlock_irqrestore(&engine->timeline.lock, flags);
536 }
537
538 static int __i915_sw_fence_call
539 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
540 {
541         struct i915_request *request =
542                 container_of(fence, typeof(*request), submit);
543
544         switch (state) {
545         case FENCE_COMPLETE:
546                 trace_i915_request_submit(request);
547                 /*
548                  * We need to serialize use of the submit_request() callback
549                  * with its hotplugging performed during an emergency
550                  * i915_gem_set_wedged().  We use the RCU mechanism to mark the
551                  * critical section in order to force i915_gem_set_wedged() to
552                  * wait until the submit_request() is completed before
553                  * proceeding.
554                  */
555                 rcu_read_lock();
556                 request->engine->submit_request(request);
557                 rcu_read_unlock();
558                 break;
559
560         case FENCE_FREE:
561                 i915_request_put(request);
562                 break;
563         }
564
565         return NOTIFY_DONE;
566 }
567
568 static int __i915_sw_fence_call
569 semaphore_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
570 {
571         struct i915_request *request =
572                 container_of(fence, typeof(*request), semaphore);
573
574         switch (state) {
575         case FENCE_COMPLETE:
576                 i915_schedule_bump_priority(request, I915_PRIORITY_NOSEMAPHORE);
577                 break;
578
579         case FENCE_FREE:
580                 i915_request_put(request);
581                 break;
582         }
583
584         return NOTIFY_DONE;
585 }
586
587 static void ring_retire_requests(struct intel_ring *ring)
588 {
589         struct i915_request *rq, *rn;
590
591         list_for_each_entry_safe(rq, rn, &ring->request_list, ring_link) {
592                 if (!i915_request_completed(rq))
593                         break;
594
595                 i915_request_retire(rq);
596         }
597 }
598
599 static noinline struct i915_request *
600 i915_request_alloc_slow(struct intel_context *ce)
601 {
602         struct intel_ring *ring = ce->ring;
603         struct i915_request *rq;
604
605         if (list_empty(&ring->request_list))
606                 goto out;
607
608         /* Ratelimit ourselves to prevent oom from malicious clients */
609         rq = list_last_entry(&ring->request_list, typeof(*rq), ring_link);
610         cond_synchronize_rcu(rq->rcustate);
611
612         /* Retire our old requests in the hope that we free some */
613         ring_retire_requests(ring);
614
615 out:
616         return kmem_cache_alloc(global.slab_requests, GFP_KERNEL);
617 }
618
619 /**
620  * i915_request_alloc - allocate a request structure
621  *
622  * @engine: engine that we wish to issue the request on.
623  * @ctx: context that the request will be associated with.
624  *
625  * Returns a pointer to the allocated request if successful,
626  * or an error code if not.
627  */
628 struct i915_request *
629 i915_request_alloc(struct intel_engine_cs *engine, struct i915_gem_context *ctx)
630 {
631         struct drm_i915_private *i915 = engine->i915;
632         struct intel_context *ce;
633         struct i915_timeline *tl;
634         struct i915_request *rq;
635         u32 seqno;
636         int ret;
637
638         lockdep_assert_held(&i915->drm.struct_mutex);
639
640         /*
641          * Preempt contexts are reserved for exclusive use to inject a
642          * preemption context switch. They are never to be used for any trivial
643          * request!
644          */
645         GEM_BUG_ON(ctx == i915->preempt_context);
646
647         /*
648          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
649          * EIO if the GPU is already wedged.
650          */
651         ret = i915_terminally_wedged(i915);
652         if (ret)
653                 return ERR_PTR(ret);
654
655         /*
656          * Pinning the contexts may generate requests in order to acquire
657          * GGTT space, so do this first before we reserve a seqno for
658          * ourselves.
659          */
660         ce = intel_context_pin(ctx, engine);
661         if (IS_ERR(ce))
662                 return ERR_CAST(ce);
663
664         reserve_gt(i915);
665         mutex_lock(&ce->ring->timeline->mutex);
666
667         /* Move our oldest request to the slab-cache (if not in use!) */
668         rq = list_first_entry(&ce->ring->request_list, typeof(*rq), ring_link);
669         if (!list_is_last(&rq->ring_link, &ce->ring->request_list) &&
670             i915_request_completed(rq))
671                 i915_request_retire(rq);
672
673         /*
674          * Beware: Dragons be flying overhead.
675          *
676          * We use RCU to look up requests in flight. The lookups may
677          * race with the request being allocated from the slab freelist.
678          * That is the request we are writing to here, may be in the process
679          * of being read by __i915_active_request_get_rcu(). As such,
680          * we have to be very careful when overwriting the contents. During
681          * the RCU lookup, we change chase the request->engine pointer,
682          * read the request->global_seqno and increment the reference count.
683          *
684          * The reference count is incremented atomically. If it is zero,
685          * the lookup knows the request is unallocated and complete. Otherwise,
686          * it is either still in use, or has been reallocated and reset
687          * with dma_fence_init(). This increment is safe for release as we
688          * check that the request we have a reference to and matches the active
689          * request.
690          *
691          * Before we increment the refcount, we chase the request->engine
692          * pointer. We must not call kmem_cache_zalloc() or else we set
693          * that pointer to NULL and cause a crash during the lookup. If
694          * we see the request is completed (based on the value of the
695          * old engine and seqno), the lookup is complete and reports NULL.
696          * If we decide the request is not completed (new engine or seqno),
697          * then we grab a reference and double check that it is still the
698          * active request - which it won't be and restart the lookup.
699          *
700          * Do not use kmem_cache_zalloc() here!
701          */
702         rq = kmem_cache_alloc(global.slab_requests,
703                               GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN);
704         if (unlikely(!rq)) {
705                 rq = i915_request_alloc_slow(ce);
706                 if (!rq) {
707                         ret = -ENOMEM;
708                         goto err_unreserve;
709                 }
710         }
711
712         INIT_LIST_HEAD(&rq->active_list);
713         INIT_LIST_HEAD(&rq->execute_cb);
714
715         tl = ce->ring->timeline;
716         ret = i915_timeline_get_seqno(tl, rq, &seqno);
717         if (ret)
718                 goto err_free;
719
720         rq->i915 = i915;
721         rq->engine = engine;
722         rq->gem_context = ctx;
723         rq->hw_context = ce;
724         rq->ring = ce->ring;
725         rq->timeline = tl;
726         GEM_BUG_ON(rq->timeline == &engine->timeline);
727         rq->hwsp_seqno = tl->hwsp_seqno;
728         rq->hwsp_cacheline = tl->hwsp_cacheline;
729         rq->rcustate = get_state_synchronize_rcu(); /* acts as smp_mb() */
730
731         spin_lock_init(&rq->lock);
732         dma_fence_init(&rq->fence, &i915_fence_ops, &rq->lock,
733                        tl->fence_context, seqno);
734
735         /* We bump the ref for the fence chain */
736         i915_sw_fence_init(&i915_request_get(rq)->submit, submit_notify);
737         i915_sw_fence_init(&i915_request_get(rq)->semaphore, semaphore_notify);
738
739         i915_sched_node_init(&rq->sched);
740
741         /* No zalloc, must clear what we need by hand */
742         rq->file_priv = NULL;
743         rq->batch = NULL;
744         rq->capture_list = NULL;
745         rq->waitboost = false;
746
747         /*
748          * Reserve space in the ring buffer for all the commands required to
749          * eventually emit this request. This is to guarantee that the
750          * i915_request_add() call can't fail. Note that the reserve may need
751          * to be redone if the request is not actually submitted straight
752          * away, e.g. because a GPU scheduler has deferred it.
753          *
754          * Note that due to how we add reserved_space to intel_ring_begin()
755          * we need to double our request to ensure that if we need to wrap
756          * around inside i915_request_add() there is sufficient space at
757          * the beginning of the ring as well.
758          */
759         rq->reserved_space = 2 * engine->emit_fini_breadcrumb_dw * sizeof(u32);
760
761         /*
762          * Record the position of the start of the request so that
763          * should we detect the updated seqno part-way through the
764          * GPU processing the request, we never over-estimate the
765          * position of the head.
766          */
767         rq->head = rq->ring->emit;
768
769         ret = engine->request_alloc(rq);
770         if (ret)
771                 goto err_unwind;
772
773         /* Keep a second pin for the dual retirement along engine and ring */
774         __intel_context_pin(ce);
775
776         rq->infix = rq->ring->emit; /* end of header; start of user payload */
777
778         /* Check that we didn't interrupt ourselves with a new request */
779         lockdep_assert_held(&rq->timeline->mutex);
780         GEM_BUG_ON(rq->timeline->seqno != rq->fence.seqno);
781         rq->cookie = lockdep_pin_lock(&rq->timeline->mutex);
782
783         return rq;
784
785 err_unwind:
786         ce->ring->emit = rq->head;
787
788         /* Make sure we didn't add ourselves to external state before freeing */
789         GEM_BUG_ON(!list_empty(&rq->active_list));
790         GEM_BUG_ON(!list_empty(&rq->sched.signalers_list));
791         GEM_BUG_ON(!list_empty(&rq->sched.waiters_list));
792
793 err_free:
794         kmem_cache_free(global.slab_requests, rq);
795 err_unreserve:
796         mutex_unlock(&ce->ring->timeline->mutex);
797         unreserve_gt(i915);
798         intel_context_unpin(ce);
799         return ERR_PTR(ret);
800 }
801
802 static int
803 i915_request_await_start(struct i915_request *rq, struct i915_request *signal)
804 {
805         if (list_is_first(&signal->ring_link, &signal->ring->request_list))
806                 return 0;
807
808         signal = list_prev_entry(signal, ring_link);
809         if (i915_timeline_sync_is_later(rq->timeline, &signal->fence))
810                 return 0;
811
812         return i915_sw_fence_await_dma_fence(&rq->submit,
813                                              &signal->fence, 0,
814                                              I915_FENCE_GFP);
815 }
816
817 static intel_engine_mask_t
818 already_busywaiting(struct i915_request *rq)
819 {
820         /*
821          * Polling a semaphore causes bus traffic, delaying other users of
822          * both the GPU and CPU. We want to limit the impact on others,
823          * while taking advantage of early submission to reduce GPU
824          * latency. Therefore we restrict ourselves to not using more
825          * than one semaphore from each source, and not using a semaphore
826          * if we have detected the engine is saturated (i.e. would not be
827          * submitted early and cause bus traffic reading an already passed
828          * semaphore).
829          *
830          * See the are-we-too-late? check in __i915_request_submit().
831          */
832         return rq->sched.semaphores | rq->hw_context->saturated;
833 }
834
835 static int
836 emit_semaphore_wait(struct i915_request *to,
837                     struct i915_request *from,
838                     gfp_t gfp)
839 {
840         u32 hwsp_offset;
841         u32 *cs;
842         int err;
843
844         GEM_BUG_ON(!from->timeline->has_initial_breadcrumb);
845         GEM_BUG_ON(INTEL_GEN(to->i915) < 8);
846
847         /* Just emit the first semaphore we see as request space is limited. */
848         if (already_busywaiting(to) & from->engine->mask)
849                 return i915_sw_fence_await_dma_fence(&to->submit,
850                                                      &from->fence, 0,
851                                                      I915_FENCE_GFP);
852
853         err = i915_request_await_start(to, from);
854         if (err < 0)
855                 return err;
856
857         /* We need to pin the signaler's HWSP until we are finished reading. */
858         err = i915_timeline_read_hwsp(from, to, &hwsp_offset);
859         if (err)
860                 return err;
861
862         /* Only submit our spinner after the signaler is running! */
863         err = i915_request_await_execution(to, from, gfp);
864         if (err)
865                 return err;
866
867         cs = intel_ring_begin(to, 4);
868         if (IS_ERR(cs))
869                 return PTR_ERR(cs);
870
871         /*
872          * Using greater-than-or-equal here means we have to worry
873          * about seqno wraparound. To side step that issue, we swap
874          * the timeline HWSP upon wrapping, so that everyone listening
875          * for the old (pre-wrap) values do not see the much smaller
876          * (post-wrap) values than they were expecting (and so wait
877          * forever).
878          */
879         *cs++ = MI_SEMAPHORE_WAIT |
880                 MI_SEMAPHORE_GLOBAL_GTT |
881                 MI_SEMAPHORE_POLL |
882                 MI_SEMAPHORE_SAD_GTE_SDD;
883         *cs++ = from->fence.seqno;
884         *cs++ = hwsp_offset;
885         *cs++ = 0;
886
887         intel_ring_advance(to, cs);
888         to->sched.semaphores |= from->engine->mask;
889         to->sched.flags |= I915_SCHED_HAS_SEMAPHORE_CHAIN;
890         return 0;
891 }
892
893 static int
894 i915_request_await_request(struct i915_request *to, struct i915_request *from)
895 {
896         int ret;
897
898         GEM_BUG_ON(to == from);
899         GEM_BUG_ON(to->timeline == from->timeline);
900
901         if (i915_request_completed(from))
902                 return 0;
903
904         if (to->engine->schedule) {
905                 ret = i915_sched_node_add_dependency(&to->sched, &from->sched);
906                 if (ret < 0)
907                         return ret;
908         }
909
910         if (to->engine == from->engine) {
911                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
912                                                        &from->submit,
913                                                        I915_FENCE_GFP);
914         } else if (intel_engine_has_semaphores(to->engine) &&
915                    to->gem_context->sched.priority >= I915_PRIORITY_NORMAL) {
916                 ret = emit_semaphore_wait(to, from, I915_FENCE_GFP);
917         } else {
918                 ret = i915_sw_fence_await_dma_fence(&to->submit,
919                                                     &from->fence, 0,
920                                                     I915_FENCE_GFP);
921         }
922         if (ret < 0)
923                 return ret;
924
925         if (to->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN) {
926                 ret = i915_sw_fence_await_dma_fence(&to->semaphore,
927                                                     &from->fence, 0,
928                                                     I915_FENCE_GFP);
929                 if (ret < 0)
930                         return ret;
931         }
932
933         return 0;
934 }
935
936 int
937 i915_request_await_dma_fence(struct i915_request *rq, struct dma_fence *fence)
938 {
939         struct dma_fence **child = &fence;
940         unsigned int nchild = 1;
941         int ret;
942
943         /*
944          * Note that if the fence-array was created in signal-on-any mode,
945          * we should *not* decompose it into its individual fences. However,
946          * we don't currently store which mode the fence-array is operating
947          * in. Fortunately, the only user of signal-on-any is private to
948          * amdgpu and we should not see any incoming fence-array from
949          * sync-file being in signal-on-any mode.
950          */
951         if (dma_fence_is_array(fence)) {
952                 struct dma_fence_array *array = to_dma_fence_array(fence);
953
954                 child = array->fences;
955                 nchild = array->num_fences;
956                 GEM_BUG_ON(!nchild);
957         }
958
959         do {
960                 fence = *child++;
961                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
962                         continue;
963
964                 /*
965                  * Requests on the same timeline are explicitly ordered, along
966                  * with their dependencies, by i915_request_add() which ensures
967                  * that requests are submitted in-order through each ring.
968                  */
969                 if (fence->context == rq->fence.context)
970                         continue;
971
972                 /* Squash repeated waits to the same timelines */
973                 if (fence->context != rq->i915->mm.unordered_timeline &&
974                     i915_timeline_sync_is_later(rq->timeline, fence))
975                         continue;
976
977                 if (dma_fence_is_i915(fence))
978                         ret = i915_request_await_request(rq, to_request(fence));
979                 else
980                         ret = i915_sw_fence_await_dma_fence(&rq->submit, fence,
981                                                             I915_FENCE_TIMEOUT,
982                                                             I915_FENCE_GFP);
983                 if (ret < 0)
984                         return ret;
985
986                 /* Record the latest fence used against each timeline */
987                 if (fence->context != rq->i915->mm.unordered_timeline)
988                         i915_timeline_sync_set(rq->timeline, fence);
989         } while (--nchild);
990
991         return 0;
992 }
993
994 /**
995  * i915_request_await_object - set this request to (async) wait upon a bo
996  * @to: request we are wishing to use
997  * @obj: object which may be in use on another ring.
998  * @write: whether the wait is on behalf of a writer
999  *
1000  * This code is meant to abstract object synchronization with the GPU.
1001  * Conceptually we serialise writes between engines inside the GPU.
1002  * We only allow one engine to write into a buffer at any time, but
1003  * multiple readers. To ensure each has a coherent view of memory, we must:
1004  *
1005  * - If there is an outstanding write request to the object, the new
1006  *   request must wait for it to complete (either CPU or in hw, requests
1007  *   on the same ring will be naturally ordered).
1008  *
1009  * - If we are a write request (pending_write_domain is set), the new
1010  *   request must wait for outstanding read requests to complete.
1011  *
1012  * Returns 0 if successful, else propagates up the lower layer error.
1013  */
1014 int
1015 i915_request_await_object(struct i915_request *to,
1016                           struct drm_i915_gem_object *obj,
1017                           bool write)
1018 {
1019         struct dma_fence *excl;
1020         int ret = 0;
1021
1022         if (write) {
1023                 struct dma_fence **shared;
1024                 unsigned int count, i;
1025
1026                 ret = reservation_object_get_fences_rcu(obj->resv,
1027                                                         &excl, &count, &shared);
1028                 if (ret)
1029                         return ret;
1030
1031                 for (i = 0; i < count; i++) {
1032                         ret = i915_request_await_dma_fence(to, shared[i]);
1033                         if (ret)
1034                                 break;
1035
1036                         dma_fence_put(shared[i]);
1037                 }
1038
1039                 for (; i < count; i++)
1040                         dma_fence_put(shared[i]);
1041                 kfree(shared);
1042         } else {
1043                 excl = reservation_object_get_excl_rcu(obj->resv);
1044         }
1045
1046         if (excl) {
1047                 if (ret == 0)
1048                         ret = i915_request_await_dma_fence(to, excl);
1049
1050                 dma_fence_put(excl);
1051         }
1052
1053         return ret;
1054 }
1055
1056 void i915_request_skip(struct i915_request *rq, int error)
1057 {
1058         void *vaddr = rq->ring->vaddr;
1059         u32 head;
1060
1061         GEM_BUG_ON(!IS_ERR_VALUE((long)error));
1062         dma_fence_set_error(&rq->fence, error);
1063
1064         /*
1065          * As this request likely depends on state from the lost
1066          * context, clear out all the user operations leaving the
1067          * breadcrumb at the end (so we get the fence notifications).
1068          */
1069         head = rq->infix;
1070         if (rq->postfix < head) {
1071                 memset(vaddr + head, 0, rq->ring->size - head);
1072                 head = 0;
1073         }
1074         memset(vaddr + head, 0, rq->postfix - head);
1075 }
1076
1077 static struct i915_request *
1078 __i915_request_add_to_timeline(struct i915_request *rq)
1079 {
1080         struct i915_timeline *timeline = rq->timeline;
1081         struct i915_request *prev;
1082
1083         /*
1084          * Dependency tracking and request ordering along the timeline
1085          * is special cased so that we can eliminate redundant ordering
1086          * operations while building the request (we know that the timeline
1087          * itself is ordered, and here we guarantee it).
1088          *
1089          * As we know we will need to emit tracking along the timeline,
1090          * we embed the hooks into our request struct -- at the cost of
1091          * having to have specialised no-allocation interfaces (which will
1092          * be beneficial elsewhere).
1093          *
1094          * A second benefit to open-coding i915_request_await_request is
1095          * that we can apply a slight variant of the rules specialised
1096          * for timelines that jump between engines (such as virtual engines).
1097          * If we consider the case of virtual engine, we must emit a dma-fence
1098          * to prevent scheduling of the second request until the first is
1099          * complete (to maximise our greedy late load balancing) and this
1100          * precludes optimising to use semaphores serialisation of a single
1101          * timeline across engines.
1102          */
1103         prev = i915_active_request_raw(&timeline->last_request,
1104                                        &rq->i915->drm.struct_mutex);
1105         if (prev && !i915_request_completed(prev)) {
1106                 if (is_power_of_2(prev->engine->mask | rq->engine->mask))
1107                         i915_sw_fence_await_sw_fence(&rq->submit,
1108                                                      &prev->submit,
1109                                                      &rq->submitq);
1110                 else
1111                         __i915_sw_fence_await_dma_fence(&rq->submit,
1112                                                         &prev->fence,
1113                                                         &rq->dmaq);
1114                 if (rq->engine->schedule)
1115                         __i915_sched_node_add_dependency(&rq->sched,
1116                                                          &prev->sched,
1117                                                          &rq->dep,
1118                                                          0);
1119         }
1120
1121         spin_lock_irq(&timeline->lock);
1122         list_add_tail(&rq->link, &timeline->requests);
1123         spin_unlock_irq(&timeline->lock);
1124
1125         GEM_BUG_ON(timeline->seqno != rq->fence.seqno);
1126         __i915_active_request_set(&timeline->last_request, rq);
1127
1128         return prev;
1129 }
1130
1131 /*
1132  * NB: This function is not allowed to fail. Doing so would mean the the
1133  * request is not being tracked for completion but the work itself is
1134  * going to happen on the hardware. This would be a Bad Thing(tm).
1135  */
1136 void i915_request_add(struct i915_request *request)
1137 {
1138         struct intel_engine_cs *engine = request->engine;
1139         struct i915_timeline *timeline = request->timeline;
1140         struct intel_ring *ring = request->ring;
1141         struct i915_request *prev;
1142         u32 *cs;
1143
1144         GEM_TRACE("%s fence %llx:%lld\n",
1145                   engine->name, request->fence.context, request->fence.seqno);
1146
1147         lockdep_assert_held(&request->timeline->mutex);
1148         lockdep_unpin_lock(&request->timeline->mutex, request->cookie);
1149
1150         trace_i915_request_add(request);
1151
1152         /*
1153          * Make sure that no request gazumped us - if it was allocated after
1154          * our i915_request_alloc() and called __i915_request_add() before
1155          * us, the timeline will hold its seqno which is later than ours.
1156          */
1157         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
1158
1159         /*
1160          * To ensure that this call will not fail, space for its emissions
1161          * should already have been reserved in the ring buffer. Let the ring
1162          * know that it is time to use that space up.
1163          */
1164         GEM_BUG_ON(request->reserved_space > request->ring->space);
1165         request->reserved_space = 0;
1166
1167         /*
1168          * Record the position of the start of the breadcrumb so that
1169          * should we detect the updated seqno part-way through the
1170          * GPU processing the request, we never over-estimate the
1171          * position of the ring's HEAD.
1172          */
1173         cs = intel_ring_begin(request, engine->emit_fini_breadcrumb_dw);
1174         GEM_BUG_ON(IS_ERR(cs));
1175         request->postfix = intel_ring_offset(request, cs);
1176
1177         prev = __i915_request_add_to_timeline(request);
1178
1179         list_add_tail(&request->ring_link, &ring->request_list);
1180         if (list_is_first(&request->ring_link, &ring->request_list))
1181                 list_add(&ring->active_link, &request->i915->gt.active_rings);
1182         request->i915->gt.active_engines |= request->engine->mask;
1183         request->emitted_jiffies = jiffies;
1184
1185         /*
1186          * Let the backend know a new request has arrived that may need
1187          * to adjust the existing execution schedule due to a high priority
1188          * request - i.e. we may want to preempt the current request in order
1189          * to run a high priority dependency chain *before* we can execute this
1190          * request.
1191          *
1192          * This is called before the request is ready to run so that we can
1193          * decide whether to preempt the entire chain so that it is ready to
1194          * run at the earliest possible convenience.
1195          */
1196         local_bh_disable();
1197         i915_sw_fence_commit(&request->semaphore);
1198         rcu_read_lock(); /* RCU serialisation for set-wedged protection */
1199         if (engine->schedule) {
1200                 struct i915_sched_attr attr = request->gem_context->sched;
1201
1202                 /*
1203                  * Boost actual workloads past semaphores!
1204                  *
1205                  * With semaphores we spin on one engine waiting for another,
1206                  * simply to reduce the latency of starting our work when
1207                  * the signaler completes. However, if there is any other
1208                  * work that we could be doing on this engine instead, that
1209                  * is better utilisation and will reduce the overall duration
1210                  * of the current work. To avoid PI boosting a semaphore
1211                  * far in the distance past over useful work, we keep a history
1212                  * of any semaphore use along our dependency chain.
1213                  */
1214                 if (!(request->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
1215                         attr.priority |= I915_PRIORITY_NOSEMAPHORE;
1216
1217                 /*
1218                  * Boost priorities to new clients (new request flows).
1219                  *
1220                  * Allow interactive/synchronous clients to jump ahead of
1221                  * the bulk clients. (FQ_CODEL)
1222                  */
1223                 if (list_empty(&request->sched.signalers_list))
1224                         attr.priority |= I915_PRIORITY_WAIT;
1225
1226                 engine->schedule(request, &attr);
1227         }
1228         rcu_read_unlock();
1229         i915_sw_fence_commit(&request->submit);
1230         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
1231
1232         /*
1233          * In typical scenarios, we do not expect the previous request on
1234          * the timeline to be still tracked by timeline->last_request if it
1235          * has been completed. If the completed request is still here, that
1236          * implies that request retirement is a long way behind submission,
1237          * suggesting that we haven't been retiring frequently enough from
1238          * the combination of retire-before-alloc, waiters and the background
1239          * retirement worker. So if the last request on this timeline was
1240          * already completed, do a catch up pass, flushing the retirement queue
1241          * up to this client. Since we have now moved the heaviest operations
1242          * during retirement onto secondary workers, such as freeing objects
1243          * or contexts, retiring a bunch of requests is mostly list management
1244          * (and cache misses), and so we should not be overly penalizing this
1245          * client by performing excess work, though we may still performing
1246          * work on behalf of others -- but instead we should benefit from
1247          * improved resource management. (Well, that's the theory at least.)
1248          */
1249         if (prev && i915_request_completed(prev))
1250                 i915_request_retire_upto(prev);
1251
1252         mutex_unlock(&request->timeline->mutex);
1253 }
1254
1255 static unsigned long local_clock_us(unsigned int *cpu)
1256 {
1257         unsigned long t;
1258
1259         /*
1260          * Cheaply and approximately convert from nanoseconds to microseconds.
1261          * The result and subsequent calculations are also defined in the same
1262          * approximate microseconds units. The principal source of timing
1263          * error here is from the simple truncation.
1264          *
1265          * Note that local_clock() is only defined wrt to the current CPU;
1266          * the comparisons are no longer valid if we switch CPUs. Instead of
1267          * blocking preemption for the entire busywait, we can detect the CPU
1268          * switch and use that as indicator of system load and a reason to
1269          * stop busywaiting, see busywait_stop().
1270          */
1271         *cpu = get_cpu();
1272         t = local_clock() >> 10;
1273         put_cpu();
1274
1275         return t;
1276 }
1277
1278 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1279 {
1280         unsigned int this_cpu;
1281
1282         if (time_after(local_clock_us(&this_cpu), timeout))
1283                 return true;
1284
1285         return this_cpu != cpu;
1286 }
1287
1288 static bool __i915_spin_request(const struct i915_request * const rq,
1289                                 int state, unsigned long timeout_us)
1290 {
1291         unsigned int cpu;
1292
1293         /*
1294          * Only wait for the request if we know it is likely to complete.
1295          *
1296          * We don't track the timestamps around requests, nor the average
1297          * request length, so we do not have a good indicator that this
1298          * request will complete within the timeout. What we do know is the
1299          * order in which requests are executed by the context and so we can
1300          * tell if the request has been started. If the request is not even
1301          * running yet, it is a fair assumption that it will not complete
1302          * within our relatively short timeout.
1303          */
1304         if (!i915_request_is_running(rq))
1305                 return false;
1306
1307         /*
1308          * When waiting for high frequency requests, e.g. during synchronous
1309          * rendering split between the CPU and GPU, the finite amount of time
1310          * required to set up the irq and wait upon it limits the response
1311          * rate. By busywaiting on the request completion for a short while we
1312          * can service the high frequency waits as quick as possible. However,
1313          * if it is a slow request, we want to sleep as quickly as possible.
1314          * The tradeoff between waiting and sleeping is roughly the time it
1315          * takes to sleep on a request, on the order of a microsecond.
1316          */
1317
1318         timeout_us += local_clock_us(&cpu);
1319         do {
1320                 if (i915_request_completed(rq))
1321                         return true;
1322
1323                 if (signal_pending_state(state, current))
1324                         break;
1325
1326                 if (busywait_stop(timeout_us, cpu))
1327                         break;
1328
1329                 cpu_relax();
1330         } while (!need_resched());
1331
1332         return false;
1333 }
1334
1335 struct request_wait {
1336         struct dma_fence_cb cb;
1337         struct task_struct *tsk;
1338 };
1339
1340 static void request_wait_wake(struct dma_fence *fence, struct dma_fence_cb *cb)
1341 {
1342         struct request_wait *wait = container_of(cb, typeof(*wait), cb);
1343
1344         wake_up_process(wait->tsk);
1345 }
1346
1347 /**
1348  * i915_request_wait - wait until execution of request has finished
1349  * @rq: the request to wait upon
1350  * @flags: how to wait
1351  * @timeout: how long to wait in jiffies
1352  *
1353  * i915_request_wait() waits for the request to be completed, for a
1354  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1355  * unbounded wait).
1356  *
1357  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1358  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1359  * must not specify that the wait is locked.
1360  *
1361  * Returns the remaining time (in jiffies) if the request completed, which may
1362  * be zero or -ETIME if the request is unfinished after the timeout expires.
1363  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1364  * pending before the request completes.
1365  */
1366 long i915_request_wait(struct i915_request *rq,
1367                        unsigned int flags,
1368                        long timeout)
1369 {
1370         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1371                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1372         struct request_wait wait;
1373
1374         might_sleep();
1375         GEM_BUG_ON(timeout < 0);
1376
1377         if (i915_request_completed(rq))
1378                 return timeout;
1379
1380         if (!timeout)
1381                 return -ETIME;
1382
1383         trace_i915_request_wait_begin(rq, flags);
1384
1385         /* Optimistic short spin before touching IRQs */
1386         if (__i915_spin_request(rq, state, 5))
1387                 goto out;
1388
1389         /*
1390          * This client is about to stall waiting for the GPU. In many cases
1391          * this is undesirable and limits the throughput of the system, as
1392          * many clients cannot continue processing user input/output whilst
1393          * blocked. RPS autotuning may take tens of milliseconds to respond
1394          * to the GPU load and thus incurs additional latency for the client.
1395          * We can circumvent that by promoting the GPU frequency to maximum
1396          * before we sleep. This makes the GPU throttle up much more quickly
1397          * (good for benchmarks and user experience, e.g. window animations),
1398          * but at a cost of spending more power processing the workload
1399          * (bad for battery).
1400          */
1401         if (flags & I915_WAIT_PRIORITY) {
1402                 if (!i915_request_started(rq) && INTEL_GEN(rq->i915) >= 6)
1403                         gen6_rps_boost(rq);
1404                 local_bh_disable(); /* suspend tasklets for reprioritisation */
1405                 i915_schedule_bump_priority(rq, I915_PRIORITY_WAIT);
1406                 local_bh_enable(); /* kick tasklets en masse */
1407         }
1408
1409         wait.tsk = current;
1410         if (dma_fence_add_callback(&rq->fence, &wait.cb, request_wait_wake))
1411                 goto out;
1412
1413         for (;;) {
1414                 set_current_state(state);
1415
1416                 if (i915_request_completed(rq))
1417                         break;
1418
1419                 if (signal_pending_state(state, current)) {
1420                         timeout = -ERESTARTSYS;
1421                         break;
1422                 }
1423
1424                 if (!timeout) {
1425                         timeout = -ETIME;
1426                         break;
1427                 }
1428
1429                 timeout = io_schedule_timeout(timeout);
1430         }
1431         __set_current_state(TASK_RUNNING);
1432
1433         dma_fence_remove_callback(&rq->fence, &wait.cb);
1434
1435 out:
1436         trace_i915_request_wait_end(rq);
1437         return timeout;
1438 }
1439
1440 void i915_retire_requests(struct drm_i915_private *i915)
1441 {
1442         struct intel_ring *ring, *tmp;
1443
1444         lockdep_assert_held(&i915->drm.struct_mutex);
1445
1446         if (!i915->gt.active_requests)
1447                 return;
1448
1449         list_for_each_entry_safe(ring, tmp,
1450                                  &i915->gt.active_rings, active_link) {
1451                 intel_ring_get(ring); /* last rq holds reference! */
1452                 ring_retire_requests(ring);
1453                 intel_ring_put(ring);
1454         }
1455 }
1456
1457 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1458 #include "selftests/mock_request.c"
1459 #include "selftests/i915_request.c"
1460 #endif
1461
1462 static void i915_global_request_shrink(void)
1463 {
1464         kmem_cache_shrink(global.slab_dependencies);
1465         kmem_cache_shrink(global.slab_execute_cbs);
1466         kmem_cache_shrink(global.slab_requests);
1467 }
1468
1469 static void i915_global_request_exit(void)
1470 {
1471         kmem_cache_destroy(global.slab_dependencies);
1472         kmem_cache_destroy(global.slab_execute_cbs);
1473         kmem_cache_destroy(global.slab_requests);
1474 }
1475
1476 static struct i915_global_request global = { {
1477         .shrink = i915_global_request_shrink,
1478         .exit = i915_global_request_exit,
1479 } };
1480
1481 int __init i915_global_request_init(void)
1482 {
1483         global.slab_requests = KMEM_CACHE(i915_request,
1484                                           SLAB_HWCACHE_ALIGN |
1485                                           SLAB_RECLAIM_ACCOUNT |
1486                                           SLAB_TYPESAFE_BY_RCU);
1487         if (!global.slab_requests)
1488                 return -ENOMEM;
1489
1490         global.slab_execute_cbs = KMEM_CACHE(execute_cb,
1491                                              SLAB_HWCACHE_ALIGN |
1492                                              SLAB_RECLAIM_ACCOUNT |
1493                                              SLAB_TYPESAFE_BY_RCU);
1494         if (!global.slab_execute_cbs)
1495                 goto err_requests;
1496
1497         global.slab_dependencies = KMEM_CACHE(i915_dependency,
1498                                               SLAB_HWCACHE_ALIGN |
1499                                               SLAB_RECLAIM_ACCOUNT);
1500         if (!global.slab_dependencies)
1501                 goto err_execute_cbs;
1502
1503         i915_global_register(&global.base);
1504         return 0;
1505
1506 err_execute_cbs:
1507         kmem_cache_destroy(global.slab_execute_cbs);
1508 err_requests:
1509         kmem_cache_destroy(global.slab_requests);
1510         return -ENOMEM;
1511 }