Merge tag 'acpi-4.14-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178                                      uint32_t mask,
179                                      uint32_t bits)
180 {
181         uint32_t val;
182
183         lockdep_assert_held(&dev_priv->irq_lock);
184         WARN_ON(bits & ~mask);
185
186         val = I915_READ(PORT_HOTPLUG_EN);
187         val &= ~mask;
188         val |= bits;
189         I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193  * i915_hotplug_interrupt_update - update hotplug interrupt enable
194  * @dev_priv: driver private
195  * @mask: bits to update
196  * @bits: bits to enable
197  * NOTE: the HPD enable bits are modified both inside and outside
198  * of an interrupt context. To avoid that read-modify-write cycles
199  * interfer, these bits are protected by a spinlock. Since this
200  * function is usually not called from a context where the lock is
201  * held already, this function acquires the lock itself. A non-locking
202  * version is also available.
203  */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205                                    uint32_t mask,
206                                    uint32_t bits)
207 {
208         spin_lock_irq(&dev_priv->irq_lock);
209         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210         spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214  * ilk_update_display_irq - update DEIMR
215  * @dev_priv: driver private
216  * @interrupt_mask: mask of interrupt bits to update
217  * @enabled_irq_mask: mask of interrupt bits to enable
218  */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220                             uint32_t interrupt_mask,
221                             uint32_t enabled_irq_mask)
222 {
223         uint32_t new_val;
224
225         lockdep_assert_held(&dev_priv->irq_lock);
226
227         WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230                 return;
231
232         new_val = dev_priv->irq_mask;
233         new_val &= ~interrupt_mask;
234         new_val |= (~enabled_irq_mask & interrupt_mask);
235
236         if (new_val != dev_priv->irq_mask) {
237                 dev_priv->irq_mask = new_val;
238                 I915_WRITE(DEIMR, dev_priv->irq_mask);
239                 POSTING_READ(DEIMR);
240         }
241 }
242
243 /**
244  * ilk_update_gt_irq - update GTIMR
245  * @dev_priv: driver private
246  * @interrupt_mask: mask of interrupt bits to update
247  * @enabled_irq_mask: mask of interrupt bits to enable
248  */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250                               uint32_t interrupt_mask,
251                               uint32_t enabled_irq_mask)
252 {
253         lockdep_assert_held(&dev_priv->irq_lock);
254
255         WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258                 return;
259
260         dev_priv->gt_irq_mask &= ~interrupt_mask;
261         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267         ilk_update_gt_irq(dev_priv, mask, mask);
268         POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273         ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292  * snb_update_pm_irq - update GEN6_PMIMR
293  * @dev_priv: driver private
294  * @interrupt_mask: mask of interrupt bits to update
295  * @enabled_irq_mask: mask of interrupt bits to enable
296  */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298                               uint32_t interrupt_mask,
299                               uint32_t enabled_irq_mask)
300 {
301         uint32_t new_val;
302
303         WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305         lockdep_assert_held(&dev_priv->irq_lock);
306
307         new_val = dev_priv->pm_imr;
308         new_val &= ~interrupt_mask;
309         new_val |= (~enabled_irq_mask & interrupt_mask);
310
311         if (new_val != dev_priv->pm_imr) {
312                 dev_priv->pm_imr = new_val;
313                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314                 POSTING_READ(gen6_pm_imr(dev_priv));
315         }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321                 return;
322
323         snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341         i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343         lockdep_assert_held(&dev_priv->irq_lock);
344
345         I915_WRITE(reg, reset_mask);
346         I915_WRITE(reg, reset_mask);
347         POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352         lockdep_assert_held(&dev_priv->irq_lock);
353
354         dev_priv->pm_ier |= enable_mask;
355         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356         gen6_unmask_pm_irq(dev_priv, enable_mask);
357         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362         lockdep_assert_held(&dev_priv->irq_lock);
363
364         dev_priv->pm_ier &= ~disable_mask;
365         __gen6_mask_pm_irq(dev_priv, disable_mask);
366         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367         /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372         spin_lock_irq(&dev_priv->irq_lock);
373         gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374         dev_priv->rps.pm_iir = 0;
375         spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380         if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381                 return;
382
383         spin_lock_irq(&dev_priv->irq_lock);
384         WARN_ON_ONCE(dev_priv->rps.pm_iir);
385         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386         dev_priv->rps.interrupts_enabled = true;
387         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389         spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
393 {
394         if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
395                 return;
396
397         spin_lock_irq(&dev_priv->irq_lock);
398         dev_priv->rps.interrupts_enabled = false;
399
400         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
401
402         gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
403
404         spin_unlock_irq(&dev_priv->irq_lock);
405         synchronize_irq(dev_priv->drm.irq);
406
407         /* Now that we will not be generating any more work, flush any
408          * outsanding tasks. As we are called on the RPS idle path,
409          * we will reset the GPU to minimum frequencies, so the current
410          * state of the worker can be discarded.
411          */
412         cancel_work_sync(&dev_priv->rps.work);
413         gen6_reset_rps_interrupts(dev_priv);
414 }
415
416 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
417 {
418         spin_lock_irq(&dev_priv->irq_lock);
419         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
420         spin_unlock_irq(&dev_priv->irq_lock);
421 }
422
423 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
424 {
425         spin_lock_irq(&dev_priv->irq_lock);
426         if (!dev_priv->guc.interrupts_enabled) {
427                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
428                                        dev_priv->pm_guc_events);
429                 dev_priv->guc.interrupts_enabled = true;
430                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
431         }
432         spin_unlock_irq(&dev_priv->irq_lock);
433 }
434
435 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
436 {
437         spin_lock_irq(&dev_priv->irq_lock);
438         dev_priv->guc.interrupts_enabled = false;
439
440         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
441
442         spin_unlock_irq(&dev_priv->irq_lock);
443         synchronize_irq(dev_priv->drm.irq);
444
445         gen9_reset_guc_interrupts(dev_priv);
446 }
447
448 /**
449  * bdw_update_port_irq - update DE port interrupt
450  * @dev_priv: driver private
451  * @interrupt_mask: mask of interrupt bits to update
452  * @enabled_irq_mask: mask of interrupt bits to enable
453  */
454 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
455                                 uint32_t interrupt_mask,
456                                 uint32_t enabled_irq_mask)
457 {
458         uint32_t new_val;
459         uint32_t old_val;
460
461         lockdep_assert_held(&dev_priv->irq_lock);
462
463         WARN_ON(enabled_irq_mask & ~interrupt_mask);
464
465         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466                 return;
467
468         old_val = I915_READ(GEN8_DE_PORT_IMR);
469
470         new_val = old_val;
471         new_val &= ~interrupt_mask;
472         new_val |= (~enabled_irq_mask & interrupt_mask);
473
474         if (new_val != old_val) {
475                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
476                 POSTING_READ(GEN8_DE_PORT_IMR);
477         }
478 }
479
480 /**
481  * bdw_update_pipe_irq - update DE pipe interrupt
482  * @dev_priv: driver private
483  * @pipe: pipe whose interrupt to update
484  * @interrupt_mask: mask of interrupt bits to update
485  * @enabled_irq_mask: mask of interrupt bits to enable
486  */
487 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
488                          enum pipe pipe,
489                          uint32_t interrupt_mask,
490                          uint32_t enabled_irq_mask)
491 {
492         uint32_t new_val;
493
494         lockdep_assert_held(&dev_priv->irq_lock);
495
496         WARN_ON(enabled_irq_mask & ~interrupt_mask);
497
498         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
499                 return;
500
501         new_val = dev_priv->de_irq_mask[pipe];
502         new_val &= ~interrupt_mask;
503         new_val |= (~enabled_irq_mask & interrupt_mask);
504
505         if (new_val != dev_priv->de_irq_mask[pipe]) {
506                 dev_priv->de_irq_mask[pipe] = new_val;
507                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
508                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
509         }
510 }
511
512 /**
513  * ibx_display_interrupt_update - update SDEIMR
514  * @dev_priv: driver private
515  * @interrupt_mask: mask of interrupt bits to update
516  * @enabled_irq_mask: mask of interrupt bits to enable
517  */
518 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
519                                   uint32_t interrupt_mask,
520                                   uint32_t enabled_irq_mask)
521 {
522         uint32_t sdeimr = I915_READ(SDEIMR);
523         sdeimr &= ~interrupt_mask;
524         sdeimr |= (~enabled_irq_mask & interrupt_mask);
525
526         WARN_ON(enabled_irq_mask & ~interrupt_mask);
527
528         lockdep_assert_held(&dev_priv->irq_lock);
529
530         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
531                 return;
532
533         I915_WRITE(SDEIMR, sdeimr);
534         POSTING_READ(SDEIMR);
535 }
536
537 static void
538 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
539                        u32 enable_mask, u32 status_mask)
540 {
541         i915_reg_t reg = PIPESTAT(pipe);
542         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
543
544         lockdep_assert_held(&dev_priv->irq_lock);
545         WARN_ON(!intel_irqs_enabled(dev_priv));
546
547         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
548                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
549                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
550                       pipe_name(pipe), enable_mask, status_mask))
551                 return;
552
553         if ((pipestat & enable_mask) == enable_mask)
554                 return;
555
556         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
557
558         /* Enable the interrupt, clear any pending status */
559         pipestat |= enable_mask | status_mask;
560         I915_WRITE(reg, pipestat);
561         POSTING_READ(reg);
562 }
563
564 static void
565 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
566                         u32 enable_mask, u32 status_mask)
567 {
568         i915_reg_t reg = PIPESTAT(pipe);
569         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
570
571         lockdep_assert_held(&dev_priv->irq_lock);
572         WARN_ON(!intel_irqs_enabled(dev_priv));
573
574         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
575                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
576                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
577                       pipe_name(pipe), enable_mask, status_mask))
578                 return;
579
580         if ((pipestat & enable_mask) == 0)
581                 return;
582
583         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584
585         pipestat &= ~enable_mask;
586         I915_WRITE(reg, pipestat);
587         POSTING_READ(reg);
588 }
589
590 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
591 {
592         u32 enable_mask = status_mask << 16;
593
594         /*
595          * On pipe A we don't support the PSR interrupt yet,
596          * on pipe B and C the same bit MBZ.
597          */
598         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
599                 return 0;
600         /*
601          * On pipe B and C we don't support the PSR interrupt yet, on pipe
602          * A the same bit is for perf counters which we don't use either.
603          */
604         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
605                 return 0;
606
607         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
608                          SPRITE0_FLIP_DONE_INT_EN_VLV |
609                          SPRITE1_FLIP_DONE_INT_EN_VLV);
610         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
611                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
612         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
613                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
614
615         return enable_mask;
616 }
617
618 void
619 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
620                      u32 status_mask)
621 {
622         u32 enable_mask;
623
624         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
625                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
626                                                            status_mask);
627         else
628                 enable_mask = status_mask << 16;
629         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
630 }
631
632 void
633 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
634                       u32 status_mask)
635 {
636         u32 enable_mask;
637
638         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
639                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
640                                                            status_mask);
641         else
642                 enable_mask = status_mask << 16;
643         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
644 }
645
646 /**
647  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
648  * @dev_priv: i915 device private
649  */
650 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
651 {
652         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
653                 return;
654
655         spin_lock_irq(&dev_priv->irq_lock);
656
657         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658         if (INTEL_GEN(dev_priv) >= 4)
659                 i915_enable_pipestat(dev_priv, PIPE_A,
660                                      PIPE_LEGACY_BLC_EVENT_STATUS);
661
662         spin_unlock_irq(&dev_priv->irq_lock);
663 }
664
665 /*
666  * This timing diagram depicts the video signal in and
667  * around the vertical blanking period.
668  *
669  * Assumptions about the fictitious mode used in this example:
670  *  vblank_start >= 3
671  *  vsync_start = vblank_start + 1
672  *  vsync_end = vblank_start + 2
673  *  vtotal = vblank_start + 3
674  *
675  *           start of vblank:
676  *           latch double buffered registers
677  *           increment frame counter (ctg+)
678  *           generate start of vblank interrupt (gen4+)
679  *           |
680  *           |          frame start:
681  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
682  *           |          may be shifted forward 1-3 extra lines via PIPECONF
683  *           |          |
684  *           |          |  start of vsync:
685  *           |          |  generate vsync interrupt
686  *           |          |  |
687  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
688  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
689  * ----va---> <-----------------vb--------------------> <--------va-------------
690  *       |          |       <----vs----->                     |
691  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
692  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
693  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
694  *       |          |                                         |
695  *       last visible pixel                                   first visible pixel
696  *                  |                                         increment frame counter (gen3/4)
697  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
698  *
699  * x  = horizontal active
700  * _  = horizontal blanking
701  * hs = horizontal sync
702  * va = vertical active
703  * vb = vertical blanking
704  * vs = vertical sync
705  * vbs = vblank_start (number)
706  *
707  * Summary:
708  * - most events happen at the start of horizontal sync
709  * - frame start happens at the start of horizontal blank, 1-4 lines
710  *   (depending on PIPECONF settings) after the start of vblank
711  * - gen3/4 pixel and frame counter are synchronized with the start
712  *   of horizontal active on the first line of vertical active
713  */
714
715 /* Called from drm generic code, passed a 'crtc', which
716  * we use as a pipe index
717  */
718 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
719 {
720         struct drm_i915_private *dev_priv = to_i915(dev);
721         i915_reg_t high_frame, low_frame;
722         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
723         const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
724         unsigned long irqflags;
725
726         htotal = mode->crtc_htotal;
727         hsync_start = mode->crtc_hsync_start;
728         vbl_start = mode->crtc_vblank_start;
729         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
730                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
731
732         /* Convert to pixel count */
733         vbl_start *= htotal;
734
735         /* Start of vblank event occurs at start of hsync */
736         vbl_start -= htotal - hsync_start;
737
738         high_frame = PIPEFRAME(pipe);
739         low_frame = PIPEFRAMEPIXEL(pipe);
740
741         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
742
743         /*
744          * High & low register fields aren't synchronized, so make sure
745          * we get a low value that's stable across two reads of the high
746          * register.
747          */
748         do {
749                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
750                 low   = I915_READ_FW(low_frame);
751                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
752         } while (high1 != high2);
753
754         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
755
756         high1 >>= PIPE_FRAME_HIGH_SHIFT;
757         pixel = low & PIPE_PIXEL_MASK;
758         low >>= PIPE_FRAME_LOW_SHIFT;
759
760         /*
761          * The frame counter increments at beginning of active.
762          * Cook up a vblank counter by also checking the pixel
763          * counter against vblank start.
764          */
765         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
766 }
767
768 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
769 {
770         struct drm_i915_private *dev_priv = to_i915(dev);
771
772         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
773 }
774
775 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
776 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
777 {
778         struct drm_device *dev = crtc->base.dev;
779         struct drm_i915_private *dev_priv = to_i915(dev);
780         const struct drm_display_mode *mode;
781         struct drm_vblank_crtc *vblank;
782         enum pipe pipe = crtc->pipe;
783         int position, vtotal;
784
785         if (!crtc->active)
786                 return -1;
787
788         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
789         mode = &vblank->hwmode;
790
791         vtotal = mode->crtc_vtotal;
792         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
793                 vtotal /= 2;
794
795         if (IS_GEN2(dev_priv))
796                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
797         else
798                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
799
800         /*
801          * On HSW, the DSL reg (0x70000) appears to return 0 if we
802          * read it just before the start of vblank.  So try it again
803          * so we don't accidentally end up spanning a vblank frame
804          * increment, causing the pipe_update_end() code to squak at us.
805          *
806          * The nature of this problem means we can't simply check the ISR
807          * bit and return the vblank start value; nor can we use the scanline
808          * debug register in the transcoder as it appears to have the same
809          * problem.  We may need to extend this to include other platforms,
810          * but so far testing only shows the problem on HSW.
811          */
812         if (HAS_DDI(dev_priv) && !position) {
813                 int i, temp;
814
815                 for (i = 0; i < 100; i++) {
816                         udelay(1);
817                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
818                         if (temp != position) {
819                                 position = temp;
820                                 break;
821                         }
822                 }
823         }
824
825         /*
826          * See update_scanline_offset() for the details on the
827          * scanline_offset adjustment.
828          */
829         return (position + crtc->scanline_offset) % vtotal;
830 }
831
832 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
833                                      bool in_vblank_irq, int *vpos, int *hpos,
834                                      ktime_t *stime, ktime_t *etime,
835                                      const struct drm_display_mode *mode)
836 {
837         struct drm_i915_private *dev_priv = to_i915(dev);
838         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
839                                                                 pipe);
840         int position;
841         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
842         unsigned long irqflags;
843
844         if (WARN_ON(!mode->crtc_clock)) {
845                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
846                                  "pipe %c\n", pipe_name(pipe));
847                 return false;
848         }
849
850         htotal = mode->crtc_htotal;
851         hsync_start = mode->crtc_hsync_start;
852         vtotal = mode->crtc_vtotal;
853         vbl_start = mode->crtc_vblank_start;
854         vbl_end = mode->crtc_vblank_end;
855
856         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
857                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
858                 vbl_end /= 2;
859                 vtotal /= 2;
860         }
861
862         /*
863          * Lock uncore.lock, as we will do multiple timing critical raw
864          * register reads, potentially with preemption disabled, so the
865          * following code must not block on uncore.lock.
866          */
867         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
868
869         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
870
871         /* Get optional system timestamp before query. */
872         if (stime)
873                 *stime = ktime_get();
874
875         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
876                 /* No obvious pixelcount register. Only query vertical
877                  * scanout position from Display scan line register.
878                  */
879                 position = __intel_get_crtc_scanline(intel_crtc);
880         } else {
881                 /* Have access to pixelcount since start of frame.
882                  * We can split this into vertical and horizontal
883                  * scanout position.
884                  */
885                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
886
887                 /* convert to pixel counts */
888                 vbl_start *= htotal;
889                 vbl_end *= htotal;
890                 vtotal *= htotal;
891
892                 /*
893                  * In interlaced modes, the pixel counter counts all pixels,
894                  * so one field will have htotal more pixels. In order to avoid
895                  * the reported position from jumping backwards when the pixel
896                  * counter is beyond the length of the shorter field, just
897                  * clamp the position the length of the shorter field. This
898                  * matches how the scanline counter based position works since
899                  * the scanline counter doesn't count the two half lines.
900                  */
901                 if (position >= vtotal)
902                         position = vtotal - 1;
903
904                 /*
905                  * Start of vblank interrupt is triggered at start of hsync,
906                  * just prior to the first active line of vblank. However we
907                  * consider lines to start at the leading edge of horizontal
908                  * active. So, should we get here before we've crossed into
909                  * the horizontal active of the first line in vblank, we would
910                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
911                  * always add htotal-hsync_start to the current pixel position.
912                  */
913                 position = (position + htotal - hsync_start) % vtotal;
914         }
915
916         /* Get optional system timestamp after query. */
917         if (etime)
918                 *etime = ktime_get();
919
920         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
921
922         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
923
924         /*
925          * While in vblank, position will be negative
926          * counting up towards 0 at vbl_end. And outside
927          * vblank, position will be positive counting
928          * up since vbl_end.
929          */
930         if (position >= vbl_start)
931                 position -= vbl_end;
932         else
933                 position += vtotal - vbl_end;
934
935         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
936                 *vpos = position;
937                 *hpos = 0;
938         } else {
939                 *vpos = position / htotal;
940                 *hpos = position - (*vpos * htotal);
941         }
942
943         return true;
944 }
945
946 int intel_get_crtc_scanline(struct intel_crtc *crtc)
947 {
948         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
949         unsigned long irqflags;
950         int position;
951
952         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
953         position = __intel_get_crtc_scanline(crtc);
954         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
955
956         return position;
957 }
958
959 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
960 {
961         u32 busy_up, busy_down, max_avg, min_avg;
962         u8 new_delay;
963
964         spin_lock(&mchdev_lock);
965
966         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
967
968         new_delay = dev_priv->ips.cur_delay;
969
970         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
971         busy_up = I915_READ(RCPREVBSYTUPAVG);
972         busy_down = I915_READ(RCPREVBSYTDNAVG);
973         max_avg = I915_READ(RCBMAXAVG);
974         min_avg = I915_READ(RCBMINAVG);
975
976         /* Handle RCS change request from hw */
977         if (busy_up > max_avg) {
978                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
979                         new_delay = dev_priv->ips.cur_delay - 1;
980                 if (new_delay < dev_priv->ips.max_delay)
981                         new_delay = dev_priv->ips.max_delay;
982         } else if (busy_down < min_avg) {
983                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
984                         new_delay = dev_priv->ips.cur_delay + 1;
985                 if (new_delay > dev_priv->ips.min_delay)
986                         new_delay = dev_priv->ips.min_delay;
987         }
988
989         if (ironlake_set_drps(dev_priv, new_delay))
990                 dev_priv->ips.cur_delay = new_delay;
991
992         spin_unlock(&mchdev_lock);
993
994         return;
995 }
996
997 static void notify_ring(struct intel_engine_cs *engine)
998 {
999         struct drm_i915_gem_request *rq = NULL;
1000         struct intel_wait *wait;
1001
1002         atomic_inc(&engine->irq_count);
1003         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1004
1005         spin_lock(&engine->breadcrumbs.irq_lock);
1006         wait = engine->breadcrumbs.irq_wait;
1007         if (wait) {
1008                 /* We use a callback from the dma-fence to submit
1009                  * requests after waiting on our own requests. To
1010                  * ensure minimum delay in queuing the next request to
1011                  * hardware, signal the fence now rather than wait for
1012                  * the signaler to be woken up. We still wake up the
1013                  * waiter in order to handle the irq-seqno coherency
1014                  * issues (we may receive the interrupt before the
1015                  * seqno is written, see __i915_request_irq_complete())
1016                  * and to handle coalescing of multiple seqno updates
1017                  * and many waiters.
1018                  */
1019                 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1020                                       wait->seqno) &&
1021                     !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1022                               &wait->request->fence.flags))
1023                         rq = i915_gem_request_get(wait->request);
1024
1025                 wake_up_process(wait->tsk);
1026         } else {
1027                 __intel_engine_disarm_breadcrumbs(engine);
1028         }
1029         spin_unlock(&engine->breadcrumbs.irq_lock);
1030
1031         if (rq) {
1032                 dma_fence_signal(&rq->fence);
1033                 i915_gem_request_put(rq);
1034         }
1035
1036         trace_intel_engine_notify(engine, wait);
1037 }
1038
1039 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1040                         struct intel_rps_ei *ei)
1041 {
1042         ei->ktime = ktime_get_raw();
1043         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1044         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1045 }
1046
1047 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1048 {
1049         memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1050 }
1051
1052 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1053 {
1054         const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1055         struct intel_rps_ei now;
1056         u32 events = 0;
1057
1058         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1059                 return 0;
1060
1061         vlv_c0_read(dev_priv, &now);
1062
1063         if (prev->ktime) {
1064                 u64 time, c0;
1065                 u32 render, media;
1066
1067                 time = ktime_us_delta(now.ktime, prev->ktime);
1068
1069                 time *= dev_priv->czclk_freq;
1070
1071                 /* Workload can be split between render + media,
1072                  * e.g. SwapBuffers being blitted in X after being rendered in
1073                  * mesa. To account for this we need to combine both engines
1074                  * into our activity counter.
1075                  */
1076                 render = now.render_c0 - prev->render_c0;
1077                 media = now.media_c0 - prev->media_c0;
1078                 c0 = max(render, media);
1079                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1080
1081                 if (c0 > time * dev_priv->rps.up_threshold)
1082                         events = GEN6_PM_RP_UP_THRESHOLD;
1083                 else if (c0 < time * dev_priv->rps.down_threshold)
1084                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1085         }
1086
1087         dev_priv->rps.ei = now;
1088         return events;
1089 }
1090
1091 static void gen6_pm_rps_work(struct work_struct *work)
1092 {
1093         struct drm_i915_private *dev_priv =
1094                 container_of(work, struct drm_i915_private, rps.work);
1095         bool client_boost = false;
1096         int new_delay, adj, min, max;
1097         u32 pm_iir = 0;
1098
1099         spin_lock_irq(&dev_priv->irq_lock);
1100         if (dev_priv->rps.interrupts_enabled) {
1101                 pm_iir = fetch_and_zero(&dev_priv->rps.pm_iir);
1102                 client_boost = atomic_read(&dev_priv->rps.num_waiters);
1103         }
1104         spin_unlock_irq(&dev_priv->irq_lock);
1105
1106         /* Make sure we didn't queue anything we're not going to process. */
1107         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1108         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1109                 goto out;
1110
1111         mutex_lock(&dev_priv->rps.hw_lock);
1112
1113         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1114
1115         adj = dev_priv->rps.last_adj;
1116         new_delay = dev_priv->rps.cur_freq;
1117         min = dev_priv->rps.min_freq_softlimit;
1118         max = dev_priv->rps.max_freq_softlimit;
1119         if (client_boost)
1120                 max = dev_priv->rps.max_freq;
1121         if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1122                 new_delay = dev_priv->rps.boost_freq;
1123                 adj = 0;
1124         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1125                 if (adj > 0)
1126                         adj *= 2;
1127                 else /* CHV needs even encode values */
1128                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1129
1130                 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1131                         adj = 0;
1132         } else if (client_boost) {
1133                 adj = 0;
1134         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1135                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1136                         new_delay = dev_priv->rps.efficient_freq;
1137                 else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1138                         new_delay = dev_priv->rps.min_freq_softlimit;
1139                 adj = 0;
1140         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1141                 if (adj < 0)
1142                         adj *= 2;
1143                 else /* CHV needs even encode values */
1144                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1145
1146                 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1147                         adj = 0;
1148         } else { /* unknown event */
1149                 adj = 0;
1150         }
1151
1152         dev_priv->rps.last_adj = adj;
1153
1154         /* sysfs frequency interfaces may have snuck in while servicing the
1155          * interrupt
1156          */
1157         new_delay += adj;
1158         new_delay = clamp_t(int, new_delay, min, max);
1159
1160         if (intel_set_rps(dev_priv, new_delay)) {
1161                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1162                 dev_priv->rps.last_adj = 0;
1163         }
1164
1165         mutex_unlock(&dev_priv->rps.hw_lock);
1166
1167 out:
1168         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1169         spin_lock_irq(&dev_priv->irq_lock);
1170         if (dev_priv->rps.interrupts_enabled)
1171                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1172         spin_unlock_irq(&dev_priv->irq_lock);
1173 }
1174
1175
1176 /**
1177  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1178  * occurred.
1179  * @work: workqueue struct
1180  *
1181  * Doesn't actually do anything except notify userspace. As a consequence of
1182  * this event, userspace should try to remap the bad rows since statistically
1183  * it is likely the same row is more likely to go bad again.
1184  */
1185 static void ivybridge_parity_work(struct work_struct *work)
1186 {
1187         struct drm_i915_private *dev_priv =
1188                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1189         u32 error_status, row, bank, subbank;
1190         char *parity_event[6];
1191         uint32_t misccpctl;
1192         uint8_t slice = 0;
1193
1194         /* We must turn off DOP level clock gating to access the L3 registers.
1195          * In order to prevent a get/put style interface, acquire struct mutex
1196          * any time we access those registers.
1197          */
1198         mutex_lock(&dev_priv->drm.struct_mutex);
1199
1200         /* If we've screwed up tracking, just let the interrupt fire again */
1201         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1202                 goto out;
1203
1204         misccpctl = I915_READ(GEN7_MISCCPCTL);
1205         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1206         POSTING_READ(GEN7_MISCCPCTL);
1207
1208         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1209                 i915_reg_t reg;
1210
1211                 slice--;
1212                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1213                         break;
1214
1215                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1216
1217                 reg = GEN7_L3CDERRST1(slice);
1218
1219                 error_status = I915_READ(reg);
1220                 row = GEN7_PARITY_ERROR_ROW(error_status);
1221                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1222                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1223
1224                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1225                 POSTING_READ(reg);
1226
1227                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1228                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1229                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1230                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1231                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1232                 parity_event[5] = NULL;
1233
1234                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1235                                    KOBJ_CHANGE, parity_event);
1236
1237                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1238                           slice, row, bank, subbank);
1239
1240                 kfree(parity_event[4]);
1241                 kfree(parity_event[3]);
1242                 kfree(parity_event[2]);
1243                 kfree(parity_event[1]);
1244         }
1245
1246         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1247
1248 out:
1249         WARN_ON(dev_priv->l3_parity.which_slice);
1250         spin_lock_irq(&dev_priv->irq_lock);
1251         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1252         spin_unlock_irq(&dev_priv->irq_lock);
1253
1254         mutex_unlock(&dev_priv->drm.struct_mutex);
1255 }
1256
1257 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1258                                                u32 iir)
1259 {
1260         if (!HAS_L3_DPF(dev_priv))
1261                 return;
1262
1263         spin_lock(&dev_priv->irq_lock);
1264         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1265         spin_unlock(&dev_priv->irq_lock);
1266
1267         iir &= GT_PARITY_ERROR(dev_priv);
1268         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1269                 dev_priv->l3_parity.which_slice |= 1 << 1;
1270
1271         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1272                 dev_priv->l3_parity.which_slice |= 1 << 0;
1273
1274         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1275 }
1276
1277 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1278                                u32 gt_iir)
1279 {
1280         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1281                 notify_ring(dev_priv->engine[RCS]);
1282         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1283                 notify_ring(dev_priv->engine[VCS]);
1284 }
1285
1286 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1287                                u32 gt_iir)
1288 {
1289         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1290                 notify_ring(dev_priv->engine[RCS]);
1291         if (gt_iir & GT_BSD_USER_INTERRUPT)
1292                 notify_ring(dev_priv->engine[VCS]);
1293         if (gt_iir & GT_BLT_USER_INTERRUPT)
1294                 notify_ring(dev_priv->engine[BCS]);
1295
1296         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1297                       GT_BSD_CS_ERROR_INTERRUPT |
1298                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1299                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1300
1301         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1302                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1303 }
1304
1305 static void
1306 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1307 {
1308         bool tasklet = false;
1309
1310         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1311                 if (port_count(&engine->execlist_port[0])) {
1312                         __set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1313                         tasklet = true;
1314                 }
1315         }
1316
1317         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1318                 notify_ring(engine);
1319                 tasklet |= i915.enable_guc_submission;
1320         }
1321
1322         if (tasklet)
1323                 tasklet_hi_schedule(&engine->irq_tasklet);
1324 }
1325
1326 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1327                                    u32 master_ctl,
1328                                    u32 gt_iir[4])
1329 {
1330         irqreturn_t ret = IRQ_NONE;
1331
1332         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1333                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1334                 if (gt_iir[0]) {
1335                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1336                         ret = IRQ_HANDLED;
1337                 } else
1338                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1339         }
1340
1341         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1342                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1343                 if (gt_iir[1]) {
1344                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1345                         ret = IRQ_HANDLED;
1346                 } else
1347                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1348         }
1349
1350         if (master_ctl & GEN8_GT_VECS_IRQ) {
1351                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1352                 if (gt_iir[3]) {
1353                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1354                         ret = IRQ_HANDLED;
1355                 } else
1356                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1357         }
1358
1359         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1360                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1361                 if (gt_iir[2] & (dev_priv->pm_rps_events |
1362                                  dev_priv->pm_guc_events)) {
1363                         I915_WRITE_FW(GEN8_GT_IIR(2),
1364                                       gt_iir[2] & (dev_priv->pm_rps_events |
1365                                                    dev_priv->pm_guc_events));
1366                         ret = IRQ_HANDLED;
1367                 } else
1368                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1369         }
1370
1371         return ret;
1372 }
1373
1374 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1375                                 u32 gt_iir[4])
1376 {
1377         if (gt_iir[0]) {
1378                 gen8_cs_irq_handler(dev_priv->engine[RCS],
1379                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1380                 gen8_cs_irq_handler(dev_priv->engine[BCS],
1381                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1382         }
1383
1384         if (gt_iir[1]) {
1385                 gen8_cs_irq_handler(dev_priv->engine[VCS],
1386                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1387                 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1388                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1389         }
1390
1391         if (gt_iir[3])
1392                 gen8_cs_irq_handler(dev_priv->engine[VECS],
1393                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1394
1395         if (gt_iir[2] & dev_priv->pm_rps_events)
1396                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1397
1398         if (gt_iir[2] & dev_priv->pm_guc_events)
1399                 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1400 }
1401
1402 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1403 {
1404         switch (port) {
1405         case PORT_A:
1406                 return val & PORTA_HOTPLUG_LONG_DETECT;
1407         case PORT_B:
1408                 return val & PORTB_HOTPLUG_LONG_DETECT;
1409         case PORT_C:
1410                 return val & PORTC_HOTPLUG_LONG_DETECT;
1411         default:
1412                 return false;
1413         }
1414 }
1415
1416 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1417 {
1418         switch (port) {
1419         case PORT_E:
1420                 return val & PORTE_HOTPLUG_LONG_DETECT;
1421         default:
1422                 return false;
1423         }
1424 }
1425
1426 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1427 {
1428         switch (port) {
1429         case PORT_A:
1430                 return val & PORTA_HOTPLUG_LONG_DETECT;
1431         case PORT_B:
1432                 return val & PORTB_HOTPLUG_LONG_DETECT;
1433         case PORT_C:
1434                 return val & PORTC_HOTPLUG_LONG_DETECT;
1435         case PORT_D:
1436                 return val & PORTD_HOTPLUG_LONG_DETECT;
1437         default:
1438                 return false;
1439         }
1440 }
1441
1442 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1443 {
1444         switch (port) {
1445         case PORT_A:
1446                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1447         default:
1448                 return false;
1449         }
1450 }
1451
1452 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1453 {
1454         switch (port) {
1455         case PORT_B:
1456                 return val & PORTB_HOTPLUG_LONG_DETECT;
1457         case PORT_C:
1458                 return val & PORTC_HOTPLUG_LONG_DETECT;
1459         case PORT_D:
1460                 return val & PORTD_HOTPLUG_LONG_DETECT;
1461         default:
1462                 return false;
1463         }
1464 }
1465
1466 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1467 {
1468         switch (port) {
1469         case PORT_B:
1470                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1471         case PORT_C:
1472                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1473         case PORT_D:
1474                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1475         default:
1476                 return false;
1477         }
1478 }
1479
1480 /*
1481  * Get a bit mask of pins that have triggered, and which ones may be long.
1482  * This can be called multiple times with the same masks to accumulate
1483  * hotplug detection results from several registers.
1484  *
1485  * Note that the caller is expected to zero out the masks initially.
1486  */
1487 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1488                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1489                              const u32 hpd[HPD_NUM_PINS],
1490                              bool long_pulse_detect(enum port port, u32 val))
1491 {
1492         enum port port;
1493         int i;
1494
1495         for_each_hpd_pin(i) {
1496                 if ((hpd[i] & hotplug_trigger) == 0)
1497                         continue;
1498
1499                 *pin_mask |= BIT(i);
1500
1501                 port = intel_hpd_pin_to_port(i);
1502                 if (port == PORT_NONE)
1503                         continue;
1504
1505                 if (long_pulse_detect(port, dig_hotplug_reg))
1506                         *long_mask |= BIT(i);
1507         }
1508
1509         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1510                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1511
1512 }
1513
1514 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1515 {
1516         wake_up_all(&dev_priv->gmbus_wait_queue);
1517 }
1518
1519 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1520 {
1521         wake_up_all(&dev_priv->gmbus_wait_queue);
1522 }
1523
1524 #if defined(CONFIG_DEBUG_FS)
1525 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1526                                          enum pipe pipe,
1527                                          uint32_t crc0, uint32_t crc1,
1528                                          uint32_t crc2, uint32_t crc3,
1529                                          uint32_t crc4)
1530 {
1531         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1532         struct intel_pipe_crc_entry *entry;
1533         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1534         struct drm_driver *driver = dev_priv->drm.driver;
1535         uint32_t crcs[5];
1536         int head, tail;
1537
1538         spin_lock(&pipe_crc->lock);
1539         if (pipe_crc->source) {
1540                 if (!pipe_crc->entries) {
1541                         spin_unlock(&pipe_crc->lock);
1542                         DRM_DEBUG_KMS("spurious interrupt\n");
1543                         return;
1544                 }
1545
1546                 head = pipe_crc->head;
1547                 tail = pipe_crc->tail;
1548
1549                 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1550                         spin_unlock(&pipe_crc->lock);
1551                         DRM_ERROR("CRC buffer overflowing\n");
1552                         return;
1553                 }
1554
1555                 entry = &pipe_crc->entries[head];
1556
1557                 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1558                 entry->crc[0] = crc0;
1559                 entry->crc[1] = crc1;
1560                 entry->crc[2] = crc2;
1561                 entry->crc[3] = crc3;
1562                 entry->crc[4] = crc4;
1563
1564                 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1565                 pipe_crc->head = head;
1566
1567                 spin_unlock(&pipe_crc->lock);
1568
1569                 wake_up_interruptible(&pipe_crc->wq);
1570         } else {
1571                 /*
1572                  * For some not yet identified reason, the first CRC is
1573                  * bonkers. So let's just wait for the next vblank and read
1574                  * out the buggy result.
1575                  *
1576                  * On CHV sometimes the second CRC is bonkers as well, so
1577                  * don't trust that one either.
1578                  */
1579                 if (pipe_crc->skipped == 0 ||
1580                     (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1581                         pipe_crc->skipped++;
1582                         spin_unlock(&pipe_crc->lock);
1583                         return;
1584                 }
1585                 spin_unlock(&pipe_crc->lock);
1586                 crcs[0] = crc0;
1587                 crcs[1] = crc1;
1588                 crcs[2] = crc2;
1589                 crcs[3] = crc3;
1590                 crcs[4] = crc4;
1591                 drm_crtc_add_crc_entry(&crtc->base, true,
1592                                        drm_crtc_accurate_vblank_count(&crtc->base),
1593                                        crcs);
1594         }
1595 }
1596 #else
1597 static inline void
1598 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1599                              enum pipe pipe,
1600                              uint32_t crc0, uint32_t crc1,
1601                              uint32_t crc2, uint32_t crc3,
1602                              uint32_t crc4) {}
1603 #endif
1604
1605
1606 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1607                                      enum pipe pipe)
1608 {
1609         display_pipe_crc_irq_handler(dev_priv, pipe,
1610                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1611                                      0, 0, 0, 0);
1612 }
1613
1614 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1615                                      enum pipe pipe)
1616 {
1617         display_pipe_crc_irq_handler(dev_priv, pipe,
1618                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1619                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1620                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1621                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1622                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1623 }
1624
1625 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1626                                       enum pipe pipe)
1627 {
1628         uint32_t res1, res2;
1629
1630         if (INTEL_GEN(dev_priv) >= 3)
1631                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1632         else
1633                 res1 = 0;
1634
1635         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1636                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1637         else
1638                 res2 = 0;
1639
1640         display_pipe_crc_irq_handler(dev_priv, pipe,
1641                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1642                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1643                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1644                                      res1, res2);
1645 }
1646
1647 /* The RPS events need forcewake, so we add them to a work queue and mask their
1648  * IMR bits until the work is done. Other interrupts can be processed without
1649  * the work queue. */
1650 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1651 {
1652         if (pm_iir & dev_priv->pm_rps_events) {
1653                 spin_lock(&dev_priv->irq_lock);
1654                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1655                 if (dev_priv->rps.interrupts_enabled) {
1656                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1657                         schedule_work(&dev_priv->rps.work);
1658                 }
1659                 spin_unlock(&dev_priv->irq_lock);
1660         }
1661
1662         if (INTEL_GEN(dev_priv) >= 8)
1663                 return;
1664
1665         if (HAS_VEBOX(dev_priv)) {
1666                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1667                         notify_ring(dev_priv->engine[VECS]);
1668
1669                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1670                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1671         }
1672 }
1673
1674 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1675 {
1676         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1677                 /* Sample the log buffer flush related bits & clear them out now
1678                  * itself from the message identity register to minimize the
1679                  * probability of losing a flush interrupt, when there are back
1680                  * to back flush interrupts.
1681                  * There can be a new flush interrupt, for different log buffer
1682                  * type (like for ISR), whilst Host is handling one (for DPC).
1683                  * Since same bit is used in message register for ISR & DPC, it
1684                  * could happen that GuC sets the bit for 2nd interrupt but Host
1685                  * clears out the bit on handling the 1st interrupt.
1686                  */
1687                 u32 msg, flush;
1688
1689                 msg = I915_READ(SOFT_SCRATCH(15));
1690                 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1691                                INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1692                 if (flush) {
1693                         /* Clear the message bits that are handled */
1694                         I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1695
1696                         /* Handle flush interrupt in bottom half */
1697                         queue_work(dev_priv->guc.log.runtime.flush_wq,
1698                                    &dev_priv->guc.log.runtime.flush_work);
1699
1700                         dev_priv->guc.log.flush_interrupt_count++;
1701                 } else {
1702                         /* Not clearing of unhandled event bits won't result in
1703                          * re-triggering of the interrupt.
1704                          */
1705                 }
1706         }
1707 }
1708
1709 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1710                                         u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1711 {
1712         int pipe;
1713
1714         spin_lock(&dev_priv->irq_lock);
1715
1716         if (!dev_priv->display_irqs_enabled) {
1717                 spin_unlock(&dev_priv->irq_lock);
1718                 return;
1719         }
1720
1721         for_each_pipe(dev_priv, pipe) {
1722                 i915_reg_t reg;
1723                 u32 mask, iir_bit = 0;
1724
1725                 /*
1726                  * PIPESTAT bits get signalled even when the interrupt is
1727                  * disabled with the mask bits, and some of the status bits do
1728                  * not generate interrupts at all (like the underrun bit). Hence
1729                  * we need to be careful that we only handle what we want to
1730                  * handle.
1731                  */
1732
1733                 /* fifo underruns are filterered in the underrun handler. */
1734                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1735
1736                 switch (pipe) {
1737                 case PIPE_A:
1738                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1739                         break;
1740                 case PIPE_B:
1741                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1742                         break;
1743                 case PIPE_C:
1744                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1745                         break;
1746                 }
1747                 if (iir & iir_bit)
1748                         mask |= dev_priv->pipestat_irq_mask[pipe];
1749
1750                 if (!mask)
1751                         continue;
1752
1753                 reg = PIPESTAT(pipe);
1754                 mask |= PIPESTAT_INT_ENABLE_MASK;
1755                 pipe_stats[pipe] = I915_READ(reg) & mask;
1756
1757                 /*
1758                  * Clear the PIPE*STAT regs before the IIR
1759                  */
1760                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1761                                         PIPESTAT_INT_STATUS_MASK))
1762                         I915_WRITE(reg, pipe_stats[pipe]);
1763         }
1764         spin_unlock(&dev_priv->irq_lock);
1765 }
1766
1767 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1768                                             u32 pipe_stats[I915_MAX_PIPES])
1769 {
1770         enum pipe pipe;
1771
1772         for_each_pipe(dev_priv, pipe) {
1773                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1774                         drm_handle_vblank(&dev_priv->drm, pipe);
1775
1776                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1777                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1778
1779                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1780                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1781         }
1782
1783         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1784                 gmbus_irq_handler(dev_priv);
1785 }
1786
1787 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1788 {
1789         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1790
1791         if (hotplug_status)
1792                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1793
1794         return hotplug_status;
1795 }
1796
1797 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1798                                  u32 hotplug_status)
1799 {
1800         u32 pin_mask = 0, long_mask = 0;
1801
1802         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1803             IS_CHERRYVIEW(dev_priv)) {
1804                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1805
1806                 if (hotplug_trigger) {
1807                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1808                                            hotplug_trigger, hpd_status_g4x,
1809                                            i9xx_port_hotplug_long_detect);
1810
1811                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1812                 }
1813
1814                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1815                         dp_aux_irq_handler(dev_priv);
1816         } else {
1817                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1818
1819                 if (hotplug_trigger) {
1820                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1821                                            hotplug_trigger, hpd_status_i915,
1822                                            i9xx_port_hotplug_long_detect);
1823                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1824                 }
1825         }
1826 }
1827
1828 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1829 {
1830         struct drm_device *dev = arg;
1831         struct drm_i915_private *dev_priv = to_i915(dev);
1832         irqreturn_t ret = IRQ_NONE;
1833
1834         if (!intel_irqs_enabled(dev_priv))
1835                 return IRQ_NONE;
1836
1837         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1838         disable_rpm_wakeref_asserts(dev_priv);
1839
1840         do {
1841                 u32 iir, gt_iir, pm_iir;
1842                 u32 pipe_stats[I915_MAX_PIPES] = {};
1843                 u32 hotplug_status = 0;
1844                 u32 ier = 0;
1845
1846                 gt_iir = I915_READ(GTIIR);
1847                 pm_iir = I915_READ(GEN6_PMIIR);
1848                 iir = I915_READ(VLV_IIR);
1849
1850                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1851                         break;
1852
1853                 ret = IRQ_HANDLED;
1854
1855                 /*
1856                  * Theory on interrupt generation, based on empirical evidence:
1857                  *
1858                  * x = ((VLV_IIR & VLV_IER) ||
1859                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1860                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1861                  *
1862                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1863                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1864                  * guarantee the CPU interrupt will be raised again even if we
1865                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1866                  * bits this time around.
1867                  */
1868                 I915_WRITE(VLV_MASTER_IER, 0);
1869                 ier = I915_READ(VLV_IER);
1870                 I915_WRITE(VLV_IER, 0);
1871
1872                 if (gt_iir)
1873                         I915_WRITE(GTIIR, gt_iir);
1874                 if (pm_iir)
1875                         I915_WRITE(GEN6_PMIIR, pm_iir);
1876
1877                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1878                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1879
1880                 /* Call regardless, as some status bits might not be
1881                  * signalled in iir */
1882                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1883
1884                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1885                            I915_LPE_PIPE_B_INTERRUPT))
1886                         intel_lpe_audio_irq_handler(dev_priv);
1887
1888                 /*
1889                  * VLV_IIR is single buffered, and reflects the level
1890                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1891                  */
1892                 if (iir)
1893                         I915_WRITE(VLV_IIR, iir);
1894
1895                 I915_WRITE(VLV_IER, ier);
1896                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1897                 POSTING_READ(VLV_MASTER_IER);
1898
1899                 if (gt_iir)
1900                         snb_gt_irq_handler(dev_priv, gt_iir);
1901                 if (pm_iir)
1902                         gen6_rps_irq_handler(dev_priv, pm_iir);
1903
1904                 if (hotplug_status)
1905                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1906
1907                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1908         } while (0);
1909
1910         enable_rpm_wakeref_asserts(dev_priv);
1911
1912         return ret;
1913 }
1914
1915 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1916 {
1917         struct drm_device *dev = arg;
1918         struct drm_i915_private *dev_priv = to_i915(dev);
1919         irqreturn_t ret = IRQ_NONE;
1920
1921         if (!intel_irqs_enabled(dev_priv))
1922                 return IRQ_NONE;
1923
1924         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1925         disable_rpm_wakeref_asserts(dev_priv);
1926
1927         do {
1928                 u32 master_ctl, iir;
1929                 u32 gt_iir[4] = {};
1930                 u32 pipe_stats[I915_MAX_PIPES] = {};
1931                 u32 hotplug_status = 0;
1932                 u32 ier = 0;
1933
1934                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1935                 iir = I915_READ(VLV_IIR);
1936
1937                 if (master_ctl == 0 && iir == 0)
1938                         break;
1939
1940                 ret = IRQ_HANDLED;
1941
1942                 /*
1943                  * Theory on interrupt generation, based on empirical evidence:
1944                  *
1945                  * x = ((VLV_IIR & VLV_IER) ||
1946                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1947                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1948                  *
1949                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1950                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1951                  * guarantee the CPU interrupt will be raised again even if we
1952                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1953                  * bits this time around.
1954                  */
1955                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1956                 ier = I915_READ(VLV_IER);
1957                 I915_WRITE(VLV_IER, 0);
1958
1959                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1960
1961                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1962                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1963
1964                 /* Call regardless, as some status bits might not be
1965                  * signalled in iir */
1966                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1967
1968                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1969                            I915_LPE_PIPE_B_INTERRUPT |
1970                            I915_LPE_PIPE_C_INTERRUPT))
1971                         intel_lpe_audio_irq_handler(dev_priv);
1972
1973                 /*
1974                  * VLV_IIR is single buffered, and reflects the level
1975                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1976                  */
1977                 if (iir)
1978                         I915_WRITE(VLV_IIR, iir);
1979
1980                 I915_WRITE(VLV_IER, ier);
1981                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1982                 POSTING_READ(GEN8_MASTER_IRQ);
1983
1984                 gen8_gt_irq_handler(dev_priv, gt_iir);
1985
1986                 if (hotplug_status)
1987                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1988
1989                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1990         } while (0);
1991
1992         enable_rpm_wakeref_asserts(dev_priv);
1993
1994         return ret;
1995 }
1996
1997 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1998                                 u32 hotplug_trigger,
1999                                 const u32 hpd[HPD_NUM_PINS])
2000 {
2001         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2002
2003         /*
2004          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2005          * unless we touch the hotplug register, even if hotplug_trigger is
2006          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2007          * errors.
2008          */
2009         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2010         if (!hotplug_trigger) {
2011                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2012                         PORTD_HOTPLUG_STATUS_MASK |
2013                         PORTC_HOTPLUG_STATUS_MASK |
2014                         PORTB_HOTPLUG_STATUS_MASK;
2015                 dig_hotplug_reg &= ~mask;
2016         }
2017
2018         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2019         if (!hotplug_trigger)
2020                 return;
2021
2022         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2023                            dig_hotplug_reg, hpd,
2024                            pch_port_hotplug_long_detect);
2025
2026         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2027 }
2028
2029 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2030 {
2031         int pipe;
2032         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2033
2034         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2035
2036         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2037                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2038                                SDE_AUDIO_POWER_SHIFT);
2039                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2040                                  port_name(port));
2041         }
2042
2043         if (pch_iir & SDE_AUX_MASK)
2044                 dp_aux_irq_handler(dev_priv);
2045
2046         if (pch_iir & SDE_GMBUS)
2047                 gmbus_irq_handler(dev_priv);
2048
2049         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2050                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2051
2052         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2053                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2054
2055         if (pch_iir & SDE_POISON)
2056                 DRM_ERROR("PCH poison interrupt\n");
2057
2058         if (pch_iir & SDE_FDI_MASK)
2059                 for_each_pipe(dev_priv, pipe)
2060                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2061                                          pipe_name(pipe),
2062                                          I915_READ(FDI_RX_IIR(pipe)));
2063
2064         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2065                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2066
2067         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2068                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2069
2070         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2071                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2072
2073         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2074                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2075 }
2076
2077 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2078 {
2079         u32 err_int = I915_READ(GEN7_ERR_INT);
2080         enum pipe pipe;
2081
2082         if (err_int & ERR_INT_POISON)
2083                 DRM_ERROR("Poison interrupt\n");
2084
2085         for_each_pipe(dev_priv, pipe) {
2086                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2087                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2088
2089                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2090                         if (IS_IVYBRIDGE(dev_priv))
2091                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2092                         else
2093                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2094                 }
2095         }
2096
2097         I915_WRITE(GEN7_ERR_INT, err_int);
2098 }
2099
2100 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2101 {
2102         u32 serr_int = I915_READ(SERR_INT);
2103
2104         if (serr_int & SERR_INT_POISON)
2105                 DRM_ERROR("PCH poison interrupt\n");
2106
2107         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2108                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2109
2110         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2111                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2112
2113         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2114                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_C);
2115
2116         I915_WRITE(SERR_INT, serr_int);
2117 }
2118
2119 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2120 {
2121         int pipe;
2122         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2123
2124         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2125
2126         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2127                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2128                                SDE_AUDIO_POWER_SHIFT_CPT);
2129                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2130                                  port_name(port));
2131         }
2132
2133         if (pch_iir & SDE_AUX_MASK_CPT)
2134                 dp_aux_irq_handler(dev_priv);
2135
2136         if (pch_iir & SDE_GMBUS_CPT)
2137                 gmbus_irq_handler(dev_priv);
2138
2139         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2140                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2141
2142         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2143                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2144
2145         if (pch_iir & SDE_FDI_MASK_CPT)
2146                 for_each_pipe(dev_priv, pipe)
2147                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2148                                          pipe_name(pipe),
2149                                          I915_READ(FDI_RX_IIR(pipe)));
2150
2151         if (pch_iir & SDE_ERROR_CPT)
2152                 cpt_serr_int_handler(dev_priv);
2153 }
2154
2155 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2156 {
2157         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2158                 ~SDE_PORTE_HOTPLUG_SPT;
2159         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2160         u32 pin_mask = 0, long_mask = 0;
2161
2162         if (hotplug_trigger) {
2163                 u32 dig_hotplug_reg;
2164
2165                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2166                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2167
2168                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2169                                    dig_hotplug_reg, hpd_spt,
2170                                    spt_port_hotplug_long_detect);
2171         }
2172
2173         if (hotplug2_trigger) {
2174                 u32 dig_hotplug_reg;
2175
2176                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2177                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2178
2179                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2180                                    dig_hotplug_reg, hpd_spt,
2181                                    spt_port_hotplug2_long_detect);
2182         }
2183
2184         if (pin_mask)
2185                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2186
2187         if (pch_iir & SDE_GMBUS_CPT)
2188                 gmbus_irq_handler(dev_priv);
2189 }
2190
2191 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2192                                 u32 hotplug_trigger,
2193                                 const u32 hpd[HPD_NUM_PINS])
2194 {
2195         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2196
2197         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2198         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2199
2200         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2201                            dig_hotplug_reg, hpd,
2202                            ilk_port_hotplug_long_detect);
2203
2204         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2205 }
2206
2207 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2208                                     u32 de_iir)
2209 {
2210         enum pipe pipe;
2211         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2212
2213         if (hotplug_trigger)
2214                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2215
2216         if (de_iir & DE_AUX_CHANNEL_A)
2217                 dp_aux_irq_handler(dev_priv);
2218
2219         if (de_iir & DE_GSE)
2220                 intel_opregion_asle_intr(dev_priv);
2221
2222         if (de_iir & DE_POISON)
2223                 DRM_ERROR("Poison interrupt\n");
2224
2225         for_each_pipe(dev_priv, pipe) {
2226                 if (de_iir & DE_PIPE_VBLANK(pipe))
2227                         drm_handle_vblank(&dev_priv->drm, pipe);
2228
2229                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2230                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2231
2232                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2233                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2234         }
2235
2236         /* check event from PCH */
2237         if (de_iir & DE_PCH_EVENT) {
2238                 u32 pch_iir = I915_READ(SDEIIR);
2239
2240                 if (HAS_PCH_CPT(dev_priv))
2241                         cpt_irq_handler(dev_priv, pch_iir);
2242                 else
2243                         ibx_irq_handler(dev_priv, pch_iir);
2244
2245                 /* should clear PCH hotplug event before clear CPU irq */
2246                 I915_WRITE(SDEIIR, pch_iir);
2247         }
2248
2249         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2250                 ironlake_rps_change_irq_handler(dev_priv);
2251 }
2252
2253 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2254                                     u32 de_iir)
2255 {
2256         enum pipe pipe;
2257         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2258
2259         if (hotplug_trigger)
2260                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2261
2262         if (de_iir & DE_ERR_INT_IVB)
2263                 ivb_err_int_handler(dev_priv);
2264
2265         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2266                 dp_aux_irq_handler(dev_priv);
2267
2268         if (de_iir & DE_GSE_IVB)
2269                 intel_opregion_asle_intr(dev_priv);
2270
2271         for_each_pipe(dev_priv, pipe) {
2272                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2273                         drm_handle_vblank(&dev_priv->drm, pipe);
2274         }
2275
2276         /* check event from PCH */
2277         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2278                 u32 pch_iir = I915_READ(SDEIIR);
2279
2280                 cpt_irq_handler(dev_priv, pch_iir);
2281
2282                 /* clear PCH hotplug event before clear CPU irq */
2283                 I915_WRITE(SDEIIR, pch_iir);
2284         }
2285 }
2286
2287 /*
2288  * To handle irqs with the minimum potential races with fresh interrupts, we:
2289  * 1 - Disable Master Interrupt Control.
2290  * 2 - Find the source(s) of the interrupt.
2291  * 3 - Clear the Interrupt Identity bits (IIR).
2292  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2293  * 5 - Re-enable Master Interrupt Control.
2294  */
2295 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2296 {
2297         struct drm_device *dev = arg;
2298         struct drm_i915_private *dev_priv = to_i915(dev);
2299         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2300         irqreturn_t ret = IRQ_NONE;
2301
2302         if (!intel_irqs_enabled(dev_priv))
2303                 return IRQ_NONE;
2304
2305         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2306         disable_rpm_wakeref_asserts(dev_priv);
2307
2308         /* disable master interrupt before clearing iir  */
2309         de_ier = I915_READ(DEIER);
2310         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2311         POSTING_READ(DEIER);
2312
2313         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2314          * interrupts will will be stored on its back queue, and then we'll be
2315          * able to process them after we restore SDEIER (as soon as we restore
2316          * it, we'll get an interrupt if SDEIIR still has something to process
2317          * due to its back queue). */
2318         if (!HAS_PCH_NOP(dev_priv)) {
2319                 sde_ier = I915_READ(SDEIER);
2320                 I915_WRITE(SDEIER, 0);
2321                 POSTING_READ(SDEIER);
2322         }
2323
2324         /* Find, clear, then process each source of interrupt */
2325
2326         gt_iir = I915_READ(GTIIR);
2327         if (gt_iir) {
2328                 I915_WRITE(GTIIR, gt_iir);
2329                 ret = IRQ_HANDLED;
2330                 if (INTEL_GEN(dev_priv) >= 6)
2331                         snb_gt_irq_handler(dev_priv, gt_iir);
2332                 else
2333                         ilk_gt_irq_handler(dev_priv, gt_iir);
2334         }
2335
2336         de_iir = I915_READ(DEIIR);
2337         if (de_iir) {
2338                 I915_WRITE(DEIIR, de_iir);
2339                 ret = IRQ_HANDLED;
2340                 if (INTEL_GEN(dev_priv) >= 7)
2341                         ivb_display_irq_handler(dev_priv, de_iir);
2342                 else
2343                         ilk_display_irq_handler(dev_priv, de_iir);
2344         }
2345
2346         if (INTEL_GEN(dev_priv) >= 6) {
2347                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2348                 if (pm_iir) {
2349                         I915_WRITE(GEN6_PMIIR, pm_iir);
2350                         ret = IRQ_HANDLED;
2351                         gen6_rps_irq_handler(dev_priv, pm_iir);
2352                 }
2353         }
2354
2355         I915_WRITE(DEIER, de_ier);
2356         POSTING_READ(DEIER);
2357         if (!HAS_PCH_NOP(dev_priv)) {
2358                 I915_WRITE(SDEIER, sde_ier);
2359                 POSTING_READ(SDEIER);
2360         }
2361
2362         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2363         enable_rpm_wakeref_asserts(dev_priv);
2364
2365         return ret;
2366 }
2367
2368 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2369                                 u32 hotplug_trigger,
2370                                 const u32 hpd[HPD_NUM_PINS])
2371 {
2372         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2373
2374         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2375         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2376
2377         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2378                            dig_hotplug_reg, hpd,
2379                            bxt_port_hotplug_long_detect);
2380
2381         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2382 }
2383
2384 static irqreturn_t
2385 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2386 {
2387         irqreturn_t ret = IRQ_NONE;
2388         u32 iir;
2389         enum pipe pipe;
2390
2391         if (master_ctl & GEN8_DE_MISC_IRQ) {
2392                 iir = I915_READ(GEN8_DE_MISC_IIR);
2393                 if (iir) {
2394                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2395                         ret = IRQ_HANDLED;
2396                         if (iir & GEN8_DE_MISC_GSE)
2397                                 intel_opregion_asle_intr(dev_priv);
2398                         else
2399                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2400                 }
2401                 else
2402                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2403         }
2404
2405         if (master_ctl & GEN8_DE_PORT_IRQ) {
2406                 iir = I915_READ(GEN8_DE_PORT_IIR);
2407                 if (iir) {
2408                         u32 tmp_mask;
2409                         bool found = false;
2410
2411                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2412                         ret = IRQ_HANDLED;
2413
2414                         tmp_mask = GEN8_AUX_CHANNEL_A;
2415                         if (INTEL_GEN(dev_priv) >= 9)
2416                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2417                                             GEN9_AUX_CHANNEL_C |
2418                                             GEN9_AUX_CHANNEL_D;
2419
2420                         if (iir & tmp_mask) {
2421                                 dp_aux_irq_handler(dev_priv);
2422                                 found = true;
2423                         }
2424
2425                         if (IS_GEN9_LP(dev_priv)) {
2426                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2427                                 if (tmp_mask) {
2428                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2429                                                             hpd_bxt);
2430                                         found = true;
2431                                 }
2432                         } else if (IS_BROADWELL(dev_priv)) {
2433                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2434                                 if (tmp_mask) {
2435                                         ilk_hpd_irq_handler(dev_priv,
2436                                                             tmp_mask, hpd_bdw);
2437                                         found = true;
2438                                 }
2439                         }
2440
2441                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2442                                 gmbus_irq_handler(dev_priv);
2443                                 found = true;
2444                         }
2445
2446                         if (!found)
2447                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2448                 }
2449                 else
2450                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2451         }
2452
2453         for_each_pipe(dev_priv, pipe) {
2454                 u32 fault_errors;
2455
2456                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2457                         continue;
2458
2459                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2460                 if (!iir) {
2461                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2462                         continue;
2463                 }
2464
2465                 ret = IRQ_HANDLED;
2466                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2467
2468                 if (iir & GEN8_PIPE_VBLANK)
2469                         drm_handle_vblank(&dev_priv->drm, pipe);
2470
2471                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2472                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2473
2474                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2475                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2476
2477                 fault_errors = iir;
2478                 if (INTEL_GEN(dev_priv) >= 9)
2479                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2480                 else
2481                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2482
2483                 if (fault_errors)
2484                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2485                                   pipe_name(pipe),
2486                                   fault_errors);
2487         }
2488
2489         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2490             master_ctl & GEN8_DE_PCH_IRQ) {
2491                 /*
2492                  * FIXME(BDW): Assume for now that the new interrupt handling
2493                  * scheme also closed the SDE interrupt handling race we've seen
2494                  * on older pch-split platforms. But this needs testing.
2495                  */
2496                 iir = I915_READ(SDEIIR);
2497                 if (iir) {
2498                         I915_WRITE(SDEIIR, iir);
2499                         ret = IRQ_HANDLED;
2500
2501                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2502                             HAS_PCH_CNP(dev_priv))
2503                                 spt_irq_handler(dev_priv, iir);
2504                         else
2505                                 cpt_irq_handler(dev_priv, iir);
2506                 } else {
2507                         /*
2508                          * Like on previous PCH there seems to be something
2509                          * fishy going on with forwarding PCH interrupts.
2510                          */
2511                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2512                 }
2513         }
2514
2515         return ret;
2516 }
2517
2518 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2519 {
2520         struct drm_device *dev = arg;
2521         struct drm_i915_private *dev_priv = to_i915(dev);
2522         u32 master_ctl;
2523         u32 gt_iir[4] = {};
2524         irqreturn_t ret;
2525
2526         if (!intel_irqs_enabled(dev_priv))
2527                 return IRQ_NONE;
2528
2529         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2530         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2531         if (!master_ctl)
2532                 return IRQ_NONE;
2533
2534         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2535
2536         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2537         disable_rpm_wakeref_asserts(dev_priv);
2538
2539         /* Find, clear, then process each source of interrupt */
2540         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2541         gen8_gt_irq_handler(dev_priv, gt_iir);
2542         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2543
2544         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2545         POSTING_READ_FW(GEN8_MASTER_IRQ);
2546
2547         enable_rpm_wakeref_asserts(dev_priv);
2548
2549         return ret;
2550 }
2551
2552 struct wedge_me {
2553         struct delayed_work work;
2554         struct drm_i915_private *i915;
2555         const char *name;
2556 };
2557
2558 static void wedge_me(struct work_struct *work)
2559 {
2560         struct wedge_me *w = container_of(work, typeof(*w), work.work);
2561
2562         dev_err(w->i915->drm.dev,
2563                 "%s timed out, cancelling all in-flight rendering.\n",
2564                 w->name);
2565         i915_gem_set_wedged(w->i915);
2566 }
2567
2568 static void __init_wedge(struct wedge_me *w,
2569                          struct drm_i915_private *i915,
2570                          long timeout,
2571                          const char *name)
2572 {
2573         w->i915 = i915;
2574         w->name = name;
2575
2576         INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2577         schedule_delayed_work(&w->work, timeout);
2578 }
2579
2580 static void __fini_wedge(struct wedge_me *w)
2581 {
2582         cancel_delayed_work_sync(&w->work);
2583         destroy_delayed_work_on_stack(&w->work);
2584         w->i915 = NULL;
2585 }
2586
2587 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)                          \
2588         for (__init_wedge((W), (DEV), (TIMEOUT), __func__);             \
2589              (W)->i915;                                                 \
2590              __fini_wedge((W)))
2591
2592 /**
2593  * i915_reset_device - do process context error handling work
2594  * @dev_priv: i915 device private
2595  *
2596  * Fire an error uevent so userspace can see that a hang or error
2597  * was detected.
2598  */
2599 static void i915_reset_device(struct drm_i915_private *dev_priv)
2600 {
2601         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2602         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2603         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2604         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2605         struct wedge_me w;
2606
2607         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2608
2609         DRM_DEBUG_DRIVER("resetting chip\n");
2610         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2611
2612         /* Use a watchdog to ensure that our reset completes */
2613         i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2614                 intel_prepare_reset(dev_priv);
2615
2616                 /* Signal that locked waiters should reset the GPU */
2617                 set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2618                 wake_up_all(&dev_priv->gpu_error.wait_queue);
2619
2620                 /* Wait for anyone holding the lock to wakeup, without
2621                  * blocking indefinitely on struct_mutex.
2622                  */
2623                 do {
2624                         if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2625                                 i915_reset(dev_priv, 0);
2626                                 mutex_unlock(&dev_priv->drm.struct_mutex);
2627                         }
2628                 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2629                                              I915_RESET_HANDOFF,
2630                                              TASK_UNINTERRUPTIBLE,
2631                                              1));
2632
2633                 intel_finish_reset(dev_priv);
2634         }
2635
2636         if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2637                 kobject_uevent_env(kobj,
2638                                    KOBJ_CHANGE, reset_done_event);
2639 }
2640
2641 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2642 {
2643         u32 eir;
2644
2645         if (!IS_GEN2(dev_priv))
2646                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2647
2648         if (INTEL_GEN(dev_priv) < 4)
2649                 I915_WRITE(IPEIR, I915_READ(IPEIR));
2650         else
2651                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2652
2653         I915_WRITE(EIR, I915_READ(EIR));
2654         eir = I915_READ(EIR);
2655         if (eir) {
2656                 /*
2657                  * some errors might have become stuck,
2658                  * mask them.
2659                  */
2660                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2661                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2662                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2663         }
2664 }
2665
2666 /**
2667  * i915_handle_error - handle a gpu error
2668  * @dev_priv: i915 device private
2669  * @engine_mask: mask representing engines that are hung
2670  * @fmt: Error message format string
2671  *
2672  * Do some basic checking of register state at error time and
2673  * dump it to the syslog.  Also call i915_capture_error_state() to make
2674  * sure we get a record and make it available in debugfs.  Fire a uevent
2675  * so userspace knows something bad happened (should trigger collection
2676  * of a ring dump etc.).
2677  */
2678 void i915_handle_error(struct drm_i915_private *dev_priv,
2679                        u32 engine_mask,
2680                        const char *fmt, ...)
2681 {
2682         struct intel_engine_cs *engine;
2683         unsigned int tmp;
2684         va_list args;
2685         char error_msg[80];
2686
2687         va_start(args, fmt);
2688         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2689         va_end(args);
2690
2691         /*
2692          * In most cases it's guaranteed that we get here with an RPM
2693          * reference held, for example because there is a pending GPU
2694          * request that won't finish until the reset is done. This
2695          * isn't the case at least when we get here by doing a
2696          * simulated reset via debugfs, so get an RPM reference.
2697          */
2698         intel_runtime_pm_get(dev_priv);
2699
2700         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2701         i915_clear_error_registers(dev_priv);
2702
2703         /*
2704          * Try engine reset when available. We fall back to full reset if
2705          * single reset fails.
2706          */
2707         if (intel_has_reset_engine(dev_priv)) {
2708                 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
2709                         BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
2710                         if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2711                                              &dev_priv->gpu_error.flags))
2712                                 continue;
2713
2714                         if (i915_reset_engine(engine, 0) == 0)
2715                                 engine_mask &= ~intel_engine_flag(engine);
2716
2717                         clear_bit(I915_RESET_ENGINE + engine->id,
2718                                   &dev_priv->gpu_error.flags);
2719                         wake_up_bit(&dev_priv->gpu_error.flags,
2720                                     I915_RESET_ENGINE + engine->id);
2721                 }
2722         }
2723
2724         if (!engine_mask)
2725                 goto out;
2726
2727         /* Full reset needs the mutex, stop any other user trying to do so. */
2728         if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
2729                 wait_event(dev_priv->gpu_error.reset_queue,
2730                            !test_bit(I915_RESET_BACKOFF,
2731                                      &dev_priv->gpu_error.flags));
2732                 goto out;
2733         }
2734
2735         /* Prevent any other reset-engine attempt. */
2736         for_each_engine(engine, dev_priv, tmp) {
2737                 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2738                                         &dev_priv->gpu_error.flags))
2739                         wait_on_bit(&dev_priv->gpu_error.flags,
2740                                     I915_RESET_ENGINE + engine->id,
2741                                     TASK_UNINTERRUPTIBLE);
2742         }
2743
2744         i915_reset_device(dev_priv);
2745
2746         for_each_engine(engine, dev_priv, tmp) {
2747                 clear_bit(I915_RESET_ENGINE + engine->id,
2748                           &dev_priv->gpu_error.flags);
2749         }
2750
2751         clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2752         wake_up_all(&dev_priv->gpu_error.reset_queue);
2753
2754 out:
2755         intel_runtime_pm_put(dev_priv);
2756 }
2757
2758 /* Called from drm generic code, passed 'crtc' which
2759  * we use as a pipe index
2760  */
2761 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2762 {
2763         struct drm_i915_private *dev_priv = to_i915(dev);
2764         unsigned long irqflags;
2765
2766         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2767         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2768         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2769
2770         return 0;
2771 }
2772
2773 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2774 {
2775         struct drm_i915_private *dev_priv = to_i915(dev);
2776         unsigned long irqflags;
2777
2778         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2779         i915_enable_pipestat(dev_priv, pipe,
2780                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2781         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2782
2783         return 0;
2784 }
2785
2786 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2787 {
2788         struct drm_i915_private *dev_priv = to_i915(dev);
2789         unsigned long irqflags;
2790         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2791                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2792
2793         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2794         ilk_enable_display_irq(dev_priv, bit);
2795         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2796
2797         return 0;
2798 }
2799
2800 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2801 {
2802         struct drm_i915_private *dev_priv = to_i915(dev);
2803         unsigned long irqflags;
2804
2805         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2806         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2807         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2808
2809         return 0;
2810 }
2811
2812 /* Called from drm generic code, passed 'crtc' which
2813  * we use as a pipe index
2814  */
2815 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2816 {
2817         struct drm_i915_private *dev_priv = to_i915(dev);
2818         unsigned long irqflags;
2819
2820         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2821         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2822         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2823 }
2824
2825 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2826 {
2827         struct drm_i915_private *dev_priv = to_i915(dev);
2828         unsigned long irqflags;
2829
2830         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2831         i915_disable_pipestat(dev_priv, pipe,
2832                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2833         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2834 }
2835
2836 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2837 {
2838         struct drm_i915_private *dev_priv = to_i915(dev);
2839         unsigned long irqflags;
2840         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2841                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2842
2843         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2844         ilk_disable_display_irq(dev_priv, bit);
2845         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2846 }
2847
2848 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2849 {
2850         struct drm_i915_private *dev_priv = to_i915(dev);
2851         unsigned long irqflags;
2852
2853         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2854         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2855         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2856 }
2857
2858 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2859 {
2860         if (HAS_PCH_NOP(dev_priv))
2861                 return;
2862
2863         GEN5_IRQ_RESET(SDE);
2864
2865         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2866                 I915_WRITE(SERR_INT, 0xffffffff);
2867 }
2868
2869 /*
2870  * SDEIER is also touched by the interrupt handler to work around missed PCH
2871  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2872  * instead we unconditionally enable all PCH interrupt sources here, but then
2873  * only unmask them as needed with SDEIMR.
2874  *
2875  * This function needs to be called before interrupts are enabled.
2876  */
2877 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2878 {
2879         struct drm_i915_private *dev_priv = to_i915(dev);
2880
2881         if (HAS_PCH_NOP(dev_priv))
2882                 return;
2883
2884         WARN_ON(I915_READ(SDEIER) != 0);
2885         I915_WRITE(SDEIER, 0xffffffff);
2886         POSTING_READ(SDEIER);
2887 }
2888
2889 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2890 {
2891         GEN5_IRQ_RESET(GT);
2892         if (INTEL_GEN(dev_priv) >= 6)
2893                 GEN5_IRQ_RESET(GEN6_PM);
2894 }
2895
2896 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2897 {
2898         enum pipe pipe;
2899
2900         if (IS_CHERRYVIEW(dev_priv))
2901                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2902         else
2903                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2904
2905         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2906         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2907
2908         for_each_pipe(dev_priv, pipe) {
2909                 I915_WRITE(PIPESTAT(pipe),
2910                            PIPE_FIFO_UNDERRUN_STATUS |
2911                            PIPESTAT_INT_STATUS_MASK);
2912                 dev_priv->pipestat_irq_mask[pipe] = 0;
2913         }
2914
2915         GEN5_IRQ_RESET(VLV_);
2916         dev_priv->irq_mask = ~0;
2917 }
2918
2919 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2920 {
2921         u32 pipestat_mask;
2922         u32 enable_mask;
2923         enum pipe pipe;
2924
2925         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2926                         PIPE_CRC_DONE_INTERRUPT_STATUS;
2927
2928         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2929         for_each_pipe(dev_priv, pipe)
2930                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2931
2932         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2933                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2934                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2935                 I915_LPE_PIPE_A_INTERRUPT |
2936                 I915_LPE_PIPE_B_INTERRUPT;
2937
2938         if (IS_CHERRYVIEW(dev_priv))
2939                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2940                         I915_LPE_PIPE_C_INTERRUPT;
2941
2942         WARN_ON(dev_priv->irq_mask != ~0);
2943
2944         dev_priv->irq_mask = ~enable_mask;
2945
2946         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2947 }
2948
2949 /* drm_dma.h hooks
2950 */
2951 static void ironlake_irq_reset(struct drm_device *dev)
2952 {
2953         struct drm_i915_private *dev_priv = to_i915(dev);
2954
2955         I915_WRITE(HWSTAM, 0xffffffff);
2956
2957         GEN5_IRQ_RESET(DE);
2958         if (IS_GEN7(dev_priv))
2959                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2960
2961         gen5_gt_irq_reset(dev_priv);
2962
2963         ibx_irq_reset(dev_priv);
2964 }
2965
2966 static void valleyview_irq_preinstall(struct drm_device *dev)
2967 {
2968         struct drm_i915_private *dev_priv = to_i915(dev);
2969
2970         I915_WRITE(VLV_MASTER_IER, 0);
2971         POSTING_READ(VLV_MASTER_IER);
2972
2973         gen5_gt_irq_reset(dev_priv);
2974
2975         spin_lock_irq(&dev_priv->irq_lock);
2976         if (dev_priv->display_irqs_enabled)
2977                 vlv_display_irq_reset(dev_priv);
2978         spin_unlock_irq(&dev_priv->irq_lock);
2979 }
2980
2981 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2982 {
2983         GEN8_IRQ_RESET_NDX(GT, 0);
2984         GEN8_IRQ_RESET_NDX(GT, 1);
2985         GEN8_IRQ_RESET_NDX(GT, 2);
2986         GEN8_IRQ_RESET_NDX(GT, 3);
2987 }
2988
2989 static void gen8_irq_reset(struct drm_device *dev)
2990 {
2991         struct drm_i915_private *dev_priv = to_i915(dev);
2992         int pipe;
2993
2994         I915_WRITE(GEN8_MASTER_IRQ, 0);
2995         POSTING_READ(GEN8_MASTER_IRQ);
2996
2997         gen8_gt_irq_reset(dev_priv);
2998
2999         for_each_pipe(dev_priv, pipe)
3000                 if (intel_display_power_is_enabled(dev_priv,
3001                                                    POWER_DOMAIN_PIPE(pipe)))
3002                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3003
3004         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3005         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3006         GEN5_IRQ_RESET(GEN8_PCU_);
3007
3008         if (HAS_PCH_SPLIT(dev_priv))
3009                 ibx_irq_reset(dev_priv);
3010 }
3011
3012 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3013                                      u8 pipe_mask)
3014 {
3015         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3016         enum pipe pipe;
3017
3018         spin_lock_irq(&dev_priv->irq_lock);
3019         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3020                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3021                                   dev_priv->de_irq_mask[pipe],
3022                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3023         spin_unlock_irq(&dev_priv->irq_lock);
3024 }
3025
3026 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3027                                      u8 pipe_mask)
3028 {
3029         enum pipe pipe;
3030
3031         spin_lock_irq(&dev_priv->irq_lock);
3032         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3033                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3034         spin_unlock_irq(&dev_priv->irq_lock);
3035
3036         /* make sure we're done processing display irqs */
3037         synchronize_irq(dev_priv->drm.irq);
3038 }
3039
3040 static void cherryview_irq_preinstall(struct drm_device *dev)
3041 {
3042         struct drm_i915_private *dev_priv = to_i915(dev);
3043
3044         I915_WRITE(GEN8_MASTER_IRQ, 0);
3045         POSTING_READ(GEN8_MASTER_IRQ);
3046
3047         gen8_gt_irq_reset(dev_priv);
3048
3049         GEN5_IRQ_RESET(GEN8_PCU_);
3050
3051         spin_lock_irq(&dev_priv->irq_lock);
3052         if (dev_priv->display_irqs_enabled)
3053                 vlv_display_irq_reset(dev_priv);
3054         spin_unlock_irq(&dev_priv->irq_lock);
3055 }
3056
3057 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3058                                   const u32 hpd[HPD_NUM_PINS])
3059 {
3060         struct intel_encoder *encoder;
3061         u32 enabled_irqs = 0;
3062
3063         for_each_intel_encoder(&dev_priv->drm, encoder)
3064                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3065                         enabled_irqs |= hpd[encoder->hpd_pin];
3066
3067         return enabled_irqs;
3068 }
3069
3070 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3071 {
3072         u32 hotplug;
3073
3074         /*
3075          * Enable digital hotplug on the PCH, and configure the DP short pulse
3076          * duration to 2ms (which is the minimum in the Display Port spec).
3077          * The pulse duration bits are reserved on LPT+.
3078          */
3079         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3080         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3081                      PORTC_PULSE_DURATION_MASK |
3082                      PORTD_PULSE_DURATION_MASK);
3083         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3084         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3085         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3086         /*
3087          * When CPU and PCH are on the same package, port A
3088          * HPD must be enabled in both north and south.
3089          */
3090         if (HAS_PCH_LPT_LP(dev_priv))
3091                 hotplug |= PORTA_HOTPLUG_ENABLE;
3092         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3093 }
3094
3095 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3096 {
3097         u32 hotplug_irqs, enabled_irqs;
3098
3099         if (HAS_PCH_IBX(dev_priv)) {
3100                 hotplug_irqs = SDE_HOTPLUG_MASK;
3101                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3102         } else {
3103                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3104                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3105         }
3106
3107         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3108
3109         ibx_hpd_detection_setup(dev_priv);
3110 }
3111
3112 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3113 {
3114         u32 hotplug;
3115
3116         /* Enable digital hotplug on the PCH */
3117         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3118         hotplug |= PORTA_HOTPLUG_ENABLE |
3119                    PORTB_HOTPLUG_ENABLE |
3120                    PORTC_HOTPLUG_ENABLE |
3121                    PORTD_HOTPLUG_ENABLE;
3122         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3123
3124         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3125         hotplug |= PORTE_HOTPLUG_ENABLE;
3126         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3127 }
3128
3129 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3130 {
3131         u32 hotplug_irqs, enabled_irqs;
3132
3133         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3134         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3135
3136         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3137
3138         spt_hpd_detection_setup(dev_priv);
3139 }
3140
3141 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3142 {
3143         u32 hotplug;
3144
3145         /*
3146          * Enable digital hotplug on the CPU, and configure the DP short pulse
3147          * duration to 2ms (which is the minimum in the Display Port spec)
3148          * The pulse duration bits are reserved on HSW+.
3149          */
3150         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3151         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3152         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3153                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3154         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3155 }
3156
3157 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3158 {
3159         u32 hotplug_irqs, enabled_irqs;
3160
3161         if (INTEL_GEN(dev_priv) >= 8) {
3162                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3163                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3164
3165                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3166         } else if (INTEL_GEN(dev_priv) >= 7) {
3167                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3168                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3169
3170                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3171         } else {
3172                 hotplug_irqs = DE_DP_A_HOTPLUG;
3173                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3174
3175                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3176         }
3177
3178         ilk_hpd_detection_setup(dev_priv);
3179
3180         ibx_hpd_irq_setup(dev_priv);
3181 }
3182
3183 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3184                                       u32 enabled_irqs)
3185 {
3186         u32 hotplug;
3187
3188         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3189         hotplug |= PORTA_HOTPLUG_ENABLE |
3190                    PORTB_HOTPLUG_ENABLE |
3191                    PORTC_HOTPLUG_ENABLE;
3192
3193         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3194                       hotplug, enabled_irqs);
3195         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3196
3197         /*
3198          * For BXT invert bit has to be set based on AOB design
3199          * for HPD detection logic, update it based on VBT fields.
3200          */
3201         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3202             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3203                 hotplug |= BXT_DDIA_HPD_INVERT;
3204         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3205             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3206                 hotplug |= BXT_DDIB_HPD_INVERT;
3207         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3208             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3209                 hotplug |= BXT_DDIC_HPD_INVERT;
3210
3211         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3212 }
3213
3214 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3215 {
3216         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3217 }
3218
3219 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3220 {
3221         u32 hotplug_irqs, enabled_irqs;
3222
3223         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3224         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3225
3226         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3227
3228         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3229 }
3230
3231 static void ibx_irq_postinstall(struct drm_device *dev)
3232 {
3233         struct drm_i915_private *dev_priv = to_i915(dev);
3234         u32 mask;
3235
3236         if (HAS_PCH_NOP(dev_priv))
3237                 return;
3238
3239         if (HAS_PCH_IBX(dev_priv))
3240                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3241         else
3242                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3243
3244         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3245         I915_WRITE(SDEIMR, ~mask);
3246
3247         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3248             HAS_PCH_LPT(dev_priv))
3249                 ibx_hpd_detection_setup(dev_priv);
3250         else
3251                 spt_hpd_detection_setup(dev_priv);
3252 }
3253
3254 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3255 {
3256         struct drm_i915_private *dev_priv = to_i915(dev);
3257         u32 pm_irqs, gt_irqs;
3258
3259         pm_irqs = gt_irqs = 0;
3260
3261         dev_priv->gt_irq_mask = ~0;
3262         if (HAS_L3_DPF(dev_priv)) {
3263                 /* L3 parity interrupt is always unmasked. */
3264                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3265                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3266         }
3267
3268         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3269         if (IS_GEN5(dev_priv)) {
3270                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3271         } else {
3272                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3273         }
3274
3275         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3276
3277         if (INTEL_GEN(dev_priv) >= 6) {
3278                 /*
3279                  * RPS interrupts will get enabled/disabled on demand when RPS
3280                  * itself is enabled/disabled.
3281                  */
3282                 if (HAS_VEBOX(dev_priv)) {
3283                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3284                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3285                 }
3286
3287                 dev_priv->pm_imr = 0xffffffff;
3288                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3289         }
3290 }
3291
3292 static int ironlake_irq_postinstall(struct drm_device *dev)
3293 {
3294         struct drm_i915_private *dev_priv = to_i915(dev);
3295         u32 display_mask, extra_mask;
3296
3297         if (INTEL_GEN(dev_priv) >= 7) {
3298                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3299                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3300                                 DE_PLANEB_FLIP_DONE_IVB |
3301                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3302                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3303                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3304                               DE_DP_A_HOTPLUG_IVB);
3305         } else {
3306                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3307                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3308                                 DE_AUX_CHANNEL_A |
3309                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3310                                 DE_POISON);
3311                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3312                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3313                               DE_DP_A_HOTPLUG);
3314         }
3315
3316         dev_priv->irq_mask = ~display_mask;
3317
3318         I915_WRITE(HWSTAM, 0xeffe);
3319
3320         ibx_irq_pre_postinstall(dev);
3321
3322         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3323
3324         gen5_gt_irq_postinstall(dev);
3325
3326         ilk_hpd_detection_setup(dev_priv);
3327
3328         ibx_irq_postinstall(dev);
3329
3330         if (IS_IRONLAKE_M(dev_priv)) {
3331                 /* Enable PCU event interrupts
3332                  *
3333                  * spinlocking not required here for correctness since interrupt
3334                  * setup is guaranteed to run in single-threaded context. But we
3335                  * need it to make the assert_spin_locked happy. */
3336                 spin_lock_irq(&dev_priv->irq_lock);
3337                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3338                 spin_unlock_irq(&dev_priv->irq_lock);
3339         }
3340
3341         return 0;
3342 }
3343
3344 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3345 {
3346         lockdep_assert_held(&dev_priv->irq_lock);
3347
3348         if (dev_priv->display_irqs_enabled)
3349                 return;
3350
3351         dev_priv->display_irqs_enabled = true;
3352
3353         if (intel_irqs_enabled(dev_priv)) {
3354                 vlv_display_irq_reset(dev_priv);
3355                 vlv_display_irq_postinstall(dev_priv);
3356         }
3357 }
3358
3359 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3360 {
3361         lockdep_assert_held(&dev_priv->irq_lock);
3362
3363         if (!dev_priv->display_irqs_enabled)
3364                 return;
3365
3366         dev_priv->display_irqs_enabled = false;
3367
3368         if (intel_irqs_enabled(dev_priv))
3369                 vlv_display_irq_reset(dev_priv);
3370 }
3371
3372
3373 static int valleyview_irq_postinstall(struct drm_device *dev)
3374 {
3375         struct drm_i915_private *dev_priv = to_i915(dev);
3376
3377         gen5_gt_irq_postinstall(dev);
3378
3379         spin_lock_irq(&dev_priv->irq_lock);
3380         if (dev_priv->display_irqs_enabled)
3381                 vlv_display_irq_postinstall(dev_priv);
3382         spin_unlock_irq(&dev_priv->irq_lock);
3383
3384         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3385         POSTING_READ(VLV_MASTER_IER);
3386
3387         return 0;
3388 }
3389
3390 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3391 {
3392         /* These are interrupts we'll toggle with the ring mask register */
3393         uint32_t gt_interrupts[] = {
3394                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3395                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3396                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3397                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3398                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3399                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3400                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3401                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3402                 0,
3403                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3404                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3405                 };
3406
3407         if (HAS_L3_DPF(dev_priv))
3408                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3409
3410         dev_priv->pm_ier = 0x0;
3411         dev_priv->pm_imr = ~dev_priv->pm_ier;
3412         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3413         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3414         /*
3415          * RPS interrupts will get enabled/disabled on demand when RPS itself
3416          * is enabled/disabled. Same wil be the case for GuC interrupts.
3417          */
3418         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3419         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3420 }
3421
3422 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3423 {
3424         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3425         uint32_t de_pipe_enables;
3426         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3427         u32 de_port_enables;
3428         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3429         enum pipe pipe;
3430
3431         if (INTEL_GEN(dev_priv) >= 9) {
3432                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3433                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3434                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3435                                   GEN9_AUX_CHANNEL_D;
3436                 if (IS_GEN9_LP(dev_priv))
3437                         de_port_masked |= BXT_DE_PORT_GMBUS;
3438         } else {
3439                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3440                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3441         }
3442
3443         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3444                                            GEN8_PIPE_FIFO_UNDERRUN;
3445
3446         de_port_enables = de_port_masked;
3447         if (IS_GEN9_LP(dev_priv))
3448                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3449         else if (IS_BROADWELL(dev_priv))
3450                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3451
3452         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3453         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3454         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3455
3456         for_each_pipe(dev_priv, pipe)
3457                 if (intel_display_power_is_enabled(dev_priv,
3458                                 POWER_DOMAIN_PIPE(pipe)))
3459                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3460                                           dev_priv->de_irq_mask[pipe],
3461                                           de_pipe_enables);
3462
3463         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3464         GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3465
3466         if (IS_GEN9_LP(dev_priv))
3467                 bxt_hpd_detection_setup(dev_priv);
3468         else if (IS_BROADWELL(dev_priv))
3469                 ilk_hpd_detection_setup(dev_priv);
3470 }
3471
3472 static int gen8_irq_postinstall(struct drm_device *dev)
3473 {
3474         struct drm_i915_private *dev_priv = to_i915(dev);
3475
3476         if (HAS_PCH_SPLIT(dev_priv))
3477                 ibx_irq_pre_postinstall(dev);
3478
3479         gen8_gt_irq_postinstall(dev_priv);
3480         gen8_de_irq_postinstall(dev_priv);
3481
3482         if (HAS_PCH_SPLIT(dev_priv))
3483                 ibx_irq_postinstall(dev);
3484
3485         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3486         POSTING_READ(GEN8_MASTER_IRQ);
3487
3488         return 0;
3489 }
3490
3491 static int cherryview_irq_postinstall(struct drm_device *dev)
3492 {
3493         struct drm_i915_private *dev_priv = to_i915(dev);
3494
3495         gen8_gt_irq_postinstall(dev_priv);
3496
3497         spin_lock_irq(&dev_priv->irq_lock);
3498         if (dev_priv->display_irqs_enabled)
3499                 vlv_display_irq_postinstall(dev_priv);
3500         spin_unlock_irq(&dev_priv->irq_lock);
3501
3502         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3503         POSTING_READ(GEN8_MASTER_IRQ);
3504
3505         return 0;
3506 }
3507
3508 static void gen8_irq_uninstall(struct drm_device *dev)
3509 {
3510         struct drm_i915_private *dev_priv = to_i915(dev);
3511
3512         if (!dev_priv)
3513                 return;
3514
3515         gen8_irq_reset(dev);
3516 }
3517
3518 static void valleyview_irq_uninstall(struct drm_device *dev)
3519 {
3520         struct drm_i915_private *dev_priv = to_i915(dev);
3521
3522         if (!dev_priv)
3523                 return;
3524
3525         I915_WRITE(VLV_MASTER_IER, 0);
3526         POSTING_READ(VLV_MASTER_IER);
3527
3528         gen5_gt_irq_reset(dev_priv);
3529
3530         I915_WRITE(HWSTAM, 0xffffffff);
3531
3532         spin_lock_irq(&dev_priv->irq_lock);
3533         if (dev_priv->display_irqs_enabled)
3534                 vlv_display_irq_reset(dev_priv);
3535         spin_unlock_irq(&dev_priv->irq_lock);
3536 }
3537
3538 static void cherryview_irq_uninstall(struct drm_device *dev)
3539 {
3540         struct drm_i915_private *dev_priv = to_i915(dev);
3541
3542         if (!dev_priv)
3543                 return;
3544
3545         I915_WRITE(GEN8_MASTER_IRQ, 0);
3546         POSTING_READ(GEN8_MASTER_IRQ);
3547
3548         gen8_gt_irq_reset(dev_priv);
3549
3550         GEN5_IRQ_RESET(GEN8_PCU_);
3551
3552         spin_lock_irq(&dev_priv->irq_lock);
3553         if (dev_priv->display_irqs_enabled)
3554                 vlv_display_irq_reset(dev_priv);
3555         spin_unlock_irq(&dev_priv->irq_lock);
3556 }
3557
3558 static void ironlake_irq_uninstall(struct drm_device *dev)
3559 {
3560         struct drm_i915_private *dev_priv = to_i915(dev);
3561
3562         if (!dev_priv)
3563                 return;
3564
3565         ironlake_irq_reset(dev);
3566 }
3567
3568 static void i8xx_irq_preinstall(struct drm_device * dev)
3569 {
3570         struct drm_i915_private *dev_priv = to_i915(dev);
3571         int pipe;
3572
3573         for_each_pipe(dev_priv, pipe)
3574                 I915_WRITE(PIPESTAT(pipe), 0);
3575         I915_WRITE16(IMR, 0xffff);
3576         I915_WRITE16(IER, 0x0);
3577         POSTING_READ16(IER);
3578 }
3579
3580 static int i8xx_irq_postinstall(struct drm_device *dev)
3581 {
3582         struct drm_i915_private *dev_priv = to_i915(dev);
3583
3584         I915_WRITE16(EMR,
3585                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3586
3587         /* Unmask the interrupts that we always want on. */
3588         dev_priv->irq_mask =
3589                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3590                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3591                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3592                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3593         I915_WRITE16(IMR, dev_priv->irq_mask);
3594
3595         I915_WRITE16(IER,
3596                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3597                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3598                      I915_USER_INTERRUPT);
3599         POSTING_READ16(IER);
3600
3601         /* Interrupt setup is already guaranteed to be single-threaded, this is
3602          * just to make the assert_spin_locked check happy. */
3603         spin_lock_irq(&dev_priv->irq_lock);
3604         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3605         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3606         spin_unlock_irq(&dev_priv->irq_lock);
3607
3608         return 0;
3609 }
3610
3611 /*
3612  * Returns true when a page flip has completed.
3613  */
3614 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3615 {
3616         struct drm_device *dev = arg;
3617         struct drm_i915_private *dev_priv = to_i915(dev);
3618         u16 iir, new_iir;
3619         u32 pipe_stats[2];
3620         int pipe;
3621         irqreturn_t ret;
3622
3623         if (!intel_irqs_enabled(dev_priv))
3624                 return IRQ_NONE;
3625
3626         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3627         disable_rpm_wakeref_asserts(dev_priv);
3628
3629         ret = IRQ_NONE;
3630         iir = I915_READ16(IIR);
3631         if (iir == 0)
3632                 goto out;
3633
3634         while (iir) {
3635                 /* Can't rely on pipestat interrupt bit in iir as it might
3636                  * have been cleared after the pipestat interrupt was received.
3637                  * It doesn't set the bit in iir again, but it still produces
3638                  * interrupts (for non-MSI).
3639                  */
3640                 spin_lock(&dev_priv->irq_lock);
3641                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3642                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3643
3644                 for_each_pipe(dev_priv, pipe) {
3645                         i915_reg_t reg = PIPESTAT(pipe);
3646                         pipe_stats[pipe] = I915_READ(reg);
3647
3648                         /*
3649                          * Clear the PIPE*STAT regs before the IIR
3650                          */
3651                         if (pipe_stats[pipe] & 0x8000ffff)
3652                                 I915_WRITE(reg, pipe_stats[pipe]);
3653                 }
3654                 spin_unlock(&dev_priv->irq_lock);
3655
3656                 I915_WRITE16(IIR, iir);
3657                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3658
3659                 if (iir & I915_USER_INTERRUPT)
3660                         notify_ring(dev_priv->engine[RCS]);
3661
3662                 for_each_pipe(dev_priv, pipe) {
3663                         int plane = pipe;
3664                         if (HAS_FBC(dev_priv))
3665                                 plane = !plane;
3666
3667                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
3668                                 drm_handle_vblank(&dev_priv->drm, pipe);
3669
3670                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3671                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3672
3673                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3674                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3675                                                                     pipe);
3676                 }
3677
3678                 iir = new_iir;
3679         }
3680         ret = IRQ_HANDLED;
3681
3682 out:
3683         enable_rpm_wakeref_asserts(dev_priv);
3684
3685         return ret;
3686 }
3687
3688 static void i8xx_irq_uninstall(struct drm_device * dev)
3689 {
3690         struct drm_i915_private *dev_priv = to_i915(dev);
3691         int pipe;
3692
3693         for_each_pipe(dev_priv, pipe) {
3694                 /* Clear enable bits; then clear status bits */
3695                 I915_WRITE(PIPESTAT(pipe), 0);
3696                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3697         }
3698         I915_WRITE16(IMR, 0xffff);
3699         I915_WRITE16(IER, 0x0);
3700         I915_WRITE16(IIR, I915_READ16(IIR));
3701 }
3702
3703 static void i915_irq_preinstall(struct drm_device * dev)
3704 {
3705         struct drm_i915_private *dev_priv = to_i915(dev);
3706         int pipe;
3707
3708         if (I915_HAS_HOTPLUG(dev_priv)) {
3709                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3710                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3711         }
3712
3713         I915_WRITE16(HWSTAM, 0xeffe);
3714         for_each_pipe(dev_priv, pipe)
3715                 I915_WRITE(PIPESTAT(pipe), 0);
3716         I915_WRITE(IMR, 0xffffffff);
3717         I915_WRITE(IER, 0x0);
3718         POSTING_READ(IER);
3719 }
3720
3721 static int i915_irq_postinstall(struct drm_device *dev)
3722 {
3723         struct drm_i915_private *dev_priv = to_i915(dev);
3724         u32 enable_mask;
3725
3726         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3727
3728         /* Unmask the interrupts that we always want on. */
3729         dev_priv->irq_mask =
3730                 ~(I915_ASLE_INTERRUPT |
3731                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3732                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3733                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3734                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3735
3736         enable_mask =
3737                 I915_ASLE_INTERRUPT |
3738                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3739                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3740                 I915_USER_INTERRUPT;
3741
3742         if (I915_HAS_HOTPLUG(dev_priv)) {
3743                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3744                 POSTING_READ(PORT_HOTPLUG_EN);
3745
3746                 /* Enable in IER... */
3747                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3748                 /* and unmask in IMR */
3749                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3750         }
3751
3752         I915_WRITE(IMR, dev_priv->irq_mask);
3753         I915_WRITE(IER, enable_mask);
3754         POSTING_READ(IER);
3755
3756         i915_enable_asle_pipestat(dev_priv);
3757
3758         /* Interrupt setup is already guaranteed to be single-threaded, this is
3759          * just to make the assert_spin_locked check happy. */
3760         spin_lock_irq(&dev_priv->irq_lock);
3761         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3762         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3763         spin_unlock_irq(&dev_priv->irq_lock);
3764
3765         return 0;
3766 }
3767
3768 static irqreturn_t i915_irq_handler(int irq, void *arg)
3769 {
3770         struct drm_device *dev = arg;
3771         struct drm_i915_private *dev_priv = to_i915(dev);
3772         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3773         int pipe, ret = IRQ_NONE;
3774
3775         if (!intel_irqs_enabled(dev_priv))
3776                 return IRQ_NONE;
3777
3778         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3779         disable_rpm_wakeref_asserts(dev_priv);
3780
3781         iir = I915_READ(IIR);
3782         do {
3783                 bool irq_received = (iir) != 0;
3784                 bool blc_event = false;
3785
3786                 /* Can't rely on pipestat interrupt bit in iir as it might
3787                  * have been cleared after the pipestat interrupt was received.
3788                  * It doesn't set the bit in iir again, but it still produces
3789                  * interrupts (for non-MSI).
3790                  */
3791                 spin_lock(&dev_priv->irq_lock);
3792                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3793                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3794
3795                 for_each_pipe(dev_priv, pipe) {
3796                         i915_reg_t reg = PIPESTAT(pipe);
3797                         pipe_stats[pipe] = I915_READ(reg);
3798
3799                         /* Clear the PIPE*STAT regs before the IIR */
3800                         if (pipe_stats[pipe] & 0x8000ffff) {
3801                                 I915_WRITE(reg, pipe_stats[pipe]);
3802                                 irq_received = true;
3803                         }
3804                 }
3805                 spin_unlock(&dev_priv->irq_lock);
3806
3807                 if (!irq_received)
3808                         break;
3809
3810                 /* Consume port.  Then clear IIR or we'll miss events */
3811                 if (I915_HAS_HOTPLUG(dev_priv) &&
3812                     iir & I915_DISPLAY_PORT_INTERRUPT) {
3813                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3814                         if (hotplug_status)
3815                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3816                 }
3817
3818                 I915_WRITE(IIR, iir);
3819                 new_iir = I915_READ(IIR); /* Flush posted writes */
3820
3821                 if (iir & I915_USER_INTERRUPT)
3822                         notify_ring(dev_priv->engine[RCS]);
3823
3824                 for_each_pipe(dev_priv, pipe) {
3825                         int plane = pipe;
3826                         if (HAS_FBC(dev_priv))
3827                                 plane = !plane;
3828
3829                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
3830                                 drm_handle_vblank(&dev_priv->drm, pipe);
3831
3832                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3833                                 blc_event = true;
3834
3835                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3836                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3837
3838                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3839                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3840                                                                     pipe);
3841                 }
3842
3843                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3844                         intel_opregion_asle_intr(dev_priv);
3845
3846                 /* With MSI, interrupts are only generated when iir
3847                  * transitions from zero to nonzero.  If another bit got
3848                  * set while we were handling the existing iir bits, then
3849                  * we would never get another interrupt.
3850                  *
3851                  * This is fine on non-MSI as well, as if we hit this path
3852                  * we avoid exiting the interrupt handler only to generate
3853                  * another one.
3854                  *
3855                  * Note that for MSI this could cause a stray interrupt report
3856                  * if an interrupt landed in the time between writing IIR and
3857                  * the posting read.  This should be rare enough to never
3858                  * trigger the 99% of 100,000 interrupts test for disabling
3859                  * stray interrupts.
3860                  */
3861                 ret = IRQ_HANDLED;
3862                 iir = new_iir;
3863         } while (iir);
3864
3865         enable_rpm_wakeref_asserts(dev_priv);
3866
3867         return ret;
3868 }
3869
3870 static void i915_irq_uninstall(struct drm_device * dev)
3871 {
3872         struct drm_i915_private *dev_priv = to_i915(dev);
3873         int pipe;
3874
3875         if (I915_HAS_HOTPLUG(dev_priv)) {
3876                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3877                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3878         }
3879
3880         I915_WRITE16(HWSTAM, 0xffff);
3881         for_each_pipe(dev_priv, pipe) {
3882                 /* Clear enable bits; then clear status bits */
3883                 I915_WRITE(PIPESTAT(pipe), 0);
3884                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3885         }
3886         I915_WRITE(IMR, 0xffffffff);
3887         I915_WRITE(IER, 0x0);
3888
3889         I915_WRITE(IIR, I915_READ(IIR));
3890 }
3891
3892 static void i965_irq_preinstall(struct drm_device * dev)
3893 {
3894         struct drm_i915_private *dev_priv = to_i915(dev);
3895         int pipe;
3896
3897         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3898         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3899
3900         I915_WRITE(HWSTAM, 0xeffe);
3901         for_each_pipe(dev_priv, pipe)
3902                 I915_WRITE(PIPESTAT(pipe), 0);
3903         I915_WRITE(IMR, 0xffffffff);
3904         I915_WRITE(IER, 0x0);
3905         POSTING_READ(IER);
3906 }
3907
3908 static int i965_irq_postinstall(struct drm_device *dev)
3909 {
3910         struct drm_i915_private *dev_priv = to_i915(dev);
3911         u32 enable_mask;
3912         u32 error_mask;
3913
3914         /* Unmask the interrupts that we always want on. */
3915         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3916                                I915_DISPLAY_PORT_INTERRUPT |
3917                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3918                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3919                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3920                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3921                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3922
3923         enable_mask = ~dev_priv->irq_mask;
3924         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3925                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3926         enable_mask |= I915_USER_INTERRUPT;
3927
3928         if (IS_G4X(dev_priv))
3929                 enable_mask |= I915_BSD_USER_INTERRUPT;
3930
3931         /* Interrupt setup is already guaranteed to be single-threaded, this is
3932          * just to make the assert_spin_locked check happy. */
3933         spin_lock_irq(&dev_priv->irq_lock);
3934         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3935         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3936         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3937         spin_unlock_irq(&dev_priv->irq_lock);
3938
3939         /*
3940          * Enable some error detection, note the instruction error mask
3941          * bit is reserved, so we leave it masked.
3942          */
3943         if (IS_G4X(dev_priv)) {
3944                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3945                                GM45_ERROR_MEM_PRIV |
3946                                GM45_ERROR_CP_PRIV |
3947                                I915_ERROR_MEMORY_REFRESH);
3948         } else {
3949                 error_mask = ~(I915_ERROR_PAGE_TABLE |
3950                                I915_ERROR_MEMORY_REFRESH);
3951         }
3952         I915_WRITE(EMR, error_mask);
3953
3954         I915_WRITE(IMR, dev_priv->irq_mask);
3955         I915_WRITE(IER, enable_mask);
3956         POSTING_READ(IER);
3957
3958         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3959         POSTING_READ(PORT_HOTPLUG_EN);
3960
3961         i915_enable_asle_pipestat(dev_priv);
3962
3963         return 0;
3964 }
3965
3966 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3967 {
3968         u32 hotplug_en;
3969
3970         lockdep_assert_held(&dev_priv->irq_lock);
3971
3972         /* Note HDMI and DP share hotplug bits */
3973         /* enable bits are the same for all generations */
3974         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3975         /* Programming the CRT detection parameters tends
3976            to generate a spurious hotplug event about three
3977            seconds later.  So just do it once.
3978         */
3979         if (IS_G4X(dev_priv))
3980                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3981         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3982
3983         /* Ignore TV since it's buggy */
3984         i915_hotplug_interrupt_update_locked(dev_priv,
3985                                              HOTPLUG_INT_EN_MASK |
3986                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3987                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3988                                              hotplug_en);
3989 }
3990
3991 static irqreturn_t i965_irq_handler(int irq, void *arg)
3992 {
3993         struct drm_device *dev = arg;
3994         struct drm_i915_private *dev_priv = to_i915(dev);
3995         u32 iir, new_iir;
3996         u32 pipe_stats[I915_MAX_PIPES];
3997         int ret = IRQ_NONE, pipe;
3998
3999         if (!intel_irqs_enabled(dev_priv))
4000                 return IRQ_NONE;
4001
4002         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4003         disable_rpm_wakeref_asserts(dev_priv);
4004
4005         iir = I915_READ(IIR);
4006
4007         for (;;) {
4008                 bool irq_received = (iir) != 0;
4009                 bool blc_event = false;
4010
4011                 /* Can't rely on pipestat interrupt bit in iir as it might
4012                  * have been cleared after the pipestat interrupt was received.
4013                  * It doesn't set the bit in iir again, but it still produces
4014                  * interrupts (for non-MSI).
4015                  */
4016                 spin_lock(&dev_priv->irq_lock);
4017                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4018                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4019
4020                 for_each_pipe(dev_priv, pipe) {
4021                         i915_reg_t reg = PIPESTAT(pipe);
4022                         pipe_stats[pipe] = I915_READ(reg);
4023
4024                         /*
4025                          * Clear the PIPE*STAT regs before the IIR
4026                          */
4027                         if (pipe_stats[pipe] & 0x8000ffff) {
4028                                 I915_WRITE(reg, pipe_stats[pipe]);
4029                                 irq_received = true;
4030                         }
4031                 }
4032                 spin_unlock(&dev_priv->irq_lock);
4033
4034                 if (!irq_received)
4035                         break;
4036
4037                 ret = IRQ_HANDLED;
4038
4039                 /* Consume port.  Then clear IIR or we'll miss events */
4040                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4041                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4042                         if (hotplug_status)
4043                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4044                 }
4045
4046                 I915_WRITE(IIR, iir);
4047                 new_iir = I915_READ(IIR); /* Flush posted writes */
4048
4049                 if (iir & I915_USER_INTERRUPT)
4050                         notify_ring(dev_priv->engine[RCS]);
4051                 if (iir & I915_BSD_USER_INTERRUPT)
4052                         notify_ring(dev_priv->engine[VCS]);
4053
4054                 for_each_pipe(dev_priv, pipe) {
4055                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
4056                                 drm_handle_vblank(&dev_priv->drm, pipe);
4057
4058                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4059                                 blc_event = true;
4060
4061                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4062                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4063
4064                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4065                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4066                 }
4067
4068                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4069                         intel_opregion_asle_intr(dev_priv);
4070
4071                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4072                         gmbus_irq_handler(dev_priv);
4073
4074                 /* With MSI, interrupts are only generated when iir
4075                  * transitions from zero to nonzero.  If another bit got
4076                  * set while we were handling the existing iir bits, then
4077                  * we would never get another interrupt.
4078                  *
4079                  * This is fine on non-MSI as well, as if we hit this path
4080                  * we avoid exiting the interrupt handler only to generate
4081                  * another one.
4082                  *
4083                  * Note that for MSI this could cause a stray interrupt report
4084                  * if an interrupt landed in the time between writing IIR and
4085                  * the posting read.  This should be rare enough to never
4086                  * trigger the 99% of 100,000 interrupts test for disabling
4087                  * stray interrupts.
4088                  */
4089                 iir = new_iir;
4090         }
4091
4092         enable_rpm_wakeref_asserts(dev_priv);
4093
4094         return ret;
4095 }
4096
4097 static void i965_irq_uninstall(struct drm_device * dev)
4098 {
4099         struct drm_i915_private *dev_priv = to_i915(dev);
4100         int pipe;
4101
4102         if (!dev_priv)
4103                 return;
4104
4105         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4106         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4107
4108         I915_WRITE(HWSTAM, 0xffffffff);
4109         for_each_pipe(dev_priv, pipe)
4110                 I915_WRITE(PIPESTAT(pipe), 0);
4111         I915_WRITE(IMR, 0xffffffff);
4112         I915_WRITE(IER, 0x0);
4113
4114         for_each_pipe(dev_priv, pipe)
4115                 I915_WRITE(PIPESTAT(pipe),
4116                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4117         I915_WRITE(IIR, I915_READ(IIR));
4118 }
4119
4120 /**
4121  * intel_irq_init - initializes irq support
4122  * @dev_priv: i915 device instance
4123  *
4124  * This function initializes all the irq support including work items, timers
4125  * and all the vtables. It does not setup the interrupt itself though.
4126  */
4127 void intel_irq_init(struct drm_i915_private *dev_priv)
4128 {
4129         struct drm_device *dev = &dev_priv->drm;
4130         int i;
4131
4132         intel_hpd_init_work(dev_priv);
4133
4134         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4135
4136         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4137         for (i = 0; i < MAX_L3_SLICES; ++i)
4138                 dev_priv->l3_parity.remap_info[i] = NULL;
4139
4140         if (HAS_GUC_SCHED(dev_priv))
4141                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4142
4143         /* Let's track the enabled rps events */
4144         if (IS_VALLEYVIEW(dev_priv))
4145                 /* WaGsvRC0ResidencyMethod:vlv */
4146                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4147         else
4148                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4149
4150         dev_priv->rps.pm_intrmsk_mbz = 0;
4151
4152         /*
4153          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4154          * if GEN6_PM_UP_EI_EXPIRED is masked.
4155          *
4156          * TODO: verify if this can be reproduced on VLV,CHV.
4157          */
4158         if (INTEL_GEN(dev_priv) <= 7)
4159                 dev_priv->rps.pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4160
4161         if (INTEL_GEN(dev_priv) >= 8)
4162                 dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4163
4164         if (IS_GEN2(dev_priv)) {
4165                 /* Gen2 doesn't have a hardware frame counter */
4166                 dev->max_vblank_count = 0;
4167         } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4168                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4169                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4170         } else {
4171                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4172                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4173         }
4174
4175         /*
4176          * Opt out of the vblank disable timer on everything except gen2.
4177          * Gen2 doesn't have a hardware frame counter and so depends on
4178          * vblank interrupts to produce sane vblank seuquence numbers.
4179          */
4180         if (!IS_GEN2(dev_priv))
4181                 dev->vblank_disable_immediate = true;
4182
4183         /* Most platforms treat the display irq block as an always-on
4184          * power domain. vlv/chv can disable it at runtime and need
4185          * special care to avoid writing any of the display block registers
4186          * outside of the power domain. We defer setting up the display irqs
4187          * in this case to the runtime pm.
4188          */
4189         dev_priv->display_irqs_enabled = true;
4190         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4191                 dev_priv->display_irqs_enabled = false;
4192
4193         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4194
4195         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4196         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4197
4198         if (IS_CHERRYVIEW(dev_priv)) {
4199                 dev->driver->irq_handler = cherryview_irq_handler;
4200                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4201                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4202                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4203                 dev->driver->enable_vblank = i965_enable_vblank;
4204                 dev->driver->disable_vblank = i965_disable_vblank;
4205                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4206         } else if (IS_VALLEYVIEW(dev_priv)) {
4207                 dev->driver->irq_handler = valleyview_irq_handler;
4208                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4209                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4210                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4211                 dev->driver->enable_vblank = i965_enable_vblank;
4212                 dev->driver->disable_vblank = i965_disable_vblank;
4213                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4214         } else if (INTEL_GEN(dev_priv) >= 8) {
4215                 dev->driver->irq_handler = gen8_irq_handler;
4216                 dev->driver->irq_preinstall = gen8_irq_reset;
4217                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4218                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4219                 dev->driver->enable_vblank = gen8_enable_vblank;
4220                 dev->driver->disable_vblank = gen8_disable_vblank;
4221                 if (IS_GEN9_LP(dev_priv))
4222                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4223                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4224                          HAS_PCH_CNP(dev_priv))
4225                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4226                 else
4227                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4228         } else if (HAS_PCH_SPLIT(dev_priv)) {
4229                 dev->driver->irq_handler = ironlake_irq_handler;
4230                 dev->driver->irq_preinstall = ironlake_irq_reset;
4231                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4232                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4233                 dev->driver->enable_vblank = ironlake_enable_vblank;
4234                 dev->driver->disable_vblank = ironlake_disable_vblank;
4235                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4236         } else {
4237                 if (IS_GEN2(dev_priv)) {
4238                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4239                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4240                         dev->driver->irq_handler = i8xx_irq_handler;
4241                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4242                         dev->driver->enable_vblank = i8xx_enable_vblank;
4243                         dev->driver->disable_vblank = i8xx_disable_vblank;
4244                 } else if (IS_GEN3(dev_priv)) {
4245                         dev->driver->irq_preinstall = i915_irq_preinstall;
4246                         dev->driver->irq_postinstall = i915_irq_postinstall;
4247                         dev->driver->irq_uninstall = i915_irq_uninstall;
4248                         dev->driver->irq_handler = i915_irq_handler;
4249                         dev->driver->enable_vblank = i8xx_enable_vblank;
4250                         dev->driver->disable_vblank = i8xx_disable_vblank;
4251                 } else {
4252                         dev->driver->irq_preinstall = i965_irq_preinstall;
4253                         dev->driver->irq_postinstall = i965_irq_postinstall;
4254                         dev->driver->irq_uninstall = i965_irq_uninstall;
4255                         dev->driver->irq_handler = i965_irq_handler;
4256                         dev->driver->enable_vblank = i965_enable_vblank;
4257                         dev->driver->disable_vblank = i965_disable_vblank;
4258                 }
4259                 if (I915_HAS_HOTPLUG(dev_priv))
4260                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4261         }
4262 }
4263
4264 /**
4265  * intel_irq_fini - deinitializes IRQ support
4266  * @i915: i915 device instance
4267  *
4268  * This function deinitializes all the IRQ support.
4269  */
4270 void intel_irq_fini(struct drm_i915_private *i915)
4271 {
4272         int i;
4273
4274         for (i = 0; i < MAX_L3_SLICES; ++i)
4275                 kfree(i915->l3_parity.remap_info[i]);
4276 }
4277
4278 /**
4279  * intel_irq_install - enables the hardware interrupt
4280  * @dev_priv: i915 device instance
4281  *
4282  * This function enables the hardware interrupt handling, but leaves the hotplug
4283  * handling still disabled. It is called after intel_irq_init().
4284  *
4285  * In the driver load and resume code we need working interrupts in a few places
4286  * but don't want to deal with the hassle of concurrent probe and hotplug
4287  * workers. Hence the split into this two-stage approach.
4288  */
4289 int intel_irq_install(struct drm_i915_private *dev_priv)
4290 {
4291         /*
4292          * We enable some interrupt sources in our postinstall hooks, so mark
4293          * interrupts as enabled _before_ actually enabling them to avoid
4294          * special cases in our ordering checks.
4295          */
4296         dev_priv->pm.irqs_enabled = true;
4297
4298         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4299 }
4300
4301 /**
4302  * intel_irq_uninstall - finilizes all irq handling
4303  * @dev_priv: i915 device instance
4304  *
4305  * This stops interrupt and hotplug handling and unregisters and frees all
4306  * resources acquired in the init functions.
4307  */
4308 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4309 {
4310         drm_irq_uninstall(&dev_priv->drm);
4311         intel_hpd_cancel_work(dev_priv);
4312         dev_priv->pm.irqs_enabled = false;
4313 }
4314
4315 /**
4316  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4317  * @dev_priv: i915 device instance
4318  *
4319  * This function is used to disable interrupts at runtime, both in the runtime
4320  * pm and the system suspend/resume code.
4321  */
4322 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4323 {
4324         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4325         dev_priv->pm.irqs_enabled = false;
4326         synchronize_irq(dev_priv->drm.irq);
4327 }
4328
4329 /**
4330  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4331  * @dev_priv: i915 device instance
4332  *
4333  * This function is used to enable interrupts at runtime, both in the runtime
4334  * pm and the system suspend/resume code.
4335  */
4336 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4337 {
4338         dev_priv->pm.irqs_enabled = true;
4339         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4340         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4341 }