Merge branch 'for-4.14/block-postmerge' of git://git.kernel.dk/linux-block
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178                                      uint32_t mask,
179                                      uint32_t bits)
180 {
181         uint32_t val;
182
183         lockdep_assert_held(&dev_priv->irq_lock);
184         WARN_ON(bits & ~mask);
185
186         val = I915_READ(PORT_HOTPLUG_EN);
187         val &= ~mask;
188         val |= bits;
189         I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193  * i915_hotplug_interrupt_update - update hotplug interrupt enable
194  * @dev_priv: driver private
195  * @mask: bits to update
196  * @bits: bits to enable
197  * NOTE: the HPD enable bits are modified both inside and outside
198  * of an interrupt context. To avoid that read-modify-write cycles
199  * interfer, these bits are protected by a spinlock. Since this
200  * function is usually not called from a context where the lock is
201  * held already, this function acquires the lock itself. A non-locking
202  * version is also available.
203  */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205                                    uint32_t mask,
206                                    uint32_t bits)
207 {
208         spin_lock_irq(&dev_priv->irq_lock);
209         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210         spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214  * ilk_update_display_irq - update DEIMR
215  * @dev_priv: driver private
216  * @interrupt_mask: mask of interrupt bits to update
217  * @enabled_irq_mask: mask of interrupt bits to enable
218  */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220                             uint32_t interrupt_mask,
221                             uint32_t enabled_irq_mask)
222 {
223         uint32_t new_val;
224
225         lockdep_assert_held(&dev_priv->irq_lock);
226
227         WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230                 return;
231
232         new_val = dev_priv->irq_mask;
233         new_val &= ~interrupt_mask;
234         new_val |= (~enabled_irq_mask & interrupt_mask);
235
236         if (new_val != dev_priv->irq_mask) {
237                 dev_priv->irq_mask = new_val;
238                 I915_WRITE(DEIMR, dev_priv->irq_mask);
239                 POSTING_READ(DEIMR);
240         }
241 }
242
243 /**
244  * ilk_update_gt_irq - update GTIMR
245  * @dev_priv: driver private
246  * @interrupt_mask: mask of interrupt bits to update
247  * @enabled_irq_mask: mask of interrupt bits to enable
248  */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250                               uint32_t interrupt_mask,
251                               uint32_t enabled_irq_mask)
252 {
253         lockdep_assert_held(&dev_priv->irq_lock);
254
255         WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258                 return;
259
260         dev_priv->gt_irq_mask &= ~interrupt_mask;
261         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267         ilk_update_gt_irq(dev_priv, mask, mask);
268         POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273         ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288         return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292  * snb_update_pm_irq - update GEN6_PMIMR
293  * @dev_priv: driver private
294  * @interrupt_mask: mask of interrupt bits to update
295  * @enabled_irq_mask: mask of interrupt bits to enable
296  */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298                               uint32_t interrupt_mask,
299                               uint32_t enabled_irq_mask)
300 {
301         uint32_t new_val;
302
303         WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305         lockdep_assert_held(&dev_priv->irq_lock);
306
307         new_val = dev_priv->pm_imr;
308         new_val &= ~interrupt_mask;
309         new_val |= (~enabled_irq_mask & interrupt_mask);
310
311         if (new_val != dev_priv->pm_imr) {
312                 dev_priv->pm_imr = new_val;
313                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314                 POSTING_READ(gen6_pm_imr(dev_priv));
315         }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321                 return;
322
323         snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341         i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343         lockdep_assert_held(&dev_priv->irq_lock);
344
345         I915_WRITE(reg, reset_mask);
346         I915_WRITE(reg, reset_mask);
347         POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352         lockdep_assert_held(&dev_priv->irq_lock);
353
354         dev_priv->pm_ier |= enable_mask;
355         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356         gen6_unmask_pm_irq(dev_priv, enable_mask);
357         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362         lockdep_assert_held(&dev_priv->irq_lock);
363
364         dev_priv->pm_ier &= ~disable_mask;
365         __gen6_mask_pm_irq(dev_priv, disable_mask);
366         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367         /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372         spin_lock_irq(&dev_priv->irq_lock);
373         gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374         dev_priv->rps.pm_iir = 0;
375         spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380         if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381                 return;
382
383         spin_lock_irq(&dev_priv->irq_lock);
384         WARN_ON_ONCE(dev_priv->rps.pm_iir);
385         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386         dev_priv->rps.interrupts_enabled = true;
387         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389         spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
393 {
394         if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
395                 return;
396
397         spin_lock_irq(&dev_priv->irq_lock);
398         dev_priv->rps.interrupts_enabled = false;
399
400         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
401
402         gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
403
404         spin_unlock_irq(&dev_priv->irq_lock);
405         synchronize_irq(dev_priv->drm.irq);
406
407         /* Now that we will not be generating any more work, flush any
408          * outsanding tasks. As we are called on the RPS idle path,
409          * we will reset the GPU to minimum frequencies, so the current
410          * state of the worker can be discarded.
411          */
412         cancel_work_sync(&dev_priv->rps.work);
413         gen6_reset_rps_interrupts(dev_priv);
414 }
415
416 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
417 {
418         spin_lock_irq(&dev_priv->irq_lock);
419         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
420         spin_unlock_irq(&dev_priv->irq_lock);
421 }
422
423 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
424 {
425         spin_lock_irq(&dev_priv->irq_lock);
426         if (!dev_priv->guc.interrupts_enabled) {
427                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
428                                        dev_priv->pm_guc_events);
429                 dev_priv->guc.interrupts_enabled = true;
430                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
431         }
432         spin_unlock_irq(&dev_priv->irq_lock);
433 }
434
435 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
436 {
437         spin_lock_irq(&dev_priv->irq_lock);
438         dev_priv->guc.interrupts_enabled = false;
439
440         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
441
442         spin_unlock_irq(&dev_priv->irq_lock);
443         synchronize_irq(dev_priv->drm.irq);
444
445         gen9_reset_guc_interrupts(dev_priv);
446 }
447
448 /**
449  * bdw_update_port_irq - update DE port interrupt
450  * @dev_priv: driver private
451  * @interrupt_mask: mask of interrupt bits to update
452  * @enabled_irq_mask: mask of interrupt bits to enable
453  */
454 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
455                                 uint32_t interrupt_mask,
456                                 uint32_t enabled_irq_mask)
457 {
458         uint32_t new_val;
459         uint32_t old_val;
460
461         lockdep_assert_held(&dev_priv->irq_lock);
462
463         WARN_ON(enabled_irq_mask & ~interrupt_mask);
464
465         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
466                 return;
467
468         old_val = I915_READ(GEN8_DE_PORT_IMR);
469
470         new_val = old_val;
471         new_val &= ~interrupt_mask;
472         new_val |= (~enabled_irq_mask & interrupt_mask);
473
474         if (new_val != old_val) {
475                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
476                 POSTING_READ(GEN8_DE_PORT_IMR);
477         }
478 }
479
480 /**
481  * bdw_update_pipe_irq - update DE pipe interrupt
482  * @dev_priv: driver private
483  * @pipe: pipe whose interrupt to update
484  * @interrupt_mask: mask of interrupt bits to update
485  * @enabled_irq_mask: mask of interrupt bits to enable
486  */
487 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
488                          enum pipe pipe,
489                          uint32_t interrupt_mask,
490                          uint32_t enabled_irq_mask)
491 {
492         uint32_t new_val;
493
494         lockdep_assert_held(&dev_priv->irq_lock);
495
496         WARN_ON(enabled_irq_mask & ~interrupt_mask);
497
498         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
499                 return;
500
501         new_val = dev_priv->de_irq_mask[pipe];
502         new_val &= ~interrupt_mask;
503         new_val |= (~enabled_irq_mask & interrupt_mask);
504
505         if (new_val != dev_priv->de_irq_mask[pipe]) {
506                 dev_priv->de_irq_mask[pipe] = new_val;
507                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
508                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
509         }
510 }
511
512 /**
513  * ibx_display_interrupt_update - update SDEIMR
514  * @dev_priv: driver private
515  * @interrupt_mask: mask of interrupt bits to update
516  * @enabled_irq_mask: mask of interrupt bits to enable
517  */
518 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
519                                   uint32_t interrupt_mask,
520                                   uint32_t enabled_irq_mask)
521 {
522         uint32_t sdeimr = I915_READ(SDEIMR);
523         sdeimr &= ~interrupt_mask;
524         sdeimr |= (~enabled_irq_mask & interrupt_mask);
525
526         WARN_ON(enabled_irq_mask & ~interrupt_mask);
527
528         lockdep_assert_held(&dev_priv->irq_lock);
529
530         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
531                 return;
532
533         I915_WRITE(SDEIMR, sdeimr);
534         POSTING_READ(SDEIMR);
535 }
536
537 static void
538 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
539                        u32 enable_mask, u32 status_mask)
540 {
541         i915_reg_t reg = PIPESTAT(pipe);
542         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
543
544         lockdep_assert_held(&dev_priv->irq_lock);
545         WARN_ON(!intel_irqs_enabled(dev_priv));
546
547         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
548                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
549                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
550                       pipe_name(pipe), enable_mask, status_mask))
551                 return;
552
553         if ((pipestat & enable_mask) == enable_mask)
554                 return;
555
556         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
557
558         /* Enable the interrupt, clear any pending status */
559         pipestat |= enable_mask | status_mask;
560         I915_WRITE(reg, pipestat);
561         POSTING_READ(reg);
562 }
563
564 static void
565 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
566                         u32 enable_mask, u32 status_mask)
567 {
568         i915_reg_t reg = PIPESTAT(pipe);
569         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
570
571         lockdep_assert_held(&dev_priv->irq_lock);
572         WARN_ON(!intel_irqs_enabled(dev_priv));
573
574         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
575                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
576                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
577                       pipe_name(pipe), enable_mask, status_mask))
578                 return;
579
580         if ((pipestat & enable_mask) == 0)
581                 return;
582
583         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
584
585         pipestat &= ~enable_mask;
586         I915_WRITE(reg, pipestat);
587         POSTING_READ(reg);
588 }
589
590 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
591 {
592         u32 enable_mask = status_mask << 16;
593
594         /*
595          * On pipe A we don't support the PSR interrupt yet,
596          * on pipe B and C the same bit MBZ.
597          */
598         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
599                 return 0;
600         /*
601          * On pipe B and C we don't support the PSR interrupt yet, on pipe
602          * A the same bit is for perf counters which we don't use either.
603          */
604         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
605                 return 0;
606
607         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
608                          SPRITE0_FLIP_DONE_INT_EN_VLV |
609                          SPRITE1_FLIP_DONE_INT_EN_VLV);
610         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
611                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
612         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
613                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
614
615         return enable_mask;
616 }
617
618 void
619 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
620                      u32 status_mask)
621 {
622         u32 enable_mask;
623
624         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
625                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
626                                                            status_mask);
627         else
628                 enable_mask = status_mask << 16;
629         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
630 }
631
632 void
633 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
634                       u32 status_mask)
635 {
636         u32 enable_mask;
637
638         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
639                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
640                                                            status_mask);
641         else
642                 enable_mask = status_mask << 16;
643         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
644 }
645
646 /**
647  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
648  * @dev_priv: i915 device private
649  */
650 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
651 {
652         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
653                 return;
654
655         spin_lock_irq(&dev_priv->irq_lock);
656
657         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
658         if (INTEL_GEN(dev_priv) >= 4)
659                 i915_enable_pipestat(dev_priv, PIPE_A,
660                                      PIPE_LEGACY_BLC_EVENT_STATUS);
661
662         spin_unlock_irq(&dev_priv->irq_lock);
663 }
664
665 /*
666  * This timing diagram depicts the video signal in and
667  * around the vertical blanking period.
668  *
669  * Assumptions about the fictitious mode used in this example:
670  *  vblank_start >= 3
671  *  vsync_start = vblank_start + 1
672  *  vsync_end = vblank_start + 2
673  *  vtotal = vblank_start + 3
674  *
675  *           start of vblank:
676  *           latch double buffered registers
677  *           increment frame counter (ctg+)
678  *           generate start of vblank interrupt (gen4+)
679  *           |
680  *           |          frame start:
681  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
682  *           |          may be shifted forward 1-3 extra lines via PIPECONF
683  *           |          |
684  *           |          |  start of vsync:
685  *           |          |  generate vsync interrupt
686  *           |          |  |
687  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
688  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
689  * ----va---> <-----------------vb--------------------> <--------va-------------
690  *       |          |       <----vs----->                     |
691  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
692  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
693  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
694  *       |          |                                         |
695  *       last visible pixel                                   first visible pixel
696  *                  |                                         increment frame counter (gen3/4)
697  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
698  *
699  * x  = horizontal active
700  * _  = horizontal blanking
701  * hs = horizontal sync
702  * va = vertical active
703  * vb = vertical blanking
704  * vs = vertical sync
705  * vbs = vblank_start (number)
706  *
707  * Summary:
708  * - most events happen at the start of horizontal sync
709  * - frame start happens at the start of horizontal blank, 1-4 lines
710  *   (depending on PIPECONF settings) after the start of vblank
711  * - gen3/4 pixel and frame counter are synchronized with the start
712  *   of horizontal active on the first line of vertical active
713  */
714
715 /* Called from drm generic code, passed a 'crtc', which
716  * we use as a pipe index
717  */
718 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
719 {
720         struct drm_i915_private *dev_priv = to_i915(dev);
721         i915_reg_t high_frame, low_frame;
722         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
723         const struct drm_display_mode *mode = &dev->vblank[pipe].hwmode;
724         unsigned long irqflags;
725
726         htotal = mode->crtc_htotal;
727         hsync_start = mode->crtc_hsync_start;
728         vbl_start = mode->crtc_vblank_start;
729         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
730                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
731
732         /* Convert to pixel count */
733         vbl_start *= htotal;
734
735         /* Start of vblank event occurs at start of hsync */
736         vbl_start -= htotal - hsync_start;
737
738         high_frame = PIPEFRAME(pipe);
739         low_frame = PIPEFRAMEPIXEL(pipe);
740
741         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
742
743         /*
744          * High & low register fields aren't synchronized, so make sure
745          * we get a low value that's stable across two reads of the high
746          * register.
747          */
748         do {
749                 high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
750                 low   = I915_READ_FW(low_frame);
751                 high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
752         } while (high1 != high2);
753
754         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
755
756         high1 >>= PIPE_FRAME_HIGH_SHIFT;
757         pixel = low & PIPE_PIXEL_MASK;
758         low >>= PIPE_FRAME_LOW_SHIFT;
759
760         /*
761          * The frame counter increments at beginning of active.
762          * Cook up a vblank counter by also checking the pixel
763          * counter against vblank start.
764          */
765         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
766 }
767
768 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
769 {
770         struct drm_i915_private *dev_priv = to_i915(dev);
771
772         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
773 }
774
775 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
776 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
777 {
778         struct drm_device *dev = crtc->base.dev;
779         struct drm_i915_private *dev_priv = to_i915(dev);
780         const struct drm_display_mode *mode;
781         struct drm_vblank_crtc *vblank;
782         enum pipe pipe = crtc->pipe;
783         int position, vtotal;
784
785         if (!crtc->active)
786                 return -1;
787
788         vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
789         mode = &vblank->hwmode;
790
791         vtotal = mode->crtc_vtotal;
792         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
793                 vtotal /= 2;
794
795         if (IS_GEN2(dev_priv))
796                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
797         else
798                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
799
800         /*
801          * On HSW, the DSL reg (0x70000) appears to return 0 if we
802          * read it just before the start of vblank.  So try it again
803          * so we don't accidentally end up spanning a vblank frame
804          * increment, causing the pipe_update_end() code to squak at us.
805          *
806          * The nature of this problem means we can't simply check the ISR
807          * bit and return the vblank start value; nor can we use the scanline
808          * debug register in the transcoder as it appears to have the same
809          * problem.  We may need to extend this to include other platforms,
810          * but so far testing only shows the problem on HSW.
811          */
812         if (HAS_DDI(dev_priv) && !position) {
813                 int i, temp;
814
815                 for (i = 0; i < 100; i++) {
816                         udelay(1);
817                         temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
818                         if (temp != position) {
819                                 position = temp;
820                                 break;
821                         }
822                 }
823         }
824
825         /*
826          * See update_scanline_offset() for the details on the
827          * scanline_offset adjustment.
828          */
829         return (position + crtc->scanline_offset) % vtotal;
830 }
831
832 static bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
833                                      bool in_vblank_irq, int *vpos, int *hpos,
834                                      ktime_t *stime, ktime_t *etime,
835                                      const struct drm_display_mode *mode)
836 {
837         struct drm_i915_private *dev_priv = to_i915(dev);
838         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
839                                                                 pipe);
840         int position;
841         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
842         bool in_vbl = true;
843         unsigned long irqflags;
844
845         if (WARN_ON(!mode->crtc_clock)) {
846                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
847                                  "pipe %c\n", pipe_name(pipe));
848                 return false;
849         }
850
851         htotal = mode->crtc_htotal;
852         hsync_start = mode->crtc_hsync_start;
853         vtotal = mode->crtc_vtotal;
854         vbl_start = mode->crtc_vblank_start;
855         vbl_end = mode->crtc_vblank_end;
856
857         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
858                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
859                 vbl_end /= 2;
860                 vtotal /= 2;
861         }
862
863         /*
864          * Lock uncore.lock, as we will do multiple timing critical raw
865          * register reads, potentially with preemption disabled, so the
866          * following code must not block on uncore.lock.
867          */
868         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
869
870         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
871
872         /* Get optional system timestamp before query. */
873         if (stime)
874                 *stime = ktime_get();
875
876         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
877                 /* No obvious pixelcount register. Only query vertical
878                  * scanout position from Display scan line register.
879                  */
880                 position = __intel_get_crtc_scanline(intel_crtc);
881         } else {
882                 /* Have access to pixelcount since start of frame.
883                  * We can split this into vertical and horizontal
884                  * scanout position.
885                  */
886                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
887
888                 /* convert to pixel counts */
889                 vbl_start *= htotal;
890                 vbl_end *= htotal;
891                 vtotal *= htotal;
892
893                 /*
894                  * In interlaced modes, the pixel counter counts all pixels,
895                  * so one field will have htotal more pixels. In order to avoid
896                  * the reported position from jumping backwards when the pixel
897                  * counter is beyond the length of the shorter field, just
898                  * clamp the position the length of the shorter field. This
899                  * matches how the scanline counter based position works since
900                  * the scanline counter doesn't count the two half lines.
901                  */
902                 if (position >= vtotal)
903                         position = vtotal - 1;
904
905                 /*
906                  * Start of vblank interrupt is triggered at start of hsync,
907                  * just prior to the first active line of vblank. However we
908                  * consider lines to start at the leading edge of horizontal
909                  * active. So, should we get here before we've crossed into
910                  * the horizontal active of the first line in vblank, we would
911                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
912                  * always add htotal-hsync_start to the current pixel position.
913                  */
914                 position = (position + htotal - hsync_start) % vtotal;
915         }
916
917         /* Get optional system timestamp after query. */
918         if (etime)
919                 *etime = ktime_get();
920
921         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
922
923         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
924
925         in_vbl = position >= vbl_start && position < vbl_end;
926
927         /*
928          * While in vblank, position will be negative
929          * counting up towards 0 at vbl_end. And outside
930          * vblank, position will be positive counting
931          * up since vbl_end.
932          */
933         if (position >= vbl_start)
934                 position -= vbl_end;
935         else
936                 position += vtotal - vbl_end;
937
938         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
939                 *vpos = position;
940                 *hpos = 0;
941         } else {
942                 *vpos = position / htotal;
943                 *hpos = position - (*vpos * htotal);
944         }
945
946         return true;
947 }
948
949 int intel_get_crtc_scanline(struct intel_crtc *crtc)
950 {
951         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
952         unsigned long irqflags;
953         int position;
954
955         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
956         position = __intel_get_crtc_scanline(crtc);
957         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
958
959         return position;
960 }
961
962 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
963 {
964         u32 busy_up, busy_down, max_avg, min_avg;
965         u8 new_delay;
966
967         spin_lock(&mchdev_lock);
968
969         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
970
971         new_delay = dev_priv->ips.cur_delay;
972
973         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
974         busy_up = I915_READ(RCPREVBSYTUPAVG);
975         busy_down = I915_READ(RCPREVBSYTDNAVG);
976         max_avg = I915_READ(RCBMAXAVG);
977         min_avg = I915_READ(RCBMINAVG);
978
979         /* Handle RCS change request from hw */
980         if (busy_up > max_avg) {
981                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
982                         new_delay = dev_priv->ips.cur_delay - 1;
983                 if (new_delay < dev_priv->ips.max_delay)
984                         new_delay = dev_priv->ips.max_delay;
985         } else if (busy_down < min_avg) {
986                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
987                         new_delay = dev_priv->ips.cur_delay + 1;
988                 if (new_delay > dev_priv->ips.min_delay)
989                         new_delay = dev_priv->ips.min_delay;
990         }
991
992         if (ironlake_set_drps(dev_priv, new_delay))
993                 dev_priv->ips.cur_delay = new_delay;
994
995         spin_unlock(&mchdev_lock);
996
997         return;
998 }
999
1000 static void notify_ring(struct intel_engine_cs *engine)
1001 {
1002         struct drm_i915_gem_request *rq = NULL;
1003         struct intel_wait *wait;
1004
1005         atomic_inc(&engine->irq_count);
1006         set_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted);
1007
1008         spin_lock(&engine->breadcrumbs.irq_lock);
1009         wait = engine->breadcrumbs.irq_wait;
1010         if (wait) {
1011                 /* We use a callback from the dma-fence to submit
1012                  * requests after waiting on our own requests. To
1013                  * ensure minimum delay in queuing the next request to
1014                  * hardware, signal the fence now rather than wait for
1015                  * the signaler to be woken up. We still wake up the
1016                  * waiter in order to handle the irq-seqno coherency
1017                  * issues (we may receive the interrupt before the
1018                  * seqno is written, see __i915_request_irq_complete())
1019                  * and to handle coalescing of multiple seqno updates
1020                  * and many waiters.
1021                  */
1022                 if (i915_seqno_passed(intel_engine_get_seqno(engine),
1023                                       wait->seqno) &&
1024                     !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1025                               &wait->request->fence.flags))
1026                         rq = i915_gem_request_get(wait->request);
1027
1028                 wake_up_process(wait->tsk);
1029         } else {
1030                 __intel_engine_disarm_breadcrumbs(engine);
1031         }
1032         spin_unlock(&engine->breadcrumbs.irq_lock);
1033
1034         if (rq) {
1035                 dma_fence_signal(&rq->fence);
1036                 i915_gem_request_put(rq);
1037         }
1038
1039         trace_intel_engine_notify(engine, wait);
1040 }
1041
1042 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1043                         struct intel_rps_ei *ei)
1044 {
1045         ei->ktime = ktime_get_raw();
1046         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1047         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1048 }
1049
1050 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1051 {
1052         memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1053 }
1054
1055 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1056 {
1057         const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1058         struct intel_rps_ei now;
1059         u32 events = 0;
1060
1061         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1062                 return 0;
1063
1064         vlv_c0_read(dev_priv, &now);
1065
1066         if (prev->ktime) {
1067                 u64 time, c0;
1068                 u32 render, media;
1069
1070                 time = ktime_us_delta(now.ktime, prev->ktime);
1071
1072                 time *= dev_priv->czclk_freq;
1073
1074                 /* Workload can be split between render + media,
1075                  * e.g. SwapBuffers being blitted in X after being rendered in
1076                  * mesa. To account for this we need to combine both engines
1077                  * into our activity counter.
1078                  */
1079                 render = now.render_c0 - prev->render_c0;
1080                 media = now.media_c0 - prev->media_c0;
1081                 c0 = max(render, media);
1082                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1083
1084                 if (c0 > time * dev_priv->rps.up_threshold)
1085                         events = GEN6_PM_RP_UP_THRESHOLD;
1086                 else if (c0 < time * dev_priv->rps.down_threshold)
1087                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1088         }
1089
1090         dev_priv->rps.ei = now;
1091         return events;
1092 }
1093
1094 static void gen6_pm_rps_work(struct work_struct *work)
1095 {
1096         struct drm_i915_private *dev_priv =
1097                 container_of(work, struct drm_i915_private, rps.work);
1098         bool client_boost = false;
1099         int new_delay, adj, min, max;
1100         u32 pm_iir = 0;
1101
1102         spin_lock_irq(&dev_priv->irq_lock);
1103         if (dev_priv->rps.interrupts_enabled) {
1104                 pm_iir = fetch_and_zero(&dev_priv->rps.pm_iir);
1105                 client_boost = atomic_read(&dev_priv->rps.num_waiters);
1106         }
1107         spin_unlock_irq(&dev_priv->irq_lock);
1108
1109         /* Make sure we didn't queue anything we're not going to process. */
1110         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1111         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1112                 goto out;
1113
1114         mutex_lock(&dev_priv->rps.hw_lock);
1115
1116         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1117
1118         adj = dev_priv->rps.last_adj;
1119         new_delay = dev_priv->rps.cur_freq;
1120         min = dev_priv->rps.min_freq_softlimit;
1121         max = dev_priv->rps.max_freq_softlimit;
1122         if (client_boost)
1123                 max = dev_priv->rps.max_freq;
1124         if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1125                 new_delay = dev_priv->rps.boost_freq;
1126                 adj = 0;
1127         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1128                 if (adj > 0)
1129                         adj *= 2;
1130                 else /* CHV needs even encode values */
1131                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1132
1133                 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1134                         adj = 0;
1135         } else if (client_boost) {
1136                 adj = 0;
1137         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1138                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1139                         new_delay = dev_priv->rps.efficient_freq;
1140                 else if (dev_priv->rps.cur_freq > dev_priv->rps.min_freq_softlimit)
1141                         new_delay = dev_priv->rps.min_freq_softlimit;
1142                 adj = 0;
1143         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1144                 if (adj < 0)
1145                         adj *= 2;
1146                 else /* CHV needs even encode values */
1147                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1148
1149                 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1150                         adj = 0;
1151         } else { /* unknown event */
1152                 adj = 0;
1153         }
1154
1155         dev_priv->rps.last_adj = adj;
1156
1157         /* sysfs frequency interfaces may have snuck in while servicing the
1158          * interrupt
1159          */
1160         new_delay += adj;
1161         new_delay = clamp_t(int, new_delay, min, max);
1162
1163         if (intel_set_rps(dev_priv, new_delay)) {
1164                 DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1165                 dev_priv->rps.last_adj = 0;
1166         }
1167
1168         mutex_unlock(&dev_priv->rps.hw_lock);
1169
1170 out:
1171         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1172         spin_lock_irq(&dev_priv->irq_lock);
1173         if (dev_priv->rps.interrupts_enabled)
1174                 gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1175         spin_unlock_irq(&dev_priv->irq_lock);
1176 }
1177
1178
1179 /**
1180  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1181  * occurred.
1182  * @work: workqueue struct
1183  *
1184  * Doesn't actually do anything except notify userspace. As a consequence of
1185  * this event, userspace should try to remap the bad rows since statistically
1186  * it is likely the same row is more likely to go bad again.
1187  */
1188 static void ivybridge_parity_work(struct work_struct *work)
1189 {
1190         struct drm_i915_private *dev_priv =
1191                 container_of(work, typeof(*dev_priv), l3_parity.error_work);
1192         u32 error_status, row, bank, subbank;
1193         char *parity_event[6];
1194         uint32_t misccpctl;
1195         uint8_t slice = 0;
1196
1197         /* We must turn off DOP level clock gating to access the L3 registers.
1198          * In order to prevent a get/put style interface, acquire struct mutex
1199          * any time we access those registers.
1200          */
1201         mutex_lock(&dev_priv->drm.struct_mutex);
1202
1203         /* If we've screwed up tracking, just let the interrupt fire again */
1204         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1205                 goto out;
1206
1207         misccpctl = I915_READ(GEN7_MISCCPCTL);
1208         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1209         POSTING_READ(GEN7_MISCCPCTL);
1210
1211         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1212                 i915_reg_t reg;
1213
1214                 slice--;
1215                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1216                         break;
1217
1218                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1219
1220                 reg = GEN7_L3CDERRST1(slice);
1221
1222                 error_status = I915_READ(reg);
1223                 row = GEN7_PARITY_ERROR_ROW(error_status);
1224                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1225                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1226
1227                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1228                 POSTING_READ(reg);
1229
1230                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1231                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1232                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1233                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1234                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1235                 parity_event[5] = NULL;
1236
1237                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1238                                    KOBJ_CHANGE, parity_event);
1239
1240                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1241                           slice, row, bank, subbank);
1242
1243                 kfree(parity_event[4]);
1244                 kfree(parity_event[3]);
1245                 kfree(parity_event[2]);
1246                 kfree(parity_event[1]);
1247         }
1248
1249         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1250
1251 out:
1252         WARN_ON(dev_priv->l3_parity.which_slice);
1253         spin_lock_irq(&dev_priv->irq_lock);
1254         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1255         spin_unlock_irq(&dev_priv->irq_lock);
1256
1257         mutex_unlock(&dev_priv->drm.struct_mutex);
1258 }
1259
1260 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1261                                                u32 iir)
1262 {
1263         if (!HAS_L3_DPF(dev_priv))
1264                 return;
1265
1266         spin_lock(&dev_priv->irq_lock);
1267         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1268         spin_unlock(&dev_priv->irq_lock);
1269
1270         iir &= GT_PARITY_ERROR(dev_priv);
1271         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1272                 dev_priv->l3_parity.which_slice |= 1 << 1;
1273
1274         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1275                 dev_priv->l3_parity.which_slice |= 1 << 0;
1276
1277         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1278 }
1279
1280 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1281                                u32 gt_iir)
1282 {
1283         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1284                 notify_ring(dev_priv->engine[RCS]);
1285         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1286                 notify_ring(dev_priv->engine[VCS]);
1287 }
1288
1289 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1290                                u32 gt_iir)
1291 {
1292         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1293                 notify_ring(dev_priv->engine[RCS]);
1294         if (gt_iir & GT_BSD_USER_INTERRUPT)
1295                 notify_ring(dev_priv->engine[VCS]);
1296         if (gt_iir & GT_BLT_USER_INTERRUPT)
1297                 notify_ring(dev_priv->engine[BCS]);
1298
1299         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1300                       GT_BSD_CS_ERROR_INTERRUPT |
1301                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1302                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1303
1304         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1305                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1306 }
1307
1308 static void
1309 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1310 {
1311         bool tasklet = false;
1312
1313         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift)) {
1314                 if (port_count(&engine->execlist_port[0])) {
1315                         __set_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
1316                         tasklet = true;
1317                 }
1318         }
1319
1320         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift)) {
1321                 notify_ring(engine);
1322                 tasklet |= i915.enable_guc_submission;
1323         }
1324
1325         if (tasklet)
1326                 tasklet_hi_schedule(&engine->irq_tasklet);
1327 }
1328
1329 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1330                                    u32 master_ctl,
1331                                    u32 gt_iir[4])
1332 {
1333         irqreturn_t ret = IRQ_NONE;
1334
1335         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1337                 if (gt_iir[0]) {
1338                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1339                         ret = IRQ_HANDLED;
1340                 } else
1341                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1342         }
1343
1344         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1345                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1346                 if (gt_iir[1]) {
1347                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1348                         ret = IRQ_HANDLED;
1349                 } else
1350                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1351         }
1352
1353         if (master_ctl & GEN8_GT_VECS_IRQ) {
1354                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1355                 if (gt_iir[3]) {
1356                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1357                         ret = IRQ_HANDLED;
1358                 } else
1359                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1360         }
1361
1362         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1363                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1364                 if (gt_iir[2] & (dev_priv->pm_rps_events |
1365                                  dev_priv->pm_guc_events)) {
1366                         I915_WRITE_FW(GEN8_GT_IIR(2),
1367                                       gt_iir[2] & (dev_priv->pm_rps_events |
1368                                                    dev_priv->pm_guc_events));
1369                         ret = IRQ_HANDLED;
1370                 } else
1371                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1372         }
1373
1374         return ret;
1375 }
1376
1377 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1378                                 u32 gt_iir[4])
1379 {
1380         if (gt_iir[0]) {
1381                 gen8_cs_irq_handler(dev_priv->engine[RCS],
1382                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1383                 gen8_cs_irq_handler(dev_priv->engine[BCS],
1384                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1385         }
1386
1387         if (gt_iir[1]) {
1388                 gen8_cs_irq_handler(dev_priv->engine[VCS],
1389                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1390                 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1391                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1392         }
1393
1394         if (gt_iir[3])
1395                 gen8_cs_irq_handler(dev_priv->engine[VECS],
1396                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1397
1398         if (gt_iir[2] & dev_priv->pm_rps_events)
1399                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1400
1401         if (gt_iir[2] & dev_priv->pm_guc_events)
1402                 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1403 }
1404
1405 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1406 {
1407         switch (port) {
1408         case PORT_A:
1409                 return val & PORTA_HOTPLUG_LONG_DETECT;
1410         case PORT_B:
1411                 return val & PORTB_HOTPLUG_LONG_DETECT;
1412         case PORT_C:
1413                 return val & PORTC_HOTPLUG_LONG_DETECT;
1414         default:
1415                 return false;
1416         }
1417 }
1418
1419 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1420 {
1421         switch (port) {
1422         case PORT_E:
1423                 return val & PORTE_HOTPLUG_LONG_DETECT;
1424         default:
1425                 return false;
1426         }
1427 }
1428
1429 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1430 {
1431         switch (port) {
1432         case PORT_A:
1433                 return val & PORTA_HOTPLUG_LONG_DETECT;
1434         case PORT_B:
1435                 return val & PORTB_HOTPLUG_LONG_DETECT;
1436         case PORT_C:
1437                 return val & PORTC_HOTPLUG_LONG_DETECT;
1438         case PORT_D:
1439                 return val & PORTD_HOTPLUG_LONG_DETECT;
1440         default:
1441                 return false;
1442         }
1443 }
1444
1445 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1446 {
1447         switch (port) {
1448         case PORT_A:
1449                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1450         default:
1451                 return false;
1452         }
1453 }
1454
1455 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457         switch (port) {
1458         case PORT_B:
1459                 return val & PORTB_HOTPLUG_LONG_DETECT;
1460         case PORT_C:
1461                 return val & PORTC_HOTPLUG_LONG_DETECT;
1462         case PORT_D:
1463                 return val & PORTD_HOTPLUG_LONG_DETECT;
1464         default:
1465                 return false;
1466         }
1467 }
1468
1469 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1470 {
1471         switch (port) {
1472         case PORT_B:
1473                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1474         case PORT_C:
1475                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1476         case PORT_D:
1477                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1478         default:
1479                 return false;
1480         }
1481 }
1482
1483 /*
1484  * Get a bit mask of pins that have triggered, and which ones may be long.
1485  * This can be called multiple times with the same masks to accumulate
1486  * hotplug detection results from several registers.
1487  *
1488  * Note that the caller is expected to zero out the masks initially.
1489  */
1490 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1491                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1492                              const u32 hpd[HPD_NUM_PINS],
1493                              bool long_pulse_detect(enum port port, u32 val))
1494 {
1495         enum port port;
1496         int i;
1497
1498         for_each_hpd_pin(i) {
1499                 if ((hpd[i] & hotplug_trigger) == 0)
1500                         continue;
1501
1502                 *pin_mask |= BIT(i);
1503
1504                 port = intel_hpd_pin_to_port(i);
1505                 if (port == PORT_NONE)
1506                         continue;
1507
1508                 if (long_pulse_detect(port, dig_hotplug_reg))
1509                         *long_mask |= BIT(i);
1510         }
1511
1512         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1513                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1514
1515 }
1516
1517 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1518 {
1519         wake_up_all(&dev_priv->gmbus_wait_queue);
1520 }
1521
1522 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1523 {
1524         wake_up_all(&dev_priv->gmbus_wait_queue);
1525 }
1526
1527 #if defined(CONFIG_DEBUG_FS)
1528 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1529                                          enum pipe pipe,
1530                                          uint32_t crc0, uint32_t crc1,
1531                                          uint32_t crc2, uint32_t crc3,
1532                                          uint32_t crc4)
1533 {
1534         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1535         struct intel_pipe_crc_entry *entry;
1536         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1537         struct drm_driver *driver = dev_priv->drm.driver;
1538         uint32_t crcs[5];
1539         int head, tail;
1540
1541         spin_lock(&pipe_crc->lock);
1542         if (pipe_crc->source) {
1543                 if (!pipe_crc->entries) {
1544                         spin_unlock(&pipe_crc->lock);
1545                         DRM_DEBUG_KMS("spurious interrupt\n");
1546                         return;
1547                 }
1548
1549                 head = pipe_crc->head;
1550                 tail = pipe_crc->tail;
1551
1552                 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1553                         spin_unlock(&pipe_crc->lock);
1554                         DRM_ERROR("CRC buffer overflowing\n");
1555                         return;
1556                 }
1557
1558                 entry = &pipe_crc->entries[head];
1559
1560                 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1561                 entry->crc[0] = crc0;
1562                 entry->crc[1] = crc1;
1563                 entry->crc[2] = crc2;
1564                 entry->crc[3] = crc3;
1565                 entry->crc[4] = crc4;
1566
1567                 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1568                 pipe_crc->head = head;
1569
1570                 spin_unlock(&pipe_crc->lock);
1571
1572                 wake_up_interruptible(&pipe_crc->wq);
1573         } else {
1574                 /*
1575                  * For some not yet identified reason, the first CRC is
1576                  * bonkers. So let's just wait for the next vblank and read
1577                  * out the buggy result.
1578                  *
1579                  * On CHV sometimes the second CRC is bonkers as well, so
1580                  * don't trust that one either.
1581                  */
1582                 if (pipe_crc->skipped == 0 ||
1583                     (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1584                         pipe_crc->skipped++;
1585                         spin_unlock(&pipe_crc->lock);
1586                         return;
1587                 }
1588                 spin_unlock(&pipe_crc->lock);
1589                 crcs[0] = crc0;
1590                 crcs[1] = crc1;
1591                 crcs[2] = crc2;
1592                 crcs[3] = crc3;
1593                 crcs[4] = crc4;
1594                 drm_crtc_add_crc_entry(&crtc->base, true,
1595                                        drm_crtc_accurate_vblank_count(&crtc->base),
1596                                        crcs);
1597         }
1598 }
1599 #else
1600 static inline void
1601 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1602                              enum pipe pipe,
1603                              uint32_t crc0, uint32_t crc1,
1604                              uint32_t crc2, uint32_t crc3,
1605                              uint32_t crc4) {}
1606 #endif
1607
1608
1609 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1610                                      enum pipe pipe)
1611 {
1612         display_pipe_crc_irq_handler(dev_priv, pipe,
1613                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1614                                      0, 0, 0, 0);
1615 }
1616
1617 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1618                                      enum pipe pipe)
1619 {
1620         display_pipe_crc_irq_handler(dev_priv, pipe,
1621                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1622                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1623                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1624                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1625                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1626 }
1627
1628 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1629                                       enum pipe pipe)
1630 {
1631         uint32_t res1, res2;
1632
1633         if (INTEL_GEN(dev_priv) >= 3)
1634                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1635         else
1636                 res1 = 0;
1637
1638         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1639                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1640         else
1641                 res2 = 0;
1642
1643         display_pipe_crc_irq_handler(dev_priv, pipe,
1644                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1645                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1646                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1647                                      res1, res2);
1648 }
1649
1650 /* The RPS events need forcewake, so we add them to a work queue and mask their
1651  * IMR bits until the work is done. Other interrupts can be processed without
1652  * the work queue. */
1653 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1654 {
1655         if (pm_iir & dev_priv->pm_rps_events) {
1656                 spin_lock(&dev_priv->irq_lock);
1657                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1658                 if (dev_priv->rps.interrupts_enabled) {
1659                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1660                         schedule_work(&dev_priv->rps.work);
1661                 }
1662                 spin_unlock(&dev_priv->irq_lock);
1663         }
1664
1665         if (INTEL_GEN(dev_priv) >= 8)
1666                 return;
1667
1668         if (HAS_VEBOX(dev_priv)) {
1669                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1670                         notify_ring(dev_priv->engine[VECS]);
1671
1672                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1673                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1674         }
1675 }
1676
1677 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1678 {
1679         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1680                 /* Sample the log buffer flush related bits & clear them out now
1681                  * itself from the message identity register to minimize the
1682                  * probability of losing a flush interrupt, when there are back
1683                  * to back flush interrupts.
1684                  * There can be a new flush interrupt, for different log buffer
1685                  * type (like for ISR), whilst Host is handling one (for DPC).
1686                  * Since same bit is used in message register for ISR & DPC, it
1687                  * could happen that GuC sets the bit for 2nd interrupt but Host
1688                  * clears out the bit on handling the 1st interrupt.
1689                  */
1690                 u32 msg, flush;
1691
1692                 msg = I915_READ(SOFT_SCRATCH(15));
1693                 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1694                                INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1695                 if (flush) {
1696                         /* Clear the message bits that are handled */
1697                         I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1698
1699                         /* Handle flush interrupt in bottom half */
1700                         queue_work(dev_priv->guc.log.runtime.flush_wq,
1701                                    &dev_priv->guc.log.runtime.flush_work);
1702
1703                         dev_priv->guc.log.flush_interrupt_count++;
1704                 } else {
1705                         /* Not clearing of unhandled event bits won't result in
1706                          * re-triggering of the interrupt.
1707                          */
1708                 }
1709         }
1710 }
1711
1712 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1713                                         u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1714 {
1715         int pipe;
1716
1717         spin_lock(&dev_priv->irq_lock);
1718
1719         if (!dev_priv->display_irqs_enabled) {
1720                 spin_unlock(&dev_priv->irq_lock);
1721                 return;
1722         }
1723
1724         for_each_pipe(dev_priv, pipe) {
1725                 i915_reg_t reg;
1726                 u32 mask, iir_bit = 0;
1727
1728                 /*
1729                  * PIPESTAT bits get signalled even when the interrupt is
1730                  * disabled with the mask bits, and some of the status bits do
1731                  * not generate interrupts at all (like the underrun bit). Hence
1732                  * we need to be careful that we only handle what we want to
1733                  * handle.
1734                  */
1735
1736                 /* fifo underruns are filterered in the underrun handler. */
1737                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1738
1739                 switch (pipe) {
1740                 case PIPE_A:
1741                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1742                         break;
1743                 case PIPE_B:
1744                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1745                         break;
1746                 case PIPE_C:
1747                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1748                         break;
1749                 }
1750                 if (iir & iir_bit)
1751                         mask |= dev_priv->pipestat_irq_mask[pipe];
1752
1753                 if (!mask)
1754                         continue;
1755
1756                 reg = PIPESTAT(pipe);
1757                 mask |= PIPESTAT_INT_ENABLE_MASK;
1758                 pipe_stats[pipe] = I915_READ(reg) & mask;
1759
1760                 /*
1761                  * Clear the PIPE*STAT regs before the IIR
1762                  */
1763                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1764                                         PIPESTAT_INT_STATUS_MASK))
1765                         I915_WRITE(reg, pipe_stats[pipe]);
1766         }
1767         spin_unlock(&dev_priv->irq_lock);
1768 }
1769
1770 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1771                                             u32 pipe_stats[I915_MAX_PIPES])
1772 {
1773         enum pipe pipe;
1774
1775         for_each_pipe(dev_priv, pipe) {
1776                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1777                         drm_handle_vblank(&dev_priv->drm, pipe);
1778
1779                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1780                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1781
1782                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1783                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1784         }
1785
1786         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1787                 gmbus_irq_handler(dev_priv);
1788 }
1789
1790 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1791 {
1792         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1793
1794         if (hotplug_status)
1795                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1796
1797         return hotplug_status;
1798 }
1799
1800 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1801                                  u32 hotplug_status)
1802 {
1803         u32 pin_mask = 0, long_mask = 0;
1804
1805         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1806             IS_CHERRYVIEW(dev_priv)) {
1807                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1808
1809                 if (hotplug_trigger) {
1810                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1811                                            hotplug_trigger, hpd_status_g4x,
1812                                            i9xx_port_hotplug_long_detect);
1813
1814                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1815                 }
1816
1817                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1818                         dp_aux_irq_handler(dev_priv);
1819         } else {
1820                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1821
1822                 if (hotplug_trigger) {
1823                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1824                                            hotplug_trigger, hpd_status_i915,
1825                                            i9xx_port_hotplug_long_detect);
1826                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1827                 }
1828         }
1829 }
1830
1831 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1832 {
1833         struct drm_device *dev = arg;
1834         struct drm_i915_private *dev_priv = to_i915(dev);
1835         irqreturn_t ret = IRQ_NONE;
1836
1837         if (!intel_irqs_enabled(dev_priv))
1838                 return IRQ_NONE;
1839
1840         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1841         disable_rpm_wakeref_asserts(dev_priv);
1842
1843         do {
1844                 u32 iir, gt_iir, pm_iir;
1845                 u32 pipe_stats[I915_MAX_PIPES] = {};
1846                 u32 hotplug_status = 0;
1847                 u32 ier = 0;
1848
1849                 gt_iir = I915_READ(GTIIR);
1850                 pm_iir = I915_READ(GEN6_PMIIR);
1851                 iir = I915_READ(VLV_IIR);
1852
1853                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1854                         break;
1855
1856                 ret = IRQ_HANDLED;
1857
1858                 /*
1859                  * Theory on interrupt generation, based on empirical evidence:
1860                  *
1861                  * x = ((VLV_IIR & VLV_IER) ||
1862                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1863                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1864                  *
1865                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1866                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1867                  * guarantee the CPU interrupt will be raised again even if we
1868                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1869                  * bits this time around.
1870                  */
1871                 I915_WRITE(VLV_MASTER_IER, 0);
1872                 ier = I915_READ(VLV_IER);
1873                 I915_WRITE(VLV_IER, 0);
1874
1875                 if (gt_iir)
1876                         I915_WRITE(GTIIR, gt_iir);
1877                 if (pm_iir)
1878                         I915_WRITE(GEN6_PMIIR, pm_iir);
1879
1880                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1881                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1882
1883                 /* Call regardless, as some status bits might not be
1884                  * signalled in iir */
1885                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1886
1887                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1888                            I915_LPE_PIPE_B_INTERRUPT))
1889                         intel_lpe_audio_irq_handler(dev_priv);
1890
1891                 /*
1892                  * VLV_IIR is single buffered, and reflects the level
1893                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1894                  */
1895                 if (iir)
1896                         I915_WRITE(VLV_IIR, iir);
1897
1898                 I915_WRITE(VLV_IER, ier);
1899                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1900                 POSTING_READ(VLV_MASTER_IER);
1901
1902                 if (gt_iir)
1903                         snb_gt_irq_handler(dev_priv, gt_iir);
1904                 if (pm_iir)
1905                         gen6_rps_irq_handler(dev_priv, pm_iir);
1906
1907                 if (hotplug_status)
1908                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1909
1910                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1911         } while (0);
1912
1913         enable_rpm_wakeref_asserts(dev_priv);
1914
1915         return ret;
1916 }
1917
1918 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1919 {
1920         struct drm_device *dev = arg;
1921         struct drm_i915_private *dev_priv = to_i915(dev);
1922         irqreturn_t ret = IRQ_NONE;
1923
1924         if (!intel_irqs_enabled(dev_priv))
1925                 return IRQ_NONE;
1926
1927         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1928         disable_rpm_wakeref_asserts(dev_priv);
1929
1930         do {
1931                 u32 master_ctl, iir;
1932                 u32 gt_iir[4] = {};
1933                 u32 pipe_stats[I915_MAX_PIPES] = {};
1934                 u32 hotplug_status = 0;
1935                 u32 ier = 0;
1936
1937                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1938                 iir = I915_READ(VLV_IIR);
1939
1940                 if (master_ctl == 0 && iir == 0)
1941                         break;
1942
1943                 ret = IRQ_HANDLED;
1944
1945                 /*
1946                  * Theory on interrupt generation, based on empirical evidence:
1947                  *
1948                  * x = ((VLV_IIR & VLV_IER) ||
1949                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1950                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1951                  *
1952                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1953                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1954                  * guarantee the CPU interrupt will be raised again even if we
1955                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1956                  * bits this time around.
1957                  */
1958                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1959                 ier = I915_READ(VLV_IER);
1960                 I915_WRITE(VLV_IER, 0);
1961
1962                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1963
1964                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1965                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1966
1967                 /* Call regardless, as some status bits might not be
1968                  * signalled in iir */
1969                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1970
1971                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1972                            I915_LPE_PIPE_B_INTERRUPT |
1973                            I915_LPE_PIPE_C_INTERRUPT))
1974                         intel_lpe_audio_irq_handler(dev_priv);
1975
1976                 /*
1977                  * VLV_IIR is single buffered, and reflects the level
1978                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1979                  */
1980                 if (iir)
1981                         I915_WRITE(VLV_IIR, iir);
1982
1983                 I915_WRITE(VLV_IER, ier);
1984                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
1985                 POSTING_READ(GEN8_MASTER_IRQ);
1986
1987                 gen8_gt_irq_handler(dev_priv, gt_iir);
1988
1989                 if (hotplug_status)
1990                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1991
1992                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1993         } while (0);
1994
1995         enable_rpm_wakeref_asserts(dev_priv);
1996
1997         return ret;
1998 }
1999
2000 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2001                                 u32 hotplug_trigger,
2002                                 const u32 hpd[HPD_NUM_PINS])
2003 {
2004         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2005
2006         /*
2007          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2008          * unless we touch the hotplug register, even if hotplug_trigger is
2009          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2010          * errors.
2011          */
2012         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2013         if (!hotplug_trigger) {
2014                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2015                         PORTD_HOTPLUG_STATUS_MASK |
2016                         PORTC_HOTPLUG_STATUS_MASK |
2017                         PORTB_HOTPLUG_STATUS_MASK;
2018                 dig_hotplug_reg &= ~mask;
2019         }
2020
2021         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2022         if (!hotplug_trigger)
2023                 return;
2024
2025         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2026                            dig_hotplug_reg, hpd,
2027                            pch_port_hotplug_long_detect);
2028
2029         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2030 }
2031
2032 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2033 {
2034         int pipe;
2035         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2036
2037         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2038
2039         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2040                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2041                                SDE_AUDIO_POWER_SHIFT);
2042                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2043                                  port_name(port));
2044         }
2045
2046         if (pch_iir & SDE_AUX_MASK)
2047                 dp_aux_irq_handler(dev_priv);
2048
2049         if (pch_iir & SDE_GMBUS)
2050                 gmbus_irq_handler(dev_priv);
2051
2052         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2053                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2054
2055         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2056                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2057
2058         if (pch_iir & SDE_POISON)
2059                 DRM_ERROR("PCH poison interrupt\n");
2060
2061         if (pch_iir & SDE_FDI_MASK)
2062                 for_each_pipe(dev_priv, pipe)
2063                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2064                                          pipe_name(pipe),
2065                                          I915_READ(FDI_RX_IIR(pipe)));
2066
2067         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2068                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2069
2070         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2071                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2072
2073         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2074                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2075
2076         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2077                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2078 }
2079
2080 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2081 {
2082         u32 err_int = I915_READ(GEN7_ERR_INT);
2083         enum pipe pipe;
2084
2085         if (err_int & ERR_INT_POISON)
2086                 DRM_ERROR("Poison interrupt\n");
2087
2088         for_each_pipe(dev_priv, pipe) {
2089                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2090                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2091
2092                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2093                         if (IS_IVYBRIDGE(dev_priv))
2094                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2095                         else
2096                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2097                 }
2098         }
2099
2100         I915_WRITE(GEN7_ERR_INT, err_int);
2101 }
2102
2103 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2104 {
2105         u32 serr_int = I915_READ(SERR_INT);
2106
2107         if (serr_int & SERR_INT_POISON)
2108                 DRM_ERROR("PCH poison interrupt\n");
2109
2110         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2111                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2112
2113         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2114                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2115
2116         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2117                 intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_C);
2118
2119         I915_WRITE(SERR_INT, serr_int);
2120 }
2121
2122 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2123 {
2124         int pipe;
2125         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2126
2127         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2128
2129         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2130                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2131                                SDE_AUDIO_POWER_SHIFT_CPT);
2132                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2133                                  port_name(port));
2134         }
2135
2136         if (pch_iir & SDE_AUX_MASK_CPT)
2137                 dp_aux_irq_handler(dev_priv);
2138
2139         if (pch_iir & SDE_GMBUS_CPT)
2140                 gmbus_irq_handler(dev_priv);
2141
2142         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2143                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2144
2145         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2146                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2147
2148         if (pch_iir & SDE_FDI_MASK_CPT)
2149                 for_each_pipe(dev_priv, pipe)
2150                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2151                                          pipe_name(pipe),
2152                                          I915_READ(FDI_RX_IIR(pipe)));
2153
2154         if (pch_iir & SDE_ERROR_CPT)
2155                 cpt_serr_int_handler(dev_priv);
2156 }
2157
2158 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2159 {
2160         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2161                 ~SDE_PORTE_HOTPLUG_SPT;
2162         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2163         u32 pin_mask = 0, long_mask = 0;
2164
2165         if (hotplug_trigger) {
2166                 u32 dig_hotplug_reg;
2167
2168                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2169                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2170
2171                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2172                                    dig_hotplug_reg, hpd_spt,
2173                                    spt_port_hotplug_long_detect);
2174         }
2175
2176         if (hotplug2_trigger) {
2177                 u32 dig_hotplug_reg;
2178
2179                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2180                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2181
2182                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2183                                    dig_hotplug_reg, hpd_spt,
2184                                    spt_port_hotplug2_long_detect);
2185         }
2186
2187         if (pin_mask)
2188                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2189
2190         if (pch_iir & SDE_GMBUS_CPT)
2191                 gmbus_irq_handler(dev_priv);
2192 }
2193
2194 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2195                                 u32 hotplug_trigger,
2196                                 const u32 hpd[HPD_NUM_PINS])
2197 {
2198         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2199
2200         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2201         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2202
2203         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2204                            dig_hotplug_reg, hpd,
2205                            ilk_port_hotplug_long_detect);
2206
2207         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2208 }
2209
2210 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2211                                     u32 de_iir)
2212 {
2213         enum pipe pipe;
2214         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2215
2216         if (hotplug_trigger)
2217                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2218
2219         if (de_iir & DE_AUX_CHANNEL_A)
2220                 dp_aux_irq_handler(dev_priv);
2221
2222         if (de_iir & DE_GSE)
2223                 intel_opregion_asle_intr(dev_priv);
2224
2225         if (de_iir & DE_POISON)
2226                 DRM_ERROR("Poison interrupt\n");
2227
2228         for_each_pipe(dev_priv, pipe) {
2229                 if (de_iir & DE_PIPE_VBLANK(pipe))
2230                         drm_handle_vblank(&dev_priv->drm, pipe);
2231
2232                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2233                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2234
2235                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2236                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2237         }
2238
2239         /* check event from PCH */
2240         if (de_iir & DE_PCH_EVENT) {
2241                 u32 pch_iir = I915_READ(SDEIIR);
2242
2243                 if (HAS_PCH_CPT(dev_priv))
2244                         cpt_irq_handler(dev_priv, pch_iir);
2245                 else
2246                         ibx_irq_handler(dev_priv, pch_iir);
2247
2248                 /* should clear PCH hotplug event before clear CPU irq */
2249                 I915_WRITE(SDEIIR, pch_iir);
2250         }
2251
2252         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2253                 ironlake_rps_change_irq_handler(dev_priv);
2254 }
2255
2256 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2257                                     u32 de_iir)
2258 {
2259         enum pipe pipe;
2260         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2261
2262         if (hotplug_trigger)
2263                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2264
2265         if (de_iir & DE_ERR_INT_IVB)
2266                 ivb_err_int_handler(dev_priv);
2267
2268         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2269                 dp_aux_irq_handler(dev_priv);
2270
2271         if (de_iir & DE_GSE_IVB)
2272                 intel_opregion_asle_intr(dev_priv);
2273
2274         for_each_pipe(dev_priv, pipe) {
2275                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2276                         drm_handle_vblank(&dev_priv->drm, pipe);
2277         }
2278
2279         /* check event from PCH */
2280         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2281                 u32 pch_iir = I915_READ(SDEIIR);
2282
2283                 cpt_irq_handler(dev_priv, pch_iir);
2284
2285                 /* clear PCH hotplug event before clear CPU irq */
2286                 I915_WRITE(SDEIIR, pch_iir);
2287         }
2288 }
2289
2290 /*
2291  * To handle irqs with the minimum potential races with fresh interrupts, we:
2292  * 1 - Disable Master Interrupt Control.
2293  * 2 - Find the source(s) of the interrupt.
2294  * 3 - Clear the Interrupt Identity bits (IIR).
2295  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2296  * 5 - Re-enable Master Interrupt Control.
2297  */
2298 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2299 {
2300         struct drm_device *dev = arg;
2301         struct drm_i915_private *dev_priv = to_i915(dev);
2302         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2303         irqreturn_t ret = IRQ_NONE;
2304
2305         if (!intel_irqs_enabled(dev_priv))
2306                 return IRQ_NONE;
2307
2308         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2309         disable_rpm_wakeref_asserts(dev_priv);
2310
2311         /* disable master interrupt before clearing iir  */
2312         de_ier = I915_READ(DEIER);
2313         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2314         POSTING_READ(DEIER);
2315
2316         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2317          * interrupts will will be stored on its back queue, and then we'll be
2318          * able to process them after we restore SDEIER (as soon as we restore
2319          * it, we'll get an interrupt if SDEIIR still has something to process
2320          * due to its back queue). */
2321         if (!HAS_PCH_NOP(dev_priv)) {
2322                 sde_ier = I915_READ(SDEIER);
2323                 I915_WRITE(SDEIER, 0);
2324                 POSTING_READ(SDEIER);
2325         }
2326
2327         /* Find, clear, then process each source of interrupt */
2328
2329         gt_iir = I915_READ(GTIIR);
2330         if (gt_iir) {
2331                 I915_WRITE(GTIIR, gt_iir);
2332                 ret = IRQ_HANDLED;
2333                 if (INTEL_GEN(dev_priv) >= 6)
2334                         snb_gt_irq_handler(dev_priv, gt_iir);
2335                 else
2336                         ilk_gt_irq_handler(dev_priv, gt_iir);
2337         }
2338
2339         de_iir = I915_READ(DEIIR);
2340         if (de_iir) {
2341                 I915_WRITE(DEIIR, de_iir);
2342                 ret = IRQ_HANDLED;
2343                 if (INTEL_GEN(dev_priv) >= 7)
2344                         ivb_display_irq_handler(dev_priv, de_iir);
2345                 else
2346                         ilk_display_irq_handler(dev_priv, de_iir);
2347         }
2348
2349         if (INTEL_GEN(dev_priv) >= 6) {
2350                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2351                 if (pm_iir) {
2352                         I915_WRITE(GEN6_PMIIR, pm_iir);
2353                         ret = IRQ_HANDLED;
2354                         gen6_rps_irq_handler(dev_priv, pm_iir);
2355                 }
2356         }
2357
2358         I915_WRITE(DEIER, de_ier);
2359         POSTING_READ(DEIER);
2360         if (!HAS_PCH_NOP(dev_priv)) {
2361                 I915_WRITE(SDEIER, sde_ier);
2362                 POSTING_READ(SDEIER);
2363         }
2364
2365         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2366         enable_rpm_wakeref_asserts(dev_priv);
2367
2368         return ret;
2369 }
2370
2371 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2372                                 u32 hotplug_trigger,
2373                                 const u32 hpd[HPD_NUM_PINS])
2374 {
2375         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2376
2377         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2378         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2379
2380         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2381                            dig_hotplug_reg, hpd,
2382                            bxt_port_hotplug_long_detect);
2383
2384         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2385 }
2386
2387 static irqreturn_t
2388 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2389 {
2390         irqreturn_t ret = IRQ_NONE;
2391         u32 iir;
2392         enum pipe pipe;
2393
2394         if (master_ctl & GEN8_DE_MISC_IRQ) {
2395                 iir = I915_READ(GEN8_DE_MISC_IIR);
2396                 if (iir) {
2397                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2398                         ret = IRQ_HANDLED;
2399                         if (iir & GEN8_DE_MISC_GSE)
2400                                 intel_opregion_asle_intr(dev_priv);
2401                         else
2402                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2403                 }
2404                 else
2405                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2406         }
2407
2408         if (master_ctl & GEN8_DE_PORT_IRQ) {
2409                 iir = I915_READ(GEN8_DE_PORT_IIR);
2410                 if (iir) {
2411                         u32 tmp_mask;
2412                         bool found = false;
2413
2414                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2415                         ret = IRQ_HANDLED;
2416
2417                         tmp_mask = GEN8_AUX_CHANNEL_A;
2418                         if (INTEL_GEN(dev_priv) >= 9)
2419                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2420                                             GEN9_AUX_CHANNEL_C |
2421                                             GEN9_AUX_CHANNEL_D;
2422
2423                         if (iir & tmp_mask) {
2424                                 dp_aux_irq_handler(dev_priv);
2425                                 found = true;
2426                         }
2427
2428                         if (IS_GEN9_LP(dev_priv)) {
2429                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2430                                 if (tmp_mask) {
2431                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2432                                                             hpd_bxt);
2433                                         found = true;
2434                                 }
2435                         } else if (IS_BROADWELL(dev_priv)) {
2436                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2437                                 if (tmp_mask) {
2438                                         ilk_hpd_irq_handler(dev_priv,
2439                                                             tmp_mask, hpd_bdw);
2440                                         found = true;
2441                                 }
2442                         }
2443
2444                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2445                                 gmbus_irq_handler(dev_priv);
2446                                 found = true;
2447                         }
2448
2449                         if (!found)
2450                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2451                 }
2452                 else
2453                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2454         }
2455
2456         for_each_pipe(dev_priv, pipe) {
2457                 u32 fault_errors;
2458
2459                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2460                         continue;
2461
2462                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2463                 if (!iir) {
2464                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2465                         continue;
2466                 }
2467
2468                 ret = IRQ_HANDLED;
2469                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2470
2471                 if (iir & GEN8_PIPE_VBLANK)
2472                         drm_handle_vblank(&dev_priv->drm, pipe);
2473
2474                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2475                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2476
2477                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2478                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2479
2480                 fault_errors = iir;
2481                 if (INTEL_GEN(dev_priv) >= 9)
2482                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2483                 else
2484                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2485
2486                 if (fault_errors)
2487                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2488                                   pipe_name(pipe),
2489                                   fault_errors);
2490         }
2491
2492         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2493             master_ctl & GEN8_DE_PCH_IRQ) {
2494                 /*
2495                  * FIXME(BDW): Assume for now that the new interrupt handling
2496                  * scheme also closed the SDE interrupt handling race we've seen
2497                  * on older pch-split platforms. But this needs testing.
2498                  */
2499                 iir = I915_READ(SDEIIR);
2500                 if (iir) {
2501                         I915_WRITE(SDEIIR, iir);
2502                         ret = IRQ_HANDLED;
2503
2504                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
2505                             HAS_PCH_CNP(dev_priv))
2506                                 spt_irq_handler(dev_priv, iir);
2507                         else
2508                                 cpt_irq_handler(dev_priv, iir);
2509                 } else {
2510                         /*
2511                          * Like on previous PCH there seems to be something
2512                          * fishy going on with forwarding PCH interrupts.
2513                          */
2514                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2515                 }
2516         }
2517
2518         return ret;
2519 }
2520
2521 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2522 {
2523         struct drm_device *dev = arg;
2524         struct drm_i915_private *dev_priv = to_i915(dev);
2525         u32 master_ctl;
2526         u32 gt_iir[4] = {};
2527         irqreturn_t ret;
2528
2529         if (!intel_irqs_enabled(dev_priv))
2530                 return IRQ_NONE;
2531
2532         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2533         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2534         if (!master_ctl)
2535                 return IRQ_NONE;
2536
2537         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2538
2539         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2540         disable_rpm_wakeref_asserts(dev_priv);
2541
2542         /* Find, clear, then process each source of interrupt */
2543         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2544         gen8_gt_irq_handler(dev_priv, gt_iir);
2545         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2546
2547         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2548         POSTING_READ_FW(GEN8_MASTER_IRQ);
2549
2550         enable_rpm_wakeref_asserts(dev_priv);
2551
2552         return ret;
2553 }
2554
2555 struct wedge_me {
2556         struct delayed_work work;
2557         struct drm_i915_private *i915;
2558         const char *name;
2559 };
2560
2561 static void wedge_me(struct work_struct *work)
2562 {
2563         struct wedge_me *w = container_of(work, typeof(*w), work.work);
2564
2565         dev_err(w->i915->drm.dev,
2566                 "%s timed out, cancelling all in-flight rendering.\n",
2567                 w->name);
2568         i915_gem_set_wedged(w->i915);
2569 }
2570
2571 static void __init_wedge(struct wedge_me *w,
2572                          struct drm_i915_private *i915,
2573                          long timeout,
2574                          const char *name)
2575 {
2576         w->i915 = i915;
2577         w->name = name;
2578
2579         INIT_DELAYED_WORK_ONSTACK(&w->work, wedge_me);
2580         schedule_delayed_work(&w->work, timeout);
2581 }
2582
2583 static void __fini_wedge(struct wedge_me *w)
2584 {
2585         cancel_delayed_work_sync(&w->work);
2586         destroy_delayed_work_on_stack(&w->work);
2587         w->i915 = NULL;
2588 }
2589
2590 #define i915_wedge_on_timeout(W, DEV, TIMEOUT)                          \
2591         for (__init_wedge((W), (DEV), (TIMEOUT), __func__);             \
2592              (W)->i915;                                                 \
2593              __fini_wedge((W)))
2594
2595 /**
2596  * i915_reset_device - do process context error handling work
2597  * @dev_priv: i915 device private
2598  *
2599  * Fire an error uevent so userspace can see that a hang or error
2600  * was detected.
2601  */
2602 static void i915_reset_device(struct drm_i915_private *dev_priv)
2603 {
2604         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2605         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2606         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2607         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2608         struct wedge_me w;
2609
2610         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2611
2612         DRM_DEBUG_DRIVER("resetting chip\n");
2613         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2614
2615         /* Use a watchdog to ensure that our reset completes */
2616         i915_wedge_on_timeout(&w, dev_priv, 5*HZ) {
2617                 intel_prepare_reset(dev_priv);
2618
2619                 /* Signal that locked waiters should reset the GPU */
2620                 set_bit(I915_RESET_HANDOFF, &dev_priv->gpu_error.flags);
2621                 wake_up_all(&dev_priv->gpu_error.wait_queue);
2622
2623                 /* Wait for anyone holding the lock to wakeup, without
2624                  * blocking indefinitely on struct_mutex.
2625                  */
2626                 do {
2627                         if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2628                                 i915_reset(dev_priv, 0);
2629                                 mutex_unlock(&dev_priv->drm.struct_mutex);
2630                         }
2631                 } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2632                                              I915_RESET_HANDOFF,
2633                                              TASK_UNINTERRUPTIBLE,
2634                                              1));
2635
2636                 intel_finish_reset(dev_priv);
2637         }
2638
2639         if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2640                 kobject_uevent_env(kobj,
2641                                    KOBJ_CHANGE, reset_done_event);
2642 }
2643
2644 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2645 {
2646         u32 eir;
2647
2648         if (!IS_GEN2(dev_priv))
2649                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2650
2651         if (INTEL_GEN(dev_priv) < 4)
2652                 I915_WRITE(IPEIR, I915_READ(IPEIR));
2653         else
2654                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2655
2656         I915_WRITE(EIR, I915_READ(EIR));
2657         eir = I915_READ(EIR);
2658         if (eir) {
2659                 /*
2660                  * some errors might have become stuck,
2661                  * mask them.
2662                  */
2663                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2664                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2665                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2666         }
2667 }
2668
2669 /**
2670  * i915_handle_error - handle a gpu error
2671  * @dev_priv: i915 device private
2672  * @engine_mask: mask representing engines that are hung
2673  * @fmt: Error message format string
2674  *
2675  * Do some basic checking of register state at error time and
2676  * dump it to the syslog.  Also call i915_capture_error_state() to make
2677  * sure we get a record and make it available in debugfs.  Fire a uevent
2678  * so userspace knows something bad happened (should trigger collection
2679  * of a ring dump etc.).
2680  */
2681 void i915_handle_error(struct drm_i915_private *dev_priv,
2682                        u32 engine_mask,
2683                        const char *fmt, ...)
2684 {
2685         struct intel_engine_cs *engine;
2686         unsigned int tmp;
2687         va_list args;
2688         char error_msg[80];
2689
2690         va_start(args, fmt);
2691         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2692         va_end(args);
2693
2694         /*
2695          * In most cases it's guaranteed that we get here with an RPM
2696          * reference held, for example because there is a pending GPU
2697          * request that won't finish until the reset is done. This
2698          * isn't the case at least when we get here by doing a
2699          * simulated reset via debugfs, so get an RPM reference.
2700          */
2701         intel_runtime_pm_get(dev_priv);
2702
2703         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2704         i915_clear_error_registers(dev_priv);
2705
2706         /*
2707          * Try engine reset when available. We fall back to full reset if
2708          * single reset fails.
2709          */
2710         if (intel_has_reset_engine(dev_priv)) {
2711                 for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
2712                         BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
2713                         if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2714                                              &dev_priv->gpu_error.flags))
2715                                 continue;
2716
2717                         if (i915_reset_engine(engine, 0) == 0)
2718                                 engine_mask &= ~intel_engine_flag(engine);
2719
2720                         clear_bit(I915_RESET_ENGINE + engine->id,
2721                                   &dev_priv->gpu_error.flags);
2722                         wake_up_bit(&dev_priv->gpu_error.flags,
2723                                     I915_RESET_ENGINE + engine->id);
2724                 }
2725         }
2726
2727         if (!engine_mask)
2728                 goto out;
2729
2730         /* Full reset needs the mutex, stop any other user trying to do so. */
2731         if (test_and_set_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags)) {
2732                 wait_event(dev_priv->gpu_error.reset_queue,
2733                            !test_bit(I915_RESET_BACKOFF,
2734                                      &dev_priv->gpu_error.flags));
2735                 goto out;
2736         }
2737
2738         /* Prevent any other reset-engine attempt. */
2739         for_each_engine(engine, dev_priv, tmp) {
2740                 while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
2741                                         &dev_priv->gpu_error.flags))
2742                         wait_on_bit(&dev_priv->gpu_error.flags,
2743                                     I915_RESET_ENGINE + engine->id,
2744                                     TASK_UNINTERRUPTIBLE);
2745         }
2746
2747         i915_reset_device(dev_priv);
2748
2749         for_each_engine(engine, dev_priv, tmp) {
2750                 clear_bit(I915_RESET_ENGINE + engine->id,
2751                           &dev_priv->gpu_error.flags);
2752         }
2753
2754         clear_bit(I915_RESET_BACKOFF, &dev_priv->gpu_error.flags);
2755         wake_up_all(&dev_priv->gpu_error.reset_queue);
2756
2757 out:
2758         intel_runtime_pm_put(dev_priv);
2759 }
2760
2761 /* Called from drm generic code, passed 'crtc' which
2762  * we use as a pipe index
2763  */
2764 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2765 {
2766         struct drm_i915_private *dev_priv = to_i915(dev);
2767         unsigned long irqflags;
2768
2769         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2770         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2771         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2772
2773         return 0;
2774 }
2775
2776 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2777 {
2778         struct drm_i915_private *dev_priv = to_i915(dev);
2779         unsigned long irqflags;
2780
2781         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2782         i915_enable_pipestat(dev_priv, pipe,
2783                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2784         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2785
2786         return 0;
2787 }
2788
2789 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2790 {
2791         struct drm_i915_private *dev_priv = to_i915(dev);
2792         unsigned long irqflags;
2793         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2794                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2795
2796         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2797         ilk_enable_display_irq(dev_priv, bit);
2798         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2799
2800         return 0;
2801 }
2802
2803 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2804 {
2805         struct drm_i915_private *dev_priv = to_i915(dev);
2806         unsigned long irqflags;
2807
2808         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2809         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2810         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2811
2812         return 0;
2813 }
2814
2815 /* Called from drm generic code, passed 'crtc' which
2816  * we use as a pipe index
2817  */
2818 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2819 {
2820         struct drm_i915_private *dev_priv = to_i915(dev);
2821         unsigned long irqflags;
2822
2823         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2824         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2825         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2826 }
2827
2828 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2829 {
2830         struct drm_i915_private *dev_priv = to_i915(dev);
2831         unsigned long irqflags;
2832
2833         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2834         i915_disable_pipestat(dev_priv, pipe,
2835                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2836         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2837 }
2838
2839 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2840 {
2841         struct drm_i915_private *dev_priv = to_i915(dev);
2842         unsigned long irqflags;
2843         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2844                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2845
2846         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2847         ilk_disable_display_irq(dev_priv, bit);
2848         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2849 }
2850
2851 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2852 {
2853         struct drm_i915_private *dev_priv = to_i915(dev);
2854         unsigned long irqflags;
2855
2856         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2857         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2858         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2859 }
2860
2861 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2862 {
2863         if (HAS_PCH_NOP(dev_priv))
2864                 return;
2865
2866         GEN5_IRQ_RESET(SDE);
2867
2868         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2869                 I915_WRITE(SERR_INT, 0xffffffff);
2870 }
2871
2872 /*
2873  * SDEIER is also touched by the interrupt handler to work around missed PCH
2874  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2875  * instead we unconditionally enable all PCH interrupt sources here, but then
2876  * only unmask them as needed with SDEIMR.
2877  *
2878  * This function needs to be called before interrupts are enabled.
2879  */
2880 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2881 {
2882         struct drm_i915_private *dev_priv = to_i915(dev);
2883
2884         if (HAS_PCH_NOP(dev_priv))
2885                 return;
2886
2887         WARN_ON(I915_READ(SDEIER) != 0);
2888         I915_WRITE(SDEIER, 0xffffffff);
2889         POSTING_READ(SDEIER);
2890 }
2891
2892 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2893 {
2894         GEN5_IRQ_RESET(GT);
2895         if (INTEL_GEN(dev_priv) >= 6)
2896                 GEN5_IRQ_RESET(GEN6_PM);
2897 }
2898
2899 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2900 {
2901         enum pipe pipe;
2902
2903         if (IS_CHERRYVIEW(dev_priv))
2904                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2905         else
2906                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2907
2908         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2909         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2910
2911         for_each_pipe(dev_priv, pipe) {
2912                 I915_WRITE(PIPESTAT(pipe),
2913                            PIPE_FIFO_UNDERRUN_STATUS |
2914                            PIPESTAT_INT_STATUS_MASK);
2915                 dev_priv->pipestat_irq_mask[pipe] = 0;
2916         }
2917
2918         GEN5_IRQ_RESET(VLV_);
2919         dev_priv->irq_mask = ~0;
2920 }
2921
2922 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2923 {
2924         u32 pipestat_mask;
2925         u32 enable_mask;
2926         enum pipe pipe;
2927
2928         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2929                         PIPE_CRC_DONE_INTERRUPT_STATUS;
2930
2931         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2932         for_each_pipe(dev_priv, pipe)
2933                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2934
2935         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2936                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2937                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
2938                 I915_LPE_PIPE_A_INTERRUPT |
2939                 I915_LPE_PIPE_B_INTERRUPT;
2940
2941         if (IS_CHERRYVIEW(dev_priv))
2942                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
2943                         I915_LPE_PIPE_C_INTERRUPT;
2944
2945         WARN_ON(dev_priv->irq_mask != ~0);
2946
2947         dev_priv->irq_mask = ~enable_mask;
2948
2949         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2950 }
2951
2952 /* drm_dma.h hooks
2953 */
2954 static void ironlake_irq_reset(struct drm_device *dev)
2955 {
2956         struct drm_i915_private *dev_priv = to_i915(dev);
2957
2958         I915_WRITE(HWSTAM, 0xffffffff);
2959
2960         GEN5_IRQ_RESET(DE);
2961         if (IS_GEN7(dev_priv))
2962                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2963
2964         gen5_gt_irq_reset(dev_priv);
2965
2966         ibx_irq_reset(dev_priv);
2967 }
2968
2969 static void valleyview_irq_preinstall(struct drm_device *dev)
2970 {
2971         struct drm_i915_private *dev_priv = to_i915(dev);
2972
2973         I915_WRITE(VLV_MASTER_IER, 0);
2974         POSTING_READ(VLV_MASTER_IER);
2975
2976         gen5_gt_irq_reset(dev_priv);
2977
2978         spin_lock_irq(&dev_priv->irq_lock);
2979         if (dev_priv->display_irqs_enabled)
2980                 vlv_display_irq_reset(dev_priv);
2981         spin_unlock_irq(&dev_priv->irq_lock);
2982 }
2983
2984 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
2985 {
2986         GEN8_IRQ_RESET_NDX(GT, 0);
2987         GEN8_IRQ_RESET_NDX(GT, 1);
2988         GEN8_IRQ_RESET_NDX(GT, 2);
2989         GEN8_IRQ_RESET_NDX(GT, 3);
2990 }
2991
2992 static void gen8_irq_reset(struct drm_device *dev)
2993 {
2994         struct drm_i915_private *dev_priv = to_i915(dev);
2995         int pipe;
2996
2997         I915_WRITE(GEN8_MASTER_IRQ, 0);
2998         POSTING_READ(GEN8_MASTER_IRQ);
2999
3000         gen8_gt_irq_reset(dev_priv);
3001
3002         for_each_pipe(dev_priv, pipe)
3003                 if (intel_display_power_is_enabled(dev_priv,
3004                                                    POWER_DOMAIN_PIPE(pipe)))
3005                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3006
3007         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3008         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3009         GEN5_IRQ_RESET(GEN8_PCU_);
3010
3011         if (HAS_PCH_SPLIT(dev_priv))
3012                 ibx_irq_reset(dev_priv);
3013 }
3014
3015 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3016                                      u8 pipe_mask)
3017 {
3018         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3019         enum pipe pipe;
3020
3021         spin_lock_irq(&dev_priv->irq_lock);
3022         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3023                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3024                                   dev_priv->de_irq_mask[pipe],
3025                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3026         spin_unlock_irq(&dev_priv->irq_lock);
3027 }
3028
3029 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3030                                      u8 pipe_mask)
3031 {
3032         enum pipe pipe;
3033
3034         spin_lock_irq(&dev_priv->irq_lock);
3035         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3036                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3037         spin_unlock_irq(&dev_priv->irq_lock);
3038
3039         /* make sure we're done processing display irqs */
3040         synchronize_irq(dev_priv->drm.irq);
3041 }
3042
3043 static void cherryview_irq_preinstall(struct drm_device *dev)
3044 {
3045         struct drm_i915_private *dev_priv = to_i915(dev);
3046
3047         I915_WRITE(GEN8_MASTER_IRQ, 0);
3048         POSTING_READ(GEN8_MASTER_IRQ);
3049
3050         gen8_gt_irq_reset(dev_priv);
3051
3052         GEN5_IRQ_RESET(GEN8_PCU_);
3053
3054         spin_lock_irq(&dev_priv->irq_lock);
3055         if (dev_priv->display_irqs_enabled)
3056                 vlv_display_irq_reset(dev_priv);
3057         spin_unlock_irq(&dev_priv->irq_lock);
3058 }
3059
3060 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3061                                   const u32 hpd[HPD_NUM_PINS])
3062 {
3063         struct intel_encoder *encoder;
3064         u32 enabled_irqs = 0;
3065
3066         for_each_intel_encoder(&dev_priv->drm, encoder)
3067                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3068                         enabled_irqs |= hpd[encoder->hpd_pin];
3069
3070         return enabled_irqs;
3071 }
3072
3073 static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3074 {
3075         u32 hotplug;
3076
3077         /*
3078          * Enable digital hotplug on the PCH, and configure the DP short pulse
3079          * duration to 2ms (which is the minimum in the Display Port spec).
3080          * The pulse duration bits are reserved on LPT+.
3081          */
3082         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3083         hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3084                      PORTC_PULSE_DURATION_MASK |
3085                      PORTD_PULSE_DURATION_MASK);
3086         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3087         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3088         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3089         /*
3090          * When CPU and PCH are on the same package, port A
3091          * HPD must be enabled in both north and south.
3092          */
3093         if (HAS_PCH_LPT_LP(dev_priv))
3094                 hotplug |= PORTA_HOTPLUG_ENABLE;
3095         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3096 }
3097
3098 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3099 {
3100         u32 hotplug_irqs, enabled_irqs;
3101
3102         if (HAS_PCH_IBX(dev_priv)) {
3103                 hotplug_irqs = SDE_HOTPLUG_MASK;
3104                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3105         } else {
3106                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3107                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3108         }
3109
3110         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3111
3112         ibx_hpd_detection_setup(dev_priv);
3113 }
3114
3115 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3116 {
3117         u32 hotplug;
3118
3119         /* Enable digital hotplug on the PCH */
3120         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3121         hotplug |= PORTA_HOTPLUG_ENABLE |
3122                    PORTB_HOTPLUG_ENABLE |
3123                    PORTC_HOTPLUG_ENABLE |
3124                    PORTD_HOTPLUG_ENABLE;
3125         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3126
3127         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3128         hotplug |= PORTE_HOTPLUG_ENABLE;
3129         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3130 }
3131
3132 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3133 {
3134         u32 hotplug_irqs, enabled_irqs;
3135
3136         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3137         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3138
3139         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3140
3141         spt_hpd_detection_setup(dev_priv);
3142 }
3143
3144 static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3145 {
3146         u32 hotplug;
3147
3148         /*
3149          * Enable digital hotplug on the CPU, and configure the DP short pulse
3150          * duration to 2ms (which is the minimum in the Display Port spec)
3151          * The pulse duration bits are reserved on HSW+.
3152          */
3153         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3154         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3155         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3156                    DIGITAL_PORTA_PULSE_DURATION_2ms;
3157         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3158 }
3159
3160 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3161 {
3162         u32 hotplug_irqs, enabled_irqs;
3163
3164         if (INTEL_GEN(dev_priv) >= 8) {
3165                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3166                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3167
3168                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3169         } else if (INTEL_GEN(dev_priv) >= 7) {
3170                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3171                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3172
3173                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3174         } else {
3175                 hotplug_irqs = DE_DP_A_HOTPLUG;
3176                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3177
3178                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3179         }
3180
3181         ilk_hpd_detection_setup(dev_priv);
3182
3183         ibx_hpd_irq_setup(dev_priv);
3184 }
3185
3186 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3187                                       u32 enabled_irqs)
3188 {
3189         u32 hotplug;
3190
3191         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3192         hotplug |= PORTA_HOTPLUG_ENABLE |
3193                    PORTB_HOTPLUG_ENABLE |
3194                    PORTC_HOTPLUG_ENABLE;
3195
3196         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3197                       hotplug, enabled_irqs);
3198         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3199
3200         /*
3201          * For BXT invert bit has to be set based on AOB design
3202          * for HPD detection logic, update it based on VBT fields.
3203          */
3204         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3205             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3206                 hotplug |= BXT_DDIA_HPD_INVERT;
3207         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3208             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3209                 hotplug |= BXT_DDIB_HPD_INVERT;
3210         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3211             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3212                 hotplug |= BXT_DDIC_HPD_INVERT;
3213
3214         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3215 }
3216
3217 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3218 {
3219         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3220 }
3221
3222 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3223 {
3224         u32 hotplug_irqs, enabled_irqs;
3225
3226         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3227         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3228
3229         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3230
3231         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3232 }
3233
3234 static void ibx_irq_postinstall(struct drm_device *dev)
3235 {
3236         struct drm_i915_private *dev_priv = to_i915(dev);
3237         u32 mask;
3238
3239         if (HAS_PCH_NOP(dev_priv))
3240                 return;
3241
3242         if (HAS_PCH_IBX(dev_priv))
3243                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3244         else
3245                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3246
3247         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3248         I915_WRITE(SDEIMR, ~mask);
3249
3250         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3251             HAS_PCH_LPT(dev_priv))
3252                 ibx_hpd_detection_setup(dev_priv);
3253         else
3254                 spt_hpd_detection_setup(dev_priv);
3255 }
3256
3257 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3258 {
3259         struct drm_i915_private *dev_priv = to_i915(dev);
3260         u32 pm_irqs, gt_irqs;
3261
3262         pm_irqs = gt_irqs = 0;
3263
3264         dev_priv->gt_irq_mask = ~0;
3265         if (HAS_L3_DPF(dev_priv)) {
3266                 /* L3 parity interrupt is always unmasked. */
3267                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3268                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3269         }
3270
3271         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3272         if (IS_GEN5(dev_priv)) {
3273                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3274         } else {
3275                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3276         }
3277
3278         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3279
3280         if (INTEL_GEN(dev_priv) >= 6) {
3281                 /*
3282                  * RPS interrupts will get enabled/disabled on demand when RPS
3283                  * itself is enabled/disabled.
3284                  */
3285                 if (HAS_VEBOX(dev_priv)) {
3286                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3287                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3288                 }
3289
3290                 dev_priv->pm_imr = 0xffffffff;
3291                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3292         }
3293 }
3294
3295 static int ironlake_irq_postinstall(struct drm_device *dev)
3296 {
3297         struct drm_i915_private *dev_priv = to_i915(dev);
3298         u32 display_mask, extra_mask;
3299
3300         if (INTEL_GEN(dev_priv) >= 7) {
3301                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3302                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3303                                 DE_PLANEB_FLIP_DONE_IVB |
3304                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3305                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3306                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3307                               DE_DP_A_HOTPLUG_IVB);
3308         } else {
3309                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3310                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3311                                 DE_AUX_CHANNEL_A |
3312                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3313                                 DE_POISON);
3314                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3315                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3316                               DE_DP_A_HOTPLUG);
3317         }
3318
3319         dev_priv->irq_mask = ~display_mask;
3320
3321         I915_WRITE(HWSTAM, 0xeffe);
3322
3323         ibx_irq_pre_postinstall(dev);
3324
3325         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3326
3327         gen5_gt_irq_postinstall(dev);
3328
3329         ilk_hpd_detection_setup(dev_priv);
3330
3331         ibx_irq_postinstall(dev);
3332
3333         if (IS_IRONLAKE_M(dev_priv)) {
3334                 /* Enable PCU event interrupts
3335                  *
3336                  * spinlocking not required here for correctness since interrupt
3337                  * setup is guaranteed to run in single-threaded context. But we
3338                  * need it to make the assert_spin_locked happy. */
3339                 spin_lock_irq(&dev_priv->irq_lock);
3340                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3341                 spin_unlock_irq(&dev_priv->irq_lock);
3342         }
3343
3344         return 0;
3345 }
3346
3347 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3348 {
3349         lockdep_assert_held(&dev_priv->irq_lock);
3350
3351         if (dev_priv->display_irqs_enabled)
3352                 return;
3353
3354         dev_priv->display_irqs_enabled = true;
3355
3356         if (intel_irqs_enabled(dev_priv)) {
3357                 vlv_display_irq_reset(dev_priv);
3358                 vlv_display_irq_postinstall(dev_priv);
3359         }
3360 }
3361
3362 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3363 {
3364         lockdep_assert_held(&dev_priv->irq_lock);
3365
3366         if (!dev_priv->display_irqs_enabled)
3367                 return;
3368
3369         dev_priv->display_irqs_enabled = false;
3370
3371         if (intel_irqs_enabled(dev_priv))
3372                 vlv_display_irq_reset(dev_priv);
3373 }
3374
3375
3376 static int valleyview_irq_postinstall(struct drm_device *dev)
3377 {
3378         struct drm_i915_private *dev_priv = to_i915(dev);
3379
3380         gen5_gt_irq_postinstall(dev);
3381
3382         spin_lock_irq(&dev_priv->irq_lock);
3383         if (dev_priv->display_irqs_enabled)
3384                 vlv_display_irq_postinstall(dev_priv);
3385         spin_unlock_irq(&dev_priv->irq_lock);
3386
3387         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3388         POSTING_READ(VLV_MASTER_IER);
3389
3390         return 0;
3391 }
3392
3393 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3394 {
3395         /* These are interrupts we'll toggle with the ring mask register */
3396         uint32_t gt_interrupts[] = {
3397                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3398                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3399                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3400                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3401                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3402                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3403                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3404                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3405                 0,
3406                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3407                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3408                 };
3409
3410         if (HAS_L3_DPF(dev_priv))
3411                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3412
3413         dev_priv->pm_ier = 0x0;
3414         dev_priv->pm_imr = ~dev_priv->pm_ier;
3415         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3416         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3417         /*
3418          * RPS interrupts will get enabled/disabled on demand when RPS itself
3419          * is enabled/disabled. Same wil be the case for GuC interrupts.
3420          */
3421         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3422         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3423 }
3424
3425 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3426 {
3427         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3428         uint32_t de_pipe_enables;
3429         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3430         u32 de_port_enables;
3431         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3432         enum pipe pipe;
3433
3434         if (INTEL_GEN(dev_priv) >= 9) {
3435                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3436                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3437                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3438                                   GEN9_AUX_CHANNEL_D;
3439                 if (IS_GEN9_LP(dev_priv))
3440                         de_port_masked |= BXT_DE_PORT_GMBUS;
3441         } else {
3442                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3443                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3444         }
3445
3446         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3447                                            GEN8_PIPE_FIFO_UNDERRUN;
3448
3449         de_port_enables = de_port_masked;
3450         if (IS_GEN9_LP(dev_priv))
3451                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3452         else if (IS_BROADWELL(dev_priv))
3453                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3454
3455         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3456         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3457         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3458
3459         for_each_pipe(dev_priv, pipe)
3460                 if (intel_display_power_is_enabled(dev_priv,
3461                                 POWER_DOMAIN_PIPE(pipe)))
3462                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3463                                           dev_priv->de_irq_mask[pipe],
3464                                           de_pipe_enables);
3465
3466         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3467         GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3468
3469         if (IS_GEN9_LP(dev_priv))
3470                 bxt_hpd_detection_setup(dev_priv);
3471         else if (IS_BROADWELL(dev_priv))
3472                 ilk_hpd_detection_setup(dev_priv);
3473 }
3474
3475 static int gen8_irq_postinstall(struct drm_device *dev)
3476 {
3477         struct drm_i915_private *dev_priv = to_i915(dev);
3478
3479         if (HAS_PCH_SPLIT(dev_priv))
3480                 ibx_irq_pre_postinstall(dev);
3481
3482         gen8_gt_irq_postinstall(dev_priv);
3483         gen8_de_irq_postinstall(dev_priv);
3484
3485         if (HAS_PCH_SPLIT(dev_priv))
3486                 ibx_irq_postinstall(dev);
3487
3488         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3489         POSTING_READ(GEN8_MASTER_IRQ);
3490
3491         return 0;
3492 }
3493
3494 static int cherryview_irq_postinstall(struct drm_device *dev)
3495 {
3496         struct drm_i915_private *dev_priv = to_i915(dev);
3497
3498         gen8_gt_irq_postinstall(dev_priv);
3499
3500         spin_lock_irq(&dev_priv->irq_lock);
3501         if (dev_priv->display_irqs_enabled)
3502                 vlv_display_irq_postinstall(dev_priv);
3503         spin_unlock_irq(&dev_priv->irq_lock);
3504
3505         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3506         POSTING_READ(GEN8_MASTER_IRQ);
3507
3508         return 0;
3509 }
3510
3511 static void gen8_irq_uninstall(struct drm_device *dev)
3512 {
3513         struct drm_i915_private *dev_priv = to_i915(dev);
3514
3515         if (!dev_priv)
3516                 return;
3517
3518         gen8_irq_reset(dev);
3519 }
3520
3521 static void valleyview_irq_uninstall(struct drm_device *dev)
3522 {
3523         struct drm_i915_private *dev_priv = to_i915(dev);
3524
3525         if (!dev_priv)
3526                 return;
3527
3528         I915_WRITE(VLV_MASTER_IER, 0);
3529         POSTING_READ(VLV_MASTER_IER);
3530
3531         gen5_gt_irq_reset(dev_priv);
3532
3533         I915_WRITE(HWSTAM, 0xffffffff);
3534
3535         spin_lock_irq(&dev_priv->irq_lock);
3536         if (dev_priv->display_irqs_enabled)
3537                 vlv_display_irq_reset(dev_priv);
3538         spin_unlock_irq(&dev_priv->irq_lock);
3539 }
3540
3541 static void cherryview_irq_uninstall(struct drm_device *dev)
3542 {
3543         struct drm_i915_private *dev_priv = to_i915(dev);
3544
3545         if (!dev_priv)
3546                 return;
3547
3548         I915_WRITE(GEN8_MASTER_IRQ, 0);
3549         POSTING_READ(GEN8_MASTER_IRQ);
3550
3551         gen8_gt_irq_reset(dev_priv);
3552
3553         GEN5_IRQ_RESET(GEN8_PCU_);
3554
3555         spin_lock_irq(&dev_priv->irq_lock);
3556         if (dev_priv->display_irqs_enabled)
3557                 vlv_display_irq_reset(dev_priv);
3558         spin_unlock_irq(&dev_priv->irq_lock);
3559 }
3560
3561 static void ironlake_irq_uninstall(struct drm_device *dev)
3562 {
3563         struct drm_i915_private *dev_priv = to_i915(dev);
3564
3565         if (!dev_priv)
3566                 return;
3567
3568         ironlake_irq_reset(dev);
3569 }
3570
3571 static void i8xx_irq_preinstall(struct drm_device * dev)
3572 {
3573         struct drm_i915_private *dev_priv = to_i915(dev);
3574         int pipe;
3575
3576         for_each_pipe(dev_priv, pipe)
3577                 I915_WRITE(PIPESTAT(pipe), 0);
3578         I915_WRITE16(IMR, 0xffff);
3579         I915_WRITE16(IER, 0x0);
3580         POSTING_READ16(IER);
3581 }
3582
3583 static int i8xx_irq_postinstall(struct drm_device *dev)
3584 {
3585         struct drm_i915_private *dev_priv = to_i915(dev);
3586
3587         I915_WRITE16(EMR,
3588                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3589
3590         /* Unmask the interrupts that we always want on. */
3591         dev_priv->irq_mask =
3592                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3593                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3594                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3595                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3596         I915_WRITE16(IMR, dev_priv->irq_mask);
3597
3598         I915_WRITE16(IER,
3599                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3600                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3601                      I915_USER_INTERRUPT);
3602         POSTING_READ16(IER);
3603
3604         /* Interrupt setup is already guaranteed to be single-threaded, this is
3605          * just to make the assert_spin_locked check happy. */
3606         spin_lock_irq(&dev_priv->irq_lock);
3607         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3608         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3609         spin_unlock_irq(&dev_priv->irq_lock);
3610
3611         return 0;
3612 }
3613
3614 /*
3615  * Returns true when a page flip has completed.
3616  */
3617 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3618 {
3619         struct drm_device *dev = arg;
3620         struct drm_i915_private *dev_priv = to_i915(dev);
3621         u16 iir, new_iir;
3622         u32 pipe_stats[2];
3623         int pipe;
3624         irqreturn_t ret;
3625
3626         if (!intel_irqs_enabled(dev_priv))
3627                 return IRQ_NONE;
3628
3629         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3630         disable_rpm_wakeref_asserts(dev_priv);
3631
3632         ret = IRQ_NONE;
3633         iir = I915_READ16(IIR);
3634         if (iir == 0)
3635                 goto out;
3636
3637         while (iir) {
3638                 /* Can't rely on pipestat interrupt bit in iir as it might
3639                  * have been cleared after the pipestat interrupt was received.
3640                  * It doesn't set the bit in iir again, but it still produces
3641                  * interrupts (for non-MSI).
3642                  */
3643                 spin_lock(&dev_priv->irq_lock);
3644                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3645                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3646
3647                 for_each_pipe(dev_priv, pipe) {
3648                         i915_reg_t reg = PIPESTAT(pipe);
3649                         pipe_stats[pipe] = I915_READ(reg);
3650
3651                         /*
3652                          * Clear the PIPE*STAT regs before the IIR
3653                          */
3654                         if (pipe_stats[pipe] & 0x8000ffff)
3655                                 I915_WRITE(reg, pipe_stats[pipe]);
3656                 }
3657                 spin_unlock(&dev_priv->irq_lock);
3658
3659                 I915_WRITE16(IIR, iir);
3660                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3661
3662                 if (iir & I915_USER_INTERRUPT)
3663                         notify_ring(dev_priv->engine[RCS]);
3664
3665                 for_each_pipe(dev_priv, pipe) {
3666                         int plane = pipe;
3667                         if (HAS_FBC(dev_priv))
3668                                 plane = !plane;
3669
3670                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
3671                                 drm_handle_vblank(&dev_priv->drm, pipe);
3672
3673                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3674                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3675
3676                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3677                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3678                                                                     pipe);
3679                 }
3680
3681                 iir = new_iir;
3682         }
3683         ret = IRQ_HANDLED;
3684
3685 out:
3686         enable_rpm_wakeref_asserts(dev_priv);
3687
3688         return ret;
3689 }
3690
3691 static void i8xx_irq_uninstall(struct drm_device * dev)
3692 {
3693         struct drm_i915_private *dev_priv = to_i915(dev);
3694         int pipe;
3695
3696         for_each_pipe(dev_priv, pipe) {
3697                 /* Clear enable bits; then clear status bits */
3698                 I915_WRITE(PIPESTAT(pipe), 0);
3699                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3700         }
3701         I915_WRITE16(IMR, 0xffff);
3702         I915_WRITE16(IER, 0x0);
3703         I915_WRITE16(IIR, I915_READ16(IIR));
3704 }
3705
3706 static void i915_irq_preinstall(struct drm_device * dev)
3707 {
3708         struct drm_i915_private *dev_priv = to_i915(dev);
3709         int pipe;
3710
3711         if (I915_HAS_HOTPLUG(dev_priv)) {
3712                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3713                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3714         }
3715
3716         I915_WRITE16(HWSTAM, 0xeffe);
3717         for_each_pipe(dev_priv, pipe)
3718                 I915_WRITE(PIPESTAT(pipe), 0);
3719         I915_WRITE(IMR, 0xffffffff);
3720         I915_WRITE(IER, 0x0);
3721         POSTING_READ(IER);
3722 }
3723
3724 static int i915_irq_postinstall(struct drm_device *dev)
3725 {
3726         struct drm_i915_private *dev_priv = to_i915(dev);
3727         u32 enable_mask;
3728
3729         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3730
3731         /* Unmask the interrupts that we always want on. */
3732         dev_priv->irq_mask =
3733                 ~(I915_ASLE_INTERRUPT |
3734                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3735                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3736                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3737                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3738
3739         enable_mask =
3740                 I915_ASLE_INTERRUPT |
3741                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3742                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3743                 I915_USER_INTERRUPT;
3744
3745         if (I915_HAS_HOTPLUG(dev_priv)) {
3746                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3747                 POSTING_READ(PORT_HOTPLUG_EN);
3748
3749                 /* Enable in IER... */
3750                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3751                 /* and unmask in IMR */
3752                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3753         }
3754
3755         I915_WRITE(IMR, dev_priv->irq_mask);
3756         I915_WRITE(IER, enable_mask);
3757         POSTING_READ(IER);
3758
3759         i915_enable_asle_pipestat(dev_priv);
3760
3761         /* Interrupt setup is already guaranteed to be single-threaded, this is
3762          * just to make the assert_spin_locked check happy. */
3763         spin_lock_irq(&dev_priv->irq_lock);
3764         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3765         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3766         spin_unlock_irq(&dev_priv->irq_lock);
3767
3768         return 0;
3769 }
3770
3771 static irqreturn_t i915_irq_handler(int irq, void *arg)
3772 {
3773         struct drm_device *dev = arg;
3774         struct drm_i915_private *dev_priv = to_i915(dev);
3775         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3776         int pipe, ret = IRQ_NONE;
3777
3778         if (!intel_irqs_enabled(dev_priv))
3779                 return IRQ_NONE;
3780
3781         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3782         disable_rpm_wakeref_asserts(dev_priv);
3783
3784         iir = I915_READ(IIR);
3785         do {
3786                 bool irq_received = (iir) != 0;
3787                 bool blc_event = false;
3788
3789                 /* Can't rely on pipestat interrupt bit in iir as it might
3790                  * have been cleared after the pipestat interrupt was received.
3791                  * It doesn't set the bit in iir again, but it still produces
3792                  * interrupts (for non-MSI).
3793                  */
3794                 spin_lock(&dev_priv->irq_lock);
3795                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3796                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3797
3798                 for_each_pipe(dev_priv, pipe) {
3799                         i915_reg_t reg = PIPESTAT(pipe);
3800                         pipe_stats[pipe] = I915_READ(reg);
3801
3802                         /* Clear the PIPE*STAT regs before the IIR */
3803                         if (pipe_stats[pipe] & 0x8000ffff) {
3804                                 I915_WRITE(reg, pipe_stats[pipe]);
3805                                 irq_received = true;
3806                         }
3807                 }
3808                 spin_unlock(&dev_priv->irq_lock);
3809
3810                 if (!irq_received)
3811                         break;
3812
3813                 /* Consume port.  Then clear IIR or we'll miss events */
3814                 if (I915_HAS_HOTPLUG(dev_priv) &&
3815                     iir & I915_DISPLAY_PORT_INTERRUPT) {
3816                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3817                         if (hotplug_status)
3818                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3819                 }
3820
3821                 I915_WRITE(IIR, iir);
3822                 new_iir = I915_READ(IIR); /* Flush posted writes */
3823
3824                 if (iir & I915_USER_INTERRUPT)
3825                         notify_ring(dev_priv->engine[RCS]);
3826
3827                 for_each_pipe(dev_priv, pipe) {
3828                         int plane = pipe;
3829                         if (HAS_FBC(dev_priv))
3830                                 plane = !plane;
3831
3832                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
3833                                 drm_handle_vblank(&dev_priv->drm, pipe);
3834
3835                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3836                                 blc_event = true;
3837
3838                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3839                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3840
3841                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3842                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3843                                                                     pipe);
3844                 }
3845
3846                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3847                         intel_opregion_asle_intr(dev_priv);
3848
3849                 /* With MSI, interrupts are only generated when iir
3850                  * transitions from zero to nonzero.  If another bit got
3851                  * set while we were handling the existing iir bits, then
3852                  * we would never get another interrupt.
3853                  *
3854                  * This is fine on non-MSI as well, as if we hit this path
3855                  * we avoid exiting the interrupt handler only to generate
3856                  * another one.
3857                  *
3858                  * Note that for MSI this could cause a stray interrupt report
3859                  * if an interrupt landed in the time between writing IIR and
3860                  * the posting read.  This should be rare enough to never
3861                  * trigger the 99% of 100,000 interrupts test for disabling
3862                  * stray interrupts.
3863                  */
3864                 ret = IRQ_HANDLED;
3865                 iir = new_iir;
3866         } while (iir);
3867
3868         enable_rpm_wakeref_asserts(dev_priv);
3869
3870         return ret;
3871 }
3872
3873 static void i915_irq_uninstall(struct drm_device * dev)
3874 {
3875         struct drm_i915_private *dev_priv = to_i915(dev);
3876         int pipe;
3877
3878         if (I915_HAS_HOTPLUG(dev_priv)) {
3879                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3880                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3881         }
3882
3883         I915_WRITE16(HWSTAM, 0xffff);
3884         for_each_pipe(dev_priv, pipe) {
3885                 /* Clear enable bits; then clear status bits */
3886                 I915_WRITE(PIPESTAT(pipe), 0);
3887                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3888         }
3889         I915_WRITE(IMR, 0xffffffff);
3890         I915_WRITE(IER, 0x0);
3891
3892         I915_WRITE(IIR, I915_READ(IIR));
3893 }
3894
3895 static void i965_irq_preinstall(struct drm_device * dev)
3896 {
3897         struct drm_i915_private *dev_priv = to_i915(dev);
3898         int pipe;
3899
3900         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3901         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3902
3903         I915_WRITE(HWSTAM, 0xeffe);
3904         for_each_pipe(dev_priv, pipe)
3905                 I915_WRITE(PIPESTAT(pipe), 0);
3906         I915_WRITE(IMR, 0xffffffff);
3907         I915_WRITE(IER, 0x0);
3908         POSTING_READ(IER);
3909 }
3910
3911 static int i965_irq_postinstall(struct drm_device *dev)
3912 {
3913         struct drm_i915_private *dev_priv = to_i915(dev);
3914         u32 enable_mask;
3915         u32 error_mask;
3916
3917         /* Unmask the interrupts that we always want on. */
3918         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3919                                I915_DISPLAY_PORT_INTERRUPT |
3920                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3921                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3922                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3923                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3924                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3925
3926         enable_mask = ~dev_priv->irq_mask;
3927         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3928                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3929         enable_mask |= I915_USER_INTERRUPT;
3930
3931         if (IS_G4X(dev_priv))
3932                 enable_mask |= I915_BSD_USER_INTERRUPT;
3933
3934         /* Interrupt setup is already guaranteed to be single-threaded, this is
3935          * just to make the assert_spin_locked check happy. */
3936         spin_lock_irq(&dev_priv->irq_lock);
3937         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3938         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3939         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3940         spin_unlock_irq(&dev_priv->irq_lock);
3941
3942         /*
3943          * Enable some error detection, note the instruction error mask
3944          * bit is reserved, so we leave it masked.
3945          */
3946         if (IS_G4X(dev_priv)) {
3947                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
3948                                GM45_ERROR_MEM_PRIV |
3949                                GM45_ERROR_CP_PRIV |
3950                                I915_ERROR_MEMORY_REFRESH);
3951         } else {
3952                 error_mask = ~(I915_ERROR_PAGE_TABLE |
3953                                I915_ERROR_MEMORY_REFRESH);
3954         }
3955         I915_WRITE(EMR, error_mask);
3956
3957         I915_WRITE(IMR, dev_priv->irq_mask);
3958         I915_WRITE(IER, enable_mask);
3959         POSTING_READ(IER);
3960
3961         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3962         POSTING_READ(PORT_HOTPLUG_EN);
3963
3964         i915_enable_asle_pipestat(dev_priv);
3965
3966         return 0;
3967 }
3968
3969 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
3970 {
3971         u32 hotplug_en;
3972
3973         lockdep_assert_held(&dev_priv->irq_lock);
3974
3975         /* Note HDMI and DP share hotplug bits */
3976         /* enable bits are the same for all generations */
3977         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
3978         /* Programming the CRT detection parameters tends
3979            to generate a spurious hotplug event about three
3980            seconds later.  So just do it once.
3981         */
3982         if (IS_G4X(dev_priv))
3983                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
3984         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
3985
3986         /* Ignore TV since it's buggy */
3987         i915_hotplug_interrupt_update_locked(dev_priv,
3988                                              HOTPLUG_INT_EN_MASK |
3989                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
3990                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
3991                                              hotplug_en);
3992 }
3993
3994 static irqreturn_t i965_irq_handler(int irq, void *arg)
3995 {
3996         struct drm_device *dev = arg;
3997         struct drm_i915_private *dev_priv = to_i915(dev);
3998         u32 iir, new_iir;
3999         u32 pipe_stats[I915_MAX_PIPES];
4000         int ret = IRQ_NONE, pipe;
4001
4002         if (!intel_irqs_enabled(dev_priv))
4003                 return IRQ_NONE;
4004
4005         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4006         disable_rpm_wakeref_asserts(dev_priv);
4007
4008         iir = I915_READ(IIR);
4009
4010         for (;;) {
4011                 bool irq_received = (iir) != 0;
4012                 bool blc_event = false;
4013
4014                 /* Can't rely on pipestat interrupt bit in iir as it might
4015                  * have been cleared after the pipestat interrupt was received.
4016                  * It doesn't set the bit in iir again, but it still produces
4017                  * interrupts (for non-MSI).
4018                  */
4019                 spin_lock(&dev_priv->irq_lock);
4020                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4021                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4022
4023                 for_each_pipe(dev_priv, pipe) {
4024                         i915_reg_t reg = PIPESTAT(pipe);
4025                         pipe_stats[pipe] = I915_READ(reg);
4026
4027                         /*
4028                          * Clear the PIPE*STAT regs before the IIR
4029                          */
4030                         if (pipe_stats[pipe] & 0x8000ffff) {
4031                                 I915_WRITE(reg, pipe_stats[pipe]);
4032                                 irq_received = true;
4033                         }
4034                 }
4035                 spin_unlock(&dev_priv->irq_lock);
4036
4037                 if (!irq_received)
4038                         break;
4039
4040                 ret = IRQ_HANDLED;
4041
4042                 /* Consume port.  Then clear IIR or we'll miss events */
4043                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4044                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4045                         if (hotplug_status)
4046                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4047                 }
4048
4049                 I915_WRITE(IIR, iir);
4050                 new_iir = I915_READ(IIR); /* Flush posted writes */
4051
4052                 if (iir & I915_USER_INTERRUPT)
4053                         notify_ring(dev_priv->engine[RCS]);
4054                 if (iir & I915_BSD_USER_INTERRUPT)
4055                         notify_ring(dev_priv->engine[VCS]);
4056
4057                 for_each_pipe(dev_priv, pipe) {
4058                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
4059                                 drm_handle_vblank(&dev_priv->drm, pipe);
4060
4061                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4062                                 blc_event = true;
4063
4064                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4065                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4066
4067                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4068                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4069                 }
4070
4071                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4072                         intel_opregion_asle_intr(dev_priv);
4073
4074                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4075                         gmbus_irq_handler(dev_priv);
4076
4077                 /* With MSI, interrupts are only generated when iir
4078                  * transitions from zero to nonzero.  If another bit got
4079                  * set while we were handling the existing iir bits, then
4080                  * we would never get another interrupt.
4081                  *
4082                  * This is fine on non-MSI as well, as if we hit this path
4083                  * we avoid exiting the interrupt handler only to generate
4084                  * another one.
4085                  *
4086                  * Note that for MSI this could cause a stray interrupt report
4087                  * if an interrupt landed in the time between writing IIR and
4088                  * the posting read.  This should be rare enough to never
4089                  * trigger the 99% of 100,000 interrupts test for disabling
4090                  * stray interrupts.
4091                  */
4092                 iir = new_iir;
4093         }
4094
4095         enable_rpm_wakeref_asserts(dev_priv);
4096
4097         return ret;
4098 }
4099
4100 static void i965_irq_uninstall(struct drm_device * dev)
4101 {
4102         struct drm_i915_private *dev_priv = to_i915(dev);
4103         int pipe;
4104
4105         if (!dev_priv)
4106                 return;
4107
4108         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4109         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4110
4111         I915_WRITE(HWSTAM, 0xffffffff);
4112         for_each_pipe(dev_priv, pipe)
4113                 I915_WRITE(PIPESTAT(pipe), 0);
4114         I915_WRITE(IMR, 0xffffffff);
4115         I915_WRITE(IER, 0x0);
4116
4117         for_each_pipe(dev_priv, pipe)
4118                 I915_WRITE(PIPESTAT(pipe),
4119                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4120         I915_WRITE(IIR, I915_READ(IIR));
4121 }
4122
4123 /**
4124  * intel_irq_init - initializes irq support
4125  * @dev_priv: i915 device instance
4126  *
4127  * This function initializes all the irq support including work items, timers
4128  * and all the vtables. It does not setup the interrupt itself though.
4129  */
4130 void intel_irq_init(struct drm_i915_private *dev_priv)
4131 {
4132         struct drm_device *dev = &dev_priv->drm;
4133         int i;
4134
4135         intel_hpd_init_work(dev_priv);
4136
4137         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4138
4139         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4140         for (i = 0; i < MAX_L3_SLICES; ++i)
4141                 dev_priv->l3_parity.remap_info[i] = NULL;
4142
4143         if (HAS_GUC_SCHED(dev_priv))
4144                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4145
4146         /* Let's track the enabled rps events */
4147         if (IS_VALLEYVIEW(dev_priv))
4148                 /* WaGsvRC0ResidencyMethod:vlv */
4149                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4150         else
4151                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4152
4153         dev_priv->rps.pm_intrmsk_mbz = 0;
4154
4155         /*
4156          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4157          * if GEN6_PM_UP_EI_EXPIRED is masked.
4158          *
4159          * TODO: verify if this can be reproduced on VLV,CHV.
4160          */
4161         if (INTEL_GEN(dev_priv) <= 7)
4162                 dev_priv->rps.pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4163
4164         if (INTEL_GEN(dev_priv) >= 8)
4165                 dev_priv->rps.pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
4166
4167         if (IS_GEN2(dev_priv)) {
4168                 /* Gen2 doesn't have a hardware frame counter */
4169                 dev->max_vblank_count = 0;
4170         } else if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
4171                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4172                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4173         } else {
4174                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4175                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4176         }
4177
4178         /*
4179          * Opt out of the vblank disable timer on everything except gen2.
4180          * Gen2 doesn't have a hardware frame counter and so depends on
4181          * vblank interrupts to produce sane vblank seuquence numbers.
4182          */
4183         if (!IS_GEN2(dev_priv))
4184                 dev->vblank_disable_immediate = true;
4185
4186         /* Most platforms treat the display irq block as an always-on
4187          * power domain. vlv/chv can disable it at runtime and need
4188          * special care to avoid writing any of the display block registers
4189          * outside of the power domain. We defer setting up the display irqs
4190          * in this case to the runtime pm.
4191          */
4192         dev_priv->display_irqs_enabled = true;
4193         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4194                 dev_priv->display_irqs_enabled = false;
4195
4196         dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4197
4198         dev->driver->get_vblank_timestamp = drm_calc_vbltimestamp_from_scanoutpos;
4199         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4200
4201         if (IS_CHERRYVIEW(dev_priv)) {
4202                 dev->driver->irq_handler = cherryview_irq_handler;
4203                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4204                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4205                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4206                 dev->driver->enable_vblank = i965_enable_vblank;
4207                 dev->driver->disable_vblank = i965_disable_vblank;
4208                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4209         } else if (IS_VALLEYVIEW(dev_priv)) {
4210                 dev->driver->irq_handler = valleyview_irq_handler;
4211                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4212                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4213                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4214                 dev->driver->enable_vblank = i965_enable_vblank;
4215                 dev->driver->disable_vblank = i965_disable_vblank;
4216                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4217         } else if (INTEL_GEN(dev_priv) >= 8) {
4218                 dev->driver->irq_handler = gen8_irq_handler;
4219                 dev->driver->irq_preinstall = gen8_irq_reset;
4220                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4221                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4222                 dev->driver->enable_vblank = gen8_enable_vblank;
4223                 dev->driver->disable_vblank = gen8_disable_vblank;
4224                 if (IS_GEN9_LP(dev_priv))
4225                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4226                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv) ||
4227                          HAS_PCH_CNP(dev_priv))
4228                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4229                 else
4230                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4231         } else if (HAS_PCH_SPLIT(dev_priv)) {
4232                 dev->driver->irq_handler = ironlake_irq_handler;
4233                 dev->driver->irq_preinstall = ironlake_irq_reset;
4234                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4235                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4236                 dev->driver->enable_vblank = ironlake_enable_vblank;
4237                 dev->driver->disable_vblank = ironlake_disable_vblank;
4238                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4239         } else {
4240                 if (IS_GEN2(dev_priv)) {
4241                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4242                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4243                         dev->driver->irq_handler = i8xx_irq_handler;
4244                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4245                         dev->driver->enable_vblank = i8xx_enable_vblank;
4246                         dev->driver->disable_vblank = i8xx_disable_vblank;
4247                 } else if (IS_GEN3(dev_priv)) {
4248                         dev->driver->irq_preinstall = i915_irq_preinstall;
4249                         dev->driver->irq_postinstall = i915_irq_postinstall;
4250                         dev->driver->irq_uninstall = i915_irq_uninstall;
4251                         dev->driver->irq_handler = i915_irq_handler;
4252                         dev->driver->enable_vblank = i8xx_enable_vblank;
4253                         dev->driver->disable_vblank = i8xx_disable_vblank;
4254                 } else {
4255                         dev->driver->irq_preinstall = i965_irq_preinstall;
4256                         dev->driver->irq_postinstall = i965_irq_postinstall;
4257                         dev->driver->irq_uninstall = i965_irq_uninstall;
4258                         dev->driver->irq_handler = i965_irq_handler;
4259                         dev->driver->enable_vblank = i965_enable_vblank;
4260                         dev->driver->disable_vblank = i965_disable_vblank;
4261                 }
4262                 if (I915_HAS_HOTPLUG(dev_priv))
4263                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4264         }
4265 }
4266
4267 /**
4268  * intel_irq_fini - deinitializes IRQ support
4269  * @i915: i915 device instance
4270  *
4271  * This function deinitializes all the IRQ support.
4272  */
4273 void intel_irq_fini(struct drm_i915_private *i915)
4274 {
4275         int i;
4276
4277         for (i = 0; i < MAX_L3_SLICES; ++i)
4278                 kfree(i915->l3_parity.remap_info[i]);
4279 }
4280
4281 /**
4282  * intel_irq_install - enables the hardware interrupt
4283  * @dev_priv: i915 device instance
4284  *
4285  * This function enables the hardware interrupt handling, but leaves the hotplug
4286  * handling still disabled. It is called after intel_irq_init().
4287  *
4288  * In the driver load and resume code we need working interrupts in a few places
4289  * but don't want to deal with the hassle of concurrent probe and hotplug
4290  * workers. Hence the split into this two-stage approach.
4291  */
4292 int intel_irq_install(struct drm_i915_private *dev_priv)
4293 {
4294         /*
4295          * We enable some interrupt sources in our postinstall hooks, so mark
4296          * interrupts as enabled _before_ actually enabling them to avoid
4297          * special cases in our ordering checks.
4298          */
4299         dev_priv->pm.irqs_enabled = true;
4300
4301         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4302 }
4303
4304 /**
4305  * intel_irq_uninstall - finilizes all irq handling
4306  * @dev_priv: i915 device instance
4307  *
4308  * This stops interrupt and hotplug handling and unregisters and frees all
4309  * resources acquired in the init functions.
4310  */
4311 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4312 {
4313         drm_irq_uninstall(&dev_priv->drm);
4314         intel_hpd_cancel_work(dev_priv);
4315         dev_priv->pm.irqs_enabled = false;
4316 }
4317
4318 /**
4319  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4320  * @dev_priv: i915 device instance
4321  *
4322  * This function is used to disable interrupts at runtime, both in the runtime
4323  * pm and the system suspend/resume code.
4324  */
4325 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4326 {
4327         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4328         dev_priv->pm.irqs_enabled = false;
4329         synchronize_irq(dev_priv->drm.irq);
4330 }
4331
4332 /**
4333  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4334  * @dev_priv: i915 device instance
4335  *
4336  * This function is used to enable interrupts at runtime, both in the runtime
4337  * pm and the system suspend/resume code.
4338  */
4339 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4340 {
4341         dev_priv->pm.irqs_enabled = true;
4342         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4343         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4344 }