ahci: don't ignore result code of ahci_reset_controller()
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  * Copyright © 2011-2014 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
22  * IN THE SOFTWARE.
23  *
24  */
25
26 #include <linux/slab.h> /* fault-inject.h is not standalone! */
27
28 #include <linux/fault-inject.h>
29 #include <linux/log2.h>
30 #include <linux/random.h>
31 #include <linux/seq_file.h>
32 #include <linux/stop_machine.h>
33
34 #include <asm/set_memory.h>
35
36 #include <drm/drmP.h>
37 #include <drm/i915_drm.h>
38
39 #include "i915_drv.h"
40 #include "i915_vgpu.h"
41 #include "i915_trace.h"
42 #include "intel_drv.h"
43 #include "intel_frontbuffer.h"
44
45 #define I915_GFP_DMA (GFP_KERNEL | __GFP_HIGHMEM)
46
47 /**
48  * DOC: Global GTT views
49  *
50  * Background and previous state
51  *
52  * Historically objects could exists (be bound) in global GTT space only as
53  * singular instances with a view representing all of the object's backing pages
54  * in a linear fashion. This view will be called a normal view.
55  *
56  * To support multiple views of the same object, where the number of mapped
57  * pages is not equal to the backing store, or where the layout of the pages
58  * is not linear, concept of a GGTT view was added.
59  *
60  * One example of an alternative view is a stereo display driven by a single
61  * image. In this case we would have a framebuffer looking like this
62  * (2x2 pages):
63  *
64  *    12
65  *    34
66  *
67  * Above would represent a normal GGTT view as normally mapped for GPU or CPU
68  * rendering. In contrast, fed to the display engine would be an alternative
69  * view which could look something like this:
70  *
71  *   1212
72  *   3434
73  *
74  * In this example both the size and layout of pages in the alternative view is
75  * different from the normal view.
76  *
77  * Implementation and usage
78  *
79  * GGTT views are implemented using VMAs and are distinguished via enum
80  * i915_ggtt_view_type and struct i915_ggtt_view.
81  *
82  * A new flavour of core GEM functions which work with GGTT bound objects were
83  * added with the _ggtt_ infix, and sometimes with _view postfix to avoid
84  * renaming  in large amounts of code. They take the struct i915_ggtt_view
85  * parameter encapsulating all metadata required to implement a view.
86  *
87  * As a helper for callers which are only interested in the normal view,
88  * globally const i915_ggtt_view_normal singleton instance exists. All old core
89  * GEM API functions, the ones not taking the view parameter, are operating on,
90  * or with the normal GGTT view.
91  *
92  * Code wanting to add or use a new GGTT view needs to:
93  *
94  * 1. Add a new enum with a suitable name.
95  * 2. Extend the metadata in the i915_ggtt_view structure if required.
96  * 3. Add support to i915_get_vma_pages().
97  *
98  * New views are required to build a scatter-gather table from within the
99  * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
100  * exists for the lifetime of an VMA.
101  *
102  * Core API is designed to have copy semantics which means that passed in
103  * struct i915_ggtt_view does not need to be persistent (left around after
104  * calling the core API functions).
105  *
106  */
107
108 static int
109 i915_get_ggtt_vma_pages(struct i915_vma *vma);
110
111 static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
112 {
113         /* Note that as an uncached mmio write, this should flush the
114          * WCB of the writes into the GGTT before it triggers the invalidate.
115          */
116         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
117 }
118
119 static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
120 {
121         gen6_ggtt_invalidate(dev_priv);
122         I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
123 }
124
125 static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
126 {
127         intel_gtt_chipset_flush();
128 }
129
130 static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
131 {
132         i915->ggtt.invalidate(i915);
133 }
134
135 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
136                                 int enable_ppgtt)
137 {
138         bool has_aliasing_ppgtt;
139         bool has_full_ppgtt;
140         bool has_full_48bit_ppgtt;
141
142         has_aliasing_ppgtt = dev_priv->info.has_aliasing_ppgtt;
143         has_full_ppgtt = dev_priv->info.has_full_ppgtt;
144         has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt;
145
146         if (intel_vgpu_active(dev_priv)) {
147                 /* GVT-g has no support for 32bit ppgtt */
148                 has_full_ppgtt = false;
149                 has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv);
150         }
151
152         if (!has_aliasing_ppgtt)
153                 return 0;
154
155         /*
156          * We don't allow disabling PPGTT for gen9+ as it's a requirement for
157          * execlists, the sole mechanism available to submit work.
158          */
159         if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9)
160                 return 0;
161
162         if (enable_ppgtt == 1)
163                 return 1;
164
165         if (enable_ppgtt == 2 && has_full_ppgtt)
166                 return 2;
167
168         if (enable_ppgtt == 3 && has_full_48bit_ppgtt)
169                 return 3;
170
171         /* Disable ppgtt on SNB if VT-d is on. */
172         if (IS_GEN6(dev_priv) && intel_vtd_active()) {
173                 DRM_INFO("Disabling PPGTT because VT-d is on\n");
174                 return 0;
175         }
176
177         /* Early VLV doesn't have this */
178         if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) {
179                 DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n");
180                 return 0;
181         }
182
183         if (INTEL_GEN(dev_priv) >= 8 && i915.enable_execlists) {
184                 if (has_full_48bit_ppgtt)
185                         return 3;
186
187                 if (has_full_ppgtt)
188                         return 2;
189         }
190
191         return has_aliasing_ppgtt ? 1 : 0;
192 }
193
194 static int ppgtt_bind_vma(struct i915_vma *vma,
195                           enum i915_cache_level cache_level,
196                           u32 unused)
197 {
198         u32 pte_flags;
199         int ret;
200
201         if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
202                 ret = vma->vm->allocate_va_range(vma->vm, vma->node.start,
203                                                  vma->size);
204                 if (ret)
205                         return ret;
206         }
207
208         vma->pages = vma->obj->mm.pages;
209
210         /* Currently applicable only to VLV */
211         pte_flags = 0;
212         if (vma->obj->gt_ro)
213                 pte_flags |= PTE_READ_ONLY;
214
215         vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
216
217         return 0;
218 }
219
220 static void ppgtt_unbind_vma(struct i915_vma *vma)
221 {
222         vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
223 }
224
225 static gen8_pte_t gen8_pte_encode(dma_addr_t addr,
226                                   enum i915_cache_level level)
227 {
228         gen8_pte_t pte = _PAGE_PRESENT | _PAGE_RW;
229         pte |= addr;
230
231         switch (level) {
232         case I915_CACHE_NONE:
233                 pte |= PPAT_UNCACHED_INDEX;
234                 break;
235         case I915_CACHE_WT:
236                 pte |= PPAT_DISPLAY_ELLC_INDEX;
237                 break;
238         default:
239                 pte |= PPAT_CACHED_INDEX;
240                 break;
241         }
242
243         return pte;
244 }
245
246 static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
247                                   const enum i915_cache_level level)
248 {
249         gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
250         pde |= addr;
251         if (level != I915_CACHE_NONE)
252                 pde |= PPAT_CACHED_PDE_INDEX;
253         else
254                 pde |= PPAT_UNCACHED_INDEX;
255         return pde;
256 }
257
258 #define gen8_pdpe_encode gen8_pde_encode
259 #define gen8_pml4e_encode gen8_pde_encode
260
261 static gen6_pte_t snb_pte_encode(dma_addr_t addr,
262                                  enum i915_cache_level level,
263                                  u32 unused)
264 {
265         gen6_pte_t pte = GEN6_PTE_VALID;
266         pte |= GEN6_PTE_ADDR_ENCODE(addr);
267
268         switch (level) {
269         case I915_CACHE_L3_LLC:
270         case I915_CACHE_LLC:
271                 pte |= GEN6_PTE_CACHE_LLC;
272                 break;
273         case I915_CACHE_NONE:
274                 pte |= GEN6_PTE_UNCACHED;
275                 break;
276         default:
277                 MISSING_CASE(level);
278         }
279
280         return pte;
281 }
282
283 static gen6_pte_t ivb_pte_encode(dma_addr_t addr,
284                                  enum i915_cache_level level,
285                                  u32 unused)
286 {
287         gen6_pte_t pte = GEN6_PTE_VALID;
288         pte |= GEN6_PTE_ADDR_ENCODE(addr);
289
290         switch (level) {
291         case I915_CACHE_L3_LLC:
292                 pte |= GEN7_PTE_CACHE_L3_LLC;
293                 break;
294         case I915_CACHE_LLC:
295                 pte |= GEN6_PTE_CACHE_LLC;
296                 break;
297         case I915_CACHE_NONE:
298                 pte |= GEN6_PTE_UNCACHED;
299                 break;
300         default:
301                 MISSING_CASE(level);
302         }
303
304         return pte;
305 }
306
307 static gen6_pte_t byt_pte_encode(dma_addr_t addr,
308                                  enum i915_cache_level level,
309                                  u32 flags)
310 {
311         gen6_pte_t pte = GEN6_PTE_VALID;
312         pte |= GEN6_PTE_ADDR_ENCODE(addr);
313
314         if (!(flags & PTE_READ_ONLY))
315                 pte |= BYT_PTE_WRITEABLE;
316
317         if (level != I915_CACHE_NONE)
318                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
319
320         return pte;
321 }
322
323 static gen6_pte_t hsw_pte_encode(dma_addr_t addr,
324                                  enum i915_cache_level level,
325                                  u32 unused)
326 {
327         gen6_pte_t pte = GEN6_PTE_VALID;
328         pte |= HSW_PTE_ADDR_ENCODE(addr);
329
330         if (level != I915_CACHE_NONE)
331                 pte |= HSW_WB_LLC_AGE3;
332
333         return pte;
334 }
335
336 static gen6_pte_t iris_pte_encode(dma_addr_t addr,
337                                   enum i915_cache_level level,
338                                   u32 unused)
339 {
340         gen6_pte_t pte = GEN6_PTE_VALID;
341         pte |= HSW_PTE_ADDR_ENCODE(addr);
342
343         switch (level) {
344         case I915_CACHE_NONE:
345                 break;
346         case I915_CACHE_WT:
347                 pte |= HSW_WT_ELLC_LLC_AGE3;
348                 break;
349         default:
350                 pte |= HSW_WB_ELLC_LLC_AGE3;
351                 break;
352         }
353
354         return pte;
355 }
356
357 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
358 {
359         struct page *page;
360
361         if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
362                 i915_gem_shrink_all(vm->i915);
363
364         if (vm->free_pages.nr)
365                 return vm->free_pages.pages[--vm->free_pages.nr];
366
367         page = alloc_page(gfp);
368         if (!page)
369                 return NULL;
370
371         if (vm->pt_kmap_wc)
372                 set_pages_array_wc(&page, 1);
373
374         return page;
375 }
376
377 static void vm_free_pages_release(struct i915_address_space *vm)
378 {
379         GEM_BUG_ON(!pagevec_count(&vm->free_pages));
380
381         if (vm->pt_kmap_wc)
382                 set_pages_array_wb(vm->free_pages.pages,
383                                    pagevec_count(&vm->free_pages));
384
385         __pagevec_release(&vm->free_pages);
386 }
387
388 static void vm_free_page(struct i915_address_space *vm, struct page *page)
389 {
390         if (!pagevec_add(&vm->free_pages, page))
391                 vm_free_pages_release(vm);
392 }
393
394 static int __setup_page_dma(struct i915_address_space *vm,
395                             struct i915_page_dma *p,
396                             gfp_t gfp)
397 {
398         p->page = vm_alloc_page(vm, gfp | __GFP_NOWARN | __GFP_NORETRY);
399         if (unlikely(!p->page))
400                 return -ENOMEM;
401
402         p->daddr = dma_map_page(vm->dma, p->page, 0, PAGE_SIZE,
403                                 PCI_DMA_BIDIRECTIONAL);
404         if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
405                 vm_free_page(vm, p->page);
406                 return -ENOMEM;
407         }
408
409         return 0;
410 }
411
412 static int setup_page_dma(struct i915_address_space *vm,
413                           struct i915_page_dma *p)
414 {
415         return __setup_page_dma(vm, p, I915_GFP_DMA);
416 }
417
418 static void cleanup_page_dma(struct i915_address_space *vm,
419                              struct i915_page_dma *p)
420 {
421         dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
422         vm_free_page(vm, p->page);
423 }
424
425 #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
426
427 #define setup_px(vm, px) setup_page_dma((vm), px_base(px))
428 #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
429 #define fill_px(ppgtt, px, v) fill_page_dma((vm), px_base(px), (v))
430 #define fill32_px(ppgtt, px, v) fill_page_dma_32((vm), px_base(px), (v))
431
432 static void fill_page_dma(struct i915_address_space *vm,
433                           struct i915_page_dma *p,
434                           const u64 val)
435 {
436         u64 * const vaddr = kmap_atomic(p->page);
437         int i;
438
439         for (i = 0; i < 512; i++)
440                 vaddr[i] = val;
441
442         kunmap_atomic(vaddr);
443 }
444
445 static void fill_page_dma_32(struct i915_address_space *vm,
446                              struct i915_page_dma *p,
447                              const u32 v)
448 {
449         fill_page_dma(vm, p, (u64)v << 32 | v);
450 }
451
452 static int
453 setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
454 {
455         return __setup_page_dma(vm, &vm->scratch_page, gfp | __GFP_ZERO);
456 }
457
458 static void cleanup_scratch_page(struct i915_address_space *vm)
459 {
460         cleanup_page_dma(vm, &vm->scratch_page);
461 }
462
463 static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
464 {
465         struct i915_page_table *pt;
466
467         pt = kmalloc(sizeof(*pt), GFP_KERNEL | __GFP_NOWARN);
468         if (unlikely(!pt))
469                 return ERR_PTR(-ENOMEM);
470
471         if (unlikely(setup_px(vm, pt))) {
472                 kfree(pt);
473                 return ERR_PTR(-ENOMEM);
474         }
475
476         pt->used_ptes = 0;
477         return pt;
478 }
479
480 static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
481 {
482         cleanup_px(vm, pt);
483         kfree(pt);
484 }
485
486 static void gen8_initialize_pt(struct i915_address_space *vm,
487                                struct i915_page_table *pt)
488 {
489         fill_px(vm, pt,
490                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC));
491 }
492
493 static void gen6_initialize_pt(struct i915_address_space *vm,
494                                struct i915_page_table *pt)
495 {
496         fill32_px(vm, pt,
497                   vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0));
498 }
499
500 static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
501 {
502         struct i915_page_directory *pd;
503
504         pd = kzalloc(sizeof(*pd), GFP_KERNEL | __GFP_NOWARN);
505         if (unlikely(!pd))
506                 return ERR_PTR(-ENOMEM);
507
508         if (unlikely(setup_px(vm, pd))) {
509                 kfree(pd);
510                 return ERR_PTR(-ENOMEM);
511         }
512
513         pd->used_pdes = 0;
514         return pd;
515 }
516
517 static void free_pd(struct i915_address_space *vm,
518                     struct i915_page_directory *pd)
519 {
520         cleanup_px(vm, pd);
521         kfree(pd);
522 }
523
524 static void gen8_initialize_pd(struct i915_address_space *vm,
525                                struct i915_page_directory *pd)
526 {
527         unsigned int i;
528
529         fill_px(vm, pd,
530                 gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
531         for (i = 0; i < I915_PDES; i++)
532                 pd->page_table[i] = vm->scratch_pt;
533 }
534
535 static int __pdp_init(struct i915_address_space *vm,
536                       struct i915_page_directory_pointer *pdp)
537 {
538         const unsigned int pdpes = i915_pdpes_per_pdp(vm);
539         unsigned int i;
540
541         pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
542                                             GFP_KERNEL | __GFP_NOWARN);
543         if (unlikely(!pdp->page_directory))
544                 return -ENOMEM;
545
546         for (i = 0; i < pdpes; i++)
547                 pdp->page_directory[i] = vm->scratch_pd;
548
549         return 0;
550 }
551
552 static void __pdp_fini(struct i915_page_directory_pointer *pdp)
553 {
554         kfree(pdp->page_directory);
555         pdp->page_directory = NULL;
556 }
557
558 static inline bool use_4lvl(const struct i915_address_space *vm)
559 {
560         return i915_vm_is_48bit(vm);
561 }
562
563 static struct i915_page_directory_pointer *
564 alloc_pdp(struct i915_address_space *vm)
565 {
566         struct i915_page_directory_pointer *pdp;
567         int ret = -ENOMEM;
568
569         WARN_ON(!use_4lvl(vm));
570
571         pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
572         if (!pdp)
573                 return ERR_PTR(-ENOMEM);
574
575         ret = __pdp_init(vm, pdp);
576         if (ret)
577                 goto fail_bitmap;
578
579         ret = setup_px(vm, pdp);
580         if (ret)
581                 goto fail_page_m;
582
583         return pdp;
584
585 fail_page_m:
586         __pdp_fini(pdp);
587 fail_bitmap:
588         kfree(pdp);
589
590         return ERR_PTR(ret);
591 }
592
593 static void free_pdp(struct i915_address_space *vm,
594                      struct i915_page_directory_pointer *pdp)
595 {
596         __pdp_fini(pdp);
597
598         if (!use_4lvl(vm))
599                 return;
600
601         cleanup_px(vm, pdp);
602         kfree(pdp);
603 }
604
605 static void gen8_initialize_pdp(struct i915_address_space *vm,
606                                 struct i915_page_directory_pointer *pdp)
607 {
608         gen8_ppgtt_pdpe_t scratch_pdpe;
609
610         scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
611
612         fill_px(vm, pdp, scratch_pdpe);
613 }
614
615 static void gen8_initialize_pml4(struct i915_address_space *vm,
616                                  struct i915_pml4 *pml4)
617 {
618         unsigned int i;
619
620         fill_px(vm, pml4,
621                 gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
622         for (i = 0; i < GEN8_PML4ES_PER_PML4; i++)
623                 pml4->pdps[i] = vm->scratch_pdp;
624 }
625
626 /* Broadwell Page Directory Pointer Descriptors */
627 static int gen8_write_pdp(struct drm_i915_gem_request *req,
628                           unsigned entry,
629                           dma_addr_t addr)
630 {
631         struct intel_engine_cs *engine = req->engine;
632         u32 *cs;
633
634         BUG_ON(entry >= 4);
635
636         cs = intel_ring_begin(req, 6);
637         if (IS_ERR(cs))
638                 return PTR_ERR(cs);
639
640         *cs++ = MI_LOAD_REGISTER_IMM(1);
641         *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(engine, entry));
642         *cs++ = upper_32_bits(addr);
643         *cs++ = MI_LOAD_REGISTER_IMM(1);
644         *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(engine, entry));
645         *cs++ = lower_32_bits(addr);
646         intel_ring_advance(req, cs);
647
648         return 0;
649 }
650
651 static int gen8_mm_switch_3lvl(struct i915_hw_ppgtt *ppgtt,
652                                struct drm_i915_gem_request *req)
653 {
654         int i, ret;
655
656         for (i = GEN8_3LVL_PDPES - 1; i >= 0; i--) {
657                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
658
659                 ret = gen8_write_pdp(req, i, pd_daddr);
660                 if (ret)
661                         return ret;
662         }
663
664         return 0;
665 }
666
667 static int gen8_mm_switch_4lvl(struct i915_hw_ppgtt *ppgtt,
668                                struct drm_i915_gem_request *req)
669 {
670         return gen8_write_pdp(req, 0, px_dma(&ppgtt->pml4));
671 }
672
673 /* PDE TLBs are a pain to invalidate on GEN8+. When we modify
674  * the page table structures, we mark them dirty so that
675  * context switching/execlist queuing code takes extra steps
676  * to ensure that tlbs are flushed.
677  */
678 static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
679 {
680         ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->base.i915)->ring_mask;
681 }
682
683 /* Removes entries from a single page table, releasing it if it's empty.
684  * Caller can use the return value to update higher-level entries.
685  */
686 static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm,
687                                 struct i915_page_table *pt,
688                                 u64 start, u64 length)
689 {
690         unsigned int num_entries = gen8_pte_count(start, length);
691         unsigned int pte = gen8_pte_index(start);
692         unsigned int pte_end = pte + num_entries;
693         const gen8_pte_t scratch_pte =
694                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
695         gen8_pte_t *vaddr;
696
697         GEM_BUG_ON(num_entries > pt->used_ptes);
698
699         pt->used_ptes -= num_entries;
700         if (!pt->used_ptes)
701                 return true;
702
703         vaddr = kmap_atomic_px(pt);
704         while (pte < pte_end)
705                 vaddr[pte++] = scratch_pte;
706         kunmap_atomic(vaddr);
707
708         return false;
709 }
710
711 static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
712                                struct i915_page_directory *pd,
713                                struct i915_page_table *pt,
714                                unsigned int pde)
715 {
716         gen8_pde_t *vaddr;
717
718         pd->page_table[pde] = pt;
719
720         vaddr = kmap_atomic_px(pd);
721         vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
722         kunmap_atomic(vaddr);
723 }
724
725 static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
726                                 struct i915_page_directory *pd,
727                                 u64 start, u64 length)
728 {
729         struct i915_page_table *pt;
730         u32 pde;
731
732         gen8_for_each_pde(pt, pd, start, length, pde) {
733                 GEM_BUG_ON(pt == vm->scratch_pt);
734
735                 if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
736                         continue;
737
738                 gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
739                 GEM_BUG_ON(!pd->used_pdes);
740                 pd->used_pdes--;
741
742                 free_pt(vm, pt);
743         }
744
745         return !pd->used_pdes;
746 }
747
748 static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
749                                 struct i915_page_directory_pointer *pdp,
750                                 struct i915_page_directory *pd,
751                                 unsigned int pdpe)
752 {
753         gen8_ppgtt_pdpe_t *vaddr;
754
755         pdp->page_directory[pdpe] = pd;
756         if (!use_4lvl(vm))
757                 return;
758
759         vaddr = kmap_atomic_px(pdp);
760         vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
761         kunmap_atomic(vaddr);
762 }
763
764 /* Removes entries from a single page dir pointer, releasing it if it's empty.
765  * Caller can use the return value to update higher-level entries
766  */
767 static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
768                                  struct i915_page_directory_pointer *pdp,
769                                  u64 start, u64 length)
770 {
771         struct i915_page_directory *pd;
772         unsigned int pdpe;
773
774         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
775                 GEM_BUG_ON(pd == vm->scratch_pd);
776
777                 if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
778                         continue;
779
780                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
781                 GEM_BUG_ON(!pdp->used_pdpes);
782                 pdp->used_pdpes--;
783
784                 free_pd(vm, pd);
785         }
786
787         return !pdp->used_pdpes;
788 }
789
790 static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
791                                   u64 start, u64 length)
792 {
793         gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
794 }
795
796 static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
797                                  struct i915_page_directory_pointer *pdp,
798                                  unsigned int pml4e)
799 {
800         gen8_ppgtt_pml4e_t *vaddr;
801
802         pml4->pdps[pml4e] = pdp;
803
804         vaddr = kmap_atomic_px(pml4);
805         vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
806         kunmap_atomic(vaddr);
807 }
808
809 /* Removes entries from a single pml4.
810  * This is the top-level structure in 4-level page tables used on gen8+.
811  * Empty entries are always scratch pml4e.
812  */
813 static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
814                                   u64 start, u64 length)
815 {
816         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
817         struct i915_pml4 *pml4 = &ppgtt->pml4;
818         struct i915_page_directory_pointer *pdp;
819         unsigned int pml4e;
820
821         GEM_BUG_ON(!use_4lvl(vm));
822
823         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
824                 GEM_BUG_ON(pdp == vm->scratch_pdp);
825
826                 if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
827                         continue;
828
829                 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
830
831                 free_pdp(vm, pdp);
832         }
833 }
834
835 struct sgt_dma {
836         struct scatterlist *sg;
837         dma_addr_t dma, max;
838 };
839
840 struct gen8_insert_pte {
841         u16 pml4e;
842         u16 pdpe;
843         u16 pde;
844         u16 pte;
845 };
846
847 static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
848 {
849         return (struct gen8_insert_pte) {
850                  gen8_pml4e_index(start),
851                  gen8_pdpe_index(start),
852                  gen8_pde_index(start),
853                  gen8_pte_index(start),
854         };
855 }
856
857 static __always_inline bool
858 gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
859                               struct i915_page_directory_pointer *pdp,
860                               struct sgt_dma *iter,
861                               struct gen8_insert_pte *idx,
862                               enum i915_cache_level cache_level)
863 {
864         struct i915_page_directory *pd;
865         const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level);
866         gen8_pte_t *vaddr;
867         bool ret;
868
869         GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
870         pd = pdp->page_directory[idx->pdpe];
871         vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
872         do {
873                 vaddr[idx->pte] = pte_encode | iter->dma;
874
875                 iter->dma += PAGE_SIZE;
876                 if (iter->dma >= iter->max) {
877                         iter->sg = __sg_next(iter->sg);
878                         if (!iter->sg) {
879                                 ret = false;
880                                 break;
881                         }
882
883                         iter->dma = sg_dma_address(iter->sg);
884                         iter->max = iter->dma + iter->sg->length;
885                 }
886
887                 if (++idx->pte == GEN8_PTES) {
888                         idx->pte = 0;
889
890                         if (++idx->pde == I915_PDES) {
891                                 idx->pde = 0;
892
893                                 /* Limited by sg length for 3lvl */
894                                 if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
895                                         idx->pdpe = 0;
896                                         ret = true;
897                                         break;
898                                 }
899
900                                 GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->base));
901                                 pd = pdp->page_directory[idx->pdpe];
902                         }
903
904                         kunmap_atomic(vaddr);
905                         vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
906                 }
907         } while (1);
908         kunmap_atomic(vaddr);
909
910         return ret;
911 }
912
913 static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
914                                    struct i915_vma *vma,
915                                    enum i915_cache_level cache_level,
916                                    u32 unused)
917 {
918         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
919         struct sgt_dma iter = {
920                 .sg = vma->pages->sgl,
921                 .dma = sg_dma_address(iter.sg),
922                 .max = iter.dma + iter.sg->length,
923         };
924         struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
925
926         gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
927                                       cache_level);
928 }
929
930 static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
931                                    struct i915_vma *vma,
932                                    enum i915_cache_level cache_level,
933                                    u32 unused)
934 {
935         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
936         struct sgt_dma iter = {
937                 .sg = vma->pages->sgl,
938                 .dma = sg_dma_address(iter.sg),
939                 .max = iter.dma + iter.sg->length,
940         };
941         struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
942         struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
943
944         while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter,
945                                              &idx, cache_level))
946                 GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
947 }
948
949 static void gen8_free_page_tables(struct i915_address_space *vm,
950                                   struct i915_page_directory *pd)
951 {
952         int i;
953
954         if (!px_page(pd))
955                 return;
956
957         for (i = 0; i < I915_PDES; i++) {
958                 if (pd->page_table[i] != vm->scratch_pt)
959                         free_pt(vm, pd->page_table[i]);
960         }
961 }
962
963 static int gen8_init_scratch(struct i915_address_space *vm)
964 {
965         int ret;
966
967         ret = setup_scratch_page(vm, I915_GFP_DMA);
968         if (ret)
969                 return ret;
970
971         vm->scratch_pt = alloc_pt(vm);
972         if (IS_ERR(vm->scratch_pt)) {
973                 ret = PTR_ERR(vm->scratch_pt);
974                 goto free_scratch_page;
975         }
976
977         vm->scratch_pd = alloc_pd(vm);
978         if (IS_ERR(vm->scratch_pd)) {
979                 ret = PTR_ERR(vm->scratch_pd);
980                 goto free_pt;
981         }
982
983         if (use_4lvl(vm)) {
984                 vm->scratch_pdp = alloc_pdp(vm);
985                 if (IS_ERR(vm->scratch_pdp)) {
986                         ret = PTR_ERR(vm->scratch_pdp);
987                         goto free_pd;
988                 }
989         }
990
991         gen8_initialize_pt(vm, vm->scratch_pt);
992         gen8_initialize_pd(vm, vm->scratch_pd);
993         if (use_4lvl(vm))
994                 gen8_initialize_pdp(vm, vm->scratch_pdp);
995
996         return 0;
997
998 free_pd:
999         free_pd(vm, vm->scratch_pd);
1000 free_pt:
1001         free_pt(vm, vm->scratch_pt);
1002 free_scratch_page:
1003         cleanup_scratch_page(vm);
1004
1005         return ret;
1006 }
1007
1008 static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
1009 {
1010         struct i915_address_space *vm = &ppgtt->base;
1011         struct drm_i915_private *dev_priv = vm->i915;
1012         enum vgt_g2v_type msg;
1013         int i;
1014
1015         if (use_4lvl(vm)) {
1016                 const u64 daddr = px_dma(&ppgtt->pml4);
1017
1018                 I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
1019                 I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
1020
1021                 msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
1022                                 VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
1023         } else {
1024                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1025                         const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
1026
1027                         I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
1028                         I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
1029                 }
1030
1031                 msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
1032                                 VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
1033         }
1034
1035         I915_WRITE(vgtif_reg(g2v_notify), msg);
1036
1037         return 0;
1038 }
1039
1040 static void gen8_free_scratch(struct i915_address_space *vm)
1041 {
1042         if (use_4lvl(vm))
1043                 free_pdp(vm, vm->scratch_pdp);
1044         free_pd(vm, vm->scratch_pd);
1045         free_pt(vm, vm->scratch_pt);
1046         cleanup_scratch_page(vm);
1047 }
1048
1049 static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
1050                                     struct i915_page_directory_pointer *pdp)
1051 {
1052         const unsigned int pdpes = i915_pdpes_per_pdp(vm);
1053         int i;
1054
1055         for (i = 0; i < pdpes; i++) {
1056                 if (pdp->page_directory[i] == vm->scratch_pd)
1057                         continue;
1058
1059                 gen8_free_page_tables(vm, pdp->page_directory[i]);
1060                 free_pd(vm, pdp->page_directory[i]);
1061         }
1062
1063         free_pdp(vm, pdp);
1064 }
1065
1066 static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
1067 {
1068         int i;
1069
1070         for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
1071                 if (ppgtt->pml4.pdps[i] == ppgtt->base.scratch_pdp)
1072                         continue;
1073
1074                 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, ppgtt->pml4.pdps[i]);
1075         }
1076
1077         cleanup_px(&ppgtt->base, &ppgtt->pml4);
1078 }
1079
1080 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
1081 {
1082         struct drm_i915_private *dev_priv = vm->i915;
1083         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1084
1085         if (intel_vgpu_active(dev_priv))
1086                 gen8_ppgtt_notify_vgt(ppgtt, false);
1087
1088         if (use_4lvl(vm))
1089                 gen8_ppgtt_cleanup_4lvl(ppgtt);
1090         else
1091                 gen8_ppgtt_cleanup_3lvl(&ppgtt->base, &ppgtt->pdp);
1092
1093         gen8_free_scratch(vm);
1094 }
1095
1096 static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
1097                                struct i915_page_directory *pd,
1098                                u64 start, u64 length)
1099 {
1100         struct i915_page_table *pt;
1101         u64 from = start;
1102         unsigned int pde;
1103
1104         gen8_for_each_pde(pt, pd, start, length, pde) {
1105                 if (pt == vm->scratch_pt) {
1106                         pt = alloc_pt(vm);
1107                         if (IS_ERR(pt))
1108                                 goto unwind;
1109
1110                         gen8_initialize_pt(vm, pt);
1111
1112                         gen8_ppgtt_set_pde(vm, pd, pt, pde);
1113                         pd->used_pdes++;
1114                         GEM_BUG_ON(pd->used_pdes > I915_PDES);
1115                 }
1116
1117                 pt->used_ptes += gen8_pte_count(start, length);
1118         }
1119         return 0;
1120
1121 unwind:
1122         gen8_ppgtt_clear_pd(vm, pd, from, start - from);
1123         return -ENOMEM;
1124 }
1125
1126 static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
1127                                 struct i915_page_directory_pointer *pdp,
1128                                 u64 start, u64 length)
1129 {
1130         struct i915_page_directory *pd;
1131         u64 from = start;
1132         unsigned int pdpe;
1133         int ret;
1134
1135         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1136                 if (pd == vm->scratch_pd) {
1137                         pd = alloc_pd(vm);
1138                         if (IS_ERR(pd))
1139                                 goto unwind;
1140
1141                         gen8_initialize_pd(vm, pd);
1142                         gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1143                         pdp->used_pdpes++;
1144                         GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
1145
1146                         mark_tlbs_dirty(i915_vm_to_ppgtt(vm));
1147                 }
1148
1149                 ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
1150                 if (unlikely(ret))
1151                         goto unwind_pd;
1152         }
1153
1154         return 0;
1155
1156 unwind_pd:
1157         if (!pd->used_pdes) {
1158                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1159                 GEM_BUG_ON(!pdp->used_pdpes);
1160                 pdp->used_pdpes--;
1161                 free_pd(vm, pd);
1162         }
1163 unwind:
1164         gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
1165         return -ENOMEM;
1166 }
1167
1168 static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
1169                                  u64 start, u64 length)
1170 {
1171         return gen8_ppgtt_alloc_pdp(vm,
1172                                     &i915_vm_to_ppgtt(vm)->pdp, start, length);
1173 }
1174
1175 static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
1176                                  u64 start, u64 length)
1177 {
1178         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1179         struct i915_pml4 *pml4 = &ppgtt->pml4;
1180         struct i915_page_directory_pointer *pdp;
1181         u64 from = start;
1182         u32 pml4e;
1183         int ret;
1184
1185         gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1186                 if (pml4->pdps[pml4e] == vm->scratch_pdp) {
1187                         pdp = alloc_pdp(vm);
1188                         if (IS_ERR(pdp))
1189                                 goto unwind;
1190
1191                         gen8_initialize_pdp(vm, pdp);
1192                         gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
1193                 }
1194
1195                 ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
1196                 if (unlikely(ret))
1197                         goto unwind_pdp;
1198         }
1199
1200         return 0;
1201
1202 unwind_pdp:
1203         if (!pdp->used_pdpes) {
1204                 gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
1205                 free_pdp(vm, pdp);
1206         }
1207 unwind:
1208         gen8_ppgtt_clear_4lvl(vm, from, start - from);
1209         return -ENOMEM;
1210 }
1211
1212 static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt,
1213                           struct i915_page_directory_pointer *pdp,
1214                           u64 start, u64 length,
1215                           gen8_pte_t scratch_pte,
1216                           struct seq_file *m)
1217 {
1218         struct i915_address_space *vm = &ppgtt->base;
1219         struct i915_page_directory *pd;
1220         u32 pdpe;
1221
1222         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1223                 struct i915_page_table *pt;
1224                 u64 pd_len = length;
1225                 u64 pd_start = start;
1226                 u32 pde;
1227
1228                 if (pdp->page_directory[pdpe] == ppgtt->base.scratch_pd)
1229                         continue;
1230
1231                 seq_printf(m, "\tPDPE #%d\n", pdpe);
1232                 gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) {
1233                         u32 pte;
1234                         gen8_pte_t *pt_vaddr;
1235
1236                         if (pd->page_table[pde] == ppgtt->base.scratch_pt)
1237                                 continue;
1238
1239                         pt_vaddr = kmap_atomic_px(pt);
1240                         for (pte = 0; pte < GEN8_PTES; pte += 4) {
1241                                 u64 va = (pdpe << GEN8_PDPE_SHIFT |
1242                                           pde << GEN8_PDE_SHIFT |
1243                                           pte << GEN8_PTE_SHIFT);
1244                                 int i;
1245                                 bool found = false;
1246
1247                                 for (i = 0; i < 4; i++)
1248                                         if (pt_vaddr[pte + i] != scratch_pte)
1249                                                 found = true;
1250                                 if (!found)
1251                                         continue;
1252
1253                                 seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte);
1254                                 for (i = 0; i < 4; i++) {
1255                                         if (pt_vaddr[pte + i] != scratch_pte)
1256                                                 seq_printf(m, " %llx", pt_vaddr[pte + i]);
1257                                         else
1258                                                 seq_puts(m, "  SCRATCH ");
1259                                 }
1260                                 seq_puts(m, "\n");
1261                         }
1262                         kunmap_atomic(pt_vaddr);
1263                 }
1264         }
1265 }
1266
1267 static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1268 {
1269         struct i915_address_space *vm = &ppgtt->base;
1270         const gen8_pte_t scratch_pte =
1271                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
1272         u64 start = 0, length = ppgtt->base.total;
1273
1274         if (use_4lvl(vm)) {
1275                 u64 pml4e;
1276                 struct i915_pml4 *pml4 = &ppgtt->pml4;
1277                 struct i915_page_directory_pointer *pdp;
1278
1279                 gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
1280                         if (pml4->pdps[pml4e] == ppgtt->base.scratch_pdp)
1281                                 continue;
1282
1283                         seq_printf(m, "    PML4E #%llu\n", pml4e);
1284                         gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m);
1285                 }
1286         } else {
1287                 gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m);
1288         }
1289 }
1290
1291 static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
1292 {
1293         struct i915_address_space *vm = &ppgtt->base;
1294         struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
1295         struct i915_page_directory *pd;
1296         u64 start = 0, length = ppgtt->base.total;
1297         u64 from = start;
1298         unsigned int pdpe;
1299
1300         gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
1301                 pd = alloc_pd(vm);
1302                 if (IS_ERR(pd))
1303                         goto unwind;
1304
1305                 gen8_initialize_pd(vm, pd);
1306                 gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
1307                 pdp->used_pdpes++;
1308         }
1309
1310         pdp->used_pdpes++; /* never remove */
1311         return 0;
1312
1313 unwind:
1314         start -= from;
1315         gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
1316                 gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
1317                 free_pd(vm, pd);
1318         }
1319         pdp->used_pdpes = 0;
1320         return -ENOMEM;
1321 }
1322
1323 /*
1324  * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
1325  * with a net effect resembling a 2-level page table in normal x86 terms. Each
1326  * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
1327  * space.
1328  *
1329  */
1330 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1331 {
1332         struct i915_address_space *vm = &ppgtt->base;
1333         struct drm_i915_private *dev_priv = vm->i915;
1334         int ret;
1335
1336         ppgtt->base.total = USES_FULL_48BIT_PPGTT(dev_priv) ?
1337                 1ULL << 48 :
1338                 1ULL << 32;
1339
1340         ret = gen8_init_scratch(&ppgtt->base);
1341         if (ret) {
1342                 ppgtt->base.total = 0;
1343                 return ret;
1344         }
1345
1346         /* There are only few exceptions for gen >=6. chv and bxt.
1347          * And we are not sure about the latter so play safe for now.
1348          */
1349         if (IS_CHERRYVIEW(dev_priv) || IS_BROXTON(dev_priv))
1350                 ppgtt->base.pt_kmap_wc = true;
1351
1352         if (use_4lvl(vm)) {
1353                 ret = setup_px(&ppgtt->base, &ppgtt->pml4);
1354                 if (ret)
1355                         goto free_scratch;
1356
1357                 gen8_initialize_pml4(&ppgtt->base, &ppgtt->pml4);
1358
1359                 ppgtt->switch_mm = gen8_mm_switch_4lvl;
1360                 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_4lvl;
1361                 ppgtt->base.insert_entries = gen8_ppgtt_insert_4lvl;
1362                 ppgtt->base.clear_range = gen8_ppgtt_clear_4lvl;
1363         } else {
1364                 ret = __pdp_init(&ppgtt->base, &ppgtt->pdp);
1365                 if (ret)
1366                         goto free_scratch;
1367
1368                 if (intel_vgpu_active(dev_priv)) {
1369                         ret = gen8_preallocate_top_level_pdp(ppgtt);
1370                         if (ret) {
1371                                 __pdp_fini(&ppgtt->pdp);
1372                                 goto free_scratch;
1373                         }
1374                 }
1375
1376                 ppgtt->switch_mm = gen8_mm_switch_3lvl;
1377                 ppgtt->base.allocate_va_range = gen8_ppgtt_alloc_3lvl;
1378                 ppgtt->base.insert_entries = gen8_ppgtt_insert_3lvl;
1379                 ppgtt->base.clear_range = gen8_ppgtt_clear_3lvl;
1380         }
1381
1382         if (intel_vgpu_active(dev_priv))
1383                 gen8_ppgtt_notify_vgt(ppgtt, true);
1384
1385         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
1386         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1387         ppgtt->base.bind_vma = ppgtt_bind_vma;
1388         ppgtt->debug_dump = gen8_dump_ppgtt;
1389
1390         return 0;
1391
1392 free_scratch:
1393         gen8_free_scratch(&ppgtt->base);
1394         return ret;
1395 }
1396
1397 static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m)
1398 {
1399         struct i915_address_space *vm = &ppgtt->base;
1400         struct i915_page_table *unused;
1401         gen6_pte_t scratch_pte;
1402         u32 pd_entry, pte, pde;
1403         u32 start = 0, length = ppgtt->base.total;
1404
1405         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
1406                                      I915_CACHE_LLC, 0);
1407
1408         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde) {
1409                 u32 expected;
1410                 gen6_pte_t *pt_vaddr;
1411                 const dma_addr_t pt_addr = px_dma(ppgtt->pd.page_table[pde]);
1412                 pd_entry = readl(ppgtt->pd_addr + pde);
1413                 expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID);
1414
1415                 if (pd_entry != expected)
1416                         seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n",
1417                                    pde,
1418                                    pd_entry,
1419                                    expected);
1420                 seq_printf(m, "\tPDE: %x\n", pd_entry);
1421
1422                 pt_vaddr = kmap_atomic_px(ppgtt->pd.page_table[pde]);
1423
1424                 for (pte = 0; pte < GEN6_PTES; pte+=4) {
1425                         unsigned long va =
1426                                 (pde * PAGE_SIZE * GEN6_PTES) +
1427                                 (pte * PAGE_SIZE);
1428                         int i;
1429                         bool found = false;
1430                         for (i = 0; i < 4; i++)
1431                                 if (pt_vaddr[pte + i] != scratch_pte)
1432                                         found = true;
1433                         if (!found)
1434                                 continue;
1435
1436                         seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte);
1437                         for (i = 0; i < 4; i++) {
1438                                 if (pt_vaddr[pte + i] != scratch_pte)
1439                                         seq_printf(m, " %08x", pt_vaddr[pte + i]);
1440                                 else
1441                                         seq_puts(m, "  SCRATCH ");
1442                         }
1443                         seq_puts(m, "\n");
1444                 }
1445                 kunmap_atomic(pt_vaddr);
1446         }
1447 }
1448
1449 /* Write pde (index) from the page directory @pd to the page table @pt */
1450 static inline void gen6_write_pde(const struct i915_hw_ppgtt *ppgtt,
1451                                   const unsigned int pde,
1452                                   const struct i915_page_table *pt)
1453 {
1454         /* Caller needs to make sure the write completes if necessary */
1455         writel_relaxed(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
1456                        ppgtt->pd_addr + pde);
1457 }
1458
1459 /* Write all the page tables found in the ppgtt structure to incrementing page
1460  * directories. */
1461 static void gen6_write_page_range(struct i915_hw_ppgtt *ppgtt,
1462                                   u32 start, u32 length)
1463 {
1464         struct i915_page_table *pt;
1465         unsigned int pde;
1466
1467         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde)
1468                 gen6_write_pde(ppgtt, pde, pt);
1469
1470         mark_tlbs_dirty(ppgtt);
1471         wmb();
1472 }
1473
1474 static inline u32 get_pd_offset(struct i915_hw_ppgtt *ppgtt)
1475 {
1476         GEM_BUG_ON(ppgtt->pd.base.ggtt_offset & 0x3f);
1477         return ppgtt->pd.base.ggtt_offset << 10;
1478 }
1479
1480 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
1481                          struct drm_i915_gem_request *req)
1482 {
1483         struct intel_engine_cs *engine = req->engine;
1484         u32 *cs;
1485
1486         /* NB: TLBs must be flushed and invalidated before a switch */
1487         cs = intel_ring_begin(req, 6);
1488         if (IS_ERR(cs))
1489                 return PTR_ERR(cs);
1490
1491         *cs++ = MI_LOAD_REGISTER_IMM(2);
1492         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1493         *cs++ = PP_DIR_DCLV_2G;
1494         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1495         *cs++ = get_pd_offset(ppgtt);
1496         *cs++ = MI_NOOP;
1497         intel_ring_advance(req, cs);
1498
1499         return 0;
1500 }
1501
1502 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
1503                           struct drm_i915_gem_request *req)
1504 {
1505         struct intel_engine_cs *engine = req->engine;
1506         u32 *cs;
1507
1508         /* NB: TLBs must be flushed and invalidated before a switch */
1509         cs = intel_ring_begin(req, 6);
1510         if (IS_ERR(cs))
1511                 return PTR_ERR(cs);
1512
1513         *cs++ = MI_LOAD_REGISTER_IMM(2);
1514         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine));
1515         *cs++ = PP_DIR_DCLV_2G;
1516         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine));
1517         *cs++ = get_pd_offset(ppgtt);
1518         *cs++ = MI_NOOP;
1519         intel_ring_advance(req, cs);
1520
1521         return 0;
1522 }
1523
1524 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
1525                           struct drm_i915_gem_request *req)
1526 {
1527         struct intel_engine_cs *engine = req->engine;
1528         struct drm_i915_private *dev_priv = req->i915;
1529
1530         I915_WRITE(RING_PP_DIR_DCLV(engine), PP_DIR_DCLV_2G);
1531         I915_WRITE(RING_PP_DIR_BASE(engine), get_pd_offset(ppgtt));
1532         return 0;
1533 }
1534
1535 static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv)
1536 {
1537         struct intel_engine_cs *engine;
1538         enum intel_engine_id id;
1539
1540         for_each_engine(engine, dev_priv, id) {
1541                 u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ?
1542                                  GEN8_GFX_PPGTT_48B : 0;
1543                 I915_WRITE(RING_MODE_GEN7(engine),
1544                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level));
1545         }
1546 }
1547
1548 static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
1549 {
1550         struct intel_engine_cs *engine;
1551         u32 ecochk, ecobits;
1552         enum intel_engine_id id;
1553
1554         ecobits = I915_READ(GAC_ECO_BITS);
1555         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
1556
1557         ecochk = I915_READ(GAM_ECOCHK);
1558         if (IS_HASWELL(dev_priv)) {
1559                 ecochk |= ECOCHK_PPGTT_WB_HSW;
1560         } else {
1561                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
1562                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
1563         }
1564         I915_WRITE(GAM_ECOCHK, ecochk);
1565
1566         for_each_engine(engine, dev_priv, id) {
1567                 /* GFX_MODE is per-ring on gen7+ */
1568                 I915_WRITE(RING_MODE_GEN7(engine),
1569                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1570         }
1571 }
1572
1573 static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
1574 {
1575         u32 ecochk, gab_ctl, ecobits;
1576
1577         ecobits = I915_READ(GAC_ECO_BITS);
1578         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
1579                    ECOBITS_PPGTT_CACHE64B);
1580
1581         gab_ctl = I915_READ(GAB_CTL);
1582         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
1583
1584         ecochk = I915_READ(GAM_ECOCHK);
1585         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
1586
1587         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
1588 }
1589
1590 /* PPGTT support for Sandybdrige/Gen6 and later */
1591 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
1592                                    u64 start, u64 length)
1593 {
1594         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1595         unsigned int first_entry = start >> PAGE_SHIFT;
1596         unsigned int pde = first_entry / GEN6_PTES;
1597         unsigned int pte = first_entry % GEN6_PTES;
1598         unsigned int num_entries = length >> PAGE_SHIFT;
1599         gen6_pte_t scratch_pte =
1600                 vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0);
1601
1602         while (num_entries) {
1603                 struct i915_page_table *pt = ppgtt->pd.page_table[pde++];
1604                 unsigned int end = min(pte + num_entries, GEN6_PTES);
1605                 gen6_pte_t *vaddr;
1606
1607                 num_entries -= end - pte;
1608
1609                 /* Note that the hw doesn't support removing PDE on the fly
1610                  * (they are cached inside the context with no means to
1611                  * invalidate the cache), so we can only reset the PTE
1612                  * entries back to scratch.
1613                  */
1614
1615                 vaddr = kmap_atomic_px(pt);
1616                 do {
1617                         vaddr[pte++] = scratch_pte;
1618                 } while (pte < end);
1619                 kunmap_atomic(vaddr);
1620
1621                 pte = 0;
1622         }
1623 }
1624
1625 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
1626                                       struct i915_vma *vma,
1627                                       enum i915_cache_level cache_level,
1628                                       u32 flags)
1629 {
1630         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1631         unsigned first_entry = vma->node.start >> PAGE_SHIFT;
1632         unsigned act_pt = first_entry / GEN6_PTES;
1633         unsigned act_pte = first_entry % GEN6_PTES;
1634         const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
1635         struct sgt_dma iter;
1636         gen6_pte_t *vaddr;
1637
1638         vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
1639         iter.sg = vma->pages->sgl;
1640         iter.dma = sg_dma_address(iter.sg);
1641         iter.max = iter.dma + iter.sg->length;
1642         do {
1643                 vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
1644
1645                 iter.dma += PAGE_SIZE;
1646                 if (iter.dma == iter.max) {
1647                         iter.sg = __sg_next(iter.sg);
1648                         if (!iter.sg)
1649                                 break;
1650
1651                         iter.dma = sg_dma_address(iter.sg);
1652                         iter.max = iter.dma + iter.sg->length;
1653                 }
1654
1655                 if (++act_pte == GEN6_PTES) {
1656                         kunmap_atomic(vaddr);
1657                         vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
1658                         act_pte = 0;
1659                 }
1660         } while (1);
1661         kunmap_atomic(vaddr);
1662 }
1663
1664 static int gen6_alloc_va_range(struct i915_address_space *vm,
1665                                u64 start, u64 length)
1666 {
1667         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1668         struct i915_page_table *pt;
1669         u64 from = start;
1670         unsigned int pde;
1671         bool flush = false;
1672
1673         gen6_for_each_pde(pt, &ppgtt->pd, start, length, pde) {
1674                 if (pt == vm->scratch_pt) {
1675                         pt = alloc_pt(vm);
1676                         if (IS_ERR(pt))
1677                                 goto unwind_out;
1678
1679                         gen6_initialize_pt(vm, pt);
1680                         ppgtt->pd.page_table[pde] = pt;
1681                         gen6_write_pde(ppgtt, pde, pt);
1682                         flush = true;
1683                 }
1684         }
1685
1686         if (flush) {
1687                 mark_tlbs_dirty(ppgtt);
1688                 wmb();
1689         }
1690
1691         return 0;
1692
1693 unwind_out:
1694         gen6_ppgtt_clear_range(vm, from, start);
1695         return -ENOMEM;
1696 }
1697
1698 static int gen6_init_scratch(struct i915_address_space *vm)
1699 {
1700         int ret;
1701
1702         ret = setup_scratch_page(vm, I915_GFP_DMA);
1703         if (ret)
1704                 return ret;
1705
1706         vm->scratch_pt = alloc_pt(vm);
1707         if (IS_ERR(vm->scratch_pt)) {
1708                 cleanup_scratch_page(vm);
1709                 return PTR_ERR(vm->scratch_pt);
1710         }
1711
1712         gen6_initialize_pt(vm, vm->scratch_pt);
1713
1714         return 0;
1715 }
1716
1717 static void gen6_free_scratch(struct i915_address_space *vm)
1718 {
1719         free_pt(vm, vm->scratch_pt);
1720         cleanup_scratch_page(vm);
1721 }
1722
1723 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
1724 {
1725         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1726         struct i915_page_directory *pd = &ppgtt->pd;
1727         struct i915_page_table *pt;
1728         u32 pde;
1729
1730         drm_mm_remove_node(&ppgtt->node);
1731
1732         gen6_for_all_pdes(pt, pd, pde)
1733                 if (pt != vm->scratch_pt)
1734                         free_pt(vm, pt);
1735
1736         gen6_free_scratch(vm);
1737 }
1738
1739 static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt)
1740 {
1741         struct i915_address_space *vm = &ppgtt->base;
1742         struct drm_i915_private *dev_priv = ppgtt->base.i915;
1743         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1744         int ret;
1745
1746         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
1747          * allocator works in address space sizes, so it's multiplied by page
1748          * size. We allocate at the top of the GTT to avoid fragmentation.
1749          */
1750         BUG_ON(!drm_mm_initialized(&ggtt->base.mm));
1751
1752         ret = gen6_init_scratch(vm);
1753         if (ret)
1754                 return ret;
1755
1756         ret = i915_gem_gtt_insert(&ggtt->base, &ppgtt->node,
1757                                   GEN6_PD_SIZE, GEN6_PD_ALIGN,
1758                                   I915_COLOR_UNEVICTABLE,
1759                                   0, ggtt->base.total,
1760                                   PIN_HIGH);
1761         if (ret)
1762                 goto err_out;
1763
1764         if (ppgtt->node.start < ggtt->mappable_end)
1765                 DRM_DEBUG("Forced to use aperture for PDEs\n");
1766
1767         ppgtt->pd.base.ggtt_offset =
1768                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_pte_t);
1769
1770         ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm +
1771                 ppgtt->pd.base.ggtt_offset / sizeof(gen6_pte_t);
1772
1773         return 0;
1774
1775 err_out:
1776         gen6_free_scratch(vm);
1777         return ret;
1778 }
1779
1780 static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt)
1781 {
1782         return gen6_ppgtt_allocate_page_directories(ppgtt);
1783 }
1784
1785 static void gen6_scratch_va_range(struct i915_hw_ppgtt *ppgtt,
1786                                   u64 start, u64 length)
1787 {
1788         struct i915_page_table *unused;
1789         u32 pde;
1790
1791         gen6_for_each_pde(unused, &ppgtt->pd, start, length, pde)
1792                 ppgtt->pd.page_table[pde] = ppgtt->base.scratch_pt;
1793 }
1794
1795 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
1796 {
1797         struct drm_i915_private *dev_priv = ppgtt->base.i915;
1798         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1799         int ret;
1800
1801         ppgtt->base.pte_encode = ggtt->base.pte_encode;
1802         if (intel_vgpu_active(dev_priv) || IS_GEN6(dev_priv))
1803                 ppgtt->switch_mm = gen6_mm_switch;
1804         else if (IS_HASWELL(dev_priv))
1805                 ppgtt->switch_mm = hsw_mm_switch;
1806         else if (IS_GEN7(dev_priv))
1807                 ppgtt->switch_mm = gen7_mm_switch;
1808         else
1809                 BUG();
1810
1811         ret = gen6_ppgtt_alloc(ppgtt);
1812         if (ret)
1813                 return ret;
1814
1815         ppgtt->base.total = I915_PDES * GEN6_PTES * PAGE_SIZE;
1816
1817         gen6_scratch_va_range(ppgtt, 0, ppgtt->base.total);
1818         gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
1819
1820         ret = gen6_alloc_va_range(&ppgtt->base, 0, ppgtt->base.total);
1821         if (ret) {
1822                 gen6_ppgtt_cleanup(&ppgtt->base);
1823                 return ret;
1824         }
1825
1826         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
1827         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
1828         ppgtt->base.unbind_vma = ppgtt_unbind_vma;
1829         ppgtt->base.bind_vma = ppgtt_bind_vma;
1830         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
1831         ppgtt->debug_dump = gen6_dump_ppgtt;
1832
1833         DRM_DEBUG_DRIVER("Allocated pde space (%lldM) at GTT entry: %llx\n",
1834                          ppgtt->node.size >> 20,
1835                          ppgtt->node.start / PAGE_SIZE);
1836
1837         DRM_DEBUG_DRIVER("Adding PPGTT at offset %x\n",
1838                          ppgtt->pd.base.ggtt_offset << 10);
1839
1840         return 0;
1841 }
1842
1843 static int __hw_ppgtt_init(struct i915_hw_ppgtt *ppgtt,
1844                            struct drm_i915_private *dev_priv)
1845 {
1846         ppgtt->base.i915 = dev_priv;
1847         ppgtt->base.dma = &dev_priv->drm.pdev->dev;
1848
1849         if (INTEL_INFO(dev_priv)->gen < 8)
1850                 return gen6_ppgtt_init(ppgtt);
1851         else
1852                 return gen8_ppgtt_init(ppgtt);
1853 }
1854
1855 static void i915_address_space_init(struct i915_address_space *vm,
1856                                     struct drm_i915_private *dev_priv,
1857                                     const char *name)
1858 {
1859         i915_gem_timeline_init(dev_priv, &vm->timeline, name);
1860
1861         drm_mm_init(&vm->mm, 0, vm->total);
1862         vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
1863
1864         INIT_LIST_HEAD(&vm->active_list);
1865         INIT_LIST_HEAD(&vm->inactive_list);
1866         INIT_LIST_HEAD(&vm->unbound_list);
1867
1868         list_add_tail(&vm->global_link, &dev_priv->vm_list);
1869         pagevec_init(&vm->free_pages, false);
1870 }
1871
1872 static void i915_address_space_fini(struct i915_address_space *vm)
1873 {
1874         if (pagevec_count(&vm->free_pages))
1875                 vm_free_pages_release(vm);
1876
1877         i915_gem_timeline_fini(&vm->timeline);
1878         drm_mm_takedown(&vm->mm);
1879         list_del(&vm->global_link);
1880 }
1881
1882 static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
1883 {
1884         /* This function is for gtt related workarounds. This function is
1885          * called on driver load and after a GPU reset, so you can place
1886          * workarounds here even if they get overwritten by GPU reset.
1887          */
1888         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl */
1889         if (IS_BROADWELL(dev_priv))
1890                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
1891         else if (IS_CHERRYVIEW(dev_priv))
1892                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
1893         else if (IS_GEN9_BC(dev_priv))
1894                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
1895         else if (IS_GEN9_LP(dev_priv))
1896                 I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
1897 }
1898
1899 int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
1900 {
1901         gtt_write_workarounds(dev_priv);
1902
1903         /* In the case of execlists, PPGTT is enabled by the context descriptor
1904          * and the PDPs are contained within the context itself.  We don't
1905          * need to do anything here. */
1906         if (i915.enable_execlists)
1907                 return 0;
1908
1909         if (!USES_PPGTT(dev_priv))
1910                 return 0;
1911
1912         if (IS_GEN6(dev_priv))
1913                 gen6_ppgtt_enable(dev_priv);
1914         else if (IS_GEN7(dev_priv))
1915                 gen7_ppgtt_enable(dev_priv);
1916         else if (INTEL_GEN(dev_priv) >= 8)
1917                 gen8_ppgtt_enable(dev_priv);
1918         else
1919                 MISSING_CASE(INTEL_GEN(dev_priv));
1920
1921         return 0;
1922 }
1923
1924 struct i915_hw_ppgtt *
1925 i915_ppgtt_create(struct drm_i915_private *dev_priv,
1926                   struct drm_i915_file_private *fpriv,
1927                   const char *name)
1928 {
1929         struct i915_hw_ppgtt *ppgtt;
1930         int ret;
1931
1932         ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
1933         if (!ppgtt)
1934                 return ERR_PTR(-ENOMEM);
1935
1936         ret = __hw_ppgtt_init(ppgtt, dev_priv);
1937         if (ret) {
1938                 kfree(ppgtt);
1939                 return ERR_PTR(ret);
1940         }
1941
1942         kref_init(&ppgtt->ref);
1943         i915_address_space_init(&ppgtt->base, dev_priv, name);
1944         ppgtt->base.file = fpriv;
1945
1946         trace_i915_ppgtt_create(&ppgtt->base);
1947
1948         return ppgtt;
1949 }
1950
1951 void i915_ppgtt_close(struct i915_address_space *vm)
1952 {
1953         struct list_head *phases[] = {
1954                 &vm->active_list,
1955                 &vm->inactive_list,
1956                 &vm->unbound_list,
1957                 NULL,
1958         }, **phase;
1959
1960         GEM_BUG_ON(vm->closed);
1961         vm->closed = true;
1962
1963         for (phase = phases; *phase; phase++) {
1964                 struct i915_vma *vma, *vn;
1965
1966                 list_for_each_entry_safe(vma, vn, *phase, vm_link)
1967                         if (!i915_vma_is_closed(vma))
1968                                 i915_vma_close(vma);
1969         }
1970 }
1971
1972 void i915_ppgtt_release(struct kref *kref)
1973 {
1974         struct i915_hw_ppgtt *ppgtt =
1975                 container_of(kref, struct i915_hw_ppgtt, ref);
1976
1977         trace_i915_ppgtt_release(&ppgtt->base);
1978
1979         /* vmas should already be unbound and destroyed */
1980         WARN_ON(!list_empty(&ppgtt->base.active_list));
1981         WARN_ON(!list_empty(&ppgtt->base.inactive_list));
1982         WARN_ON(!list_empty(&ppgtt->base.unbound_list));
1983
1984         ppgtt->base.cleanup(&ppgtt->base);
1985         i915_address_space_fini(&ppgtt->base);
1986         kfree(ppgtt);
1987 }
1988
1989 /* Certain Gen5 chipsets require require idling the GPU before
1990  * unmapping anything from the GTT when VT-d is enabled.
1991  */
1992 static bool needs_idle_maps(struct drm_i915_private *dev_priv)
1993 {
1994         /* Query intel_iommu to see if we need the workaround. Presumably that
1995          * was loaded first.
1996          */
1997         return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active();
1998 }
1999
2000 void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
2001 {
2002         struct intel_engine_cs *engine;
2003         enum intel_engine_id id;
2004
2005         if (INTEL_INFO(dev_priv)->gen < 6)
2006                 return;
2007
2008         for_each_engine(engine, dev_priv, id) {
2009                 u32 fault_reg;
2010                 fault_reg = I915_READ(RING_FAULT_REG(engine));
2011                 if (fault_reg & RING_FAULT_VALID) {
2012                         DRM_DEBUG_DRIVER("Unexpected fault\n"
2013                                          "\tAddr: 0x%08lx\n"
2014                                          "\tAddress space: %s\n"
2015                                          "\tSource ID: %d\n"
2016                                          "\tType: %d\n",
2017                                          fault_reg & PAGE_MASK,
2018                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
2019                                          RING_FAULT_SRCID(fault_reg),
2020                                          RING_FAULT_FAULT_TYPE(fault_reg));
2021                         I915_WRITE(RING_FAULT_REG(engine),
2022                                    fault_reg & ~RING_FAULT_VALID);
2023                 }
2024         }
2025
2026         /* Engine specific init may not have been done till this point. */
2027         if (dev_priv->engine[RCS])
2028                 POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
2029 }
2030
2031 void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
2032 {
2033         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2034
2035         /* Don't bother messing with faults pre GEN6 as we have little
2036          * documentation supporting that it's a good idea.
2037          */
2038         if (INTEL_GEN(dev_priv) < 6)
2039                 return;
2040
2041         i915_check_and_clear_faults(dev_priv);
2042
2043         ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
2044
2045         i915_ggtt_invalidate(dev_priv);
2046 }
2047
2048 int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
2049                                struct sg_table *pages)
2050 {
2051         do {
2052                 if (dma_map_sg(&obj->base.dev->pdev->dev,
2053                                pages->sgl, pages->nents,
2054                                PCI_DMA_BIDIRECTIONAL))
2055                         return 0;
2056
2057                 /* If the DMA remap fails, one cause can be that we have
2058                  * too many objects pinned in a small remapping table,
2059                  * such as swiotlb. Incrementally purge all other objects and
2060                  * try again - if there are no more pages to remove from
2061                  * the DMA remapper, i915_gem_shrink will return 0.
2062                  */
2063                 GEM_BUG_ON(obj->mm.pages == pages);
2064         } while (i915_gem_shrink(to_i915(obj->base.dev),
2065                                  obj->base.size >> PAGE_SHIFT, NULL,
2066                                  I915_SHRINK_BOUND |
2067                                  I915_SHRINK_UNBOUND |
2068                                  I915_SHRINK_ACTIVE));
2069
2070         return -ENOSPC;
2071 }
2072
2073 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
2074 {
2075         writeq(pte, addr);
2076 }
2077
2078 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
2079                                   dma_addr_t addr,
2080                                   u64 offset,
2081                                   enum i915_cache_level level,
2082                                   u32 unused)
2083 {
2084         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2085         gen8_pte_t __iomem *pte =
2086                 (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2087
2088         gen8_set_pte(pte, gen8_pte_encode(addr, level));
2089
2090         ggtt->invalidate(vm->i915);
2091 }
2092
2093 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
2094                                      struct i915_vma *vma,
2095                                      enum i915_cache_level level,
2096                                      u32 unused)
2097 {
2098         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2099         struct sgt_iter sgt_iter;
2100         gen8_pte_t __iomem *gtt_entries;
2101         const gen8_pte_t pte_encode = gen8_pte_encode(0, level);
2102         dma_addr_t addr;
2103
2104         gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
2105         gtt_entries += vma->node.start >> PAGE_SHIFT;
2106         for_each_sgt_dma(addr, sgt_iter, vma->pages)
2107                 gen8_set_pte(gtt_entries++, pte_encode | addr);
2108
2109         wmb();
2110
2111         /* This next bit makes the above posting read even more important. We
2112          * want to flush the TLBs only after we're certain all the PTE updates
2113          * have finished.
2114          */
2115         ggtt->invalidate(vm->i915);
2116 }
2117
2118 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
2119                                   dma_addr_t addr,
2120                                   u64 offset,
2121                                   enum i915_cache_level level,
2122                                   u32 flags)
2123 {
2124         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2125         gen6_pte_t __iomem *pte =
2126                 (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT);
2127
2128         iowrite32(vm->pte_encode(addr, level, flags), pte);
2129
2130         ggtt->invalidate(vm->i915);
2131 }
2132
2133 /*
2134  * Binds an object into the global gtt with the specified cache level. The object
2135  * will be accessible to the GPU via commands whose operands reference offsets
2136  * within the global GTT as well as accessible by the GPU through the GMADR
2137  * mapped BAR (dev_priv->mm.gtt->gtt).
2138  */
2139 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
2140                                      struct i915_vma *vma,
2141                                      enum i915_cache_level level,
2142                                      u32 flags)
2143 {
2144         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2145         gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
2146         unsigned int i = vma->node.start >> PAGE_SHIFT;
2147         struct sgt_iter iter;
2148         dma_addr_t addr;
2149         for_each_sgt_dma(addr, iter, vma->pages)
2150                 iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
2151         wmb();
2152
2153         /* This next bit makes the above posting read even more important. We
2154          * want to flush the TLBs only after we're certain all the PTE updates
2155          * have finished.
2156          */
2157         ggtt->invalidate(vm->i915);
2158 }
2159
2160 static void nop_clear_range(struct i915_address_space *vm,
2161                             u64 start, u64 length)
2162 {
2163 }
2164
2165 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
2166                                   u64 start, u64 length)
2167 {
2168         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2169         unsigned first_entry = start >> PAGE_SHIFT;
2170         unsigned num_entries = length >> PAGE_SHIFT;
2171         const gen8_pte_t scratch_pte =
2172                 gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC);
2173         gen8_pte_t __iomem *gtt_base =
2174                 (gen8_pte_t __iomem *)ggtt->gsm + first_entry;
2175         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2176         int i;
2177
2178         if (WARN(num_entries > max_entries,
2179                  "First entry = %d; Num entries = %d (max=%d)\n",
2180                  first_entry, num_entries, max_entries))
2181                 num_entries = max_entries;
2182
2183         for (i = 0; i < num_entries; i++)
2184                 gen8_set_pte(&gtt_base[i], scratch_pte);
2185 }
2186
2187 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
2188 {
2189         struct drm_i915_private *dev_priv = vm->i915;
2190
2191         /*
2192          * Make sure the internal GAM fifo has been cleared of all GTT
2193          * writes before exiting stop_machine(). This guarantees that
2194          * any aperture accesses waiting to start in another process
2195          * cannot back up behind the GTT writes causing a hang.
2196          * The register can be any arbitrary GAM register.
2197          */
2198         POSTING_READ(GFX_FLSH_CNTL_GEN6);
2199 }
2200
2201 struct insert_page {
2202         struct i915_address_space *vm;
2203         dma_addr_t addr;
2204         u64 offset;
2205         enum i915_cache_level level;
2206 };
2207
2208 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
2209 {
2210         struct insert_page *arg = _arg;
2211
2212         gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
2213         bxt_vtd_ggtt_wa(arg->vm);
2214
2215         return 0;
2216 }
2217
2218 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
2219                                           dma_addr_t addr,
2220                                           u64 offset,
2221                                           enum i915_cache_level level,
2222                                           u32 unused)
2223 {
2224         struct insert_page arg = { vm, addr, offset, level };
2225
2226         stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
2227 }
2228
2229 struct insert_entries {
2230         struct i915_address_space *vm;
2231         struct i915_vma *vma;
2232         enum i915_cache_level level;
2233 };
2234
2235 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
2236 {
2237         struct insert_entries *arg = _arg;
2238
2239         gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, 0);
2240         bxt_vtd_ggtt_wa(arg->vm);
2241
2242         return 0;
2243 }
2244
2245 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
2246                                              struct i915_vma *vma,
2247                                              enum i915_cache_level level,
2248                                              u32 unused)
2249 {
2250         struct insert_entries arg = { vm, vma, level };
2251
2252         stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
2253 }
2254
2255 struct clear_range {
2256         struct i915_address_space *vm;
2257         u64 start;
2258         u64 length;
2259 };
2260
2261 static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
2262 {
2263         struct clear_range *arg = _arg;
2264
2265         gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
2266         bxt_vtd_ggtt_wa(arg->vm);
2267
2268         return 0;
2269 }
2270
2271 static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
2272                                           u64 start,
2273                                           u64 length)
2274 {
2275         struct clear_range arg = { vm, start, length };
2276
2277         stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
2278 }
2279
2280 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
2281                                   u64 start, u64 length)
2282 {
2283         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2284         unsigned first_entry = start >> PAGE_SHIFT;
2285         unsigned num_entries = length >> PAGE_SHIFT;
2286         gen6_pte_t scratch_pte, __iomem *gtt_base =
2287                 (gen6_pte_t __iomem *)ggtt->gsm + first_entry;
2288         const int max_entries = ggtt_total_entries(ggtt) - first_entry;
2289         int i;
2290
2291         if (WARN(num_entries > max_entries,
2292                  "First entry = %d; Num entries = %d (max=%d)\n",
2293                  first_entry, num_entries, max_entries))
2294                 num_entries = max_entries;
2295
2296         scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
2297                                      I915_CACHE_LLC, 0);
2298
2299         for (i = 0; i < num_entries; i++)
2300                 iowrite32(scratch_pte, &gtt_base[i]);
2301 }
2302
2303 static void i915_ggtt_insert_page(struct i915_address_space *vm,
2304                                   dma_addr_t addr,
2305                                   u64 offset,
2306                                   enum i915_cache_level cache_level,
2307                                   u32 unused)
2308 {
2309         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2310                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2311
2312         intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
2313 }
2314
2315 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
2316                                      struct i915_vma *vma,
2317                                      enum i915_cache_level cache_level,
2318                                      u32 unused)
2319 {
2320         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
2321                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
2322
2323         intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
2324                                     flags);
2325 }
2326
2327 static void i915_ggtt_clear_range(struct i915_address_space *vm,
2328                                   u64 start, u64 length)
2329 {
2330         intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
2331 }
2332
2333 static int ggtt_bind_vma(struct i915_vma *vma,
2334                          enum i915_cache_level cache_level,
2335                          u32 flags)
2336 {
2337         struct drm_i915_private *i915 = vma->vm->i915;
2338         struct drm_i915_gem_object *obj = vma->obj;
2339         u32 pte_flags;
2340
2341         if (unlikely(!vma->pages)) {
2342                 int ret = i915_get_ggtt_vma_pages(vma);
2343                 if (ret)
2344                         return ret;
2345         }
2346
2347         /* Currently applicable only to VLV */
2348         pte_flags = 0;
2349         if (obj->gt_ro)
2350                 pte_flags |= PTE_READ_ONLY;
2351
2352         intel_runtime_pm_get(i915);
2353         vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2354         intel_runtime_pm_put(i915);
2355
2356         /*
2357          * Without aliasing PPGTT there's no difference between
2358          * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
2359          * upgrade to both bound if we bind either to avoid double-binding.
2360          */
2361         vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
2362
2363         return 0;
2364 }
2365
2366 static void ggtt_unbind_vma(struct i915_vma *vma)
2367 {
2368         struct drm_i915_private *i915 = vma->vm->i915;
2369
2370         intel_runtime_pm_get(i915);
2371         vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2372         intel_runtime_pm_put(i915);
2373 }
2374
2375 static int aliasing_gtt_bind_vma(struct i915_vma *vma,
2376                                  enum i915_cache_level cache_level,
2377                                  u32 flags)
2378 {
2379         struct drm_i915_private *i915 = vma->vm->i915;
2380         u32 pte_flags;
2381         int ret;
2382
2383         if (unlikely(!vma->pages)) {
2384                 ret = i915_get_ggtt_vma_pages(vma);
2385                 if (ret)
2386                         return ret;
2387         }
2388
2389         /* Currently applicable only to VLV */
2390         pte_flags = 0;
2391         if (vma->obj->gt_ro)
2392                 pte_flags |= PTE_READ_ONLY;
2393
2394         if (flags & I915_VMA_LOCAL_BIND) {
2395                 struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
2396
2397                 if (!(vma->flags & I915_VMA_LOCAL_BIND) &&
2398                     appgtt->base.allocate_va_range) {
2399                         ret = appgtt->base.allocate_va_range(&appgtt->base,
2400                                                              vma->node.start,
2401                                                              vma->size);
2402                         if (ret)
2403                                 goto err_pages;
2404                 }
2405
2406                 appgtt->base.insert_entries(&appgtt->base, vma, cache_level,
2407                                             pte_flags);
2408         }
2409
2410         if (flags & I915_VMA_GLOBAL_BIND) {
2411                 intel_runtime_pm_get(i915);
2412                 vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
2413                 intel_runtime_pm_put(i915);
2414         }
2415
2416         return 0;
2417
2418 err_pages:
2419         if (!(vma->flags & (I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND))) {
2420                 if (vma->pages != vma->obj->mm.pages) {
2421                         GEM_BUG_ON(!vma->pages);
2422                         sg_free_table(vma->pages);
2423                         kfree(vma->pages);
2424                 }
2425                 vma->pages = NULL;
2426         }
2427         return ret;
2428 }
2429
2430 static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
2431 {
2432         struct drm_i915_private *i915 = vma->vm->i915;
2433
2434         if (vma->flags & I915_VMA_GLOBAL_BIND) {
2435                 intel_runtime_pm_get(i915);
2436                 vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
2437                 intel_runtime_pm_put(i915);
2438         }
2439
2440         if (vma->flags & I915_VMA_LOCAL_BIND) {
2441                 struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->base;
2442
2443                 vm->clear_range(vm, vma->node.start, vma->size);
2444         }
2445 }
2446
2447 void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
2448                                struct sg_table *pages)
2449 {
2450         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2451         struct device *kdev = &dev_priv->drm.pdev->dev;
2452         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2453
2454         if (unlikely(ggtt->do_idle_maps)) {
2455                 if (i915_gem_wait_for_idle(dev_priv, 0)) {
2456                         DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
2457                         /* Wait a bit, in hopes it avoids the hang */
2458                         udelay(10);
2459                 }
2460         }
2461
2462         dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
2463 }
2464
2465 static void i915_gtt_color_adjust(const struct drm_mm_node *node,
2466                                   unsigned long color,
2467                                   u64 *start,
2468                                   u64 *end)
2469 {
2470         if (node->allocated && node->color != color)
2471                 *start += I915_GTT_PAGE_SIZE;
2472
2473         /* Also leave a space between the unallocated reserved node after the
2474          * GTT and any objects within the GTT, i.e. we use the color adjustment
2475          * to insert a guard page to prevent prefetches crossing over the
2476          * GTT boundary.
2477          */
2478         node = list_next_entry(node, node_list);
2479         if (node->color != color)
2480                 *end -= I915_GTT_PAGE_SIZE;
2481 }
2482
2483 int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
2484 {
2485         struct i915_ggtt *ggtt = &i915->ggtt;
2486         struct i915_hw_ppgtt *ppgtt;
2487         int err;
2488
2489         ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM), "[alias]");
2490         if (IS_ERR(ppgtt))
2491                 return PTR_ERR(ppgtt);
2492
2493         if (WARN_ON(ppgtt->base.total < ggtt->base.total)) {
2494                 err = -ENODEV;
2495                 goto err_ppgtt;
2496         }
2497
2498         if (ppgtt->base.allocate_va_range) {
2499                 /* Note we only pre-allocate as far as the end of the global
2500                  * GTT. On 48b / 4-level page-tables, the difference is very,
2501                  * very significant! We have to preallocate as GVT/vgpu does
2502                  * not like the page directory disappearing.
2503                  */
2504                 err = ppgtt->base.allocate_va_range(&ppgtt->base,
2505                                                     0, ggtt->base.total);
2506                 if (err)
2507                         goto err_ppgtt;
2508         }
2509
2510         i915->mm.aliasing_ppgtt = ppgtt;
2511
2512         WARN_ON(ggtt->base.bind_vma != ggtt_bind_vma);
2513         ggtt->base.bind_vma = aliasing_gtt_bind_vma;
2514
2515         WARN_ON(ggtt->base.unbind_vma != ggtt_unbind_vma);
2516         ggtt->base.unbind_vma = aliasing_gtt_unbind_vma;
2517
2518         return 0;
2519
2520 err_ppgtt:
2521         i915_ppgtt_put(ppgtt);
2522         return err;
2523 }
2524
2525 void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
2526 {
2527         struct i915_ggtt *ggtt = &i915->ggtt;
2528         struct i915_hw_ppgtt *ppgtt;
2529
2530         ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
2531         if (!ppgtt)
2532                 return;
2533
2534         i915_ppgtt_put(ppgtt);
2535
2536         ggtt->base.bind_vma = ggtt_bind_vma;
2537         ggtt->base.unbind_vma = ggtt_unbind_vma;
2538 }
2539
2540 int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
2541 {
2542         /* Let GEM Manage all of the aperture.
2543          *
2544          * However, leave one page at the end still bound to the scratch page.
2545          * There are a number of places where the hardware apparently prefetches
2546          * past the end of the object, and we've seen multiple hangs with the
2547          * GPU head pointer stuck in a batchbuffer bound at the last page of the
2548          * aperture.  One page should be enough to keep any prefetching inside
2549          * of the aperture.
2550          */
2551         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2552         unsigned long hole_start, hole_end;
2553         struct drm_mm_node *entry;
2554         int ret;
2555
2556         ret = intel_vgt_balloon(dev_priv);
2557         if (ret)
2558                 return ret;
2559
2560         /* Reserve a mappable slot for our lockless error capture */
2561         ret = drm_mm_insert_node_in_range(&ggtt->base.mm, &ggtt->error_capture,
2562                                           PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
2563                                           0, ggtt->mappable_end,
2564                                           DRM_MM_INSERT_LOW);
2565         if (ret)
2566                 return ret;
2567
2568         /* Clear any non-preallocated blocks */
2569         drm_mm_for_each_hole(entry, &ggtt->base.mm, hole_start, hole_end) {
2570                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
2571                               hole_start, hole_end);
2572                 ggtt->base.clear_range(&ggtt->base, hole_start,
2573                                        hole_end - hole_start);
2574         }
2575
2576         /* And finally clear the reserved guard page */
2577         ggtt->base.clear_range(&ggtt->base,
2578                                ggtt->base.total - PAGE_SIZE, PAGE_SIZE);
2579
2580         if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) {
2581                 ret = i915_gem_init_aliasing_ppgtt(dev_priv);
2582                 if (ret)
2583                         goto err;
2584         }
2585
2586         return 0;
2587
2588 err:
2589         drm_mm_remove_node(&ggtt->error_capture);
2590         return ret;
2591 }
2592
2593 /**
2594  * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
2595  * @dev_priv: i915 device
2596  */
2597 void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
2598 {
2599         struct i915_ggtt *ggtt = &dev_priv->ggtt;
2600         struct i915_vma *vma, *vn;
2601
2602         ggtt->base.closed = true;
2603
2604         mutex_lock(&dev_priv->drm.struct_mutex);
2605         WARN_ON(!list_empty(&ggtt->base.active_list));
2606         list_for_each_entry_safe(vma, vn, &ggtt->base.inactive_list, vm_link)
2607                 WARN_ON(i915_vma_unbind(vma));
2608         mutex_unlock(&dev_priv->drm.struct_mutex);
2609
2610         i915_gem_cleanup_stolen(&dev_priv->drm);
2611
2612         mutex_lock(&dev_priv->drm.struct_mutex);
2613         i915_gem_fini_aliasing_ppgtt(dev_priv);
2614
2615         if (drm_mm_node_allocated(&ggtt->error_capture))
2616                 drm_mm_remove_node(&ggtt->error_capture);
2617
2618         if (drm_mm_initialized(&ggtt->base.mm)) {
2619                 intel_vgt_deballoon(dev_priv);
2620                 i915_address_space_fini(&ggtt->base);
2621         }
2622
2623         ggtt->base.cleanup(&ggtt->base);
2624         mutex_unlock(&dev_priv->drm.struct_mutex);
2625
2626         arch_phys_wc_del(ggtt->mtrr);
2627         io_mapping_fini(&ggtt->mappable);
2628 }
2629
2630 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
2631 {
2632         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
2633         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
2634         return snb_gmch_ctl << 20;
2635 }
2636
2637 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
2638 {
2639         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
2640         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
2641         if (bdw_gmch_ctl)
2642                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
2643
2644 #ifdef CONFIG_X86_32
2645         /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */
2646         if (bdw_gmch_ctl > 4)
2647                 bdw_gmch_ctl = 4;
2648 #endif
2649
2650         return bdw_gmch_ctl << 20;
2651 }
2652
2653 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
2654 {
2655         gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
2656         gmch_ctrl &= SNB_GMCH_GGMS_MASK;
2657
2658         if (gmch_ctrl)
2659                 return 1 << (20 + gmch_ctrl);
2660
2661         return 0;
2662 }
2663
2664 static size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
2665 {
2666         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
2667         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
2668         return (size_t)snb_gmch_ctl << 25; /* 32 MB units */
2669 }
2670
2671 static size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
2672 {
2673         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2674         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
2675         return (size_t)bdw_gmch_ctl << 25; /* 32 MB units */
2676 }
2677
2678 static size_t chv_get_stolen_size(u16 gmch_ctrl)
2679 {
2680         gmch_ctrl >>= SNB_GMCH_GMS_SHIFT;
2681         gmch_ctrl &= SNB_GMCH_GMS_MASK;
2682
2683         /*
2684          * 0x0  to 0x10: 32MB increments starting at 0MB
2685          * 0x11 to 0x16: 4MB increments starting at 8MB
2686          * 0x17 to 0x1d: 4MB increments start at 36MB
2687          */
2688         if (gmch_ctrl < 0x11)
2689                 return (size_t)gmch_ctrl << 25;
2690         else if (gmch_ctrl < 0x17)
2691                 return (size_t)(gmch_ctrl - 0x11 + 2) << 22;
2692         else
2693                 return (size_t)(gmch_ctrl - 0x17 + 9) << 22;
2694 }
2695
2696 static size_t gen9_get_stolen_size(u16 gen9_gmch_ctl)
2697 {
2698         gen9_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
2699         gen9_gmch_ctl &= BDW_GMCH_GMS_MASK;
2700
2701         if (gen9_gmch_ctl < 0xf0)
2702                 return (size_t)gen9_gmch_ctl << 25; /* 32 MB units */
2703         else
2704                 /* 4MB increments starting at 0xf0 for 4MB */
2705                 return (size_t)(gen9_gmch_ctl - 0xf0 + 1) << 22;
2706 }
2707
2708 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
2709 {
2710         struct drm_i915_private *dev_priv = ggtt->base.i915;
2711         struct pci_dev *pdev = dev_priv->drm.pdev;
2712         phys_addr_t phys_addr;
2713         int ret;
2714
2715         /* For Modern GENs the PTEs and register space are split in the BAR */
2716         phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
2717
2718         /*
2719          * On BXT writes larger than 64 bit to the GTT pagetable range will be
2720          * dropped. For WC mappings in general we have 64 byte burst writes
2721          * when the WC buffer is flushed, so we can't use it, but have to
2722          * resort to an uncached mapping. The WC issue is easily caught by the
2723          * readback check when writing GTT PTE entries.
2724          */
2725         if (IS_GEN9_LP(dev_priv))
2726                 ggtt->gsm = ioremap_nocache(phys_addr, size);
2727         else
2728                 ggtt->gsm = ioremap_wc(phys_addr, size);
2729         if (!ggtt->gsm) {
2730                 DRM_ERROR("Failed to map the ggtt page table\n");
2731                 return -ENOMEM;
2732         }
2733
2734         ret = setup_scratch_page(&ggtt->base, GFP_DMA32);
2735         if (ret) {
2736                 DRM_ERROR("Scratch setup failed\n");
2737                 /* iounmap will also get called at remove, but meh */
2738                 iounmap(ggtt->gsm);
2739                 return ret;
2740         }
2741
2742         return 0;
2743 }
2744
2745 static void cnl_setup_private_ppat(struct drm_i915_private *dev_priv)
2746 {
2747         /* XXX: spec is unclear if this is still needed for CNL+ */
2748         if (!USES_PPGTT(dev_priv)) {
2749                 I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_UC);
2750                 return;
2751         }
2752
2753         I915_WRITE(GEN10_PAT_INDEX(0), GEN8_PPAT_WB | GEN8_PPAT_LLC);
2754         I915_WRITE(GEN10_PAT_INDEX(1), GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
2755         I915_WRITE(GEN10_PAT_INDEX(2), GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
2756         I915_WRITE(GEN10_PAT_INDEX(3), GEN8_PPAT_UC);
2757         I915_WRITE(GEN10_PAT_INDEX(4), GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
2758         I915_WRITE(GEN10_PAT_INDEX(5), GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
2759         I915_WRITE(GEN10_PAT_INDEX(6), GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
2760         I915_WRITE(GEN10_PAT_INDEX(7), GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2761 }
2762
2763 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
2764  * bits. When using advanced contexts each context stores its own PAT, but
2765  * writing this data shouldn't be harmful even in those cases. */
2766 static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv)
2767 {
2768         u64 pat;
2769
2770         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
2771               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
2772               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
2773               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
2774               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
2775               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
2776               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
2777               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
2778
2779         if (!USES_PPGTT(dev_priv))
2780                 /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
2781                  * so RTL will always use the value corresponding to
2782                  * pat_sel = 000".
2783                  * So let's disable cache for GGTT to avoid screen corruptions.
2784                  * MOCS still can be used though.
2785                  * - System agent ggtt writes (i.e. cpu gtt mmaps) already work
2786                  * before this patch, i.e. the same uncached + snooping access
2787                  * like on gen6/7 seems to be in effect.
2788                  * - So this just fixes blitter/render access. Again it looks
2789                  * like it's not just uncached access, but uncached + snooping.
2790                  * So we can still hold onto all our assumptions wrt cpu
2791                  * clflushing on LLC machines.
2792                  */
2793                 pat = GEN8_PPAT(0, GEN8_PPAT_UC);
2794
2795         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
2796          * write would work. */
2797         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2798         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2799 }
2800
2801 static void chv_setup_private_ppat(struct drm_i915_private *dev_priv)
2802 {
2803         u64 pat;
2804
2805         /*
2806          * Map WB on BDW to snooped on CHV.
2807          *
2808          * Only the snoop bit has meaning for CHV, the rest is
2809          * ignored.
2810          *
2811          * The hardware will never snoop for certain types of accesses:
2812          * - CPU GTT (GMADR->GGTT->no snoop->memory)
2813          * - PPGTT page tables
2814          * - some other special cycles
2815          *
2816          * As with BDW, we also need to consider the following for GT accesses:
2817          * "For GGTT, there is NO pat_sel[2:0] from the entry,
2818          * so RTL will always use the value corresponding to
2819          * pat_sel = 000".
2820          * Which means we must set the snoop bit in PAT entry 0
2821          * in order to keep the global status page working.
2822          */
2823         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
2824               GEN8_PPAT(1, 0) |
2825               GEN8_PPAT(2, 0) |
2826               GEN8_PPAT(3, 0) |
2827               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
2828               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
2829               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
2830               GEN8_PPAT(7, CHV_PPAT_SNOOP);
2831
2832         I915_WRITE(GEN8_PRIVATE_PAT_LO, pat);
2833         I915_WRITE(GEN8_PRIVATE_PAT_HI, pat >> 32);
2834 }
2835
2836 static void gen6_gmch_remove(struct i915_address_space *vm)
2837 {
2838         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
2839
2840         iounmap(ggtt->gsm);
2841         cleanup_scratch_page(vm);
2842 }
2843
2844 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
2845 {
2846         struct drm_i915_private *dev_priv = ggtt->base.i915;
2847         struct pci_dev *pdev = dev_priv->drm.pdev;
2848         unsigned int size;
2849         u16 snb_gmch_ctl;
2850         int err;
2851
2852         /* TODO: We're not aware of mappable constraints on gen8 yet */
2853         ggtt->mappable_base = pci_resource_start(pdev, 2);
2854         ggtt->mappable_end = pci_resource_len(pdev, 2);
2855
2856         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
2857         if (!err)
2858                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
2859         if (err)
2860                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2861
2862         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2863
2864         if (INTEL_GEN(dev_priv) >= 9) {
2865                 ggtt->stolen_size = gen9_get_stolen_size(snb_gmch_ctl);
2866                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
2867         } else if (IS_CHERRYVIEW(dev_priv)) {
2868                 ggtt->stolen_size = chv_get_stolen_size(snb_gmch_ctl);
2869                 size = chv_get_total_gtt_size(snb_gmch_ctl);
2870         } else {
2871                 ggtt->stolen_size = gen8_get_stolen_size(snb_gmch_ctl);
2872                 size = gen8_get_total_gtt_size(snb_gmch_ctl);
2873         }
2874
2875         ggtt->base.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT;
2876
2877         if (INTEL_GEN(dev_priv) >= 10)
2878                 cnl_setup_private_ppat(dev_priv);
2879         else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
2880                 chv_setup_private_ppat(dev_priv);
2881         else
2882                 bdw_setup_private_ppat(dev_priv);
2883
2884         ggtt->base.cleanup = gen6_gmch_remove;
2885         ggtt->base.bind_vma = ggtt_bind_vma;
2886         ggtt->base.unbind_vma = ggtt_unbind_vma;
2887         ggtt->base.insert_page = gen8_ggtt_insert_page;
2888         ggtt->base.clear_range = nop_clear_range;
2889         if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
2890                 ggtt->base.clear_range = gen8_ggtt_clear_range;
2891
2892         ggtt->base.insert_entries = gen8_ggtt_insert_entries;
2893
2894         /* Serialize GTT updates with aperture access on BXT if VT-d is on. */
2895         if (intel_ggtt_update_needs_vtd_wa(dev_priv)) {
2896                 ggtt->base.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
2897                 ggtt->base.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
2898                 if (ggtt->base.clear_range != nop_clear_range)
2899                         ggtt->base.clear_range = bxt_vtd_ggtt_clear_range__BKL;
2900         }
2901
2902         ggtt->invalidate = gen6_ggtt_invalidate;
2903
2904         return ggtt_probe_common(ggtt, size);
2905 }
2906
2907 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
2908 {
2909         struct drm_i915_private *dev_priv = ggtt->base.i915;
2910         struct pci_dev *pdev = dev_priv->drm.pdev;
2911         unsigned int size;
2912         u16 snb_gmch_ctl;
2913         int err;
2914
2915         ggtt->mappable_base = pci_resource_start(pdev, 2);
2916         ggtt->mappable_end = pci_resource_len(pdev, 2);
2917
2918         /* 64/512MB is the current min/max we actually know of, but this is just
2919          * a coarse sanity check.
2920          */
2921         if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
2922                 DRM_ERROR("Unknown GMADR size (%llx)\n", ggtt->mappable_end);
2923                 return -ENXIO;
2924         }
2925
2926         err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
2927         if (!err)
2928                 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
2929         if (err)
2930                 DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
2931         pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
2932
2933         ggtt->stolen_size = gen6_get_stolen_size(snb_gmch_ctl);
2934
2935         size = gen6_get_total_gtt_size(snb_gmch_ctl);
2936         ggtt->base.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT;
2937
2938         ggtt->base.clear_range = gen6_ggtt_clear_range;
2939         ggtt->base.insert_page = gen6_ggtt_insert_page;
2940         ggtt->base.insert_entries = gen6_ggtt_insert_entries;
2941         ggtt->base.bind_vma = ggtt_bind_vma;
2942         ggtt->base.unbind_vma = ggtt_unbind_vma;
2943         ggtt->base.cleanup = gen6_gmch_remove;
2944
2945         ggtt->invalidate = gen6_ggtt_invalidate;
2946
2947         if (HAS_EDRAM(dev_priv))
2948                 ggtt->base.pte_encode = iris_pte_encode;
2949         else if (IS_HASWELL(dev_priv))
2950                 ggtt->base.pte_encode = hsw_pte_encode;
2951         else if (IS_VALLEYVIEW(dev_priv))
2952                 ggtt->base.pte_encode = byt_pte_encode;
2953         else if (INTEL_GEN(dev_priv) >= 7)
2954                 ggtt->base.pte_encode = ivb_pte_encode;
2955         else
2956                 ggtt->base.pte_encode = snb_pte_encode;
2957
2958         return ggtt_probe_common(ggtt, size);
2959 }
2960
2961 static void i915_gmch_remove(struct i915_address_space *vm)
2962 {
2963         intel_gmch_remove();
2964 }
2965
2966 static int i915_gmch_probe(struct i915_ggtt *ggtt)
2967 {
2968         struct drm_i915_private *dev_priv = ggtt->base.i915;
2969         int ret;
2970
2971         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
2972         if (!ret) {
2973                 DRM_ERROR("failed to set up gmch\n");
2974                 return -EIO;
2975         }
2976
2977         intel_gtt_get(&ggtt->base.total,
2978                       &ggtt->stolen_size,
2979                       &ggtt->mappable_base,
2980                       &ggtt->mappable_end);
2981
2982         ggtt->do_idle_maps = needs_idle_maps(dev_priv);
2983         ggtt->base.insert_page = i915_ggtt_insert_page;
2984         ggtt->base.insert_entries = i915_ggtt_insert_entries;
2985         ggtt->base.clear_range = i915_ggtt_clear_range;
2986         ggtt->base.bind_vma = ggtt_bind_vma;
2987         ggtt->base.unbind_vma = ggtt_unbind_vma;
2988         ggtt->base.cleanup = i915_gmch_remove;
2989
2990         ggtt->invalidate = gmch_ggtt_invalidate;
2991
2992         if (unlikely(ggtt->do_idle_maps))
2993                 DRM_INFO("applying Ironlake quirks for intel_iommu\n");
2994
2995         return 0;
2996 }
2997
2998 /**
2999  * i915_ggtt_probe_hw - Probe GGTT hardware location
3000  * @dev_priv: i915 device
3001  */
3002 int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
3003 {
3004         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3005         int ret;
3006
3007         ggtt->base.i915 = dev_priv;
3008         ggtt->base.dma = &dev_priv->drm.pdev->dev;
3009
3010         if (INTEL_GEN(dev_priv) <= 5)
3011                 ret = i915_gmch_probe(ggtt);
3012         else if (INTEL_GEN(dev_priv) < 8)
3013                 ret = gen6_gmch_probe(ggtt);
3014         else
3015                 ret = gen8_gmch_probe(ggtt);
3016         if (ret)
3017                 return ret;
3018
3019         /* Trim the GGTT to fit the GuC mappable upper range (when enabled).
3020          * This is easier than doing range restriction on the fly, as we
3021          * currently don't have any bits spare to pass in this upper
3022          * restriction!
3023          */
3024         if (HAS_GUC(dev_priv) && i915.enable_guc_loading) {
3025                 ggtt->base.total = min_t(u64, ggtt->base.total, GUC_GGTT_TOP);
3026                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3027         }
3028
3029         if ((ggtt->base.total - 1) >> 32) {
3030                 DRM_ERROR("We never expected a Global GTT with more than 32bits"
3031                           " of address space! Found %lldM!\n",
3032                           ggtt->base.total >> 20);
3033                 ggtt->base.total = 1ULL << 32;
3034                 ggtt->mappable_end = min(ggtt->mappable_end, ggtt->base.total);
3035         }
3036
3037         if (ggtt->mappable_end > ggtt->base.total) {
3038                 DRM_ERROR("mappable aperture extends past end of GGTT,"
3039                           " aperture=%llx, total=%llx\n",
3040                           ggtt->mappable_end, ggtt->base.total);
3041                 ggtt->mappable_end = ggtt->base.total;
3042         }
3043
3044         /* GMADR is the PCI mmio aperture into the global GTT. */
3045         DRM_INFO("Memory usable by graphics device = %lluM\n",
3046                  ggtt->base.total >> 20);
3047         DRM_DEBUG_DRIVER("GMADR size = %lldM\n", ggtt->mappable_end >> 20);
3048         DRM_DEBUG_DRIVER("GTT stolen size = %uM\n", ggtt->stolen_size >> 20);
3049         if (intel_vtd_active())
3050                 DRM_INFO("VT-d active for gfx access\n");
3051
3052         return 0;
3053 }
3054
3055 /**
3056  * i915_ggtt_init_hw - Initialize GGTT hardware
3057  * @dev_priv: i915 device
3058  */
3059 int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
3060 {
3061         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3062         int ret;
3063
3064         INIT_LIST_HEAD(&dev_priv->vm_list);
3065
3066         /* Note that we use page colouring to enforce a guard page at the
3067          * end of the address space. This is required as the CS may prefetch
3068          * beyond the end of the batch buffer, across the page boundary,
3069          * and beyond the end of the GTT if we do not provide a guard.
3070          */
3071         mutex_lock(&dev_priv->drm.struct_mutex);
3072         i915_address_space_init(&ggtt->base, dev_priv, "[global]");
3073         if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv))
3074                 ggtt->base.mm.color_adjust = i915_gtt_color_adjust;
3075         mutex_unlock(&dev_priv->drm.struct_mutex);
3076
3077         if (!io_mapping_init_wc(&dev_priv->ggtt.mappable,
3078                                 dev_priv->ggtt.mappable_base,
3079                                 dev_priv->ggtt.mappable_end)) {
3080                 ret = -EIO;
3081                 goto out_gtt_cleanup;
3082         }
3083
3084         ggtt->mtrr = arch_phys_wc_add(ggtt->mappable_base, ggtt->mappable_end);
3085
3086         /*
3087          * Initialise stolen early so that we may reserve preallocated
3088          * objects for the BIOS to KMS transition.
3089          */
3090         ret = i915_gem_init_stolen(dev_priv);
3091         if (ret)
3092                 goto out_gtt_cleanup;
3093
3094         return 0;
3095
3096 out_gtt_cleanup:
3097         ggtt->base.cleanup(&ggtt->base);
3098         return ret;
3099 }
3100
3101 int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
3102 {
3103         if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
3104                 return -EIO;
3105
3106         return 0;
3107 }
3108
3109 void i915_ggtt_enable_guc(struct drm_i915_private *i915)
3110 {
3111         GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
3112
3113         i915->ggtt.invalidate = guc_ggtt_invalidate;
3114 }
3115
3116 void i915_ggtt_disable_guc(struct drm_i915_private *i915)
3117 {
3118         /* We should only be called after i915_ggtt_enable_guc() */
3119         GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
3120
3121         i915->ggtt.invalidate = gen6_ggtt_invalidate;
3122 }
3123
3124 void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
3125 {
3126         struct i915_ggtt *ggtt = &dev_priv->ggtt;
3127         struct drm_i915_gem_object *obj, *on;
3128
3129         i915_check_and_clear_faults(dev_priv);
3130
3131         /* First fill our portion of the GTT with scratch pages */
3132         ggtt->base.clear_range(&ggtt->base, 0, ggtt->base.total);
3133
3134         ggtt->base.closed = true; /* skip rewriting PTE on VMA unbind */
3135
3136         /* clflush objects bound into the GGTT and rebind them. */
3137         list_for_each_entry_safe(obj, on,
3138                                  &dev_priv->mm.bound_list, global_link) {
3139                 bool ggtt_bound = false;
3140                 struct i915_vma *vma;
3141
3142                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3143                         if (vma->vm != &ggtt->base)
3144                                 continue;
3145
3146                         if (!i915_vma_unbind(vma))
3147                                 continue;
3148
3149                         WARN_ON(i915_vma_bind(vma, obj->cache_level,
3150                                               PIN_UPDATE));
3151                         ggtt_bound = true;
3152                 }
3153
3154                 if (ggtt_bound)
3155                         WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
3156         }
3157
3158         ggtt->base.closed = false;
3159
3160         if (INTEL_GEN(dev_priv) >= 8) {
3161                 if (INTEL_GEN(dev_priv) >= 10)
3162                         cnl_setup_private_ppat(dev_priv);
3163                 else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
3164                         chv_setup_private_ppat(dev_priv);
3165                 else
3166                         bdw_setup_private_ppat(dev_priv);
3167
3168                 return;
3169         }
3170
3171         if (USES_PPGTT(dev_priv)) {
3172                 struct i915_address_space *vm;
3173
3174                 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
3175                         struct i915_hw_ppgtt *ppgtt;
3176
3177                         if (i915_is_ggtt(vm))
3178                                 ppgtt = dev_priv->mm.aliasing_ppgtt;
3179                         else
3180                                 ppgtt = i915_vm_to_ppgtt(vm);
3181
3182                         gen6_write_page_range(ppgtt, 0, ppgtt->base.total);
3183                 }
3184         }
3185
3186         i915_ggtt_invalidate(dev_priv);
3187 }
3188
3189 static struct scatterlist *
3190 rotate_pages(const dma_addr_t *in, unsigned int offset,
3191              unsigned int width, unsigned int height,
3192              unsigned int stride,
3193              struct sg_table *st, struct scatterlist *sg)
3194 {
3195         unsigned int column, row;
3196         unsigned int src_idx;
3197
3198         for (column = 0; column < width; column++) {
3199                 src_idx = stride * (height - 1) + column;
3200                 for (row = 0; row < height; row++) {
3201                         st->nents++;
3202                         /* We don't need the pages, but need to initialize
3203                          * the entries so the sg list can be happily traversed.
3204                          * The only thing we need are DMA addresses.
3205                          */
3206                         sg_set_page(sg, NULL, PAGE_SIZE, 0);
3207                         sg_dma_address(sg) = in[offset + src_idx];
3208                         sg_dma_len(sg) = PAGE_SIZE;
3209                         sg = sg_next(sg);
3210                         src_idx -= stride;
3211                 }
3212         }
3213
3214         return sg;
3215 }
3216
3217 static noinline struct sg_table *
3218 intel_rotate_pages(struct intel_rotation_info *rot_info,
3219                    struct drm_i915_gem_object *obj)
3220 {
3221         const unsigned long n_pages = obj->base.size / PAGE_SIZE;
3222         unsigned int size = intel_rotation_info_size(rot_info);
3223         struct sgt_iter sgt_iter;
3224         dma_addr_t dma_addr;
3225         unsigned long i;
3226         dma_addr_t *page_addr_list;
3227         struct sg_table *st;
3228         struct scatterlist *sg;
3229         int ret = -ENOMEM;
3230
3231         /* Allocate a temporary list of source pages for random access. */
3232         page_addr_list = kvmalloc_array(n_pages,
3233                                         sizeof(dma_addr_t),
3234                                         GFP_TEMPORARY);
3235         if (!page_addr_list)
3236                 return ERR_PTR(ret);
3237
3238         /* Allocate target SG list. */
3239         st = kmalloc(sizeof(*st), GFP_KERNEL);
3240         if (!st)
3241                 goto err_st_alloc;
3242
3243         ret = sg_alloc_table(st, size, GFP_KERNEL);
3244         if (ret)
3245                 goto err_sg_alloc;
3246
3247         /* Populate source page list from the object. */
3248         i = 0;
3249         for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages)
3250                 page_addr_list[i++] = dma_addr;
3251
3252         GEM_BUG_ON(i != n_pages);
3253         st->nents = 0;
3254         sg = st->sgl;
3255
3256         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
3257                 sg = rotate_pages(page_addr_list, rot_info->plane[i].offset,
3258                                   rot_info->plane[i].width, rot_info->plane[i].height,
3259                                   rot_info->plane[i].stride, st, sg);
3260         }
3261
3262         DRM_DEBUG_KMS("Created rotated page mapping for object size %zu (%ux%u tiles, %u pages)\n",
3263                       obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3264
3265         kvfree(page_addr_list);
3266
3267         return st;
3268
3269 err_sg_alloc:
3270         kfree(st);
3271 err_st_alloc:
3272         kvfree(page_addr_list);
3273
3274         DRM_DEBUG_KMS("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
3275                       obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
3276
3277         return ERR_PTR(ret);
3278 }
3279
3280 static noinline struct sg_table *
3281 intel_partial_pages(const struct i915_ggtt_view *view,
3282                     struct drm_i915_gem_object *obj)
3283 {
3284         struct sg_table *st;
3285         struct scatterlist *sg, *iter;
3286         unsigned int count = view->partial.size;
3287         unsigned int offset;
3288         int ret = -ENOMEM;
3289
3290         st = kmalloc(sizeof(*st), GFP_KERNEL);
3291         if (!st)
3292                 goto err_st_alloc;
3293
3294         ret = sg_alloc_table(st, count, GFP_KERNEL);
3295         if (ret)
3296                 goto err_sg_alloc;
3297
3298         iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
3299         GEM_BUG_ON(!iter);
3300
3301         sg = st->sgl;
3302         st->nents = 0;
3303         do {
3304                 unsigned int len;
3305
3306                 len = min(iter->length - (offset << PAGE_SHIFT),
3307                           count << PAGE_SHIFT);
3308                 sg_set_page(sg, NULL, len, 0);
3309                 sg_dma_address(sg) =
3310                         sg_dma_address(iter) + (offset << PAGE_SHIFT);
3311                 sg_dma_len(sg) = len;
3312
3313                 st->nents++;
3314                 count -= len >> PAGE_SHIFT;
3315                 if (count == 0) {
3316                         sg_mark_end(sg);
3317                         return st;
3318                 }
3319
3320                 sg = __sg_next(sg);
3321                 iter = __sg_next(iter);
3322                 offset = 0;
3323         } while (1);
3324
3325 err_sg_alloc:
3326         kfree(st);
3327 err_st_alloc:
3328         return ERR_PTR(ret);
3329 }
3330
3331 static int
3332 i915_get_ggtt_vma_pages(struct i915_vma *vma)
3333 {
3334         int ret;
3335
3336         /* The vma->pages are only valid within the lifespan of the borrowed
3337          * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
3338          * must be the vma->pages. A simple rule is that vma->pages must only
3339          * be accessed when the obj->mm.pages are pinned.
3340          */
3341         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
3342
3343         switch (vma->ggtt_view.type) {
3344         case I915_GGTT_VIEW_NORMAL:
3345                 vma->pages = vma->obj->mm.pages;
3346                 return 0;
3347
3348         case I915_GGTT_VIEW_ROTATED:
3349                 vma->pages =
3350                         intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
3351                 break;
3352
3353         case I915_GGTT_VIEW_PARTIAL:
3354                 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
3355                 break;
3356
3357         default:
3358                 WARN_ONCE(1, "GGTT view %u not implemented!\n",
3359                           vma->ggtt_view.type);
3360                 return -EINVAL;
3361         }
3362
3363         ret = 0;
3364         if (unlikely(IS_ERR(vma->pages))) {
3365                 ret = PTR_ERR(vma->pages);
3366                 vma->pages = NULL;
3367                 DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
3368                           vma->ggtt_view.type, ret);
3369         }
3370         return ret;
3371 }
3372
3373 /**
3374  * i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
3375  * @vm: the &struct i915_address_space
3376  * @node: the &struct drm_mm_node (typically i915_vma.mode)
3377  * @size: how much space to allocate inside the GTT,
3378  *        must be #I915_GTT_PAGE_SIZE aligned
3379  * @offset: where to insert inside the GTT,
3380  *          must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
3381  *          (@offset + @size) must fit within the address space
3382  * @color: color to apply to node, if this node is not from a VMA,
3383  *         color must be #I915_COLOR_UNEVICTABLE
3384  * @flags: control search and eviction behaviour
3385  *
3386  * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
3387  * the address space (using @size and @color). If the @node does not fit, it
3388  * tries to evict any overlapping nodes from the GTT, including any
3389  * neighbouring nodes if the colors do not match (to ensure guard pages between
3390  * differing domains). See i915_gem_evict_for_node() for the gory details
3391  * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
3392  * evicting active overlapping objects, and any overlapping node that is pinned
3393  * or marked as unevictable will also result in failure.
3394  *
3395  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3396  * asked to wait for eviction and interrupted.
3397  */
3398 int i915_gem_gtt_reserve(struct i915_address_space *vm,
3399                          struct drm_mm_node *node,
3400                          u64 size, u64 offset, unsigned long color,
3401                          unsigned int flags)
3402 {
3403         int err;
3404
3405         GEM_BUG_ON(!size);
3406         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3407         GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
3408         GEM_BUG_ON(range_overflows(offset, size, vm->total));
3409         GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3410         GEM_BUG_ON(drm_mm_node_allocated(node));
3411
3412         node->size = size;
3413         node->start = offset;
3414         node->color = color;
3415
3416         err = drm_mm_reserve_node(&vm->mm, node);
3417         if (err != -ENOSPC)
3418                 return err;
3419
3420         if (flags & PIN_NOEVICT)
3421                 return -ENOSPC;
3422
3423         err = i915_gem_evict_for_node(vm, node, flags);
3424         if (err == 0)
3425                 err = drm_mm_reserve_node(&vm->mm, node);
3426
3427         return err;
3428 }
3429
3430 static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
3431 {
3432         u64 range, addr;
3433
3434         GEM_BUG_ON(range_overflows(start, len, end));
3435         GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
3436
3437         range = round_down(end - len, align) - round_up(start, align);
3438         if (range) {
3439                 if (sizeof(unsigned long) == sizeof(u64)) {
3440                         addr = get_random_long();
3441                 } else {
3442                         addr = get_random_int();
3443                         if (range > U32_MAX) {
3444                                 addr <<= 32;
3445                                 addr |= get_random_int();
3446                         }
3447                 }
3448                 div64_u64_rem(addr, range, &addr);
3449                 start += addr;
3450         }
3451
3452         return round_up(start, align);
3453 }
3454
3455 /**
3456  * i915_gem_gtt_insert - insert a node into an address_space (GTT)
3457  * @vm: the &struct i915_address_space
3458  * @node: the &struct drm_mm_node (typically i915_vma.node)
3459  * @size: how much space to allocate inside the GTT,
3460  *        must be #I915_GTT_PAGE_SIZE aligned
3461  * @alignment: required alignment of starting offset, may be 0 but
3462  *             if specified, this must be a power-of-two and at least
3463  *             #I915_GTT_MIN_ALIGNMENT
3464  * @color: color to apply to node
3465  * @start: start of any range restriction inside GTT (0 for all),
3466  *         must be #I915_GTT_PAGE_SIZE aligned
3467  * @end: end of any range restriction inside GTT (U64_MAX for all),
3468  *       must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
3469  * @flags: control search and eviction behaviour
3470  *
3471  * i915_gem_gtt_insert() first searches for an available hole into which
3472  * is can insert the node. The hole address is aligned to @alignment and
3473  * its @size must then fit entirely within the [@start, @end] bounds. The
3474  * nodes on either side of the hole must match @color, or else a guard page
3475  * will be inserted between the two nodes (or the node evicted). If no
3476  * suitable hole is found, first a victim is randomly selected and tested
3477  * for eviction, otherwise then the LRU list of objects within the GTT
3478  * is scanned to find the first set of replacement nodes to create the hole.
3479  * Those old overlapping nodes are evicted from the GTT (and so must be
3480  * rebound before any future use). Any node that is currently pinned cannot
3481  * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
3482  * active and #PIN_NONBLOCK is specified, that node is also skipped when
3483  * searching for an eviction candidate. See i915_gem_evict_something() for
3484  * the gory details on the eviction algorithm.
3485  *
3486  * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
3487  * asked to wait for eviction and interrupted.
3488  */
3489 int i915_gem_gtt_insert(struct i915_address_space *vm,
3490                         struct drm_mm_node *node,
3491                         u64 size, u64 alignment, unsigned long color,
3492                         u64 start, u64 end, unsigned int flags)
3493 {
3494         enum drm_mm_insert_mode mode;
3495         u64 offset;
3496         int err;
3497
3498         lockdep_assert_held(&vm->i915->drm.struct_mutex);
3499         GEM_BUG_ON(!size);
3500         GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
3501         GEM_BUG_ON(alignment && !is_power_of_2(alignment));
3502         GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
3503         GEM_BUG_ON(start >= end);
3504         GEM_BUG_ON(start > 0  && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
3505         GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
3506         GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->base);
3507         GEM_BUG_ON(drm_mm_node_allocated(node));
3508
3509         if (unlikely(range_overflows(start, size, end)))
3510                 return -ENOSPC;
3511
3512         if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
3513                 return -ENOSPC;
3514
3515         mode = DRM_MM_INSERT_BEST;
3516         if (flags & PIN_HIGH)
3517                 mode = DRM_MM_INSERT_HIGH;
3518         if (flags & PIN_MAPPABLE)
3519                 mode = DRM_MM_INSERT_LOW;
3520
3521         /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
3522          * so we know that we always have a minimum alignment of 4096.
3523          * The drm_mm range manager is optimised to return results
3524          * with zero alignment, so where possible use the optimal
3525          * path.
3526          */
3527         BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
3528         if (alignment <= I915_GTT_MIN_ALIGNMENT)
3529                 alignment = 0;
3530
3531         err = drm_mm_insert_node_in_range(&vm->mm, node,
3532                                           size, alignment, color,
3533                                           start, end, mode);
3534         if (err != -ENOSPC)
3535                 return err;
3536
3537         if (flags & PIN_NOEVICT)
3538                 return -ENOSPC;
3539
3540         /* No free space, pick a slot at random.
3541          *
3542          * There is a pathological case here using a GTT shared between
3543          * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
3544          *
3545          *    |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
3546          *         (64k objects)             (448k objects)
3547          *
3548          * Now imagine that the eviction LRU is ordered top-down (just because
3549          * pathology meets real life), and that we need to evict an object to
3550          * make room inside the aperture. The eviction scan then has to walk
3551          * the 448k list before it finds one within range. And now imagine that
3552          * it has to search for a new hole between every byte inside the memcpy,
3553          * for several simultaneous clients.
3554          *
3555          * On a full-ppgtt system, if we have run out of available space, there
3556          * will be lots and lots of objects in the eviction list! Again,
3557          * searching that LRU list may be slow if we are also applying any
3558          * range restrictions (e.g. restriction to low 4GiB) and so, for
3559          * simplicity and similarilty between different GTT, try the single
3560          * random replacement first.
3561          */
3562         offset = random_offset(start, end,
3563                                size, alignment ?: I915_GTT_MIN_ALIGNMENT);
3564         err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
3565         if (err != -ENOSPC)
3566                 return err;
3567
3568         /* Randomly selected placement is pinned, do a search */
3569         err = i915_gem_evict_something(vm, size, alignment, color,
3570                                        start, end, flags);
3571         if (err)
3572                 return err;
3573
3574         return drm_mm_insert_node_in_range(&vm->mm, node,
3575                                            size, alignment, color,
3576                                            start, end, DRM_MM_INSERT_EVICT);
3577 }
3578
3579 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3580 #include "selftests/mock_gtt.c"
3581 #include "selftests/i915_gem_gtt.c"
3582 #endif