Merge tag 'drm-intel-next-2022-05-20' of git://anongit.freedesktop.org/drm/drm-intel...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gt / intel_rps.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5
6 #include <linux/string_helpers.h>
7
8 #include <drm/i915_drm.h>
9
10 #include "i915_drv.h"
11 #include "i915_irq.h"
12 #include "intel_breadcrumbs.h"
13 #include "intel_gt.h"
14 #include "intel_gt_clock_utils.h"
15 #include "intel_gt_irq.h"
16 #include "intel_gt_pm_irq.h"
17 #include "intel_gt_regs.h"
18 #include "intel_mchbar_regs.h"
19 #include "intel_pcode.h"
20 #include "intel_rps.h"
21 #include "vlv_sideband.h"
22 #include "../../../platform/x86/intel_ips.h"
23
24 #define BUSY_MAX_EI     20u /* ms */
25
26 /*
27  * Lock protecting IPS related data structures
28  */
29 static DEFINE_SPINLOCK(mchdev_lock);
30
31 static struct intel_gt *rps_to_gt(struct intel_rps *rps)
32 {
33         return container_of(rps, struct intel_gt, rps);
34 }
35
36 static struct drm_i915_private *rps_to_i915(struct intel_rps *rps)
37 {
38         return rps_to_gt(rps)->i915;
39 }
40
41 static struct intel_uncore *rps_to_uncore(struct intel_rps *rps)
42 {
43         return rps_to_gt(rps)->uncore;
44 }
45
46 static struct intel_guc_slpc *rps_to_slpc(struct intel_rps *rps)
47 {
48         struct intel_gt *gt = rps_to_gt(rps);
49
50         return &gt->uc.guc.slpc;
51 }
52
53 static bool rps_uses_slpc(struct intel_rps *rps)
54 {
55         struct intel_gt *gt = rps_to_gt(rps);
56
57         return intel_uc_uses_guc_slpc(&gt->uc);
58 }
59
60 static u32 rps_pm_sanitize_mask(struct intel_rps *rps, u32 mask)
61 {
62         return mask & ~rps->pm_intrmsk_mbz;
63 }
64
65 static void set(struct intel_uncore *uncore, i915_reg_t reg, u32 val)
66 {
67         intel_uncore_write_fw(uncore, reg, val);
68 }
69
70 static void rps_timer(struct timer_list *t)
71 {
72         struct intel_rps *rps = from_timer(rps, t, timer);
73         struct intel_engine_cs *engine;
74         ktime_t dt, last, timestamp;
75         enum intel_engine_id id;
76         s64 max_busy[3] = {};
77
78         timestamp = 0;
79         for_each_engine(engine, rps_to_gt(rps), id) {
80                 s64 busy;
81                 int i;
82
83                 dt = intel_engine_get_busy_time(engine, &timestamp);
84                 last = engine->stats.rps;
85                 engine->stats.rps = dt;
86
87                 busy = ktime_to_ns(ktime_sub(dt, last));
88                 for (i = 0; i < ARRAY_SIZE(max_busy); i++) {
89                         if (busy > max_busy[i])
90                                 swap(busy, max_busy[i]);
91                 }
92         }
93         last = rps->pm_timestamp;
94         rps->pm_timestamp = timestamp;
95
96         if (intel_rps_is_active(rps)) {
97                 s64 busy;
98                 int i;
99
100                 dt = ktime_sub(timestamp, last);
101
102                 /*
103                  * Our goal is to evaluate each engine independently, so we run
104                  * at the lowest clocks required to sustain the heaviest
105                  * workload. However, a task may be split into sequential
106                  * dependent operations across a set of engines, such that
107                  * the independent contributions do not account for high load,
108                  * but overall the task is GPU bound. For example, consider
109                  * video decode on vcs followed by colour post-processing
110                  * on vecs, followed by general post-processing on rcs.
111                  * Since multi-engines being active does imply a single
112                  * continuous workload across all engines, we hedge our
113                  * bets by only contributing a factor of the distributed
114                  * load into our busyness calculation.
115                  */
116                 busy = max_busy[0];
117                 for (i = 1; i < ARRAY_SIZE(max_busy); i++) {
118                         if (!max_busy[i])
119                                 break;
120
121                         busy += div_u64(max_busy[i], 1 << i);
122                 }
123                 GT_TRACE(rps_to_gt(rps),
124                          "busy:%lld [%d%%], max:[%lld, %lld, %lld], interval:%d\n",
125                          busy, (int)div64_u64(100 * busy, dt),
126                          max_busy[0], max_busy[1], max_busy[2],
127                          rps->pm_interval);
128
129                 if (100 * busy > rps->power.up_threshold * dt &&
130                     rps->cur_freq < rps->max_freq_softlimit) {
131                         rps->pm_iir |= GEN6_PM_RP_UP_THRESHOLD;
132                         rps->pm_interval = 1;
133                         schedule_work(&rps->work);
134                 } else if (100 * busy < rps->power.down_threshold * dt &&
135                            rps->cur_freq > rps->min_freq_softlimit) {
136                         rps->pm_iir |= GEN6_PM_RP_DOWN_THRESHOLD;
137                         rps->pm_interval = 1;
138                         schedule_work(&rps->work);
139                 } else {
140                         rps->last_adj = 0;
141                 }
142
143                 mod_timer(&rps->timer,
144                           jiffies + msecs_to_jiffies(rps->pm_interval));
145                 rps->pm_interval = min(rps->pm_interval * 2, BUSY_MAX_EI);
146         }
147 }
148
149 static void rps_start_timer(struct intel_rps *rps)
150 {
151         rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
152         rps->pm_interval = 1;
153         mod_timer(&rps->timer, jiffies + 1);
154 }
155
156 static void rps_stop_timer(struct intel_rps *rps)
157 {
158         del_timer_sync(&rps->timer);
159         rps->pm_timestamp = ktime_sub(ktime_get(), rps->pm_timestamp);
160         cancel_work_sync(&rps->work);
161 }
162
163 static u32 rps_pm_mask(struct intel_rps *rps, u8 val)
164 {
165         u32 mask = 0;
166
167         /* We use UP_EI_EXPIRED interrupts for both up/down in manual mode */
168         if (val > rps->min_freq_softlimit)
169                 mask |= (GEN6_PM_RP_UP_EI_EXPIRED |
170                          GEN6_PM_RP_DOWN_THRESHOLD |
171                          GEN6_PM_RP_DOWN_TIMEOUT);
172
173         if (val < rps->max_freq_softlimit)
174                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
175
176         mask &= rps->pm_events;
177
178         return rps_pm_sanitize_mask(rps, ~mask);
179 }
180
181 static void rps_reset_ei(struct intel_rps *rps)
182 {
183         memset(&rps->ei, 0, sizeof(rps->ei));
184 }
185
186 static void rps_enable_interrupts(struct intel_rps *rps)
187 {
188         struct intel_gt *gt = rps_to_gt(rps);
189
190         GEM_BUG_ON(rps_uses_slpc(rps));
191
192         GT_TRACE(gt, "interrupts:on rps->pm_events: %x, rps_pm_mask:%x\n",
193                  rps->pm_events, rps_pm_mask(rps, rps->last_freq));
194
195         rps_reset_ei(rps);
196
197         spin_lock_irq(&gt->irq_lock);
198         gen6_gt_pm_enable_irq(gt, rps->pm_events);
199         spin_unlock_irq(&gt->irq_lock);
200
201         intel_uncore_write(gt->uncore,
202                            GEN6_PMINTRMSK, rps_pm_mask(rps, rps->last_freq));
203 }
204
205 static void gen6_rps_reset_interrupts(struct intel_rps *rps)
206 {
207         gen6_gt_pm_reset_iir(rps_to_gt(rps), GEN6_PM_RPS_EVENTS);
208 }
209
210 static void gen11_rps_reset_interrupts(struct intel_rps *rps)
211 {
212         while (gen11_gt_reset_one_iir(rps_to_gt(rps), 0, GEN11_GTPM))
213                 ;
214 }
215
216 static void rps_reset_interrupts(struct intel_rps *rps)
217 {
218         struct intel_gt *gt = rps_to_gt(rps);
219
220         spin_lock_irq(&gt->irq_lock);
221         if (GRAPHICS_VER(gt->i915) >= 11)
222                 gen11_rps_reset_interrupts(rps);
223         else
224                 gen6_rps_reset_interrupts(rps);
225
226         rps->pm_iir = 0;
227         spin_unlock_irq(&gt->irq_lock);
228 }
229
230 static void rps_disable_interrupts(struct intel_rps *rps)
231 {
232         struct intel_gt *gt = rps_to_gt(rps);
233
234         intel_uncore_write(gt->uncore,
235                            GEN6_PMINTRMSK, rps_pm_sanitize_mask(rps, ~0u));
236
237         spin_lock_irq(&gt->irq_lock);
238         gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
239         spin_unlock_irq(&gt->irq_lock);
240
241         intel_synchronize_irq(gt->i915);
242
243         /*
244          * Now that we will not be generating any more work, flush any
245          * outstanding tasks. As we are called on the RPS idle path,
246          * we will reset the GPU to minimum frequencies, so the current
247          * state of the worker can be discarded.
248          */
249         cancel_work_sync(&rps->work);
250
251         rps_reset_interrupts(rps);
252         GT_TRACE(gt, "interrupts:off\n");
253 }
254
255 static const struct cparams {
256         u16 i;
257         u16 t;
258         u16 m;
259         u16 c;
260 } cparams[] = {
261         { 1, 1333, 301, 28664 },
262         { 1, 1066, 294, 24460 },
263         { 1, 800, 294, 25192 },
264         { 0, 1333, 276, 27605 },
265         { 0, 1066, 276, 27605 },
266         { 0, 800, 231, 23784 },
267 };
268
269 static void gen5_rps_init(struct intel_rps *rps)
270 {
271         struct drm_i915_private *i915 = rps_to_i915(rps);
272         struct intel_uncore *uncore = rps_to_uncore(rps);
273         u8 fmax, fmin, fstart;
274         u32 rgvmodectl;
275         int c_m, i;
276
277         if (i915->fsb_freq <= 3200)
278                 c_m = 0;
279         else if (i915->fsb_freq <= 4800)
280                 c_m = 1;
281         else
282                 c_m = 2;
283
284         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
285                 if (cparams[i].i == c_m && cparams[i].t == i915->mem_freq) {
286                         rps->ips.m = cparams[i].m;
287                         rps->ips.c = cparams[i].c;
288                         break;
289                 }
290         }
291
292         rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
293
294         /* Set up min, max, and cur for interrupt handling */
295         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
296         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
297         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
298                 MEMMODE_FSTART_SHIFT;
299         drm_dbg(&i915->drm, "fmax: %d, fmin: %d, fstart: %d\n",
300                 fmax, fmin, fstart);
301
302         rps->min_freq = fmax;
303         rps->efficient_freq = fstart;
304         rps->max_freq = fmin;
305 }
306
307 static unsigned long
308 __ips_chipset_val(struct intel_ips *ips)
309 {
310         struct intel_uncore *uncore =
311                 rps_to_uncore(container_of(ips, struct intel_rps, ips));
312         unsigned long now = jiffies_to_msecs(jiffies), dt;
313         unsigned long result;
314         u64 total, delta;
315
316         lockdep_assert_held(&mchdev_lock);
317
318         /*
319          * Prevent division-by-zero if we are asking too fast.
320          * Also, we don't get interesting results if we are polling
321          * faster than once in 10ms, so just return the saved value
322          * in such cases.
323          */
324         dt = now - ips->last_time1;
325         if (dt <= 10)
326                 return ips->chipset_power;
327
328         /* FIXME: handle per-counter overflow */
329         total = intel_uncore_read(uncore, DMIEC);
330         total += intel_uncore_read(uncore, DDREC);
331         total += intel_uncore_read(uncore, CSIEC);
332
333         delta = total - ips->last_count1;
334
335         result = div_u64(div_u64(ips->m * delta, dt) + ips->c, 10);
336
337         ips->last_count1 = total;
338         ips->last_time1 = now;
339
340         ips->chipset_power = result;
341
342         return result;
343 }
344
345 static unsigned long ips_mch_val(struct intel_uncore *uncore)
346 {
347         unsigned int m, x, b;
348         u32 tsfs;
349
350         tsfs = intel_uncore_read(uncore, TSFS);
351         x = intel_uncore_read8(uncore, TR1);
352
353         b = tsfs & TSFS_INTR_MASK;
354         m = (tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT;
355
356         return m * x / 127 - b;
357 }
358
359 static int _pxvid_to_vd(u8 pxvid)
360 {
361         if (pxvid == 0)
362                 return 0;
363
364         if (pxvid >= 8 && pxvid < 31)
365                 pxvid = 31;
366
367         return (pxvid + 2) * 125;
368 }
369
370 static u32 pvid_to_extvid(struct drm_i915_private *i915, u8 pxvid)
371 {
372         const int vd = _pxvid_to_vd(pxvid);
373
374         if (INTEL_INFO(i915)->is_mobile)
375                 return max(vd - 1125, 0);
376
377         return vd;
378 }
379
380 static void __gen5_ips_update(struct intel_ips *ips)
381 {
382         struct intel_uncore *uncore =
383                 rps_to_uncore(container_of(ips, struct intel_rps, ips));
384         u64 now, delta, dt;
385         u32 count;
386
387         lockdep_assert_held(&mchdev_lock);
388
389         now = ktime_get_raw_ns();
390         dt = now - ips->last_time2;
391         do_div(dt, NSEC_PER_MSEC);
392
393         /* Don't divide by 0 */
394         if (dt <= 10)
395                 return;
396
397         count = intel_uncore_read(uncore, GFXEC);
398         delta = count - ips->last_count2;
399
400         ips->last_count2 = count;
401         ips->last_time2 = now;
402
403         /* More magic constants... */
404         ips->gfx_power = div_u64(delta * 1181, dt * 10);
405 }
406
407 static void gen5_rps_update(struct intel_rps *rps)
408 {
409         spin_lock_irq(&mchdev_lock);
410         __gen5_ips_update(&rps->ips);
411         spin_unlock_irq(&mchdev_lock);
412 }
413
414 static unsigned int gen5_invert_freq(struct intel_rps *rps,
415                                      unsigned int val)
416 {
417         /* Invert the frequency bin into an ips delay */
418         val = rps->max_freq - val;
419         val = rps->min_freq + val;
420
421         return val;
422 }
423
424 static int __gen5_rps_set(struct intel_rps *rps, u8 val)
425 {
426         struct intel_uncore *uncore = rps_to_uncore(rps);
427         u16 rgvswctl;
428
429         lockdep_assert_held(&mchdev_lock);
430
431         rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
432         if (rgvswctl & MEMCTL_CMD_STS) {
433                 DRM_DEBUG("gpu busy, RCS change rejected\n");
434                 return -EBUSY; /* still busy with another command */
435         }
436
437         /* Invert the frequency bin into an ips delay */
438         val = gen5_invert_freq(rps, val);
439
440         rgvswctl =
441                 (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
442                 (val << MEMCTL_FREQ_SHIFT) |
443                 MEMCTL_SFCAVM;
444         intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
445         intel_uncore_posting_read16(uncore, MEMSWCTL);
446
447         rgvswctl |= MEMCTL_CMD_STS;
448         intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
449
450         return 0;
451 }
452
453 static int gen5_rps_set(struct intel_rps *rps, u8 val)
454 {
455         int err;
456
457         spin_lock_irq(&mchdev_lock);
458         err = __gen5_rps_set(rps, val);
459         spin_unlock_irq(&mchdev_lock);
460
461         return err;
462 }
463
464 static unsigned long intel_pxfreq(u32 vidfreq)
465 {
466         int div = (vidfreq & 0x3f0000) >> 16;
467         int post = (vidfreq & 0x3000) >> 12;
468         int pre = (vidfreq & 0x7);
469
470         if (!pre)
471                 return 0;
472
473         return div * 133333 / (pre << post);
474 }
475
476 static unsigned int init_emon(struct intel_uncore *uncore)
477 {
478         u8 pxw[16];
479         int i;
480
481         /* Disable to program */
482         intel_uncore_write(uncore, ECR, 0);
483         intel_uncore_posting_read(uncore, ECR);
484
485         /* Program energy weights for various events */
486         intel_uncore_write(uncore, SDEW, 0x15040d00);
487         intel_uncore_write(uncore, CSIEW0, 0x007f0000);
488         intel_uncore_write(uncore, CSIEW1, 0x1e220004);
489         intel_uncore_write(uncore, CSIEW2, 0x04000004);
490
491         for (i = 0; i < 5; i++)
492                 intel_uncore_write(uncore, PEW(i), 0);
493         for (i = 0; i < 3; i++)
494                 intel_uncore_write(uncore, DEW(i), 0);
495
496         /* Program P-state weights to account for frequency power adjustment */
497         for (i = 0; i < 16; i++) {
498                 u32 pxvidfreq = intel_uncore_read(uncore, PXVFREQ(i));
499                 unsigned int freq = intel_pxfreq(pxvidfreq);
500                 unsigned int vid =
501                         (pxvidfreq & PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
502                 unsigned int val;
503
504                 val = vid * vid * freq / 1000 * 255;
505                 val /= 127 * 127 * 900;
506
507                 pxw[i] = val;
508         }
509         /* Render standby states get 0 weight */
510         pxw[14] = 0;
511         pxw[15] = 0;
512
513         for (i = 0; i < 4; i++) {
514                 intel_uncore_write(uncore, PXW(i),
515                                    pxw[i * 4 + 0] << 24 |
516                                    pxw[i * 4 + 1] << 16 |
517                                    pxw[i * 4 + 2] <<  8 |
518                                    pxw[i * 4 + 3] <<  0);
519         }
520
521         /* Adjust magic regs to magic values (more experimental results) */
522         intel_uncore_write(uncore, OGW0, 0);
523         intel_uncore_write(uncore, OGW1, 0);
524         intel_uncore_write(uncore, EG0, 0x00007f00);
525         intel_uncore_write(uncore, EG1, 0x0000000e);
526         intel_uncore_write(uncore, EG2, 0x000e0000);
527         intel_uncore_write(uncore, EG3, 0x68000300);
528         intel_uncore_write(uncore, EG4, 0x42000000);
529         intel_uncore_write(uncore, EG5, 0x00140031);
530         intel_uncore_write(uncore, EG6, 0);
531         intel_uncore_write(uncore, EG7, 0);
532
533         for (i = 0; i < 8; i++)
534                 intel_uncore_write(uncore, PXWL(i), 0);
535
536         /* Enable PMON + select events */
537         intel_uncore_write(uncore, ECR, 0x80000019);
538
539         return intel_uncore_read(uncore, LCFUSE02) & LCFUSE_HIV_MASK;
540 }
541
542 static bool gen5_rps_enable(struct intel_rps *rps)
543 {
544         struct drm_i915_private *i915 = rps_to_i915(rps);
545         struct intel_uncore *uncore = rps_to_uncore(rps);
546         u8 fstart, vstart;
547         u32 rgvmodectl;
548
549         spin_lock_irq(&mchdev_lock);
550
551         rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
552
553         /* Enable temp reporting */
554         intel_uncore_write16(uncore, PMMISC,
555                              intel_uncore_read16(uncore, PMMISC) | MCPPCE_EN);
556         intel_uncore_write16(uncore, TSC1,
557                              intel_uncore_read16(uncore, TSC1) | TSE);
558
559         /* 100ms RC evaluation intervals */
560         intel_uncore_write(uncore, RCUPEI, 100000);
561         intel_uncore_write(uncore, RCDNEI, 100000);
562
563         /* Set max/min thresholds to 90ms and 80ms respectively */
564         intel_uncore_write(uncore, RCBMAXAVG, 90000);
565         intel_uncore_write(uncore, RCBMINAVG, 80000);
566
567         intel_uncore_write(uncore, MEMIHYST, 1);
568
569         /* Set up min, max, and cur for interrupt handling */
570         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
571                 MEMMODE_FSTART_SHIFT;
572
573         vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
574                   PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
575
576         intel_uncore_write(uncore,
577                            MEMINTREN,
578                            MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
579
580         intel_uncore_write(uncore, VIDSTART, vstart);
581         intel_uncore_posting_read(uncore, VIDSTART);
582
583         rgvmodectl |= MEMMODE_SWMODE_EN;
584         intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
585
586         if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
587                              MEMCTL_CMD_STS) == 0, 10))
588                 drm_err(&uncore->i915->drm,
589                         "stuck trying to change perf mode\n");
590         mdelay(1);
591
592         __gen5_rps_set(rps, rps->cur_freq);
593
594         rps->ips.last_count1 = intel_uncore_read(uncore, DMIEC);
595         rps->ips.last_count1 += intel_uncore_read(uncore, DDREC);
596         rps->ips.last_count1 += intel_uncore_read(uncore, CSIEC);
597         rps->ips.last_time1 = jiffies_to_msecs(jiffies);
598
599         rps->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
600         rps->ips.last_time2 = ktime_get_raw_ns();
601
602         spin_lock(&i915->irq_lock);
603         ilk_enable_display_irq(i915, DE_PCU_EVENT);
604         spin_unlock(&i915->irq_lock);
605
606         spin_unlock_irq(&mchdev_lock);
607
608         rps->ips.corr = init_emon(uncore);
609
610         return true;
611 }
612
613 static void gen5_rps_disable(struct intel_rps *rps)
614 {
615         struct drm_i915_private *i915 = rps_to_i915(rps);
616         struct intel_uncore *uncore = rps_to_uncore(rps);
617         u16 rgvswctl;
618
619         spin_lock_irq(&mchdev_lock);
620
621         spin_lock(&i915->irq_lock);
622         ilk_disable_display_irq(i915, DE_PCU_EVENT);
623         spin_unlock(&i915->irq_lock);
624
625         rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
626
627         /* Ack interrupts, disable EFC interrupt */
628         intel_uncore_write(uncore, MEMINTREN,
629                            intel_uncore_read(uncore, MEMINTREN) &
630                            ~MEMINT_EVAL_CHG_EN);
631         intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
632
633         /* Go back to the starting frequency */
634         __gen5_rps_set(rps, rps->idle_freq);
635         mdelay(1);
636         rgvswctl |= MEMCTL_CMD_STS;
637         intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
638         mdelay(1);
639
640         spin_unlock_irq(&mchdev_lock);
641 }
642
643 static u32 rps_limits(struct intel_rps *rps, u8 val)
644 {
645         u32 limits;
646
647         /*
648          * Only set the down limit when we've reached the lowest level to avoid
649          * getting more interrupts, otherwise leave this clear. This prevents a
650          * race in the hw when coming out of rc6: There's a tiny window where
651          * the hw runs at the minimal clock before selecting the desired
652          * frequency, if the down threshold expires in that window we will not
653          * receive a down interrupt.
654          */
655         if (GRAPHICS_VER(rps_to_i915(rps)) >= 9) {
656                 limits = rps->max_freq_softlimit << 23;
657                 if (val <= rps->min_freq_softlimit)
658                         limits |= rps->min_freq_softlimit << 14;
659         } else {
660                 limits = rps->max_freq_softlimit << 24;
661                 if (val <= rps->min_freq_softlimit)
662                         limits |= rps->min_freq_softlimit << 16;
663         }
664
665         return limits;
666 }
667
668 static void rps_set_power(struct intel_rps *rps, int new_power)
669 {
670         struct intel_gt *gt = rps_to_gt(rps);
671         struct intel_uncore *uncore = gt->uncore;
672         u32 threshold_up = 0, threshold_down = 0; /* in % */
673         u32 ei_up = 0, ei_down = 0;
674
675         lockdep_assert_held(&rps->power.mutex);
676
677         if (new_power == rps->power.mode)
678                 return;
679
680         threshold_up = 95;
681         threshold_down = 85;
682
683         /* Note the units here are not exactly 1us, but 1280ns. */
684         switch (new_power) {
685         case LOW_POWER:
686                 ei_up = 16000;
687                 ei_down = 32000;
688                 break;
689
690         case BETWEEN:
691                 ei_up = 13000;
692                 ei_down = 32000;
693                 break;
694
695         case HIGH_POWER:
696                 ei_up = 10000;
697                 ei_down = 32000;
698                 break;
699         }
700
701         /* When byt can survive without system hang with dynamic
702          * sw freq adjustments, this restriction can be lifted.
703          */
704         if (IS_VALLEYVIEW(gt->i915))
705                 goto skip_hw_write;
706
707         GT_TRACE(gt,
708                  "changing power mode [%d], up %d%% @ %dus, down %d%% @ %dus\n",
709                  new_power, threshold_up, ei_up, threshold_down, ei_down);
710
711         set(uncore, GEN6_RP_UP_EI,
712             intel_gt_ns_to_pm_interval(gt, ei_up * 1000));
713         set(uncore, GEN6_RP_UP_THRESHOLD,
714             intel_gt_ns_to_pm_interval(gt, ei_up * threshold_up * 10));
715
716         set(uncore, GEN6_RP_DOWN_EI,
717             intel_gt_ns_to_pm_interval(gt, ei_down * 1000));
718         set(uncore, GEN6_RP_DOWN_THRESHOLD,
719             intel_gt_ns_to_pm_interval(gt, ei_down * threshold_down * 10));
720
721         set(uncore, GEN6_RP_CONTROL,
722             (GRAPHICS_VER(gt->i915) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
723             GEN6_RP_MEDIA_HW_NORMAL_MODE |
724             GEN6_RP_MEDIA_IS_GFX |
725             GEN6_RP_ENABLE |
726             GEN6_RP_UP_BUSY_AVG |
727             GEN6_RP_DOWN_IDLE_AVG);
728
729 skip_hw_write:
730         rps->power.mode = new_power;
731         rps->power.up_threshold = threshold_up;
732         rps->power.down_threshold = threshold_down;
733 }
734
735 static void gen6_rps_set_thresholds(struct intel_rps *rps, u8 val)
736 {
737         int new_power;
738
739         new_power = rps->power.mode;
740         switch (rps->power.mode) {
741         case LOW_POWER:
742                 if (val > rps->efficient_freq + 1 &&
743                     val > rps->cur_freq)
744                         new_power = BETWEEN;
745                 break;
746
747         case BETWEEN:
748                 if (val <= rps->efficient_freq &&
749                     val < rps->cur_freq)
750                         new_power = LOW_POWER;
751                 else if (val >= rps->rp0_freq &&
752                          val > rps->cur_freq)
753                         new_power = HIGH_POWER;
754                 break;
755
756         case HIGH_POWER:
757                 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
758                     val < rps->cur_freq)
759                         new_power = BETWEEN;
760                 break;
761         }
762         /* Max/min bins are special */
763         if (val <= rps->min_freq_softlimit)
764                 new_power = LOW_POWER;
765         if (val >= rps->max_freq_softlimit)
766                 new_power = HIGH_POWER;
767
768         mutex_lock(&rps->power.mutex);
769         if (rps->power.interactive)
770                 new_power = HIGH_POWER;
771         rps_set_power(rps, new_power);
772         mutex_unlock(&rps->power.mutex);
773 }
774
775 void intel_rps_mark_interactive(struct intel_rps *rps, bool interactive)
776 {
777         GT_TRACE(rps_to_gt(rps), "mark interactive: %s\n",
778                  str_yes_no(interactive));
779
780         mutex_lock(&rps->power.mutex);
781         if (interactive) {
782                 if (!rps->power.interactive++ && intel_rps_is_active(rps))
783                         rps_set_power(rps, HIGH_POWER);
784         } else {
785                 GEM_BUG_ON(!rps->power.interactive);
786                 rps->power.interactive--;
787         }
788         mutex_unlock(&rps->power.mutex);
789 }
790
791 static int gen6_rps_set(struct intel_rps *rps, u8 val)
792 {
793         struct intel_uncore *uncore = rps_to_uncore(rps);
794         struct drm_i915_private *i915 = rps_to_i915(rps);
795         u32 swreq;
796
797         GEM_BUG_ON(rps_uses_slpc(rps));
798
799         if (GRAPHICS_VER(i915) >= 9)
800                 swreq = GEN9_FREQUENCY(val);
801         else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
802                 swreq = HSW_FREQUENCY(val);
803         else
804                 swreq = (GEN6_FREQUENCY(val) |
805                          GEN6_OFFSET(0) |
806                          GEN6_AGGRESSIVE_TURBO);
807         set(uncore, GEN6_RPNSWREQ, swreq);
808
809         GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d, swreq:%x\n",
810                  val, intel_gpu_freq(rps, val), swreq);
811
812         return 0;
813 }
814
815 static int vlv_rps_set(struct intel_rps *rps, u8 val)
816 {
817         struct drm_i915_private *i915 = rps_to_i915(rps);
818         int err;
819
820         vlv_punit_get(i915);
821         err = vlv_punit_write(i915, PUNIT_REG_GPU_FREQ_REQ, val);
822         vlv_punit_put(i915);
823
824         GT_TRACE(rps_to_gt(rps), "set val:%x, freq:%d\n",
825                  val, intel_gpu_freq(rps, val));
826
827         return err;
828 }
829
830 static int rps_set(struct intel_rps *rps, u8 val, bool update)
831 {
832         struct drm_i915_private *i915 = rps_to_i915(rps);
833         int err;
834
835         if (val == rps->last_freq)
836                 return 0;
837
838         if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
839                 err = vlv_rps_set(rps, val);
840         else if (GRAPHICS_VER(i915) >= 6)
841                 err = gen6_rps_set(rps, val);
842         else
843                 err = gen5_rps_set(rps, val);
844         if (err)
845                 return err;
846
847         if (update && GRAPHICS_VER(i915) >= 6)
848                 gen6_rps_set_thresholds(rps, val);
849         rps->last_freq = val;
850
851         return 0;
852 }
853
854 void intel_rps_unpark(struct intel_rps *rps)
855 {
856         if (!intel_rps_is_enabled(rps))
857                 return;
858
859         GT_TRACE(rps_to_gt(rps), "unpark:%x\n", rps->cur_freq);
860
861         /*
862          * Use the user's desired frequency as a guide, but for better
863          * performance, jump directly to RPe as our starting frequency.
864          */
865         mutex_lock(&rps->lock);
866
867         intel_rps_set_active(rps);
868         intel_rps_set(rps,
869                       clamp(rps->cur_freq,
870                             rps->min_freq_softlimit,
871                             rps->max_freq_softlimit));
872
873         mutex_unlock(&rps->lock);
874
875         rps->pm_iir = 0;
876         if (intel_rps_has_interrupts(rps))
877                 rps_enable_interrupts(rps);
878         if (intel_rps_uses_timer(rps))
879                 rps_start_timer(rps);
880
881         if (GRAPHICS_VER(rps_to_i915(rps)) == 5)
882                 gen5_rps_update(rps);
883 }
884
885 void intel_rps_park(struct intel_rps *rps)
886 {
887         int adj;
888
889         if (!intel_rps_is_enabled(rps))
890                 return;
891
892         if (!intel_rps_clear_active(rps))
893                 return;
894
895         if (intel_rps_uses_timer(rps))
896                 rps_stop_timer(rps);
897         if (intel_rps_has_interrupts(rps))
898                 rps_disable_interrupts(rps);
899
900         if (rps->last_freq <= rps->idle_freq)
901                 return;
902
903         /*
904          * The punit delays the write of the frequency and voltage until it
905          * determines the GPU is awake. During normal usage we don't want to
906          * waste power changing the frequency if the GPU is sleeping (rc6).
907          * However, the GPU and driver is now idle and we do not want to delay
908          * switching to minimum voltage (reducing power whilst idle) as we do
909          * not expect to be woken in the near future and so must flush the
910          * change by waking the device.
911          *
912          * We choose to take the media powerwell (either would do to trick the
913          * punit into committing the voltage change) as that takes a lot less
914          * power than the render powerwell.
915          */
916         intel_uncore_forcewake_get(rps_to_uncore(rps), FORCEWAKE_MEDIA);
917         rps_set(rps, rps->idle_freq, false);
918         intel_uncore_forcewake_put(rps_to_uncore(rps), FORCEWAKE_MEDIA);
919
920         /*
921          * Since we will try and restart from the previously requested
922          * frequency on unparking, treat this idle point as a downclock
923          * interrupt and reduce the frequency for resume. If we park/unpark
924          * more frequently than the rps worker can run, we will not respond
925          * to any EI and never see a change in frequency.
926          *
927          * (Note we accommodate Cherryview's limitation of only using an
928          * even bin by applying it to all.)
929          */
930         adj = rps->last_adj;
931         if (adj < 0)
932                 adj *= 2;
933         else /* CHV needs even encode values */
934                 adj = -2;
935         rps->last_adj = adj;
936         rps->cur_freq = max_t(int, rps->cur_freq + adj, rps->min_freq);
937         if (rps->cur_freq < rps->efficient_freq) {
938                 rps->cur_freq = rps->efficient_freq;
939                 rps->last_adj = 0;
940         }
941
942         GT_TRACE(rps_to_gt(rps), "park:%x\n", rps->cur_freq);
943 }
944
945 u32 intel_rps_get_boost_frequency(struct intel_rps *rps)
946 {
947         struct intel_guc_slpc *slpc;
948
949         if (rps_uses_slpc(rps)) {
950                 slpc = rps_to_slpc(rps);
951
952                 return slpc->boost_freq;
953         } else {
954                 return intel_gpu_freq(rps, rps->boost_freq);
955         }
956 }
957
958 static int rps_set_boost_freq(struct intel_rps *rps, u32 val)
959 {
960         bool boost = false;
961
962         /* Validate against (static) hardware limits */
963         val = intel_freq_opcode(rps, val);
964         if (val < rps->min_freq || val > rps->max_freq)
965                 return -EINVAL;
966
967         mutex_lock(&rps->lock);
968         if (val != rps->boost_freq) {
969                 rps->boost_freq = val;
970                 boost = atomic_read(&rps->num_waiters);
971         }
972         mutex_unlock(&rps->lock);
973         if (boost)
974                 schedule_work(&rps->work);
975
976         return 0;
977 }
978
979 int intel_rps_set_boost_frequency(struct intel_rps *rps, u32 freq)
980 {
981         struct intel_guc_slpc *slpc;
982
983         if (rps_uses_slpc(rps)) {
984                 slpc = rps_to_slpc(rps);
985
986                 return intel_guc_slpc_set_boost_freq(slpc, freq);
987         } else {
988                 return rps_set_boost_freq(rps, freq);
989         }
990 }
991
992 void intel_rps_dec_waiters(struct intel_rps *rps)
993 {
994         struct intel_guc_slpc *slpc;
995
996         if (rps_uses_slpc(rps)) {
997                 slpc = rps_to_slpc(rps);
998
999                 intel_guc_slpc_dec_waiters(slpc);
1000         } else {
1001                 atomic_dec(&rps->num_waiters);
1002         }
1003 }
1004
1005 void intel_rps_boost(struct i915_request *rq)
1006 {
1007         struct intel_guc_slpc *slpc;
1008
1009         if (i915_request_signaled(rq) || i915_request_has_waitboost(rq))
1010                 return;
1011
1012         /* Serializes with i915_request_retire() */
1013         if (!test_and_set_bit(I915_FENCE_FLAG_BOOST, &rq->fence.flags)) {
1014                 struct intel_rps *rps = &READ_ONCE(rq->engine)->gt->rps;
1015
1016                 if (rps_uses_slpc(rps)) {
1017                         slpc = rps_to_slpc(rps);
1018
1019                         /* Return if old value is non zero */
1020                         if (!atomic_fetch_inc(&slpc->num_waiters))
1021                                 schedule_work(&slpc->boost_work);
1022
1023                         return;
1024                 }
1025
1026                 if (atomic_fetch_inc(&rps->num_waiters))
1027                         return;
1028
1029                 if (!intel_rps_is_active(rps))
1030                         return;
1031
1032                 GT_TRACE(rps_to_gt(rps), "boost fence:%llx:%llx\n",
1033                          rq->fence.context, rq->fence.seqno);
1034
1035                 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
1036                         schedule_work(&rps->work);
1037
1038                 WRITE_ONCE(rps->boosts, rps->boosts + 1); /* debug only */
1039         }
1040 }
1041
1042 int intel_rps_set(struct intel_rps *rps, u8 val)
1043 {
1044         int err;
1045
1046         lockdep_assert_held(&rps->lock);
1047         GEM_BUG_ON(val > rps->max_freq);
1048         GEM_BUG_ON(val < rps->min_freq);
1049
1050         if (intel_rps_is_active(rps)) {
1051                 err = rps_set(rps, val, true);
1052                 if (err)
1053                         return err;
1054
1055                 /*
1056                  * Make sure we continue to get interrupts
1057                  * until we hit the minimum or maximum frequencies.
1058                  */
1059                 if (intel_rps_has_interrupts(rps)) {
1060                         struct intel_uncore *uncore = rps_to_uncore(rps);
1061
1062                         set(uncore,
1063                             GEN6_RP_INTERRUPT_LIMITS, rps_limits(rps, val));
1064
1065                         set(uncore, GEN6_PMINTRMSK, rps_pm_mask(rps, val));
1066                 }
1067         }
1068
1069         rps->cur_freq = val;
1070         return 0;
1071 }
1072
1073 static u32 intel_rps_read_state_cap(struct intel_rps *rps)
1074 {
1075         struct drm_i915_private *i915 = rps_to_i915(rps);
1076         struct intel_uncore *uncore = rps_to_uncore(rps);
1077
1078         if (IS_PONTEVECCHIO(i915))
1079                 return intel_uncore_read(uncore, PVC_RP_STATE_CAP);
1080         else if (IS_XEHPSDV(i915))
1081                 return intel_uncore_read(uncore, XEHPSDV_RP_STATE_CAP);
1082         else if (IS_GEN9_LP(i915))
1083                 return intel_uncore_read(uncore, BXT_RP_STATE_CAP);
1084         else
1085                 return intel_uncore_read(uncore, GEN6_RP_STATE_CAP);
1086 }
1087
1088 /**
1089  * gen6_rps_get_freq_caps - Get freq caps exposed by HW
1090  * @rps: the intel_rps structure
1091  * @caps: returned freq caps
1092  *
1093  * Returned "caps" frequencies should be converted to MHz using
1094  * intel_gpu_freq()
1095  */
1096 void gen6_rps_get_freq_caps(struct intel_rps *rps, struct intel_rps_freq_caps *caps)
1097 {
1098         struct drm_i915_private *i915 = rps_to_i915(rps);
1099         u32 rp_state_cap;
1100
1101         rp_state_cap = intel_rps_read_state_cap(rps);
1102
1103         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
1104         if (IS_GEN9_LP(i915)) {
1105                 caps->rp0_freq = (rp_state_cap >> 16) & 0xff;
1106                 caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1107                 caps->min_freq = (rp_state_cap >>  0) & 0xff;
1108         } else {
1109                 caps->rp0_freq = (rp_state_cap >>  0) & 0xff;
1110                 caps->rp1_freq = (rp_state_cap >>  8) & 0xff;
1111                 caps->min_freq = (rp_state_cap >> 16) & 0xff;
1112         }
1113
1114         if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1115                 /*
1116                  * In this case rp_state_cap register reports frequencies in
1117                  * units of 50 MHz. Convert these to the actual "hw unit", i.e.
1118                  * units of 16.67 MHz
1119                  */
1120                 caps->rp0_freq *= GEN9_FREQ_SCALER;
1121                 caps->rp1_freq *= GEN9_FREQ_SCALER;
1122                 caps->min_freq *= GEN9_FREQ_SCALER;
1123         }
1124 }
1125
1126 static void gen6_rps_init(struct intel_rps *rps)
1127 {
1128         struct drm_i915_private *i915 = rps_to_i915(rps);
1129         struct intel_rps_freq_caps caps;
1130
1131         gen6_rps_get_freq_caps(rps, &caps);
1132         rps->rp0_freq = caps.rp0_freq;
1133         rps->rp1_freq = caps.rp1_freq;
1134         rps->min_freq = caps.min_freq;
1135
1136         /* hw_max = RP0 until we check for overclocking */
1137         rps->max_freq = rps->rp0_freq;
1138
1139         rps->efficient_freq = rps->rp1_freq;
1140         if (IS_HASWELL(i915) || IS_BROADWELL(i915) ||
1141             IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11) {
1142                 u32 ddcc_status = 0;
1143                 u32 mult = 1;
1144
1145                 if (IS_GEN9_BC(i915) || GRAPHICS_VER(i915) >= 11)
1146                         mult = GEN9_FREQ_SCALER;
1147                 if (snb_pcode_read(rps_to_gt(rps)->uncore,
1148                                    HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
1149                                    &ddcc_status, NULL) == 0)
1150                         rps->efficient_freq =
1151                                 clamp_t(u32,
1152                                         ((ddcc_status >> 8) & 0xff) * mult,
1153                                         rps->min_freq,
1154                                         rps->max_freq);
1155         }
1156 }
1157
1158 static bool rps_reset(struct intel_rps *rps)
1159 {
1160         struct drm_i915_private *i915 = rps_to_i915(rps);
1161
1162         /* force a reset */
1163         rps->power.mode = -1;
1164         rps->last_freq = -1;
1165
1166         if (rps_set(rps, rps->min_freq, true)) {
1167                 drm_err(&i915->drm, "Failed to reset RPS to initial values\n");
1168                 return false;
1169         }
1170
1171         rps->cur_freq = rps->min_freq;
1172         return true;
1173 }
1174
1175 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
1176 static bool gen9_rps_enable(struct intel_rps *rps)
1177 {
1178         struct intel_gt *gt = rps_to_gt(rps);
1179         struct intel_uncore *uncore = gt->uncore;
1180
1181         /* Program defaults and thresholds for RPS */
1182         if (GRAPHICS_VER(gt->i915) == 9)
1183                 intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1184                                       GEN9_FREQUENCY(rps->rp1_freq));
1185
1186         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 0xa);
1187
1188         rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1189
1190         return rps_reset(rps);
1191 }
1192
1193 static bool gen8_rps_enable(struct intel_rps *rps)
1194 {
1195         struct intel_uncore *uncore = rps_to_uncore(rps);
1196
1197         intel_uncore_write_fw(uncore, GEN6_RC_VIDEO_FREQ,
1198                               HSW_FREQUENCY(rps->rp1_freq));
1199
1200         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1201
1202         rps->pm_events = GEN6_PM_RP_UP_THRESHOLD | GEN6_PM_RP_DOWN_THRESHOLD;
1203
1204         return rps_reset(rps);
1205 }
1206
1207 static bool gen6_rps_enable(struct intel_rps *rps)
1208 {
1209         struct intel_uncore *uncore = rps_to_uncore(rps);
1210
1211         /* Power down if completely idle for over 50ms */
1212         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 50000);
1213         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1214
1215         rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1216                           GEN6_PM_RP_DOWN_THRESHOLD |
1217                           GEN6_PM_RP_DOWN_TIMEOUT);
1218
1219         return rps_reset(rps);
1220 }
1221
1222 static int chv_rps_max_freq(struct intel_rps *rps)
1223 {
1224         struct drm_i915_private *i915 = rps_to_i915(rps);
1225         struct intel_gt *gt = rps_to_gt(rps);
1226         u32 val;
1227
1228         val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1229
1230         switch (gt->info.sseu.eu_total) {
1231         case 8:
1232                 /* (2 * 4) config */
1233                 val >>= FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT;
1234                 break;
1235         case 12:
1236                 /* (2 * 6) config */
1237                 val >>= FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT;
1238                 break;
1239         case 16:
1240                 /* (2 * 8) config */
1241         default:
1242                 /* Setting (2 * 8) Min RP0 for any other combination */
1243                 val >>= FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT;
1244                 break;
1245         }
1246
1247         return val & FB_GFX_FREQ_FUSE_MASK;
1248 }
1249
1250 static int chv_rps_rpe_freq(struct intel_rps *rps)
1251 {
1252         struct drm_i915_private *i915 = rps_to_i915(rps);
1253         u32 val;
1254
1255         val = vlv_punit_read(i915, PUNIT_GPU_DUTYCYCLE_REG);
1256         val >>= PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT;
1257
1258         return val & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
1259 }
1260
1261 static int chv_rps_guar_freq(struct intel_rps *rps)
1262 {
1263         struct drm_i915_private *i915 = rps_to_i915(rps);
1264         u32 val;
1265
1266         val = vlv_punit_read(i915, FB_GFX_FMAX_AT_VMAX_FUSE);
1267
1268         return val & FB_GFX_FREQ_FUSE_MASK;
1269 }
1270
1271 static u32 chv_rps_min_freq(struct intel_rps *rps)
1272 {
1273         struct drm_i915_private *i915 = rps_to_i915(rps);
1274         u32 val;
1275
1276         val = vlv_punit_read(i915, FB_GFX_FMIN_AT_VMIN_FUSE);
1277         val >>= FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT;
1278
1279         return val & FB_GFX_FREQ_FUSE_MASK;
1280 }
1281
1282 static bool chv_rps_enable(struct intel_rps *rps)
1283 {
1284         struct intel_uncore *uncore = rps_to_uncore(rps);
1285         struct drm_i915_private *i915 = rps_to_i915(rps);
1286         u32 val;
1287
1288         /* 1: Program defaults and thresholds for RPS*/
1289         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1290         intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1291         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1292         intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1293         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1294
1295         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1296
1297         /* 2: Enable RPS */
1298         intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1299                               GEN6_RP_MEDIA_HW_NORMAL_MODE |
1300                               GEN6_RP_MEDIA_IS_GFX |
1301                               GEN6_RP_ENABLE |
1302                               GEN6_RP_UP_BUSY_AVG |
1303                               GEN6_RP_DOWN_IDLE_AVG);
1304
1305         rps->pm_events = (GEN6_PM_RP_UP_THRESHOLD |
1306                           GEN6_PM_RP_DOWN_THRESHOLD |
1307                           GEN6_PM_RP_DOWN_TIMEOUT);
1308
1309         /* Setting Fixed Bias */
1310         vlv_punit_get(i915);
1311
1312         val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
1313         vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1314
1315         val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1316
1317         vlv_punit_put(i915);
1318
1319         /* RPS code assumes GPLL is used */
1320         drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1321                       "GPLL not enabled\n");
1322
1323         drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1324                 str_yes_no(val & GPLLENABLE));
1325         drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1326
1327         return rps_reset(rps);
1328 }
1329
1330 static int vlv_rps_guar_freq(struct intel_rps *rps)
1331 {
1332         struct drm_i915_private *i915 = rps_to_i915(rps);
1333         u32 val, rp1;
1334
1335         val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1336
1337         rp1 = val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK;
1338         rp1 >>= FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
1339
1340         return rp1;
1341 }
1342
1343 static int vlv_rps_max_freq(struct intel_rps *rps)
1344 {
1345         struct drm_i915_private *i915 = rps_to_i915(rps);
1346         u32 val, rp0;
1347
1348         val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FREQ_FUSE);
1349
1350         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
1351         /* Clamp to max */
1352         rp0 = min_t(u32, rp0, 0xea);
1353
1354         return rp0;
1355 }
1356
1357 static int vlv_rps_rpe_freq(struct intel_rps *rps)
1358 {
1359         struct drm_i915_private *i915 = rps_to_i915(rps);
1360         u32 val, rpe;
1361
1362         val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
1363         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
1364         val = vlv_nc_read(i915, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
1365         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
1366
1367         return rpe;
1368 }
1369
1370 static int vlv_rps_min_freq(struct intel_rps *rps)
1371 {
1372         struct drm_i915_private *i915 = rps_to_i915(rps);
1373         u32 val;
1374
1375         val = vlv_punit_read(i915, PUNIT_REG_GPU_LFM) & 0xff;
1376         /*
1377          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
1378          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
1379          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
1380          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
1381          * to make sure it matches what Punit accepts.
1382          */
1383         return max_t(u32, val, 0xc0);
1384 }
1385
1386 static bool vlv_rps_enable(struct intel_rps *rps)
1387 {
1388         struct intel_uncore *uncore = rps_to_uncore(rps);
1389         struct drm_i915_private *i915 = rps_to_i915(rps);
1390         u32 val;
1391
1392         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_TIMEOUT, 1000000);
1393         intel_uncore_write_fw(uncore, GEN6_RP_UP_THRESHOLD, 59400);
1394         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_THRESHOLD, 245000);
1395         intel_uncore_write_fw(uncore, GEN6_RP_UP_EI, 66000);
1396         intel_uncore_write_fw(uncore, GEN6_RP_DOWN_EI, 350000);
1397
1398         intel_uncore_write_fw(uncore, GEN6_RP_IDLE_HYSTERSIS, 10);
1399
1400         intel_uncore_write_fw(uncore, GEN6_RP_CONTROL,
1401                               GEN6_RP_MEDIA_TURBO |
1402                               GEN6_RP_MEDIA_HW_NORMAL_MODE |
1403                               GEN6_RP_MEDIA_IS_GFX |
1404                               GEN6_RP_ENABLE |
1405                               GEN6_RP_UP_BUSY_AVG |
1406                               GEN6_RP_DOWN_IDLE_CONT);
1407
1408         /* WaGsvRC0ResidencyMethod:vlv */
1409         rps->pm_events = GEN6_PM_RP_UP_EI_EXPIRED;
1410
1411         vlv_punit_get(i915);
1412
1413         /* Setting Fixed Bias */
1414         val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
1415         vlv_punit_write(i915, VLV_TURBO_SOC_OVERRIDE, val);
1416
1417         val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1418
1419         vlv_punit_put(i915);
1420
1421         /* RPS code assumes GPLL is used */
1422         drm_WARN_ONCE(&i915->drm, (val & GPLLENABLE) == 0,
1423                       "GPLL not enabled\n");
1424
1425         drm_dbg(&i915->drm, "GPLL enabled? %s\n",
1426                 str_yes_no(val & GPLLENABLE));
1427         drm_dbg(&i915->drm, "GPU status: 0x%08x\n", val);
1428
1429         return rps_reset(rps);
1430 }
1431
1432 static unsigned long __ips_gfx_val(struct intel_ips *ips)
1433 {
1434         struct intel_rps *rps = container_of(ips, typeof(*rps), ips);
1435         struct intel_uncore *uncore = rps_to_uncore(rps);
1436         unsigned int t, state1, state2;
1437         u32 pxvid, ext_v;
1438         u64 corr, corr2;
1439
1440         lockdep_assert_held(&mchdev_lock);
1441
1442         pxvid = intel_uncore_read(uncore, PXVFREQ(rps->cur_freq));
1443         pxvid = (pxvid >> 24) & 0x7f;
1444         ext_v = pvid_to_extvid(rps_to_i915(rps), pxvid);
1445
1446         state1 = ext_v;
1447
1448         /* Revel in the empirically derived constants */
1449
1450         /* Correction factor in 1/100000 units */
1451         t = ips_mch_val(uncore);
1452         if (t > 80)
1453                 corr = t * 2349 + 135940;
1454         else if (t >= 50)
1455                 corr = t * 964 + 29317;
1456         else /* < 50 */
1457                 corr = t * 301 + 1004;
1458
1459         corr = div_u64(corr * 150142 * state1, 10000) - 78642;
1460         corr2 = div_u64(corr, 100000) * ips->corr;
1461
1462         state2 = div_u64(corr2 * state1, 10000);
1463         state2 /= 100; /* convert to mW */
1464
1465         __gen5_ips_update(ips);
1466
1467         return ips->gfx_power + state2;
1468 }
1469
1470 static bool has_busy_stats(struct intel_rps *rps)
1471 {
1472         struct intel_engine_cs *engine;
1473         enum intel_engine_id id;
1474
1475         for_each_engine(engine, rps_to_gt(rps), id) {
1476                 if (!intel_engine_supports_stats(engine))
1477                         return false;
1478         }
1479
1480         return true;
1481 }
1482
1483 void intel_rps_enable(struct intel_rps *rps)
1484 {
1485         struct drm_i915_private *i915 = rps_to_i915(rps);
1486         struct intel_uncore *uncore = rps_to_uncore(rps);
1487         bool enabled = false;
1488
1489         if (!HAS_RPS(i915))
1490                 return;
1491
1492         if (rps_uses_slpc(rps))
1493                 return;
1494
1495         intel_gt_check_clock_frequency(rps_to_gt(rps));
1496
1497         intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1498         if (rps->max_freq <= rps->min_freq)
1499                 /* leave disabled, no room for dynamic reclocking */;
1500         else if (IS_CHERRYVIEW(i915))
1501                 enabled = chv_rps_enable(rps);
1502         else if (IS_VALLEYVIEW(i915))
1503                 enabled = vlv_rps_enable(rps);
1504         else if (GRAPHICS_VER(i915) >= 9)
1505                 enabled = gen9_rps_enable(rps);
1506         else if (GRAPHICS_VER(i915) >= 8)
1507                 enabled = gen8_rps_enable(rps);
1508         else if (GRAPHICS_VER(i915) >= 6)
1509                 enabled = gen6_rps_enable(rps);
1510         else if (IS_IRONLAKE_M(i915))
1511                 enabled = gen5_rps_enable(rps);
1512         else
1513                 MISSING_CASE(GRAPHICS_VER(i915));
1514         intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
1515         if (!enabled)
1516                 return;
1517
1518         GT_TRACE(rps_to_gt(rps),
1519                  "min:%x, max:%x, freq:[%d, %d]\n",
1520                  rps->min_freq, rps->max_freq,
1521                  intel_gpu_freq(rps, rps->min_freq),
1522                  intel_gpu_freq(rps, rps->max_freq));
1523
1524         GEM_BUG_ON(rps->max_freq < rps->min_freq);
1525         GEM_BUG_ON(rps->idle_freq > rps->max_freq);
1526
1527         GEM_BUG_ON(rps->efficient_freq < rps->min_freq);
1528         GEM_BUG_ON(rps->efficient_freq > rps->max_freq);
1529
1530         if (has_busy_stats(rps))
1531                 intel_rps_set_timer(rps);
1532         else if (GRAPHICS_VER(i915) >= 6 && GRAPHICS_VER(i915) <= 11)
1533                 intel_rps_set_interrupts(rps);
1534         else
1535                 /* Ironlake currently uses intel_ips.ko */ {}
1536
1537         intel_rps_set_enabled(rps);
1538 }
1539
1540 static void gen6_rps_disable(struct intel_rps *rps)
1541 {
1542         set(rps_to_uncore(rps), GEN6_RP_CONTROL, 0);
1543 }
1544
1545 void intel_rps_disable(struct intel_rps *rps)
1546 {
1547         struct drm_i915_private *i915 = rps_to_i915(rps);
1548
1549         intel_rps_clear_enabled(rps);
1550         intel_rps_clear_interrupts(rps);
1551         intel_rps_clear_timer(rps);
1552
1553         if (GRAPHICS_VER(i915) >= 6)
1554                 gen6_rps_disable(rps);
1555         else if (IS_IRONLAKE_M(i915))
1556                 gen5_rps_disable(rps);
1557 }
1558
1559 static int byt_gpu_freq(struct intel_rps *rps, int val)
1560 {
1561         /*
1562          * N = val - 0xb7
1563          * Slow = Fast = GPLL ref * N
1564          */
1565         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
1566 }
1567
1568 static int byt_freq_opcode(struct intel_rps *rps, int val)
1569 {
1570         return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
1571 }
1572
1573 static int chv_gpu_freq(struct intel_rps *rps, int val)
1574 {
1575         /*
1576          * N = val / 2
1577          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
1578          */
1579         return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
1580 }
1581
1582 static int chv_freq_opcode(struct intel_rps *rps, int val)
1583 {
1584         /* CHV needs even values */
1585         return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
1586 }
1587
1588 int intel_gpu_freq(struct intel_rps *rps, int val)
1589 {
1590         struct drm_i915_private *i915 = rps_to_i915(rps);
1591
1592         if (GRAPHICS_VER(i915) >= 9)
1593                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
1594                                          GEN9_FREQ_SCALER);
1595         else if (IS_CHERRYVIEW(i915))
1596                 return chv_gpu_freq(rps, val);
1597         else if (IS_VALLEYVIEW(i915))
1598                 return byt_gpu_freq(rps, val);
1599         else if (GRAPHICS_VER(i915) >= 6)
1600                 return val * GT_FREQUENCY_MULTIPLIER;
1601         else
1602                 return val;
1603 }
1604
1605 int intel_freq_opcode(struct intel_rps *rps, int val)
1606 {
1607         struct drm_i915_private *i915 = rps_to_i915(rps);
1608
1609         if (GRAPHICS_VER(i915) >= 9)
1610                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
1611                                          GT_FREQUENCY_MULTIPLIER);
1612         else if (IS_CHERRYVIEW(i915))
1613                 return chv_freq_opcode(rps, val);
1614         else if (IS_VALLEYVIEW(i915))
1615                 return byt_freq_opcode(rps, val);
1616         else if (GRAPHICS_VER(i915) >= 6)
1617                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
1618         else
1619                 return val;
1620 }
1621
1622 static void vlv_init_gpll_ref_freq(struct intel_rps *rps)
1623 {
1624         struct drm_i915_private *i915 = rps_to_i915(rps);
1625
1626         rps->gpll_ref_freq =
1627                 vlv_get_cck_clock(i915, "GPLL ref",
1628                                   CCK_GPLL_CLOCK_CONTROL,
1629                                   i915->czclk_freq);
1630
1631         drm_dbg(&i915->drm, "GPLL reference freq: %d kHz\n",
1632                 rps->gpll_ref_freq);
1633 }
1634
1635 static void vlv_rps_init(struct intel_rps *rps)
1636 {
1637         struct drm_i915_private *i915 = rps_to_i915(rps);
1638         u32 val;
1639
1640         vlv_iosf_sb_get(i915,
1641                         BIT(VLV_IOSF_SB_PUNIT) |
1642                         BIT(VLV_IOSF_SB_NC) |
1643                         BIT(VLV_IOSF_SB_CCK));
1644
1645         vlv_init_gpll_ref_freq(rps);
1646
1647         val = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
1648         switch ((val >> 6) & 3) {
1649         case 0:
1650         case 1:
1651                 i915->mem_freq = 800;
1652                 break;
1653         case 2:
1654                 i915->mem_freq = 1066;
1655                 break;
1656         case 3:
1657                 i915->mem_freq = 1333;
1658                 break;
1659         }
1660         drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1661
1662         rps->max_freq = vlv_rps_max_freq(rps);
1663         rps->rp0_freq = rps->max_freq;
1664         drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1665                 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1666
1667         rps->efficient_freq = vlv_rps_rpe_freq(rps);
1668         drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1669                 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1670
1671         rps->rp1_freq = vlv_rps_guar_freq(rps);
1672         drm_dbg(&i915->drm, "RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
1673                 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1674
1675         rps->min_freq = vlv_rps_min_freq(rps);
1676         drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1677                 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1678
1679         vlv_iosf_sb_put(i915,
1680                         BIT(VLV_IOSF_SB_PUNIT) |
1681                         BIT(VLV_IOSF_SB_NC) |
1682                         BIT(VLV_IOSF_SB_CCK));
1683 }
1684
1685 static void chv_rps_init(struct intel_rps *rps)
1686 {
1687         struct drm_i915_private *i915 = rps_to_i915(rps);
1688         u32 val;
1689
1690         vlv_iosf_sb_get(i915,
1691                         BIT(VLV_IOSF_SB_PUNIT) |
1692                         BIT(VLV_IOSF_SB_NC) |
1693                         BIT(VLV_IOSF_SB_CCK));
1694
1695         vlv_init_gpll_ref_freq(rps);
1696
1697         val = vlv_cck_read(i915, CCK_FUSE_REG);
1698
1699         switch ((val >> 2) & 0x7) {
1700         case 3:
1701                 i915->mem_freq = 2000;
1702                 break;
1703         default:
1704                 i915->mem_freq = 1600;
1705                 break;
1706         }
1707         drm_dbg(&i915->drm, "DDR speed: %d MHz\n", i915->mem_freq);
1708
1709         rps->max_freq = chv_rps_max_freq(rps);
1710         rps->rp0_freq = rps->max_freq;
1711         drm_dbg(&i915->drm, "max GPU freq: %d MHz (%u)\n",
1712                 intel_gpu_freq(rps, rps->max_freq), rps->max_freq);
1713
1714         rps->efficient_freq = chv_rps_rpe_freq(rps);
1715         drm_dbg(&i915->drm, "RPe GPU freq: %d MHz (%u)\n",
1716                 intel_gpu_freq(rps, rps->efficient_freq), rps->efficient_freq);
1717
1718         rps->rp1_freq = chv_rps_guar_freq(rps);
1719         drm_dbg(&i915->drm, "RP1(Guar) GPU freq: %d MHz (%u)\n",
1720                 intel_gpu_freq(rps, rps->rp1_freq), rps->rp1_freq);
1721
1722         rps->min_freq = chv_rps_min_freq(rps);
1723         drm_dbg(&i915->drm, "min GPU freq: %d MHz (%u)\n",
1724                 intel_gpu_freq(rps, rps->min_freq), rps->min_freq);
1725
1726         vlv_iosf_sb_put(i915,
1727                         BIT(VLV_IOSF_SB_PUNIT) |
1728                         BIT(VLV_IOSF_SB_NC) |
1729                         BIT(VLV_IOSF_SB_CCK));
1730
1731         drm_WARN_ONCE(&i915->drm, (rps->max_freq | rps->efficient_freq |
1732                                    rps->rp1_freq | rps->min_freq) & 1,
1733                       "Odd GPU freq values\n");
1734 }
1735
1736 static void vlv_c0_read(struct intel_uncore *uncore, struct intel_rps_ei *ei)
1737 {
1738         ei->ktime = ktime_get_raw();
1739         ei->render_c0 = intel_uncore_read(uncore, VLV_RENDER_C0_COUNT);
1740         ei->media_c0 = intel_uncore_read(uncore, VLV_MEDIA_C0_COUNT);
1741 }
1742
1743 static u32 vlv_wa_c0_ei(struct intel_rps *rps, u32 pm_iir)
1744 {
1745         struct intel_uncore *uncore = rps_to_uncore(rps);
1746         const struct intel_rps_ei *prev = &rps->ei;
1747         struct intel_rps_ei now;
1748         u32 events = 0;
1749
1750         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1751                 return 0;
1752
1753         vlv_c0_read(uncore, &now);
1754
1755         if (prev->ktime) {
1756                 u64 time, c0;
1757                 u32 render, media;
1758
1759                 time = ktime_us_delta(now.ktime, prev->ktime);
1760
1761                 time *= rps_to_i915(rps)->czclk_freq;
1762
1763                 /* Workload can be split between render + media,
1764                  * e.g. SwapBuffers being blitted in X after being rendered in
1765                  * mesa. To account for this we need to combine both engines
1766                  * into our activity counter.
1767                  */
1768                 render = now.render_c0 - prev->render_c0;
1769                 media = now.media_c0 - prev->media_c0;
1770                 c0 = max(render, media);
1771                 c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1772
1773                 if (c0 > time * rps->power.up_threshold)
1774                         events = GEN6_PM_RP_UP_THRESHOLD;
1775                 else if (c0 < time * rps->power.down_threshold)
1776                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1777         }
1778
1779         rps->ei = now;
1780         return events;
1781 }
1782
1783 static void rps_work(struct work_struct *work)
1784 {
1785         struct intel_rps *rps = container_of(work, typeof(*rps), work);
1786         struct intel_gt *gt = rps_to_gt(rps);
1787         struct drm_i915_private *i915 = rps_to_i915(rps);
1788         bool client_boost = false;
1789         int new_freq, adj, min, max;
1790         u32 pm_iir = 0;
1791
1792         spin_lock_irq(&gt->irq_lock);
1793         pm_iir = fetch_and_zero(&rps->pm_iir) & rps->pm_events;
1794         client_boost = atomic_read(&rps->num_waiters);
1795         spin_unlock_irq(&gt->irq_lock);
1796
1797         /* Make sure we didn't queue anything we're not going to process. */
1798         if (!pm_iir && !client_boost)
1799                 goto out;
1800
1801         mutex_lock(&rps->lock);
1802         if (!intel_rps_is_active(rps)) {
1803                 mutex_unlock(&rps->lock);
1804                 return;
1805         }
1806
1807         pm_iir |= vlv_wa_c0_ei(rps, pm_iir);
1808
1809         adj = rps->last_adj;
1810         new_freq = rps->cur_freq;
1811         min = rps->min_freq_softlimit;
1812         max = rps->max_freq_softlimit;
1813         if (client_boost)
1814                 max = rps->max_freq;
1815
1816         GT_TRACE(gt,
1817                  "pm_iir:%x, client_boost:%s, last:%d, cur:%x, min:%x, max:%x\n",
1818                  pm_iir, str_yes_no(client_boost),
1819                  adj, new_freq, min, max);
1820
1821         if (client_boost && new_freq < rps->boost_freq) {
1822                 new_freq = rps->boost_freq;
1823                 adj = 0;
1824         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1825                 if (adj > 0)
1826                         adj *= 2;
1827                 else /* CHV needs even encode values */
1828                         adj = IS_CHERRYVIEW(gt->i915) ? 2 : 1;
1829
1830                 if (new_freq >= rps->max_freq_softlimit)
1831                         adj = 0;
1832         } else if (client_boost) {
1833                 adj = 0;
1834         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1835                 if (rps->cur_freq > rps->efficient_freq)
1836                         new_freq = rps->efficient_freq;
1837                 else if (rps->cur_freq > rps->min_freq_softlimit)
1838                         new_freq = rps->min_freq_softlimit;
1839                 adj = 0;
1840         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1841                 if (adj < 0)
1842                         adj *= 2;
1843                 else /* CHV needs even encode values */
1844                         adj = IS_CHERRYVIEW(gt->i915) ? -2 : -1;
1845
1846                 if (new_freq <= rps->min_freq_softlimit)
1847                         adj = 0;
1848         } else { /* unknown event */
1849                 adj = 0;
1850         }
1851
1852         /*
1853          * sysfs frequency limits may have snuck in while
1854          * servicing the interrupt
1855          */
1856         new_freq += adj;
1857         new_freq = clamp_t(int, new_freq, min, max);
1858
1859         if (intel_rps_set(rps, new_freq)) {
1860                 drm_dbg(&i915->drm, "Failed to set new GPU frequency\n");
1861                 adj = 0;
1862         }
1863         rps->last_adj = adj;
1864
1865         mutex_unlock(&rps->lock);
1866
1867 out:
1868         spin_lock_irq(&gt->irq_lock);
1869         gen6_gt_pm_unmask_irq(gt, rps->pm_events);
1870         spin_unlock_irq(&gt->irq_lock);
1871 }
1872
1873 void gen11_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1874 {
1875         struct intel_gt *gt = rps_to_gt(rps);
1876         const u32 events = rps->pm_events & pm_iir;
1877
1878         lockdep_assert_held(&gt->irq_lock);
1879
1880         if (unlikely(!events))
1881                 return;
1882
1883         GT_TRACE(gt, "irq events:%x\n", events);
1884
1885         gen6_gt_pm_mask_irq(gt, events);
1886
1887         rps->pm_iir |= events;
1888         schedule_work(&rps->work);
1889 }
1890
1891 void gen6_rps_irq_handler(struct intel_rps *rps, u32 pm_iir)
1892 {
1893         struct intel_gt *gt = rps_to_gt(rps);
1894         u32 events;
1895
1896         events = pm_iir & rps->pm_events;
1897         if (events) {
1898                 spin_lock(&gt->irq_lock);
1899
1900                 GT_TRACE(gt, "irq events:%x\n", events);
1901
1902                 gen6_gt_pm_mask_irq(gt, events);
1903                 rps->pm_iir |= events;
1904
1905                 schedule_work(&rps->work);
1906                 spin_unlock(&gt->irq_lock);
1907         }
1908
1909         if (GRAPHICS_VER(gt->i915) >= 8)
1910                 return;
1911
1912         if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1913                 intel_engine_cs_irq(gt->engine[VECS0], pm_iir >> 10);
1914
1915         if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1916                 DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1917 }
1918
1919 void gen5_rps_irq_handler(struct intel_rps *rps)
1920 {
1921         struct intel_uncore *uncore = rps_to_uncore(rps);
1922         u32 busy_up, busy_down, max_avg, min_avg;
1923         u8 new_freq;
1924
1925         spin_lock(&mchdev_lock);
1926
1927         intel_uncore_write16(uncore,
1928                              MEMINTRSTS,
1929                              intel_uncore_read(uncore, MEMINTRSTS));
1930
1931         intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1932         busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1933         busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1934         max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1935         min_avg = intel_uncore_read(uncore, RCBMINAVG);
1936
1937         /* Handle RCS change request from hw */
1938         new_freq = rps->cur_freq;
1939         if (busy_up > max_avg)
1940                 new_freq++;
1941         else if (busy_down < min_avg)
1942                 new_freq--;
1943         new_freq = clamp(new_freq,
1944                          rps->min_freq_softlimit,
1945                          rps->max_freq_softlimit);
1946
1947         if (new_freq != rps->cur_freq && !__gen5_rps_set(rps, new_freq))
1948                 rps->cur_freq = new_freq;
1949
1950         spin_unlock(&mchdev_lock);
1951 }
1952
1953 void intel_rps_init_early(struct intel_rps *rps)
1954 {
1955         mutex_init(&rps->lock);
1956         mutex_init(&rps->power.mutex);
1957
1958         INIT_WORK(&rps->work, rps_work);
1959         timer_setup(&rps->timer, rps_timer, 0);
1960
1961         atomic_set(&rps->num_waiters, 0);
1962 }
1963
1964 void intel_rps_init(struct intel_rps *rps)
1965 {
1966         struct drm_i915_private *i915 = rps_to_i915(rps);
1967
1968         if (rps_uses_slpc(rps))
1969                 return;
1970
1971         if (IS_CHERRYVIEW(i915))
1972                 chv_rps_init(rps);
1973         else if (IS_VALLEYVIEW(i915))
1974                 vlv_rps_init(rps);
1975         else if (GRAPHICS_VER(i915) >= 6)
1976                 gen6_rps_init(rps);
1977         else if (IS_IRONLAKE_M(i915))
1978                 gen5_rps_init(rps);
1979
1980         /* Derive initial user preferences/limits from the hardware limits */
1981         rps->max_freq_softlimit = rps->max_freq;
1982         rps->min_freq_softlimit = rps->min_freq;
1983
1984         /* After setting max-softlimit, find the overclock max freq */
1985         if (GRAPHICS_VER(i915) == 6 || IS_IVYBRIDGE(i915) || IS_HASWELL(i915)) {
1986                 u32 params = 0;
1987
1988                 snb_pcode_read(rps_to_gt(rps)->uncore, GEN6_READ_OC_PARAMS, &params, NULL);
1989                 if (params & BIT(31)) { /* OC supported */
1990                         drm_dbg(&i915->drm,
1991                                 "Overclocking supported, max: %dMHz, overclock: %dMHz\n",
1992                                 (rps->max_freq & 0xff) * 50,
1993                                 (params & 0xff) * 50);
1994                         rps->max_freq = params & 0xff;
1995                 }
1996         }
1997
1998         /* Finally allow us to boost to max by default */
1999         rps->boost_freq = rps->max_freq;
2000         rps->idle_freq = rps->min_freq;
2001
2002         /* Start in the middle, from here we will autotune based on workload */
2003         rps->cur_freq = rps->efficient_freq;
2004
2005         rps->pm_intrmsk_mbz = 0;
2006
2007         /*
2008          * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
2009          * if GEN6_PM_UP_EI_EXPIRED is masked.
2010          *
2011          * TODO: verify if this can be reproduced on VLV,CHV.
2012          */
2013         if (GRAPHICS_VER(i915) <= 7)
2014                 rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
2015
2016         if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) < 11)
2017                 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
2018
2019         /* GuC needs ARAT expired interrupt unmasked */
2020         if (intel_uc_uses_guc_submission(&rps_to_gt(rps)->uc))
2021                 rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
2022 }
2023
2024 void intel_rps_sanitize(struct intel_rps *rps)
2025 {
2026         if (rps_uses_slpc(rps))
2027                 return;
2028
2029         if (GRAPHICS_VER(rps_to_i915(rps)) >= 6)
2030                 rps_disable_interrupts(rps);
2031 }
2032
2033 u32 intel_rps_get_cagf(struct intel_rps *rps, u32 rpstat)
2034 {
2035         struct drm_i915_private *i915 = rps_to_i915(rps);
2036         u32 cagf;
2037
2038         if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))
2039                 cagf = (rpstat >> 8) & 0xff;
2040         else if (GRAPHICS_VER(i915) >= 9)
2041                 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
2042         else if (IS_HASWELL(i915) || IS_BROADWELL(i915))
2043                 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
2044         else if (GRAPHICS_VER(i915) >= 6)
2045                 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
2046         else
2047                 cagf = gen5_invert_freq(rps, (rpstat & MEMSTAT_PSTATE_MASK) >>
2048                                         MEMSTAT_PSTATE_SHIFT);
2049
2050         return cagf;
2051 }
2052
2053 static u32 read_cagf(struct intel_rps *rps)
2054 {
2055         struct drm_i915_private *i915 = rps_to_i915(rps);
2056         struct intel_uncore *uncore = rps_to_uncore(rps);
2057         u32 freq;
2058
2059         if (IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)) {
2060                 vlv_punit_get(i915);
2061                 freq = vlv_punit_read(i915, PUNIT_REG_GPU_FREQ_STS);
2062                 vlv_punit_put(i915);
2063         } else if (GRAPHICS_VER(i915) >= 6) {
2064                 freq = intel_uncore_read(uncore, GEN6_RPSTAT1);
2065         } else {
2066                 freq = intel_uncore_read(uncore, MEMSTAT_ILK);
2067         }
2068
2069         return intel_rps_get_cagf(rps, freq);
2070 }
2071
2072 u32 intel_rps_read_actual_frequency(struct intel_rps *rps)
2073 {
2074         struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2075         intel_wakeref_t wakeref;
2076         u32 freq = 0;
2077
2078         with_intel_runtime_pm_if_in_use(rpm, wakeref)
2079                 freq = intel_gpu_freq(rps, read_cagf(rps));
2080
2081         return freq;
2082 }
2083
2084 u32 intel_rps_read_punit_req(struct intel_rps *rps)
2085 {
2086         struct intel_uncore *uncore = rps_to_uncore(rps);
2087         struct intel_runtime_pm *rpm = rps_to_uncore(rps)->rpm;
2088         intel_wakeref_t wakeref;
2089         u32 freq = 0;
2090
2091         with_intel_runtime_pm_if_in_use(rpm, wakeref)
2092                 freq = intel_uncore_read(uncore, GEN6_RPNSWREQ);
2093
2094         return freq;
2095 }
2096
2097 static u32 intel_rps_get_req(u32 pureq)
2098 {
2099         u32 req = pureq >> GEN9_SW_REQ_UNSLICE_RATIO_SHIFT;
2100
2101         return req;
2102 }
2103
2104 u32 intel_rps_read_punit_req_frequency(struct intel_rps *rps)
2105 {
2106         u32 freq = intel_rps_get_req(intel_rps_read_punit_req(rps));
2107
2108         return intel_gpu_freq(rps, freq);
2109 }
2110
2111 u32 intel_rps_get_requested_frequency(struct intel_rps *rps)
2112 {
2113         if (rps_uses_slpc(rps))
2114                 return intel_rps_read_punit_req_frequency(rps);
2115         else
2116                 return intel_gpu_freq(rps, rps->cur_freq);
2117 }
2118
2119 u32 intel_rps_get_max_frequency(struct intel_rps *rps)
2120 {
2121         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2122
2123         if (rps_uses_slpc(rps))
2124                 return slpc->max_freq_softlimit;
2125         else
2126                 return intel_gpu_freq(rps, rps->max_freq_softlimit);
2127 }
2128
2129 u32 intel_rps_get_rp0_frequency(struct intel_rps *rps)
2130 {
2131         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2132
2133         if (rps_uses_slpc(rps))
2134                 return slpc->rp0_freq;
2135         else
2136                 return intel_gpu_freq(rps, rps->rp0_freq);
2137 }
2138
2139 u32 intel_rps_get_rp1_frequency(struct intel_rps *rps)
2140 {
2141         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2142
2143         if (rps_uses_slpc(rps))
2144                 return slpc->rp1_freq;
2145         else
2146                 return intel_gpu_freq(rps, rps->rp1_freq);
2147 }
2148
2149 u32 intel_rps_get_rpn_frequency(struct intel_rps *rps)
2150 {
2151         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2152
2153         if (rps_uses_slpc(rps))
2154                 return slpc->min_freq;
2155         else
2156                 return intel_gpu_freq(rps, rps->min_freq);
2157 }
2158
2159 static int set_max_freq(struct intel_rps *rps, u32 val)
2160 {
2161         struct drm_i915_private *i915 = rps_to_i915(rps);
2162         int ret = 0;
2163
2164         mutex_lock(&rps->lock);
2165
2166         val = intel_freq_opcode(rps, val);
2167         if (val < rps->min_freq ||
2168             val > rps->max_freq ||
2169             val < rps->min_freq_softlimit) {
2170                 ret = -EINVAL;
2171                 goto unlock;
2172         }
2173
2174         if (val > rps->rp0_freq)
2175                 drm_dbg(&i915->drm, "User requested overclocking to %d\n",
2176                         intel_gpu_freq(rps, val));
2177
2178         rps->max_freq_softlimit = val;
2179
2180         val = clamp_t(int, rps->cur_freq,
2181                       rps->min_freq_softlimit,
2182                       rps->max_freq_softlimit);
2183
2184         /*
2185          * We still need *_set_rps to process the new max_delay and
2186          * update the interrupt limits and PMINTRMSK even though
2187          * frequency request may be unchanged.
2188          */
2189         intel_rps_set(rps, val);
2190
2191 unlock:
2192         mutex_unlock(&rps->lock);
2193
2194         return ret;
2195 }
2196
2197 int intel_rps_set_max_frequency(struct intel_rps *rps, u32 val)
2198 {
2199         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2200
2201         if (rps_uses_slpc(rps))
2202                 return intel_guc_slpc_set_max_freq(slpc, val);
2203         else
2204                 return set_max_freq(rps, val);
2205 }
2206
2207 u32 intel_rps_get_min_frequency(struct intel_rps *rps)
2208 {
2209         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2210
2211         if (rps_uses_slpc(rps))
2212                 return slpc->min_freq_softlimit;
2213         else
2214                 return intel_gpu_freq(rps, rps->min_freq_softlimit);
2215 }
2216
2217 static int set_min_freq(struct intel_rps *rps, u32 val)
2218 {
2219         int ret = 0;
2220
2221         mutex_lock(&rps->lock);
2222
2223         val = intel_freq_opcode(rps, val);
2224         if (val < rps->min_freq ||
2225             val > rps->max_freq ||
2226             val > rps->max_freq_softlimit) {
2227                 ret = -EINVAL;
2228                 goto unlock;
2229         }
2230
2231         rps->min_freq_softlimit = val;
2232
2233         val = clamp_t(int, rps->cur_freq,
2234                       rps->min_freq_softlimit,
2235                       rps->max_freq_softlimit);
2236
2237         /*
2238          * We still need *_set_rps to process the new min_delay and
2239          * update the interrupt limits and PMINTRMSK even though
2240          * frequency request may be unchanged.
2241          */
2242         intel_rps_set(rps, val);
2243
2244 unlock:
2245         mutex_unlock(&rps->lock);
2246
2247         return ret;
2248 }
2249
2250 int intel_rps_set_min_frequency(struct intel_rps *rps, u32 val)
2251 {
2252         struct intel_guc_slpc *slpc = rps_to_slpc(rps);
2253
2254         if (rps_uses_slpc(rps))
2255                 return intel_guc_slpc_set_min_freq(slpc, val);
2256         else
2257                 return set_min_freq(rps, val);
2258 }
2259
2260 static void intel_rps_set_manual(struct intel_rps *rps, bool enable)
2261 {
2262         struct intel_uncore *uncore = rps_to_uncore(rps);
2263         u32 state = enable ? GEN9_RPSWCTL_ENABLE : GEN9_RPSWCTL_DISABLE;
2264
2265         /* Allow punit to process software requests */
2266         intel_uncore_write(uncore, GEN6_RP_CONTROL, state);
2267 }
2268
2269 void intel_rps_raise_unslice(struct intel_rps *rps)
2270 {
2271         struct intel_uncore *uncore = rps_to_uncore(rps);
2272
2273         mutex_lock(&rps->lock);
2274
2275         if (rps_uses_slpc(rps)) {
2276                 /* RP limits have not been initialized yet for SLPC path */
2277                 struct intel_rps_freq_caps caps;
2278
2279                 gen6_rps_get_freq_caps(rps, &caps);
2280
2281                 intel_rps_set_manual(rps, true);
2282                 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2283                                    ((caps.rp0_freq <<
2284                                    GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2285                                    GEN9_IGNORE_SLICE_RATIO));
2286                 intel_rps_set_manual(rps, false);
2287         } else {
2288                 intel_rps_set(rps, rps->rp0_freq);
2289         }
2290
2291         mutex_unlock(&rps->lock);
2292 }
2293
2294 void intel_rps_lower_unslice(struct intel_rps *rps)
2295 {
2296         struct intel_uncore *uncore = rps_to_uncore(rps);
2297
2298         mutex_lock(&rps->lock);
2299
2300         if (rps_uses_slpc(rps)) {
2301                 /* RP limits have not been initialized yet for SLPC path */
2302                 struct intel_rps_freq_caps caps;
2303
2304                 gen6_rps_get_freq_caps(rps, &caps);
2305
2306                 intel_rps_set_manual(rps, true);
2307                 intel_uncore_write(uncore, GEN6_RPNSWREQ,
2308                                    ((caps.min_freq <<
2309                                    GEN9_SW_REQ_UNSLICE_RATIO_SHIFT) |
2310                                    GEN9_IGNORE_SLICE_RATIO));
2311                 intel_rps_set_manual(rps, false);
2312         } else {
2313                 intel_rps_set(rps, rps->min_freq);
2314         }
2315
2316         mutex_unlock(&rps->lock);
2317 }
2318
2319 static u32 rps_read_mmio(struct intel_rps *rps, i915_reg_t reg32)
2320 {
2321         struct intel_gt *gt = rps_to_gt(rps);
2322         intel_wakeref_t wakeref;
2323         u32 val;
2324
2325         with_intel_runtime_pm(gt->uncore->rpm, wakeref)
2326                 val = intel_uncore_read(gt->uncore, reg32);
2327
2328         return val;
2329 }
2330
2331 bool rps_read_mask_mmio(struct intel_rps *rps,
2332                         i915_reg_t reg32, u32 mask)
2333 {
2334         return rps_read_mmio(rps, reg32) & mask;
2335 }
2336
2337 /* External interface for intel_ips.ko */
2338
2339 static struct drm_i915_private __rcu *ips_mchdev;
2340
2341 /**
2342  * Tells the intel_ips driver that the i915 driver is now loaded, if
2343  * IPS got loaded first.
2344  *
2345  * This awkward dance is so that neither module has to depend on the
2346  * other in order for IPS to do the appropriate communication of
2347  * GPU turbo limits to i915.
2348  */
2349 static void
2350 ips_ping_for_i915_load(void)
2351 {
2352         void (*link)(void);
2353
2354         link = symbol_get(ips_link_to_i915_driver);
2355         if (link) {
2356                 link();
2357                 symbol_put(ips_link_to_i915_driver);
2358         }
2359 }
2360
2361 void intel_rps_driver_register(struct intel_rps *rps)
2362 {
2363         struct intel_gt *gt = rps_to_gt(rps);
2364
2365         /*
2366          * We only register the i915 ips part with intel-ips once everything is
2367          * set up, to avoid intel-ips sneaking in and reading bogus values.
2368          */
2369         if (GRAPHICS_VER(gt->i915) == 5) {
2370                 GEM_BUG_ON(ips_mchdev);
2371                 rcu_assign_pointer(ips_mchdev, gt->i915);
2372                 ips_ping_for_i915_load();
2373         }
2374 }
2375
2376 void intel_rps_driver_unregister(struct intel_rps *rps)
2377 {
2378         if (rcu_access_pointer(ips_mchdev) == rps_to_i915(rps))
2379                 rcu_assign_pointer(ips_mchdev, NULL);
2380 }
2381
2382 static struct drm_i915_private *mchdev_get(void)
2383 {
2384         struct drm_i915_private *i915;
2385
2386         rcu_read_lock();
2387         i915 = rcu_dereference(ips_mchdev);
2388         if (i915 && !kref_get_unless_zero(&i915->drm.ref))
2389                 i915 = NULL;
2390         rcu_read_unlock();
2391
2392         return i915;
2393 }
2394
2395 /**
2396  * i915_read_mch_val - return value for IPS use
2397  *
2398  * Calculate and return a value for the IPS driver to use when deciding whether
2399  * we have thermal and power headroom to increase CPU or GPU power budget.
2400  */
2401 unsigned long i915_read_mch_val(void)
2402 {
2403         struct drm_i915_private *i915;
2404         unsigned long chipset_val = 0;
2405         unsigned long graphics_val = 0;
2406         intel_wakeref_t wakeref;
2407
2408         i915 = mchdev_get();
2409         if (!i915)
2410                 return 0;
2411
2412         with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
2413                 struct intel_ips *ips = &to_gt(i915)->rps.ips;
2414
2415                 spin_lock_irq(&mchdev_lock);
2416                 chipset_val = __ips_chipset_val(ips);
2417                 graphics_val = __ips_gfx_val(ips);
2418                 spin_unlock_irq(&mchdev_lock);
2419         }
2420
2421         drm_dev_put(&i915->drm);
2422         return chipset_val + graphics_val;
2423 }
2424 EXPORT_SYMBOL_GPL(i915_read_mch_val);
2425
2426 /**
2427  * i915_gpu_raise - raise GPU frequency limit
2428  *
2429  * Raise the limit; IPS indicates we have thermal headroom.
2430  */
2431 bool i915_gpu_raise(void)
2432 {
2433         struct drm_i915_private *i915;
2434         struct intel_rps *rps;
2435
2436         i915 = mchdev_get();
2437         if (!i915)
2438                 return false;
2439
2440         rps = &to_gt(i915)->rps;
2441
2442         spin_lock_irq(&mchdev_lock);
2443         if (rps->max_freq_softlimit < rps->max_freq)
2444                 rps->max_freq_softlimit++;
2445         spin_unlock_irq(&mchdev_lock);
2446
2447         drm_dev_put(&i915->drm);
2448         return true;
2449 }
2450 EXPORT_SYMBOL_GPL(i915_gpu_raise);
2451
2452 /**
2453  * i915_gpu_lower - lower GPU frequency limit
2454  *
2455  * IPS indicates we're close to a thermal limit, so throttle back the GPU
2456  * frequency maximum.
2457  */
2458 bool i915_gpu_lower(void)
2459 {
2460         struct drm_i915_private *i915;
2461         struct intel_rps *rps;
2462
2463         i915 = mchdev_get();
2464         if (!i915)
2465                 return false;
2466
2467         rps = &to_gt(i915)->rps;
2468
2469         spin_lock_irq(&mchdev_lock);
2470         if (rps->max_freq_softlimit > rps->min_freq)
2471                 rps->max_freq_softlimit--;
2472         spin_unlock_irq(&mchdev_lock);
2473
2474         drm_dev_put(&i915->drm);
2475         return true;
2476 }
2477 EXPORT_SYMBOL_GPL(i915_gpu_lower);
2478
2479 /**
2480  * i915_gpu_busy - indicate GPU business to IPS
2481  *
2482  * Tell the IPS driver whether or not the GPU is busy.
2483  */
2484 bool i915_gpu_busy(void)
2485 {
2486         struct drm_i915_private *i915;
2487         bool ret;
2488
2489         i915 = mchdev_get();
2490         if (!i915)
2491                 return false;
2492
2493         ret = to_gt(i915)->awake;
2494
2495         drm_dev_put(&i915->drm);
2496         return ret;
2497 }
2498 EXPORT_SYMBOL_GPL(i915_gpu_busy);
2499
2500 /**
2501  * i915_gpu_turbo_disable - disable graphics turbo
2502  *
2503  * Disable graphics turbo by resetting the max frequency and setting the
2504  * current frequency to the default.
2505  */
2506 bool i915_gpu_turbo_disable(void)
2507 {
2508         struct drm_i915_private *i915;
2509         struct intel_rps *rps;
2510         bool ret;
2511
2512         i915 = mchdev_get();
2513         if (!i915)
2514                 return false;
2515
2516         rps = &to_gt(i915)->rps;
2517
2518         spin_lock_irq(&mchdev_lock);
2519         rps->max_freq_softlimit = rps->min_freq;
2520         ret = !__gen5_rps_set(&to_gt(i915)->rps, rps->min_freq);
2521         spin_unlock_irq(&mchdev_lock);
2522
2523         drm_dev_put(&i915->drm);
2524         return ret;
2525 }
2526 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
2527
2528 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2529 #include "selftest_rps.c"
2530 #include "selftest_slpc.c"
2531 #endif