Merge drm/drm-next into drm-intel-next-queued
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / gt / intel_engine_pm.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6
7 #include "i915_drv.h"
8
9 #include "intel_context.h"
10 #include "intel_engine.h"
11 #include "intel_engine_heartbeat.h"
12 #include "intel_engine_pm.h"
13 #include "intel_engine_pool.h"
14 #include "intel_gt.h"
15 #include "intel_gt_pm.h"
16 #include "intel_rc6.h"
17 #include "intel_ring.h"
18
19 static int __engine_unpark(struct intel_wakeref *wf)
20 {
21         struct intel_engine_cs *engine =
22                 container_of(wf, typeof(*engine), wakeref);
23         struct intel_context *ce;
24         void *map;
25
26         ENGINE_TRACE(engine, "\n");
27
28         intel_gt_pm_get(engine->gt);
29
30         /* Pin the default state for fast resets from atomic context. */
31         map = NULL;
32         if (engine->default_state)
33                 map = i915_gem_object_pin_map(engine->default_state,
34                                               I915_MAP_WB);
35         if (!IS_ERR_OR_NULL(map))
36                 engine->pinned_default_state = map;
37
38         /* Discard stale context state from across idling */
39         ce = engine->kernel_context;
40         if (ce) {
41                 GEM_BUG_ON(test_bit(CONTEXT_VALID_BIT, &ce->flags));
42
43                 /* First poison the image to verify we never fully trust it */
44                 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && ce->state) {
45                         struct drm_i915_gem_object *obj = ce->state->obj;
46                         int type = i915_coherent_map_type(engine->i915);
47
48                         map = i915_gem_object_pin_map(obj, type);
49                         if (!IS_ERR(map)) {
50                                 memset(map, CONTEXT_REDZONE, obj->base.size);
51                                 i915_gem_object_flush_map(obj);
52                                 i915_gem_object_unpin_map(obj);
53                         }
54                 }
55
56                 ce->ops->reset(ce);
57         }
58
59         if (engine->unpark)
60                 engine->unpark(engine);
61
62         intel_engine_unpark_heartbeat(engine);
63         return 0;
64 }
65
66 #if IS_ENABLED(CONFIG_LOCKDEP)
67
68 static inline unsigned long __timeline_mark_lock(struct intel_context *ce)
69 {
70         unsigned long flags;
71
72         local_irq_save(flags);
73         mutex_acquire(&ce->timeline->mutex.dep_map, 2, 0, _THIS_IP_);
74
75         return flags;
76 }
77
78 static inline void __timeline_mark_unlock(struct intel_context *ce,
79                                           unsigned long flags)
80 {
81         mutex_release(&ce->timeline->mutex.dep_map, _THIS_IP_);
82         local_irq_restore(flags);
83 }
84
85 #else
86
87 static inline unsigned long __timeline_mark_lock(struct intel_context *ce)
88 {
89         return 0;
90 }
91
92 static inline void __timeline_mark_unlock(struct intel_context *ce,
93                                           unsigned long flags)
94 {
95 }
96
97 #endif /* !IS_ENABLED(CONFIG_LOCKDEP) */
98
99 static void duration(struct dma_fence *fence, struct dma_fence_cb *cb)
100 {
101         struct i915_request *rq = to_request(fence);
102
103         ewma__engine_latency_add(&rq->engine->latency,
104                                  ktime_us_delta(rq->fence.timestamp,
105                                                 rq->duration.emitted));
106 }
107
108 static void
109 __queue_and_release_pm(struct i915_request *rq,
110                        struct intel_timeline *tl,
111                        struct intel_engine_cs *engine)
112 {
113         struct intel_gt_timelines *timelines = &engine->gt->timelines;
114
115         ENGINE_TRACE(engine, "parking\n");
116
117         /*
118          * We have to serialise all potential retirement paths with our
119          * submission, as we don't want to underflow either the
120          * engine->wakeref.counter or our timeline->active_count.
121          *
122          * Equally, we cannot allow a new submission to start until
123          * after we finish queueing, nor could we allow that submitter
124          * to retire us before we are ready!
125          */
126         spin_lock(&timelines->lock);
127
128         /* Let intel_gt_retire_requests() retire us (acquired under lock) */
129         if (!atomic_fetch_inc(&tl->active_count))
130                 list_add_tail(&tl->link, &timelines->active_list);
131
132         /* Hand the request over to HW and so engine_retire() */
133         __i915_request_queue(rq, NULL);
134
135         /* Let new submissions commence (and maybe retire this timeline) */
136         __intel_wakeref_defer_park(&engine->wakeref);
137
138         spin_unlock(&timelines->lock);
139 }
140
141 static bool switch_to_kernel_context(struct intel_engine_cs *engine)
142 {
143         struct intel_context *ce = engine->kernel_context;
144         struct i915_request *rq;
145         unsigned long flags;
146         bool result = true;
147
148         /* GPU is pointing to the void, as good as in the kernel context. */
149         if (intel_gt_is_wedged(engine->gt))
150                 return true;
151
152         GEM_BUG_ON(!intel_context_is_barrier(ce));
153
154         /* Already inside the kernel context, safe to power down. */
155         if (engine->wakeref_serial == engine->serial)
156                 return true;
157
158         /*
159          * Note, we do this without taking the timeline->mutex. We cannot
160          * as we may be called while retiring the kernel context and so
161          * already underneath the timeline->mutex. Instead we rely on the
162          * exclusive property of the __engine_park that prevents anyone
163          * else from creating a request on this engine. This also requires
164          * that the ring is empty and we avoid any waits while constructing
165          * the context, as they assume protection by the timeline->mutex.
166          * This should hold true as we can only park the engine after
167          * retiring the last request, thus all rings should be empty and
168          * all timelines idle.
169          *
170          * For unlocking, there are 2 other parties and the GPU who have a
171          * stake here.
172          *
173          * A new gpu user will be waiting on the engine-pm to start their
174          * engine_unpark. New waiters are predicated on engine->wakeref.count
175          * and so intel_wakeref_defer_park() acts like a mutex_unlock of the
176          * engine->wakeref.
177          *
178          * The other party is intel_gt_retire_requests(), which is walking the
179          * list of active timelines looking for completions. Meanwhile as soon
180          * as we call __i915_request_queue(), the GPU may complete our request.
181          * Ergo, if we put ourselves on the timelines.active_list
182          * (se intel_timeline_enter()) before we increment the
183          * engine->wakeref.count, we may see the request completion and retire
184          * it causing an undeflow of the engine->wakeref.
185          */
186         flags = __timeline_mark_lock(ce);
187         GEM_BUG_ON(atomic_read(&ce->timeline->active_count) < 0);
188
189         rq = __i915_request_create(ce, GFP_NOWAIT);
190         if (IS_ERR(rq))
191                 /* Context switch failed, hope for the best! Maybe reset? */
192                 goto out_unlock;
193
194         /* Check again on the next retirement. */
195         engine->wakeref_serial = engine->serial + 1;
196         i915_request_add_active_barriers(rq);
197
198         /* Install ourselves as a preemption barrier */
199         rq->sched.attr.priority = I915_PRIORITY_BARRIER;
200         if (likely(!__i915_request_commit(rq))) { /* engine should be idle! */
201                 /*
202                  * Use an interrupt for precise measurement of duration,
203                  * otherwise we rely on someone else retiring all the requests
204                  * which may delay the signaling (i.e. we will likely wait
205                  * until the background request retirement running every
206                  * second or two).
207                  */
208                 BUILD_BUG_ON(sizeof(rq->duration) > sizeof(rq->submitq));
209                 dma_fence_add_callback(&rq->fence, &rq->duration.cb, duration);
210                 rq->duration.emitted = ktime_get();
211         }
212
213         /* Expose ourselves to the world */
214         __queue_and_release_pm(rq, ce->timeline, engine);
215
216         result = false;
217 out_unlock:
218         __timeline_mark_unlock(ce, flags);
219         return result;
220 }
221
222 static void call_idle_barriers(struct intel_engine_cs *engine)
223 {
224         struct llist_node *node, *next;
225
226         llist_for_each_safe(node, next, llist_del_all(&engine->barrier_tasks)) {
227                 struct dma_fence_cb *cb =
228                         container_of((struct list_head *)node,
229                                      typeof(*cb), node);
230
231                 cb->func(ERR_PTR(-EAGAIN), cb);
232         }
233 }
234
235 static int __engine_park(struct intel_wakeref *wf)
236 {
237         struct intel_engine_cs *engine =
238                 container_of(wf, typeof(*engine), wakeref);
239
240         engine->saturated = 0;
241
242         /*
243          * If one and only one request is completed between pm events,
244          * we know that we are inside the kernel context and it is
245          * safe to power down. (We are paranoid in case that runtime
246          * suspend causes corruption to the active context image, and
247          * want to avoid that impacting userspace.)
248          */
249         if (!switch_to_kernel_context(engine))
250                 return -EBUSY;
251
252         ENGINE_TRACE(engine, "parked\n");
253
254         call_idle_barriers(engine); /* cleanup after wedging */
255
256         intel_engine_park_heartbeat(engine);
257         intel_engine_disarm_breadcrumbs(engine);
258         intel_engine_pool_park(&engine->pool);
259
260         /* Must be reset upon idling, or we may miss the busy wakeup. */
261         GEM_BUG_ON(engine->execlists.queue_priority_hint != INT_MIN);
262
263         if (engine->park)
264                 engine->park(engine);
265
266         if (engine->pinned_default_state) {
267                 i915_gem_object_unpin_map(engine->default_state);
268                 engine->pinned_default_state = NULL;
269         }
270
271         engine->execlists.no_priolist = false;
272
273         /* While gt calls i915_vma_parked(), we have to break the lock cycle */
274         intel_gt_pm_put_async(engine->gt);
275         return 0;
276 }
277
278 static const struct intel_wakeref_ops wf_ops = {
279         .get = __engine_unpark,
280         .put = __engine_park,
281 };
282
283 void intel_engine_init__pm(struct intel_engine_cs *engine)
284 {
285         struct intel_runtime_pm *rpm = engine->uncore->rpm;
286
287         intel_wakeref_init(&engine->wakeref, rpm, &wf_ops);
288         intel_engine_init_heartbeat(engine);
289 }
290
291 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
292 #include "selftest_engine_pm.c"
293 #endif