Merge drm/drm-next into drm-intel-next
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / display / intel_hdmi.c
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *      Eric Anholt <eric@anholt.net>
26  *      Jesse Barnes <jesse.barnes@intel.com>
27  */
28
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34
35 #include <drm/display/drm_hdcp_helper.h>
36 #include <drm/display/drm_hdmi_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_crtc.h>
40 #include <drm/drm_edid.h>
41 #include <drm/intel_lpe_audio.h>
42
43 #include "g4x_hdmi.h"
44 #include "i915_drv.h"
45 #include "i915_reg.h"
46 #include "intel_atomic.h"
47 #include "intel_audio.h"
48 #include "intel_connector.h"
49 #include "intel_cx0_phy.h"
50 #include "intel_ddi.h"
51 #include "intel_de.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_gmbus.h"
55 #include "intel_hdcp.h"
56 #include "intel_hdcp_regs.h"
57 #include "intel_hdmi.h"
58 #include "intel_lspcon.h"
59 #include "intel_panel.h"
60 #include "intel_snps_phy.h"
61
62 inline struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
63 {
64         return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
65 }
66
67 static void
68 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
69 {
70         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
71         u32 enabled_bits;
72
73         enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
74
75         drm_WARN(&dev_priv->drm,
76                  intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
77                  "HDMI port enabled, expecting disabled\n");
78 }
79
80 static void
81 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
82                                      enum transcoder cpu_transcoder)
83 {
84         drm_WARN(&dev_priv->drm,
85                  intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
86                  TRANS_DDI_FUNC_ENABLE,
87                  "HDMI transcoder function enabled, expecting disabled\n");
88 }
89
90 static u32 g4x_infoframe_index(unsigned int type)
91 {
92         switch (type) {
93         case HDMI_PACKET_TYPE_GAMUT_METADATA:
94                 return VIDEO_DIP_SELECT_GAMUT;
95         case HDMI_INFOFRAME_TYPE_AVI:
96                 return VIDEO_DIP_SELECT_AVI;
97         case HDMI_INFOFRAME_TYPE_SPD:
98                 return VIDEO_DIP_SELECT_SPD;
99         case HDMI_INFOFRAME_TYPE_VENDOR:
100                 return VIDEO_DIP_SELECT_VENDOR;
101         default:
102                 MISSING_CASE(type);
103                 return 0;
104         }
105 }
106
107 static u32 g4x_infoframe_enable(unsigned int type)
108 {
109         switch (type) {
110         case HDMI_PACKET_TYPE_GENERAL_CONTROL:
111                 return VIDEO_DIP_ENABLE_GCP;
112         case HDMI_PACKET_TYPE_GAMUT_METADATA:
113                 return VIDEO_DIP_ENABLE_GAMUT;
114         case DP_SDP_VSC:
115                 return 0;
116         case HDMI_INFOFRAME_TYPE_AVI:
117                 return VIDEO_DIP_ENABLE_AVI;
118         case HDMI_INFOFRAME_TYPE_SPD:
119                 return VIDEO_DIP_ENABLE_SPD;
120         case HDMI_INFOFRAME_TYPE_VENDOR:
121                 return VIDEO_DIP_ENABLE_VENDOR;
122         case HDMI_INFOFRAME_TYPE_DRM:
123                 return 0;
124         default:
125                 MISSING_CASE(type);
126                 return 0;
127         }
128 }
129
130 static u32 hsw_infoframe_enable(unsigned int type)
131 {
132         switch (type) {
133         case HDMI_PACKET_TYPE_GENERAL_CONTROL:
134                 return VIDEO_DIP_ENABLE_GCP_HSW;
135         case HDMI_PACKET_TYPE_GAMUT_METADATA:
136                 return VIDEO_DIP_ENABLE_GMP_HSW;
137         case DP_SDP_VSC:
138                 return VIDEO_DIP_ENABLE_VSC_HSW;
139         case DP_SDP_PPS:
140                 return VDIP_ENABLE_PPS;
141         case HDMI_INFOFRAME_TYPE_AVI:
142                 return VIDEO_DIP_ENABLE_AVI_HSW;
143         case HDMI_INFOFRAME_TYPE_SPD:
144                 return VIDEO_DIP_ENABLE_SPD_HSW;
145         case HDMI_INFOFRAME_TYPE_VENDOR:
146                 return VIDEO_DIP_ENABLE_VS_HSW;
147         case HDMI_INFOFRAME_TYPE_DRM:
148                 return VIDEO_DIP_ENABLE_DRM_GLK;
149         default:
150                 MISSING_CASE(type);
151                 return 0;
152         }
153 }
154
155 static i915_reg_t
156 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
157                  enum transcoder cpu_transcoder,
158                  unsigned int type,
159                  int i)
160 {
161         switch (type) {
162         case HDMI_PACKET_TYPE_GAMUT_METADATA:
163                 return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
164         case DP_SDP_VSC:
165                 return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
166         case DP_SDP_PPS:
167                 return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
168         case HDMI_INFOFRAME_TYPE_AVI:
169                 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
170         case HDMI_INFOFRAME_TYPE_SPD:
171                 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
172         case HDMI_INFOFRAME_TYPE_VENDOR:
173                 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
174         case HDMI_INFOFRAME_TYPE_DRM:
175                 return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
176         default:
177                 MISSING_CASE(type);
178                 return INVALID_MMIO_REG;
179         }
180 }
181
182 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
183                              unsigned int type)
184 {
185         switch (type) {
186         case DP_SDP_VSC:
187                 return VIDEO_DIP_VSC_DATA_SIZE;
188         case DP_SDP_PPS:
189                 return VIDEO_DIP_PPS_DATA_SIZE;
190         case HDMI_PACKET_TYPE_GAMUT_METADATA:
191                 if (DISPLAY_VER(dev_priv) >= 11)
192                         return VIDEO_DIP_GMP_DATA_SIZE;
193                 else
194                         return VIDEO_DIP_DATA_SIZE;
195         default:
196                 return VIDEO_DIP_DATA_SIZE;
197         }
198 }
199
200 static void g4x_write_infoframe(struct intel_encoder *encoder,
201                                 const struct intel_crtc_state *crtc_state,
202                                 unsigned int type,
203                                 const void *frame, ssize_t len)
204 {
205         const u32 *data = frame;
206         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
207         u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
208         int i;
209
210         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
211                  "Writing DIP with CTL reg disabled\n");
212
213         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
214         val |= g4x_infoframe_index(type);
215
216         val &= ~g4x_infoframe_enable(type);
217
218         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
219
220         for (i = 0; i < len; i += 4) {
221                 intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
222                 data++;
223         }
224         /* Write every possible data byte to force correct ECC calculation. */
225         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
226                 intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
227
228         val |= g4x_infoframe_enable(type);
229         val &= ~VIDEO_DIP_FREQ_MASK;
230         val |= VIDEO_DIP_FREQ_VSYNC;
231
232         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
233         intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
234 }
235
236 static void g4x_read_infoframe(struct intel_encoder *encoder,
237                                const struct intel_crtc_state *crtc_state,
238                                unsigned int type,
239                                void *frame, ssize_t len)
240 {
241         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
242         u32 *data = frame;
243         int i;
244
245         intel_de_rmw(dev_priv, VIDEO_DIP_CTL,
246                      VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
247
248         for (i = 0; i < len; i += 4)
249                 *data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
250 }
251
252 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
253                                   const struct intel_crtc_state *pipe_config)
254 {
255         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
256         u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
257
258         if ((val & VIDEO_DIP_ENABLE) == 0)
259                 return 0;
260
261         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
262                 return 0;
263
264         return val & (VIDEO_DIP_ENABLE_AVI |
265                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
266 }
267
268 static void ibx_write_infoframe(struct intel_encoder *encoder,
269                                 const struct intel_crtc_state *crtc_state,
270                                 unsigned int type,
271                                 const void *frame, ssize_t len)
272 {
273         const u32 *data = frame;
274         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
275         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
276         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
277         u32 val = intel_de_read(dev_priv, reg);
278         int i;
279
280         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
281                  "Writing DIP with CTL reg disabled\n");
282
283         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
284         val |= g4x_infoframe_index(type);
285
286         val &= ~g4x_infoframe_enable(type);
287
288         intel_de_write(dev_priv, reg, val);
289
290         for (i = 0; i < len; i += 4) {
291                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
292                                *data);
293                 data++;
294         }
295         /* Write every possible data byte to force correct ECC calculation. */
296         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
297                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
298
299         val |= g4x_infoframe_enable(type);
300         val &= ~VIDEO_DIP_FREQ_MASK;
301         val |= VIDEO_DIP_FREQ_VSYNC;
302
303         intel_de_write(dev_priv, reg, val);
304         intel_de_posting_read(dev_priv, reg);
305 }
306
307 static void ibx_read_infoframe(struct intel_encoder *encoder,
308                                const struct intel_crtc_state *crtc_state,
309                                unsigned int type,
310                                void *frame, ssize_t len)
311 {
312         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
313         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
314         u32 *data = frame;
315         int i;
316
317         intel_de_rmw(dev_priv, TVIDEO_DIP_CTL(crtc->pipe),
318                      VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
319
320         for (i = 0; i < len; i += 4)
321                 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
322 }
323
324 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
325                                   const struct intel_crtc_state *pipe_config)
326 {
327         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
328         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
329         i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
330         u32 val = intel_de_read(dev_priv, reg);
331
332         if ((val & VIDEO_DIP_ENABLE) == 0)
333                 return 0;
334
335         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
336                 return 0;
337
338         return val & (VIDEO_DIP_ENABLE_AVI |
339                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
340                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
341 }
342
343 static void cpt_write_infoframe(struct intel_encoder *encoder,
344                                 const struct intel_crtc_state *crtc_state,
345                                 unsigned int type,
346                                 const void *frame, ssize_t len)
347 {
348         const u32 *data = frame;
349         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
350         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
351         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
352         u32 val = intel_de_read(dev_priv, reg);
353         int i;
354
355         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
356                  "Writing DIP with CTL reg disabled\n");
357
358         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
359         val |= g4x_infoframe_index(type);
360
361         /* The DIP control register spec says that we need to update the AVI
362          * infoframe without clearing its enable bit */
363         if (type != HDMI_INFOFRAME_TYPE_AVI)
364                 val &= ~g4x_infoframe_enable(type);
365
366         intel_de_write(dev_priv, reg, val);
367
368         for (i = 0; i < len; i += 4) {
369                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
370                                *data);
371                 data++;
372         }
373         /* Write every possible data byte to force correct ECC calculation. */
374         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
375                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
376
377         val |= g4x_infoframe_enable(type);
378         val &= ~VIDEO_DIP_FREQ_MASK;
379         val |= VIDEO_DIP_FREQ_VSYNC;
380
381         intel_de_write(dev_priv, reg, val);
382         intel_de_posting_read(dev_priv, reg);
383 }
384
385 static void cpt_read_infoframe(struct intel_encoder *encoder,
386                                const struct intel_crtc_state *crtc_state,
387                                unsigned int type,
388                                void *frame, ssize_t len)
389 {
390         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
391         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
392         u32 *data = frame;
393         int i;
394
395         intel_de_rmw(dev_priv, TVIDEO_DIP_CTL(crtc->pipe),
396                      VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
397
398         for (i = 0; i < len; i += 4)
399                 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
400 }
401
402 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
403                                   const struct intel_crtc_state *pipe_config)
404 {
405         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
406         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
407         u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
408
409         if ((val & VIDEO_DIP_ENABLE) == 0)
410                 return 0;
411
412         return val & (VIDEO_DIP_ENABLE_AVI |
413                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
414                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
415 }
416
417 static void vlv_write_infoframe(struct intel_encoder *encoder,
418                                 const struct intel_crtc_state *crtc_state,
419                                 unsigned int type,
420                                 const void *frame, ssize_t len)
421 {
422         const u32 *data = frame;
423         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
424         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
425         i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
426         u32 val = intel_de_read(dev_priv, reg);
427         int i;
428
429         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
430                  "Writing DIP with CTL reg disabled\n");
431
432         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
433         val |= g4x_infoframe_index(type);
434
435         val &= ~g4x_infoframe_enable(type);
436
437         intel_de_write(dev_priv, reg, val);
438
439         for (i = 0; i < len; i += 4) {
440                 intel_de_write(dev_priv,
441                                VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
442                 data++;
443         }
444         /* Write every possible data byte to force correct ECC calculation. */
445         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
446                 intel_de_write(dev_priv,
447                                VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
448
449         val |= g4x_infoframe_enable(type);
450         val &= ~VIDEO_DIP_FREQ_MASK;
451         val |= VIDEO_DIP_FREQ_VSYNC;
452
453         intel_de_write(dev_priv, reg, val);
454         intel_de_posting_read(dev_priv, reg);
455 }
456
457 static void vlv_read_infoframe(struct intel_encoder *encoder,
458                                const struct intel_crtc_state *crtc_state,
459                                unsigned int type,
460                                void *frame, ssize_t len)
461 {
462         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
463         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
464         u32 *data = frame;
465         int i;
466
467         intel_de_rmw(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe),
468                      VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
469
470         for (i = 0; i < len; i += 4)
471                 *data++ = intel_de_read(dev_priv,
472                                         VLV_TVIDEO_DIP_DATA(crtc->pipe));
473 }
474
475 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
476                                   const struct intel_crtc_state *pipe_config)
477 {
478         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
479         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
480         u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
481
482         if ((val & VIDEO_DIP_ENABLE) == 0)
483                 return 0;
484
485         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
486                 return 0;
487
488         return val & (VIDEO_DIP_ENABLE_AVI |
489                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
490                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
491 }
492
493 void hsw_write_infoframe(struct intel_encoder *encoder,
494                          const struct intel_crtc_state *crtc_state,
495                          unsigned int type,
496                          const void *frame, ssize_t len)
497 {
498         const u32 *data = frame;
499         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
500         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
501         i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
502         int data_size;
503         int i;
504         u32 val = intel_de_read(dev_priv, ctl_reg);
505
506         data_size = hsw_dip_data_size(dev_priv, type);
507
508         drm_WARN_ON(&dev_priv->drm, len > data_size);
509
510         val &= ~hsw_infoframe_enable(type);
511         intel_de_write(dev_priv, ctl_reg, val);
512
513         for (i = 0; i < len; i += 4) {
514                 intel_de_write(dev_priv,
515                                hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
516                                *data);
517                 data++;
518         }
519         /* Write every possible data byte to force correct ECC calculation. */
520         for (; i < data_size; i += 4)
521                 intel_de_write(dev_priv,
522                                hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
523                                0);
524
525         /* Wa_14013475917 */
526         if (IS_DISPLAY_VER(dev_priv, 13, 14) && crtc_state->has_psr && type == DP_SDP_VSC)
527                 return;
528
529         val |= hsw_infoframe_enable(type);
530         intel_de_write(dev_priv, ctl_reg, val);
531         intel_de_posting_read(dev_priv, ctl_reg);
532 }
533
534 void hsw_read_infoframe(struct intel_encoder *encoder,
535                         const struct intel_crtc_state *crtc_state,
536                         unsigned int type, void *frame, ssize_t len)
537 {
538         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
539         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
540         u32 *data = frame;
541         int i;
542
543         for (i = 0; i < len; i += 4)
544                 *data++ = intel_de_read(dev_priv,
545                                         hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
546 }
547
548 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
549                                   const struct intel_crtc_state *pipe_config)
550 {
551         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
552         u32 val = intel_de_read(dev_priv,
553                                 HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
554         u32 mask;
555
556         mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
557                 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
558                 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
559
560         if (DISPLAY_VER(dev_priv) >= 10)
561                 mask |= VIDEO_DIP_ENABLE_DRM_GLK;
562
563         return val & mask;
564 }
565
566 static const u8 infoframe_type_to_idx[] = {
567         HDMI_PACKET_TYPE_GENERAL_CONTROL,
568         HDMI_PACKET_TYPE_GAMUT_METADATA,
569         DP_SDP_VSC,
570         HDMI_INFOFRAME_TYPE_AVI,
571         HDMI_INFOFRAME_TYPE_SPD,
572         HDMI_INFOFRAME_TYPE_VENDOR,
573         HDMI_INFOFRAME_TYPE_DRM,
574 };
575
576 u32 intel_hdmi_infoframe_enable(unsigned int type)
577 {
578         int i;
579
580         for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
581                 if (infoframe_type_to_idx[i] == type)
582                         return BIT(i);
583         }
584
585         return 0;
586 }
587
588 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
589                                   const struct intel_crtc_state *crtc_state)
590 {
591         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
592         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
593         u32 val, ret = 0;
594         int i;
595
596         val = dig_port->infoframes_enabled(encoder, crtc_state);
597
598         /* map from hardware bits to dip idx */
599         for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
600                 unsigned int type = infoframe_type_to_idx[i];
601
602                 if (HAS_DDI(dev_priv)) {
603                         if (val & hsw_infoframe_enable(type))
604                                 ret |= BIT(i);
605                 } else {
606                         if (val & g4x_infoframe_enable(type))
607                                 ret |= BIT(i);
608                 }
609         }
610
611         return ret;
612 }
613
614 /*
615  * The data we write to the DIP data buffer registers is 1 byte bigger than the
616  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
617  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
618  * used for both technologies.
619  *
620  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
621  * DW1:       DB3       | DB2 | DB1 | DB0
622  * DW2:       DB7       | DB6 | DB5 | DB4
623  * DW3: ...
624  *
625  * (HB is Header Byte, DB is Data Byte)
626  *
627  * The hdmi pack() functions don't know about that hardware specific hole so we
628  * trick them by giving an offset into the buffer and moving back the header
629  * bytes by one.
630  */
631 static void intel_write_infoframe(struct intel_encoder *encoder,
632                                   const struct intel_crtc_state *crtc_state,
633                                   enum hdmi_infoframe_type type,
634                                   const union hdmi_infoframe *frame)
635 {
636         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
637         u8 buffer[VIDEO_DIP_DATA_SIZE];
638         ssize_t len;
639
640         if ((crtc_state->infoframes.enable &
641              intel_hdmi_infoframe_enable(type)) == 0)
642                 return;
643
644         if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
645                 return;
646
647         /* see comment above for the reason for this offset */
648         len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
649         if (drm_WARN_ON(encoder->base.dev, len < 0))
650                 return;
651
652         /* Insert the 'hole' (see big comment above) at position 3 */
653         memmove(&buffer[0], &buffer[1], 3);
654         buffer[3] = 0;
655         len++;
656
657         dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
658 }
659
660 void intel_read_infoframe(struct intel_encoder *encoder,
661                           const struct intel_crtc_state *crtc_state,
662                           enum hdmi_infoframe_type type,
663                           union hdmi_infoframe *frame)
664 {
665         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
666         u8 buffer[VIDEO_DIP_DATA_SIZE];
667         int ret;
668
669         if ((crtc_state->infoframes.enable &
670              intel_hdmi_infoframe_enable(type)) == 0)
671                 return;
672
673         dig_port->read_infoframe(encoder, crtc_state,
674                                        type, buffer, sizeof(buffer));
675
676         /* Fill the 'hole' (see big comment above) at position 3 */
677         memmove(&buffer[1], &buffer[0], 3);
678
679         /* see comment above for the reason for this offset */
680         ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
681         if (ret) {
682                 drm_dbg_kms(encoder->base.dev,
683                             "Failed to unpack infoframe type 0x%02x\n", type);
684                 return;
685         }
686
687         if (frame->any.type != type)
688                 drm_dbg_kms(encoder->base.dev,
689                             "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
690                             frame->any.type, type);
691 }
692
693 static bool
694 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
695                                  struct intel_crtc_state *crtc_state,
696                                  struct drm_connector_state *conn_state)
697 {
698         struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
699         const struct drm_display_mode *adjusted_mode =
700                 &crtc_state->hw.adjusted_mode;
701         struct drm_connector *connector = conn_state->connector;
702         int ret;
703
704         if (!crtc_state->has_infoframe)
705                 return true;
706
707         crtc_state->infoframes.enable |=
708                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
709
710         ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
711                                                        adjusted_mode);
712         if (ret)
713                 return false;
714
715         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
716                 frame->colorspace = HDMI_COLORSPACE_YUV420;
717         else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
718                 frame->colorspace = HDMI_COLORSPACE_YUV444;
719         else
720                 frame->colorspace = HDMI_COLORSPACE_RGB;
721
722         drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
723
724         /* nonsense combination */
725         drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
726                     crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
727
728         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
729                 drm_hdmi_avi_infoframe_quant_range(frame, connector,
730                                                    adjusted_mode,
731                                                    crtc_state->limited_color_range ?
732                                                    HDMI_QUANTIZATION_RANGE_LIMITED :
733                                                    HDMI_QUANTIZATION_RANGE_FULL);
734         } else {
735                 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
736                 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
737         }
738
739         drm_hdmi_avi_infoframe_content_type(frame, conn_state);
740
741         /* TODO: handle pixel repetition for YCBCR420 outputs */
742
743         ret = hdmi_avi_infoframe_check(frame);
744         if (drm_WARN_ON(encoder->base.dev, ret))
745                 return false;
746
747         return true;
748 }
749
750 static bool
751 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
752                                  struct intel_crtc_state *crtc_state,
753                                  struct drm_connector_state *conn_state)
754 {
755         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
756         struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
757         int ret;
758
759         if (!crtc_state->has_infoframe)
760                 return true;
761
762         crtc_state->infoframes.enable |=
763                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
764
765         if (IS_DGFX(i915))
766                 ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
767         else
768                 ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
769
770         if (drm_WARN_ON(encoder->base.dev, ret))
771                 return false;
772
773         frame->sdi = HDMI_SPD_SDI_PC;
774
775         ret = hdmi_spd_infoframe_check(frame);
776         if (drm_WARN_ON(encoder->base.dev, ret))
777                 return false;
778
779         return true;
780 }
781
782 static bool
783 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
784                                   struct intel_crtc_state *crtc_state,
785                                   struct drm_connector_state *conn_state)
786 {
787         struct hdmi_vendor_infoframe *frame =
788                 &crtc_state->infoframes.hdmi.vendor.hdmi;
789         const struct drm_display_info *info =
790                 &conn_state->connector->display_info;
791         int ret;
792
793         if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
794                 return true;
795
796         crtc_state->infoframes.enable |=
797                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
798
799         ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
800                                                           conn_state->connector,
801                                                           &crtc_state->hw.adjusted_mode);
802         if (drm_WARN_ON(encoder->base.dev, ret))
803                 return false;
804
805         ret = hdmi_vendor_infoframe_check(frame);
806         if (drm_WARN_ON(encoder->base.dev, ret))
807                 return false;
808
809         return true;
810 }
811
812 static bool
813 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
814                                  struct intel_crtc_state *crtc_state,
815                                  struct drm_connector_state *conn_state)
816 {
817         struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
818         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
819         int ret;
820
821         if (DISPLAY_VER(dev_priv) < 10)
822                 return true;
823
824         if (!crtc_state->has_infoframe)
825                 return true;
826
827         if (!conn_state->hdr_output_metadata)
828                 return true;
829
830         crtc_state->infoframes.enable |=
831                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
832
833         ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
834         if (ret < 0) {
835                 drm_dbg_kms(&dev_priv->drm,
836                             "couldn't set HDR metadata in infoframe\n");
837                 return false;
838         }
839
840         ret = hdmi_drm_infoframe_check(frame);
841         if (drm_WARN_ON(&dev_priv->drm, ret))
842                 return false;
843
844         return true;
845 }
846
847 static void g4x_set_infoframes(struct intel_encoder *encoder,
848                                bool enable,
849                                const struct intel_crtc_state *crtc_state,
850                                const struct drm_connector_state *conn_state)
851 {
852         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
853         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
854         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
855         i915_reg_t reg = VIDEO_DIP_CTL;
856         u32 val = intel_de_read(dev_priv, reg);
857         u32 port = VIDEO_DIP_PORT(encoder->port);
858
859         assert_hdmi_port_disabled(intel_hdmi);
860
861         /* If the registers were not initialized yet, they might be zeroes,
862          * which means we're selecting the AVI DIP and we're setting its
863          * frequency to once. This seems to really confuse the HW and make
864          * things stop working (the register spec says the AVI always needs to
865          * be sent every VSync). So here we avoid writing to the register more
866          * than we need and also explicitly select the AVI DIP and explicitly
867          * set its frequency to every VSync. Avoiding to write it twice seems to
868          * be enough to solve the problem, but being defensive shouldn't hurt us
869          * either. */
870         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
871
872         if (!enable) {
873                 if (!(val & VIDEO_DIP_ENABLE))
874                         return;
875                 if (port != (val & VIDEO_DIP_PORT_MASK)) {
876                         drm_dbg_kms(&dev_priv->drm,
877                                     "video DIP still enabled on port %c\n",
878                                     (val & VIDEO_DIP_PORT_MASK) >> 29);
879                         return;
880                 }
881                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
882                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
883                 intel_de_write(dev_priv, reg, val);
884                 intel_de_posting_read(dev_priv, reg);
885                 return;
886         }
887
888         if (port != (val & VIDEO_DIP_PORT_MASK)) {
889                 if (val & VIDEO_DIP_ENABLE) {
890                         drm_dbg_kms(&dev_priv->drm,
891                                     "video DIP already enabled on port %c\n",
892                                     (val & VIDEO_DIP_PORT_MASK) >> 29);
893                         return;
894                 }
895                 val &= ~VIDEO_DIP_PORT_MASK;
896                 val |= port;
897         }
898
899         val |= VIDEO_DIP_ENABLE;
900         val &= ~(VIDEO_DIP_ENABLE_AVI |
901                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
902
903         intel_de_write(dev_priv, reg, val);
904         intel_de_posting_read(dev_priv, reg);
905
906         intel_write_infoframe(encoder, crtc_state,
907                               HDMI_INFOFRAME_TYPE_AVI,
908                               &crtc_state->infoframes.avi);
909         intel_write_infoframe(encoder, crtc_state,
910                               HDMI_INFOFRAME_TYPE_SPD,
911                               &crtc_state->infoframes.spd);
912         intel_write_infoframe(encoder, crtc_state,
913                               HDMI_INFOFRAME_TYPE_VENDOR,
914                               &crtc_state->infoframes.hdmi);
915 }
916
917 /*
918  * Determine if default_phase=1 can be indicated in the GCP infoframe.
919  *
920  * From HDMI specification 1.4a:
921  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
922  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
923  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
924  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
925  *   phase of 0
926  */
927 static bool gcp_default_phase_possible(int pipe_bpp,
928                                        const struct drm_display_mode *mode)
929 {
930         unsigned int pixels_per_group;
931
932         switch (pipe_bpp) {
933         case 30:
934                 /* 4 pixels in 5 clocks */
935                 pixels_per_group = 4;
936                 break;
937         case 36:
938                 /* 2 pixels in 3 clocks */
939                 pixels_per_group = 2;
940                 break;
941         case 48:
942                 /* 1 pixel in 2 clocks */
943                 pixels_per_group = 1;
944                 break;
945         default:
946                 /* phase information not relevant for 8bpc */
947                 return false;
948         }
949
950         return mode->crtc_hdisplay % pixels_per_group == 0 &&
951                 mode->crtc_htotal % pixels_per_group == 0 &&
952                 mode->crtc_hblank_start % pixels_per_group == 0 &&
953                 mode->crtc_hblank_end % pixels_per_group == 0 &&
954                 mode->crtc_hsync_start % pixels_per_group == 0 &&
955                 mode->crtc_hsync_end % pixels_per_group == 0 &&
956                 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
957                  mode->crtc_htotal/2 % pixels_per_group == 0);
958 }
959
960 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
961                                          const struct intel_crtc_state *crtc_state,
962                                          const struct drm_connector_state *conn_state)
963 {
964         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
965         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
966         i915_reg_t reg;
967
968         if ((crtc_state->infoframes.enable &
969              intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
970                 return false;
971
972         if (HAS_DDI(dev_priv))
973                 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
974         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
975                 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
976         else if (HAS_PCH_SPLIT(dev_priv))
977                 reg = TVIDEO_DIP_GCP(crtc->pipe);
978         else
979                 return false;
980
981         intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
982
983         return true;
984 }
985
986 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
987                                    struct intel_crtc_state *crtc_state)
988 {
989         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
990         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
991         i915_reg_t reg;
992
993         if ((crtc_state->infoframes.enable &
994              intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
995                 return;
996
997         if (HAS_DDI(dev_priv))
998                 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
999         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1000                 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1001         else if (HAS_PCH_SPLIT(dev_priv))
1002                 reg = TVIDEO_DIP_GCP(crtc->pipe);
1003         else
1004                 return;
1005
1006         crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1007 }
1008
1009 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1010                                              struct intel_crtc_state *crtc_state,
1011                                              struct drm_connector_state *conn_state)
1012 {
1013         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1014
1015         if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1016                 return;
1017
1018         crtc_state->infoframes.enable |=
1019                 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1020
1021         /* Indicate color indication for deep color mode */
1022         if (crtc_state->pipe_bpp > 24)
1023                 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1024
1025         /* Enable default_phase whenever the display mode is suitably aligned */
1026         if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1027                                        &crtc_state->hw.adjusted_mode))
1028                 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1029 }
1030
1031 static void ibx_set_infoframes(struct intel_encoder *encoder,
1032                                bool enable,
1033                                const struct intel_crtc_state *crtc_state,
1034                                const struct drm_connector_state *conn_state)
1035 {
1036         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1037         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1038         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1039         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1040         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1041         u32 val = intel_de_read(dev_priv, reg);
1042         u32 port = VIDEO_DIP_PORT(encoder->port);
1043
1044         assert_hdmi_port_disabled(intel_hdmi);
1045
1046         /* See the big comment in g4x_set_infoframes() */
1047         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1048
1049         if (!enable) {
1050                 if (!(val & VIDEO_DIP_ENABLE))
1051                         return;
1052                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1053                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1054                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1055                 intel_de_write(dev_priv, reg, val);
1056                 intel_de_posting_read(dev_priv, reg);
1057                 return;
1058         }
1059
1060         if (port != (val & VIDEO_DIP_PORT_MASK)) {
1061                 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1062                          "DIP already enabled on port %c\n",
1063                          (val & VIDEO_DIP_PORT_MASK) >> 29);
1064                 val &= ~VIDEO_DIP_PORT_MASK;
1065                 val |= port;
1066         }
1067
1068         val |= VIDEO_DIP_ENABLE;
1069         val &= ~(VIDEO_DIP_ENABLE_AVI |
1070                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1071                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1072
1073         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1074                 val |= VIDEO_DIP_ENABLE_GCP;
1075
1076         intel_de_write(dev_priv, reg, val);
1077         intel_de_posting_read(dev_priv, reg);
1078
1079         intel_write_infoframe(encoder, crtc_state,
1080                               HDMI_INFOFRAME_TYPE_AVI,
1081                               &crtc_state->infoframes.avi);
1082         intel_write_infoframe(encoder, crtc_state,
1083                               HDMI_INFOFRAME_TYPE_SPD,
1084                               &crtc_state->infoframes.spd);
1085         intel_write_infoframe(encoder, crtc_state,
1086                               HDMI_INFOFRAME_TYPE_VENDOR,
1087                               &crtc_state->infoframes.hdmi);
1088 }
1089
1090 static void cpt_set_infoframes(struct intel_encoder *encoder,
1091                                bool enable,
1092                                const struct intel_crtc_state *crtc_state,
1093                                const struct drm_connector_state *conn_state)
1094 {
1095         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1096         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1097         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1098         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1099         u32 val = intel_de_read(dev_priv, reg);
1100
1101         assert_hdmi_port_disabled(intel_hdmi);
1102
1103         /* See the big comment in g4x_set_infoframes() */
1104         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1105
1106         if (!enable) {
1107                 if (!(val & VIDEO_DIP_ENABLE))
1108                         return;
1109                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1110                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1111                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1112                 intel_de_write(dev_priv, reg, val);
1113                 intel_de_posting_read(dev_priv, reg);
1114                 return;
1115         }
1116
1117         /* Set both together, unset both together: see the spec. */
1118         val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1119         val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1120                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1121
1122         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1123                 val |= VIDEO_DIP_ENABLE_GCP;
1124
1125         intel_de_write(dev_priv, reg, val);
1126         intel_de_posting_read(dev_priv, reg);
1127
1128         intel_write_infoframe(encoder, crtc_state,
1129                               HDMI_INFOFRAME_TYPE_AVI,
1130                               &crtc_state->infoframes.avi);
1131         intel_write_infoframe(encoder, crtc_state,
1132                               HDMI_INFOFRAME_TYPE_SPD,
1133                               &crtc_state->infoframes.spd);
1134         intel_write_infoframe(encoder, crtc_state,
1135                               HDMI_INFOFRAME_TYPE_VENDOR,
1136                               &crtc_state->infoframes.hdmi);
1137 }
1138
1139 static void vlv_set_infoframes(struct intel_encoder *encoder,
1140                                bool enable,
1141                                const struct intel_crtc_state *crtc_state,
1142                                const struct drm_connector_state *conn_state)
1143 {
1144         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1145         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1146         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1147         i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1148         u32 val = intel_de_read(dev_priv, reg);
1149         u32 port = VIDEO_DIP_PORT(encoder->port);
1150
1151         assert_hdmi_port_disabled(intel_hdmi);
1152
1153         /* See the big comment in g4x_set_infoframes() */
1154         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1155
1156         if (!enable) {
1157                 if (!(val & VIDEO_DIP_ENABLE))
1158                         return;
1159                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1160                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1161                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1162                 intel_de_write(dev_priv, reg, val);
1163                 intel_de_posting_read(dev_priv, reg);
1164                 return;
1165         }
1166
1167         if (port != (val & VIDEO_DIP_PORT_MASK)) {
1168                 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1169                          "DIP already enabled on port %c\n",
1170                          (val & VIDEO_DIP_PORT_MASK) >> 29);
1171                 val &= ~VIDEO_DIP_PORT_MASK;
1172                 val |= port;
1173         }
1174
1175         val |= VIDEO_DIP_ENABLE;
1176         val &= ~(VIDEO_DIP_ENABLE_AVI |
1177                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1178                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1179
1180         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1181                 val |= VIDEO_DIP_ENABLE_GCP;
1182
1183         intel_de_write(dev_priv, reg, val);
1184         intel_de_posting_read(dev_priv, reg);
1185
1186         intel_write_infoframe(encoder, crtc_state,
1187                               HDMI_INFOFRAME_TYPE_AVI,
1188                               &crtc_state->infoframes.avi);
1189         intel_write_infoframe(encoder, crtc_state,
1190                               HDMI_INFOFRAME_TYPE_SPD,
1191                               &crtc_state->infoframes.spd);
1192         intel_write_infoframe(encoder, crtc_state,
1193                               HDMI_INFOFRAME_TYPE_VENDOR,
1194                               &crtc_state->infoframes.hdmi);
1195 }
1196
1197 static void hsw_set_infoframes(struct intel_encoder *encoder,
1198                                bool enable,
1199                                const struct intel_crtc_state *crtc_state,
1200                                const struct drm_connector_state *conn_state)
1201 {
1202         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1203         i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1204         u32 val = intel_de_read(dev_priv, reg);
1205
1206         assert_hdmi_transcoder_func_disabled(dev_priv,
1207                                              crtc_state->cpu_transcoder);
1208
1209         val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1210                  VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1211                  VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1212                  VIDEO_DIP_ENABLE_DRM_GLK);
1213
1214         if (!enable) {
1215                 intel_de_write(dev_priv, reg, val);
1216                 intel_de_posting_read(dev_priv, reg);
1217                 return;
1218         }
1219
1220         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1221                 val |= VIDEO_DIP_ENABLE_GCP_HSW;
1222
1223         intel_de_write(dev_priv, reg, val);
1224         intel_de_posting_read(dev_priv, reg);
1225
1226         intel_write_infoframe(encoder, crtc_state,
1227                               HDMI_INFOFRAME_TYPE_AVI,
1228                               &crtc_state->infoframes.avi);
1229         intel_write_infoframe(encoder, crtc_state,
1230                               HDMI_INFOFRAME_TYPE_SPD,
1231                               &crtc_state->infoframes.spd);
1232         intel_write_infoframe(encoder, crtc_state,
1233                               HDMI_INFOFRAME_TYPE_VENDOR,
1234                               &crtc_state->infoframes.hdmi);
1235         intel_write_infoframe(encoder, crtc_state,
1236                               HDMI_INFOFRAME_TYPE_DRM,
1237                               &crtc_state->infoframes.drm);
1238 }
1239
1240 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1241 {
1242         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1243         struct i2c_adapter *adapter;
1244
1245         if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1246                 return;
1247
1248         adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1249
1250         drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1251                     enable ? "Enabling" : "Disabling");
1252
1253         drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1254 }
1255
1256 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1257                                 unsigned int offset, void *buffer, size_t size)
1258 {
1259         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1260         struct intel_hdmi *hdmi = &dig_port->hdmi;
1261         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1262                                                               hdmi->ddc_bus);
1263         int ret;
1264         u8 start = offset & 0xff;
1265         struct i2c_msg msgs[] = {
1266                 {
1267                         .addr = DRM_HDCP_DDC_ADDR,
1268                         .flags = 0,
1269                         .len = 1,
1270                         .buf = &start,
1271                 },
1272                 {
1273                         .addr = DRM_HDCP_DDC_ADDR,
1274                         .flags = I2C_M_RD,
1275                         .len = size,
1276                         .buf = buffer
1277                 }
1278         };
1279         ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1280         if (ret == ARRAY_SIZE(msgs))
1281                 return 0;
1282         return ret >= 0 ? -EIO : ret;
1283 }
1284
1285 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1286                                  unsigned int offset, void *buffer, size_t size)
1287 {
1288         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1289         struct intel_hdmi *hdmi = &dig_port->hdmi;
1290         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1291                                                               hdmi->ddc_bus);
1292         int ret;
1293         u8 *write_buf;
1294         struct i2c_msg msg;
1295
1296         write_buf = kzalloc(size + 1, GFP_KERNEL);
1297         if (!write_buf)
1298                 return -ENOMEM;
1299
1300         write_buf[0] = offset & 0xff;
1301         memcpy(&write_buf[1], buffer, size);
1302
1303         msg.addr = DRM_HDCP_DDC_ADDR;
1304         msg.flags = 0,
1305         msg.len = size + 1,
1306         msg.buf = write_buf;
1307
1308         ret = i2c_transfer(adapter, &msg, 1);
1309         if (ret == 1)
1310                 ret = 0;
1311         else if (ret >= 0)
1312                 ret = -EIO;
1313
1314         kfree(write_buf);
1315         return ret;
1316 }
1317
1318 static
1319 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1320                                   u8 *an)
1321 {
1322         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1323         struct intel_hdmi *hdmi = &dig_port->hdmi;
1324         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1325                                                               hdmi->ddc_bus);
1326         int ret;
1327
1328         ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1329                                     DRM_HDCP_AN_LEN);
1330         if (ret) {
1331                 drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1332                             ret);
1333                 return ret;
1334         }
1335
1336         ret = intel_gmbus_output_aksv(adapter);
1337         if (ret < 0) {
1338                 drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1339                 return ret;
1340         }
1341         return 0;
1342 }
1343
1344 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1345                                      u8 *bksv)
1346 {
1347         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1348
1349         int ret;
1350         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1351                                    DRM_HDCP_KSV_LEN);
1352         if (ret)
1353                 drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1354                             ret);
1355         return ret;
1356 }
1357
1358 static
1359 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1360                                  u8 *bstatus)
1361 {
1362         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1363
1364         int ret;
1365         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1366                                    bstatus, DRM_HDCP_BSTATUS_LEN);
1367         if (ret)
1368                 drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1369                             ret);
1370         return ret;
1371 }
1372
1373 static
1374 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1375                                      bool *repeater_present)
1376 {
1377         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1378         int ret;
1379         u8 val;
1380
1381         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1382         if (ret) {
1383                 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1384                             ret);
1385                 return ret;
1386         }
1387         *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1388         return 0;
1389 }
1390
1391 static
1392 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1393                                   u8 *ri_prime)
1394 {
1395         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1396
1397         int ret;
1398         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1399                                    ri_prime, DRM_HDCP_RI_LEN);
1400         if (ret)
1401                 drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1402                             ret);
1403         return ret;
1404 }
1405
1406 static
1407 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1408                                    bool *ksv_ready)
1409 {
1410         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1411         int ret;
1412         u8 val;
1413
1414         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1415         if (ret) {
1416                 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1417                             ret);
1418                 return ret;
1419         }
1420         *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1421         return 0;
1422 }
1423
1424 static
1425 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1426                                   int num_downstream, u8 *ksv_fifo)
1427 {
1428         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1429         int ret;
1430         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1431                                    ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1432         if (ret) {
1433                 drm_dbg_kms(&i915->drm,
1434                             "Read ksv fifo over DDC failed (%d)\n", ret);
1435                 return ret;
1436         }
1437         return 0;
1438 }
1439
1440 static
1441 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1442                                       int i, u32 *part)
1443 {
1444         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1445         int ret;
1446
1447         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1448                 return -EINVAL;
1449
1450         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1451                                    part, DRM_HDCP_V_PRIME_PART_LEN);
1452         if (ret)
1453                 drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1454                             i, ret);
1455         return ret;
1456 }
1457
1458 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1459                                            enum transcoder cpu_transcoder)
1460 {
1461         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1462         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1463         struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1464         u32 scanline;
1465         int ret;
1466
1467         for (;;) {
1468                 scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
1469                 if (scanline > 100 && scanline < 200)
1470                         break;
1471                 usleep_range(25, 50);
1472         }
1473
1474         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1475                                          false, TRANS_DDI_HDCP_SIGNALLING);
1476         if (ret) {
1477                 drm_err(&dev_priv->drm,
1478                         "Disable HDCP signalling failed (%d)\n", ret);
1479                 return ret;
1480         }
1481
1482         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1483                                          true, TRANS_DDI_HDCP_SIGNALLING);
1484         if (ret) {
1485                 drm_err(&dev_priv->drm,
1486                         "Enable HDCP signalling failed (%d)\n", ret);
1487                 return ret;
1488         }
1489
1490         return 0;
1491 }
1492
1493 static
1494 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1495                                       enum transcoder cpu_transcoder,
1496                                       bool enable)
1497 {
1498         struct intel_hdmi *hdmi = &dig_port->hdmi;
1499         struct intel_connector *connector = hdmi->attached_connector;
1500         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1501         int ret;
1502
1503         if (!enable)
1504                 usleep_range(6, 60); /* Bspec says >= 6us */
1505
1506         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1507                                          cpu_transcoder, enable,
1508                                          TRANS_DDI_HDCP_SIGNALLING);
1509         if (ret) {
1510                 drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1511                         enable ? "Enable" : "Disable", ret);
1512                 return ret;
1513         }
1514
1515         /*
1516          * WA: To fix incorrect positioning of the window of
1517          * opportunity and enc_en signalling in KABYLAKE.
1518          */
1519         if (IS_KABYLAKE(dev_priv) && enable)
1520                 return kbl_repositioning_enc_en_signal(connector,
1521                                                        cpu_transcoder);
1522
1523         return 0;
1524 }
1525
1526 static
1527 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1528                                      struct intel_connector *connector)
1529 {
1530         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1531         enum port port = dig_port->base.port;
1532         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1533         int ret;
1534         union {
1535                 u32 reg;
1536                 u8 shim[DRM_HDCP_RI_LEN];
1537         } ri;
1538
1539         ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1540         if (ret)
1541                 return false;
1542
1543         intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1544
1545         /* Wait for Ri prime match */
1546         if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1547                       (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1548                      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1549                 drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1550                         intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1551                                                         port)));
1552                 return false;
1553         }
1554         return true;
1555 }
1556
1557 static
1558 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1559                                 struct intel_connector *connector)
1560 {
1561         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1562         int retry;
1563
1564         for (retry = 0; retry < 3; retry++)
1565                 if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1566                         return true;
1567
1568         drm_err(&i915->drm, "Link check failed\n");
1569         return false;
1570 }
1571
1572 struct hdcp2_hdmi_msg_timeout {
1573         u8 msg_id;
1574         u16 timeout;
1575 };
1576
1577 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1578         { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1579         { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1580         { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1581         { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1582         { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1583 };
1584
1585 static
1586 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1587                                     u8 *rx_status)
1588 {
1589         return intel_hdmi_hdcp_read(dig_port,
1590                                     HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1591                                     rx_status,
1592                                     HDCP_2_2_HDMI_RXSTATUS_LEN);
1593 }
1594
1595 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1596 {
1597         int i;
1598
1599         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1600                 if (is_paired)
1601                         return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1602                 else
1603                         return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1604         }
1605
1606         for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1607                 if (hdcp2_msg_timeout[i].msg_id == msg_id)
1608                         return hdcp2_msg_timeout[i].timeout;
1609         }
1610
1611         return -EINVAL;
1612 }
1613
1614 static int
1615 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1616                               u8 msg_id, bool *msg_ready,
1617                               ssize_t *msg_sz)
1618 {
1619         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1620         u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1621         int ret;
1622
1623         ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1624         if (ret < 0) {
1625                 drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1626                             ret);
1627                 return ret;
1628         }
1629
1630         *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1631                   rx_status[0]);
1632
1633         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1634                 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1635                              *msg_sz);
1636         else
1637                 *msg_ready = *msg_sz;
1638
1639         return 0;
1640 }
1641
1642 static ssize_t
1643 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1644                               u8 msg_id, bool paired)
1645 {
1646         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1647         bool msg_ready = false;
1648         int timeout, ret;
1649         ssize_t msg_sz = 0;
1650
1651         timeout = get_hdcp2_msg_timeout(msg_id, paired);
1652         if (timeout < 0)
1653                 return timeout;
1654
1655         ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1656                                                              msg_id, &msg_ready,
1657                                                              &msg_sz),
1658                          !ret && msg_ready && msg_sz, timeout * 1000,
1659                          1000, 5 * 1000);
1660         if (ret)
1661                 drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1662                             msg_id, ret, timeout);
1663
1664         return ret ? ret : msg_sz;
1665 }
1666
1667 static
1668 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1669                                void *buf, size_t size)
1670 {
1671         unsigned int offset;
1672
1673         offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1674         return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1675 }
1676
1677 static
1678 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1679                               u8 msg_id, void *buf, size_t size)
1680 {
1681         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1682         struct intel_hdmi *hdmi = &dig_port->hdmi;
1683         struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1684         unsigned int offset;
1685         ssize_t ret;
1686
1687         ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1688                                             hdcp->is_paired);
1689         if (ret < 0)
1690                 return ret;
1691
1692         /*
1693          * Available msg size should be equal to or lesser than the
1694          * available buffer.
1695          */
1696         if (ret > size) {
1697                 drm_dbg_kms(&i915->drm,
1698                             "msg_sz(%zd) is more than exp size(%zu)\n",
1699                             ret, size);
1700                 return -EINVAL;
1701         }
1702
1703         offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1704         ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1705         if (ret)
1706                 drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1707                             msg_id, ret);
1708
1709         return ret;
1710 }
1711
1712 static
1713 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1714                                 struct intel_connector *connector)
1715 {
1716         u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1717         int ret;
1718
1719         ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1720         if (ret)
1721                 return ret;
1722
1723         /*
1724          * Re-auth request and Link Integrity Failures are represented by
1725          * same bit. i.e reauth_req.
1726          */
1727         if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1728                 ret = HDCP_REAUTH_REQUEST;
1729         else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1730                 ret = HDCP_TOPOLOGY_CHANGE;
1731
1732         return ret;
1733 }
1734
1735 static
1736 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1737                              bool *capable)
1738 {
1739         u8 hdcp2_version;
1740         int ret;
1741
1742         *capable = false;
1743         ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1744                                    &hdcp2_version, sizeof(hdcp2_version));
1745         if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1746                 *capable = true;
1747
1748         return ret;
1749 }
1750
1751 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1752         .write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1753         .read_bksv = intel_hdmi_hdcp_read_bksv,
1754         .read_bstatus = intel_hdmi_hdcp_read_bstatus,
1755         .repeater_present = intel_hdmi_hdcp_repeater_present,
1756         .read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1757         .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1758         .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1759         .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1760         .toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1761         .check_link = intel_hdmi_hdcp_check_link,
1762         .write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1763         .read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1764         .check_2_2_link = intel_hdmi_hdcp2_check_link,
1765         .hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1766         .protocol = HDCP_PROTOCOL_HDMI,
1767 };
1768
1769 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1770 {
1771         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1772         int max_tmds_clock, vbt_max_tmds_clock;
1773
1774         if (DISPLAY_VER(dev_priv) >= 10)
1775                 max_tmds_clock = 594000;
1776         else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1777                 max_tmds_clock = 300000;
1778         else if (DISPLAY_VER(dev_priv) >= 5)
1779                 max_tmds_clock = 225000;
1780         else
1781                 max_tmds_clock = 165000;
1782
1783         vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata);
1784         if (vbt_max_tmds_clock)
1785                 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1786
1787         return max_tmds_clock;
1788 }
1789
1790 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1791                                 const struct drm_connector_state *conn_state)
1792 {
1793         return hdmi->has_hdmi_sink &&
1794                 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1795 }
1796
1797 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1798 {
1799         return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1800 }
1801
1802 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1803                                  bool respect_downstream_limits,
1804                                  bool has_hdmi_sink)
1805 {
1806         struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1807         int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1808
1809         if (respect_downstream_limits) {
1810                 struct intel_connector *connector = hdmi->attached_connector;
1811                 const struct drm_display_info *info = &connector->base.display_info;
1812
1813                 if (hdmi->dp_dual_mode.max_tmds_clock)
1814                         max_tmds_clock = min(max_tmds_clock,
1815                                              hdmi->dp_dual_mode.max_tmds_clock);
1816
1817                 if (info->max_tmds_clock)
1818                         max_tmds_clock = min(max_tmds_clock,
1819                                              info->max_tmds_clock);
1820                 else if (!has_hdmi_sink)
1821                         max_tmds_clock = min(max_tmds_clock, 165000);
1822         }
1823
1824         return max_tmds_clock;
1825 }
1826
1827 static enum drm_mode_status
1828 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1829                       int clock, bool respect_downstream_limits,
1830                       bool has_hdmi_sink)
1831 {
1832         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1833         enum phy phy = intel_port_to_phy(dev_priv, hdmi_to_dig_port(hdmi)->base.port);
1834
1835         if (clock < 25000)
1836                 return MODE_CLOCK_LOW;
1837         if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1838                                           has_hdmi_sink))
1839                 return MODE_CLOCK_HIGH;
1840
1841         /* GLK DPLL can't generate 446-480 MHz */
1842         if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1843                 return MODE_CLOCK_RANGE;
1844
1845         /* BXT/GLK DPLL can't generate 223-240 MHz */
1846         if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1847             clock > 223333 && clock < 240000)
1848                 return MODE_CLOCK_RANGE;
1849
1850         /* CHV DPLL can't generate 216-240 MHz */
1851         if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1852                 return MODE_CLOCK_RANGE;
1853
1854         /* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1855         if (intel_phy_is_combo(dev_priv, phy) && clock > 500000 && clock < 533200)
1856                 return MODE_CLOCK_RANGE;
1857
1858         /* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1859         if (intel_phy_is_tc(dev_priv, phy) && clock > 500000 && clock < 532800)
1860                 return MODE_CLOCK_RANGE;
1861
1862         /*
1863          * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1864          * set of link rates.
1865          *
1866          * FIXME: We will hopefully get an algorithmic way of programming
1867          * the MPLLB for HDMI in the future.
1868          */
1869         if (DISPLAY_VER(dev_priv) >= 14)
1870                 return intel_cx0_phy_check_hdmi_link_rate(hdmi, clock);
1871         else if (IS_DG2(dev_priv))
1872                 return intel_snps_phy_check_hdmi_link_rate(clock);
1873
1874         return MODE_OK;
1875 }
1876
1877 int intel_hdmi_tmds_clock(int clock, int bpc,
1878                           enum intel_output_format sink_format)
1879 {
1880         /* YCBCR420 TMDS rate requirement is half the pixel clock */
1881         if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1882                 clock /= 2;
1883
1884         /*
1885          * Need to adjust the port link by:
1886          *  1.5x for 12bpc
1887          *  1.25x for 10bpc
1888          */
1889         return DIV_ROUND_CLOSEST(clock * bpc, 8);
1890 }
1891
1892 static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc)
1893 {
1894         switch (bpc) {
1895         case 12:
1896                 return !HAS_GMCH(i915);
1897         case 10:
1898                 return DISPLAY_VER(i915) >= 11;
1899         case 8:
1900                 return true;
1901         default:
1902                 MISSING_CASE(bpc);
1903                 return false;
1904         }
1905 }
1906
1907 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1908                                          int bpc, bool has_hdmi_sink,
1909                                          enum intel_output_format sink_format)
1910 {
1911         const struct drm_display_info *info = &connector->display_info;
1912         const struct drm_hdmi_info *hdmi = &info->hdmi;
1913
1914         switch (bpc) {
1915         case 12:
1916                 if (!has_hdmi_sink)
1917                         return false;
1918
1919                 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1920                         return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1921                 else
1922                         return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1923         case 10:
1924                 if (!has_hdmi_sink)
1925                         return false;
1926
1927                 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1928                         return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1929                 else
1930                         return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1931         case 8:
1932                 return true;
1933         default:
1934                 MISSING_CASE(bpc);
1935                 return false;
1936         }
1937 }
1938
1939 static enum drm_mode_status
1940 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1941                             bool has_hdmi_sink,
1942                             enum intel_output_format sink_format)
1943 {
1944         struct drm_i915_private *i915 = to_i915(connector->dev);
1945         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1946         enum drm_mode_status status = MODE_OK;
1947         int bpc;
1948
1949         /*
1950          * Try all color depths since valid port clock range
1951          * can have holes. Any mode that can be used with at
1952          * least one color depth is accepted.
1953          */
1954         for (bpc = 12; bpc >= 8; bpc -= 2) {
1955                 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
1956
1957                 if (!intel_hdmi_source_bpc_possible(i915, bpc))
1958                         continue;
1959
1960                 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, sink_format))
1961                         continue;
1962
1963                 status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
1964                 if (status == MODE_OK)
1965                         return MODE_OK;
1966         }
1967
1968         /* can never happen */
1969         drm_WARN_ON(&i915->drm, status == MODE_OK);
1970
1971         return status;
1972 }
1973
1974 static enum drm_mode_status
1975 intel_hdmi_mode_valid(struct drm_connector *connector,
1976                       struct drm_display_mode *mode)
1977 {
1978         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1979         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1980         enum drm_mode_status status;
1981         int clock = mode->clock;
1982         int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1983         bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1984         bool ycbcr_420_only;
1985         enum intel_output_format sink_format;
1986
1987         if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1988                 clock *= 2;
1989
1990         if (clock > max_dotclk)
1991                 return MODE_CLOCK_HIGH;
1992
1993         if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1994                 if (!has_hdmi_sink)
1995                         return MODE_CLOCK_LOW;
1996                 clock *= 2;
1997         }
1998
1999         /*
2000          * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2001          * enumerated only if FRL is supported. Current platforms do not support
2002          * FRL so prune the higher resolution modes that require doctclock more
2003          * than 600MHz.
2004          */
2005         if (clock > 600000)
2006                 return MODE_CLOCK_HIGH;
2007
2008         ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2009
2010         if (ycbcr_420_only)
2011                 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2012         else
2013                 sink_format = INTEL_OUTPUT_FORMAT_RGB;
2014
2015         status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2016         if (status != MODE_OK) {
2017                 if (ycbcr_420_only ||
2018                     !connector->ycbcr_420_allowed ||
2019                     !drm_mode_is_420_also(&connector->display_info, mode))
2020                         return status;
2021
2022                 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2023                 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2024                 if (status != MODE_OK)
2025                         return status;
2026         }
2027
2028         return intel_mode_valid_max_plane_size(dev_priv, mode, false);
2029 }
2030
2031 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2032                              int bpc, bool has_hdmi_sink)
2033 {
2034         struct drm_atomic_state *state = crtc_state->uapi.state;
2035         struct drm_connector_state *connector_state;
2036         struct drm_connector *connector;
2037         int i;
2038
2039         for_each_new_connector_in_state(state, connector, connector_state, i) {
2040                 if (connector_state->crtc != crtc_state->uapi.crtc)
2041                         continue;
2042
2043                 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink,
2044                                                   crtc_state->sink_format))
2045                         return false;
2046         }
2047
2048         return true;
2049 }
2050
2051 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2052 {
2053         struct drm_i915_private *dev_priv =
2054                 to_i915(crtc_state->uapi.crtc->dev);
2055         const struct drm_display_mode *adjusted_mode =
2056                 &crtc_state->hw.adjusted_mode;
2057
2058         if (!intel_hdmi_source_bpc_possible(dev_priv, bpc))
2059                 return false;
2060
2061         /* Display Wa_1405510057:icl,ehl */
2062         if (intel_hdmi_is_ycbcr420(crtc_state) &&
2063             bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2064             (adjusted_mode->crtc_hblank_end -
2065              adjusted_mode->crtc_hblank_start) % 8 == 2)
2066                 return false;
2067
2068         return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink);
2069 }
2070
2071 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2072                                   struct intel_crtc_state *crtc_state,
2073                                   int clock, bool respect_downstream_limits)
2074 {
2075         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2076         int bpc;
2077
2078         /*
2079          * pipe_bpp could already be below 8bpc due to FDI
2080          * bandwidth constraints. HDMI minimum is 8bpc however.
2081          */
2082         bpc = max(crtc_state->pipe_bpp / 3, 8);
2083
2084         /*
2085          * We will never exceed downstream TMDS clock limits while
2086          * attempting deep color. If the user insists on forcing an
2087          * out of spec mode they will have to be satisfied with 8bpc.
2088          */
2089         if (!respect_downstream_limits)
2090                 bpc = 8;
2091
2092         for (; bpc >= 8; bpc -= 2) {
2093                 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc,
2094                                                        crtc_state->sink_format);
2095
2096                 if (hdmi_bpc_possible(crtc_state, bpc) &&
2097                     hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2098                                           respect_downstream_limits,
2099                                           crtc_state->has_hdmi_sink) == MODE_OK)
2100                         return bpc;
2101         }
2102
2103         return -EINVAL;
2104 }
2105
2106 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2107                                     struct intel_crtc_state *crtc_state,
2108                                     bool respect_downstream_limits)
2109 {
2110         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2111         const struct drm_display_mode *adjusted_mode =
2112                 &crtc_state->hw.adjusted_mode;
2113         int bpc, clock = adjusted_mode->crtc_clock;
2114
2115         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2116                 clock *= 2;
2117
2118         bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2119                                      respect_downstream_limits);
2120         if (bpc < 0)
2121                 return bpc;
2122
2123         crtc_state->port_clock =
2124                 intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format);
2125
2126         /*
2127          * pipe_bpp could already be below 8bpc due to
2128          * FDI bandwidth constraints. We shouldn't bump it
2129          * back up to the HDMI minimum 8bpc in that case.
2130          */
2131         crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2132
2133         drm_dbg_kms(&i915->drm,
2134                     "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2135                     bpc, crtc_state->pipe_bpp);
2136
2137         return 0;
2138 }
2139
2140 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2141                                     const struct drm_connector_state *conn_state)
2142 {
2143         const struct intel_digital_connector_state *intel_conn_state =
2144                 to_intel_digital_connector_state(conn_state);
2145         const struct drm_display_mode *adjusted_mode =
2146                 &crtc_state->hw.adjusted_mode;
2147
2148         /*
2149          * Our YCbCr output is always limited range.
2150          * crtc_state->limited_color_range only applies to RGB,
2151          * and it must never be set for YCbCr or we risk setting
2152          * some conflicting bits in TRANSCONF which will mess up
2153          * the colors on the monitor.
2154          */
2155         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2156                 return false;
2157
2158         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2159                 /* See CEA-861-E - 5.1 Default Encoding Parameters */
2160                 return crtc_state->has_hdmi_sink &&
2161                         drm_default_rgb_quant_range(adjusted_mode) ==
2162                         HDMI_QUANTIZATION_RANGE_LIMITED;
2163         } else {
2164                 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2165         }
2166 }
2167
2168 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2169                                  const struct intel_crtc_state *crtc_state,
2170                                  const struct drm_connector_state *conn_state)
2171 {
2172         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2173         const struct intel_digital_connector_state *intel_conn_state =
2174                 to_intel_digital_connector_state(conn_state);
2175
2176         if (!crtc_state->has_hdmi_sink)
2177                 return false;
2178
2179         if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2180                 return intel_hdmi->has_audio;
2181         else
2182                 return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2183 }
2184
2185 static enum intel_output_format
2186 intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state,
2187                        struct intel_connector *connector,
2188                        bool ycbcr_420_output)
2189 {
2190         if (!crtc_state->has_hdmi_sink)
2191                 return INTEL_OUTPUT_FORMAT_RGB;
2192
2193         if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2194                 return INTEL_OUTPUT_FORMAT_YCBCR420;
2195         else
2196                 return INTEL_OUTPUT_FORMAT_RGB;
2197 }
2198
2199 static enum intel_output_format
2200 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state)
2201 {
2202         return crtc_state->sink_format;
2203 }
2204
2205 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2206                                             struct intel_crtc_state *crtc_state,
2207                                             const struct drm_connector_state *conn_state,
2208                                             bool respect_downstream_limits)
2209 {
2210         struct intel_connector *connector = to_intel_connector(conn_state->connector);
2211         const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2212         const struct drm_display_info *info = &connector->base.display_info;
2213         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2214         bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2215         int ret;
2216
2217         crtc_state->sink_format =
2218                 intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only);
2219
2220         if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) {
2221                 drm_dbg_kms(&i915->drm,
2222                             "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2223                 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
2224         }
2225
2226         crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2227         ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2228         if (ret) {
2229                 if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2230                     !crtc_state->has_hdmi_sink ||
2231                     !connector->base.ycbcr_420_allowed ||
2232                     !drm_mode_is_420_also(info, adjusted_mode))
2233                         return ret;
2234
2235                 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2236                 crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2237                 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2238         }
2239
2240         return ret;
2241 }
2242
2243 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2244 {
2245         return crtc_state->uapi.encoder_mask &&
2246                 !is_power_of_2(crtc_state->uapi.encoder_mask);
2247 }
2248
2249 static bool source_supports_scrambling(struct intel_encoder *encoder)
2250 {
2251         /*
2252          * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and
2253          * scrambling is supported.
2254          * But there seem to be cases where certain platforms that support
2255          * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is
2256          * capped by VBT to less than 340MHz.
2257          *
2258          * In such cases when an HDMI2.0 sink is connected, it creates a
2259          * problem : the platform and the sink both support scrambling but the
2260          * HDMI 1.4 retimer chip doesn't.
2261          *
2262          * So go for scrambling, based on the max tmds clock taking into account,
2263          * restrictions coming from VBT.
2264          */
2265         return intel_hdmi_source_max_tmds_clock(encoder) > 340000;
2266 }
2267
2268 bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder,
2269                                       const struct intel_crtc_state *crtc_state,
2270                                       const struct drm_connector_state *conn_state)
2271 {
2272         struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
2273
2274         return intel_has_hdmi_sink(hdmi, conn_state) &&
2275                 !intel_hdmi_is_cloned(crtc_state);
2276 }
2277
2278 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2279                               struct intel_crtc_state *pipe_config,
2280                               struct drm_connector_state *conn_state)
2281 {
2282         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2283         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2284         struct drm_connector *connector = conn_state->connector;
2285         struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2286         int ret;
2287
2288         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2289                 return -EINVAL;
2290
2291         if (!connector->interlace_allowed &&
2292             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2293                 return -EINVAL;
2294
2295         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2296
2297         if (pipe_config->has_hdmi_sink)
2298                 pipe_config->has_infoframe = true;
2299
2300         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2301                 pipe_config->pixel_multiplier = 2;
2302
2303         pipe_config->has_audio =
2304                 intel_hdmi_has_audio(encoder, pipe_config, conn_state) &&
2305                 intel_audio_compute_config(encoder, pipe_config, conn_state);
2306
2307         /*
2308          * Try to respect downstream TMDS clock limits first, if
2309          * that fails assume the user might know something we don't.
2310          */
2311         ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2312         if (ret)
2313                 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2314         if (ret) {
2315                 drm_dbg_kms(&dev_priv->drm,
2316                             "unsupported HDMI clock (%d kHz), rejecting mode\n",
2317                             pipe_config->hw.adjusted_mode.crtc_clock);
2318                 return ret;
2319         }
2320
2321         if (intel_hdmi_is_ycbcr420(pipe_config)) {
2322                 ret = intel_panel_fitting(pipe_config, conn_state);
2323                 if (ret)
2324                         return ret;
2325         }
2326
2327         pipe_config->limited_color_range =
2328                 intel_hdmi_limited_color_range(pipe_config, conn_state);
2329
2330         if (conn_state->picture_aspect_ratio)
2331                 adjusted_mode->picture_aspect_ratio =
2332                         conn_state->picture_aspect_ratio;
2333
2334         pipe_config->lane_count = 4;
2335
2336         if (scdc->scrambling.supported && source_supports_scrambling(encoder)) {
2337                 if (scdc->scrambling.low_rates)
2338                         pipe_config->hdmi_scrambling = true;
2339
2340                 if (pipe_config->port_clock > 340000) {
2341                         pipe_config->hdmi_scrambling = true;
2342                         pipe_config->hdmi_high_tmds_clock_ratio = true;
2343                 }
2344         }
2345
2346         intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2347                                          conn_state);
2348
2349         if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2350                 drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2351                 return -EINVAL;
2352         }
2353
2354         if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2355                 drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2356                 return -EINVAL;
2357         }
2358
2359         if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2360                 drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2361                 return -EINVAL;
2362         }
2363
2364         if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2365                 drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2366                 return -EINVAL;
2367         }
2368
2369         return 0;
2370 }
2371
2372 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2373 {
2374         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2375
2376         /*
2377          * Give a hand to buggy BIOSen which forget to turn
2378          * the TMDS output buffers back on after a reboot.
2379          */
2380         intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2381 }
2382
2383 static void
2384 intel_hdmi_unset_edid(struct drm_connector *connector)
2385 {
2386         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2387
2388         intel_hdmi->has_hdmi_sink = false;
2389         intel_hdmi->has_audio = false;
2390
2391         intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2392         intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2393
2394         drm_edid_free(to_intel_connector(connector)->detect_edid);
2395         to_intel_connector(connector)->detect_edid = NULL;
2396 }
2397
2398 static void
2399 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
2400 {
2401         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2402         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2403         struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2404         struct i2c_adapter *adapter =
2405                 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2406         enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2407
2408         /*
2409          * Type 1 DVI adaptors are not required to implement any
2410          * registers, so we can't always detect their presence.
2411          * Ideally we should be able to check the state of the
2412          * CONFIG1 pin, but no such luck on our hardware.
2413          *
2414          * The only method left to us is to check the VBT to see
2415          * if the port is a dual mode capable DP port.
2416          */
2417         if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2418                 if (!connector->force &&
2419                     intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2420                         drm_dbg_kms(&dev_priv->drm,
2421                                     "Assuming DP dual mode adaptor presence based on VBT\n");
2422                         type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2423                 } else {
2424                         type = DRM_DP_DUAL_MODE_NONE;
2425                 }
2426         }
2427
2428         if (type == DRM_DP_DUAL_MODE_NONE)
2429                 return;
2430
2431         hdmi->dp_dual_mode.type = type;
2432         hdmi->dp_dual_mode.max_tmds_clock =
2433                 drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2434
2435         drm_dbg_kms(&dev_priv->drm,
2436                     "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2437                     drm_dp_get_dual_mode_type_name(type),
2438                     hdmi->dp_dual_mode.max_tmds_clock);
2439
2440         /* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2441         if ((DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) &&
2442             !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2443                 drm_dbg_kms(&dev_priv->drm,
2444                             "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2445                 hdmi->dp_dual_mode.max_tmds_clock = 0;
2446         }
2447 }
2448
2449 static bool
2450 intel_hdmi_set_edid(struct drm_connector *connector)
2451 {
2452         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2453         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2454         intel_wakeref_t wakeref;
2455         const struct drm_edid *drm_edid;
2456         const struct edid *edid;
2457         bool connected = false;
2458         struct i2c_adapter *i2c;
2459
2460         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2461
2462         i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2463
2464         drm_edid = drm_edid_read_ddc(connector, i2c);
2465
2466         if (!drm_edid && !intel_gmbus_is_forced_bit(i2c)) {
2467                 drm_dbg_kms(&dev_priv->drm,
2468                             "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2469                 intel_gmbus_force_bit(i2c, true);
2470                 drm_edid = drm_edid_read_ddc(connector, i2c);
2471                 intel_gmbus_force_bit(i2c, false);
2472         }
2473
2474         /* Below we depend on display info having been updated */
2475         drm_edid_connector_update(connector, drm_edid);
2476
2477         to_intel_connector(connector)->detect_edid = drm_edid;
2478
2479         /* FIXME: Get rid of drm_edid_raw() */
2480         edid = drm_edid_raw(drm_edid);
2481         if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2482                 intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2483                 intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2484
2485                 intel_hdmi_dp_dual_mode_detect(connector);
2486
2487                 connected = true;
2488         }
2489
2490         intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2491
2492         cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2493
2494         return connected;
2495 }
2496
2497 static enum drm_connector_status
2498 intel_hdmi_detect(struct drm_connector *connector, bool force)
2499 {
2500         enum drm_connector_status status = connector_status_disconnected;
2501         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2502         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2503         struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2504         intel_wakeref_t wakeref;
2505
2506         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2507                     connector->base.id, connector->name);
2508
2509         if (!INTEL_DISPLAY_ENABLED(dev_priv))
2510                 return connector_status_disconnected;
2511
2512         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2513
2514         if (DISPLAY_VER(dev_priv) >= 11 &&
2515             !intel_digital_port_connected(encoder))
2516                 goto out;
2517
2518         intel_hdmi_unset_edid(connector);
2519
2520         if (intel_hdmi_set_edid(connector))
2521                 status = connector_status_connected;
2522
2523 out:
2524         intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2525
2526         if (status != connector_status_connected)
2527                 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2528
2529         /*
2530          * Make sure the refs for power wells enabled during detect are
2531          * dropped to avoid a new detect cycle triggered by HPD polling.
2532          */
2533         intel_display_power_flush_work(dev_priv);
2534
2535         return status;
2536 }
2537
2538 static void
2539 intel_hdmi_force(struct drm_connector *connector)
2540 {
2541         struct drm_i915_private *i915 = to_i915(connector->dev);
2542
2543         drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2544                     connector->base.id, connector->name);
2545
2546         intel_hdmi_unset_edid(connector);
2547
2548         if (connector->status != connector_status_connected)
2549                 return;
2550
2551         intel_hdmi_set_edid(connector);
2552 }
2553
2554 static int intel_hdmi_get_modes(struct drm_connector *connector)
2555 {
2556         /* drm_edid_connector_update() done in ->detect() or ->force() */
2557         return drm_edid_connector_add_modes(connector);
2558 }
2559
2560 static struct i2c_adapter *
2561 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2562 {
2563         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2564         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2565
2566         return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2567 }
2568
2569 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2570 {
2571         struct drm_i915_private *i915 = to_i915(connector->dev);
2572         struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2573         struct kobject *i2c_kobj = &adapter->dev.kobj;
2574         struct kobject *connector_kobj = &connector->kdev->kobj;
2575         int ret;
2576
2577         ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2578         if (ret)
2579                 drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2580 }
2581
2582 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2583 {
2584         struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2585         struct kobject *i2c_kobj = &adapter->dev.kobj;
2586         struct kobject *connector_kobj = &connector->kdev->kobj;
2587
2588         sysfs_remove_link(connector_kobj, i2c_kobj->name);
2589 }
2590
2591 static int
2592 intel_hdmi_connector_register(struct drm_connector *connector)
2593 {
2594         int ret;
2595
2596         ret = intel_connector_register(connector);
2597         if (ret)
2598                 return ret;
2599
2600         intel_hdmi_create_i2c_symlink(connector);
2601
2602         return ret;
2603 }
2604
2605 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2606 {
2607         struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2608
2609         cec_notifier_conn_unregister(n);
2610
2611         intel_hdmi_remove_i2c_symlink(connector);
2612         intel_connector_unregister(connector);
2613 }
2614
2615 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2616         .detect = intel_hdmi_detect,
2617         .force = intel_hdmi_force,
2618         .fill_modes = drm_helper_probe_single_connector_modes,
2619         .atomic_get_property = intel_digital_connector_atomic_get_property,
2620         .atomic_set_property = intel_digital_connector_atomic_set_property,
2621         .late_register = intel_hdmi_connector_register,
2622         .early_unregister = intel_hdmi_connector_unregister,
2623         .destroy = intel_connector_destroy,
2624         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2625         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
2626 };
2627
2628 static int intel_hdmi_connector_atomic_check(struct drm_connector *connector,
2629                                              struct drm_atomic_state *state)
2630 {
2631         struct drm_i915_private *i915 = to_i915(state->dev);
2632
2633         if (HAS_DDI(i915))
2634                 return intel_digital_connector_atomic_check(connector, state);
2635         else
2636                 return g4x_hdmi_connector_atomic_check(connector, state);
2637 }
2638
2639 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2640         .get_modes = intel_hdmi_get_modes,
2641         .mode_valid = intel_hdmi_mode_valid,
2642         .atomic_check = intel_hdmi_connector_atomic_check,
2643 };
2644
2645 static void
2646 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2647 {
2648         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2649
2650         intel_attach_force_audio_property(connector);
2651         intel_attach_broadcast_rgb_property(connector);
2652         intel_attach_aspect_ratio_property(connector);
2653
2654         intel_attach_hdmi_colorspace_property(connector);
2655         drm_connector_attach_content_type_property(connector);
2656
2657         if (DISPLAY_VER(dev_priv) >= 10)
2658                 drm_connector_attach_hdr_output_metadata_property(connector);
2659
2660         if (!HAS_GMCH(dev_priv))
2661                 drm_connector_attach_max_bpc_property(connector, 8, 12);
2662 }
2663
2664 /*
2665  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2666  * @encoder: intel_encoder
2667  * @connector: drm_connector
2668  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2669  *  or reset the high tmds clock ratio for scrambling
2670  * @scrambling: bool to Indicate if the function needs to set or reset
2671  *  sink scrambling
2672  *
2673  * This function handles scrambling on HDMI 2.0 capable sinks.
2674  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2675  * it enables scrambling. This should be called before enabling the HDMI
2676  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2677  * detect a scrambled clock within 100 ms.
2678  *
2679  * Returns:
2680  * True on success, false on failure.
2681  */
2682 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2683                                        struct drm_connector *connector,
2684                                        bool high_tmds_clock_ratio,
2685                                        bool scrambling)
2686 {
2687         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2688         struct drm_scrambling *sink_scrambling =
2689                 &connector->display_info.hdmi.scdc.scrambling;
2690
2691         if (!sink_scrambling->supported)
2692                 return true;
2693
2694         drm_dbg_kms(&dev_priv->drm,
2695                     "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2696                     connector->base.id, connector->name,
2697                     str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2698
2699         /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2700         return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) &&
2701                 drm_scdc_set_scrambling(connector, scrambling);
2702 }
2703
2704 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2705 {
2706         u8 ddc_pin;
2707
2708         switch (port) {
2709         case PORT_B:
2710                 ddc_pin = GMBUS_PIN_DPB;
2711                 break;
2712         case PORT_C:
2713                 ddc_pin = GMBUS_PIN_DPC;
2714                 break;
2715         case PORT_D:
2716                 ddc_pin = GMBUS_PIN_DPD_CHV;
2717                 break;
2718         default:
2719                 MISSING_CASE(port);
2720                 ddc_pin = GMBUS_PIN_DPB;
2721                 break;
2722         }
2723         return ddc_pin;
2724 }
2725
2726 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2727 {
2728         u8 ddc_pin;
2729
2730         switch (port) {
2731         case PORT_B:
2732                 ddc_pin = GMBUS_PIN_1_BXT;
2733                 break;
2734         case PORT_C:
2735                 ddc_pin = GMBUS_PIN_2_BXT;
2736                 break;
2737         default:
2738                 MISSING_CASE(port);
2739                 ddc_pin = GMBUS_PIN_1_BXT;
2740                 break;
2741         }
2742         return ddc_pin;
2743 }
2744
2745 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2746                               enum port port)
2747 {
2748         u8 ddc_pin;
2749
2750         switch (port) {
2751         case PORT_B:
2752                 ddc_pin = GMBUS_PIN_1_BXT;
2753                 break;
2754         case PORT_C:
2755                 ddc_pin = GMBUS_PIN_2_BXT;
2756                 break;
2757         case PORT_D:
2758                 ddc_pin = GMBUS_PIN_4_CNP;
2759                 break;
2760         case PORT_F:
2761                 ddc_pin = GMBUS_PIN_3_BXT;
2762                 break;
2763         default:
2764                 MISSING_CASE(port);
2765                 ddc_pin = GMBUS_PIN_1_BXT;
2766                 break;
2767         }
2768         return ddc_pin;
2769 }
2770
2771 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2772 {
2773         enum phy phy = intel_port_to_phy(dev_priv, port);
2774
2775         if (intel_phy_is_combo(dev_priv, phy))
2776                 return GMBUS_PIN_1_BXT + port;
2777         else if (intel_phy_is_tc(dev_priv, phy))
2778                 return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2779
2780         drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2781         return GMBUS_PIN_2_BXT;
2782 }
2783
2784 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2785 {
2786         enum phy phy = intel_port_to_phy(dev_priv, port);
2787         u8 ddc_pin;
2788
2789         switch (phy) {
2790         case PHY_A:
2791                 ddc_pin = GMBUS_PIN_1_BXT;
2792                 break;
2793         case PHY_B:
2794                 ddc_pin = GMBUS_PIN_2_BXT;
2795                 break;
2796         case PHY_C:
2797                 ddc_pin = GMBUS_PIN_9_TC1_ICP;
2798                 break;
2799         default:
2800                 MISSING_CASE(phy);
2801                 ddc_pin = GMBUS_PIN_1_BXT;
2802                 break;
2803         }
2804         return ddc_pin;
2805 }
2806
2807 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2808 {
2809         enum phy phy = intel_port_to_phy(dev_priv, port);
2810
2811         WARN_ON(port == PORT_C);
2812
2813         /*
2814          * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2815          * final two outputs use type-c pins, even though they're actually
2816          * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2817          * all outputs.
2818          */
2819         if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2820                 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2821
2822         return GMBUS_PIN_1_BXT + phy;
2823 }
2824
2825 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2826 {
2827         enum phy phy = intel_port_to_phy(i915, port);
2828
2829         drm_WARN_ON(&i915->drm, port == PORT_A);
2830
2831         /*
2832          * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2833          * final two outputs use type-c pins, even though they're actually
2834          * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2835          * all outputs.
2836          */
2837         if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2838                 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2839
2840         return GMBUS_PIN_1_BXT + phy;
2841 }
2842
2843 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2844 {
2845         return intel_port_to_phy(dev_priv, port) + 1;
2846 }
2847
2848 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2849 {
2850         enum phy phy = intel_port_to_phy(dev_priv, port);
2851
2852         WARN_ON(port == PORT_B || port == PORT_C);
2853
2854         /*
2855          * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2856          * except first combo output.
2857          */
2858         if (phy == PHY_A)
2859                 return GMBUS_PIN_1_BXT;
2860
2861         return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2862 }
2863
2864 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2865                               enum port port)
2866 {
2867         u8 ddc_pin;
2868
2869         switch (port) {
2870         case PORT_B:
2871                 ddc_pin = GMBUS_PIN_DPB;
2872                 break;
2873         case PORT_C:
2874                 ddc_pin = GMBUS_PIN_DPC;
2875                 break;
2876         case PORT_D:
2877                 ddc_pin = GMBUS_PIN_DPD;
2878                 break;
2879         default:
2880                 MISSING_CASE(port);
2881                 ddc_pin = GMBUS_PIN_DPB;
2882                 break;
2883         }
2884         return ddc_pin;
2885 }
2886
2887 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2888 {
2889         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2890         enum port port = encoder->port;
2891         u8 ddc_pin;
2892
2893         ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata);
2894         if (ddc_pin) {
2895                 drm_dbg_kms(&dev_priv->drm,
2896                             "[ENCODER:%d:%s] Using DDC pin 0x%x (VBT)\n",
2897                             encoder->base.base.id, encoder->base.name,
2898                             ddc_pin);
2899                 return ddc_pin;
2900         }
2901
2902         if (IS_ALDERLAKE_S(dev_priv))
2903                 ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2904         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2905                 ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2906         else if (IS_ROCKETLAKE(dev_priv))
2907                 ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2908         else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2909                 ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2910         else if (IS_JSL_EHL(dev_priv) && HAS_PCH_TGP(dev_priv))
2911                 ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2912         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2913                 ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2914         else if (HAS_PCH_CNP(dev_priv))
2915                 ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2916         else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2917                 ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2918         else if (IS_CHERRYVIEW(dev_priv))
2919                 ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2920         else
2921                 ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2922
2923         drm_dbg_kms(&dev_priv->drm,
2924                     "[ENCODER:%d:%s] Using DDC pin 0x%x (platform default)\n",
2925                     encoder->base.base.id, encoder->base.name,
2926                     ddc_pin);
2927
2928         return ddc_pin;
2929 }
2930
2931 void intel_infoframe_init(struct intel_digital_port *dig_port)
2932 {
2933         struct drm_i915_private *dev_priv =
2934                 to_i915(dig_port->base.base.dev);
2935
2936         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2937                 dig_port->write_infoframe = vlv_write_infoframe;
2938                 dig_port->read_infoframe = vlv_read_infoframe;
2939                 dig_port->set_infoframes = vlv_set_infoframes;
2940                 dig_port->infoframes_enabled = vlv_infoframes_enabled;
2941         } else if (IS_G4X(dev_priv)) {
2942                 dig_port->write_infoframe = g4x_write_infoframe;
2943                 dig_port->read_infoframe = g4x_read_infoframe;
2944                 dig_port->set_infoframes = g4x_set_infoframes;
2945                 dig_port->infoframes_enabled = g4x_infoframes_enabled;
2946         } else if (HAS_DDI(dev_priv)) {
2947                 if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) {
2948                         dig_port->write_infoframe = lspcon_write_infoframe;
2949                         dig_port->read_infoframe = lspcon_read_infoframe;
2950                         dig_port->set_infoframes = lspcon_set_infoframes;
2951                         dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2952                 } else {
2953                         dig_port->write_infoframe = hsw_write_infoframe;
2954                         dig_port->read_infoframe = hsw_read_infoframe;
2955                         dig_port->set_infoframes = hsw_set_infoframes;
2956                         dig_port->infoframes_enabled = hsw_infoframes_enabled;
2957                 }
2958         } else if (HAS_PCH_IBX(dev_priv)) {
2959                 dig_port->write_infoframe = ibx_write_infoframe;
2960                 dig_port->read_infoframe = ibx_read_infoframe;
2961                 dig_port->set_infoframes = ibx_set_infoframes;
2962                 dig_port->infoframes_enabled = ibx_infoframes_enabled;
2963         } else {
2964                 dig_port->write_infoframe = cpt_write_infoframe;
2965                 dig_port->read_infoframe = cpt_read_infoframe;
2966                 dig_port->set_infoframes = cpt_set_infoframes;
2967                 dig_port->infoframes_enabled = cpt_infoframes_enabled;
2968         }
2969 }
2970
2971 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2972                                struct intel_connector *intel_connector)
2973 {
2974         struct drm_connector *connector = &intel_connector->base;
2975         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2976         struct intel_encoder *intel_encoder = &dig_port->base;
2977         struct drm_device *dev = intel_encoder->base.dev;
2978         struct drm_i915_private *dev_priv = to_i915(dev);
2979         struct i2c_adapter *ddc;
2980         enum port port = intel_encoder->port;
2981         struct cec_connector_info conn_info;
2982
2983         drm_dbg_kms(&dev_priv->drm,
2984                     "Adding HDMI connector on [ENCODER:%d:%s]\n",
2985                     intel_encoder->base.base.id, intel_encoder->base.name);
2986
2987         if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2988                 return;
2989
2990         if (drm_WARN(dev, dig_port->max_lanes < 4,
2991                      "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2992                      dig_port->max_lanes, intel_encoder->base.base.id,
2993                      intel_encoder->base.name))
2994                 return;
2995
2996         intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2997         ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2998
2999         drm_connector_init_with_ddc(dev, connector,
3000                                     &intel_hdmi_connector_funcs,
3001                                     DRM_MODE_CONNECTOR_HDMIA,
3002                                     ddc);
3003         drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3004
3005         if (DISPLAY_VER(dev_priv) < 12)
3006                 connector->interlace_allowed = true;
3007
3008         connector->stereo_allowed = true;
3009
3010         if (DISPLAY_VER(dev_priv) >= 10)
3011                 connector->ycbcr_420_allowed = true;
3012
3013         intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3014
3015         if (HAS_DDI(dev_priv))
3016                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3017         else
3018                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3019
3020         intel_hdmi_add_properties(intel_hdmi, connector);
3021
3022         intel_connector_attach_encoder(intel_connector, intel_encoder);
3023         intel_hdmi->attached_connector = intel_connector;
3024
3025         if (is_hdcp_supported(dev_priv, port)) {
3026                 int ret = intel_hdcp_init(intel_connector, dig_port,
3027                                           &intel_hdmi_hdcp_shim);
3028                 if (ret)
3029                         drm_dbg_kms(&dev_priv->drm,
3030                                     "HDCP init failed, skipping.\n");
3031         }
3032
3033         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3034          * 0xd.  Failure to do so will result in spurious interrupts being
3035          * generated on the port when a cable is not attached.
3036          */
3037         if (IS_G45(dev_priv)) {
3038                 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
3039                 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
3040                                (temp & ~0xf) | 0xd);
3041         }
3042
3043         cec_fill_conn_info_from_drm(&conn_info, connector);
3044
3045         intel_hdmi->cec_notifier =
3046                 cec_notifier_conn_register(dev->dev, port_identifier(port),
3047                                            &conn_info);
3048         if (!intel_hdmi->cec_notifier)
3049                 drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
3050 }
3051
3052 /*
3053  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3054  * @vactive: Vactive of a display mode
3055  *
3056  * @return: appropriate dsc slice height for a given mode.
3057  */
3058 int intel_hdmi_dsc_get_slice_height(int vactive)
3059 {
3060         int slice_height;
3061
3062         /*
3063          * Slice Height determination : HDMI2.1 Section 7.7.5.2
3064          * Select smallest slice height >=96, that results in a valid PPS and
3065          * requires minimum padding lines required for final slice.
3066          *
3067          * Assumption : Vactive is even.
3068          */
3069         for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3070                 if (vactive % slice_height == 0)
3071                         return slice_height;
3072
3073         return 0;
3074 }
3075
3076 /*
3077  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3078  * and dsc decoder capabilities
3079  *
3080  * @crtc_state: intel crtc_state
3081  * @src_max_slices: maximum slices supported by the DSC encoder
3082  * @src_max_slice_width: maximum slice width supported by DSC encoder
3083  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3084  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3085  *
3086  * @return: num of dsc slices that can be supported by the dsc encoder
3087  * and decoder.
3088  */
3089 int
3090 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3091                               int src_max_slices, int src_max_slice_width,
3092                               int hdmi_max_slices, int hdmi_throughput)
3093 {
3094 /* Pixel rates in KPixels/sec */
3095 #define HDMI_DSC_PEAK_PIXEL_RATE                2720000
3096 /*
3097  * Rates at which the source and sink are required to process pixels in each
3098  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3099  */
3100 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0           340000
3101 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1           400000
3102
3103 /* Spec limits the slice width to 2720 pixels */
3104 #define MAX_HDMI_SLICE_WIDTH                    2720
3105         int kslice_adjust;
3106         int adjusted_clk_khz;
3107         int min_slices;
3108         int target_slices;
3109         int max_throughput; /* max clock freq. in khz per slice */
3110         int max_slice_width;
3111         int slice_width;
3112         int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3113
3114         if (!hdmi_throughput)
3115                 return 0;
3116
3117         /*
3118          * Slice Width determination : HDMI2.1 Section 7.7.5.1
3119          * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3120          * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3121          * dividing adjusted clock value by 10.
3122          */
3123         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3124             crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3125                 kslice_adjust = 10;
3126         else
3127                 kslice_adjust = 5;
3128
3129         /*
3130          * As per spec, the rate at which the source and the sink process
3131          * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3132          * This depends upon the pixel clock rate and output formats
3133          * (kslice adjust).
3134          * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3135          * at max 340MHz, otherwise they can be processed at max 400MHz.
3136          */
3137
3138         adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3139
3140         if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3141                 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3142         else
3143                 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3144
3145         /*
3146          * Taking into account the sink's capability for maximum
3147          * clock per slice (in MHz) as read from HF-VSDB.
3148          */
3149         max_throughput = min(max_throughput, hdmi_throughput * 1000);
3150
3151         min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3152         max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3153
3154         /*
3155          * Keep on increasing the num of slices/line, starting from min_slices
3156          * per line till we get such a number, for which the slice_width is
3157          * just less than max_slice_width. The slices/line selected should be
3158          * less than or equal to the max horizontal slices that the combination
3159          * of PCON encoder and HDMI decoder can support.
3160          */
3161         slice_width = max_slice_width;
3162
3163         do {
3164                 if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3165                         target_slices = 1;
3166                 else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3167                         target_slices = 2;
3168                 else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3169                         target_slices = 4;
3170                 else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3171                         target_slices = 8;
3172                 else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3173                         target_slices = 12;
3174                 else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3175                         target_slices = 16;
3176                 else
3177                         return 0;
3178
3179                 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3180                 if (slice_width >= max_slice_width)
3181                         min_slices = target_slices + 1;
3182         } while (slice_width >= max_slice_width);
3183
3184         return target_slices;
3185 }
3186
3187 /*
3188  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3189  * source and sink capabilities.
3190  *
3191  * @src_fraction_bpp: fractional bpp supported by the source
3192  * @slice_width: dsc slice width supported by the source and sink
3193  * @num_slices: num of slices supported by the source and sink
3194  * @output_format: video output format
3195  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3196  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3197  *
3198  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3199  */
3200 int
3201 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3202                        int output_format, bool hdmi_all_bpp,
3203                        int hdmi_max_chunk_bytes)
3204 {
3205         int max_dsc_bpp, min_dsc_bpp;
3206         int target_bytes;
3207         bool bpp_found = false;
3208         int bpp_decrement_x16;
3209         int bpp_target;
3210         int bpp_target_x16;
3211
3212         /*
3213          * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3214          * Start with the max bpp and keep on decrementing with
3215          * fractional bpp, if supported by PCON DSC encoder
3216          *
3217          * for each bpp we check if no of bytes can be supported by HDMI sink
3218          */
3219
3220         /* Assuming: bpc as 8*/
3221         if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3222                 min_dsc_bpp = 6;
3223                 max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3224         } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3225                    output_format == INTEL_OUTPUT_FORMAT_RGB) {
3226                 min_dsc_bpp = 8;
3227                 max_dsc_bpp = 3 * 8; /* 3*bpc */
3228         } else {
3229                 /* Assuming 4:2:2 encoding */
3230                 min_dsc_bpp = 7;
3231                 max_dsc_bpp = 2 * 8; /* 2*bpc */
3232         }
3233
3234         /*
3235          * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3236          * Section 7.7.34 : Source shall not enable compressed Video
3237          * Transport with bpp_target settings above 12 bpp unless
3238          * DSC_all_bpp is set to 1.
3239          */
3240         if (!hdmi_all_bpp)
3241                 max_dsc_bpp = min(max_dsc_bpp, 12);
3242
3243         /*
3244          * The Sink has a limit of compressed data in bytes for a scanline,
3245          * as described in max_chunk_bytes field in HFVSDB block of edid.
3246          * The no. of bytes depend on the target bits per pixel that the
3247          * source configures. So we start with the max_bpp and calculate
3248          * the target_chunk_bytes. We keep on decrementing the target_bpp,
3249          * till we get the target_chunk_bytes just less than what the sink's
3250          * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3251          *
3252          * The decrement is according to the fractional support from PCON DSC
3253          * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3254          *
3255          * bpp_target_x16 = bpp_target * 16
3256          * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3257          * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3258          */
3259
3260         bpp_target = max_dsc_bpp;
3261
3262         /* src does not support fractional bpp implies decrement by 16 for bppx16 */
3263         if (!src_fractional_bpp)
3264                 src_fractional_bpp = 1;
3265         bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3266         bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3267
3268         while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3269                 int bpp;
3270
3271                 bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3272                 target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3273                 if (target_bytes <= hdmi_max_chunk_bytes) {
3274                         bpp_found = true;
3275                         break;
3276                 }
3277                 bpp_target_x16 -= bpp_decrement_x16;
3278         }
3279         if (bpp_found)
3280                 return bpp_target_x16;
3281
3282         return 0;
3283 }