Merge tag 'printk-for-5.8-kdb-nmi' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / display / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43
44 #include "i915_debugfs.h"
45 #include "i915_drv.h"
46 #include "i915_trace.h"
47 #include "intel_atomic.h"
48 #include "intel_audio.h"
49 #include "intel_connector.h"
50 #include "intel_ddi.h"
51 #include "intel_display_types.h"
52 #include "intel_dp.h"
53 #include "intel_dp_link_training.h"
54 #include "intel_dp_mst.h"
55 #include "intel_dpio_phy.h"
56 #include "intel_fifo_underrun.h"
57 #include "intel_hdcp.h"
58 #include "intel_hdmi.h"
59 #include "intel_hotplug.h"
60 #include "intel_lspcon.h"
61 #include "intel_lvds.h"
62 #include "intel_panel.h"
63 #include "intel_psr.h"
64 #include "intel_sideband.h"
65 #include "intel_tc.h"
66 #include "intel_vdsc.h"
67
68 #define DP_DPRX_ESI_LEN 14
69
70 /* DP DSC throughput values used for slice count calculations KPixels/s */
71 #define DP_DSC_PEAK_PIXEL_RATE                  2720000
72 #define DP_DSC_MAX_ENC_THROUGHPUT_0             340000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_1             400000
74
75 /* DP DSC FEC Overhead factor = 1/(0.972261) */
76 #define DP_DSC_FEC_OVERHEAD_FACTOR              972261
77
78 /* Compliance test status bits  */
79 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
80 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
81 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83
84 struct dp_link_dpll {
85         int clock;
86         struct dpll dpll;
87 };
88
89 static const struct dp_link_dpll g4x_dpll[] = {
90         { 162000,
91                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
92         { 270000,
93                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
94 };
95
96 static const struct dp_link_dpll pch_dpll[] = {
97         { 162000,
98                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
99         { 270000,
100                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
101 };
102
103 static const struct dp_link_dpll vlv_dpll[] = {
104         { 162000,
105                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
106         { 270000,
107                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
108 };
109
110 /*
111  * CHV supports eDP 1.4 that have  more link rates.
112  * Below only provides the fixed rate but exclude variable rate.
113  */
114 static const struct dp_link_dpll chv_dpll[] = {
115         /*
116          * CHV requires to program fractional division for m2.
117          * m2 is stored in fixed point format using formula below
118          * (m2_int << 22) | m2_fraction
119          */
120         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
121                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
122         { 270000,       /* m2_int = 27, m2_fraction = 0 */
123                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
124 };
125
126 /* Constants for DP DSC configurations */
127 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
128
129 /* With Single pipe configuration, HW is capable of supporting maximum
130  * of 4 slices per line.
131  */
132 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
133
134 /**
135  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
136  * @intel_dp: DP struct
137  *
138  * If a CPU or PCH DP output is attached to an eDP panel, this function
139  * will return true, and false otherwise.
140  */
141 bool intel_dp_is_edp(struct intel_dp *intel_dp)
142 {
143         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
144
145         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
146 }
147
148 static void intel_dp_link_down(struct intel_encoder *encoder,
149                                const struct intel_crtc_state *old_crtc_state);
150 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
151 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
152 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
153                                            const struct intel_crtc_state *crtc_state);
154 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
155                                       enum pipe pipe);
156 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
157
158 /* update sink rates from dpcd */
159 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
160 {
161         static const int dp_rates[] = {
162                 162000, 270000, 540000, 810000
163         };
164         int i, max_rate;
165
166         if (drm_dp_has_quirk(&intel_dp->desc, 0,
167                              DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
168                 /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
169                 static const int quirk_rates[] = { 162000, 270000, 324000 };
170
171                 memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
172                 intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
173
174                 return;
175         }
176
177         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
178
179         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
180                 if (dp_rates[i] > max_rate)
181                         break;
182                 intel_dp->sink_rates[i] = dp_rates[i];
183         }
184
185         intel_dp->num_sink_rates = i;
186 }
187
188 /* Get length of rates array potentially limited by max_rate. */
189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
190 {
191         int i;
192
193         /* Limit results by potentially reduced max rate */
194         for (i = 0; i < len; i++) {
195                 if (rates[len - i - 1] <= max_rate)
196                         return len - i;
197         }
198
199         return 0;
200 }
201
202 /* Get length of common rates array potentially limited by max_rate. */
203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
204                                           int max_rate)
205 {
206         return intel_dp_rate_limit_len(intel_dp->common_rates,
207                                        intel_dp->num_common_rates, max_rate);
208 }
209
210 /* Theoretical max between source and sink */
211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
212 {
213         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
214 }
215
216 /* Theoretical max between source and sink */
217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
218 {
219         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
220         int source_max = intel_dig_port->max_lanes;
221         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
222         int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
223
224         return min3(source_max, sink_max, fia_max);
225 }
226
227 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
228 {
229         return intel_dp->max_link_lane_count;
230 }
231
232 int
233 intel_dp_link_required(int pixel_clock, int bpp)
234 {
235         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
236         return DIV_ROUND_UP(pixel_clock * bpp, 8);
237 }
238
239 int
240 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
241 {
242         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
243          * link rate that is generally expressed in Gbps. Since, 8 bits of data
244          * is transmitted every LS_Clk per lane, there is no need to account for
245          * the channel encoding that is done in the PHY layer here.
246          */
247
248         return max_link_clock * max_lanes;
249 }
250
251 static int
252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
253 {
254         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
255         struct intel_encoder *encoder = &intel_dig_port->base;
256         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
257         int max_dotclk = dev_priv->max_dotclk_freq;
258         int ds_max_dotclk;
259
260         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
261
262         if (type != DP_DS_PORT_TYPE_VGA)
263                 return max_dotclk;
264
265         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
266                                                     intel_dp->downstream_ports);
267
268         if (ds_max_dotclk != 0)
269                 max_dotclk = min(max_dotclk, ds_max_dotclk);
270
271         return max_dotclk;
272 }
273
274 static int cnl_max_source_rate(struct intel_dp *intel_dp)
275 {
276         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
277         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
278         enum port port = dig_port->base.port;
279
280         u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
281
282         /* Low voltage SKUs are limited to max of 5.4G */
283         if (voltage == VOLTAGE_INFO_0_85V)
284                 return 540000;
285
286         /* For this SKU 8.1G is supported in all ports */
287         if (IS_CNL_WITH_PORT_F(dev_priv))
288                 return 810000;
289
290         /* For other SKUs, max rate on ports A and D is 5.4G */
291         if (port == PORT_A || port == PORT_D)
292                 return 540000;
293
294         return 810000;
295 }
296
297 static int icl_max_source_rate(struct intel_dp *intel_dp)
298 {
299         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
300         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
301         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
302
303         if (intel_phy_is_combo(dev_priv, phy) &&
304             !IS_ELKHARTLAKE(dev_priv) &&
305             !intel_dp_is_edp(intel_dp))
306                 return 540000;
307
308         return 810000;
309 }
310
311 static void
312 intel_dp_set_source_rates(struct intel_dp *intel_dp)
313 {
314         /* The values must be in increasing order */
315         static const int cnl_rates[] = {
316                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
317         };
318         static const int bxt_rates[] = {
319                 162000, 216000, 243000, 270000, 324000, 432000, 540000
320         };
321         static const int skl_rates[] = {
322                 162000, 216000, 270000, 324000, 432000, 540000
323         };
324         static const int hsw_rates[] = {
325                 162000, 270000, 540000
326         };
327         static const int g4x_rates[] = {
328                 162000, 270000
329         };
330         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
331         struct intel_encoder *encoder = &dig_port->base;
332         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
333         const int *source_rates;
334         int size, max_rate = 0, vbt_max_rate;
335
336         /* This should only be done once */
337         drm_WARN_ON(&dev_priv->drm,
338                     intel_dp->source_rates || intel_dp->num_source_rates);
339
340         if (INTEL_GEN(dev_priv) >= 10) {
341                 source_rates = cnl_rates;
342                 size = ARRAY_SIZE(cnl_rates);
343                 if (IS_GEN(dev_priv, 10))
344                         max_rate = cnl_max_source_rate(intel_dp);
345                 else
346                         max_rate = icl_max_source_rate(intel_dp);
347         } else if (IS_GEN9_LP(dev_priv)) {
348                 source_rates = bxt_rates;
349                 size = ARRAY_SIZE(bxt_rates);
350         } else if (IS_GEN9_BC(dev_priv)) {
351                 source_rates = skl_rates;
352                 size = ARRAY_SIZE(skl_rates);
353         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
354                    IS_BROADWELL(dev_priv)) {
355                 source_rates = hsw_rates;
356                 size = ARRAY_SIZE(hsw_rates);
357         } else {
358                 source_rates = g4x_rates;
359                 size = ARRAY_SIZE(g4x_rates);
360         }
361
362         vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
363         if (max_rate && vbt_max_rate)
364                 max_rate = min(max_rate, vbt_max_rate);
365         else if (vbt_max_rate)
366                 max_rate = vbt_max_rate;
367
368         if (max_rate)
369                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
370
371         intel_dp->source_rates = source_rates;
372         intel_dp->num_source_rates = size;
373 }
374
375 static int intersect_rates(const int *source_rates, int source_len,
376                            const int *sink_rates, int sink_len,
377                            int *common_rates)
378 {
379         int i = 0, j = 0, k = 0;
380
381         while (i < source_len && j < sink_len) {
382                 if (source_rates[i] == sink_rates[j]) {
383                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
384                                 return k;
385                         common_rates[k] = source_rates[i];
386                         ++k;
387                         ++i;
388                         ++j;
389                 } else if (source_rates[i] < sink_rates[j]) {
390                         ++i;
391                 } else {
392                         ++j;
393                 }
394         }
395         return k;
396 }
397
398 /* return index of rate in rates array, or -1 if not found */
399 static int intel_dp_rate_index(const int *rates, int len, int rate)
400 {
401         int i;
402
403         for (i = 0; i < len; i++)
404                 if (rate == rates[i])
405                         return i;
406
407         return -1;
408 }
409
410 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
411 {
412         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
413
414         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
415                                                      intel_dp->num_source_rates,
416                                                      intel_dp->sink_rates,
417                                                      intel_dp->num_sink_rates,
418                                                      intel_dp->common_rates);
419
420         /* Paranoia, there should always be something in common. */
421         if (WARN_ON(intel_dp->num_common_rates == 0)) {
422                 intel_dp->common_rates[0] = 162000;
423                 intel_dp->num_common_rates = 1;
424         }
425 }
426
427 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
428                                        u8 lane_count)
429 {
430         /*
431          * FIXME: we need to synchronize the current link parameters with
432          * hardware readout. Currently fast link training doesn't work on
433          * boot-up.
434          */
435         if (link_rate == 0 ||
436             link_rate > intel_dp->max_link_rate)
437                 return false;
438
439         if (lane_count == 0 ||
440             lane_count > intel_dp_max_lane_count(intel_dp))
441                 return false;
442
443         return true;
444 }
445
446 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
447                                                      int link_rate,
448                                                      u8 lane_count)
449 {
450         const struct drm_display_mode *fixed_mode =
451                 intel_dp->attached_connector->panel.fixed_mode;
452         int mode_rate, max_rate;
453
454         mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
455         max_rate = intel_dp_max_data_rate(link_rate, lane_count);
456         if (mode_rate > max_rate)
457                 return false;
458
459         return true;
460 }
461
462 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
463                                             int link_rate, u8 lane_count)
464 {
465         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
466         int index;
467
468         index = intel_dp_rate_index(intel_dp->common_rates,
469                                     intel_dp->num_common_rates,
470                                     link_rate);
471         if (index > 0) {
472                 if (intel_dp_is_edp(intel_dp) &&
473                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
474                                                               intel_dp->common_rates[index - 1],
475                                                               lane_count)) {
476                         drm_dbg_kms(&i915->drm,
477                                     "Retrying Link training for eDP with same parameters\n");
478                         return 0;
479                 }
480                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
481                 intel_dp->max_link_lane_count = lane_count;
482         } else if (lane_count > 1) {
483                 if (intel_dp_is_edp(intel_dp) &&
484                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
485                                                               intel_dp_max_common_rate(intel_dp),
486                                                               lane_count >> 1)) {
487                         drm_dbg_kms(&i915->drm,
488                                     "Retrying Link training for eDP with same parameters\n");
489                         return 0;
490                 }
491                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
492                 intel_dp->max_link_lane_count = lane_count >> 1;
493         } else {
494                 drm_err(&i915->drm, "Link Training Unsuccessful\n");
495                 return -1;
496         }
497
498         return 0;
499 }
500
501 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
502 {
503         return div_u64(mul_u32_u32(mode_clock, 1000000U),
504                        DP_DSC_FEC_OVERHEAD_FACTOR);
505 }
506
507 static int
508 small_joiner_ram_size_bits(struct drm_i915_private *i915)
509 {
510         if (INTEL_GEN(i915) >= 11)
511                 return 7680 * 8;
512         else
513                 return 6144 * 8;
514 }
515
516 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
517                                        u32 link_clock, u32 lane_count,
518                                        u32 mode_clock, u32 mode_hdisplay)
519 {
520         u32 bits_per_pixel, max_bpp_small_joiner_ram;
521         int i;
522
523         /*
524          * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
525          * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
526          * for SST -> TimeSlotsPerMTP is 1,
527          * for MST -> TimeSlotsPerMTP has to be calculated
528          */
529         bits_per_pixel = (link_clock * lane_count * 8) /
530                          intel_dp_mode_to_fec_clock(mode_clock);
531         drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
532
533         /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
534         max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
535                 mode_hdisplay;
536         drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
537                     max_bpp_small_joiner_ram);
538
539         /*
540          * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
541          * check, output bpp from small joiner RAM check)
542          */
543         bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
544
545         /* Error out if the max bpp is less than smallest allowed valid bpp */
546         if (bits_per_pixel < valid_dsc_bpp[0]) {
547                 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
548                             bits_per_pixel, valid_dsc_bpp[0]);
549                 return 0;
550         }
551
552         /* Find the nearest match in the array of known BPPs from VESA */
553         for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
554                 if (bits_per_pixel < valid_dsc_bpp[i + 1])
555                         break;
556         }
557         bits_per_pixel = valid_dsc_bpp[i];
558
559         /*
560          * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
561          * fractional part is 0
562          */
563         return bits_per_pixel << 4;
564 }
565
566 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
567                                        int mode_clock, int mode_hdisplay)
568 {
569         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
570         u8 min_slice_count, i;
571         int max_slice_width;
572
573         if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
574                 min_slice_count = DIV_ROUND_UP(mode_clock,
575                                                DP_DSC_MAX_ENC_THROUGHPUT_0);
576         else
577                 min_slice_count = DIV_ROUND_UP(mode_clock,
578                                                DP_DSC_MAX_ENC_THROUGHPUT_1);
579
580         max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
581         if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
582                 drm_dbg_kms(&i915->drm,
583                             "Unsupported slice width %d by DP DSC Sink device\n",
584                             max_slice_width);
585                 return 0;
586         }
587         /* Also take into account max slice width */
588         min_slice_count = min_t(u8, min_slice_count,
589                                 DIV_ROUND_UP(mode_hdisplay,
590                                              max_slice_width));
591
592         /* Find the closest match to the valid slice count values */
593         for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
594                 if (valid_dsc_slicecount[i] >
595                     drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
596                                                     false))
597                         break;
598                 if (min_slice_count  <= valid_dsc_slicecount[i])
599                         return valid_dsc_slicecount[i];
600         }
601
602         drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
603                     min_slice_count);
604         return 0;
605 }
606
607 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
608                                   int hdisplay)
609 {
610         /*
611          * Older platforms don't like hdisplay==4096 with DP.
612          *
613          * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
614          * and frame counter increment), but we don't get vblank interrupts,
615          * and the pipe underruns immediately. The link also doesn't seem
616          * to get trained properly.
617          *
618          * On CHV the vblank interrupts don't seem to disappear but
619          * otherwise the symptoms are similar.
620          *
621          * TODO: confirm the behaviour on HSW+
622          */
623         return hdisplay == 4096 && !HAS_DDI(dev_priv);
624 }
625
626 static enum drm_mode_status
627 intel_dp_mode_valid(struct drm_connector *connector,
628                     struct drm_display_mode *mode)
629 {
630         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
631         struct intel_connector *intel_connector = to_intel_connector(connector);
632         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
633         struct drm_i915_private *dev_priv = to_i915(connector->dev);
634         int target_clock = mode->clock;
635         int max_rate, mode_rate, max_lanes, max_link_clock;
636         int max_dotclk;
637         u16 dsc_max_output_bpp = 0;
638         u8 dsc_slice_count = 0;
639
640         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
641                 return MODE_NO_DBLESCAN;
642
643         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
644
645         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
646                 if (mode->hdisplay > fixed_mode->hdisplay)
647                         return MODE_PANEL;
648
649                 if (mode->vdisplay > fixed_mode->vdisplay)
650                         return MODE_PANEL;
651
652                 target_clock = fixed_mode->clock;
653         }
654
655         max_link_clock = intel_dp_max_link_rate(intel_dp);
656         max_lanes = intel_dp_max_lane_count(intel_dp);
657
658         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
659         mode_rate = intel_dp_link_required(target_clock, 18);
660
661         if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
662                 return MODE_H_ILLEGAL;
663
664         /*
665          * Output bpp is stored in 6.4 format so right shift by 4 to get the
666          * integer value since we support only integer values of bpp.
667          */
668         if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
669             drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
670                 if (intel_dp_is_edp(intel_dp)) {
671                         dsc_max_output_bpp =
672                                 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
673                         dsc_slice_count =
674                                 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
675                                                                 true);
676                 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
677                         dsc_max_output_bpp =
678                                 intel_dp_dsc_get_output_bpp(dev_priv,
679                                                             max_link_clock,
680                                                             max_lanes,
681                                                             target_clock,
682                                                             mode->hdisplay) >> 4;
683                         dsc_slice_count =
684                                 intel_dp_dsc_get_slice_count(intel_dp,
685                                                              target_clock,
686                                                              mode->hdisplay);
687                 }
688         }
689
690         if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
691             target_clock > max_dotclk)
692                 return MODE_CLOCK_HIGH;
693
694         if (mode->clock < 10000)
695                 return MODE_CLOCK_LOW;
696
697         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
698                 return MODE_H_ILLEGAL;
699
700         return intel_mode_valid_max_plane_size(dev_priv, mode);
701 }
702
703 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
704 {
705         int i;
706         u32 v = 0;
707
708         if (src_bytes > 4)
709                 src_bytes = 4;
710         for (i = 0; i < src_bytes; i++)
711                 v |= ((u32)src[i]) << ((3 - i) * 8);
712         return v;
713 }
714
715 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
716 {
717         int i;
718         if (dst_bytes > 4)
719                 dst_bytes = 4;
720         for (i = 0; i < dst_bytes; i++)
721                 dst[i] = src >> ((3-i) * 8);
722 }
723
724 static void
725 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
726 static void
727 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
728                                               bool force_disable_vdd);
729 static void
730 intel_dp_pps_init(struct intel_dp *intel_dp);
731
732 static intel_wakeref_t
733 pps_lock(struct intel_dp *intel_dp)
734 {
735         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
736         intel_wakeref_t wakeref;
737
738         /*
739          * See intel_power_sequencer_reset() why we need
740          * a power domain reference here.
741          */
742         wakeref = intel_display_power_get(dev_priv,
743                                           intel_aux_power_domain(dp_to_dig_port(intel_dp)));
744
745         mutex_lock(&dev_priv->pps_mutex);
746
747         return wakeref;
748 }
749
750 static intel_wakeref_t
751 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
752 {
753         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
754
755         mutex_unlock(&dev_priv->pps_mutex);
756         intel_display_power_put(dev_priv,
757                                 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
758                                 wakeref);
759         return 0;
760 }
761
762 #define with_pps_lock(dp, wf) \
763         for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
764
765 static void
766 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
767 {
768         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
769         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
770         enum pipe pipe = intel_dp->pps_pipe;
771         bool pll_enabled, release_cl_override = false;
772         enum dpio_phy phy = DPIO_PHY(pipe);
773         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
774         u32 DP;
775
776         if (drm_WARN(&dev_priv->drm,
777                      intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
778                      "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
779                      pipe_name(pipe), intel_dig_port->base.base.base.id,
780                      intel_dig_port->base.base.name))
781                 return;
782
783         drm_dbg_kms(&dev_priv->drm,
784                     "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
785                     pipe_name(pipe), intel_dig_port->base.base.base.id,
786                     intel_dig_port->base.base.name);
787
788         /* Preserve the BIOS-computed detected bit. This is
789          * supposed to be read-only.
790          */
791         DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
792         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
793         DP |= DP_PORT_WIDTH(1);
794         DP |= DP_LINK_TRAIN_PAT_1;
795
796         if (IS_CHERRYVIEW(dev_priv))
797                 DP |= DP_PIPE_SEL_CHV(pipe);
798         else
799                 DP |= DP_PIPE_SEL(pipe);
800
801         pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
802
803         /*
804          * The DPLL for the pipe must be enabled for this to work.
805          * So enable temporarily it if it's not already enabled.
806          */
807         if (!pll_enabled) {
808                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
809                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
810
811                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
812                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
813                         drm_err(&dev_priv->drm,
814                                 "Failed to force on pll for pipe %c!\n",
815                                 pipe_name(pipe));
816                         return;
817                 }
818         }
819
820         /*
821          * Similar magic as in intel_dp_enable_port().
822          * We _must_ do this port enable + disable trick
823          * to make this power sequencer lock onto the port.
824          * Otherwise even VDD force bit won't work.
825          */
826         intel_de_write(dev_priv, intel_dp->output_reg, DP);
827         intel_de_posting_read(dev_priv, intel_dp->output_reg);
828
829         intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
830         intel_de_posting_read(dev_priv, intel_dp->output_reg);
831
832         intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
833         intel_de_posting_read(dev_priv, intel_dp->output_reg);
834
835         if (!pll_enabled) {
836                 vlv_force_pll_off(dev_priv, pipe);
837
838                 if (release_cl_override)
839                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
840         }
841 }
842
843 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
844 {
845         struct intel_encoder *encoder;
846         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
847
848         /*
849          * We don't have power sequencer currently.
850          * Pick one that's not used by other ports.
851          */
852         for_each_intel_dp(&dev_priv->drm, encoder) {
853                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
854
855                 if (encoder->type == INTEL_OUTPUT_EDP) {
856                         drm_WARN_ON(&dev_priv->drm,
857                                     intel_dp->active_pipe != INVALID_PIPE &&
858                                     intel_dp->active_pipe !=
859                                     intel_dp->pps_pipe);
860
861                         if (intel_dp->pps_pipe != INVALID_PIPE)
862                                 pipes &= ~(1 << intel_dp->pps_pipe);
863                 } else {
864                         drm_WARN_ON(&dev_priv->drm,
865                                     intel_dp->pps_pipe != INVALID_PIPE);
866
867                         if (intel_dp->active_pipe != INVALID_PIPE)
868                                 pipes &= ~(1 << intel_dp->active_pipe);
869                 }
870         }
871
872         if (pipes == 0)
873                 return INVALID_PIPE;
874
875         return ffs(pipes) - 1;
876 }
877
878 static enum pipe
879 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
880 {
881         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
882         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
883         enum pipe pipe;
884
885         lockdep_assert_held(&dev_priv->pps_mutex);
886
887         /* We should never land here with regular DP ports */
888         drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
889
890         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
891                     intel_dp->active_pipe != intel_dp->pps_pipe);
892
893         if (intel_dp->pps_pipe != INVALID_PIPE)
894                 return intel_dp->pps_pipe;
895
896         pipe = vlv_find_free_pps(dev_priv);
897
898         /*
899          * Didn't find one. This should not happen since there
900          * are two power sequencers and up to two eDP ports.
901          */
902         if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
903                 pipe = PIPE_A;
904
905         vlv_steal_power_sequencer(dev_priv, pipe);
906         intel_dp->pps_pipe = pipe;
907
908         drm_dbg_kms(&dev_priv->drm,
909                     "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
910                     pipe_name(intel_dp->pps_pipe),
911                     intel_dig_port->base.base.base.id,
912                     intel_dig_port->base.base.name);
913
914         /* init power sequencer on this pipe and port */
915         intel_dp_init_panel_power_sequencer(intel_dp);
916         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
917
918         /*
919          * Even vdd force doesn't work until we've made
920          * the power sequencer lock in on the port.
921          */
922         vlv_power_sequencer_kick(intel_dp);
923
924         return intel_dp->pps_pipe;
925 }
926
927 static int
928 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
929 {
930         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
931         int backlight_controller = dev_priv->vbt.backlight.controller;
932
933         lockdep_assert_held(&dev_priv->pps_mutex);
934
935         /* We should never land here with regular DP ports */
936         drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
937
938         if (!intel_dp->pps_reset)
939                 return backlight_controller;
940
941         intel_dp->pps_reset = false;
942
943         /*
944          * Only the HW needs to be reprogrammed, the SW state is fixed and
945          * has been setup during connector init.
946          */
947         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
948
949         return backlight_controller;
950 }
951
952 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
953                                enum pipe pipe);
954
955 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
956                                enum pipe pipe)
957 {
958         return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
959 }
960
961 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
962                                 enum pipe pipe)
963 {
964         return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
965 }
966
967 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
968                          enum pipe pipe)
969 {
970         return true;
971 }
972
973 static enum pipe
974 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
975                      enum port port,
976                      vlv_pipe_check pipe_check)
977 {
978         enum pipe pipe;
979
980         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
981                 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
982                         PANEL_PORT_SELECT_MASK;
983
984                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
985                         continue;
986
987                 if (!pipe_check(dev_priv, pipe))
988                         continue;
989
990                 return pipe;
991         }
992
993         return INVALID_PIPE;
994 }
995
996 static void
997 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
998 {
999         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1000         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1001         enum port port = intel_dig_port->base.port;
1002
1003         lockdep_assert_held(&dev_priv->pps_mutex);
1004
1005         /* try to find a pipe with this port selected */
1006         /* first pick one where the panel is on */
1007         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1008                                                   vlv_pipe_has_pp_on);
1009         /* didn't find one? pick one where vdd is on */
1010         if (intel_dp->pps_pipe == INVALID_PIPE)
1011                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1012                                                           vlv_pipe_has_vdd_on);
1013         /* didn't find one? pick one with just the correct port */
1014         if (intel_dp->pps_pipe == INVALID_PIPE)
1015                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1016                                                           vlv_pipe_any);
1017
1018         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1019         if (intel_dp->pps_pipe == INVALID_PIPE) {
1020                 drm_dbg_kms(&dev_priv->drm,
1021                             "no initial power sequencer for [ENCODER:%d:%s]\n",
1022                             intel_dig_port->base.base.base.id,
1023                             intel_dig_port->base.base.name);
1024                 return;
1025         }
1026
1027         drm_dbg_kms(&dev_priv->drm,
1028                     "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1029                     intel_dig_port->base.base.base.id,
1030                     intel_dig_port->base.base.name,
1031                     pipe_name(intel_dp->pps_pipe));
1032
1033         intel_dp_init_panel_power_sequencer(intel_dp);
1034         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1035 }
1036
1037 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1038 {
1039         struct intel_encoder *encoder;
1040
1041         if (drm_WARN_ON(&dev_priv->drm,
1042                         !(IS_VALLEYVIEW(dev_priv) ||
1043                           IS_CHERRYVIEW(dev_priv) ||
1044                           IS_GEN9_LP(dev_priv))))
1045                 return;
1046
1047         /*
1048          * We can't grab pps_mutex here due to deadlock with power_domain
1049          * mutex when power_domain functions are called while holding pps_mutex.
1050          * That also means that in order to use pps_pipe the code needs to
1051          * hold both a power domain reference and pps_mutex, and the power domain
1052          * reference get/put must be done while _not_ holding pps_mutex.
1053          * pps_{lock,unlock}() do these steps in the correct order, so one
1054          * should use them always.
1055          */
1056
1057         for_each_intel_dp(&dev_priv->drm, encoder) {
1058                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1059
1060                 drm_WARN_ON(&dev_priv->drm,
1061                             intel_dp->active_pipe != INVALID_PIPE);
1062
1063                 if (encoder->type != INTEL_OUTPUT_EDP)
1064                         continue;
1065
1066                 if (IS_GEN9_LP(dev_priv))
1067                         intel_dp->pps_reset = true;
1068                 else
1069                         intel_dp->pps_pipe = INVALID_PIPE;
1070         }
1071 }
1072
1073 struct pps_registers {
1074         i915_reg_t pp_ctrl;
1075         i915_reg_t pp_stat;
1076         i915_reg_t pp_on;
1077         i915_reg_t pp_off;
1078         i915_reg_t pp_div;
1079 };
1080
1081 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1082                                     struct pps_registers *regs)
1083 {
1084         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1085         int pps_idx = 0;
1086
1087         memset(regs, 0, sizeof(*regs));
1088
1089         if (IS_GEN9_LP(dev_priv))
1090                 pps_idx = bxt_power_sequencer_idx(intel_dp);
1091         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1092                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1093
1094         regs->pp_ctrl = PP_CONTROL(pps_idx);
1095         regs->pp_stat = PP_STATUS(pps_idx);
1096         regs->pp_on = PP_ON_DELAYS(pps_idx);
1097         regs->pp_off = PP_OFF_DELAYS(pps_idx);
1098
1099         /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1100         if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1101                 regs->pp_div = INVALID_MMIO_REG;
1102         else
1103                 regs->pp_div = PP_DIVISOR(pps_idx);
1104 }
1105
1106 static i915_reg_t
1107 _pp_ctrl_reg(struct intel_dp *intel_dp)
1108 {
1109         struct pps_registers regs;
1110
1111         intel_pps_get_registers(intel_dp, &regs);
1112
1113         return regs.pp_ctrl;
1114 }
1115
1116 static i915_reg_t
1117 _pp_stat_reg(struct intel_dp *intel_dp)
1118 {
1119         struct pps_registers regs;
1120
1121         intel_pps_get_registers(intel_dp, &regs);
1122
1123         return regs.pp_stat;
1124 }
1125
1126 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1127    This function only applicable when panel PM state is not to be tracked */
1128 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1129                               void *unused)
1130 {
1131         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1132                                                  edp_notifier);
1133         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1134         intel_wakeref_t wakeref;
1135
1136         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1137                 return 0;
1138
1139         with_pps_lock(intel_dp, wakeref) {
1140                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1141                         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1142                         i915_reg_t pp_ctrl_reg, pp_div_reg;
1143                         u32 pp_div;
1144
1145                         pp_ctrl_reg = PP_CONTROL(pipe);
1146                         pp_div_reg  = PP_DIVISOR(pipe);
1147                         pp_div = intel_de_read(dev_priv, pp_div_reg);
1148                         pp_div &= PP_REFERENCE_DIVIDER_MASK;
1149
1150                         /* 0x1F write to PP_DIV_REG sets max cycle delay */
1151                         intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1152                         intel_de_write(dev_priv, pp_ctrl_reg,
1153                                        PANEL_UNLOCK_REGS);
1154                         msleep(intel_dp->panel_power_cycle_delay);
1155                 }
1156         }
1157
1158         return 0;
1159 }
1160
1161 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1162 {
1163         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1164
1165         lockdep_assert_held(&dev_priv->pps_mutex);
1166
1167         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1168             intel_dp->pps_pipe == INVALID_PIPE)
1169                 return false;
1170
1171         return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1172 }
1173
1174 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1175 {
1176         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1177
1178         lockdep_assert_held(&dev_priv->pps_mutex);
1179
1180         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1181             intel_dp->pps_pipe == INVALID_PIPE)
1182                 return false;
1183
1184         return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1185 }
1186
1187 static void
1188 intel_dp_check_edp(struct intel_dp *intel_dp)
1189 {
1190         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1191
1192         if (!intel_dp_is_edp(intel_dp))
1193                 return;
1194
1195         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1196                 drm_WARN(&dev_priv->drm, 1,
1197                          "eDP powered off while attempting aux channel communication.\n");
1198                 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1199                             intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1200                             intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1201         }
1202 }
1203
1204 static u32
1205 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1206 {
1207         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1208         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1209         const unsigned int timeout_ms = 10;
1210         u32 status;
1211         bool done;
1212
1213 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1214         done = wait_event_timeout(i915->gmbus_wait_queue, C,
1215                                   msecs_to_jiffies_timeout(timeout_ms));
1216
1217         /* just trace the final value */
1218         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1219
1220         if (!done)
1221                 drm_err(&i915->drm,
1222                         "%s: did not complete or timeout within %ums (status 0x%08x)\n",
1223                         intel_dp->aux.name, timeout_ms, status);
1224 #undef C
1225
1226         return status;
1227 }
1228
1229 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1230 {
1231         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1232
1233         if (index)
1234                 return 0;
1235
1236         /*
1237          * The clock divider is based off the hrawclk, and would like to run at
1238          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1239          */
1240         return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1241 }
1242
1243 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1244 {
1245         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1246         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1247         u32 freq;
1248
1249         if (index)
1250                 return 0;
1251
1252         /*
1253          * The clock divider is based off the cdclk or PCH rawclk, and would
1254          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1255          * divide by 2000 and use that
1256          */
1257         if (dig_port->aux_ch == AUX_CH_A)
1258                 freq = dev_priv->cdclk.hw.cdclk;
1259         else
1260                 freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1261         return DIV_ROUND_CLOSEST(freq, 2000);
1262 }
1263
1264 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1265 {
1266         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1267         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1268
1269         if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1270                 /* Workaround for non-ULT HSW */
1271                 switch (index) {
1272                 case 0: return 63;
1273                 case 1: return 72;
1274                 default: return 0;
1275                 }
1276         }
1277
1278         return ilk_get_aux_clock_divider(intel_dp, index);
1279 }
1280
1281 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1282 {
1283         /*
1284          * SKL doesn't need us to program the AUX clock divider (Hardware will
1285          * derive the clock from CDCLK automatically). We still implement the
1286          * get_aux_clock_divider vfunc to plug-in into the existing code.
1287          */
1288         return index ? 0 : 1;
1289 }
1290
1291 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1292                                 int send_bytes,
1293                                 u32 aux_clock_divider)
1294 {
1295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296         struct drm_i915_private *dev_priv =
1297                         to_i915(intel_dig_port->base.base.dev);
1298         u32 precharge, timeout;
1299
1300         if (IS_GEN(dev_priv, 6))
1301                 precharge = 3;
1302         else
1303                 precharge = 5;
1304
1305         if (IS_BROADWELL(dev_priv))
1306                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1307         else
1308                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1309
1310         return DP_AUX_CH_CTL_SEND_BUSY |
1311                DP_AUX_CH_CTL_DONE |
1312                DP_AUX_CH_CTL_INTERRUPT |
1313                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1314                timeout |
1315                DP_AUX_CH_CTL_RECEIVE_ERROR |
1316                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1317                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1318                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1319 }
1320
1321 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1322                                 int send_bytes,
1323                                 u32 unused)
1324 {
1325         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1326         struct drm_i915_private *i915 =
1327                         to_i915(intel_dig_port->base.base.dev);
1328         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329         u32 ret;
1330
1331         ret = DP_AUX_CH_CTL_SEND_BUSY |
1332               DP_AUX_CH_CTL_DONE |
1333               DP_AUX_CH_CTL_INTERRUPT |
1334               DP_AUX_CH_CTL_TIME_OUT_ERROR |
1335               DP_AUX_CH_CTL_TIME_OUT_MAX |
1336               DP_AUX_CH_CTL_RECEIVE_ERROR |
1337               (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1338               DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1339               DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1340
1341         if (intel_phy_is_tc(i915, phy) &&
1342             intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1343                 ret |= DP_AUX_CH_CTL_TBT_IO;
1344
1345         return ret;
1346 }
1347
1348 static int
1349 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1350                   const u8 *send, int send_bytes,
1351                   u8 *recv, int recv_size,
1352                   u32 aux_send_ctl_flags)
1353 {
1354         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1355         struct drm_i915_private *i915 =
1356                         to_i915(intel_dig_port->base.base.dev);
1357         struct intel_uncore *uncore = &i915->uncore;
1358         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1359         bool is_tc_port = intel_phy_is_tc(i915, phy);
1360         i915_reg_t ch_ctl, ch_data[5];
1361         u32 aux_clock_divider;
1362         enum intel_display_power_domain aux_domain;
1363         intel_wakeref_t aux_wakeref;
1364         intel_wakeref_t pps_wakeref;
1365         int i, ret, recv_bytes;
1366         int try, clock = 0;
1367         u32 status;
1368         bool vdd;
1369
1370         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1371         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1372                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1373
1374         if (is_tc_port)
1375                 intel_tc_port_lock(intel_dig_port);
1376
1377         aux_domain = intel_aux_power_domain(intel_dig_port);
1378
1379         aux_wakeref = intel_display_power_get(i915, aux_domain);
1380         pps_wakeref = pps_lock(intel_dp);
1381
1382         /*
1383          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1384          * In such cases we want to leave VDD enabled and it's up to upper layers
1385          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1386          * ourselves.
1387          */
1388         vdd = edp_panel_vdd_on(intel_dp);
1389
1390         /* dp aux is extremely sensitive to irq latency, hence request the
1391          * lowest possible wakeup latency and so prevent the cpu from going into
1392          * deep sleep states.
1393          */
1394         cpu_latency_qos_update_request(&i915->pm_qos, 0);
1395
1396         intel_dp_check_edp(intel_dp);
1397
1398         /* Try to wait for any previous AUX channel activity */
1399         for (try = 0; try < 3; try++) {
1400                 status = intel_uncore_read_notrace(uncore, ch_ctl);
1401                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1402                         break;
1403                 msleep(1);
1404         }
1405         /* just trace the final value */
1406         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1407
1408         if (try == 3) {
1409                 const u32 status = intel_uncore_read(uncore, ch_ctl);
1410
1411                 if (status != intel_dp->aux_busy_last_status) {
1412                         drm_WARN(&i915->drm, 1,
1413                                  "%s: not started (status 0x%08x)\n",
1414                                  intel_dp->aux.name, status);
1415                         intel_dp->aux_busy_last_status = status;
1416                 }
1417
1418                 ret = -EBUSY;
1419                 goto out;
1420         }
1421
1422         /* Only 5 data registers! */
1423         if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1424                 ret = -E2BIG;
1425                 goto out;
1426         }
1427
1428         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1429                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1430                                                           send_bytes,
1431                                                           aux_clock_divider);
1432
1433                 send_ctl |= aux_send_ctl_flags;
1434
1435                 /* Must try at least 3 times according to DP spec */
1436                 for (try = 0; try < 5; try++) {
1437                         /* Load the send data into the aux channel data registers */
1438                         for (i = 0; i < send_bytes; i += 4)
1439                                 intel_uncore_write(uncore,
1440                                                    ch_data[i >> 2],
1441                                                    intel_dp_pack_aux(send + i,
1442                                                                      send_bytes - i));
1443
1444                         /* Send the command and wait for it to complete */
1445                         intel_uncore_write(uncore, ch_ctl, send_ctl);
1446
1447                         status = intel_dp_aux_wait_done(intel_dp);
1448
1449                         /* Clear done status and any errors */
1450                         intel_uncore_write(uncore,
1451                                            ch_ctl,
1452                                            status |
1453                                            DP_AUX_CH_CTL_DONE |
1454                                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
1455                                            DP_AUX_CH_CTL_RECEIVE_ERROR);
1456
1457                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1458                          *   400us delay required for errors and timeouts
1459                          *   Timeout errors from the HW already meet this
1460                          *   requirement so skip to next iteration
1461                          */
1462                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1463                                 continue;
1464
1465                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1466                                 usleep_range(400, 500);
1467                                 continue;
1468                         }
1469                         if (status & DP_AUX_CH_CTL_DONE)
1470                                 goto done;
1471                 }
1472         }
1473
1474         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1475                 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1476                         intel_dp->aux.name, status);
1477                 ret = -EBUSY;
1478                 goto out;
1479         }
1480
1481 done:
1482         /* Check for timeout or receive error.
1483          * Timeouts occur when the sink is not connected
1484          */
1485         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1486                 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1487                         intel_dp->aux.name, status);
1488                 ret = -EIO;
1489                 goto out;
1490         }
1491
1492         /* Timeouts occur when the device isn't connected, so they're
1493          * "normal" -- don't fill the kernel log with these */
1494         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1495                 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1496                             intel_dp->aux.name, status);
1497                 ret = -ETIMEDOUT;
1498                 goto out;
1499         }
1500
1501         /* Unload any bytes sent back from the other side */
1502         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1503                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1504
1505         /*
1506          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1507          * We have no idea of what happened so we return -EBUSY so
1508          * drm layer takes care for the necessary retries.
1509          */
1510         if (recv_bytes == 0 || recv_bytes > 20) {
1511                 drm_dbg_kms(&i915->drm,
1512                             "%s: Forbidden recv_bytes = %d on aux transaction\n",
1513                             intel_dp->aux.name, recv_bytes);
1514                 ret = -EBUSY;
1515                 goto out;
1516         }
1517
1518         if (recv_bytes > recv_size)
1519                 recv_bytes = recv_size;
1520
1521         for (i = 0; i < recv_bytes; i += 4)
1522                 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1523                                     recv + i, recv_bytes - i);
1524
1525         ret = recv_bytes;
1526 out:
1527         cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1528
1529         if (vdd)
1530                 edp_panel_vdd_off(intel_dp, false);
1531
1532         pps_unlock(intel_dp, pps_wakeref);
1533         intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1534
1535         if (is_tc_port)
1536                 intel_tc_port_unlock(intel_dig_port);
1537
1538         return ret;
1539 }
1540
1541 #define BARE_ADDRESS_SIZE       3
1542 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1543
1544 static void
1545 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1546                     const struct drm_dp_aux_msg *msg)
1547 {
1548         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1549         txbuf[1] = (msg->address >> 8) & 0xff;
1550         txbuf[2] = msg->address & 0xff;
1551         txbuf[3] = msg->size - 1;
1552 }
1553
1554 static ssize_t
1555 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1556 {
1557         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1558         u8 txbuf[20], rxbuf[20];
1559         size_t txsize, rxsize;
1560         int ret;
1561
1562         intel_dp_aux_header(txbuf, msg);
1563
1564         switch (msg->request & ~DP_AUX_I2C_MOT) {
1565         case DP_AUX_NATIVE_WRITE:
1566         case DP_AUX_I2C_WRITE:
1567         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1568                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1569                 rxsize = 2; /* 0 or 1 data bytes */
1570
1571                 if (WARN_ON(txsize > 20))
1572                         return -E2BIG;
1573
1574                 WARN_ON(!msg->buffer != !msg->size);
1575
1576                 if (msg->buffer)
1577                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1578
1579                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1580                                         rxbuf, rxsize, 0);
1581                 if (ret > 0) {
1582                         msg->reply = rxbuf[0] >> 4;
1583
1584                         if (ret > 1) {
1585                                 /* Number of bytes written in a short write. */
1586                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1587                         } else {
1588                                 /* Return payload size. */
1589                                 ret = msg->size;
1590                         }
1591                 }
1592                 break;
1593
1594         case DP_AUX_NATIVE_READ:
1595         case DP_AUX_I2C_READ:
1596                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1597                 rxsize = msg->size + 1;
1598
1599                 if (WARN_ON(rxsize > 20))
1600                         return -E2BIG;
1601
1602                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1603                                         rxbuf, rxsize, 0);
1604                 if (ret > 0) {
1605                         msg->reply = rxbuf[0] >> 4;
1606                         /*
1607                          * Assume happy day, and copy the data. The caller is
1608                          * expected to check msg->reply before touching it.
1609                          *
1610                          * Return payload size.
1611                          */
1612                         ret--;
1613                         memcpy(msg->buffer, rxbuf + 1, ret);
1614                 }
1615                 break;
1616
1617         default:
1618                 ret = -EINVAL;
1619                 break;
1620         }
1621
1622         return ret;
1623 }
1624
1625
1626 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1627 {
1628         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1629         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1630         enum aux_ch aux_ch = dig_port->aux_ch;
1631
1632         switch (aux_ch) {
1633         case AUX_CH_B:
1634         case AUX_CH_C:
1635         case AUX_CH_D:
1636                 return DP_AUX_CH_CTL(aux_ch);
1637         default:
1638                 MISSING_CASE(aux_ch);
1639                 return DP_AUX_CH_CTL(AUX_CH_B);
1640         }
1641 }
1642
1643 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1644 {
1645         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647         enum aux_ch aux_ch = dig_port->aux_ch;
1648
1649         switch (aux_ch) {
1650         case AUX_CH_B:
1651         case AUX_CH_C:
1652         case AUX_CH_D:
1653                 return DP_AUX_CH_DATA(aux_ch, index);
1654         default:
1655                 MISSING_CASE(aux_ch);
1656                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1657         }
1658 }
1659
1660 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1661 {
1662         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1663         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1664         enum aux_ch aux_ch = dig_port->aux_ch;
1665
1666         switch (aux_ch) {
1667         case AUX_CH_A:
1668                 return DP_AUX_CH_CTL(aux_ch);
1669         case AUX_CH_B:
1670         case AUX_CH_C:
1671         case AUX_CH_D:
1672                 return PCH_DP_AUX_CH_CTL(aux_ch);
1673         default:
1674                 MISSING_CASE(aux_ch);
1675                 return DP_AUX_CH_CTL(AUX_CH_A);
1676         }
1677 }
1678
1679 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1680 {
1681         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1682         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1683         enum aux_ch aux_ch = dig_port->aux_ch;
1684
1685         switch (aux_ch) {
1686         case AUX_CH_A:
1687                 return DP_AUX_CH_DATA(aux_ch, index);
1688         case AUX_CH_B:
1689         case AUX_CH_C:
1690         case AUX_CH_D:
1691                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1692         default:
1693                 MISSING_CASE(aux_ch);
1694                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1695         }
1696 }
1697
1698 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1699 {
1700         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1701         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1702         enum aux_ch aux_ch = dig_port->aux_ch;
1703
1704         switch (aux_ch) {
1705         case AUX_CH_A:
1706         case AUX_CH_B:
1707         case AUX_CH_C:
1708         case AUX_CH_D:
1709         case AUX_CH_E:
1710         case AUX_CH_F:
1711         case AUX_CH_G:
1712                 return DP_AUX_CH_CTL(aux_ch);
1713         default:
1714                 MISSING_CASE(aux_ch);
1715                 return DP_AUX_CH_CTL(AUX_CH_A);
1716         }
1717 }
1718
1719 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1720 {
1721         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1722         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1723         enum aux_ch aux_ch = dig_port->aux_ch;
1724
1725         switch (aux_ch) {
1726         case AUX_CH_A:
1727         case AUX_CH_B:
1728         case AUX_CH_C:
1729         case AUX_CH_D:
1730         case AUX_CH_E:
1731         case AUX_CH_F:
1732         case AUX_CH_G:
1733                 return DP_AUX_CH_DATA(aux_ch, index);
1734         default:
1735                 MISSING_CASE(aux_ch);
1736                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1737         }
1738 }
1739
1740 static void
1741 intel_dp_aux_fini(struct intel_dp *intel_dp)
1742 {
1743         kfree(intel_dp->aux.name);
1744 }
1745
1746 static void
1747 intel_dp_aux_init(struct intel_dp *intel_dp)
1748 {
1749         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1750         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1751         struct intel_encoder *encoder = &dig_port->base;
1752
1753         if (INTEL_GEN(dev_priv) >= 9) {
1754                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1755                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1756         } else if (HAS_PCH_SPLIT(dev_priv)) {
1757                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1758                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1759         } else {
1760                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1761                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1762         }
1763
1764         if (INTEL_GEN(dev_priv) >= 9)
1765                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1766         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1767                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1768         else if (HAS_PCH_SPLIT(dev_priv))
1769                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1770         else
1771                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1772
1773         if (INTEL_GEN(dev_priv) >= 9)
1774                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1775         else
1776                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1777
1778         drm_dp_aux_init(&intel_dp->aux);
1779
1780         /* Failure to allocate our preferred name is not critical */
1781         intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1782                                        aux_ch_name(dig_port->aux_ch),
1783                                        port_name(encoder->port));
1784         intel_dp->aux.transfer = intel_dp_aux_transfer;
1785 }
1786
1787 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1788 {
1789         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1790
1791         return max_rate >= 540000;
1792 }
1793
1794 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1795 {
1796         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1797
1798         return max_rate >= 810000;
1799 }
1800
1801 static void
1802 intel_dp_set_clock(struct intel_encoder *encoder,
1803                    struct intel_crtc_state *pipe_config)
1804 {
1805         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1806         const struct dp_link_dpll *divisor = NULL;
1807         int i, count = 0;
1808
1809         if (IS_G4X(dev_priv)) {
1810                 divisor = g4x_dpll;
1811                 count = ARRAY_SIZE(g4x_dpll);
1812         } else if (HAS_PCH_SPLIT(dev_priv)) {
1813                 divisor = pch_dpll;
1814                 count = ARRAY_SIZE(pch_dpll);
1815         } else if (IS_CHERRYVIEW(dev_priv)) {
1816                 divisor = chv_dpll;
1817                 count = ARRAY_SIZE(chv_dpll);
1818         } else if (IS_VALLEYVIEW(dev_priv)) {
1819                 divisor = vlv_dpll;
1820                 count = ARRAY_SIZE(vlv_dpll);
1821         }
1822
1823         if (divisor && count) {
1824                 for (i = 0; i < count; i++) {
1825                         if (pipe_config->port_clock == divisor[i].clock) {
1826                                 pipe_config->dpll = divisor[i].dpll;
1827                                 pipe_config->clock_set = true;
1828                                 break;
1829                         }
1830                 }
1831         }
1832 }
1833
1834 static void snprintf_int_array(char *str, size_t len,
1835                                const int *array, int nelem)
1836 {
1837         int i;
1838
1839         str[0] = '\0';
1840
1841         for (i = 0; i < nelem; i++) {
1842                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1843                 if (r >= len)
1844                         return;
1845                 str += r;
1846                 len -= r;
1847         }
1848 }
1849
1850 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1851 {
1852         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1853         char str[128]; /* FIXME: too big for stack? */
1854
1855         if (!drm_debug_enabled(DRM_UT_KMS))
1856                 return;
1857
1858         snprintf_int_array(str, sizeof(str),
1859                            intel_dp->source_rates, intel_dp->num_source_rates);
1860         drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1861
1862         snprintf_int_array(str, sizeof(str),
1863                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1864         drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1865
1866         snprintf_int_array(str, sizeof(str),
1867                            intel_dp->common_rates, intel_dp->num_common_rates);
1868         drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1869 }
1870
1871 int
1872 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1873 {
1874         int len;
1875
1876         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1877         if (WARN_ON(len <= 0))
1878                 return 162000;
1879
1880         return intel_dp->common_rates[len - 1];
1881 }
1882
1883 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1884 {
1885         int i = intel_dp_rate_index(intel_dp->sink_rates,
1886                                     intel_dp->num_sink_rates, rate);
1887
1888         if (WARN_ON(i < 0))
1889                 i = 0;
1890
1891         return i;
1892 }
1893
1894 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1895                            u8 *link_bw, u8 *rate_select)
1896 {
1897         /* eDP 1.4 rate select method. */
1898         if (intel_dp->use_rate_select) {
1899                 *link_bw = 0;
1900                 *rate_select =
1901                         intel_dp_rate_select(intel_dp, port_clock);
1902         } else {
1903                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1904                 *rate_select = 0;
1905         }
1906 }
1907
1908 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1909                                          const struct intel_crtc_state *pipe_config)
1910 {
1911         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1912
1913         /* On TGL, FEC is supported on all Pipes */
1914         if (INTEL_GEN(dev_priv) >= 12)
1915                 return true;
1916
1917         if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1918                 return true;
1919
1920         return false;
1921 }
1922
1923 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1924                                   const struct intel_crtc_state *pipe_config)
1925 {
1926         return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1927                 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1928 }
1929
1930 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1931                                   const struct intel_crtc_state *crtc_state)
1932 {
1933         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1934
1935         if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1936                 return false;
1937
1938         return intel_dsc_source_support(encoder, crtc_state) &&
1939                 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1940 }
1941
1942 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1943                                 struct intel_crtc_state *pipe_config)
1944 {
1945         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1946         struct intel_connector *intel_connector = intel_dp->attached_connector;
1947         int bpp, bpc;
1948
1949         bpp = pipe_config->pipe_bpp;
1950         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1951
1952         if (bpc > 0)
1953                 bpp = min(bpp, 3*bpc);
1954
1955         if (intel_dp_is_edp(intel_dp)) {
1956                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1957                 if (intel_connector->base.display_info.bpc == 0 &&
1958                     dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1959                         drm_dbg_kms(&dev_priv->drm,
1960                                     "clamping bpp for eDP panel to BIOS-provided %i\n",
1961                                     dev_priv->vbt.edp.bpp);
1962                         bpp = dev_priv->vbt.edp.bpp;
1963                 }
1964         }
1965
1966         return bpp;
1967 }
1968
1969 /* Adjust link config limits based on compliance test requests. */
1970 void
1971 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1972                                   struct intel_crtc_state *pipe_config,
1973                                   struct link_config_limits *limits)
1974 {
1975         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1976
1977         /* For DP Compliance we override the computed bpp for the pipe */
1978         if (intel_dp->compliance.test_data.bpc != 0) {
1979                 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1980
1981                 limits->min_bpp = limits->max_bpp = bpp;
1982                 pipe_config->dither_force_disable = bpp == 6 * 3;
1983
1984                 drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
1985         }
1986
1987         /* Use values requested by Compliance Test Request */
1988         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1989                 int index;
1990
1991                 /* Validate the compliance test data since max values
1992                  * might have changed due to link train fallback.
1993                  */
1994                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1995                                                intel_dp->compliance.test_lane_count)) {
1996                         index = intel_dp_rate_index(intel_dp->common_rates,
1997                                                     intel_dp->num_common_rates,
1998                                                     intel_dp->compliance.test_link_rate);
1999                         if (index >= 0)
2000                                 limits->min_clock = limits->max_clock = index;
2001                         limits->min_lane_count = limits->max_lane_count =
2002                                 intel_dp->compliance.test_lane_count;
2003                 }
2004         }
2005 }
2006
2007 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
2008 {
2009         /*
2010          * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
2011          * format of the number of bytes per pixel will be half the number
2012          * of bytes of RGB pixel.
2013          */
2014         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2015                 bpp /= 2;
2016
2017         return bpp;
2018 }
2019
2020 /* Optimize link config in order: max bpp, min clock, min lanes */
2021 static int
2022 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2023                                   struct intel_crtc_state *pipe_config,
2024                                   const struct link_config_limits *limits)
2025 {
2026         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2027         int bpp, clock, lane_count;
2028         int mode_rate, link_clock, link_avail;
2029
2030         for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2031                 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2032
2033                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2034                                                    output_bpp);
2035
2036                 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2037                         for (lane_count = limits->min_lane_count;
2038                              lane_count <= limits->max_lane_count;
2039                              lane_count <<= 1) {
2040                                 link_clock = intel_dp->common_rates[clock];
2041                                 link_avail = intel_dp_max_data_rate(link_clock,
2042                                                                     lane_count);
2043
2044                                 if (mode_rate <= link_avail) {
2045                                         pipe_config->lane_count = lane_count;
2046                                         pipe_config->pipe_bpp = bpp;
2047                                         pipe_config->port_clock = link_clock;
2048
2049                                         return 0;
2050                                 }
2051                         }
2052                 }
2053         }
2054
2055         return -EINVAL;
2056 }
2057
2058 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2059 {
2060         int i, num_bpc;
2061         u8 dsc_bpc[3] = {0};
2062
2063         num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2064                                                        dsc_bpc);
2065         for (i = 0; i < num_bpc; i++) {
2066                 if (dsc_max_bpc >= dsc_bpc[i])
2067                         return dsc_bpc[i] * 3;
2068         }
2069
2070         return 0;
2071 }
2072
2073 #define DSC_SUPPORTED_VERSION_MIN               1
2074
2075 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2076                                        struct intel_crtc_state *crtc_state)
2077 {
2078         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2079         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2080         struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2081         u8 line_buf_depth;
2082         int ret;
2083
2084         ret = intel_dsc_compute_params(encoder, crtc_state);
2085         if (ret)
2086                 return ret;
2087
2088         /*
2089          * Slice Height of 8 works for all currently available panels. So start
2090          * with that if pic_height is an integral multiple of 8. Eventually add
2091          * logic to try multiple slice heights.
2092          */
2093         if (vdsc_cfg->pic_height % 8 == 0)
2094                 vdsc_cfg->slice_height = 8;
2095         else if (vdsc_cfg->pic_height % 4 == 0)
2096                 vdsc_cfg->slice_height = 4;
2097         else
2098                 vdsc_cfg->slice_height = 2;
2099
2100         vdsc_cfg->dsc_version_major =
2101                 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2102                  DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2103         vdsc_cfg->dsc_version_minor =
2104                 min(DSC_SUPPORTED_VERSION_MIN,
2105                     (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2106                      DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2107
2108         vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2109                 DP_DSC_RGB;
2110
2111         line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2112         if (!line_buf_depth) {
2113                 drm_dbg_kms(&i915->drm,
2114                             "DSC Sink Line Buffer Depth invalid\n");
2115                 return -EINVAL;
2116         }
2117
2118         if (vdsc_cfg->dsc_version_minor == 2)
2119                 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2120                         DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2121         else
2122                 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2123                         DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2124
2125         vdsc_cfg->block_pred_enable =
2126                 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2127                 DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2128
2129         return drm_dsc_compute_rc_parameters(vdsc_cfg);
2130 }
2131
2132 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2133                                        struct intel_crtc_state *pipe_config,
2134                                        struct drm_connector_state *conn_state,
2135                                        struct link_config_limits *limits)
2136 {
2137         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2138         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2139         const struct drm_display_mode *adjusted_mode =
2140                 &pipe_config->hw.adjusted_mode;
2141         u8 dsc_max_bpc;
2142         int pipe_bpp;
2143         int ret;
2144
2145         pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2146                 intel_dp_supports_fec(intel_dp, pipe_config);
2147
2148         if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2149                 return -EINVAL;
2150
2151         /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2152         if (INTEL_GEN(dev_priv) >= 12)
2153                 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2154         else
2155                 dsc_max_bpc = min_t(u8, 10,
2156                                     conn_state->max_requested_bpc);
2157
2158         pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2159
2160         /* Min Input BPC for ICL+ is 8 */
2161         if (pipe_bpp < 8 * 3) {
2162                 drm_dbg_kms(&dev_priv->drm,
2163                             "No DSC support for less than 8bpc\n");
2164                 return -EINVAL;
2165         }
2166
2167         /*
2168          * For now enable DSC for max bpp, max link rate, max lane count.
2169          * Optimize this later for the minimum possible link rate/lane count
2170          * with DSC enabled for the requested mode.
2171          */
2172         pipe_config->pipe_bpp = pipe_bpp;
2173         pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2174         pipe_config->lane_count = limits->max_lane_count;
2175
2176         if (intel_dp_is_edp(intel_dp)) {
2177                 pipe_config->dsc.compressed_bpp =
2178                         min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2179                               pipe_config->pipe_bpp);
2180                 pipe_config->dsc.slice_count =
2181                         drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2182                                                         true);
2183         } else {
2184                 u16 dsc_max_output_bpp;
2185                 u8 dsc_dp_slice_count;
2186
2187                 dsc_max_output_bpp =
2188                         intel_dp_dsc_get_output_bpp(dev_priv,
2189                                                     pipe_config->port_clock,
2190                                                     pipe_config->lane_count,
2191                                                     adjusted_mode->crtc_clock,
2192                                                     adjusted_mode->crtc_hdisplay);
2193                 dsc_dp_slice_count =
2194                         intel_dp_dsc_get_slice_count(intel_dp,
2195                                                      adjusted_mode->crtc_clock,
2196                                                      adjusted_mode->crtc_hdisplay);
2197                 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2198                         drm_dbg_kms(&dev_priv->drm,
2199                                     "Compressed BPP/Slice Count not supported\n");
2200                         return -EINVAL;
2201                 }
2202                 pipe_config->dsc.compressed_bpp = min_t(u16,
2203                                                                dsc_max_output_bpp >> 4,
2204                                                                pipe_config->pipe_bpp);
2205                 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2206         }
2207         /*
2208          * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2209          * is greater than the maximum Cdclock and if slice count is even
2210          * then we need to use 2 VDSC instances.
2211          */
2212         if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2213                 if (pipe_config->dsc.slice_count > 1) {
2214                         pipe_config->dsc.dsc_split = true;
2215                 } else {
2216                         drm_dbg_kms(&dev_priv->drm,
2217                                     "Cannot split stream to use 2 VDSC instances\n");
2218                         return -EINVAL;
2219                 }
2220         }
2221
2222         ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2223         if (ret < 0) {
2224                 drm_dbg_kms(&dev_priv->drm,
2225                             "Cannot compute valid DSC parameters for Input Bpp = %d "
2226                             "Compressed BPP = %d\n",
2227                             pipe_config->pipe_bpp,
2228                             pipe_config->dsc.compressed_bpp);
2229                 return ret;
2230         }
2231
2232         pipe_config->dsc.compression_enable = true;
2233         drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2234                     "Compressed Bpp = %d Slice Count = %d\n",
2235                     pipe_config->pipe_bpp,
2236                     pipe_config->dsc.compressed_bpp,
2237                     pipe_config->dsc.slice_count);
2238
2239         return 0;
2240 }
2241
2242 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2243 {
2244         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2245                 return 6 * 3;
2246         else
2247                 return 8 * 3;
2248 }
2249
2250 static int
2251 intel_dp_compute_link_config(struct intel_encoder *encoder,
2252                              struct intel_crtc_state *pipe_config,
2253                              struct drm_connector_state *conn_state)
2254 {
2255         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2256         const struct drm_display_mode *adjusted_mode =
2257                 &pipe_config->hw.adjusted_mode;
2258         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2259         struct link_config_limits limits;
2260         int common_len;
2261         int ret;
2262
2263         common_len = intel_dp_common_len_rate_limit(intel_dp,
2264                                                     intel_dp->max_link_rate);
2265
2266         /* No common link rates between source and sink */
2267         drm_WARN_ON(encoder->base.dev, common_len <= 0);
2268
2269         limits.min_clock = 0;
2270         limits.max_clock = common_len - 1;
2271
2272         limits.min_lane_count = 1;
2273         limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2274
2275         limits.min_bpp = intel_dp_min_bpp(pipe_config);
2276         limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2277
2278         if (intel_dp_is_edp(intel_dp)) {
2279                 /*
2280                  * Use the maximum clock and number of lanes the eDP panel
2281                  * advertizes being capable of. The panels are generally
2282                  * designed to support only a single clock and lane
2283                  * configuration, and typically these values correspond to the
2284                  * native resolution of the panel.
2285                  */
2286                 limits.min_lane_count = limits.max_lane_count;
2287                 limits.min_clock = limits.max_clock;
2288         }
2289
2290         intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2291
2292         drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2293                     "max rate %d max bpp %d pixel clock %iKHz\n",
2294                     limits.max_lane_count,
2295                     intel_dp->common_rates[limits.max_clock],
2296                     limits.max_bpp, adjusted_mode->crtc_clock);
2297
2298         /*
2299          * Optimize for slow and wide. This is the place to add alternative
2300          * optimization policy.
2301          */
2302         ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2303
2304         /* enable compression if the mode doesn't fit available BW */
2305         drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2306         if (ret || intel_dp->force_dsc_en) {
2307                 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2308                                                   conn_state, &limits);
2309                 if (ret < 0)
2310                         return ret;
2311         }
2312
2313         if (pipe_config->dsc.compression_enable) {
2314                 drm_dbg_kms(&i915->drm,
2315                             "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2316                             pipe_config->lane_count, pipe_config->port_clock,
2317                             pipe_config->pipe_bpp,
2318                             pipe_config->dsc.compressed_bpp);
2319
2320                 drm_dbg_kms(&i915->drm,
2321                             "DP link rate required %i available %i\n",
2322                             intel_dp_link_required(adjusted_mode->crtc_clock,
2323                                                    pipe_config->dsc.compressed_bpp),
2324                             intel_dp_max_data_rate(pipe_config->port_clock,
2325                                                    pipe_config->lane_count));
2326         } else {
2327                 drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2328                             pipe_config->lane_count, pipe_config->port_clock,
2329                             pipe_config->pipe_bpp);
2330
2331                 drm_dbg_kms(&i915->drm,
2332                             "DP link rate required %i available %i\n",
2333                             intel_dp_link_required(adjusted_mode->crtc_clock,
2334                                                    pipe_config->pipe_bpp),
2335                             intel_dp_max_data_rate(pipe_config->port_clock,
2336                                                    pipe_config->lane_count));
2337         }
2338         return 0;
2339 }
2340
2341 static int
2342 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2343                          struct intel_crtc_state *crtc_state,
2344                          const struct drm_connector_state *conn_state)
2345 {
2346         struct drm_connector *connector = conn_state->connector;
2347         const struct drm_display_info *info = &connector->display_info;
2348         const struct drm_display_mode *adjusted_mode =
2349                 &crtc_state->hw.adjusted_mode;
2350
2351         if (!drm_mode_is_420_only(info, adjusted_mode) ||
2352             !intel_dp_get_colorimetry_status(intel_dp) ||
2353             !connector->ycbcr_420_allowed)
2354                 return 0;
2355
2356         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2357
2358         return intel_pch_panel_fitting(crtc_state, conn_state);
2359 }
2360
2361 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2362                                   const struct drm_connector_state *conn_state)
2363 {
2364         const struct intel_digital_connector_state *intel_conn_state =
2365                 to_intel_digital_connector_state(conn_state);
2366         const struct drm_display_mode *adjusted_mode =
2367                 &crtc_state->hw.adjusted_mode;
2368
2369         /*
2370          * Our YCbCr output is always limited range.
2371          * crtc_state->limited_color_range only applies to RGB,
2372          * and it must never be set for YCbCr or we risk setting
2373          * some conflicting bits in PIPECONF which will mess up
2374          * the colors on the monitor.
2375          */
2376         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2377                 return false;
2378
2379         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2380                 /*
2381                  * See:
2382                  * CEA-861-E - 5.1 Default Encoding Parameters
2383                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2384                  */
2385                 return crtc_state->pipe_bpp != 18 &&
2386                         drm_default_rgb_quant_range(adjusted_mode) ==
2387                         HDMI_QUANTIZATION_RANGE_LIMITED;
2388         } else {
2389                 return intel_conn_state->broadcast_rgb ==
2390                         INTEL_BROADCAST_RGB_LIMITED;
2391         }
2392 }
2393
2394 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2395                                     enum port port)
2396 {
2397         if (IS_G4X(dev_priv))
2398                 return false;
2399         if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2400                 return false;
2401
2402         return true;
2403 }
2404
2405 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2406                                              const struct drm_connector_state *conn_state,
2407                                              struct drm_dp_vsc_sdp *vsc)
2408 {
2409         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2410         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2411
2412         /*
2413          * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2414          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2415          * Colorimetry Format indication.
2416          */
2417         vsc->revision = 0x5;
2418         vsc->length = 0x13;
2419
2420         /* DP 1.4a spec, Table 2-120 */
2421         switch (crtc_state->output_format) {
2422         case INTEL_OUTPUT_FORMAT_YCBCR444:
2423                 vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2424                 break;
2425         case INTEL_OUTPUT_FORMAT_YCBCR420:
2426                 vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2427                 break;
2428         case INTEL_OUTPUT_FORMAT_RGB:
2429         default:
2430                 vsc->pixelformat = DP_PIXELFORMAT_RGB;
2431         }
2432
2433         switch (conn_state->colorspace) {
2434         case DRM_MODE_COLORIMETRY_BT709_YCC:
2435                 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2436                 break;
2437         case DRM_MODE_COLORIMETRY_XVYCC_601:
2438                 vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2439                 break;
2440         case DRM_MODE_COLORIMETRY_XVYCC_709:
2441                 vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2442                 break;
2443         case DRM_MODE_COLORIMETRY_SYCC_601:
2444                 vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2445                 break;
2446         case DRM_MODE_COLORIMETRY_OPYCC_601:
2447                 vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2448                 break;
2449         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2450                 vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2451                 break;
2452         case DRM_MODE_COLORIMETRY_BT2020_RGB:
2453                 vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2454                 break;
2455         case DRM_MODE_COLORIMETRY_BT2020_YCC:
2456                 vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2457                 break;
2458         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2459         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2460                 vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2461                 break;
2462         default:
2463                 /*
2464                  * RGB->YCBCR color conversion uses the BT.709
2465                  * color space.
2466                  */
2467                 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2468                         vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2469                 else
2470                         vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2471                 break;
2472         }
2473
2474         vsc->bpc = crtc_state->pipe_bpp / 3;
2475
2476         /* only RGB pixelformat supports 6 bpc */
2477         drm_WARN_ON(&dev_priv->drm,
2478                     vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2479
2480         /* all YCbCr are always limited range */
2481         vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2482         vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2483 }
2484
2485 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2486                                      struct intel_crtc_state *crtc_state,
2487                                      const struct drm_connector_state *conn_state)
2488 {
2489         struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2490
2491         /* When a crtc state has PSR, VSC SDP will be handled by PSR routine */
2492         if (crtc_state->has_psr)
2493                 return;
2494
2495         if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2496                 return;
2497
2498         crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2499         vsc->sdp_type = DP_SDP_VSC;
2500         intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2501                                          &crtc_state->infoframes.vsc);
2502 }
2503
2504 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp,
2505                                   const struct intel_crtc_state *crtc_state,
2506                                   const struct drm_connector_state *conn_state,
2507                                   struct drm_dp_vsc_sdp *vsc)
2508 {
2509         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2510
2511         vsc->sdp_type = DP_SDP_VSC;
2512
2513         if (dev_priv->psr.psr2_enabled) {
2514                 if (dev_priv->psr.colorimetry_support &&
2515                     intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
2516                         /* [PSR2, +Colorimetry] */
2517                         intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2518                                                          vsc);
2519                 } else {
2520                         /*
2521                          * [PSR2, -Colorimetry]
2522                          * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
2523                          * 3D stereo + PSR/PSR2 + Y-coordinate.
2524                          */
2525                         vsc->revision = 0x4;
2526                         vsc->length = 0xe;
2527                 }
2528         } else {
2529                 /*
2530                  * [PSR1]
2531                  * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2532                  * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
2533                  * higher).
2534                  */
2535                 vsc->revision = 0x2;
2536                 vsc->length = 0x8;
2537         }
2538 }
2539
2540 static void
2541 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2542                                             struct intel_crtc_state *crtc_state,
2543                                             const struct drm_connector_state *conn_state)
2544 {
2545         int ret;
2546         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2547         struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2548
2549         if (!conn_state->hdr_output_metadata)
2550                 return;
2551
2552         ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2553
2554         if (ret) {
2555                 drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2556                 return;
2557         }
2558
2559         crtc_state->infoframes.enable |=
2560                 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2561 }
2562
2563 int
2564 intel_dp_compute_config(struct intel_encoder *encoder,
2565                         struct intel_crtc_state *pipe_config,
2566                         struct drm_connector_state *conn_state)
2567 {
2568         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2569         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2570         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2571         struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2572         enum port port = encoder->port;
2573         struct intel_connector *intel_connector = intel_dp->attached_connector;
2574         struct intel_digital_connector_state *intel_conn_state =
2575                 to_intel_digital_connector_state(conn_state);
2576         bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2577                                            DP_DPCD_QUIRK_CONSTANT_N);
2578         int ret = 0, output_bpp;
2579
2580         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2581                 pipe_config->has_pch_encoder = true;
2582
2583         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2584
2585         if (lspcon->active)
2586                 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2587         else
2588                 ret = intel_dp_ycbcr420_config(intel_dp, pipe_config,
2589                                                conn_state);
2590         if (ret)
2591                 return ret;
2592
2593         pipe_config->has_drrs = false;
2594         if (!intel_dp_port_has_audio(dev_priv, port))
2595                 pipe_config->has_audio = false;
2596         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2597                 pipe_config->has_audio = intel_dp->has_audio;
2598         else
2599                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2600
2601         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2602                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2603                                        adjusted_mode);
2604
2605                 if (HAS_GMCH(dev_priv))
2606                         ret = intel_gmch_panel_fitting(pipe_config, conn_state);
2607                 else
2608                         ret = intel_pch_panel_fitting(pipe_config, conn_state);
2609                 if (ret)
2610                         return ret;
2611         }
2612
2613         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2614                 return -EINVAL;
2615
2616         if (HAS_GMCH(dev_priv) &&
2617             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2618                 return -EINVAL;
2619
2620         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2621                 return -EINVAL;
2622
2623         if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2624                 return -EINVAL;
2625
2626         ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2627         if (ret < 0)
2628                 return ret;
2629
2630         pipe_config->limited_color_range =
2631                 intel_dp_limited_color_range(pipe_config, conn_state);
2632
2633         if (pipe_config->dsc.compression_enable)
2634                 output_bpp = pipe_config->dsc.compressed_bpp;
2635         else
2636                 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2637
2638         intel_link_compute_m_n(output_bpp,
2639                                pipe_config->lane_count,
2640                                adjusted_mode->crtc_clock,
2641                                pipe_config->port_clock,
2642                                &pipe_config->dp_m_n,
2643                                constant_n, pipe_config->fec_enable);
2644
2645         if (intel_connector->panel.downclock_mode != NULL &&
2646                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2647                         pipe_config->has_drrs = true;
2648                         intel_link_compute_m_n(output_bpp,
2649                                                pipe_config->lane_count,
2650                                                intel_connector->panel.downclock_mode->clock,
2651                                                pipe_config->port_clock,
2652                                                &pipe_config->dp_m2_n2,
2653                                                constant_n, pipe_config->fec_enable);
2654         }
2655
2656         if (!HAS_DDI(dev_priv))
2657                 intel_dp_set_clock(encoder, pipe_config);
2658
2659         intel_psr_compute_config(intel_dp, pipe_config);
2660         intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2661         intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2662
2663         return 0;
2664 }
2665
2666 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2667                               int link_rate, u8 lane_count,
2668                               bool link_mst)
2669 {
2670         intel_dp->link_trained = false;
2671         intel_dp->link_rate = link_rate;
2672         intel_dp->lane_count = lane_count;
2673         intel_dp->link_mst = link_mst;
2674 }
2675
2676 static void intel_dp_prepare(struct intel_encoder *encoder,
2677                              const struct intel_crtc_state *pipe_config)
2678 {
2679         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2680         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2681         enum port port = encoder->port;
2682         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2683         const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2684
2685         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2686                                  pipe_config->lane_count,
2687                                  intel_crtc_has_type(pipe_config,
2688                                                      INTEL_OUTPUT_DP_MST));
2689
2690         /*
2691          * There are four kinds of DP registers:
2692          *
2693          *      IBX PCH
2694          *      SNB CPU
2695          *      IVB CPU
2696          *      CPT PCH
2697          *
2698          * IBX PCH and CPU are the same for almost everything,
2699          * except that the CPU DP PLL is configured in this
2700          * register
2701          *
2702          * CPT PCH is quite different, having many bits moved
2703          * to the TRANS_DP_CTL register instead. That
2704          * configuration happens (oddly) in ilk_pch_enable
2705          */
2706
2707         /* Preserve the BIOS-computed detected bit. This is
2708          * supposed to be read-only.
2709          */
2710         intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2711
2712         /* Handle DP bits in common between all three register formats */
2713         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2714         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2715
2716         /* Split out the IBX/CPU vs CPT settings */
2717
2718         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2719                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2720                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2721                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2722                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2723                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2724
2725                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2726                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2727
2728                 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2729         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2730                 u32 trans_dp;
2731
2732                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2733
2734                 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2735                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2736                         trans_dp |= TRANS_DP_ENH_FRAMING;
2737                 else
2738                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
2739                 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2740         } else {
2741                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2742                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
2743
2744                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2745                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2746                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2747                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2748                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2749
2750                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2751                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2752
2753                 if (IS_CHERRYVIEW(dev_priv))
2754                         intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2755                 else
2756                         intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2757         }
2758 }
2759
2760 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2761 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2762
2763 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2764 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
2765
2766 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2767 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2768
2769 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2770
2771 static void wait_panel_status(struct intel_dp *intel_dp,
2772                                        u32 mask,
2773                                        u32 value)
2774 {
2775         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2776         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2777
2778         lockdep_assert_held(&dev_priv->pps_mutex);
2779
2780         intel_pps_verify_state(intel_dp);
2781
2782         pp_stat_reg = _pp_stat_reg(intel_dp);
2783         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2784
2785         drm_dbg_kms(&dev_priv->drm,
2786                     "mask %08x value %08x status %08x control %08x\n",
2787                     mask, value,
2788                     intel_de_read(dev_priv, pp_stat_reg),
2789                     intel_de_read(dev_priv, pp_ctrl_reg));
2790
2791         if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2792                                        mask, value, 5000))
2793                 drm_err(&dev_priv->drm,
2794                         "Panel status timeout: status %08x control %08x\n",
2795                         intel_de_read(dev_priv, pp_stat_reg),
2796                         intel_de_read(dev_priv, pp_ctrl_reg));
2797
2798         drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2799 }
2800
2801 static void wait_panel_on(struct intel_dp *intel_dp)
2802 {
2803         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2804
2805         drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2806         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2807 }
2808
2809 static void wait_panel_off(struct intel_dp *intel_dp)
2810 {
2811         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2812
2813         drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2814         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2815 }
2816
2817 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2818 {
2819         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2820         ktime_t panel_power_on_time;
2821         s64 panel_power_off_duration;
2822
2823         drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2824
2825         /* take the difference of currrent time and panel power off time
2826          * and then make panel wait for t11_t12 if needed. */
2827         panel_power_on_time = ktime_get_boottime();
2828         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2829
2830         /* When we disable the VDD override bit last we have to do the manual
2831          * wait. */
2832         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2833                 wait_remaining_ms_from_jiffies(jiffies,
2834                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2835
2836         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2837 }
2838
2839 static void wait_backlight_on(struct intel_dp *intel_dp)
2840 {
2841         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2842                                        intel_dp->backlight_on_delay);
2843 }
2844
2845 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2846 {
2847         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2848                                        intel_dp->backlight_off_delay);
2849 }
2850
2851 /* Read the current pp_control value, unlocking the register if it
2852  * is locked
2853  */
2854
2855 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2856 {
2857         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2858         u32 control;
2859
2860         lockdep_assert_held(&dev_priv->pps_mutex);
2861
2862         control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2863         if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2864                         (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2865                 control &= ~PANEL_UNLOCK_MASK;
2866                 control |= PANEL_UNLOCK_REGS;
2867         }
2868         return control;
2869 }
2870
2871 /*
2872  * Must be paired with edp_panel_vdd_off().
2873  * Must hold pps_mutex around the whole on/off sequence.
2874  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2875  */
2876 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2877 {
2878         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2879         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2880         u32 pp;
2881         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2882         bool need_to_disable = !intel_dp->want_panel_vdd;
2883
2884         lockdep_assert_held(&dev_priv->pps_mutex);
2885
2886         if (!intel_dp_is_edp(intel_dp))
2887                 return false;
2888
2889         cancel_delayed_work(&intel_dp->panel_vdd_work);
2890         intel_dp->want_panel_vdd = true;
2891
2892         if (edp_have_panel_vdd(intel_dp))
2893                 return need_to_disable;
2894
2895         intel_display_power_get(dev_priv,
2896                                 intel_aux_power_domain(intel_dig_port));
2897
2898         drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
2899                     intel_dig_port->base.base.base.id,
2900                     intel_dig_port->base.base.name);
2901
2902         if (!edp_have_panel_power(intel_dp))
2903                 wait_panel_power_cycle(intel_dp);
2904
2905         pp = ilk_get_pp_control(intel_dp);
2906         pp |= EDP_FORCE_VDD;
2907
2908         pp_stat_reg = _pp_stat_reg(intel_dp);
2909         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2910
2911         intel_de_write(dev_priv, pp_ctrl_reg, pp);
2912         intel_de_posting_read(dev_priv, pp_ctrl_reg);
2913         drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2914                     intel_de_read(dev_priv, pp_stat_reg),
2915                     intel_de_read(dev_priv, pp_ctrl_reg));
2916         /*
2917          * If the panel wasn't on, delay before accessing aux channel
2918          */
2919         if (!edp_have_panel_power(intel_dp)) {
2920                 drm_dbg_kms(&dev_priv->drm,
2921                             "[ENCODER:%d:%s] panel power wasn't enabled\n",
2922                             intel_dig_port->base.base.base.id,
2923                             intel_dig_port->base.base.name);
2924                 msleep(intel_dp->panel_power_up_delay);
2925         }
2926
2927         return need_to_disable;
2928 }
2929
2930 /*
2931  * Must be paired with intel_edp_panel_vdd_off() or
2932  * intel_edp_panel_off().
2933  * Nested calls to these functions are not allowed since
2934  * we drop the lock. Caller must use some higher level
2935  * locking to prevent nested calls from other threads.
2936  */
2937 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2938 {
2939         intel_wakeref_t wakeref;
2940         bool vdd;
2941
2942         if (!intel_dp_is_edp(intel_dp))
2943                 return;
2944
2945         vdd = false;
2946         with_pps_lock(intel_dp, wakeref)
2947                 vdd = edp_panel_vdd_on(intel_dp);
2948         I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2949                         dp_to_dig_port(intel_dp)->base.base.base.id,
2950                         dp_to_dig_port(intel_dp)->base.base.name);
2951 }
2952
2953 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2954 {
2955         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2956         struct intel_digital_port *intel_dig_port =
2957                 dp_to_dig_port(intel_dp);
2958         u32 pp;
2959         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2960
2961         lockdep_assert_held(&dev_priv->pps_mutex);
2962
2963         drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2964
2965         if (!edp_have_panel_vdd(intel_dp))
2966                 return;
2967
2968         drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
2969                     intel_dig_port->base.base.base.id,
2970                     intel_dig_port->base.base.name);
2971
2972         pp = ilk_get_pp_control(intel_dp);
2973         pp &= ~EDP_FORCE_VDD;
2974
2975         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2976         pp_stat_reg = _pp_stat_reg(intel_dp);
2977
2978         intel_de_write(dev_priv, pp_ctrl_reg, pp);
2979         intel_de_posting_read(dev_priv, pp_ctrl_reg);
2980
2981         /* Make sure sequencer is idle before allowing subsequent activity */
2982         drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2983                     intel_de_read(dev_priv, pp_stat_reg),
2984                     intel_de_read(dev_priv, pp_ctrl_reg));
2985
2986         if ((pp & PANEL_POWER_ON) == 0)
2987                 intel_dp->panel_power_off_time = ktime_get_boottime();
2988
2989         intel_display_power_put_unchecked(dev_priv,
2990                                           intel_aux_power_domain(intel_dig_port));
2991 }
2992
2993 static void edp_panel_vdd_work(struct work_struct *__work)
2994 {
2995         struct intel_dp *intel_dp =
2996                 container_of(to_delayed_work(__work),
2997                              struct intel_dp, panel_vdd_work);
2998         intel_wakeref_t wakeref;
2999
3000         with_pps_lock(intel_dp, wakeref) {
3001                 if (!intel_dp->want_panel_vdd)
3002                         edp_panel_vdd_off_sync(intel_dp);
3003         }
3004 }
3005
3006 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
3007 {
3008         unsigned long delay;
3009
3010         /*
3011          * Queue the timer to fire a long time from now (relative to the power
3012          * down delay) to keep the panel power up across a sequence of
3013          * operations.
3014          */
3015         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
3016         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
3017 }
3018
3019 /*
3020  * Must be paired with edp_panel_vdd_on().
3021  * Must hold pps_mutex around the whole on/off sequence.
3022  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3023  */
3024 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
3025 {
3026         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3027
3028         lockdep_assert_held(&dev_priv->pps_mutex);
3029
3030         if (!intel_dp_is_edp(intel_dp))
3031                 return;
3032
3033         I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
3034                         dp_to_dig_port(intel_dp)->base.base.base.id,
3035                         dp_to_dig_port(intel_dp)->base.base.name);
3036
3037         intel_dp->want_panel_vdd = false;
3038
3039         if (sync)
3040                 edp_panel_vdd_off_sync(intel_dp);
3041         else
3042                 edp_panel_vdd_schedule_off(intel_dp);
3043 }
3044
3045 static void edp_panel_on(struct intel_dp *intel_dp)
3046 {
3047         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3048         u32 pp;
3049         i915_reg_t pp_ctrl_reg;
3050
3051         lockdep_assert_held(&dev_priv->pps_mutex);
3052
3053         if (!intel_dp_is_edp(intel_dp))
3054                 return;
3055
3056         drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3057                     dp_to_dig_port(intel_dp)->base.base.base.id,
3058                     dp_to_dig_port(intel_dp)->base.base.name);
3059
3060         if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3061                      "[ENCODER:%d:%s] panel power already on\n",
3062                      dp_to_dig_port(intel_dp)->base.base.base.id,
3063                      dp_to_dig_port(intel_dp)->base.base.name))
3064                 return;
3065
3066         wait_panel_power_cycle(intel_dp);
3067
3068         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3069         pp = ilk_get_pp_control(intel_dp);
3070         if (IS_GEN(dev_priv, 5)) {
3071                 /* ILK workaround: disable reset around power sequence */
3072                 pp &= ~PANEL_POWER_RESET;
3073                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3074                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3075         }
3076
3077         pp |= PANEL_POWER_ON;
3078         if (!IS_GEN(dev_priv, 5))
3079                 pp |= PANEL_POWER_RESET;
3080
3081         intel_de_write(dev_priv, pp_ctrl_reg, pp);
3082         intel_de_posting_read(dev_priv, pp_ctrl_reg);
3083
3084         wait_panel_on(intel_dp);
3085         intel_dp->last_power_on = jiffies;
3086
3087         if (IS_GEN(dev_priv, 5)) {
3088                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3089                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3090                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3091         }
3092 }
3093
3094 void intel_edp_panel_on(struct intel_dp *intel_dp)
3095 {
3096         intel_wakeref_t wakeref;
3097
3098         if (!intel_dp_is_edp(intel_dp))
3099                 return;
3100
3101         with_pps_lock(intel_dp, wakeref)
3102                 edp_panel_on(intel_dp);
3103 }
3104
3105
3106 static void edp_panel_off(struct intel_dp *intel_dp)
3107 {
3108         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3109         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3110         u32 pp;
3111         i915_reg_t pp_ctrl_reg;
3112
3113         lockdep_assert_held(&dev_priv->pps_mutex);
3114
3115         if (!intel_dp_is_edp(intel_dp))
3116                 return;
3117
3118         drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3119                     dig_port->base.base.base.id, dig_port->base.base.name);
3120
3121         drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3122                  "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3123                  dig_port->base.base.base.id, dig_port->base.base.name);
3124
3125         pp = ilk_get_pp_control(intel_dp);
3126         /* We need to switch off panel power _and_ force vdd, for otherwise some
3127          * panels get very unhappy and cease to work. */
3128         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3129                 EDP_BLC_ENABLE);
3130
3131         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3132
3133         intel_dp->want_panel_vdd = false;
3134
3135         intel_de_write(dev_priv, pp_ctrl_reg, pp);
3136         intel_de_posting_read(dev_priv, pp_ctrl_reg);
3137
3138         wait_panel_off(intel_dp);
3139         intel_dp->panel_power_off_time = ktime_get_boottime();
3140
3141         /* We got a reference when we enabled the VDD. */
3142         intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3143 }
3144
3145 void intel_edp_panel_off(struct intel_dp *intel_dp)
3146 {
3147         intel_wakeref_t wakeref;
3148
3149         if (!intel_dp_is_edp(intel_dp))
3150                 return;
3151
3152         with_pps_lock(intel_dp, wakeref)
3153                 edp_panel_off(intel_dp);
3154 }
3155
3156 /* Enable backlight in the panel power control. */
3157 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3158 {
3159         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3160         intel_wakeref_t wakeref;
3161
3162         /*
3163          * If we enable the backlight right away following a panel power
3164          * on, we may see slight flicker as the panel syncs with the eDP
3165          * link.  So delay a bit to make sure the image is solid before
3166          * allowing it to appear.
3167          */
3168         wait_backlight_on(intel_dp);
3169
3170         with_pps_lock(intel_dp, wakeref) {
3171                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3172                 u32 pp;
3173
3174                 pp = ilk_get_pp_control(intel_dp);
3175                 pp |= EDP_BLC_ENABLE;
3176
3177                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3178                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3179         }
3180 }
3181
3182 /* Enable backlight PWM and backlight PP control. */
3183 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3184                             const struct drm_connector_state *conn_state)
3185 {
3186         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3187         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3188
3189         if (!intel_dp_is_edp(intel_dp))
3190                 return;
3191
3192         drm_dbg_kms(&i915->drm, "\n");
3193
3194         intel_panel_enable_backlight(crtc_state, conn_state);
3195         _intel_edp_backlight_on(intel_dp);
3196 }
3197
3198 /* Disable backlight in the panel power control. */
3199 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3200 {
3201         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3202         intel_wakeref_t wakeref;
3203
3204         if (!intel_dp_is_edp(intel_dp))
3205                 return;
3206
3207         with_pps_lock(intel_dp, wakeref) {
3208                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3209                 u32 pp;
3210
3211                 pp = ilk_get_pp_control(intel_dp);
3212                 pp &= ~EDP_BLC_ENABLE;
3213
3214                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3215                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3216         }
3217
3218         intel_dp->last_backlight_off = jiffies;
3219         edp_wait_backlight_off(intel_dp);
3220 }
3221
3222 /* Disable backlight PP control and backlight PWM. */
3223 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3224 {
3225         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3226         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3227
3228         if (!intel_dp_is_edp(intel_dp))
3229                 return;
3230
3231         drm_dbg_kms(&i915->drm, "\n");
3232
3233         _intel_edp_backlight_off(intel_dp);
3234         intel_panel_disable_backlight(old_conn_state);
3235 }
3236
3237 /*
3238  * Hook for controlling the panel power control backlight through the bl_power
3239  * sysfs attribute. Take care to handle multiple calls.
3240  */
3241 static void intel_edp_backlight_power(struct intel_connector *connector,
3242                                       bool enable)
3243 {
3244         struct drm_i915_private *i915 = to_i915(connector->base.dev);
3245         struct intel_dp *intel_dp = intel_attached_dp(connector);
3246         intel_wakeref_t wakeref;
3247         bool is_enabled;
3248
3249         is_enabled = false;
3250         with_pps_lock(intel_dp, wakeref)
3251                 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3252         if (is_enabled == enable)
3253                 return;
3254
3255         drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3256                     enable ? "enable" : "disable");
3257
3258         if (enable)
3259                 _intel_edp_backlight_on(intel_dp);
3260         else
3261                 _intel_edp_backlight_off(intel_dp);
3262 }
3263
3264 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3265 {
3266         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3267         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3268         bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3269
3270         I915_STATE_WARN(cur_state != state,
3271                         "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3272                         dig_port->base.base.base.id, dig_port->base.base.name,
3273                         onoff(state), onoff(cur_state));
3274 }
3275 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3276
3277 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3278 {
3279         bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3280
3281         I915_STATE_WARN(cur_state != state,
3282                         "eDP PLL state assertion failure (expected %s, current %s)\n",
3283                         onoff(state), onoff(cur_state));
3284 }
3285 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3286 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3287
3288 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3289                            const struct intel_crtc_state *pipe_config)
3290 {
3291         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3292         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3293
3294         assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3295         assert_dp_port_disabled(intel_dp);
3296         assert_edp_pll_disabled(dev_priv);
3297
3298         drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3299                     pipe_config->port_clock);
3300
3301         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3302
3303         if (pipe_config->port_clock == 162000)
3304                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3305         else
3306                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3307
3308         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3309         intel_de_posting_read(dev_priv, DP_A);
3310         udelay(500);
3311
3312         /*
3313          * [DevILK] Work around required when enabling DP PLL
3314          * while a pipe is enabled going to FDI:
3315          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3316          * 2. Program DP PLL enable
3317          */
3318         if (IS_GEN(dev_priv, 5))
3319                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3320
3321         intel_dp->DP |= DP_PLL_ENABLE;
3322
3323         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3324         intel_de_posting_read(dev_priv, DP_A);
3325         udelay(200);
3326 }
3327
3328 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3329                             const struct intel_crtc_state *old_crtc_state)
3330 {
3331         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3332         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3333
3334         assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3335         assert_dp_port_disabled(intel_dp);
3336         assert_edp_pll_enabled(dev_priv);
3337
3338         drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3339
3340         intel_dp->DP &= ~DP_PLL_ENABLE;
3341
3342         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3343         intel_de_posting_read(dev_priv, DP_A);
3344         udelay(200);
3345 }
3346
3347 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3348 {
3349         /*
3350          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3351          * be capable of signalling downstream hpd with a long pulse.
3352          * Whether or not that means D3 is safe to use is not clear,
3353          * but let's assume so until proven otherwise.
3354          *
3355          * FIXME should really check all downstream ports...
3356          */
3357         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3358                 drm_dp_is_branch(intel_dp->dpcd) &&
3359                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3360 }
3361
3362 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3363                                            const struct intel_crtc_state *crtc_state,
3364                                            bool enable)
3365 {
3366         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3367         int ret;
3368
3369         if (!crtc_state->dsc.compression_enable)
3370                 return;
3371
3372         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3373                                  enable ? DP_DECOMPRESSION_EN : 0);
3374         if (ret < 0)
3375                 drm_dbg_kms(&i915->drm,
3376                             "Failed to %s sink decompression state\n",
3377                             enable ? "enable" : "disable");
3378 }
3379
3380 /* If the sink supports it, try to set the power state appropriately */
3381 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3382 {
3383         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3384         int ret, i;
3385
3386         /* Should have a valid DPCD by this point */
3387         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3388                 return;
3389
3390         if (mode != DRM_MODE_DPMS_ON) {
3391                 if (downstream_hpd_needs_d0(intel_dp))
3392                         return;
3393
3394                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3395                                          DP_SET_POWER_D3);
3396         } else {
3397                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3398
3399                 /*
3400                  * When turning on, we need to retry for 1ms to give the sink
3401                  * time to wake up.
3402                  */
3403                 for (i = 0; i < 3; i++) {
3404                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3405                                                  DP_SET_POWER_D0);
3406                         if (ret == 1)
3407                                 break;
3408                         msleep(1);
3409                 }
3410
3411                 if (ret == 1 && lspcon->active)
3412                         lspcon_wait_pcon_mode(lspcon);
3413         }
3414
3415         if (ret != 1)
3416                 drm_dbg_kms(&i915->drm, "failed to %s sink power state\n",
3417                             mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3418 }
3419
3420 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3421                                  enum port port, enum pipe *pipe)
3422 {
3423         enum pipe p;
3424
3425         for_each_pipe(dev_priv, p) {
3426                 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3427
3428                 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3429                         *pipe = p;
3430                         return true;
3431                 }
3432         }
3433
3434         drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3435                     port_name(port));
3436
3437         /* must initialize pipe to something for the asserts */
3438         *pipe = PIPE_A;
3439
3440         return false;
3441 }
3442
3443 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3444                            i915_reg_t dp_reg, enum port port,
3445                            enum pipe *pipe)
3446 {
3447         bool ret;
3448         u32 val;
3449
3450         val = intel_de_read(dev_priv, dp_reg);
3451
3452         ret = val & DP_PORT_EN;
3453
3454         /* asserts want to know the pipe even if the port is disabled */
3455         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3456                 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3457         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3458                 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3459         else if (IS_CHERRYVIEW(dev_priv))
3460                 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3461         else
3462                 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3463
3464         return ret;
3465 }
3466
3467 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3468                                   enum pipe *pipe)
3469 {
3470         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3471         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3472         intel_wakeref_t wakeref;
3473         bool ret;
3474
3475         wakeref = intel_display_power_get_if_enabled(dev_priv,
3476                                                      encoder->power_domain);
3477         if (!wakeref)
3478                 return false;
3479
3480         ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3481                                     encoder->port, pipe);
3482
3483         intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3484
3485         return ret;
3486 }
3487
3488 static void intel_dp_get_config(struct intel_encoder *encoder,
3489                                 struct intel_crtc_state *pipe_config)
3490 {
3491         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3492         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3493         u32 tmp, flags = 0;
3494         enum port port = encoder->port;
3495         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3496
3497         if (encoder->type == INTEL_OUTPUT_EDP)
3498                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3499         else
3500                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3501
3502         tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3503
3504         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3505
3506         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3507                 u32 trans_dp = intel_de_read(dev_priv,
3508                                              TRANS_DP_CTL(crtc->pipe));
3509
3510                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3511                         flags |= DRM_MODE_FLAG_PHSYNC;
3512                 else
3513                         flags |= DRM_MODE_FLAG_NHSYNC;
3514
3515                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3516                         flags |= DRM_MODE_FLAG_PVSYNC;
3517                 else
3518                         flags |= DRM_MODE_FLAG_NVSYNC;
3519         } else {
3520                 if (tmp & DP_SYNC_HS_HIGH)
3521                         flags |= DRM_MODE_FLAG_PHSYNC;
3522                 else
3523                         flags |= DRM_MODE_FLAG_NHSYNC;
3524
3525                 if (tmp & DP_SYNC_VS_HIGH)
3526                         flags |= DRM_MODE_FLAG_PVSYNC;
3527                 else
3528                         flags |= DRM_MODE_FLAG_NVSYNC;
3529         }
3530
3531         pipe_config->hw.adjusted_mode.flags |= flags;
3532
3533         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3534                 pipe_config->limited_color_range = true;
3535
3536         pipe_config->lane_count =
3537                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3538
3539         intel_dp_get_m_n(crtc, pipe_config);
3540
3541         if (port == PORT_A) {
3542                 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3543                         pipe_config->port_clock = 162000;
3544                 else
3545                         pipe_config->port_clock = 270000;
3546         }
3547
3548         pipe_config->hw.adjusted_mode.crtc_clock =
3549                 intel_dotclock_calculate(pipe_config->port_clock,
3550                                          &pipe_config->dp_m_n);
3551
3552         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3553             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3554                 /*
3555                  * This is a big fat ugly hack.
3556                  *
3557                  * Some machines in UEFI boot mode provide us a VBT that has 18
3558                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3559                  * unknown we fail to light up. Yet the same BIOS boots up with
3560                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3561                  * max, not what it tells us to use.
3562                  *
3563                  * Note: This will still be broken if the eDP panel is not lit
3564                  * up by the BIOS, and thus we can't get the mode at module
3565                  * load.
3566                  */
3567                 drm_dbg_kms(&dev_priv->drm,
3568                             "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3569                             pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3570                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3571         }
3572 }
3573
3574 static void intel_disable_dp(struct intel_atomic_state *state,
3575                              struct intel_encoder *encoder,
3576                              const struct intel_crtc_state *old_crtc_state,
3577                              const struct drm_connector_state *old_conn_state)
3578 {
3579         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3580
3581         intel_dp->link_trained = false;
3582
3583         if (old_crtc_state->has_audio)
3584                 intel_audio_codec_disable(encoder,
3585                                           old_crtc_state, old_conn_state);
3586
3587         /* Make sure the panel is off before trying to change the mode. But also
3588          * ensure that we have vdd while we switch off the panel. */
3589         intel_edp_panel_vdd_on(intel_dp);
3590         intel_edp_backlight_off(old_conn_state);
3591         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3592         intel_edp_panel_off(intel_dp);
3593 }
3594
3595 static void g4x_disable_dp(struct intel_atomic_state *state,
3596                            struct intel_encoder *encoder,
3597                            const struct intel_crtc_state *old_crtc_state,
3598                            const struct drm_connector_state *old_conn_state)
3599 {
3600         intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3601 }
3602
3603 static void vlv_disable_dp(struct intel_atomic_state *state,
3604                            struct intel_encoder *encoder,
3605                            const struct intel_crtc_state *old_crtc_state,
3606                            const struct drm_connector_state *old_conn_state)
3607 {
3608         intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3609 }
3610
3611 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3612                                 struct intel_encoder *encoder,
3613                                 const struct intel_crtc_state *old_crtc_state,
3614                                 const struct drm_connector_state *old_conn_state)
3615 {
3616         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3617         enum port port = encoder->port;
3618
3619         /*
3620          * Bspec does not list a specific disable sequence for g4x DP.
3621          * Follow the ilk+ sequence (disable pipe before the port) for
3622          * g4x DP as it does not suffer from underruns like the normal
3623          * g4x modeset sequence (disable pipe after the port).
3624          */
3625         intel_dp_link_down(encoder, old_crtc_state);
3626
3627         /* Only ilk+ has port A */
3628         if (port == PORT_A)
3629                 ilk_edp_pll_off(intel_dp, old_crtc_state);
3630 }
3631
3632 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3633                                 struct intel_encoder *encoder,
3634                                 const struct intel_crtc_state *old_crtc_state,
3635                                 const struct drm_connector_state *old_conn_state)
3636 {
3637         intel_dp_link_down(encoder, old_crtc_state);
3638 }
3639
3640 static void chv_post_disable_dp(struct intel_atomic_state *state,
3641                                 struct intel_encoder *encoder,
3642                                 const struct intel_crtc_state *old_crtc_state,
3643                                 const struct drm_connector_state *old_conn_state)
3644 {
3645         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3646
3647         intel_dp_link_down(encoder, old_crtc_state);
3648
3649         vlv_dpio_get(dev_priv);
3650
3651         /* Assert data lane reset */
3652         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3653
3654         vlv_dpio_put(dev_priv);
3655 }
3656
3657 static void
3658 cpt_set_link_train(struct intel_dp *intel_dp,
3659                    u8 dp_train_pat)
3660 {
3661         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3662         u32 *DP = &intel_dp->DP;
3663
3664         *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3665
3666         switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3667         case DP_TRAINING_PATTERN_DISABLE:
3668                 *DP |= DP_LINK_TRAIN_OFF_CPT;
3669                 break;
3670         case DP_TRAINING_PATTERN_1:
3671                 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3672                 break;
3673         case DP_TRAINING_PATTERN_2:
3674                 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3675                 break;
3676         case DP_TRAINING_PATTERN_3:
3677                 drm_dbg_kms(&dev_priv->drm,
3678                             "TPS3 not supported, using TPS2 instead\n");
3679                 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3680                 break;
3681         }
3682
3683         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3684         intel_de_posting_read(dev_priv, intel_dp->output_reg);
3685 }
3686
3687 static void
3688 g4x_set_link_train(struct intel_dp *intel_dp,
3689                    u8 dp_train_pat)
3690 {
3691         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3692         u32 *DP = &intel_dp->DP;
3693
3694         *DP &= ~DP_LINK_TRAIN_MASK;
3695
3696         switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3697         case DP_TRAINING_PATTERN_DISABLE:
3698                 *DP |= DP_LINK_TRAIN_OFF;
3699                 break;
3700         case DP_TRAINING_PATTERN_1:
3701                 *DP |= DP_LINK_TRAIN_PAT_1;
3702                 break;
3703         case DP_TRAINING_PATTERN_2:
3704                 *DP |= DP_LINK_TRAIN_PAT_2;
3705                 break;
3706         case DP_TRAINING_PATTERN_3:
3707                 drm_dbg_kms(&dev_priv->drm,
3708                             "TPS3 not supported, using TPS2 instead\n");
3709                 *DP |= DP_LINK_TRAIN_PAT_2;
3710                 break;
3711         }
3712
3713         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3714         intel_de_posting_read(dev_priv, intel_dp->output_reg);
3715 }
3716
3717 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3718                                  const struct intel_crtc_state *old_crtc_state)
3719 {
3720         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3721
3722         /* enable with pattern 1 (as per spec) */
3723
3724         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3725
3726         /*
3727          * Magic for VLV/CHV. We _must_ first set up the register
3728          * without actually enabling the port, and then do another
3729          * write to enable the port. Otherwise link training will
3730          * fail when the power sequencer is freshly used for this port.
3731          */
3732         intel_dp->DP |= DP_PORT_EN;
3733         if (old_crtc_state->has_audio)
3734                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3735
3736         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3737         intel_de_posting_read(dev_priv, intel_dp->output_reg);
3738 }
3739
3740 static void intel_enable_dp(struct intel_atomic_state *state,
3741                             struct intel_encoder *encoder,
3742                             const struct intel_crtc_state *pipe_config,
3743                             const struct drm_connector_state *conn_state)
3744 {
3745         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3746         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3747         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3748         u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3749         enum pipe pipe = crtc->pipe;
3750         intel_wakeref_t wakeref;
3751
3752         if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3753                 return;
3754
3755         with_pps_lock(intel_dp, wakeref) {
3756                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3757                         vlv_init_panel_power_sequencer(encoder, pipe_config);
3758
3759                 intel_dp_enable_port(intel_dp, pipe_config);
3760
3761                 edp_panel_vdd_on(intel_dp);
3762                 edp_panel_on(intel_dp);
3763                 edp_panel_vdd_off(intel_dp, true);
3764         }
3765
3766         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3767                 unsigned int lane_mask = 0x0;
3768
3769                 if (IS_CHERRYVIEW(dev_priv))
3770                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3771
3772                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3773                                     lane_mask);
3774         }
3775
3776         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3777         intel_dp_start_link_train(intel_dp);
3778         intel_dp_stop_link_train(intel_dp);
3779
3780         if (pipe_config->has_audio) {
3781                 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3782                         pipe_name(pipe));
3783                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3784         }
3785 }
3786
3787 static void g4x_enable_dp(struct intel_atomic_state *state,
3788                           struct intel_encoder *encoder,
3789                           const struct intel_crtc_state *pipe_config,
3790                           const struct drm_connector_state *conn_state)
3791 {
3792         intel_enable_dp(state, encoder, pipe_config, conn_state);
3793         intel_edp_backlight_on(pipe_config, conn_state);
3794 }
3795
3796 static void vlv_enable_dp(struct intel_atomic_state *state,
3797                           struct intel_encoder *encoder,
3798                           const struct intel_crtc_state *pipe_config,
3799                           const struct drm_connector_state *conn_state)
3800 {
3801         intel_edp_backlight_on(pipe_config, conn_state);
3802 }
3803
3804 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
3805                               struct intel_encoder *encoder,
3806                               const struct intel_crtc_state *pipe_config,
3807                               const struct drm_connector_state *conn_state)
3808 {
3809         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3810         enum port port = encoder->port;
3811
3812         intel_dp_prepare(encoder, pipe_config);
3813
3814         /* Only ilk+ has port A */
3815         if (port == PORT_A)
3816                 ilk_edp_pll_on(intel_dp, pipe_config);
3817 }
3818
3819 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3820 {
3821         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3822         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3823         enum pipe pipe = intel_dp->pps_pipe;
3824         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3825
3826         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3827
3828         if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3829                 return;
3830
3831         edp_panel_vdd_off_sync(intel_dp);
3832
3833         /*
3834          * VLV seems to get confused when multiple power sequencers
3835          * have the same port selected (even if only one has power/vdd
3836          * enabled). The failure manifests as vlv_wait_port_ready() failing
3837          * CHV on the other hand doesn't seem to mind having the same port
3838          * selected in multiple power sequencers, but let's clear the
3839          * port select always when logically disconnecting a power sequencer
3840          * from a port.
3841          */
3842         drm_dbg_kms(&dev_priv->drm,
3843                     "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3844                     pipe_name(pipe), intel_dig_port->base.base.base.id,
3845                     intel_dig_port->base.base.name);
3846         intel_de_write(dev_priv, pp_on_reg, 0);
3847         intel_de_posting_read(dev_priv, pp_on_reg);
3848
3849         intel_dp->pps_pipe = INVALID_PIPE;
3850 }
3851
3852 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3853                                       enum pipe pipe)
3854 {
3855         struct intel_encoder *encoder;
3856
3857         lockdep_assert_held(&dev_priv->pps_mutex);
3858
3859         for_each_intel_dp(&dev_priv->drm, encoder) {
3860                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3861
3862                 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
3863                          "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3864                          pipe_name(pipe), encoder->base.base.id,
3865                          encoder->base.name);
3866
3867                 if (intel_dp->pps_pipe != pipe)
3868                         continue;
3869
3870                 drm_dbg_kms(&dev_priv->drm,
3871                             "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3872                             pipe_name(pipe), encoder->base.base.id,
3873                             encoder->base.name);
3874
3875                 /* make sure vdd is off before we steal it */
3876                 vlv_detach_power_sequencer(intel_dp);
3877         }
3878 }
3879
3880 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3881                                            const struct intel_crtc_state *crtc_state)
3882 {
3883         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3884         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3885         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3886
3887         lockdep_assert_held(&dev_priv->pps_mutex);
3888
3889         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3890
3891         if (intel_dp->pps_pipe != INVALID_PIPE &&
3892             intel_dp->pps_pipe != crtc->pipe) {
3893                 /*
3894                  * If another power sequencer was being used on this
3895                  * port previously make sure to turn off vdd there while
3896                  * we still have control of it.
3897                  */
3898                 vlv_detach_power_sequencer(intel_dp);
3899         }
3900
3901         /*
3902          * We may be stealing the power
3903          * sequencer from another port.
3904          */
3905         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3906
3907         intel_dp->active_pipe = crtc->pipe;
3908
3909         if (!intel_dp_is_edp(intel_dp))
3910                 return;
3911
3912         /* now it's all ours */
3913         intel_dp->pps_pipe = crtc->pipe;
3914
3915         drm_dbg_kms(&dev_priv->drm,
3916                     "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3917                     pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3918                     encoder->base.name);
3919
3920         /* init power sequencer on this pipe and port */
3921         intel_dp_init_panel_power_sequencer(intel_dp);
3922         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3923 }
3924
3925 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
3926                               struct intel_encoder *encoder,
3927                               const struct intel_crtc_state *pipe_config,
3928                               const struct drm_connector_state *conn_state)
3929 {
3930         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3931
3932         intel_enable_dp(state, encoder, pipe_config, conn_state);
3933 }
3934
3935 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
3936                                   struct intel_encoder *encoder,
3937                                   const struct intel_crtc_state *pipe_config,
3938                                   const struct drm_connector_state *conn_state)
3939 {
3940         intel_dp_prepare(encoder, pipe_config);
3941
3942         vlv_phy_pre_pll_enable(encoder, pipe_config);
3943 }
3944
3945 static void chv_pre_enable_dp(struct intel_atomic_state *state,
3946                               struct intel_encoder *encoder,
3947                               const struct intel_crtc_state *pipe_config,
3948                               const struct drm_connector_state *conn_state)
3949 {
3950         chv_phy_pre_encoder_enable(encoder, pipe_config);
3951
3952         intel_enable_dp(state, encoder, pipe_config, conn_state);
3953
3954         /* Second common lane will stay alive on its own now */
3955         chv_phy_release_cl2_override(encoder);
3956 }
3957
3958 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
3959                                   struct intel_encoder *encoder,
3960                                   const struct intel_crtc_state *pipe_config,
3961                                   const struct drm_connector_state *conn_state)
3962 {
3963         intel_dp_prepare(encoder, pipe_config);
3964
3965         chv_phy_pre_pll_enable(encoder, pipe_config);
3966 }
3967
3968 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
3969                                     struct intel_encoder *encoder,
3970                                     const struct intel_crtc_state *old_crtc_state,
3971                                     const struct drm_connector_state *old_conn_state)
3972 {
3973         chv_phy_post_pll_disable(encoder, old_crtc_state);
3974 }
3975
3976 /*
3977  * Fetch AUX CH registers 0x202 - 0x207 which contain
3978  * link status information
3979  */
3980 bool
3981 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3982 {
3983         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3984                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3985 }
3986
3987 /* These are source-specific values. */
3988 u8
3989 intel_dp_voltage_max(struct intel_dp *intel_dp)
3990 {
3991         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3992         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3993         enum port port = encoder->port;
3994
3995         if (HAS_DDI(dev_priv))
3996                 return intel_ddi_dp_voltage_max(encoder);
3997         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3998                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3999         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
4000                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4001         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
4002                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
4003         else
4004                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4005 }
4006
4007 u8
4008 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
4009 {
4010         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4011         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4012         enum port port = encoder->port;
4013
4014         if (HAS_DDI(dev_priv)) {
4015                 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
4016         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4017                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4018                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4019                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
4020                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4021                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4022                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4023                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4024                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4025                 default:
4026                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4027                 }
4028         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4029                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4030                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4031                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4032                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4033                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4034                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4035                 default:
4036                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4037                 }
4038         } else {
4039                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4040                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4041                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4042                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4043                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4044                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4045                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4046                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4047                 default:
4048                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4049                 }
4050         }
4051 }
4052
4053 static void vlv_set_signal_levels(struct intel_dp *intel_dp)
4054 {
4055         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4056         unsigned long demph_reg_value, preemph_reg_value,
4057                 uniqtranscale_reg_value;
4058         u8 train_set = intel_dp->train_set[0];
4059
4060         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4061         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4062                 preemph_reg_value = 0x0004000;
4063                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4064                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4065                         demph_reg_value = 0x2B405555;
4066                         uniqtranscale_reg_value = 0x552AB83A;
4067                         break;
4068                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4069                         demph_reg_value = 0x2B404040;
4070                         uniqtranscale_reg_value = 0x5548B83A;
4071                         break;
4072                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4073                         demph_reg_value = 0x2B245555;
4074                         uniqtranscale_reg_value = 0x5560B83A;
4075                         break;
4076                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4077                         demph_reg_value = 0x2B405555;
4078                         uniqtranscale_reg_value = 0x5598DA3A;
4079                         break;
4080                 default:
4081                         return;
4082                 }
4083                 break;
4084         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4085                 preemph_reg_value = 0x0002000;
4086                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4087                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4088                         demph_reg_value = 0x2B404040;
4089                         uniqtranscale_reg_value = 0x5552B83A;
4090                         break;
4091                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4092                         demph_reg_value = 0x2B404848;
4093                         uniqtranscale_reg_value = 0x5580B83A;
4094                         break;
4095                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4096                         demph_reg_value = 0x2B404040;
4097                         uniqtranscale_reg_value = 0x55ADDA3A;
4098                         break;
4099                 default:
4100                         return;
4101                 }
4102                 break;
4103         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4104                 preemph_reg_value = 0x0000000;
4105                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4106                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4107                         demph_reg_value = 0x2B305555;
4108                         uniqtranscale_reg_value = 0x5570B83A;
4109                         break;
4110                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4111                         demph_reg_value = 0x2B2B4040;
4112                         uniqtranscale_reg_value = 0x55ADDA3A;
4113                         break;
4114                 default:
4115                         return;
4116                 }
4117                 break;
4118         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4119                 preemph_reg_value = 0x0006000;
4120                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4121                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4122                         demph_reg_value = 0x1B405555;
4123                         uniqtranscale_reg_value = 0x55ADDA3A;
4124                         break;
4125                 default:
4126                         return;
4127                 }
4128                 break;
4129         default:
4130                 return;
4131         }
4132
4133         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
4134                                  uniqtranscale_reg_value, 0);
4135 }
4136
4137 static void chv_set_signal_levels(struct intel_dp *intel_dp)
4138 {
4139         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4140         u32 deemph_reg_value, margin_reg_value;
4141         bool uniq_trans_scale = false;
4142         u8 train_set = intel_dp->train_set[0];
4143
4144         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4145         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4146                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4147                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4148                         deemph_reg_value = 128;
4149                         margin_reg_value = 52;
4150                         break;
4151                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4152                         deemph_reg_value = 128;
4153                         margin_reg_value = 77;
4154                         break;
4155                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4156                         deemph_reg_value = 128;
4157                         margin_reg_value = 102;
4158                         break;
4159                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4160                         deemph_reg_value = 128;
4161                         margin_reg_value = 154;
4162                         uniq_trans_scale = true;
4163                         break;
4164                 default:
4165                         return;
4166                 }
4167                 break;
4168         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4169                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4170                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4171                         deemph_reg_value = 85;
4172                         margin_reg_value = 78;
4173                         break;
4174                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4175                         deemph_reg_value = 85;
4176                         margin_reg_value = 116;
4177                         break;
4178                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4179                         deemph_reg_value = 85;
4180                         margin_reg_value = 154;
4181                         break;
4182                 default:
4183                         return;
4184                 }
4185                 break;
4186         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4187                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4188                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4189                         deemph_reg_value = 64;
4190                         margin_reg_value = 104;
4191                         break;
4192                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4193                         deemph_reg_value = 64;
4194                         margin_reg_value = 154;
4195                         break;
4196                 default:
4197                         return;
4198                 }
4199                 break;
4200         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4201                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4202                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4203                         deemph_reg_value = 43;
4204                         margin_reg_value = 154;
4205                         break;
4206                 default:
4207                         return;
4208                 }
4209                 break;
4210         default:
4211                 return;
4212         }
4213
4214         chv_set_phy_signal_level(encoder, deemph_reg_value,
4215                                  margin_reg_value, uniq_trans_scale);
4216 }
4217
4218 static u32 g4x_signal_levels(u8 train_set)
4219 {
4220         u32 signal_levels = 0;
4221
4222         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4223         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4224         default:
4225                 signal_levels |= DP_VOLTAGE_0_4;
4226                 break;
4227         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4228                 signal_levels |= DP_VOLTAGE_0_6;
4229                 break;
4230         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4231                 signal_levels |= DP_VOLTAGE_0_8;
4232                 break;
4233         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4234                 signal_levels |= DP_VOLTAGE_1_2;
4235                 break;
4236         }
4237         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4238         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4239         default:
4240                 signal_levels |= DP_PRE_EMPHASIS_0;
4241                 break;
4242         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4243                 signal_levels |= DP_PRE_EMPHASIS_3_5;
4244                 break;
4245         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4246                 signal_levels |= DP_PRE_EMPHASIS_6;
4247                 break;
4248         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4249                 signal_levels |= DP_PRE_EMPHASIS_9_5;
4250                 break;
4251         }
4252         return signal_levels;
4253 }
4254
4255 static void
4256 g4x_set_signal_levels(struct intel_dp *intel_dp)
4257 {
4258         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4259         u8 train_set = intel_dp->train_set[0];
4260         u32 signal_levels;
4261
4262         signal_levels = g4x_signal_levels(train_set);
4263
4264         drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4265                     signal_levels);
4266
4267         intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
4268         intel_dp->DP |= signal_levels;
4269
4270         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4271         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4272 }
4273
4274 /* SNB CPU eDP voltage swing and pre-emphasis control */
4275 static u32 snb_cpu_edp_signal_levels(u8 train_set)
4276 {
4277         u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4278                                         DP_TRAIN_PRE_EMPHASIS_MASK);
4279
4280         switch (signal_levels) {
4281         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4282         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4283                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4284         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4285                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4286         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4287         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4288                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4289         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4290         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4291                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4292         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4293         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4294                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4295         default:
4296                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4297                               "0x%x\n", signal_levels);
4298                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4299         }
4300 }
4301
4302 static void
4303 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4304 {
4305         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4306         u8 train_set = intel_dp->train_set[0];
4307         u32 signal_levels;
4308
4309         signal_levels = snb_cpu_edp_signal_levels(train_set);
4310
4311         drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4312                     signal_levels);
4313
4314         intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4315         intel_dp->DP |= signal_levels;
4316
4317         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4318         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4319 }
4320
4321 /* IVB CPU eDP voltage swing and pre-emphasis control */
4322 static u32 ivb_cpu_edp_signal_levels(u8 train_set)
4323 {
4324         u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4325                                         DP_TRAIN_PRE_EMPHASIS_MASK);
4326
4327         switch (signal_levels) {
4328         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4329                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4330         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4331                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4332         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4333                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4334
4335         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4336                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4337         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4338                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4339
4340         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4341                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4342         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4343                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4344
4345         default:
4346                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4347                               "0x%x\n", signal_levels);
4348                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4349         }
4350 }
4351
4352 static void
4353 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4354 {
4355         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4356         u8 train_set = intel_dp->train_set[0];
4357         u32 signal_levels;
4358
4359         signal_levels = ivb_cpu_edp_signal_levels(train_set);
4360
4361         drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4362                     signal_levels);
4363
4364         intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4365         intel_dp->DP |= signal_levels;
4366
4367         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4368         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4369 }
4370
4371 void intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4372 {
4373         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4374         u8 train_set = intel_dp->train_set[0];
4375
4376         drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4377                     train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4378                     train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4379         drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4380                     (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4381                     DP_TRAIN_PRE_EMPHASIS_SHIFT,
4382                     train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4383                     " (max)" : "");
4384
4385         intel_dp->set_signal_levels(intel_dp);
4386 }
4387
4388 void
4389 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4390                                        u8 dp_train_pat)
4391 {
4392         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4393         u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
4394
4395         if (dp_train_pat & train_pat_mask)
4396                 drm_dbg_kms(&dev_priv->drm,
4397                             "Using DP training pattern TPS%d\n",
4398                             dp_train_pat & train_pat_mask);
4399
4400         intel_dp->set_link_train(intel_dp, dp_train_pat);
4401 }
4402
4403 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4404 {
4405         if (intel_dp->set_idle_link_train)
4406                 intel_dp->set_idle_link_train(intel_dp);
4407 }
4408
4409 static void
4410 intel_dp_link_down(struct intel_encoder *encoder,
4411                    const struct intel_crtc_state *old_crtc_state)
4412 {
4413         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4414         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4415         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4416         enum port port = encoder->port;
4417         u32 DP = intel_dp->DP;
4418
4419         if (drm_WARN_ON(&dev_priv->drm,
4420                         (intel_de_read(dev_priv, intel_dp->output_reg) &
4421                          DP_PORT_EN) == 0))
4422                 return;
4423
4424         drm_dbg_kms(&dev_priv->drm, "\n");
4425
4426         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4427             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4428                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4429                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4430         } else {
4431                 DP &= ~DP_LINK_TRAIN_MASK;
4432                 DP |= DP_LINK_TRAIN_PAT_IDLE;
4433         }
4434         intel_de_write(dev_priv, intel_dp->output_reg, DP);
4435         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4436
4437         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4438         intel_de_write(dev_priv, intel_dp->output_reg, DP);
4439         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4440
4441         /*
4442          * HW workaround for IBX, we need to move the port
4443          * to transcoder A after disabling it to allow the
4444          * matching HDMI port to be enabled on transcoder A.
4445          */
4446         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4447                 /*
4448                  * We get CPU/PCH FIFO underruns on the other pipe when
4449                  * doing the workaround. Sweep them under the rug.
4450                  */
4451                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4452                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4453
4454                 /* always enable with pattern 1 (as per spec) */
4455                 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4456                 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4457                         DP_LINK_TRAIN_PAT_1;
4458                 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4459                 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4460
4461                 DP &= ~DP_PORT_EN;
4462                 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4463                 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4464
4465                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4466                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4467                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4468         }
4469
4470         msleep(intel_dp->panel_power_down_delay);
4471
4472         intel_dp->DP = DP;
4473
4474         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4475                 intel_wakeref_t wakeref;
4476
4477                 with_pps_lock(intel_dp, wakeref)
4478                         intel_dp->active_pipe = INVALID_PIPE;
4479         }
4480 }
4481
4482 static void
4483 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4484 {
4485         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4486         u8 dpcd_ext[6];
4487
4488         /*
4489          * Prior to DP1.3 the bit represented by
4490          * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4491          * if it is set DP_DPCD_REV at 0000h could be at a value less than
4492          * the true capability of the panel. The only way to check is to
4493          * then compare 0000h and 2200h.
4494          */
4495         if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4496               DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4497                 return;
4498
4499         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4500                              &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4501                 drm_err(&i915->drm,
4502                         "DPCD failed read at extended capabilities\n");
4503                 return;
4504         }
4505
4506         if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4507                 drm_dbg_kms(&i915->drm,
4508                             "DPCD extended DPCD rev less than base DPCD rev\n");
4509                 return;
4510         }
4511
4512         if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4513                 return;
4514
4515         drm_dbg_kms(&i915->drm, "Base DPCD: %*ph\n",
4516                     (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4517
4518         memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4519 }
4520
4521 bool
4522 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4523 {
4524         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4525
4526         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4527                              sizeof(intel_dp->dpcd)) < 0)
4528                 return false; /* aux transfer failed */
4529
4530         intel_dp_extended_receiver_capabilities(intel_dp);
4531
4532         drm_dbg_kms(&i915->drm, "DPCD: %*ph\n", (int)sizeof(intel_dp->dpcd),
4533                     intel_dp->dpcd);
4534
4535         return intel_dp->dpcd[DP_DPCD_REV] != 0;
4536 }
4537
4538 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4539 {
4540         u8 dprx = 0;
4541
4542         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4543                               &dprx) != 1)
4544                 return false;
4545         return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4546 }
4547
4548 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4549 {
4550         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4551
4552         /*
4553          * Clear the cached register set to avoid using stale values
4554          * for the sinks that do not support DSC.
4555          */
4556         memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4557
4558         /* Clear fec_capable to avoid using stale values */
4559         intel_dp->fec_capable = 0;
4560
4561         /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4562         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4563             intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4564                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4565                                      intel_dp->dsc_dpcd,
4566                                      sizeof(intel_dp->dsc_dpcd)) < 0)
4567                         drm_err(&i915->drm,
4568                                 "Failed to read DPCD register 0x%x\n",
4569                                 DP_DSC_SUPPORT);
4570
4571                 drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4572                             (int)sizeof(intel_dp->dsc_dpcd),
4573                             intel_dp->dsc_dpcd);
4574
4575                 /* FEC is supported only on DP 1.4 */
4576                 if (!intel_dp_is_edp(intel_dp) &&
4577                     drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4578                                       &intel_dp->fec_capable) < 0)
4579                         drm_err(&i915->drm,
4580                                 "Failed to read FEC DPCD register\n");
4581
4582                 drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4583                             intel_dp->fec_capable);
4584         }
4585 }
4586
4587 static bool
4588 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4589 {
4590         struct drm_i915_private *dev_priv =
4591                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4592
4593         /* this function is meant to be called only once */
4594         drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4595
4596         if (!intel_dp_read_dpcd(intel_dp))
4597                 return false;
4598
4599         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4600                          drm_dp_is_branch(intel_dp->dpcd));
4601
4602         /*
4603          * Read the eDP display control registers.
4604          *
4605          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4606          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4607          * set, but require eDP 1.4+ detection (e.g. for supported link rates
4608          * method). The display control registers should read zero if they're
4609          * not supported anyway.
4610          */
4611         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4612                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4613                              sizeof(intel_dp->edp_dpcd))
4614                 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4615                             (int)sizeof(intel_dp->edp_dpcd),
4616                             intel_dp->edp_dpcd);
4617
4618         /*
4619          * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4620          * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4621          */
4622         intel_psr_init_dpcd(intel_dp);
4623
4624         /* Read the eDP 1.4+ supported link rates. */
4625         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4626                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4627                 int i;
4628
4629                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4630                                 sink_rates, sizeof(sink_rates));
4631
4632                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4633                         int val = le16_to_cpu(sink_rates[i]);
4634
4635                         if (val == 0)
4636                                 break;
4637
4638                         /* Value read multiplied by 200kHz gives the per-lane
4639                          * link rate in kHz. The source rates are, however,
4640                          * stored in terms of LS_Clk kHz. The full conversion
4641                          * back to symbols is
4642                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4643                          */
4644                         intel_dp->sink_rates[i] = (val * 200) / 10;
4645                 }
4646                 intel_dp->num_sink_rates = i;
4647         }
4648
4649         /*
4650          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4651          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4652          */
4653         if (intel_dp->num_sink_rates)
4654                 intel_dp->use_rate_select = true;
4655         else
4656                 intel_dp_set_sink_rates(intel_dp);
4657
4658         intel_dp_set_common_rates(intel_dp);
4659
4660         /* Read the eDP DSC DPCD registers */
4661         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4662                 intel_dp_get_dsc_sink_cap(intel_dp);
4663
4664         return true;
4665 }
4666
4667
4668 static bool
4669 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4670 {
4671         if (!intel_dp_read_dpcd(intel_dp))
4672                 return false;
4673
4674         /*
4675          * Don't clobber cached eDP rates. Also skip re-reading
4676          * the OUI/ID since we know it won't change.
4677          */
4678         if (!intel_dp_is_edp(intel_dp)) {
4679                 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4680                                  drm_dp_is_branch(intel_dp->dpcd));
4681
4682                 intel_dp_set_sink_rates(intel_dp);
4683                 intel_dp_set_common_rates(intel_dp);
4684         }
4685
4686         /*
4687          * Some eDP panels do not set a valid value for sink count, that is why
4688          * it don't care about read it here and in intel_edp_init_dpcd().
4689          */
4690         if (!intel_dp_is_edp(intel_dp) &&
4691             !drm_dp_has_quirk(&intel_dp->desc, 0,
4692                               DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4693                 u8 count;
4694                 ssize_t r;
4695
4696                 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4697                 if (r < 1)
4698                         return false;
4699
4700                 /*
4701                  * Sink count can change between short pulse hpd hence
4702                  * a member variable in intel_dp will track any changes
4703                  * between short pulse interrupts.
4704                  */
4705                 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4706
4707                 /*
4708                  * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4709                  * a dongle is present but no display. Unless we require to know
4710                  * if a dongle is present or not, we don't need to update
4711                  * downstream port information. So, an early return here saves
4712                  * time from performing other operations which are not required.
4713                  */
4714                 if (!intel_dp->sink_count)
4715                         return false;
4716         }
4717
4718         if (!drm_dp_is_branch(intel_dp->dpcd))
4719                 return true; /* native DP sink */
4720
4721         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4722                 return true; /* no per-port downstream info */
4723
4724         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4725                              intel_dp->downstream_ports,
4726                              DP_MAX_DOWNSTREAM_PORTS) < 0)
4727                 return false; /* downstream port status fetch failed */
4728
4729         return true;
4730 }
4731
4732 static bool
4733 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4734 {
4735         u8 mstm_cap;
4736
4737         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4738                 return false;
4739
4740         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4741                 return false;
4742
4743         return mstm_cap & DP_MST_CAP;
4744 }
4745
4746 static bool
4747 intel_dp_can_mst(struct intel_dp *intel_dp)
4748 {
4749         return i915_modparams.enable_dp_mst &&
4750                 intel_dp->can_mst &&
4751                 intel_dp_sink_can_mst(intel_dp);
4752 }
4753
4754 static void
4755 intel_dp_configure_mst(struct intel_dp *intel_dp)
4756 {
4757         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4758         struct intel_encoder *encoder =
4759                 &dp_to_dig_port(intel_dp)->base;
4760         bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4761
4762         drm_dbg_kms(&i915->drm,
4763                     "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4764                     encoder->base.base.id, encoder->base.name,
4765                     yesno(intel_dp->can_mst), yesno(sink_can_mst),
4766                     yesno(i915_modparams.enable_dp_mst));
4767
4768         if (!intel_dp->can_mst)
4769                 return;
4770
4771         intel_dp->is_mst = sink_can_mst &&
4772                 i915_modparams.enable_dp_mst;
4773
4774         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4775                                         intel_dp->is_mst);
4776 }
4777
4778 static bool
4779 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4780 {
4781         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4782                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4783                 DP_DPRX_ESI_LEN;
4784 }
4785
4786 bool
4787 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4788                        const struct drm_connector_state *conn_state)
4789 {
4790         /*
4791          * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4792          * of Color Encoding Format and Content Color Gamut], in order to
4793          * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4794          */
4795         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4796                 return true;
4797
4798         switch (conn_state->colorspace) {
4799         case DRM_MODE_COLORIMETRY_SYCC_601:
4800         case DRM_MODE_COLORIMETRY_OPYCC_601:
4801         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4802         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4803         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4804                 return true;
4805         default:
4806                 break;
4807         }
4808
4809         return false;
4810 }
4811
4812 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
4813                                      struct dp_sdp *sdp, size_t size)
4814 {
4815         size_t length = sizeof(struct dp_sdp);
4816
4817         if (size < length)
4818                 return -ENOSPC;
4819
4820         memset(sdp, 0, size);
4821
4822         /*
4823          * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
4824          * VSC SDP Header Bytes
4825          */
4826         sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
4827         sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
4828         sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
4829         sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
4830
4831         /*
4832          * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as
4833          * per DP 1.4a spec.
4834          */
4835         if (vsc->revision != 0x5)
4836                 goto out;
4837
4838         /* VSC SDP Payload for DB16 through DB18 */
4839         /* Pixel Encoding and Colorimetry Formats  */
4840         sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
4841         sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
4842
4843         switch (vsc->bpc) {
4844         case 6:
4845                 /* 6bpc: 0x0 */
4846                 break;
4847         case 8:
4848                 sdp->db[17] = 0x1; /* DB17[3:0] */
4849                 break;
4850         case 10:
4851                 sdp->db[17] = 0x2;
4852                 break;
4853         case 12:
4854                 sdp->db[17] = 0x3;
4855                 break;
4856         case 16:
4857                 sdp->db[17] = 0x4;
4858                 break;
4859         default:
4860                 MISSING_CASE(vsc->bpc);
4861                 break;
4862         }
4863         /* Dynamic Range and Component Bit Depth */
4864         if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
4865                 sdp->db[17] |= 0x80;  /* DB17[7] */
4866
4867         /* Content Type */
4868         sdp->db[18] = vsc->content_type & 0x7;
4869
4870 out:
4871         return length;
4872 }
4873
4874 static ssize_t
4875 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
4876                                          struct dp_sdp *sdp,
4877                                          size_t size)
4878 {
4879         size_t length = sizeof(struct dp_sdp);
4880         const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4881         unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4882         ssize_t len;
4883
4884         if (size < length)
4885                 return -ENOSPC;
4886
4887         memset(sdp, 0, size);
4888
4889         len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
4890         if (len < 0) {
4891                 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4892                 return -ENOSPC;
4893         }
4894
4895         if (len != infoframe_size) {
4896                 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4897                 return -ENOSPC;
4898         }
4899
4900         /*
4901          * Set up the infoframe sdp packet for HDR static metadata.
4902          * Prepare VSC Header for SU as per DP 1.4a spec,
4903          * Table 2-100 and Table 2-101
4904          */
4905
4906         /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
4907         sdp->sdp_header.HB0 = 0;
4908         /*
4909          * Packet Type 80h + Non-audio INFOFRAME Type value
4910          * HDMI_INFOFRAME_TYPE_DRM: 0x87
4911          * - 80h + Non-audio INFOFRAME Type value
4912          * - InfoFrame Type: 0x07
4913          *    [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
4914          */
4915         sdp->sdp_header.HB1 = drm_infoframe->type;
4916         /*
4917          * Least Significant Eight Bits of (Data Byte Count – 1)
4918          * infoframe_size - 1
4919          */
4920         sdp->sdp_header.HB2 = 0x1D;
4921         /* INFOFRAME SDP Version Number */
4922         sdp->sdp_header.HB3 = (0x13 << 2);
4923         /* CTA Header Byte 2 (INFOFRAME Version Number) */
4924         sdp->db[0] = drm_infoframe->version;
4925         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4926         sdp->db[1] = drm_infoframe->length;
4927         /*
4928          * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4929          * HDMI_INFOFRAME_HEADER_SIZE
4930          */
4931         BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4932         memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4933                HDMI_DRM_INFOFRAME_SIZE);
4934
4935         /*
4936          * Size of DP infoframe sdp packet for HDR static metadata consists of
4937          * - DP SDP Header(struct dp_sdp_header): 4 bytes
4938          * - Two Data Blocks: 2 bytes
4939          *    CTA Header Byte2 (INFOFRAME Version Number)
4940          *    CTA Header Byte3 (Length of INFOFRAME)
4941          * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4942          *
4943          * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4944          * infoframe size. But GEN11+ has larger than that size, write_infoframe
4945          * will pad rest of the size.
4946          */
4947         return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
4948 }
4949
4950 static void intel_write_dp_sdp(struct intel_encoder *encoder,
4951                                const struct intel_crtc_state *crtc_state,
4952                                unsigned int type)
4953 {
4954         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4955         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4956         struct dp_sdp sdp = {};
4957         ssize_t len;
4958
4959         if ((crtc_state->infoframes.enable &
4960              intel_hdmi_infoframe_enable(type)) == 0)
4961                 return;
4962
4963         switch (type) {
4964         case DP_SDP_VSC:
4965                 len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
4966                                             sizeof(sdp));
4967                 break;
4968         case HDMI_PACKET_TYPE_GAMUT_METADATA:
4969                 len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
4970                                                                &sdp, sizeof(sdp));
4971                 break;
4972         default:
4973                 MISSING_CASE(type);
4974                 return;
4975         }
4976
4977         if (drm_WARN_ON(&dev_priv->drm, len < 0))
4978                 return;
4979
4980         intel_dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
4981 }
4982
4983 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder,
4984                             const struct intel_crtc_state *crtc_state,
4985                             struct drm_dp_vsc_sdp *vsc)
4986 {
4987         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4988         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4989         struct dp_sdp sdp = {};
4990         ssize_t len;
4991
4992         len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp));
4993
4994         if (drm_WARN_ON(&dev_priv->drm, len < 0))
4995                 return;
4996
4997         intel_dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC,
4998                                         &sdp, len);
4999 }
5000
5001 void intel_dp_set_infoframes(struct intel_encoder *encoder,
5002                              bool enable,
5003                              const struct intel_crtc_state *crtc_state,
5004                              const struct drm_connector_state *conn_state)
5005 {
5006         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5007         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5008         i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
5009         u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
5010                          VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
5011                          VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
5012         u32 val = intel_de_read(dev_priv, reg);
5013
5014         /* TODO: Add DSC case (DIP_ENABLE_PPS) */
5015         /* When PSR is enabled, this routine doesn't disable VSC DIP */
5016         if (intel_psr_enabled(intel_dp))
5017                 val &= ~dip_enable;
5018         else
5019                 val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
5020
5021         if (!enable) {
5022                 intel_de_write(dev_priv, reg, val);
5023                 intel_de_posting_read(dev_priv, reg);
5024                 return;
5025         }
5026
5027         intel_de_write(dev_priv, reg, val);
5028         intel_de_posting_read(dev_priv, reg);
5029
5030         /* When PSR is enabled, VSC SDP is handled by PSR routine */
5031         if (!intel_psr_enabled(intel_dp))
5032                 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5033
5034         intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5035 }
5036
5037 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc,
5038                                    const void *buffer, size_t size)
5039 {
5040         const struct dp_sdp *sdp = buffer;
5041
5042         if (size < sizeof(struct dp_sdp))
5043                 return -EINVAL;
5044
5045         memset(vsc, 0, size);
5046
5047         if (sdp->sdp_header.HB0 != 0)
5048                 return -EINVAL;
5049
5050         if (sdp->sdp_header.HB1 != DP_SDP_VSC)
5051                 return -EINVAL;
5052
5053         vsc->sdp_type = sdp->sdp_header.HB1;
5054         vsc->revision = sdp->sdp_header.HB2;
5055         vsc->length = sdp->sdp_header.HB3;
5056
5057         if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) ||
5058             (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) {
5059                 /*
5060                  * - HB2 = 0x2, HB3 = 0x8
5061                  *   VSC SDP supporting 3D stereo + PSR
5062                  * - HB2 = 0x4, HB3 = 0xe
5063                  *   VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of
5064                  *   first scan line of the SU region (applies to eDP v1.4b
5065                  *   and higher).
5066                  */
5067                 return 0;
5068         } else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) {
5069                 /*
5070                  * - HB2 = 0x5, HB3 = 0x13
5071                  *   VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry
5072                  *   Format.
5073                  */
5074                 vsc->pixelformat = (sdp->db[16] >> 4) & 0xf;
5075                 vsc->colorimetry = sdp->db[16] & 0xf;
5076                 vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1;
5077
5078                 switch (sdp->db[17] & 0x7) {
5079                 case 0x0:
5080                         vsc->bpc = 6;
5081                         break;
5082                 case 0x1:
5083                         vsc->bpc = 8;
5084                         break;
5085                 case 0x2:
5086                         vsc->bpc = 10;
5087                         break;
5088                 case 0x3:
5089                         vsc->bpc = 12;
5090                         break;
5091                 case 0x4:
5092                         vsc->bpc = 16;
5093                         break;
5094                 default:
5095                         MISSING_CASE(sdp->db[17] & 0x7);
5096                         return -EINVAL;
5097                 }
5098
5099                 vsc->content_type = sdp->db[18] & 0x7;
5100         } else {
5101                 return -EINVAL;
5102         }
5103
5104         return 0;
5105 }
5106
5107 static int
5108 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe,
5109                                            const void *buffer, size_t size)
5110 {
5111         int ret;
5112
5113         const struct dp_sdp *sdp = buffer;
5114
5115         if (size < sizeof(struct dp_sdp))
5116                 return -EINVAL;
5117
5118         if (sdp->sdp_header.HB0 != 0)
5119                 return -EINVAL;
5120
5121         if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM)
5122                 return -EINVAL;
5123
5124         /*
5125          * Least Significant Eight Bits of (Data Byte Count – 1)
5126          * 1Dh (i.e., Data Byte Count = 30 bytes).
5127          */
5128         if (sdp->sdp_header.HB2 != 0x1D)
5129                 return -EINVAL;
5130
5131         /* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */
5132         if ((sdp->sdp_header.HB3 & 0x3) != 0)
5133                 return -EINVAL;
5134
5135         /* INFOFRAME SDP Version Number */
5136         if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13)
5137                 return -EINVAL;
5138
5139         /* CTA Header Byte 2 (INFOFRAME Version Number) */
5140         if (sdp->db[0] != 1)
5141                 return -EINVAL;
5142
5143         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5144         if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE)
5145                 return -EINVAL;
5146
5147         ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2],
5148                                              HDMI_DRM_INFOFRAME_SIZE);
5149
5150         return ret;
5151 }
5152
5153 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder,
5154                                   struct intel_crtc_state *crtc_state,
5155                                   struct drm_dp_vsc_sdp *vsc)
5156 {
5157         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5158         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5159         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5160         unsigned int type = DP_SDP_VSC;
5161         struct dp_sdp sdp = {};
5162         int ret;
5163
5164         /* When PSR is enabled, VSC SDP is handled by PSR routine */
5165         if (intel_psr_enabled(intel_dp))
5166                 return;
5167
5168         if ((crtc_state->infoframes.enable &
5169              intel_hdmi_infoframe_enable(type)) == 0)
5170                 return;
5171
5172         intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp));
5173
5174         ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp));
5175
5176         if (ret)
5177                 drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n");
5178 }
5179
5180 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder,
5181                                                      struct intel_crtc_state *crtc_state,
5182                                                      struct hdmi_drm_infoframe *drm_infoframe)
5183 {
5184         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5185         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5186         unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA;
5187         struct dp_sdp sdp = {};
5188         int ret;
5189
5190         if ((crtc_state->infoframes.enable &
5191             intel_hdmi_infoframe_enable(type)) == 0)
5192                 return;
5193
5194         intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
5195                                        sizeof(sdp));
5196
5197         ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp,
5198                                                          sizeof(sdp));
5199
5200         if (ret)
5201                 drm_dbg_kms(&dev_priv->drm,
5202                             "Failed to unpack DP HDR Metadata Infoframe SDP\n");
5203 }
5204
5205 void intel_read_dp_sdp(struct intel_encoder *encoder,
5206                        struct intel_crtc_state *crtc_state,
5207                        unsigned int type)
5208 {
5209         if (encoder->type != INTEL_OUTPUT_DDI)
5210                 return;
5211
5212         switch (type) {
5213         case DP_SDP_VSC:
5214                 intel_read_dp_vsc_sdp(encoder, crtc_state,
5215                                       &crtc_state->infoframes.vsc);
5216                 break;
5217         case HDMI_PACKET_TYPE_GAMUT_METADATA:
5218                 intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state,
5219                                                          &crtc_state->infoframes.drm.drm);
5220                 break;
5221         default:
5222                 MISSING_CASE(type);
5223                 break;
5224         }
5225 }
5226
5227 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5228 {
5229         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5230         int status = 0;
5231         int test_link_rate;
5232         u8 test_lane_count, test_link_bw;
5233         /* (DP CTS 1.2)
5234          * 4.3.1.11
5235          */
5236         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5237         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5238                                    &test_lane_count);
5239
5240         if (status <= 0) {
5241                 drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5242                 return DP_TEST_NAK;
5243         }
5244         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5245
5246         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5247                                    &test_link_bw);
5248         if (status <= 0) {
5249                 drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5250                 return DP_TEST_NAK;
5251         }
5252         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5253
5254         /* Validate the requested link rate and lane count */
5255         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5256                                         test_lane_count))
5257                 return DP_TEST_NAK;
5258
5259         intel_dp->compliance.test_lane_count = test_lane_count;
5260         intel_dp->compliance.test_link_rate = test_link_rate;
5261
5262         return DP_TEST_ACK;
5263 }
5264
5265 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5266 {
5267         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5268         u8 test_pattern;
5269         u8 test_misc;
5270         __be16 h_width, v_height;
5271         int status = 0;
5272
5273         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
5274         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5275                                    &test_pattern);
5276         if (status <= 0) {
5277                 drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5278                 return DP_TEST_NAK;
5279         }
5280         if (test_pattern != DP_COLOR_RAMP)
5281                 return DP_TEST_NAK;
5282
5283         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5284                                   &h_width, 2);
5285         if (status <= 0) {
5286                 drm_dbg_kms(&i915->drm, "H Width read failed\n");
5287                 return DP_TEST_NAK;
5288         }
5289
5290         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5291                                   &v_height, 2);
5292         if (status <= 0) {
5293                 drm_dbg_kms(&i915->drm, "V Height read failed\n");
5294                 return DP_TEST_NAK;
5295         }
5296
5297         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5298                                    &test_misc);
5299         if (status <= 0) {
5300                 drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5301                 return DP_TEST_NAK;
5302         }
5303         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5304                 return DP_TEST_NAK;
5305         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5306                 return DP_TEST_NAK;
5307         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5308         case DP_TEST_BIT_DEPTH_6:
5309                 intel_dp->compliance.test_data.bpc = 6;
5310                 break;
5311         case DP_TEST_BIT_DEPTH_8:
5312                 intel_dp->compliance.test_data.bpc = 8;
5313                 break;
5314         default:
5315                 return DP_TEST_NAK;
5316         }
5317
5318         intel_dp->compliance.test_data.video_pattern = test_pattern;
5319         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5320         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5321         /* Set test active flag here so userspace doesn't interrupt things */
5322         intel_dp->compliance.test_active = true;
5323
5324         return DP_TEST_ACK;
5325 }
5326
5327 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5328 {
5329         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5330         u8 test_result = DP_TEST_ACK;
5331         struct intel_connector *intel_connector = intel_dp->attached_connector;
5332         struct drm_connector *connector = &intel_connector->base;
5333
5334         if (intel_connector->detect_edid == NULL ||
5335             connector->edid_corrupt ||
5336             intel_dp->aux.i2c_defer_count > 6) {
5337                 /* Check EDID read for NACKs, DEFERs and corruption
5338                  * (DP CTS 1.2 Core r1.1)
5339                  *    4.2.2.4 : Failed EDID read, I2C_NAK
5340                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
5341                  *    4.2.2.6 : EDID corruption detected
5342                  * Use failsafe mode for all cases
5343                  */
5344                 if (intel_dp->aux.i2c_nack_count > 0 ||
5345                         intel_dp->aux.i2c_defer_count > 0)
5346                         drm_dbg_kms(&i915->drm,
5347                                     "EDID read had %d NACKs, %d DEFERs\n",
5348                                     intel_dp->aux.i2c_nack_count,
5349                                     intel_dp->aux.i2c_defer_count);
5350                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5351         } else {
5352                 struct edid *block = intel_connector->detect_edid;
5353
5354                 /* We have to write the checksum
5355                  * of the last block read
5356                  */
5357                 block += intel_connector->detect_edid->extensions;
5358
5359                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5360                                        block->checksum) <= 0)
5361                         drm_dbg_kms(&i915->drm,
5362                                     "Failed to write EDID checksum\n");
5363
5364                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5365                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5366         }
5367
5368         /* Set test active flag here so userspace doesn't interrupt things */
5369         intel_dp->compliance.test_active = true;
5370
5371         return test_result;
5372 }
5373
5374 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
5375 {
5376         struct drm_dp_phy_test_params *data =
5377                 &intel_dp->compliance.test_data.phytest;
5378
5379         if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
5380                 DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
5381                 return DP_TEST_NAK;
5382         }
5383
5384         /*
5385          * link_mst is set to false to avoid executing mst related code
5386          * during compliance testing.
5387          */
5388         intel_dp->link_mst = false;
5389
5390         return DP_TEST_ACK;
5391 }
5392
5393 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
5394 {
5395         struct drm_i915_private *dev_priv =
5396                         to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
5397         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5398         struct drm_dp_phy_test_params *data =
5399                         &intel_dp->compliance.test_data.phytest;
5400         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5401         enum pipe pipe = crtc->pipe;
5402         u32 pattern_val;
5403
5404         switch (data->phy_pattern) {
5405         case DP_PHY_TEST_PATTERN_NONE:
5406                 DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
5407                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
5408                 break;
5409         case DP_PHY_TEST_PATTERN_D10_2:
5410                 DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
5411                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5412                                DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
5413                 break;
5414         case DP_PHY_TEST_PATTERN_ERROR_COUNT:
5415                 DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
5416                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5417                                DDI_DP_COMP_CTL_ENABLE |
5418                                DDI_DP_COMP_CTL_SCRAMBLED_0);
5419                 break;
5420         case DP_PHY_TEST_PATTERN_PRBS7:
5421                 DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
5422                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5423                                DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
5424                 break;
5425         case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
5426                 /*
5427                  * FIXME: Ideally pattern should come from DPCD 0x250. As
5428                  * current firmware of DPR-100 could not set it, so hardcoding
5429                  * now for complaince test.
5430                  */
5431                 DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
5432                 pattern_val = 0x3e0f83e0;
5433                 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
5434                 pattern_val = 0x0f83e0f8;
5435                 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
5436                 pattern_val = 0x0000f83e;
5437                 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
5438                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5439                                DDI_DP_COMP_CTL_ENABLE |
5440                                DDI_DP_COMP_CTL_CUSTOM80);
5441                 break;
5442         case DP_PHY_TEST_PATTERN_CP2520:
5443                 /*
5444                  * FIXME: Ideally pattern should come from DPCD 0x24A. As
5445                  * current firmware of DPR-100 could not set it, so hardcoding
5446                  * now for complaince test.
5447                  */
5448                 DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
5449                 pattern_val = 0xFB;
5450                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5451                                DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
5452                                pattern_val);
5453                 break;
5454         default:
5455                 WARN(1, "Invalid Phy Test Pattern\n");
5456         }
5457 }
5458
5459 static void
5460 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
5461 {
5462         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5463         struct drm_device *dev = intel_dig_port->base.base.dev;
5464         struct drm_i915_private *dev_priv = to_i915(dev);
5465         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5466         enum pipe pipe = crtc->pipe;
5467         u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5468
5469         trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5470                                                  TRANS_DDI_FUNC_CTL(pipe));
5471         trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5472         dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5473
5474         trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
5475                                       TGL_TRANS_DDI_PORT_MASK);
5476         trans_conf_value &= ~PIPECONF_ENABLE;
5477         dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;
5478
5479         intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5480         intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5481                        trans_ddi_func_ctl_value);
5482         intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5483 }
5484
5485 static void
5486 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
5487 {
5488         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5489         struct drm_device *dev = intel_dig_port->base.base.dev;
5490         struct drm_i915_private *dev_priv = to_i915(dev);
5491         enum port port = intel_dig_port->base.port;
5492         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5493         enum pipe pipe = crtc->pipe;
5494         u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5495
5496         trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5497                                                  TRANS_DDI_FUNC_CTL(pipe));
5498         trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5499         dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5500
5501         trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
5502                                     TGL_TRANS_DDI_SELECT_PORT(port);
5503         trans_conf_value |= PIPECONF_ENABLE;
5504         dp_tp_ctl_value |= DP_TP_CTL_ENABLE;
5505
5506         intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5507         intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5508         intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5509                        trans_ddi_func_ctl_value);
5510 }
5511
5512 void intel_dp_process_phy_request(struct intel_dp *intel_dp)
5513 {
5514         struct drm_dp_phy_test_params *data =
5515                 &intel_dp->compliance.test_data.phytest;
5516         u8 link_status[DP_LINK_STATUS_SIZE];
5517
5518         if (!intel_dp_get_link_status(intel_dp, link_status)) {
5519                 DRM_DEBUG_KMS("failed to get link status\n");
5520                 return;
5521         }
5522
5523         /* retrieve vswing & pre-emphasis setting */
5524         intel_dp_get_adjust_train(intel_dp, link_status);
5525
5526         intel_dp_autotest_phy_ddi_disable(intel_dp);
5527
5528         intel_dp_set_signal_levels(intel_dp);
5529
5530         intel_dp_phy_pattern_update(intel_dp);
5531
5532         intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);
5533
5534         drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
5535                                     link_status[DP_DPCD_REV]);
5536 }
5537
5538 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5539 {
5540         u8 test_result;
5541
5542         test_result = intel_dp_prepare_phytest(intel_dp);
5543         if (test_result != DP_TEST_ACK)
5544                 DRM_ERROR("Phy test preparation failed\n");
5545
5546         intel_dp_process_phy_request(intel_dp);
5547
5548         return test_result;
5549 }
5550
5551 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5552 {
5553         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5554         u8 response = DP_TEST_NAK;
5555         u8 request = 0;
5556         int status;
5557
5558         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5559         if (status <= 0) {
5560                 drm_dbg_kms(&i915->drm,
5561                             "Could not read test request from sink\n");
5562                 goto update_status;
5563         }
5564
5565         switch (request) {
5566         case DP_TEST_LINK_TRAINING:
5567                 drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5568                 response = intel_dp_autotest_link_training(intel_dp);
5569                 break;
5570         case DP_TEST_LINK_VIDEO_PATTERN:
5571                 drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5572                 response = intel_dp_autotest_video_pattern(intel_dp);
5573                 break;
5574         case DP_TEST_LINK_EDID_READ:
5575                 drm_dbg_kms(&i915->drm, "EDID test requested\n");
5576                 response = intel_dp_autotest_edid(intel_dp);
5577                 break;
5578         case DP_TEST_LINK_PHY_TEST_PATTERN:
5579                 drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5580                 response = intel_dp_autotest_phy_pattern(intel_dp);
5581                 break;
5582         default:
5583                 drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5584                             request);
5585                 break;
5586         }
5587
5588         if (response & DP_TEST_ACK)
5589                 intel_dp->compliance.test_type = request;
5590
5591 update_status:
5592         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5593         if (status <= 0)
5594                 drm_dbg_kms(&i915->drm,
5595                             "Could not write test response to sink\n");
5596 }
5597
5598 static int
5599 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5600 {
5601         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5602         bool need_retrain = false;
5603
5604         if (!intel_dp->is_mst)
5605                 return -EINVAL;
5606
5607         WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5608
5609         for (;;) {
5610                 u8 esi[DP_DPRX_ESI_LEN] = {};
5611                 bool bret, handled;
5612                 int retry;
5613
5614                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5615                 if (!bret) {
5616                         drm_dbg_kms(&i915->drm,
5617                                     "failed to get ESI - device may have failed\n");
5618                         return -EINVAL;
5619                 }
5620
5621                 /* check link status - esi[10] = 0x200c */
5622                 if (intel_dp->active_mst_links > 0 && !need_retrain &&
5623                     !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5624                         drm_dbg_kms(&i915->drm,
5625                                     "channel EQ not ok, retraining\n");
5626                         need_retrain = true;
5627                 }
5628
5629                 drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5630
5631                 drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5632                 if (!handled)
5633                         break;
5634
5635                 for (retry = 0; retry < 3; retry++) {
5636                         int wret;
5637
5638                         wret = drm_dp_dpcd_write(&intel_dp->aux,
5639                                                  DP_SINK_COUNT_ESI+1,
5640                                                  &esi[1], 3);
5641                         if (wret == 3)
5642                                 break;
5643                 }
5644         }
5645
5646         return need_retrain;
5647 }
5648
5649 static bool
5650 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5651 {
5652         u8 link_status[DP_LINK_STATUS_SIZE];
5653
5654         if (!intel_dp->link_trained)
5655                 return false;
5656
5657         /*
5658          * While PSR source HW is enabled, it will control main-link sending
5659          * frames, enabling and disabling it so trying to do a retrain will fail
5660          * as the link would or not be on or it could mix training patterns
5661          * and frame data at the same time causing retrain to fail.
5662          * Also when exiting PSR, HW will retrain the link anyways fixing
5663          * any link status error.
5664          */
5665         if (intel_psr_enabled(intel_dp))
5666                 return false;
5667
5668         if (!intel_dp_get_link_status(intel_dp, link_status))
5669                 return false;
5670
5671         /*
5672          * Validate the cached values of intel_dp->link_rate and
5673          * intel_dp->lane_count before attempting to retrain.
5674          */
5675         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5676                                         intel_dp->lane_count))
5677                 return false;
5678
5679         /* Retrain if Channel EQ or CR not ok */
5680         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5681 }
5682
5683 static bool intel_dp_has_connector(struct intel_dp *intel_dp,
5684                                    const struct drm_connector_state *conn_state)
5685 {
5686         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5687         struct intel_encoder *encoder;
5688         enum pipe pipe;
5689
5690         if (!conn_state->best_encoder)
5691                 return false;
5692
5693         /* SST */
5694         encoder = &dp_to_dig_port(intel_dp)->base;
5695         if (conn_state->best_encoder == &encoder->base)
5696                 return true;
5697
5698         /* MST */
5699         for_each_pipe(i915, pipe) {
5700                 encoder = &intel_dp->mst_encoders[pipe]->base;
5701                 if (conn_state->best_encoder == &encoder->base)
5702                         return true;
5703         }
5704
5705         return false;
5706 }
5707
5708 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
5709                                       struct drm_modeset_acquire_ctx *ctx,
5710                                       u32 *crtc_mask)
5711 {
5712         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5713         struct drm_connector_list_iter conn_iter;
5714         struct intel_connector *connector;
5715         int ret = 0;
5716
5717         *crtc_mask = 0;
5718
5719         if (!intel_dp_needs_link_retrain(intel_dp))
5720                 return 0;
5721
5722         drm_connector_list_iter_begin(&i915->drm, &conn_iter);
5723         for_each_intel_connector_iter(connector, &conn_iter) {
5724                 struct drm_connector_state *conn_state =
5725                         connector->base.state;
5726                 struct intel_crtc_state *crtc_state;
5727                 struct intel_crtc *crtc;
5728
5729                 if (!intel_dp_has_connector(intel_dp, conn_state))
5730                         continue;
5731
5732                 crtc = to_intel_crtc(conn_state->crtc);
5733                 if (!crtc)
5734                         continue;
5735
5736                 ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5737                 if (ret)
5738                         break;
5739
5740                 crtc_state = to_intel_crtc_state(crtc->base.state);
5741
5742                 drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
5743
5744                 if (!crtc_state->hw.active)
5745                         continue;
5746
5747                 if (conn_state->commit &&
5748                     !try_wait_for_completion(&conn_state->commit->hw_done))
5749                         continue;
5750
5751                 *crtc_mask |= drm_crtc_mask(&crtc->base);
5752         }
5753         drm_connector_list_iter_end(&conn_iter);
5754
5755         if (!intel_dp_needs_link_retrain(intel_dp))
5756                 *crtc_mask = 0;
5757
5758         return ret;
5759 }
5760
5761 static bool intel_dp_is_connected(struct intel_dp *intel_dp)
5762 {
5763         struct intel_connector *connector = intel_dp->attached_connector;
5764
5765         return connector->base.status == connector_status_connected ||
5766                 intel_dp->is_mst;
5767 }
5768
5769 int intel_dp_retrain_link(struct intel_encoder *encoder,
5770                           struct drm_modeset_acquire_ctx *ctx)
5771 {
5772         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5773         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5774         struct intel_crtc *crtc;
5775         u32 crtc_mask;
5776         int ret;
5777
5778         if (!intel_dp_is_connected(intel_dp))
5779                 return 0;
5780
5781         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5782                                ctx);
5783         if (ret)
5784                 return ret;
5785
5786         ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5787         if (ret)
5788                 return ret;
5789
5790         if (crtc_mask == 0)
5791                 return 0;
5792
5793         drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
5794                     encoder->base.base.id, encoder->base.name);
5795
5796         for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5797                 const struct intel_crtc_state *crtc_state =
5798                         to_intel_crtc_state(crtc->base.state);
5799
5800                 /* Suppress underruns caused by re-training */
5801                 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5802                 if (crtc_state->has_pch_encoder)
5803                         intel_set_pch_fifo_underrun_reporting(dev_priv,
5804                                                               intel_crtc_pch_transcoder(crtc), false);
5805         }
5806
5807         intel_dp_start_link_train(intel_dp);
5808         intel_dp_stop_link_train(intel_dp);
5809
5810         for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5811                 const struct intel_crtc_state *crtc_state =
5812                         to_intel_crtc_state(crtc->base.state);
5813
5814                 /* Keep underrun reporting disabled until things are stable */
5815                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5816
5817                 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5818                 if (crtc_state->has_pch_encoder)
5819                         intel_set_pch_fifo_underrun_reporting(dev_priv,
5820                                                               intel_crtc_pch_transcoder(crtc), true);
5821         }
5822
5823         return 0;
5824 }
5825
5826 /*
5827  * If display is now connected check links status,
5828  * there has been known issues of link loss triggering
5829  * long pulse.
5830  *
5831  * Some sinks (eg. ASUS PB287Q) seem to perform some
5832  * weird HPD ping pong during modesets. So we can apparently
5833  * end up with HPD going low during a modeset, and then
5834  * going back up soon after. And once that happens we must
5835  * retrain the link to get a picture. That's in case no
5836  * userspace component reacted to intermittent HPD dip.
5837  */
5838 static enum intel_hotplug_state
5839 intel_dp_hotplug(struct intel_encoder *encoder,
5840                  struct intel_connector *connector)
5841 {
5842         struct drm_modeset_acquire_ctx ctx;
5843         enum intel_hotplug_state state;
5844         int ret;
5845
5846         state = intel_encoder_hotplug(encoder, connector);
5847
5848         drm_modeset_acquire_init(&ctx, 0);
5849
5850         for (;;) {
5851                 ret = intel_dp_retrain_link(encoder, &ctx);
5852
5853                 if (ret == -EDEADLK) {
5854                         drm_modeset_backoff(&ctx);
5855                         continue;
5856                 }
5857
5858                 break;
5859         }
5860
5861         drm_modeset_drop_locks(&ctx);
5862         drm_modeset_acquire_fini(&ctx);
5863         drm_WARN(encoder->base.dev, ret,
5864                  "Acquiring modeset locks failed with %i\n", ret);
5865
5866         /*
5867          * Keeping it consistent with intel_ddi_hotplug() and
5868          * intel_hdmi_hotplug().
5869          */
5870         if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5871                 state = INTEL_HOTPLUG_RETRY;
5872
5873         return state;
5874 }
5875
5876 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5877 {
5878         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5879         u8 val;
5880
5881         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5882                 return;
5883
5884         if (drm_dp_dpcd_readb(&intel_dp->aux,
5885                               DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5886                 return;
5887
5888         drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5889
5890         if (val & DP_AUTOMATED_TEST_REQUEST)
5891                 intel_dp_handle_test_request(intel_dp);
5892
5893         if (val & DP_CP_IRQ)
5894                 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5895
5896         if (val & DP_SINK_SPECIFIC_IRQ)
5897                 drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5898 }
5899
5900 /*
5901  * According to DP spec
5902  * 5.1.2:
5903  *  1. Read DPCD
5904  *  2. Configure link according to Receiver Capabilities
5905  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5906  *  4. Check link status on receipt of hot-plug interrupt
5907  *
5908  * intel_dp_short_pulse -  handles short pulse interrupts
5909  * when full detection is not required.
5910  * Returns %true if short pulse is handled and full detection
5911  * is NOT required and %false otherwise.
5912  */
5913 static bool
5914 intel_dp_short_pulse(struct intel_dp *intel_dp)
5915 {
5916         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5917         u8 old_sink_count = intel_dp->sink_count;
5918         bool ret;
5919
5920         /*
5921          * Clearing compliance test variables to allow capturing
5922          * of values for next automated test request.
5923          */
5924         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5925
5926         /*
5927          * Now read the DPCD to see if it's actually running
5928          * If the current value of sink count doesn't match with
5929          * the value that was stored earlier or dpcd read failed
5930          * we need to do full detection
5931          */
5932         ret = intel_dp_get_dpcd(intel_dp);
5933
5934         if ((old_sink_count != intel_dp->sink_count) || !ret) {
5935                 /* No need to proceed if we are going to do full detect */
5936                 return false;
5937         }
5938
5939         intel_dp_check_service_irq(intel_dp);
5940
5941         /* Handle CEC interrupts, if any */
5942         drm_dp_cec_irq(&intel_dp->aux);
5943
5944         /* defer to the hotplug work for link retraining if needed */
5945         if (intel_dp_needs_link_retrain(intel_dp))
5946                 return false;
5947
5948         intel_psr_short_pulse(intel_dp);
5949
5950         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5951                 drm_dbg_kms(&dev_priv->drm,
5952                             "Link Training Compliance Test requested\n");
5953                 /* Send a Hotplug Uevent to userspace to start modeset */
5954                 drm_kms_helper_hotplug_event(&dev_priv->drm);
5955         }
5956
5957         return true;
5958 }
5959
5960 /* XXX this is probably wrong for multiple downstream ports */
5961 static enum drm_connector_status
5962 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5963 {
5964         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5965         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5966         u8 *dpcd = intel_dp->dpcd;
5967         u8 type;
5968
5969         if (WARN_ON(intel_dp_is_edp(intel_dp)))
5970                 return connector_status_connected;
5971
5972         if (lspcon->active)
5973                 lspcon_resume(lspcon);
5974
5975         if (!intel_dp_get_dpcd(intel_dp))
5976                 return connector_status_disconnected;
5977
5978         /* if there's no downstream port, we're done */
5979         if (!drm_dp_is_branch(dpcd))
5980                 return connector_status_connected;
5981
5982         /* If we're HPD-aware, SINK_COUNT changes dynamically */
5983         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5984             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5985
5986                 return intel_dp->sink_count ?
5987                 connector_status_connected : connector_status_disconnected;
5988         }
5989
5990         if (intel_dp_can_mst(intel_dp))
5991                 return connector_status_connected;
5992
5993         /* If no HPD, poke DDC gently */
5994         if (drm_probe_ddc(&intel_dp->aux.ddc))
5995                 return connector_status_connected;
5996
5997         /* Well we tried, say unknown for unreliable port types */
5998         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5999                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
6000                 if (type == DP_DS_PORT_TYPE_VGA ||
6001                     type == DP_DS_PORT_TYPE_NON_EDID)
6002                         return connector_status_unknown;
6003         } else {
6004                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
6005                         DP_DWN_STRM_PORT_TYPE_MASK;
6006                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
6007                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
6008                         return connector_status_unknown;
6009         }
6010
6011         /* Anything else is out of spec, warn and ignore */
6012         drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
6013         return connector_status_disconnected;
6014 }
6015
6016 static enum drm_connector_status
6017 edp_detect(struct intel_dp *intel_dp)
6018 {
6019         return connector_status_connected;
6020 }
6021
6022 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
6023 {
6024         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6025         u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
6026
6027         return intel_de_read(dev_priv, SDEISR) & bit;
6028 }
6029
6030 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6031 {
6032         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6033         u32 bit;
6034
6035         switch (encoder->hpd_pin) {
6036         case HPD_PORT_B:
6037                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
6038                 break;
6039         case HPD_PORT_C:
6040                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
6041                 break;
6042         case HPD_PORT_D:
6043                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
6044                 break;
6045         default:
6046                 MISSING_CASE(encoder->hpd_pin);
6047                 return false;
6048         }
6049
6050         return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6051 }
6052
6053 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6054 {
6055         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6056         u32 bit;
6057
6058         switch (encoder->hpd_pin) {
6059         case HPD_PORT_B:
6060                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6061                 break;
6062         case HPD_PORT_C:
6063                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6064                 break;
6065         case HPD_PORT_D:
6066                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6067                 break;
6068         default:
6069                 MISSING_CASE(encoder->hpd_pin);
6070                 return false;
6071         }
6072
6073         return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6074 }
6075
6076 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6077 {
6078         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6079         u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
6080
6081         return intel_de_read(dev_priv, DEISR) & bit;
6082 }
6083
6084 /*
6085  * intel_digital_port_connected - is the specified port connected?
6086  * @encoder: intel_encoder
6087  *
6088  * In cases where there's a connector physically connected but it can't be used
6089  * by our hardware we also return false, since the rest of the driver should
6090  * pretty much treat the port as disconnected. This is relevant for type-C
6091  * (starting on ICL) where there's ownership involved.
6092  *
6093  * Return %true if port is connected, %false otherwise.
6094  */
6095 bool intel_digital_port_connected(struct intel_encoder *encoder)
6096 {
6097         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6098         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6099         bool is_connected = false;
6100         intel_wakeref_t wakeref;
6101
6102         with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6103                 is_connected = dig_port->connected(encoder);
6104
6105         return is_connected;
6106 }
6107
6108 static struct edid *
6109 intel_dp_get_edid(struct intel_dp *intel_dp)
6110 {
6111         struct intel_connector *intel_connector = intel_dp->attached_connector;
6112
6113         /* use cached edid if we have one */
6114         if (intel_connector->edid) {
6115                 /* invalid edid */
6116                 if (IS_ERR(intel_connector->edid))
6117                         return NULL;
6118
6119                 return drm_edid_duplicate(intel_connector->edid);
6120         } else
6121                 return drm_get_edid(&intel_connector->base,
6122                                     &intel_dp->aux.ddc);
6123 }
6124
6125 static void
6126 intel_dp_set_edid(struct intel_dp *intel_dp)
6127 {
6128         struct intel_connector *intel_connector = intel_dp->attached_connector;
6129         struct edid *edid;
6130
6131         intel_dp_unset_edid(intel_dp);
6132         edid = intel_dp_get_edid(intel_dp);
6133         intel_connector->detect_edid = edid;
6134
6135         intel_dp->has_audio = drm_detect_monitor_audio(edid);
6136         drm_dp_cec_set_edid(&intel_dp->aux, edid);
6137         intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6138 }
6139
6140 static void
6141 intel_dp_unset_edid(struct intel_dp *intel_dp)
6142 {
6143         struct intel_connector *intel_connector = intel_dp->attached_connector;
6144
6145         drm_dp_cec_unset_edid(&intel_dp->aux);
6146         kfree(intel_connector->detect_edid);
6147         intel_connector->detect_edid = NULL;
6148
6149         intel_dp->has_audio = false;
6150         intel_dp->edid_quirks = 0;
6151 }
6152
6153 static int
6154 intel_dp_detect(struct drm_connector *connector,
6155                 struct drm_modeset_acquire_ctx *ctx,
6156                 bool force)
6157 {
6158         struct drm_i915_private *dev_priv = to_i915(connector->dev);
6159         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6160         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6161         struct intel_encoder *encoder = &dig_port->base;
6162         enum drm_connector_status status;
6163
6164         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6165                     connector->base.id, connector->name);
6166         drm_WARN_ON(&dev_priv->drm,
6167                     !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6168
6169         /* Can't disconnect eDP */
6170         if (intel_dp_is_edp(intel_dp))
6171                 status = edp_detect(intel_dp);
6172         else if (intel_digital_port_connected(encoder))
6173                 status = intel_dp_detect_dpcd(intel_dp);
6174         else
6175                 status = connector_status_disconnected;
6176
6177         if (status == connector_status_disconnected) {
6178                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6179                 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6180
6181                 if (intel_dp->is_mst) {
6182                         drm_dbg_kms(&dev_priv->drm,
6183                                     "MST device may have disappeared %d vs %d\n",
6184                                     intel_dp->is_mst,
6185                                     intel_dp->mst_mgr.mst_state);
6186                         intel_dp->is_mst = false;
6187                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6188                                                         intel_dp->is_mst);
6189                 }
6190
6191                 goto out;
6192         }
6193
6194         if (intel_dp->reset_link_params) {
6195                 /* Initial max link lane count */
6196                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6197
6198                 /* Initial max link rate */
6199                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6200
6201                 intel_dp->reset_link_params = false;
6202         }
6203
6204         intel_dp_print_rates(intel_dp);
6205
6206         /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6207         if (INTEL_GEN(dev_priv) >= 11)
6208                 intel_dp_get_dsc_sink_cap(intel_dp);
6209
6210         intel_dp_configure_mst(intel_dp);
6211
6212         if (intel_dp->is_mst) {
6213                 /*
6214                  * If we are in MST mode then this connector
6215                  * won't appear connected or have anything
6216                  * with EDID on it
6217                  */
6218                 status = connector_status_disconnected;
6219                 goto out;
6220         }
6221
6222         /*
6223          * Some external monitors do not signal loss of link synchronization
6224          * with an IRQ_HPD, so force a link status check.
6225          */
6226         if (!intel_dp_is_edp(intel_dp)) {
6227                 int ret;
6228
6229                 ret = intel_dp_retrain_link(encoder, ctx);
6230                 if (ret)
6231                         return ret;
6232         }
6233
6234         /*
6235          * Clearing NACK and defer counts to get their exact values
6236          * while reading EDID which are required by Compliance tests
6237          * 4.2.2.4 and 4.2.2.5
6238          */
6239         intel_dp->aux.i2c_nack_count = 0;
6240         intel_dp->aux.i2c_defer_count = 0;
6241
6242         intel_dp_set_edid(intel_dp);
6243         if (intel_dp_is_edp(intel_dp) ||
6244             to_intel_connector(connector)->detect_edid)
6245                 status = connector_status_connected;
6246
6247         intel_dp_check_service_irq(intel_dp);
6248
6249 out:
6250         if (status != connector_status_connected && !intel_dp->is_mst)
6251                 intel_dp_unset_edid(intel_dp);
6252
6253         /*
6254          * Make sure the refs for power wells enabled during detect are
6255          * dropped to avoid a new detect cycle triggered by HPD polling.
6256          */
6257         intel_display_power_flush_work(dev_priv);
6258
6259         return status;
6260 }
6261
6262 static void
6263 intel_dp_force(struct drm_connector *connector)
6264 {
6265         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6266         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6267         struct intel_encoder *intel_encoder = &dig_port->base;
6268         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6269         enum intel_display_power_domain aux_domain =
6270                 intel_aux_power_domain(dig_port);
6271         intel_wakeref_t wakeref;
6272
6273         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6274                     connector->base.id, connector->name);
6275         intel_dp_unset_edid(intel_dp);
6276
6277         if (connector->status != connector_status_connected)
6278                 return;
6279
6280         wakeref = intel_display_power_get(dev_priv, aux_domain);
6281
6282         intel_dp_set_edid(intel_dp);
6283
6284         intel_display_power_put(dev_priv, aux_domain, wakeref);
6285 }
6286
6287 static int intel_dp_get_modes(struct drm_connector *connector)
6288 {
6289         struct intel_connector *intel_connector = to_intel_connector(connector);
6290         struct edid *edid;
6291
6292         edid = intel_connector->detect_edid;
6293         if (edid) {
6294                 int ret = intel_connector_update_modes(connector, edid);
6295                 if (ret)
6296                         return ret;
6297         }
6298
6299         /* if eDP has no EDID, fall back to fixed mode */
6300         if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
6301             intel_connector->panel.fixed_mode) {
6302                 struct drm_display_mode *mode;
6303
6304                 mode = drm_mode_duplicate(connector->dev,
6305                                           intel_connector->panel.fixed_mode);
6306                 if (mode) {
6307                         drm_mode_probed_add(connector, mode);
6308                         return 1;
6309                 }
6310         }
6311
6312         return 0;
6313 }
6314
6315 static int
6316 intel_dp_connector_register(struct drm_connector *connector)
6317 {
6318         struct drm_i915_private *i915 = to_i915(connector->dev);
6319         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6320         int ret;
6321
6322         ret = intel_connector_register(connector);
6323         if (ret)
6324                 return ret;
6325
6326         drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6327                     intel_dp->aux.name, connector->kdev->kobj.name);
6328
6329         intel_dp->aux.dev = connector->kdev;
6330         ret = drm_dp_aux_register(&intel_dp->aux);
6331         if (!ret)
6332                 drm_dp_cec_register_connector(&intel_dp->aux, connector);
6333         return ret;
6334 }
6335
6336 static void
6337 intel_dp_connector_unregister(struct drm_connector *connector)
6338 {
6339         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6340
6341         drm_dp_cec_unregister_connector(&intel_dp->aux);
6342         drm_dp_aux_unregister(&intel_dp->aux);
6343         intel_connector_unregister(connector);
6344 }
6345
6346 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6347 {
6348         struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6349         struct intel_dp *intel_dp = &intel_dig_port->dp;
6350
6351         intel_dp_mst_encoder_cleanup(intel_dig_port);
6352         if (intel_dp_is_edp(intel_dp)) {
6353                 intel_wakeref_t wakeref;
6354
6355                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6356                 /*
6357                  * vdd might still be enabled do to the delayed vdd off.
6358                  * Make sure vdd is actually turned off here.
6359                  */
6360                 with_pps_lock(intel_dp, wakeref)
6361                         edp_panel_vdd_off_sync(intel_dp);
6362
6363                 if (intel_dp->edp_notifier.notifier_call) {
6364                         unregister_reboot_notifier(&intel_dp->edp_notifier);
6365                         intel_dp->edp_notifier.notifier_call = NULL;
6366                 }
6367         }
6368
6369         intel_dp_aux_fini(intel_dp);
6370 }
6371
6372 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6373 {
6374         intel_dp_encoder_flush_work(encoder);
6375
6376         drm_encoder_cleanup(encoder);
6377         kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6378 }
6379
6380 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6381 {
6382         struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6383         intel_wakeref_t wakeref;
6384
6385         if (!intel_dp_is_edp(intel_dp))
6386                 return;
6387
6388         /*
6389          * vdd might still be enabled do to the delayed vdd off.
6390          * Make sure vdd is actually turned off here.
6391          */
6392         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6393         with_pps_lock(intel_dp, wakeref)
6394                 edp_panel_vdd_off_sync(intel_dp);
6395 }
6396
6397 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
6398 {
6399         long ret;
6400
6401 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
6402         ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
6403                                                msecs_to_jiffies(timeout));
6404
6405         if (!ret)
6406                 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
6407 }
6408
6409 static
6410 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
6411                                 u8 *an)
6412 {
6413         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6414         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
6415         static const struct drm_dp_aux_msg msg = {
6416                 .request = DP_AUX_NATIVE_WRITE,
6417                 .address = DP_AUX_HDCP_AKSV,
6418                 .size = DRM_HDCP_KSV_LEN,
6419         };
6420         u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
6421         ssize_t dpcd_ret;
6422         int ret;
6423
6424         /* Output An first, that's easy */
6425         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
6426                                      an, DRM_HDCP_AN_LEN);
6427         if (dpcd_ret != DRM_HDCP_AN_LEN) {
6428                 drm_dbg_kms(&i915->drm,
6429                             "Failed to write An over DP/AUX (%zd)\n",
6430                             dpcd_ret);
6431                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
6432         }
6433
6434         /*
6435          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
6436          * order to get it on the wire, we need to create the AUX header as if
6437          * we were writing the data, and then tickle the hardware to output the
6438          * data once the header is sent out.
6439          */
6440         intel_dp_aux_header(txbuf, &msg);
6441
6442         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
6443                                 rxbuf, sizeof(rxbuf),
6444                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
6445         if (ret < 0) {
6446                 drm_dbg_kms(&i915->drm,
6447                             "Write Aksv over DP/AUX failed (%d)\n", ret);
6448                 return ret;
6449         } else if (ret == 0) {
6450                 drm_dbg_kms(&i915->drm, "Aksv write over DP/AUX was empty\n");
6451                 return -EIO;
6452         }
6453
6454         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6455         if (reply != DP_AUX_NATIVE_REPLY_ACK) {
6456                 drm_dbg_kms(&i915->drm,
6457                             "Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
6458                             reply);
6459                 return -EIO;
6460         }
6461         return 0;
6462 }
6463
6464 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
6465                                    u8 *bksv)
6466 {
6467         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6468         ssize_t ret;
6469
6470         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
6471                                DRM_HDCP_KSV_LEN);
6472         if (ret != DRM_HDCP_KSV_LEN) {
6473                 drm_dbg_kms(&i915->drm,
6474                             "Read Bksv from DP/AUX failed (%zd)\n", ret);
6475                 return ret >= 0 ? -EIO : ret;
6476         }
6477         return 0;
6478 }
6479
6480 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
6481                                       u8 *bstatus)
6482 {
6483         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6484         ssize_t ret;
6485
6486         /*
6487          * For some reason the HDMI and DP HDCP specs call this register
6488          * definition by different names. In the HDMI spec, it's called BSTATUS,
6489          * but in DP it's called BINFO.
6490          */
6491         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
6492                                bstatus, DRM_HDCP_BSTATUS_LEN);
6493         if (ret != DRM_HDCP_BSTATUS_LEN) {
6494                 drm_dbg_kms(&i915->drm,
6495                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6496                 return ret >= 0 ? -EIO : ret;
6497         }
6498         return 0;
6499 }
6500
6501 static
6502 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
6503                              u8 *bcaps)
6504 {
6505         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6506         ssize_t ret;
6507
6508         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6509                                bcaps, 1);
6510         if (ret != 1) {
6511                 drm_dbg_kms(&i915->drm,
6512                             "Read bcaps from DP/AUX failed (%zd)\n", ret);
6513                 return ret >= 0 ? -EIO : ret;
6514         }
6515
6516         return 0;
6517 }
6518
6519 static
6520 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6521                                    bool *repeater_present)
6522 {
6523         ssize_t ret;
6524         u8 bcaps;
6525
6526         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6527         if (ret)
6528                 return ret;
6529
6530         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6531         return 0;
6532 }
6533
6534 static
6535 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6536                                 u8 *ri_prime)
6537 {
6538         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6539         ssize_t ret;
6540
6541         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6542                                ri_prime, DRM_HDCP_RI_LEN);
6543         if (ret != DRM_HDCP_RI_LEN) {
6544                 drm_dbg_kms(&i915->drm, "Read Ri' from DP/AUX failed (%zd)\n",
6545                             ret);
6546                 return ret >= 0 ? -EIO : ret;
6547         }
6548         return 0;
6549 }
6550
6551 static
6552 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6553                                  bool *ksv_ready)
6554 {
6555         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6556         ssize_t ret;
6557         u8 bstatus;
6558
6559         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6560                                &bstatus, 1);
6561         if (ret != 1) {
6562                 drm_dbg_kms(&i915->drm,
6563                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6564                 return ret >= 0 ? -EIO : ret;
6565         }
6566         *ksv_ready = bstatus & DP_BSTATUS_READY;
6567         return 0;
6568 }
6569
6570 static
6571 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6572                                 int num_downstream, u8 *ksv_fifo)
6573 {
6574         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6575         ssize_t ret;
6576         int i;
6577
6578         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6579         for (i = 0; i < num_downstream; i += 3) {
6580                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6581                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6582                                        DP_AUX_HDCP_KSV_FIFO,
6583                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
6584                                        len);
6585                 if (ret != len) {
6586                         drm_dbg_kms(&i915->drm,
6587                                     "Read ksv[%d] from DP/AUX failed (%zd)\n",
6588                                     i, ret);
6589                         return ret >= 0 ? -EIO : ret;
6590                 }
6591         }
6592         return 0;
6593 }
6594
6595 static
6596 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6597                                     int i, u32 *part)
6598 {
6599         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6600         ssize_t ret;
6601
6602         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6603                 return -EINVAL;
6604
6605         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6606                                DP_AUX_HDCP_V_PRIME(i), part,
6607                                DRM_HDCP_V_PRIME_PART_LEN);
6608         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6609                 drm_dbg_kms(&i915->drm,
6610                             "Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6611                 return ret >= 0 ? -EIO : ret;
6612         }
6613         return 0;
6614 }
6615
6616 static
6617 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6618                                     bool enable)
6619 {
6620         /* Not used for single stream DisplayPort setups */
6621         return 0;
6622 }
6623
6624 static
6625 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6626 {
6627         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6628         ssize_t ret;
6629         u8 bstatus;
6630
6631         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6632                                &bstatus, 1);
6633         if (ret != 1) {
6634                 drm_dbg_kms(&i915->drm,
6635                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6636                 return false;
6637         }
6638
6639         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6640 }
6641
6642 static
6643 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6644                           bool *hdcp_capable)
6645 {
6646         ssize_t ret;
6647         u8 bcaps;
6648
6649         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6650         if (ret)
6651                 return ret;
6652
6653         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6654         return 0;
6655 }
6656
6657 struct hdcp2_dp_errata_stream_type {
6658         u8      msg_id;
6659         u8      stream_type;
6660 } __packed;
6661
6662 struct hdcp2_dp_msg_data {
6663         u8 msg_id;
6664         u32 offset;
6665         bool msg_detectable;
6666         u32 timeout;
6667         u32 timeout2; /* Added for non_paired situation */
6668 };
6669
6670 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6671         { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6672         { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6673           false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6674         { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6675           false, 0, 0 },
6676         { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6677           false, 0, 0 },
6678         { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6679           true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6680           HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6681         { HDCP_2_2_AKE_SEND_PAIRING_INFO,
6682           DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6683           HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6684         { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6685         { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6686           false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6687         { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6688           0, 0 },
6689         { HDCP_2_2_REP_SEND_RECVID_LIST,
6690           DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6691           HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6692         { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6693           0, 0 },
6694         { HDCP_2_2_REP_STREAM_MANAGE,
6695           DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6696           0, 0 },
6697         { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6698           false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6699 /* local define to shovel this through the write_2_2 interface */
6700 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE  50
6701         { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6702           DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6703           0, 0 },
6704 };
6705
6706 static int
6707 intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6708                               u8 *rx_status)
6709 {
6710         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6711         ssize_t ret;
6712
6713         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6714                                DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6715                                HDCP_2_2_DP_RXSTATUS_LEN);
6716         if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6717                 drm_dbg_kms(&i915->drm,
6718                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6719                 return ret >= 0 ? -EIO : ret;
6720         }
6721
6722         return 0;
6723 }
6724
6725 static
6726 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6727                                   u8 msg_id, bool *msg_ready)
6728 {
6729         u8 rx_status;
6730         int ret;
6731
6732         *msg_ready = false;
6733         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6734         if (ret < 0)
6735                 return ret;
6736
6737         switch (msg_id) {
6738         case HDCP_2_2_AKE_SEND_HPRIME:
6739                 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6740                         *msg_ready = true;
6741                 break;
6742         case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6743                 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6744                         *msg_ready = true;
6745                 break;
6746         case HDCP_2_2_REP_SEND_RECVID_LIST:
6747                 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6748                         *msg_ready = true;
6749                 break;
6750         default:
6751                 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6752                 return -EINVAL;
6753         }
6754
6755         return 0;
6756 }
6757
6758 static ssize_t
6759 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6760                             const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6761 {
6762         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6763         struct intel_dp *dp = &intel_dig_port->dp;
6764         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6765         u8 msg_id = hdcp2_msg_data->msg_id;
6766         int ret, timeout;
6767         bool msg_ready = false;
6768
6769         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6770                 timeout = hdcp2_msg_data->timeout2;
6771         else
6772                 timeout = hdcp2_msg_data->timeout;
6773
6774         /*
6775          * There is no way to detect the CERT, LPRIME and STREAM_READY
6776          * availability. So Wait for timeout and read the msg.
6777          */
6778         if (!hdcp2_msg_data->msg_detectable) {
6779                 mdelay(timeout);
6780                 ret = 0;
6781         } else {
6782                 /*
6783                  * As we want to check the msg availability at timeout, Ignoring
6784                  * the timeout at wait for CP_IRQ.
6785                  */
6786                 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6787                 ret = hdcp2_detect_msg_availability(intel_dig_port,
6788                                                     msg_id, &msg_ready);
6789                 if (!msg_ready)
6790                         ret = -ETIMEDOUT;
6791         }
6792
6793         if (ret)
6794                 drm_dbg_kms(&i915->drm,
6795                             "msg_id %d, ret %d, timeout(mSec): %d\n",
6796                             hdcp2_msg_data->msg_id, ret, timeout);
6797
6798         return ret;
6799 }
6800
6801 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6802 {
6803         int i;
6804
6805         for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6806                 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6807                         return &hdcp2_dp_msg_data[i];
6808
6809         return NULL;
6810 }
6811
6812 static
6813 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6814                              void *buf, size_t size)
6815 {
6816         struct intel_dp *dp = &intel_dig_port->dp;
6817         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6818         unsigned int offset;
6819         u8 *byte = buf;
6820         ssize_t ret, bytes_to_write, len;
6821         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6822
6823         hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6824         if (!hdcp2_msg_data)
6825                 return -EINVAL;
6826
6827         offset = hdcp2_msg_data->offset;
6828
6829         /* No msg_id in DP HDCP2.2 msgs */
6830         bytes_to_write = size - 1;
6831         byte++;
6832
6833         hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6834
6835         while (bytes_to_write) {
6836                 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6837                                 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6838
6839                 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6840                                         offset, (void *)byte, len);
6841                 if (ret < 0)
6842                         return ret;
6843
6844                 bytes_to_write -= ret;
6845                 byte += ret;
6846                 offset += ret;
6847         }
6848
6849         return size;
6850 }
6851
6852 static
6853 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6854 {
6855         u8 rx_info[HDCP_2_2_RXINFO_LEN];
6856         u32 dev_cnt;
6857         ssize_t ret;
6858
6859         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6860                                DP_HDCP_2_2_REG_RXINFO_OFFSET,
6861                                (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6862         if (ret != HDCP_2_2_RXINFO_LEN)
6863                 return ret >= 0 ? -EIO : ret;
6864
6865         dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6866                    HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6867
6868         if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6869                 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6870
6871         ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6872                 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6873                 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6874
6875         return ret;
6876 }
6877
6878 static
6879 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6880                             u8 msg_id, void *buf, size_t size)
6881 {
6882         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6883         unsigned int offset;
6884         u8 *byte = buf;
6885         ssize_t ret, bytes_to_recv, len;
6886         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6887
6888         hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6889         if (!hdcp2_msg_data)
6890                 return -EINVAL;
6891         offset = hdcp2_msg_data->offset;
6892
6893         ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6894         if (ret < 0)
6895                 return ret;
6896
6897         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6898                 ret = get_receiver_id_list_size(intel_dig_port);
6899                 if (ret < 0)
6900                         return ret;
6901
6902                 size = ret;
6903         }
6904         bytes_to_recv = size - 1;
6905
6906         /* DP adaptation msgs has no msg_id */
6907         byte++;
6908
6909         while (bytes_to_recv) {
6910                 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6911                       DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6912
6913                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6914                                        (void *)byte, len);
6915                 if (ret < 0) {
6916                         drm_dbg_kms(&i915->drm, "msg_id %d, ret %zd\n",
6917                                     msg_id, ret);
6918                         return ret;
6919                 }
6920
6921                 bytes_to_recv -= ret;
6922                 byte += ret;
6923                 offset += ret;
6924         }
6925         byte = buf;
6926         *byte = msg_id;
6927
6928         return size;
6929 }
6930
6931 static
6932 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6933                                       bool is_repeater, u8 content_type)
6934 {
6935         int ret;
6936         struct hdcp2_dp_errata_stream_type stream_type_msg;
6937
6938         if (is_repeater)
6939                 return 0;
6940
6941         /*
6942          * Errata for DP: As Stream type is used for encryption, Receiver
6943          * should be communicated with stream type for the decryption of the
6944          * content.
6945          * Repeater will be communicated with stream type as a part of it's
6946          * auth later in time.
6947          */
6948         stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6949         stream_type_msg.stream_type = content_type;
6950
6951         ret =  intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6952                                         sizeof(stream_type_msg));
6953
6954         return ret < 0 ? ret : 0;
6955
6956 }
6957
6958 static
6959 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6960 {
6961         u8 rx_status;
6962         int ret;
6963
6964         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6965         if (ret)
6966                 return ret;
6967
6968         if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6969                 ret = HDCP_REAUTH_REQUEST;
6970         else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6971                 ret = HDCP_LINK_INTEGRITY_FAILURE;
6972         else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6973                 ret = HDCP_TOPOLOGY_CHANGE;
6974
6975         return ret;
6976 }
6977
6978 static
6979 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6980                            bool *capable)
6981 {
6982         u8 rx_caps[3];
6983         int ret;
6984
6985         *capable = false;
6986         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6987                                DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6988                                rx_caps, HDCP_2_2_RXCAPS_LEN);
6989         if (ret != HDCP_2_2_RXCAPS_LEN)
6990                 return ret >= 0 ? -EIO : ret;
6991
6992         if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6993             HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6994                 *capable = true;
6995
6996         return 0;
6997 }
6998
6999 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
7000         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
7001         .read_bksv = intel_dp_hdcp_read_bksv,
7002         .read_bstatus = intel_dp_hdcp_read_bstatus,
7003         .repeater_present = intel_dp_hdcp_repeater_present,
7004         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
7005         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
7006         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
7007         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
7008         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
7009         .check_link = intel_dp_hdcp_check_link,
7010         .hdcp_capable = intel_dp_hdcp_capable,
7011         .write_2_2_msg = intel_dp_hdcp2_write_msg,
7012         .read_2_2_msg = intel_dp_hdcp2_read_msg,
7013         .config_stream_type = intel_dp_hdcp2_config_stream_type,
7014         .check_2_2_link = intel_dp_hdcp2_check_link,
7015         .hdcp_2_2_capable = intel_dp_hdcp2_capable,
7016         .protocol = HDCP_PROTOCOL_DP,
7017 };
7018
7019 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
7020 {
7021         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7022         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
7023
7024         lockdep_assert_held(&dev_priv->pps_mutex);
7025
7026         if (!edp_have_panel_vdd(intel_dp))
7027                 return;
7028
7029         /*
7030          * The VDD bit needs a power domain reference, so if the bit is
7031          * already enabled when we boot or resume, grab this reference and
7032          * schedule a vdd off, so we don't hold on to the reference
7033          * indefinitely.
7034          */
7035         drm_dbg_kms(&dev_priv->drm,
7036                     "VDD left on by BIOS, adjusting state tracking\n");
7037         intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
7038
7039         edp_panel_vdd_schedule_off(intel_dp);
7040 }
7041
7042 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
7043 {
7044         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7045         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
7046         enum pipe pipe;
7047
7048         if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
7049                                   encoder->port, &pipe))
7050                 return pipe;
7051
7052         return INVALID_PIPE;
7053 }
7054
7055 void intel_dp_encoder_reset(struct drm_encoder *encoder)
7056 {
7057         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
7058         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
7059         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
7060         intel_wakeref_t wakeref;
7061
7062         if (!HAS_DDI(dev_priv))
7063                 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7064
7065         if (lspcon->active)
7066                 lspcon_resume(lspcon);
7067
7068         intel_dp->reset_link_params = true;
7069
7070         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
7071             !intel_dp_is_edp(intel_dp))
7072                 return;
7073
7074         with_pps_lock(intel_dp, wakeref) {
7075                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7076                         intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7077
7078                 if (intel_dp_is_edp(intel_dp)) {
7079                         /*
7080                          * Reinit the power sequencer, in case BIOS did
7081                          * something nasty with it.
7082                          */
7083                         intel_dp_pps_init(intel_dp);
7084                         intel_edp_panel_vdd_sanitize(intel_dp);
7085                 }
7086         }
7087 }
7088
7089 static int intel_modeset_tile_group(struct intel_atomic_state *state,
7090                                     int tile_group_id)
7091 {
7092         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7093         struct drm_connector_list_iter conn_iter;
7094         struct drm_connector *connector;
7095         int ret = 0;
7096
7097         drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
7098         drm_for_each_connector_iter(connector, &conn_iter) {
7099                 struct drm_connector_state *conn_state;
7100                 struct intel_crtc_state *crtc_state;
7101                 struct intel_crtc *crtc;
7102
7103                 if (!connector->has_tile ||
7104                     connector->tile_group->id != tile_group_id)
7105                         continue;
7106
7107                 conn_state = drm_atomic_get_connector_state(&state->base,
7108                                                             connector);
7109                 if (IS_ERR(conn_state)) {
7110                         ret = PTR_ERR(conn_state);
7111                         break;
7112                 }
7113
7114                 crtc = to_intel_crtc(conn_state->crtc);
7115
7116                 if (!crtc)
7117                         continue;
7118
7119                 crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
7120                 crtc_state->uapi.mode_changed = true;
7121
7122                 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7123                 if (ret)
7124                         break;
7125         }
7126         drm_connector_list_iter_end(&conn_iter);
7127
7128         return ret;
7129 }
7130
7131 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
7132 {
7133         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7134         struct intel_crtc *crtc;
7135
7136         if (transcoders == 0)
7137                 return 0;
7138
7139         for_each_intel_crtc(&dev_priv->drm, crtc) {
7140                 struct intel_crtc_state *crtc_state;
7141                 int ret;
7142
7143                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
7144                 if (IS_ERR(crtc_state))
7145                         return PTR_ERR(crtc_state);
7146
7147                 if (!crtc_state->hw.enable)
7148                         continue;
7149
7150                 if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
7151                         continue;
7152
7153                 crtc_state->uapi.mode_changed = true;
7154
7155                 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
7156                 if (ret)
7157                         return ret;
7158
7159                 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7160                 if (ret)
7161                         return ret;
7162
7163                 transcoders &= ~BIT(crtc_state->cpu_transcoder);
7164         }
7165
7166         drm_WARN_ON(&dev_priv->drm, transcoders != 0);
7167
7168         return 0;
7169 }
7170
7171 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
7172                                       struct drm_connector *connector)
7173 {
7174         const struct drm_connector_state *old_conn_state =
7175                 drm_atomic_get_old_connector_state(&state->base, connector);
7176         const struct intel_crtc_state *old_crtc_state;
7177         struct intel_crtc *crtc;
7178         u8 transcoders;
7179
7180         crtc = to_intel_crtc(old_conn_state->crtc);
7181         if (!crtc)
7182                 return 0;
7183
7184         old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
7185
7186         if (!old_crtc_state->hw.active)
7187                 return 0;
7188
7189         transcoders = old_crtc_state->sync_mode_slaves_mask;
7190         if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
7191                 transcoders |= BIT(old_crtc_state->master_transcoder);
7192
7193         return intel_modeset_affected_transcoders(state,
7194                                                   transcoders);
7195 }
7196
7197 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
7198                                            struct drm_atomic_state *_state)
7199 {
7200         struct drm_i915_private *dev_priv = to_i915(conn->dev);
7201         struct intel_atomic_state *state = to_intel_atomic_state(_state);
7202         int ret;
7203
7204         ret = intel_digital_connector_atomic_check(conn, &state->base);
7205         if (ret)
7206                 return ret;
7207
7208         /*
7209          * We don't enable port sync on BDW due to missing w/as and
7210          * due to not having adjusted the modeset sequence appropriately.
7211          */
7212         if (INTEL_GEN(dev_priv) < 9)
7213                 return 0;
7214
7215         if (!intel_connector_needs_modeset(state, conn))
7216                 return 0;
7217
7218         if (conn->has_tile) {
7219                 ret = intel_modeset_tile_group(state, conn->tile_group->id);
7220                 if (ret)
7221                         return ret;
7222         }
7223
7224         return intel_modeset_synced_crtcs(state, conn);
7225 }
7226
7227 static const struct drm_connector_funcs intel_dp_connector_funcs = {
7228         .force = intel_dp_force,
7229         .fill_modes = drm_helper_probe_single_connector_modes,
7230         .atomic_get_property = intel_digital_connector_atomic_get_property,
7231         .atomic_set_property = intel_digital_connector_atomic_set_property,
7232         .late_register = intel_dp_connector_register,
7233         .early_unregister = intel_dp_connector_unregister,
7234         .destroy = intel_connector_destroy,
7235         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
7236         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
7237 };
7238
7239 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
7240         .detect_ctx = intel_dp_detect,
7241         .get_modes = intel_dp_get_modes,
7242         .mode_valid = intel_dp_mode_valid,
7243         .atomic_check = intel_dp_connector_atomic_check,
7244 };
7245
7246 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
7247         .reset = intel_dp_encoder_reset,
7248         .destroy = intel_dp_encoder_destroy,
7249 };
7250
7251 static bool intel_edp_have_power(struct intel_dp *intel_dp)
7252 {
7253         intel_wakeref_t wakeref;
7254         bool have_power = false;
7255
7256         with_pps_lock(intel_dp, wakeref) {
7257                 have_power = edp_have_panel_power(intel_dp) &&
7258                                                   edp_have_panel_vdd(intel_dp);
7259         }
7260
7261         return have_power;
7262 }
7263
7264 enum irqreturn
7265 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
7266 {
7267         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
7268         struct intel_dp *intel_dp = &intel_dig_port->dp;
7269
7270         if (intel_dig_port->base.type == INTEL_OUTPUT_EDP &&
7271             (long_hpd || !intel_edp_have_power(intel_dp))) {
7272                 /*
7273                  * vdd off can generate a long/short pulse on eDP which
7274                  * would require vdd on to handle it, and thus we
7275                  * would end up in an endless cycle of
7276                  * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
7277                  */
7278                 drm_dbg_kms(&i915->drm,
7279                             "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
7280                             long_hpd ? "long" : "short",
7281                             intel_dig_port->base.base.base.id,
7282                             intel_dig_port->base.base.name);
7283                 return IRQ_HANDLED;
7284         }
7285
7286         drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
7287                     intel_dig_port->base.base.base.id,
7288                     intel_dig_port->base.base.name,
7289                     long_hpd ? "long" : "short");
7290
7291         if (long_hpd) {
7292                 intel_dp->reset_link_params = true;
7293                 return IRQ_NONE;
7294         }
7295
7296         if (intel_dp->is_mst) {
7297                 switch (intel_dp_check_mst_status(intel_dp)) {
7298                 case -EINVAL:
7299                         /*
7300                          * If we were in MST mode, and device is not
7301                          * there, get out of MST mode
7302                          */
7303                         drm_dbg_kms(&i915->drm,
7304                                     "MST device may have disappeared %d vs %d\n",
7305                                     intel_dp->is_mst,
7306                                     intel_dp->mst_mgr.mst_state);
7307                         intel_dp->is_mst = false;
7308                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7309                                                         intel_dp->is_mst);
7310
7311                         return IRQ_NONE;
7312                 case 1:
7313                         return IRQ_NONE;
7314                 default:
7315                         break;
7316                 }
7317         }
7318
7319         if (!intel_dp->is_mst) {
7320                 bool handled;
7321
7322                 handled = intel_dp_short_pulse(intel_dp);
7323
7324                 if (!handled)
7325                         return IRQ_NONE;
7326         }
7327
7328         return IRQ_HANDLED;
7329 }
7330
7331 /* check the VBT to see whether the eDP is on another port */
7332 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
7333 {
7334         /*
7335          * eDP not supported on g4x. so bail out early just
7336          * for a bit extra safety in case the VBT is bonkers.
7337          */
7338         if (INTEL_GEN(dev_priv) < 5)
7339                 return false;
7340
7341         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
7342                 return true;
7343
7344         return intel_bios_is_port_edp(dev_priv, port);
7345 }
7346
7347 static void
7348 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
7349 {
7350         struct drm_i915_private *dev_priv = to_i915(connector->dev);
7351         enum port port = dp_to_dig_port(intel_dp)->base.port;
7352
7353         if (!IS_G4X(dev_priv) && port != PORT_A)
7354                 intel_attach_force_audio_property(connector);
7355
7356         intel_attach_broadcast_rgb_property(connector);
7357         if (HAS_GMCH(dev_priv))
7358                 drm_connector_attach_max_bpc_property(connector, 6, 10);
7359         else if (INTEL_GEN(dev_priv) >= 5)
7360                 drm_connector_attach_max_bpc_property(connector, 6, 12);
7361
7362         intel_attach_colorspace_property(connector);
7363
7364         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
7365                 drm_object_attach_property(&connector->base,
7366                                            connector->dev->mode_config.hdr_output_metadata_property,
7367                                            0);
7368
7369         if (intel_dp_is_edp(intel_dp)) {
7370                 u32 allowed_scalers;
7371
7372                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
7373                 if (!HAS_GMCH(dev_priv))
7374                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
7375
7376                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
7377
7378                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
7379
7380         }
7381 }
7382
7383 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
7384 {
7385         intel_dp->panel_power_off_time = ktime_get_boottime();
7386         intel_dp->last_power_on = jiffies;
7387         intel_dp->last_backlight_off = jiffies;
7388 }
7389
7390 static void
7391 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
7392 {
7393         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7394         u32 pp_on, pp_off, pp_ctl;
7395         struct pps_registers regs;
7396
7397         intel_pps_get_registers(intel_dp, &regs);
7398
7399         pp_ctl = ilk_get_pp_control(intel_dp);
7400
7401         /* Ensure PPS is unlocked */
7402         if (!HAS_DDI(dev_priv))
7403                 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7404
7405         pp_on = intel_de_read(dev_priv, regs.pp_on);
7406         pp_off = intel_de_read(dev_priv, regs.pp_off);
7407
7408         /* Pull timing values out of registers */
7409         seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
7410         seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
7411         seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
7412         seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
7413
7414         if (i915_mmio_reg_valid(regs.pp_div)) {
7415                 u32 pp_div;
7416
7417                 pp_div = intel_de_read(dev_priv, regs.pp_div);
7418
7419                 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
7420         } else {
7421                 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
7422         }
7423 }
7424
7425 static void
7426 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
7427 {
7428         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
7429                       state_name,
7430                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
7431 }
7432
7433 static void
7434 intel_pps_verify_state(struct intel_dp *intel_dp)
7435 {
7436         struct edp_power_seq hw;
7437         struct edp_power_seq *sw = &intel_dp->pps_delays;
7438
7439         intel_pps_readout_hw_state(intel_dp, &hw);
7440
7441         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
7442             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
7443                 DRM_ERROR("PPS state mismatch\n");
7444                 intel_pps_dump_state("sw", sw);
7445                 intel_pps_dump_state("hw", &hw);
7446         }
7447 }
7448
7449 static void
7450 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7451 {
7452         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7453         struct edp_power_seq cur, vbt, spec,
7454                 *final = &intel_dp->pps_delays;
7455
7456         lockdep_assert_held(&dev_priv->pps_mutex);
7457
7458         /* already initialized? */
7459         if (final->t11_t12 != 0)
7460                 return;
7461
7462         intel_pps_readout_hw_state(intel_dp, &cur);
7463
7464         intel_pps_dump_state("cur", &cur);
7465
7466         vbt = dev_priv->vbt.edp.pps;
7467         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
7468          * of 500ms appears to be too short. Ocassionally the panel
7469          * just fails to power back on. Increasing the delay to 800ms
7470          * seems sufficient to avoid this problem.
7471          */
7472         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7473                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7474                 drm_dbg_kms(&dev_priv->drm,
7475                             "Increasing T12 panel delay as per the quirk to %d\n",
7476                             vbt.t11_t12);
7477         }
7478         /* T11_T12 delay is special and actually in units of 100ms, but zero
7479          * based in the hw (so we need to add 100 ms). But the sw vbt
7480          * table multiplies it with 1000 to make it in units of 100usec,
7481          * too. */
7482         vbt.t11_t12 += 100 * 10;
7483
7484         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7485          * our hw here, which are all in 100usec. */
7486         spec.t1_t3 = 210 * 10;
7487         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7488         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7489         spec.t10 = 500 * 10;
7490         /* This one is special and actually in units of 100ms, but zero
7491          * based in the hw (so we need to add 100 ms). But the sw vbt
7492          * table multiplies it with 1000 to make it in units of 100usec,
7493          * too. */
7494         spec.t11_t12 = (510 + 100) * 10;
7495
7496         intel_pps_dump_state("vbt", &vbt);
7497
7498         /* Use the max of the register settings and vbt. If both are
7499          * unset, fall back to the spec limits. */
7500 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
7501                                        spec.field : \
7502                                        max(cur.field, vbt.field))
7503         assign_final(t1_t3);
7504         assign_final(t8);
7505         assign_final(t9);
7506         assign_final(t10);
7507         assign_final(t11_t12);
7508 #undef assign_final
7509
7510 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
7511         intel_dp->panel_power_up_delay = get_delay(t1_t3);
7512         intel_dp->backlight_on_delay = get_delay(t8);
7513         intel_dp->backlight_off_delay = get_delay(t9);
7514         intel_dp->panel_power_down_delay = get_delay(t10);
7515         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7516 #undef get_delay
7517
7518         drm_dbg_kms(&dev_priv->drm,
7519                     "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7520                     intel_dp->panel_power_up_delay,
7521                     intel_dp->panel_power_down_delay,
7522                     intel_dp->panel_power_cycle_delay);
7523
7524         drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7525                     intel_dp->backlight_on_delay,
7526                     intel_dp->backlight_off_delay);
7527
7528         /*
7529          * We override the HW backlight delays to 1 because we do manual waits
7530          * on them. For T8, even BSpec recommends doing it. For T9, if we
7531          * don't do this, we'll end up waiting for the backlight off delay
7532          * twice: once when we do the manual sleep, and once when we disable
7533          * the panel and wait for the PP_STATUS bit to become zero.
7534          */
7535         final->t8 = 1;
7536         final->t9 = 1;
7537
7538         /*
7539          * HW has only a 100msec granularity for t11_t12 so round it up
7540          * accordingly.
7541          */
7542         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7543 }
7544
7545 static void
7546 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7547                                               bool force_disable_vdd)
7548 {
7549         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7550         u32 pp_on, pp_off, port_sel = 0;
7551         int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7552         struct pps_registers regs;
7553         enum port port = dp_to_dig_port(intel_dp)->base.port;
7554         const struct edp_power_seq *seq = &intel_dp->pps_delays;
7555
7556         lockdep_assert_held(&dev_priv->pps_mutex);
7557
7558         intel_pps_get_registers(intel_dp, &regs);
7559
7560         /*
7561          * On some VLV machines the BIOS can leave the VDD
7562          * enabled even on power sequencers which aren't
7563          * hooked up to any port. This would mess up the
7564          * power domain tracking the first time we pick
7565          * one of these power sequencers for use since
7566          * edp_panel_vdd_on() would notice that the VDD was
7567          * already on and therefore wouldn't grab the power
7568          * domain reference. Disable VDD first to avoid this.
7569          * This also avoids spuriously turning the VDD on as
7570          * soon as the new power sequencer gets initialized.
7571          */
7572         if (force_disable_vdd) {
7573                 u32 pp = ilk_get_pp_control(intel_dp);
7574
7575                 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7576                          "Panel power already on\n");
7577
7578                 if (pp & EDP_FORCE_VDD)
7579                         drm_dbg_kms(&dev_priv->drm,
7580                                     "VDD already on, disabling first\n");
7581
7582                 pp &= ~EDP_FORCE_VDD;
7583
7584                 intel_de_write(dev_priv, regs.pp_ctrl, pp);
7585         }
7586
7587         pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7588                 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7589         pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7590                 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7591
7592         /* Haswell doesn't have any port selection bits for the panel
7593          * power sequencer any more. */
7594         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7595                 port_sel = PANEL_PORT_SELECT_VLV(port);
7596         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7597                 switch (port) {
7598                 case PORT_A:
7599                         port_sel = PANEL_PORT_SELECT_DPA;
7600                         break;
7601                 case PORT_C:
7602                         port_sel = PANEL_PORT_SELECT_DPC;
7603                         break;
7604                 case PORT_D:
7605                         port_sel = PANEL_PORT_SELECT_DPD;
7606                         break;
7607                 default:
7608                         MISSING_CASE(port);
7609                         break;
7610                 }
7611         }
7612
7613         pp_on |= port_sel;
7614
7615         intel_de_write(dev_priv, regs.pp_on, pp_on);
7616         intel_de_write(dev_priv, regs.pp_off, pp_off);
7617
7618         /*
7619          * Compute the divisor for the pp clock, simply match the Bspec formula.
7620          */
7621         if (i915_mmio_reg_valid(regs.pp_div)) {
7622                 intel_de_write(dev_priv, regs.pp_div,
7623                                REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7624         } else {
7625                 u32 pp_ctl;
7626
7627                 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7628                 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7629                 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7630                 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7631         }
7632
7633         drm_dbg_kms(&dev_priv->drm,
7634                     "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7635                     intel_de_read(dev_priv, regs.pp_on),
7636                     intel_de_read(dev_priv, regs.pp_off),
7637                     i915_mmio_reg_valid(regs.pp_div) ?
7638                     intel_de_read(dev_priv, regs.pp_div) :
7639                     (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7640 }
7641
7642 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7643 {
7644         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7645
7646         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7647                 vlv_initial_power_sequencer_setup(intel_dp);
7648         } else {
7649                 intel_dp_init_panel_power_sequencer(intel_dp);
7650                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7651         }
7652 }
7653
7654 /**
7655  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7656  * @dev_priv: i915 device
7657  * @crtc_state: a pointer to the active intel_crtc_state
7658  * @refresh_rate: RR to be programmed
7659  *
7660  * This function gets called when refresh rate (RR) has to be changed from
7661  * one frequency to another. Switches can be between high and low RR
7662  * supported by the panel or to any other RR based on media playback (in
7663  * this case, RR value needs to be passed from user space).
7664  *
7665  * The caller of this function needs to take a lock on dev_priv->drrs.
7666  */
7667 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7668                                     const struct intel_crtc_state *crtc_state,
7669                                     int refresh_rate)
7670 {
7671         struct intel_dp *intel_dp = dev_priv->drrs.dp;
7672         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7673         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7674
7675         if (refresh_rate <= 0) {
7676                 drm_dbg_kms(&dev_priv->drm,
7677                             "Refresh rate should be positive non-zero.\n");
7678                 return;
7679         }
7680
7681         if (intel_dp == NULL) {
7682                 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7683                 return;
7684         }
7685
7686         if (!intel_crtc) {
7687                 drm_dbg_kms(&dev_priv->drm,
7688                             "DRRS: intel_crtc not initialized\n");
7689                 return;
7690         }
7691
7692         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7693                 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7694                 return;
7695         }
7696
7697         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
7698                         refresh_rate)
7699                 index = DRRS_LOW_RR;
7700
7701         if (index == dev_priv->drrs.refresh_rate_type) {
7702                 drm_dbg_kms(&dev_priv->drm,
7703                             "DRRS requested for previously set RR...ignoring\n");
7704                 return;
7705         }
7706
7707         if (!crtc_state->hw.active) {
7708                 drm_dbg_kms(&dev_priv->drm,
7709                             "eDP encoder disabled. CRTC not Active\n");
7710                 return;
7711         }
7712
7713         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7714                 switch (index) {
7715                 case DRRS_HIGH_RR:
7716                         intel_dp_set_m_n(crtc_state, M1_N1);
7717                         break;
7718                 case DRRS_LOW_RR:
7719                         intel_dp_set_m_n(crtc_state, M2_N2);
7720                         break;
7721                 case DRRS_MAX_RR:
7722                 default:
7723                         drm_err(&dev_priv->drm,
7724                                 "Unsupported refreshrate type\n");
7725                 }
7726         } else if (INTEL_GEN(dev_priv) > 6) {
7727                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7728                 u32 val;
7729
7730                 val = intel_de_read(dev_priv, reg);
7731                 if (index > DRRS_HIGH_RR) {
7732                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7733                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7734                         else
7735                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
7736                 } else {
7737                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7738                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7739                         else
7740                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7741                 }
7742                 intel_de_write(dev_priv, reg, val);
7743         }
7744
7745         dev_priv->drrs.refresh_rate_type = index;
7746
7747         drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7748                     refresh_rate);
7749 }
7750
7751 /**
7752  * intel_edp_drrs_enable - init drrs struct if supported
7753  * @intel_dp: DP struct
7754  * @crtc_state: A pointer to the active crtc state.
7755  *
7756  * Initializes frontbuffer_bits and drrs.dp
7757  */
7758 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7759                            const struct intel_crtc_state *crtc_state)
7760 {
7761         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7762
7763         if (!crtc_state->has_drrs) {
7764                 drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
7765                 return;
7766         }
7767
7768         if (dev_priv->psr.enabled) {
7769                 drm_dbg_kms(&dev_priv->drm,
7770                             "PSR enabled. Not enabling DRRS.\n");
7771                 return;
7772         }
7773
7774         mutex_lock(&dev_priv->drrs.mutex);
7775         if (dev_priv->drrs.dp) {
7776                 drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
7777                 goto unlock;
7778         }
7779
7780         dev_priv->drrs.busy_frontbuffer_bits = 0;
7781
7782         dev_priv->drrs.dp = intel_dp;
7783
7784 unlock:
7785         mutex_unlock(&dev_priv->drrs.mutex);
7786 }
7787
7788 /**
7789  * intel_edp_drrs_disable - Disable DRRS
7790  * @intel_dp: DP struct
7791  * @old_crtc_state: Pointer to old crtc_state.
7792  *
7793  */
7794 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7795                             const struct intel_crtc_state *old_crtc_state)
7796 {
7797         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7798
7799         if (!old_crtc_state->has_drrs)
7800                 return;
7801
7802         mutex_lock(&dev_priv->drrs.mutex);
7803         if (!dev_priv->drrs.dp) {
7804                 mutex_unlock(&dev_priv->drrs.mutex);
7805                 return;
7806         }
7807
7808         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7809                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7810                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7811
7812         dev_priv->drrs.dp = NULL;
7813         mutex_unlock(&dev_priv->drrs.mutex);
7814
7815         cancel_delayed_work_sync(&dev_priv->drrs.work);
7816 }
7817
7818 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7819 {
7820         struct drm_i915_private *dev_priv =
7821                 container_of(work, typeof(*dev_priv), drrs.work.work);
7822         struct intel_dp *intel_dp;
7823
7824         mutex_lock(&dev_priv->drrs.mutex);
7825
7826         intel_dp = dev_priv->drrs.dp;
7827
7828         if (!intel_dp)
7829                 goto unlock;
7830
7831         /*
7832          * The delayed work can race with an invalidate hence we need to
7833          * recheck.
7834          */
7835
7836         if (dev_priv->drrs.busy_frontbuffer_bits)
7837                 goto unlock;
7838
7839         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7840                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7841
7842                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7843                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7844         }
7845
7846 unlock:
7847         mutex_unlock(&dev_priv->drrs.mutex);
7848 }
7849
7850 /**
7851  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7852  * @dev_priv: i915 device
7853  * @frontbuffer_bits: frontbuffer plane tracking bits
7854  *
7855  * This function gets called everytime rendering on the given planes start.
7856  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7857  *
7858  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7859  */
7860 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7861                                unsigned int frontbuffer_bits)
7862 {
7863         struct drm_crtc *crtc;
7864         enum pipe pipe;
7865
7866         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7867                 return;
7868
7869         cancel_delayed_work(&dev_priv->drrs.work);
7870
7871         mutex_lock(&dev_priv->drrs.mutex);
7872         if (!dev_priv->drrs.dp) {
7873                 mutex_unlock(&dev_priv->drrs.mutex);
7874                 return;
7875         }
7876
7877         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7878         pipe = to_intel_crtc(crtc)->pipe;
7879
7880         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7881         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7882
7883         /* invalidate means busy screen hence upclock */
7884         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7885                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7886                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7887
7888         mutex_unlock(&dev_priv->drrs.mutex);
7889 }
7890
7891 /**
7892  * intel_edp_drrs_flush - Restart Idleness DRRS
7893  * @dev_priv: i915 device
7894  * @frontbuffer_bits: frontbuffer plane tracking bits
7895  *
7896  * This function gets called every time rendering on the given planes has
7897  * completed or flip on a crtc is completed. So DRRS should be upclocked
7898  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7899  * if no other planes are dirty.
7900  *
7901  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7902  */
7903 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7904                           unsigned int frontbuffer_bits)
7905 {
7906         struct drm_crtc *crtc;
7907         enum pipe pipe;
7908
7909         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7910                 return;
7911
7912         cancel_delayed_work(&dev_priv->drrs.work);
7913
7914         mutex_lock(&dev_priv->drrs.mutex);
7915         if (!dev_priv->drrs.dp) {
7916                 mutex_unlock(&dev_priv->drrs.mutex);
7917                 return;
7918         }
7919
7920         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7921         pipe = to_intel_crtc(crtc)->pipe;
7922
7923         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7924         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7925
7926         /* flush means busy screen hence upclock */
7927         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7928                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7929                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7930
7931         /*
7932          * flush also means no more activity hence schedule downclock, if all
7933          * other fbs are quiescent too
7934          */
7935         if (!dev_priv->drrs.busy_frontbuffer_bits)
7936                 schedule_delayed_work(&dev_priv->drrs.work,
7937                                 msecs_to_jiffies(1000));
7938         mutex_unlock(&dev_priv->drrs.mutex);
7939 }
7940
7941 /**
7942  * DOC: Display Refresh Rate Switching (DRRS)
7943  *
7944  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7945  * which enables swtching between low and high refresh rates,
7946  * dynamically, based on the usage scenario. This feature is applicable
7947  * for internal panels.
7948  *
7949  * Indication that the panel supports DRRS is given by the panel EDID, which
7950  * would list multiple refresh rates for one resolution.
7951  *
7952  * DRRS is of 2 types - static and seamless.
7953  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7954  * (may appear as a blink on screen) and is used in dock-undock scenario.
7955  * Seamless DRRS involves changing RR without any visual effect to the user
7956  * and can be used during normal system usage. This is done by programming
7957  * certain registers.
7958  *
7959  * Support for static/seamless DRRS may be indicated in the VBT based on
7960  * inputs from the panel spec.
7961  *
7962  * DRRS saves power by switching to low RR based on usage scenarios.
7963  *
7964  * The implementation is based on frontbuffer tracking implementation.  When
7965  * there is a disturbance on the screen triggered by user activity or a periodic
7966  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7967  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7968  * made.
7969  *
7970  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7971  * and intel_edp_drrs_flush() are called.
7972  *
7973  * DRRS can be further extended to support other internal panels and also
7974  * the scenario of video playback wherein RR is set based on the rate
7975  * requested by userspace.
7976  */
7977
7978 /**
7979  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7980  * @connector: eDP connector
7981  * @fixed_mode: preferred mode of panel
7982  *
7983  * This function is  called only once at driver load to initialize basic
7984  * DRRS stuff.
7985  *
7986  * Returns:
7987  * Downclock mode if panel supports it, else return NULL.
7988  * DRRS support is determined by the presence of downclock mode (apart
7989  * from VBT setting).
7990  */
7991 static struct drm_display_mode *
7992 intel_dp_drrs_init(struct intel_connector *connector,
7993                    struct drm_display_mode *fixed_mode)
7994 {
7995         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7996         struct drm_display_mode *downclock_mode = NULL;
7997
7998         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7999         mutex_init(&dev_priv->drrs.mutex);
8000
8001         if (INTEL_GEN(dev_priv) <= 6) {
8002                 drm_dbg_kms(&dev_priv->drm,
8003                             "DRRS supported for Gen7 and above\n");
8004                 return NULL;
8005         }
8006
8007         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
8008                 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
8009                 return NULL;
8010         }
8011
8012         downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
8013         if (!downclock_mode) {
8014                 drm_dbg_kms(&dev_priv->drm,
8015                             "Downclock mode is not found. DRRS not supported\n");
8016                 return NULL;
8017         }
8018
8019         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
8020
8021         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
8022         drm_dbg_kms(&dev_priv->drm,
8023                     "seamless DRRS supported for eDP panel.\n");
8024         return downclock_mode;
8025 }
8026
8027 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
8028                                      struct intel_connector *intel_connector)
8029 {
8030         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
8031         struct drm_device *dev = &dev_priv->drm;
8032         struct drm_connector *connector = &intel_connector->base;
8033         struct drm_display_mode *fixed_mode = NULL;
8034         struct drm_display_mode *downclock_mode = NULL;
8035         bool has_dpcd;
8036         enum pipe pipe = INVALID_PIPE;
8037         intel_wakeref_t wakeref;
8038         struct edid *edid;
8039
8040         if (!intel_dp_is_edp(intel_dp))
8041                 return true;
8042
8043         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
8044
8045         /*
8046          * On IBX/CPT we may get here with LVDS already registered. Since the
8047          * driver uses the only internal power sequencer available for both
8048          * eDP and LVDS bail out early in this case to prevent interfering
8049          * with an already powered-on LVDS power sequencer.
8050          */
8051         if (intel_get_lvds_encoder(dev_priv)) {
8052                 drm_WARN_ON(dev,
8053                             !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
8054                 drm_info(&dev_priv->drm,
8055                          "LVDS was detected, not registering eDP\n");
8056
8057                 return false;
8058         }
8059
8060         with_pps_lock(intel_dp, wakeref) {
8061                 intel_dp_init_panel_power_timestamps(intel_dp);
8062                 intel_dp_pps_init(intel_dp);
8063                 intel_edp_panel_vdd_sanitize(intel_dp);
8064         }
8065
8066         /* Cache DPCD and EDID for edp. */
8067         has_dpcd = intel_edp_init_dpcd(intel_dp);
8068
8069         if (!has_dpcd) {
8070                 /* if this fails, presume the device is a ghost */
8071                 drm_info(&dev_priv->drm,
8072                          "failed to retrieve link info, disabling eDP\n");
8073                 goto out_vdd_off;
8074         }
8075
8076         mutex_lock(&dev->mode_config.mutex);
8077         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
8078         if (edid) {
8079                 if (drm_add_edid_modes(connector, edid)) {
8080                         drm_connector_update_edid_property(connector, edid);
8081                         intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
8082                 } else {
8083                         kfree(edid);
8084                         edid = ERR_PTR(-EINVAL);
8085                 }
8086         } else {
8087                 edid = ERR_PTR(-ENOENT);
8088         }
8089         intel_connector->edid = edid;
8090
8091         fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
8092         if (fixed_mode)
8093                 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
8094
8095         /* fallback to VBT if available for eDP */
8096         if (!fixed_mode)
8097                 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
8098         mutex_unlock(&dev->mode_config.mutex);
8099
8100         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8101                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
8102                 register_reboot_notifier(&intel_dp->edp_notifier);
8103
8104                 /*
8105                  * Figure out the current pipe for the initial backlight setup.
8106                  * If the current pipe isn't valid, try the PPS pipe, and if that
8107                  * fails just assume pipe A.
8108                  */
8109                 pipe = vlv_active_pipe(intel_dp);
8110
8111                 if (pipe != PIPE_A && pipe != PIPE_B)
8112                         pipe = intel_dp->pps_pipe;
8113
8114                 if (pipe != PIPE_A && pipe != PIPE_B)
8115                         pipe = PIPE_A;
8116
8117                 drm_dbg_kms(&dev_priv->drm,
8118                             "using pipe %c for initial backlight setup\n",
8119                             pipe_name(pipe));
8120         }
8121
8122         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
8123         intel_connector->panel.backlight.power = intel_edp_backlight_power;
8124         intel_panel_setup_backlight(connector, pipe);
8125
8126         if (fixed_mode) {
8127                 drm_connector_set_panel_orientation_with_quirk(connector,
8128                                 dev_priv->vbt.orientation,
8129                                 fixed_mode->hdisplay, fixed_mode->vdisplay);
8130         }
8131
8132         return true;
8133
8134 out_vdd_off:
8135         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
8136         /*
8137          * vdd might still be enabled do to the delayed vdd off.
8138          * Make sure vdd is actually turned off here.
8139          */
8140         with_pps_lock(intel_dp, wakeref)
8141                 edp_panel_vdd_off_sync(intel_dp);
8142
8143         return false;
8144 }
8145
8146 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
8147 {
8148         struct intel_connector *intel_connector;
8149         struct drm_connector *connector;
8150
8151         intel_connector = container_of(work, typeof(*intel_connector),
8152                                        modeset_retry_work);
8153         connector = &intel_connector->base;
8154         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
8155                       connector->name);
8156
8157         /* Grab the locks before changing connector property*/
8158         mutex_lock(&connector->dev->mode_config.mutex);
8159         /* Set connector link status to BAD and send a Uevent to notify
8160          * userspace to do a modeset.
8161          */
8162         drm_connector_set_link_status_property(connector,
8163                                                DRM_MODE_LINK_STATUS_BAD);
8164         mutex_unlock(&connector->dev->mode_config.mutex);
8165         /* Send Hotplug uevent so userspace can reprobe */
8166         drm_kms_helper_hotplug_event(connector->dev);
8167 }
8168
8169 bool
8170 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
8171                         struct intel_connector *intel_connector)
8172 {
8173         struct drm_connector *connector = &intel_connector->base;
8174         struct intel_dp *intel_dp = &intel_dig_port->dp;
8175         struct intel_encoder *intel_encoder = &intel_dig_port->base;
8176         struct drm_device *dev = intel_encoder->base.dev;
8177         struct drm_i915_private *dev_priv = to_i915(dev);
8178         enum port port = intel_encoder->port;
8179         enum phy phy = intel_port_to_phy(dev_priv, port);
8180         int type;
8181
8182         /* Initialize the work for modeset in case of link train failure */
8183         INIT_WORK(&intel_connector->modeset_retry_work,
8184                   intel_dp_modeset_retry_work_fn);
8185
8186         if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
8187                      "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
8188                      intel_dig_port->max_lanes, intel_encoder->base.base.id,
8189                      intel_encoder->base.name))
8190                 return false;
8191
8192         intel_dp_set_source_rates(intel_dp);
8193
8194         intel_dp->reset_link_params = true;
8195         intel_dp->pps_pipe = INVALID_PIPE;
8196         intel_dp->active_pipe = INVALID_PIPE;
8197
8198         /* Preserve the current hw state. */
8199         intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
8200         intel_dp->attached_connector = intel_connector;
8201
8202         if (intel_dp_is_port_edp(dev_priv, port)) {
8203                 /*
8204                  * Currently we don't support eDP on TypeC ports, although in
8205                  * theory it could work on TypeC legacy ports.
8206                  */
8207                 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
8208                 type = DRM_MODE_CONNECTOR_eDP;
8209         } else {
8210                 type = DRM_MODE_CONNECTOR_DisplayPort;
8211         }
8212
8213         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
8214                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
8215
8216         /*
8217          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
8218          * for DP the encoder type can be set by the caller to
8219          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
8220          */
8221         if (type == DRM_MODE_CONNECTOR_eDP)
8222                 intel_encoder->type = INTEL_OUTPUT_EDP;
8223
8224         /* eDP only on port B and/or C on vlv/chv */
8225         if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
8226                               IS_CHERRYVIEW(dev_priv)) &&
8227                         intel_dp_is_edp(intel_dp) &&
8228                         port != PORT_B && port != PORT_C))
8229                 return false;
8230
8231         drm_dbg_kms(&dev_priv->drm,
8232                     "Adding %s connector on [ENCODER:%d:%s]\n",
8233                     type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
8234                     intel_encoder->base.base.id, intel_encoder->base.name);
8235
8236         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
8237         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
8238
8239         if (!HAS_GMCH(dev_priv))
8240                 connector->interlace_allowed = true;
8241         connector->doublescan_allowed = 0;
8242
8243         if (INTEL_GEN(dev_priv) >= 11)
8244                 connector->ycbcr_420_allowed = true;
8245
8246         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
8247         intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
8248
8249         intel_dp_aux_init(intel_dp);
8250
8251         intel_connector_attach_encoder(intel_connector, intel_encoder);
8252
8253         if (HAS_DDI(dev_priv))
8254                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
8255         else
8256                 intel_connector->get_hw_state = intel_connector_get_hw_state;
8257
8258         /* init MST on ports that can support it */
8259         intel_dp_mst_encoder_init(intel_dig_port,
8260                                   intel_connector->base.base.id);
8261
8262         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
8263                 intel_dp_aux_fini(intel_dp);
8264                 intel_dp_mst_encoder_cleanup(intel_dig_port);
8265                 goto fail;
8266         }
8267
8268         intel_dp_add_properties(intel_dp, connector);
8269
8270         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
8271                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
8272                 if (ret)
8273                         drm_dbg_kms(&dev_priv->drm,
8274                                     "HDCP init failed, skipping.\n");
8275         }
8276
8277         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
8278          * 0xd.  Failure to do so will result in spurious interrupts being
8279          * generated on the port when a cable is not attached.
8280          */
8281         if (IS_G45(dev_priv)) {
8282                 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
8283                 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
8284                                (temp & ~0xf) | 0xd);
8285         }
8286
8287         return true;
8288
8289 fail:
8290         drm_connector_cleanup(connector);
8291
8292         return false;
8293 }
8294
8295 bool intel_dp_init(struct drm_i915_private *dev_priv,
8296                    i915_reg_t output_reg,
8297                    enum port port)
8298 {
8299         struct intel_digital_port *intel_dig_port;
8300         struct intel_encoder *intel_encoder;
8301         struct drm_encoder *encoder;
8302         struct intel_connector *intel_connector;
8303
8304         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
8305         if (!intel_dig_port)
8306                 return false;
8307
8308         intel_connector = intel_connector_alloc();
8309         if (!intel_connector)
8310                 goto err_connector_alloc;
8311
8312         intel_encoder = &intel_dig_port->base;
8313         encoder = &intel_encoder->base;
8314
8315         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
8316                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
8317                              "DP %c", port_name(port)))
8318                 goto err_encoder_init;
8319
8320         intel_encoder->hotplug = intel_dp_hotplug;
8321         intel_encoder->compute_config = intel_dp_compute_config;
8322         intel_encoder->get_hw_state = intel_dp_get_hw_state;
8323         intel_encoder->get_config = intel_dp_get_config;
8324         intel_encoder->update_pipe = intel_panel_update_backlight;
8325         intel_encoder->suspend = intel_dp_encoder_suspend;
8326         if (IS_CHERRYVIEW(dev_priv)) {
8327                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
8328                 intel_encoder->pre_enable = chv_pre_enable_dp;
8329                 intel_encoder->enable = vlv_enable_dp;
8330                 intel_encoder->disable = vlv_disable_dp;
8331                 intel_encoder->post_disable = chv_post_disable_dp;
8332                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
8333         } else if (IS_VALLEYVIEW(dev_priv)) {
8334                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
8335                 intel_encoder->pre_enable = vlv_pre_enable_dp;
8336                 intel_encoder->enable = vlv_enable_dp;
8337                 intel_encoder->disable = vlv_disable_dp;
8338                 intel_encoder->post_disable = vlv_post_disable_dp;
8339         } else {
8340                 intel_encoder->pre_enable = g4x_pre_enable_dp;
8341                 intel_encoder->enable = g4x_enable_dp;
8342                 intel_encoder->disable = g4x_disable_dp;
8343                 intel_encoder->post_disable = g4x_post_disable_dp;
8344         }
8345
8346         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
8347             (HAS_PCH_CPT(dev_priv) && port != PORT_A))
8348                 intel_dig_port->dp.set_link_train = cpt_set_link_train;
8349         else
8350                 intel_dig_port->dp.set_link_train = g4x_set_link_train;
8351
8352         if (IS_CHERRYVIEW(dev_priv))
8353                 intel_dig_port->dp.set_signal_levels = chv_set_signal_levels;
8354         else if (IS_VALLEYVIEW(dev_priv))
8355                 intel_dig_port->dp.set_signal_levels = vlv_set_signal_levels;
8356         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
8357                 intel_dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels;
8358         else if (IS_GEN(dev_priv, 6) && port == PORT_A)
8359                 intel_dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels;
8360         else
8361                 intel_dig_port->dp.set_signal_levels = g4x_set_signal_levels;
8362
8363         intel_dig_port->dp.output_reg = output_reg;
8364         intel_dig_port->max_lanes = 4;
8365         intel_dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
8366         intel_dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
8367
8368         intel_encoder->type = INTEL_OUTPUT_DP;
8369         intel_encoder->power_domain = intel_port_to_power_domain(port);
8370         if (IS_CHERRYVIEW(dev_priv)) {
8371                 if (port == PORT_D)
8372                         intel_encoder->pipe_mask = BIT(PIPE_C);
8373                 else
8374                         intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
8375         } else {
8376                 intel_encoder->pipe_mask = ~0;
8377         }
8378         intel_encoder->cloneable = 0;
8379         intel_encoder->port = port;
8380
8381         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
8382
8383         if (HAS_GMCH(dev_priv)) {
8384                 if (IS_GM45(dev_priv))
8385                         intel_dig_port->connected = gm45_digital_port_connected;
8386                 else
8387                         intel_dig_port->connected = g4x_digital_port_connected;
8388         } else {
8389                 if (port == PORT_A)
8390                         intel_dig_port->connected = ilk_digital_port_connected;
8391                 else
8392                         intel_dig_port->connected = ibx_digital_port_connected;
8393         }
8394
8395         if (port != PORT_A)
8396                 intel_infoframe_init(intel_dig_port);
8397
8398         intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
8399         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
8400                 goto err_init_connector;
8401
8402         return true;
8403
8404 err_init_connector:
8405         drm_encoder_cleanup(encoder);
8406 err_encoder_init:
8407         kfree(intel_connector);
8408 err_connector_alloc:
8409         kfree(intel_dig_port);
8410         return false;
8411 }
8412
8413 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8414 {
8415         struct intel_encoder *encoder;
8416
8417         for_each_intel_encoder(&dev_priv->drm, encoder) {
8418                 struct intel_dp *intel_dp;
8419
8420                 if (encoder->type != INTEL_OUTPUT_DDI)
8421                         continue;
8422
8423                 intel_dp = enc_to_intel_dp(encoder);
8424
8425                 if (!intel_dp->can_mst)
8426                         continue;
8427
8428                 if (intel_dp->is_mst)
8429                         drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8430         }
8431 }
8432
8433 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8434 {
8435         struct intel_encoder *encoder;
8436
8437         for_each_intel_encoder(&dev_priv->drm, encoder) {
8438                 struct intel_dp *intel_dp;
8439                 int ret;
8440
8441                 if (encoder->type != INTEL_OUTPUT_DDI)
8442                         continue;
8443
8444                 intel_dp = enc_to_intel_dp(encoder);
8445
8446                 if (!intel_dp->can_mst)
8447                         continue;
8448
8449                 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8450                                                      true);
8451                 if (ret) {
8452                         intel_dp->is_mst = false;
8453                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8454                                                         false);
8455                 }
8456         }
8457 }