f5be953dda224e8008f0e1ae8c915e24694e75ce
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / display / intel_bios.c
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drm_dp_helper.h>
29
30 #include "display/intel_display.h"
31 #include "display/intel_display_types.h"
32 #include "display/intel_gmbus.h"
33
34 #include "i915_drv.h"
35
36 #define _INTEL_BIOS_PRIVATE
37 #include "intel_vbt_defs.h"
38
39 /**
40  * DOC: Video BIOS Table (VBT)
41  *
42  * The Video BIOS Table, or VBT, provides platform and board specific
43  * configuration information to the driver that is not discoverable or available
44  * through other means. The configuration is mostly related to display
45  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
46  * the PCI ROM.
47  *
48  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
49  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
50  * contain the actual configuration information. The VBT Header, and thus the
51  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
52  * BDB Header. The data blocks are concatenated after the BDB Header. The data
53  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
54  * data. (Block 53, the MIPI Sequence Block is an exception.)
55  *
56  * The driver parses the VBT during load. The relevant information is stored in
57  * driver private data for ease of use, and the actual VBT is not read after
58  * that.
59  */
60
61 /* Wrapper for VBT child device config */
62 struct intel_bios_encoder_data {
63         struct drm_i915_private *i915;
64
65         struct child_device_config child;
66         struct dsc_compression_parameters_entry *dsc;
67         struct list_head node;
68 };
69
70 #define SLAVE_ADDR1     0x70
71 #define SLAVE_ADDR2     0x72
72
73 /* Get BDB block size given a pointer to Block ID. */
74 static u32 _get_blocksize(const u8 *block_base)
75 {
76         /* The MIPI Sequence Block v3+ has a separate size field. */
77         if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
78                 return *((const u32 *)(block_base + 4));
79         else
80                 return *((const u16 *)(block_base + 1));
81 }
82
83 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
84 static u32 get_blocksize(const void *block_data)
85 {
86         return _get_blocksize(block_data - 3);
87 }
88
89 static const void *
90 find_section(const void *_bdb, enum bdb_block_id section_id)
91 {
92         const struct bdb_header *bdb = _bdb;
93         const u8 *base = _bdb;
94         int index = 0;
95         u32 total, current_size;
96         enum bdb_block_id current_id;
97
98         /* skip to first section */
99         index += bdb->header_size;
100         total = bdb->bdb_size;
101
102         /* walk the sections looking for section_id */
103         while (index + 3 < total) {
104                 current_id = *(base + index);
105                 current_size = _get_blocksize(base + index);
106                 index += 3;
107
108                 if (index + current_size > total)
109                         return NULL;
110
111                 if (current_id == section_id)
112                         return base + index;
113
114                 index += current_size;
115         }
116
117         return NULL;
118 }
119
120 static void
121 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
122                         const struct lvds_dvo_timing *dvo_timing)
123 {
124         panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
125                 dvo_timing->hactive_lo;
126         panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
127                 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
128         panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
129                 ((dvo_timing->hsync_pulse_width_hi << 8) |
130                         dvo_timing->hsync_pulse_width_lo);
131         panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
132                 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
133
134         panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
135                 dvo_timing->vactive_lo;
136         panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
137                 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
138         panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
139                 ((dvo_timing->vsync_pulse_width_hi << 4) |
140                         dvo_timing->vsync_pulse_width_lo);
141         panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
142                 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
143         panel_fixed_mode->clock = dvo_timing->clock * 10;
144         panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
145
146         if (dvo_timing->hsync_positive)
147                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
148         else
149                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
150
151         if (dvo_timing->vsync_positive)
152                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
153         else
154                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
155
156         panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
157                 dvo_timing->himage_lo;
158         panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
159                 dvo_timing->vimage_lo;
160
161         /* Some VBTs have bogus h/vtotal values */
162         if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
163                 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
164         if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
165                 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
166
167         drm_mode_set_name(panel_fixed_mode);
168 }
169
170 static const struct lvds_dvo_timing *
171 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
172                     const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
173                     int index)
174 {
175         /*
176          * the size of fp_timing varies on the different platform.
177          * So calculate the DVO timing relative offset in LVDS data
178          * entry to get the DVO timing entry
179          */
180
181         int lfp_data_size =
182                 lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
183                 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
184         int dvo_timing_offset =
185                 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
186                 lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
187         char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
188
189         return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
190 }
191
192 /* get lvds_fp_timing entry
193  * this function may return NULL if the corresponding entry is invalid
194  */
195 static const struct lvds_fp_timing *
196 get_lvds_fp_timing(const struct bdb_header *bdb,
197                    const struct bdb_lvds_lfp_data *data,
198                    const struct bdb_lvds_lfp_data_ptrs *ptrs,
199                    int index)
200 {
201         size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
202         u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
203         size_t ofs;
204
205         if (index >= ARRAY_SIZE(ptrs->ptr))
206                 return NULL;
207         ofs = ptrs->ptr[index].fp_timing_offset;
208         if (ofs < data_ofs ||
209             ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
210                 return NULL;
211         return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
212 }
213
214 /* Parse general panel options */
215 static void
216 parse_panel_options(struct drm_i915_private *i915,
217                     const struct bdb_header *bdb)
218 {
219         const struct bdb_lvds_options *lvds_options;
220         int panel_type;
221         int drrs_mode;
222         int ret;
223
224         lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
225         if (!lvds_options)
226                 return;
227
228         i915->vbt.lvds_dither = lvds_options->pixel_dither;
229
230         ret = intel_opregion_get_panel_type(i915);
231         if (ret >= 0) {
232                 drm_WARN_ON(&i915->drm, ret > 0xf);
233                 panel_type = ret;
234                 drm_dbg_kms(&i915->drm, "Panel type: %d (OpRegion)\n",
235                             panel_type);
236         } else {
237                 if (lvds_options->panel_type > 0xf) {
238                         drm_dbg_kms(&i915->drm,
239                                     "Invalid VBT panel type 0x%x\n",
240                                     lvds_options->panel_type);
241                         return;
242                 }
243                 panel_type = lvds_options->panel_type;
244                 drm_dbg_kms(&i915->drm, "Panel type: %d (VBT)\n",
245                             panel_type);
246         }
247
248         i915->vbt.panel_type = panel_type;
249
250         drrs_mode = (lvds_options->dps_panel_type_bits
251                                 >> (panel_type * 2)) & MODE_MASK;
252         /*
253          * VBT has static DRRS = 0 and seamless DRRS = 2.
254          * The below piece of code is required to adjust vbt.drrs_type
255          * to match the enum drrs_support_type.
256          */
257         switch (drrs_mode) {
258         case 0:
259                 i915->vbt.drrs_type = STATIC_DRRS_SUPPORT;
260                 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
261                 break;
262         case 2:
263                 i915->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
264                 drm_dbg_kms(&i915->drm,
265                             "DRRS supported mode is seamless\n");
266                 break;
267         default:
268                 i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
269                 drm_dbg_kms(&i915->drm,
270                             "DRRS not supported (VBT input)\n");
271                 break;
272         }
273 }
274
275 /* Try to find integrated panel timing data */
276 static void
277 parse_lfp_panel_dtd(struct drm_i915_private *i915,
278                     const struct bdb_header *bdb)
279 {
280         const struct bdb_lvds_lfp_data *lvds_lfp_data;
281         const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
282         const struct lvds_dvo_timing *panel_dvo_timing;
283         const struct lvds_fp_timing *fp_timing;
284         struct drm_display_mode *panel_fixed_mode;
285         int panel_type = i915->vbt.panel_type;
286
287         lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
288         if (!lvds_lfp_data)
289                 return;
290
291         lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
292         if (!lvds_lfp_data_ptrs)
293                 return;
294
295         panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
296                                                lvds_lfp_data_ptrs,
297                                                panel_type);
298
299         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
300         if (!panel_fixed_mode)
301                 return;
302
303         fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
304
305         i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
306
307         drm_dbg_kms(&i915->drm,
308                     "Found panel mode in BIOS VBT legacy lfp table:\n");
309         drm_mode_debug_printmodeline(panel_fixed_mode);
310
311         fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
312                                        lvds_lfp_data_ptrs,
313                                        panel_type);
314         if (fp_timing) {
315                 /* check the resolution, just to be sure */
316                 if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
317                     fp_timing->y_res == panel_fixed_mode->vdisplay) {
318                         i915->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
319                         drm_dbg_kms(&i915->drm,
320                                     "VBT initial LVDS value %x\n",
321                                     i915->vbt.bios_lvds_val);
322                 }
323         }
324 }
325
326 static void
327 parse_generic_dtd(struct drm_i915_private *i915,
328                   const struct bdb_header *bdb)
329 {
330         const struct bdb_generic_dtd *generic_dtd;
331         const struct generic_dtd_entry *dtd;
332         struct drm_display_mode *panel_fixed_mode;
333         int num_dtd;
334
335         generic_dtd = find_section(bdb, BDB_GENERIC_DTD);
336         if (!generic_dtd)
337                 return;
338
339         if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
340                 drm_err(&i915->drm, "GDTD size %u is too small.\n",
341                         generic_dtd->gdtd_size);
342                 return;
343         } else if (generic_dtd->gdtd_size !=
344                    sizeof(struct generic_dtd_entry)) {
345                 drm_err(&i915->drm, "Unexpected GDTD size %u\n",
346                         generic_dtd->gdtd_size);
347                 /* DTD has unknown fields, but keep going */
348         }
349
350         num_dtd = (get_blocksize(generic_dtd) -
351                    sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
352         if (i915->vbt.panel_type >= num_dtd) {
353                 drm_err(&i915->drm,
354                         "Panel type %d not found in table of %d DTD's\n",
355                         i915->vbt.panel_type, num_dtd);
356                 return;
357         }
358
359         dtd = &generic_dtd->dtd[i915->vbt.panel_type];
360
361         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
362         if (!panel_fixed_mode)
363                 return;
364
365         panel_fixed_mode->hdisplay = dtd->hactive;
366         panel_fixed_mode->hsync_start =
367                 panel_fixed_mode->hdisplay + dtd->hfront_porch;
368         panel_fixed_mode->hsync_end =
369                 panel_fixed_mode->hsync_start + dtd->hsync;
370         panel_fixed_mode->htotal =
371                 panel_fixed_mode->hdisplay + dtd->hblank;
372
373         panel_fixed_mode->vdisplay = dtd->vactive;
374         panel_fixed_mode->vsync_start =
375                 panel_fixed_mode->vdisplay + dtd->vfront_porch;
376         panel_fixed_mode->vsync_end =
377                 panel_fixed_mode->vsync_start + dtd->vsync;
378         panel_fixed_mode->vtotal =
379                 panel_fixed_mode->vdisplay + dtd->vblank;
380
381         panel_fixed_mode->clock = dtd->pixel_clock;
382         panel_fixed_mode->width_mm = dtd->width_mm;
383         panel_fixed_mode->height_mm = dtd->height_mm;
384
385         panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
386         drm_mode_set_name(panel_fixed_mode);
387
388         if (dtd->hsync_positive_polarity)
389                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
390         else
391                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
392
393         if (dtd->vsync_positive_polarity)
394                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
395         else
396                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
397
398         drm_dbg_kms(&i915->drm,
399                     "Found panel mode in BIOS VBT generic dtd table:\n");
400         drm_mode_debug_printmodeline(panel_fixed_mode);
401
402         i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
403 }
404
405 static void
406 parse_panel_dtd(struct drm_i915_private *i915,
407                 const struct bdb_header *bdb)
408 {
409         /*
410          * Older VBTs provided provided DTD information for internal displays
411          * through the "LFP panel DTD" block (42).  As of VBT revision 229,
412          * that block is now deprecated and DTD information should be provided
413          * via a newer "generic DTD" block (58).  Just to be safe, we'll
414          * try the new generic DTD block first on VBT >= 229, but still fall
415          * back to trying the old LFP block if that fails.
416          */
417         if (bdb->version >= 229)
418                 parse_generic_dtd(i915, bdb);
419         if (!i915->vbt.lfp_lvds_vbt_mode)
420                 parse_lfp_panel_dtd(i915, bdb);
421 }
422
423 static void
424 parse_lfp_backlight(struct drm_i915_private *i915,
425                     const struct bdb_header *bdb)
426 {
427         const struct bdb_lfp_backlight_data *backlight_data;
428         const struct lfp_backlight_data_entry *entry;
429         int panel_type = i915->vbt.panel_type;
430         u16 level;
431
432         backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
433         if (!backlight_data)
434                 return;
435
436         if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
437                 drm_dbg_kms(&i915->drm,
438                             "Unsupported backlight data entry size %u\n",
439                             backlight_data->entry_size);
440                 return;
441         }
442
443         entry = &backlight_data->data[panel_type];
444
445         i915->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
446         if (!i915->vbt.backlight.present) {
447                 drm_dbg_kms(&i915->drm,
448                             "PWM backlight not present in VBT (type %u)\n",
449                             entry->type);
450                 return;
451         }
452
453         i915->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
454         if (bdb->version >= 191 &&
455             get_blocksize(backlight_data) >= sizeof(*backlight_data)) {
456                 const struct lfp_backlight_control_method *method;
457
458                 method = &backlight_data->backlight_control[panel_type];
459                 i915->vbt.backlight.type = method->type;
460                 i915->vbt.backlight.controller = method->controller;
461         }
462
463         i915->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
464         i915->vbt.backlight.active_low_pwm = entry->active_low_pwm;
465
466         if (bdb->version >= 234) {
467                 u16 min_level;
468                 bool scale;
469
470                 level = backlight_data->brightness_level[panel_type].level;
471                 min_level = backlight_data->brightness_min_level[panel_type].level;
472
473                 if (bdb->version >= 236)
474                         scale = backlight_data->brightness_precision_bits[panel_type] == 16;
475                 else
476                         scale = level > 255;
477
478                 if (scale)
479                         min_level = min_level / 255;
480
481                 if (min_level > 255) {
482                         drm_warn(&i915->drm, "Brightness min level > 255\n");
483                         level = 255;
484                 }
485                 i915->vbt.backlight.min_brightness = min_level;
486         } else {
487                 level = backlight_data->level[panel_type];
488                 i915->vbt.backlight.min_brightness = entry->min_brightness;
489         }
490
491         drm_dbg_kms(&i915->drm,
492                     "VBT backlight PWM modulation frequency %u Hz, "
493                     "active %s, min brightness %u, level %u, controller %u\n",
494                     i915->vbt.backlight.pwm_freq_hz,
495                     i915->vbt.backlight.active_low_pwm ? "low" : "high",
496                     i915->vbt.backlight.min_brightness,
497                     level,
498                     i915->vbt.backlight.controller);
499 }
500
501 /* Try to find sdvo panel data */
502 static void
503 parse_sdvo_panel_data(struct drm_i915_private *i915,
504                       const struct bdb_header *bdb)
505 {
506         const struct bdb_sdvo_panel_dtds *dtds;
507         struct drm_display_mode *panel_fixed_mode;
508         int index;
509
510         index = i915->params.vbt_sdvo_panel_type;
511         if (index == -2) {
512                 drm_dbg_kms(&i915->drm,
513                             "Ignore SDVO panel mode from BIOS VBT tables.\n");
514                 return;
515         }
516
517         if (index == -1) {
518                 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
519
520                 sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
521                 if (!sdvo_lvds_options)
522                         return;
523
524                 index = sdvo_lvds_options->panel_type;
525         }
526
527         dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS);
528         if (!dtds)
529                 return;
530
531         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
532         if (!panel_fixed_mode)
533                 return;
534
535         fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
536
537         i915->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
538
539         drm_dbg_kms(&i915->drm,
540                     "Found SDVO panel mode in BIOS VBT tables:\n");
541         drm_mode_debug_printmodeline(panel_fixed_mode);
542 }
543
544 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
545                                     bool alternate)
546 {
547         switch (INTEL_GEN(i915)) {
548         case 2:
549                 return alternate ? 66667 : 48000;
550         case 3:
551         case 4:
552                 return alternate ? 100000 : 96000;
553         default:
554                 return alternate ? 100000 : 120000;
555         }
556 }
557
558 static void
559 parse_general_features(struct drm_i915_private *i915,
560                        const struct bdb_header *bdb)
561 {
562         const struct bdb_general_features *general;
563
564         general = find_section(bdb, BDB_GENERAL_FEATURES);
565         if (!general)
566                 return;
567
568         i915->vbt.int_tv_support = general->int_tv_support;
569         /* int_crt_support can't be trusted on earlier platforms */
570         if (bdb->version >= 155 &&
571             (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
572                 i915->vbt.int_crt_support = general->int_crt_support;
573         i915->vbt.lvds_use_ssc = general->enable_ssc;
574         i915->vbt.lvds_ssc_freq =
575                 intel_bios_ssc_frequency(i915, general->ssc_freq);
576         i915->vbt.display_clock_mode = general->display_clock_mode;
577         i915->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
578         if (bdb->version >= 181) {
579                 i915->vbt.orientation = general->rotate_180 ?
580                         DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
581                         DRM_MODE_PANEL_ORIENTATION_NORMAL;
582         } else {
583                 i915->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
584         }
585         drm_dbg_kms(&i915->drm,
586                     "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
587                     i915->vbt.int_tv_support,
588                     i915->vbt.int_crt_support,
589                     i915->vbt.lvds_use_ssc,
590                     i915->vbt.lvds_ssc_freq,
591                     i915->vbt.display_clock_mode,
592                     i915->vbt.fdi_rx_polarity_inverted);
593 }
594
595 static const struct child_device_config *
596 child_device_ptr(const struct bdb_general_definitions *defs, int i)
597 {
598         return (const void *) &defs->devices[i * defs->child_dev_size];
599 }
600
601 static void
602 parse_sdvo_device_mapping(struct drm_i915_private *i915)
603 {
604         struct sdvo_device_mapping *mapping;
605         const struct intel_bios_encoder_data *devdata;
606         const struct child_device_config *child;
607         int count = 0;
608
609         /*
610          * Only parse SDVO mappings on gens that could have SDVO. This isn't
611          * accurate and doesn't have to be, as long as it's not too strict.
612          */
613         if (!IS_GEN_RANGE(i915, 3, 7)) {
614                 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
615                 return;
616         }
617
618         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
619                 child = &devdata->child;
620
621                 if (child->slave_addr != SLAVE_ADDR1 &&
622                     child->slave_addr != SLAVE_ADDR2) {
623                         /*
624                          * If the slave address is neither 0x70 nor 0x72,
625                          * it is not a SDVO device. Skip it.
626                          */
627                         continue;
628                 }
629                 if (child->dvo_port != DEVICE_PORT_DVOB &&
630                     child->dvo_port != DEVICE_PORT_DVOC) {
631                         /* skip the incorrect SDVO port */
632                         drm_dbg_kms(&i915->drm,
633                                     "Incorrect SDVO port. Skip it\n");
634                         continue;
635                 }
636                 drm_dbg_kms(&i915->drm,
637                             "the SDVO device with slave addr %2x is found on"
638                             " %s port\n",
639                             child->slave_addr,
640                             (child->dvo_port == DEVICE_PORT_DVOB) ?
641                             "SDVOB" : "SDVOC");
642                 mapping = &i915->vbt.sdvo_mappings[child->dvo_port - 1];
643                 if (!mapping->initialized) {
644                         mapping->dvo_port = child->dvo_port;
645                         mapping->slave_addr = child->slave_addr;
646                         mapping->dvo_wiring = child->dvo_wiring;
647                         mapping->ddc_pin = child->ddc_pin;
648                         mapping->i2c_pin = child->i2c_pin;
649                         mapping->initialized = 1;
650                         drm_dbg_kms(&i915->drm,
651                                     "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
652                                     mapping->dvo_port, mapping->slave_addr,
653                                     mapping->dvo_wiring, mapping->ddc_pin,
654                                     mapping->i2c_pin);
655                 } else {
656                         drm_dbg_kms(&i915->drm,
657                                     "Maybe one SDVO port is shared by "
658                                     "two SDVO device.\n");
659                 }
660                 if (child->slave2_addr) {
661                         /* Maybe this is a SDVO device with multiple inputs */
662                         /* And the mapping info is not added */
663                         drm_dbg_kms(&i915->drm,
664                                     "there exists the slave2_addr. Maybe this"
665                                     " is a SDVO device with multiple inputs.\n");
666                 }
667                 count++;
668         }
669
670         if (!count) {
671                 /* No SDVO device info is found */
672                 drm_dbg_kms(&i915->drm,
673                             "No SDVO device info is found in VBT\n");
674         }
675 }
676
677 static void
678 parse_driver_features(struct drm_i915_private *i915,
679                       const struct bdb_header *bdb)
680 {
681         const struct bdb_driver_features *driver;
682
683         driver = find_section(bdb, BDB_DRIVER_FEATURES);
684         if (!driver)
685                 return;
686
687         if (INTEL_GEN(i915) >= 5) {
688                 /*
689                  * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
690                  * to mean "eDP". The VBT spec doesn't agree with that
691                  * interpretation, but real world VBTs seem to.
692                  */
693                 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
694                         i915->vbt.int_lvds_support = 0;
695         } else {
696                 /*
697                  * FIXME it's not clear which BDB version has the LVDS config
698                  * bits defined. Revision history in the VBT spec says:
699                  * "0.92 | Add two definitions for VBT value of LVDS Active
700                  *  Config (00b and 11b values defined) | 06/13/2005"
701                  * but does not the specify the BDB version.
702                  *
703                  * So far version 134 (on i945gm) is the oldest VBT observed
704                  * in the wild with the bits correctly populated. Version
705                  * 108 (on i85x) does not have the bits correctly populated.
706                  */
707                 if (bdb->version >= 134 &&
708                     driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
709                     driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
710                         i915->vbt.int_lvds_support = 0;
711         }
712
713         if (bdb->version < 228) {
714                 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
715                             driver->drrs_enabled);
716                 /*
717                  * If DRRS is not supported, drrs_type has to be set to 0.
718                  * This is because, VBT is configured in such a way that
719                  * static DRRS is 0 and DRRS not supported is represented by
720                  * driver->drrs_enabled=false
721                  */
722                 if (!driver->drrs_enabled)
723                         i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
724
725                 i915->vbt.psr.enable = driver->psr_enabled;
726         }
727 }
728
729 static void
730 parse_power_conservation_features(struct drm_i915_private *i915,
731                                   const struct bdb_header *bdb)
732 {
733         const struct bdb_lfp_power *power;
734         u8 panel_type = i915->vbt.panel_type;
735
736         if (bdb->version < 228)
737                 return;
738
739         power = find_section(bdb, BDB_LFP_POWER);
740         if (!power)
741                 return;
742
743         i915->vbt.psr.enable = power->psr & BIT(panel_type);
744
745         /*
746          * If DRRS is not supported, drrs_type has to be set to 0.
747          * This is because, VBT is configured in such a way that
748          * static DRRS is 0 and DRRS not supported is represented by
749          * power->drrs & BIT(panel_type)=false
750          */
751         if (!(power->drrs & BIT(panel_type)))
752                 i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
753
754         if (bdb->version >= 232)
755                 i915->vbt.edp.hobl = power->hobl & BIT(panel_type);
756 }
757
758 static void
759 parse_edp(struct drm_i915_private *i915, const struct bdb_header *bdb)
760 {
761         const struct bdb_edp *edp;
762         const struct edp_power_seq *edp_pps;
763         const struct edp_fast_link_params *edp_link_params;
764         int panel_type = i915->vbt.panel_type;
765
766         edp = find_section(bdb, BDB_EDP);
767         if (!edp)
768                 return;
769
770         switch ((edp->color_depth >> (panel_type * 2)) & 3) {
771         case EDP_18BPP:
772                 i915->vbt.edp.bpp = 18;
773                 break;
774         case EDP_24BPP:
775                 i915->vbt.edp.bpp = 24;
776                 break;
777         case EDP_30BPP:
778                 i915->vbt.edp.bpp = 30;
779                 break;
780         }
781
782         /* Get the eDP sequencing and link info */
783         edp_pps = &edp->power_seqs[panel_type];
784         edp_link_params = &edp->fast_link_params[panel_type];
785
786         i915->vbt.edp.pps = *edp_pps;
787
788         switch (edp_link_params->rate) {
789         case EDP_RATE_1_62:
790                 i915->vbt.edp.rate = DP_LINK_BW_1_62;
791                 break;
792         case EDP_RATE_2_7:
793                 i915->vbt.edp.rate = DP_LINK_BW_2_7;
794                 break;
795         default:
796                 drm_dbg_kms(&i915->drm,
797                             "VBT has unknown eDP link rate value %u\n",
798                              edp_link_params->rate);
799                 break;
800         }
801
802         switch (edp_link_params->lanes) {
803         case EDP_LANE_1:
804                 i915->vbt.edp.lanes = 1;
805                 break;
806         case EDP_LANE_2:
807                 i915->vbt.edp.lanes = 2;
808                 break;
809         case EDP_LANE_4:
810                 i915->vbt.edp.lanes = 4;
811                 break;
812         default:
813                 drm_dbg_kms(&i915->drm,
814                             "VBT has unknown eDP lane count value %u\n",
815                             edp_link_params->lanes);
816                 break;
817         }
818
819         switch (edp_link_params->preemphasis) {
820         case EDP_PREEMPHASIS_NONE:
821                 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
822                 break;
823         case EDP_PREEMPHASIS_3_5dB:
824                 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
825                 break;
826         case EDP_PREEMPHASIS_6dB:
827                 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
828                 break;
829         case EDP_PREEMPHASIS_9_5dB:
830                 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
831                 break;
832         default:
833                 drm_dbg_kms(&i915->drm,
834                             "VBT has unknown eDP pre-emphasis value %u\n",
835                             edp_link_params->preemphasis);
836                 break;
837         }
838
839         switch (edp_link_params->vswing) {
840         case EDP_VSWING_0_4V:
841                 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
842                 break;
843         case EDP_VSWING_0_6V:
844                 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
845                 break;
846         case EDP_VSWING_0_8V:
847                 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
848                 break;
849         case EDP_VSWING_1_2V:
850                 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
851                 break;
852         default:
853                 drm_dbg_kms(&i915->drm,
854                             "VBT has unknown eDP voltage swing value %u\n",
855                             edp_link_params->vswing);
856                 break;
857         }
858
859         if (bdb->version >= 173) {
860                 u8 vswing;
861
862                 /* Don't read from VBT if module parameter has valid value*/
863                 if (i915->params.edp_vswing) {
864                         i915->vbt.edp.low_vswing =
865                                 i915->params.edp_vswing == 1;
866                 } else {
867                         vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
868                         i915->vbt.edp.low_vswing = vswing == 0;
869                 }
870         }
871 }
872
873 static void
874 parse_psr(struct drm_i915_private *i915, const struct bdb_header *bdb)
875 {
876         const struct bdb_psr *psr;
877         const struct psr_table *psr_table;
878         int panel_type = i915->vbt.panel_type;
879
880         psr = find_section(bdb, BDB_PSR);
881         if (!psr) {
882                 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
883                 return;
884         }
885
886         psr_table = &psr->psr_table[panel_type];
887
888         i915->vbt.psr.full_link = psr_table->full_link;
889         i915->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
890
891         /* Allowed VBT values goes from 0 to 15 */
892         i915->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
893                 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
894
895         switch (psr_table->lines_to_wait) {
896         case 0:
897                 i915->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
898                 break;
899         case 1:
900                 i915->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
901                 break;
902         case 2:
903                 i915->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
904                 break;
905         case 3:
906                 i915->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
907                 break;
908         default:
909                 drm_dbg_kms(&i915->drm,
910                             "VBT has unknown PSR lines to wait %u\n",
911                             psr_table->lines_to_wait);
912                 break;
913         }
914
915         /*
916          * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
917          * Old decimal value is wake up time in multiples of 100 us.
918          */
919         if (bdb->version >= 205 &&
920             (IS_GEN9_BC(i915) || IS_GEMINILAKE(i915) ||
921              INTEL_GEN(i915) >= 10)) {
922                 switch (psr_table->tp1_wakeup_time) {
923                 case 0:
924                         i915->vbt.psr.tp1_wakeup_time_us = 500;
925                         break;
926                 case 1:
927                         i915->vbt.psr.tp1_wakeup_time_us = 100;
928                         break;
929                 case 3:
930                         i915->vbt.psr.tp1_wakeup_time_us = 0;
931                         break;
932                 default:
933                         drm_dbg_kms(&i915->drm,
934                                     "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
935                                     psr_table->tp1_wakeup_time);
936                         fallthrough;
937                 case 2:
938                         i915->vbt.psr.tp1_wakeup_time_us = 2500;
939                         break;
940                 }
941
942                 switch (psr_table->tp2_tp3_wakeup_time) {
943                 case 0:
944                         i915->vbt.psr.tp2_tp3_wakeup_time_us = 500;
945                         break;
946                 case 1:
947                         i915->vbt.psr.tp2_tp3_wakeup_time_us = 100;
948                         break;
949                 case 3:
950                         i915->vbt.psr.tp2_tp3_wakeup_time_us = 0;
951                         break;
952                 default:
953                         drm_dbg_kms(&i915->drm,
954                                     "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
955                                     psr_table->tp2_tp3_wakeup_time);
956                         fallthrough;
957                 case 2:
958                         i915->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
959                 break;
960                 }
961         } else {
962                 i915->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
963                 i915->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
964         }
965
966         if (bdb->version >= 226) {
967                 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
968
969                 wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
970                 switch (wakeup_time) {
971                 case 0:
972                         wakeup_time = 500;
973                         break;
974                 case 1:
975                         wakeup_time = 100;
976                         break;
977                 case 3:
978                         wakeup_time = 50;
979                         break;
980                 default:
981                 case 2:
982                         wakeup_time = 2500;
983                         break;
984                 }
985                 i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
986         } else {
987                 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
988                 i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = i915->vbt.psr.tp2_tp3_wakeup_time_us;
989         }
990 }
991
992 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
993                                       u16 version, enum port port)
994 {
995         if (!i915->vbt.dsi.config->dual_link || version < 197) {
996                 i915->vbt.dsi.bl_ports = BIT(port);
997                 if (i915->vbt.dsi.config->cabc_supported)
998                         i915->vbt.dsi.cabc_ports = BIT(port);
999
1000                 return;
1001         }
1002
1003         switch (i915->vbt.dsi.config->dl_dcs_backlight_ports) {
1004         case DL_DCS_PORT_A:
1005                 i915->vbt.dsi.bl_ports = BIT(PORT_A);
1006                 break;
1007         case DL_DCS_PORT_C:
1008                 i915->vbt.dsi.bl_ports = BIT(PORT_C);
1009                 break;
1010         default:
1011         case DL_DCS_PORT_A_AND_C:
1012                 i915->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
1013                 break;
1014         }
1015
1016         if (!i915->vbt.dsi.config->cabc_supported)
1017                 return;
1018
1019         switch (i915->vbt.dsi.config->dl_dcs_cabc_ports) {
1020         case DL_DCS_PORT_A:
1021                 i915->vbt.dsi.cabc_ports = BIT(PORT_A);
1022                 break;
1023         case DL_DCS_PORT_C:
1024                 i915->vbt.dsi.cabc_ports = BIT(PORT_C);
1025                 break;
1026         default:
1027         case DL_DCS_PORT_A_AND_C:
1028                 i915->vbt.dsi.cabc_ports =
1029                                         BIT(PORT_A) | BIT(PORT_C);
1030                 break;
1031         }
1032 }
1033
1034 static void
1035 parse_mipi_config(struct drm_i915_private *i915,
1036                   const struct bdb_header *bdb)
1037 {
1038         const struct bdb_mipi_config *start;
1039         const struct mipi_config *config;
1040         const struct mipi_pps_data *pps;
1041         int panel_type = i915->vbt.panel_type;
1042         enum port port;
1043
1044         /* parse MIPI blocks only if LFP type is MIPI */
1045         if (!intel_bios_is_dsi_present(i915, &port))
1046                 return;
1047
1048         /* Initialize this to undefined indicating no generic MIPI support */
1049         i915->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1050
1051         /* Block #40 is already parsed and panel_fixed_mode is
1052          * stored in i915->lfp_lvds_vbt_mode
1053          * resuse this when needed
1054          */
1055
1056         /* Parse #52 for panel index used from panel_type already
1057          * parsed
1058          */
1059         start = find_section(bdb, BDB_MIPI_CONFIG);
1060         if (!start) {
1061                 drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1062                 return;
1063         }
1064
1065         drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1066                 panel_type);
1067
1068         /*
1069          * get hold of the correct configuration block and pps data as per
1070          * the panel_type as index
1071          */
1072         config = &start->config[panel_type];
1073         pps = &start->pps[panel_type];
1074
1075         /* store as of now full data. Trim when we realise all is not needed */
1076         i915->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1077         if (!i915->vbt.dsi.config)
1078                 return;
1079
1080         i915->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1081         if (!i915->vbt.dsi.pps) {
1082                 kfree(i915->vbt.dsi.config);
1083                 return;
1084         }
1085
1086         parse_dsi_backlight_ports(i915, bdb->version, port);
1087
1088         /* FIXME is the 90 vs. 270 correct? */
1089         switch (config->rotation) {
1090         case ENABLE_ROTATION_0:
1091                 /*
1092                  * Most (all?) VBTs claim 0 degrees despite having
1093                  * an upside down panel, thus we do not trust this.
1094                  */
1095                 i915->vbt.dsi.orientation =
1096                         DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1097                 break;
1098         case ENABLE_ROTATION_90:
1099                 i915->vbt.dsi.orientation =
1100                         DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1101                 break;
1102         case ENABLE_ROTATION_180:
1103                 i915->vbt.dsi.orientation =
1104                         DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1105                 break;
1106         case ENABLE_ROTATION_270:
1107                 i915->vbt.dsi.orientation =
1108                         DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1109                 break;
1110         }
1111
1112         /* We have mandatory mipi config blocks. Initialize as generic panel */
1113         i915->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1114 }
1115
1116 /* Find the sequence block and size for the given panel. */
1117 static const u8 *
1118 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1119                           u16 panel_id, u32 *seq_size)
1120 {
1121         u32 total = get_blocksize(sequence);
1122         const u8 *data = &sequence->data[0];
1123         u8 current_id;
1124         u32 current_size;
1125         int header_size = sequence->version >= 3 ? 5 : 3;
1126         int index = 0;
1127         int i;
1128
1129         /* skip new block size */
1130         if (sequence->version >= 3)
1131                 data += 4;
1132
1133         for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1134                 if (index + header_size > total) {
1135                         DRM_ERROR("Invalid sequence block (header)\n");
1136                         return NULL;
1137                 }
1138
1139                 current_id = *(data + index);
1140                 if (sequence->version >= 3)
1141                         current_size = *((const u32 *)(data + index + 1));
1142                 else
1143                         current_size = *((const u16 *)(data + index + 1));
1144
1145                 index += header_size;
1146
1147                 if (index + current_size > total) {
1148                         DRM_ERROR("Invalid sequence block\n");
1149                         return NULL;
1150                 }
1151
1152                 if (current_id == panel_id) {
1153                         *seq_size = current_size;
1154                         return data + index;
1155                 }
1156
1157                 index += current_size;
1158         }
1159
1160         DRM_ERROR("Sequence block detected but no valid configuration\n");
1161
1162         return NULL;
1163 }
1164
1165 static int goto_next_sequence(const u8 *data, int index, int total)
1166 {
1167         u16 len;
1168
1169         /* Skip Sequence Byte. */
1170         for (index = index + 1; index < total; index += len) {
1171                 u8 operation_byte = *(data + index);
1172                 index++;
1173
1174                 switch (operation_byte) {
1175                 case MIPI_SEQ_ELEM_END:
1176                         return index;
1177                 case MIPI_SEQ_ELEM_SEND_PKT:
1178                         if (index + 4 > total)
1179                                 return 0;
1180
1181                         len = *((const u16 *)(data + index + 2)) + 4;
1182                         break;
1183                 case MIPI_SEQ_ELEM_DELAY:
1184                         len = 4;
1185                         break;
1186                 case MIPI_SEQ_ELEM_GPIO:
1187                         len = 2;
1188                         break;
1189                 case MIPI_SEQ_ELEM_I2C:
1190                         if (index + 7 > total)
1191                                 return 0;
1192                         len = *(data + index + 6) + 7;
1193                         break;
1194                 default:
1195                         DRM_ERROR("Unknown operation byte\n");
1196                         return 0;
1197                 }
1198         }
1199
1200         return 0;
1201 }
1202
1203 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1204 {
1205         int seq_end;
1206         u16 len;
1207         u32 size_of_sequence;
1208
1209         /*
1210          * Could skip sequence based on Size of Sequence alone, but also do some
1211          * checking on the structure.
1212          */
1213         if (total < 5) {
1214                 DRM_ERROR("Too small sequence size\n");
1215                 return 0;
1216         }
1217
1218         /* Skip Sequence Byte. */
1219         index++;
1220
1221         /*
1222          * Size of Sequence. Excludes the Sequence Byte and the size itself,
1223          * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1224          * byte.
1225          */
1226         size_of_sequence = *((const u32 *)(data + index));
1227         index += 4;
1228
1229         seq_end = index + size_of_sequence;
1230         if (seq_end > total) {
1231                 DRM_ERROR("Invalid sequence size\n");
1232                 return 0;
1233         }
1234
1235         for (; index < total; index += len) {
1236                 u8 operation_byte = *(data + index);
1237                 index++;
1238
1239                 if (operation_byte == MIPI_SEQ_ELEM_END) {
1240                         if (index != seq_end) {
1241                                 DRM_ERROR("Invalid element structure\n");
1242                                 return 0;
1243                         }
1244                         return index;
1245                 }
1246
1247                 len = *(data + index);
1248                 index++;
1249
1250                 /*
1251                  * FIXME: Would be nice to check elements like for v1/v2 in
1252                  * goto_next_sequence() above.
1253                  */
1254                 switch (operation_byte) {
1255                 case MIPI_SEQ_ELEM_SEND_PKT:
1256                 case MIPI_SEQ_ELEM_DELAY:
1257                 case MIPI_SEQ_ELEM_GPIO:
1258                 case MIPI_SEQ_ELEM_I2C:
1259                 case MIPI_SEQ_ELEM_SPI:
1260                 case MIPI_SEQ_ELEM_PMIC:
1261                         break;
1262                 default:
1263                         DRM_ERROR("Unknown operation byte %u\n",
1264                                   operation_byte);
1265                         break;
1266                 }
1267         }
1268
1269         return 0;
1270 }
1271
1272 /*
1273  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1274  * skip all delay + gpio operands and stop at the first DSI packet op.
1275  */
1276 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915)
1277 {
1278         const u8 *data = i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1279         int index, len;
1280
1281         if (drm_WARN_ON(&i915->drm,
1282                         !data || i915->vbt.dsi.seq_version != 1))
1283                 return 0;
1284
1285         /* index = 1 to skip sequence byte */
1286         for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1287                 switch (data[index]) {
1288                 case MIPI_SEQ_ELEM_SEND_PKT:
1289                         return index == 1 ? 0 : index;
1290                 case MIPI_SEQ_ELEM_DELAY:
1291                         len = 5; /* 1 byte for operand + uint32 */
1292                         break;
1293                 case MIPI_SEQ_ELEM_GPIO:
1294                         len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1295                         break;
1296                 default:
1297                         return 0;
1298                 }
1299         }
1300
1301         return 0;
1302 }
1303
1304 /*
1305  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1306  * The deassert must be done before calling intel_dsi_device_ready, so for
1307  * these devices we split the init OTP sequence into a deassert sequence and
1308  * the actual init OTP part.
1309  */
1310 static void fixup_mipi_sequences(struct drm_i915_private *i915)
1311 {
1312         u8 *init_otp;
1313         int len;
1314
1315         /* Limit this to VLV for now. */
1316         if (!IS_VALLEYVIEW(i915))
1317                 return;
1318
1319         /* Limit this to v1 vid-mode sequences */
1320         if (i915->vbt.dsi.config->is_cmd_mode ||
1321             i915->vbt.dsi.seq_version != 1)
1322                 return;
1323
1324         /* Only do this if there are otp and assert seqs and no deassert seq */
1325         if (!i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1326             !i915->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1327             i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1328                 return;
1329
1330         /* The deassert-sequence ends at the first DSI packet */
1331         len = get_init_otp_deassert_fragment_len(i915);
1332         if (!len)
1333                 return;
1334
1335         drm_dbg_kms(&i915->drm,
1336                     "Using init OTP fragment to deassert reset\n");
1337
1338         /* Copy the fragment, update seq byte and terminate it */
1339         init_otp = (u8 *)i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1340         i915->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1341         if (!i915->vbt.dsi.deassert_seq)
1342                 return;
1343         i915->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1344         i915->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1345         /* Use the copy for deassert */
1346         i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1347                 i915->vbt.dsi.deassert_seq;
1348         /* Replace the last byte of the fragment with init OTP seq byte */
1349         init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1350         /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1351         i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1352 }
1353
1354 static void
1355 parse_mipi_sequence(struct drm_i915_private *i915,
1356                     const struct bdb_header *bdb)
1357 {
1358         int panel_type = i915->vbt.panel_type;
1359         const struct bdb_mipi_sequence *sequence;
1360         const u8 *seq_data;
1361         u32 seq_size;
1362         u8 *data;
1363         int index = 0;
1364
1365         /* Only our generic panel driver uses the sequence block. */
1366         if (i915->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1367                 return;
1368
1369         sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
1370         if (!sequence) {
1371                 drm_dbg_kms(&i915->drm,
1372                             "No MIPI Sequence found, parsing complete\n");
1373                 return;
1374         }
1375
1376         /* Fail gracefully for forward incompatible sequence block. */
1377         if (sequence->version >= 4) {
1378                 drm_err(&i915->drm,
1379                         "Unable to parse MIPI Sequence Block v%u\n",
1380                         sequence->version);
1381                 return;
1382         }
1383
1384         drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
1385                 sequence->version);
1386
1387         seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1388         if (!seq_data)
1389                 return;
1390
1391         data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1392         if (!data)
1393                 return;
1394
1395         /* Parse the sequences, store pointers to each sequence. */
1396         for (;;) {
1397                 u8 seq_id = *(data + index);
1398                 if (seq_id == MIPI_SEQ_END)
1399                         break;
1400
1401                 if (seq_id >= MIPI_SEQ_MAX) {
1402                         drm_err(&i915->drm, "Unknown sequence %u\n",
1403                                 seq_id);
1404                         goto err;
1405                 }
1406
1407                 /* Log about presence of sequences we won't run. */
1408                 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1409                         drm_dbg_kms(&i915->drm,
1410                                     "Unsupported sequence %u\n", seq_id);
1411
1412                 i915->vbt.dsi.sequence[seq_id] = data + index;
1413
1414                 if (sequence->version >= 3)
1415                         index = goto_next_sequence_v3(data, index, seq_size);
1416                 else
1417                         index = goto_next_sequence(data, index, seq_size);
1418                 if (!index) {
1419                         drm_err(&i915->drm, "Invalid sequence %u\n",
1420                                 seq_id);
1421                         goto err;
1422                 }
1423         }
1424
1425         i915->vbt.dsi.data = data;
1426         i915->vbt.dsi.size = seq_size;
1427         i915->vbt.dsi.seq_version = sequence->version;
1428
1429         fixup_mipi_sequences(i915);
1430
1431         drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
1432         return;
1433
1434 err:
1435         kfree(data);
1436         memset(i915->vbt.dsi.sequence, 0, sizeof(i915->vbt.dsi.sequence));
1437 }
1438
1439 static void
1440 parse_compression_parameters(struct drm_i915_private *i915,
1441                              const struct bdb_header *bdb)
1442 {
1443         const struct bdb_compression_parameters *params;
1444         struct intel_bios_encoder_data *devdata;
1445         const struct child_device_config *child;
1446         u16 block_size;
1447         int index;
1448
1449         if (bdb->version < 198)
1450                 return;
1451
1452         params = find_section(bdb, BDB_COMPRESSION_PARAMETERS);
1453         if (params) {
1454                 /* Sanity checks */
1455                 if (params->entry_size != sizeof(params->data[0])) {
1456                         drm_dbg_kms(&i915->drm,
1457                                     "VBT: unsupported compression param entry size\n");
1458                         return;
1459                 }
1460
1461                 block_size = get_blocksize(params);
1462                 if (block_size < sizeof(*params)) {
1463                         drm_dbg_kms(&i915->drm,
1464                                     "VBT: expected 16 compression param entries\n");
1465                         return;
1466                 }
1467         }
1468
1469         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
1470                 child = &devdata->child;
1471
1472                 if (!child->compression_enable)
1473                         continue;
1474
1475                 if (!params) {
1476                         drm_dbg_kms(&i915->drm,
1477                                     "VBT: compression params not available\n");
1478                         continue;
1479                 }
1480
1481                 if (child->compression_method_cps) {
1482                         drm_dbg_kms(&i915->drm,
1483                                     "VBT: CPS compression not supported\n");
1484                         continue;
1485                 }
1486
1487                 index = child->compression_structure_index;
1488
1489                 devdata->dsc = kmemdup(&params->data[index],
1490                                        sizeof(*devdata->dsc), GFP_KERNEL);
1491         }
1492 }
1493
1494 static u8 translate_iboost(u8 val)
1495 {
1496         static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1497
1498         if (val >= ARRAY_SIZE(mapping)) {
1499                 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1500                 return 0;
1501         }
1502         return mapping[val];
1503 }
1504
1505 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
1506 {
1507         const struct ddi_vbt_port_info *info;
1508         enum port port;
1509
1510         if (!ddc_pin)
1511                 return PORT_NONE;
1512
1513         for_each_port(port) {
1514                 info = &i915->vbt.ddi_port_info[port];
1515
1516                 if (info->devdata && ddc_pin == info->alternate_ddc_pin)
1517                         return port;
1518         }
1519
1520         return PORT_NONE;
1521 }
1522
1523 static void sanitize_ddc_pin(struct drm_i915_private *i915,
1524                              enum port port)
1525 {
1526         struct ddi_vbt_port_info *info = &i915->vbt.ddi_port_info[port];
1527         struct child_device_config *child;
1528         enum port p;
1529
1530         p = get_port_by_ddc_pin(i915, info->alternate_ddc_pin);
1531         if (p == PORT_NONE)
1532                 return;
1533
1534         drm_dbg_kms(&i915->drm,
1535                     "port %c trying to use the same DDC pin (0x%x) as port %c, "
1536                     "disabling port %c DVI/HDMI support\n",
1537                     port_name(port), info->alternate_ddc_pin,
1538                     port_name(p), port_name(p));
1539
1540         /*
1541          * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
1542          * couldn't exist on the shared port. Otherwise they share the same ddc
1543          * pin and system couldn't communicate with them separately.
1544          *
1545          * Give inverse child device order the priority, last one wins. Yes,
1546          * there are real machines (eg. Asrock B250M-HDV) where VBT has both
1547          * port A and port E with the same AUX ch and we must pick port E :(
1548          */
1549         info = &i915->vbt.ddi_port_info[p];
1550         child = &info->devdata->child;
1551
1552         child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
1553         child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
1554
1555         info->alternate_ddc_pin = 0;
1556 }
1557
1558 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
1559 {
1560         const struct ddi_vbt_port_info *info;
1561         enum port port;
1562
1563         if (!aux_ch)
1564                 return PORT_NONE;
1565
1566         for_each_port(port) {
1567                 info = &i915->vbt.ddi_port_info[port];
1568
1569                 if (info->devdata && aux_ch == info->alternate_aux_channel)
1570                         return port;
1571         }
1572
1573         return PORT_NONE;
1574 }
1575
1576 static void sanitize_aux_ch(struct drm_i915_private *i915,
1577                             enum port port)
1578 {
1579         struct ddi_vbt_port_info *info = &i915->vbt.ddi_port_info[port];
1580         struct child_device_config *child;
1581         enum port p;
1582
1583         p = get_port_by_aux_ch(i915, info->alternate_aux_channel);
1584         if (p == PORT_NONE)
1585                 return;
1586
1587         drm_dbg_kms(&i915->drm,
1588                     "port %c trying to use the same AUX CH (0x%x) as port %c, "
1589                     "disabling port %c DP support\n",
1590                     port_name(port), info->alternate_aux_channel,
1591                     port_name(p), port_name(p));
1592
1593         /*
1594          * If we have multiple ports supposedly sharing the aux channel, then DP
1595          * couldn't exist on the shared port. Otherwise they share the same aux
1596          * channel and system couldn't communicate with them separately.
1597          *
1598          * Give inverse child device order the priority, last one wins. Yes,
1599          * there are real machines (eg. Asrock B250M-HDV) where VBT has both
1600          * port A and port E with the same AUX ch and we must pick port E :(
1601          */
1602         info = &i915->vbt.ddi_port_info[p];
1603         child = &info->devdata->child;
1604
1605         child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1606         info->alternate_aux_channel = 0;
1607 }
1608
1609 static const u8 cnp_ddc_pin_map[] = {
1610         [0] = 0, /* N/A */
1611         [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1612         [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1613         [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1614         [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1615 };
1616
1617 static const u8 icp_ddc_pin_map[] = {
1618         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1619         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1620         [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
1621         [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1622         [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1623         [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1624         [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1625         [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
1626         [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
1627 };
1628
1629 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
1630         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1631         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1632         [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
1633         [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
1634 };
1635
1636 static const u8 adls_ddc_pin_map[] = {
1637         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1638         [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
1639         [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
1640         [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
1641         [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
1642 };
1643
1644 static const u8 gen9bc_tgp_ddc_pin_map[] = {
1645         [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1646         [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
1647         [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
1648 };
1649
1650 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
1651 {
1652         const u8 *ddc_pin_map;
1653         int n_entries;
1654
1655         if (HAS_PCH_ADP(i915)) {
1656                 ddc_pin_map = adls_ddc_pin_map;
1657                 n_entries = ARRAY_SIZE(adls_ddc_pin_map);
1658         } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
1659                 return vbt_pin;
1660         } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
1661                 ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
1662                 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
1663         } else if (HAS_PCH_TGP(i915) && IS_GEN9_BC(i915)) {
1664                 ddc_pin_map = gen9bc_tgp_ddc_pin_map;
1665                 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
1666         } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
1667                 ddc_pin_map = icp_ddc_pin_map;
1668                 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
1669         } else if (HAS_PCH_CNP(i915)) {
1670                 ddc_pin_map = cnp_ddc_pin_map;
1671                 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
1672         } else {
1673                 /* Assuming direct map */
1674                 return vbt_pin;
1675         }
1676
1677         if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
1678                 return ddc_pin_map[vbt_pin];
1679
1680         drm_dbg_kms(&i915->drm,
1681                     "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
1682                     vbt_pin);
1683         return 0;
1684 }
1685
1686 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
1687                                     const int port_mapping[][3], u8 dvo_port)
1688 {
1689         enum port port;
1690         int i;
1691
1692         for (port = PORT_A; port < n_ports; port++) {
1693                 for (i = 0; i < n_dvo; i++) {
1694                         if (port_mapping[port][i] == -1)
1695                                 break;
1696
1697                         if (dvo_port == port_mapping[port][i])
1698                                 return port;
1699                 }
1700         }
1701
1702         return PORT_NONE;
1703 }
1704
1705 static enum port dvo_port_to_port(struct drm_i915_private *i915,
1706                                   u8 dvo_port)
1707 {
1708         /*
1709          * Each DDI port can have more than one value on the "DVO Port" field,
1710          * so look for all the possible values for each port.
1711          */
1712         static const int port_mapping[][3] = {
1713                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1714                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1715                 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1716                 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1717                 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
1718                 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
1719                 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
1720                 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
1721                 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
1722         };
1723         /*
1724          * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
1725          * map to DDI A,B,TC1,TC2 respectively.
1726          */
1727         static const int rkl_port_mapping[][3] = {
1728                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1729                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1730                 [PORT_C] = { -1 },
1731                 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1732                 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1733         };
1734         /*
1735          * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
1736          * PORT_F and PORT_G, we need to map that to correct VBT sections.
1737          */
1738         static const int adls_port_mapping[][3] = {
1739                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1740                 [PORT_B] = { -1 },
1741                 [PORT_C] = { -1 },
1742                 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1743                 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1744                 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1745                 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
1746         };
1747
1748         if (IS_ALDERLAKE_S(i915))
1749                 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
1750                                           ARRAY_SIZE(adls_port_mapping[0]),
1751                                           adls_port_mapping,
1752                                           dvo_port);
1753         else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
1754                 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
1755                                           ARRAY_SIZE(rkl_port_mapping[0]),
1756                                           rkl_port_mapping,
1757                                           dvo_port);
1758         else
1759                 return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
1760                                           ARRAY_SIZE(port_mapping[0]),
1761                                           port_mapping,
1762                                           dvo_port);
1763 }
1764
1765 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
1766 {
1767         switch (vbt_max_link_rate) {
1768         default:
1769         case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
1770                 return 0;
1771         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
1772                 return 2000000;
1773         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
1774                 return 1350000;
1775         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
1776                 return 1000000;
1777         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
1778                 return 810000;
1779         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
1780                 return 540000;
1781         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
1782                 return 270000;
1783         case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
1784                 return 162000;
1785         }
1786 }
1787
1788 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
1789 {
1790         switch (vbt_max_link_rate) {
1791         default:
1792         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
1793                 return 810000;
1794         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
1795                 return 540000;
1796         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
1797                 return 270000;
1798         case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
1799                 return 162000;
1800         }
1801 }
1802
1803 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
1804                                  enum port port)
1805 {
1806         struct drm_i915_private *i915 = devdata->i915;
1807         bool is_hdmi;
1808
1809         if (port != PORT_A || INTEL_GEN(i915) >= 12)
1810                 return;
1811
1812         if (!(devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING))
1813                 return;
1814
1815         is_hdmi = !(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT);
1816
1817         drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
1818                     is_hdmi ? "/HDMI" : "");
1819
1820         devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
1821         devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
1822 }
1823
1824 static bool
1825 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
1826 {
1827         return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1828 }
1829
1830 bool
1831 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
1832 {
1833         return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1834 }
1835
1836 bool
1837 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
1838 {
1839         return intel_bios_encoder_supports_dvi(devdata) &&
1840                 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1841 }
1842
1843 bool
1844 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
1845 {
1846         return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1847 }
1848
1849 static bool
1850 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
1851 {
1852         return intel_bios_encoder_supports_dp(devdata) &&
1853                 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
1854 }
1855
1856 static void parse_ddi_port(struct drm_i915_private *i915,
1857                            struct intel_bios_encoder_data *devdata)
1858 {
1859         const struct child_device_config *child = &devdata->child;
1860         struct ddi_vbt_port_info *info;
1861         bool is_dvi, is_hdmi, is_dp, is_edp, is_crt;
1862         enum port port;
1863
1864         port = dvo_port_to_port(i915, child->dvo_port);
1865         if (port == PORT_NONE)
1866                 return;
1867
1868         info = &i915->vbt.ddi_port_info[port];
1869
1870         if (info->devdata) {
1871                 drm_dbg_kms(&i915->drm,
1872                             "More than one child device for port %c in VBT, using the first.\n",
1873                             port_name(port));
1874                 return;
1875         }
1876
1877         sanitize_device_type(devdata, port);
1878
1879         is_dvi = intel_bios_encoder_supports_dvi(devdata);
1880         is_dp = intel_bios_encoder_supports_dp(devdata);
1881         is_crt = intel_bios_encoder_supports_crt(devdata);
1882         is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
1883         is_edp = intel_bios_encoder_supports_edp(devdata);
1884
1885         if (i915->vbt.version >= 195)
1886                 info->supports_typec_usb = child->dp_usb_type_c;
1887
1888         if (i915->vbt.version >= 209)
1889                 info->supports_tbt = child->tbt;
1890
1891         drm_dbg_kms(&i915->drm,
1892                     "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
1893                     port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
1894                     HAS_LSPCON(i915) && child->lspcon,
1895                     info->supports_typec_usb, info->supports_tbt,
1896                     devdata->dsc != NULL);
1897
1898         if (is_dvi) {
1899                 u8 ddc_pin;
1900
1901                 ddc_pin = map_ddc_pin(i915, child->ddc_pin);
1902                 if (intel_gmbus_is_valid_pin(i915, ddc_pin)) {
1903                         info->alternate_ddc_pin = ddc_pin;
1904                         sanitize_ddc_pin(i915, port);
1905                 } else {
1906                         drm_dbg_kms(&i915->drm,
1907                                     "Port %c has invalid DDC pin %d, "
1908                                     "sticking to defaults\n",
1909                                     port_name(port), ddc_pin);
1910                 }
1911         }
1912
1913         if (is_dp) {
1914                 info->alternate_aux_channel = child->aux_channel;
1915
1916                 sanitize_aux_ch(i915, port);
1917         }
1918
1919         if (i915->vbt.version >= 158) {
1920                 /* The VBT HDMI level shift values match the table we have. */
1921                 u8 hdmi_level_shift = child->hdmi_level_shifter_value;
1922                 drm_dbg_kms(&i915->drm,
1923                             "Port %c VBT HDMI level shift: %d\n",
1924                             port_name(port),
1925                             hdmi_level_shift);
1926                 info->hdmi_level_shift = hdmi_level_shift;
1927                 info->hdmi_level_shift_set = true;
1928         }
1929
1930         if (i915->vbt.version >= 204) {
1931                 int max_tmds_clock;
1932
1933                 switch (child->hdmi_max_data_rate) {
1934                 default:
1935                         MISSING_CASE(child->hdmi_max_data_rate);
1936                         fallthrough;
1937                 case HDMI_MAX_DATA_RATE_PLATFORM:
1938                         max_tmds_clock = 0;
1939                         break;
1940                 case HDMI_MAX_DATA_RATE_297:
1941                         max_tmds_clock = 297000;
1942                         break;
1943                 case HDMI_MAX_DATA_RATE_165:
1944                         max_tmds_clock = 165000;
1945                         break;
1946                 }
1947
1948                 if (max_tmds_clock)
1949                         drm_dbg_kms(&i915->drm,
1950                                     "Port %c VBT HDMI max TMDS clock: %d kHz\n",
1951                                     port_name(port), max_tmds_clock);
1952                 info->max_tmds_clock = max_tmds_clock;
1953         }
1954
1955         /* Parse the I_boost config for SKL and above */
1956         if (i915->vbt.version >= 196 && child->iboost) {
1957                 info->dp_boost_level = translate_iboost(child->dp_iboost_level);
1958                 drm_dbg_kms(&i915->drm,
1959                             "Port %c VBT (e)DP boost level: %d\n",
1960                             port_name(port), info->dp_boost_level);
1961                 info->hdmi_boost_level = translate_iboost(child->hdmi_iboost_level);
1962                 drm_dbg_kms(&i915->drm,
1963                             "Port %c VBT HDMI boost level: %d\n",
1964                             port_name(port), info->hdmi_boost_level);
1965         }
1966
1967         /* DP max link rate for CNL+ */
1968         if (i915->vbt.version >= 216) {
1969                 if (i915->vbt.version >= 230)
1970                         info->dp_max_link_rate = parse_bdb_230_dp_max_link_rate(child->dp_max_link_rate);
1971                 else
1972                         info->dp_max_link_rate = parse_bdb_216_dp_max_link_rate(child->dp_max_link_rate);
1973
1974                 drm_dbg_kms(&i915->drm,
1975                             "Port %c VBT DP max link rate: %d\n",
1976                             port_name(port), info->dp_max_link_rate);
1977         }
1978
1979         info->devdata = devdata;
1980 }
1981
1982 static void parse_ddi_ports(struct drm_i915_private *i915)
1983 {
1984         struct intel_bios_encoder_data *devdata;
1985
1986         if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
1987                 return;
1988
1989         if (i915->vbt.version < 155)
1990                 return;
1991
1992         list_for_each_entry(devdata, &i915->vbt.display_devices, node)
1993                 parse_ddi_port(i915, devdata);
1994 }
1995
1996 static void
1997 parse_general_definitions(struct drm_i915_private *i915,
1998                           const struct bdb_header *bdb)
1999 {
2000         const struct bdb_general_definitions *defs;
2001         struct intel_bios_encoder_data *devdata;
2002         const struct child_device_config *child;
2003         int i, child_device_num;
2004         u8 expected_size;
2005         u16 block_size;
2006         int bus_pin;
2007
2008         defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
2009         if (!defs) {
2010                 drm_dbg_kms(&i915->drm,
2011                             "No general definition block is found, no devices defined.\n");
2012                 return;
2013         }
2014
2015         block_size = get_blocksize(defs);
2016         if (block_size < sizeof(*defs)) {
2017                 drm_dbg_kms(&i915->drm,
2018                             "General definitions block too small (%u)\n",
2019                             block_size);
2020                 return;
2021         }
2022
2023         bus_pin = defs->crt_ddc_gmbus_pin;
2024         drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2025         if (intel_gmbus_is_valid_pin(i915, bus_pin))
2026                 i915->vbt.crt_ddc_pin = bus_pin;
2027
2028         if (bdb->version < 106) {
2029                 expected_size = 22;
2030         } else if (bdb->version < 111) {
2031                 expected_size = 27;
2032         } else if (bdb->version < 195) {
2033                 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2034         } else if (bdb->version == 195) {
2035                 expected_size = 37;
2036         } else if (bdb->version <= 215) {
2037                 expected_size = 38;
2038         } else if (bdb->version <= 237) {
2039                 expected_size = 39;
2040         } else {
2041                 expected_size = sizeof(*child);
2042                 BUILD_BUG_ON(sizeof(*child) < 39);
2043                 drm_dbg(&i915->drm,
2044                         "Expected child device config size for VBT version %u not known; assuming %u\n",
2045                         bdb->version, expected_size);
2046         }
2047
2048         /* Flag an error for unexpected size, but continue anyway. */
2049         if (defs->child_dev_size != expected_size)
2050                 drm_err(&i915->drm,
2051                         "Unexpected child device config size %u (expected %u for VBT version %u)\n",
2052                         defs->child_dev_size, expected_size, bdb->version);
2053
2054         /* The legacy sized child device config is the minimum we need. */
2055         if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2056                 drm_dbg_kms(&i915->drm,
2057                             "Child device config size %u is too small.\n",
2058                             defs->child_dev_size);
2059                 return;
2060         }
2061
2062         /* get the number of child device */
2063         child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2064
2065         for (i = 0; i < child_device_num; i++) {
2066                 child = child_device_ptr(defs, i);
2067                 if (!child->device_type)
2068                         continue;
2069
2070                 drm_dbg_kms(&i915->drm,
2071                             "Found VBT child device with type 0x%x\n",
2072                             child->device_type);
2073
2074                 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2075                 if (!devdata)
2076                         break;
2077
2078                 devdata->i915 = i915;
2079
2080                 /*
2081                  * Copy as much as we know (sizeof) and is available
2082                  * (child_dev_size) of the child device config. Accessing the
2083                  * data must depend on VBT version.
2084                  */
2085                 memcpy(&devdata->child, child,
2086                        min_t(size_t, defs->child_dev_size, sizeof(*child)));
2087
2088                 list_add_tail(&devdata->node, &i915->vbt.display_devices);
2089         }
2090
2091         if (list_empty(&i915->vbt.display_devices))
2092                 drm_dbg_kms(&i915->drm,
2093                             "no child dev is parsed from VBT\n");
2094 }
2095
2096 /* Common defaults which may be overridden by VBT. */
2097 static void
2098 init_vbt_defaults(struct drm_i915_private *i915)
2099 {
2100         i915->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2101
2102         /* Default to having backlight */
2103         i915->vbt.backlight.present = true;
2104
2105         /* LFP panel data */
2106         i915->vbt.lvds_dither = 1;
2107
2108         /* SDVO panel data */
2109         i915->vbt.sdvo_lvds_vbt_mode = NULL;
2110
2111         /* general features */
2112         i915->vbt.int_tv_support = 1;
2113         i915->vbt.int_crt_support = 1;
2114
2115         /* driver features */
2116         i915->vbt.int_lvds_support = 1;
2117
2118         /* Default to using SSC */
2119         i915->vbt.lvds_use_ssc = 1;
2120         /*
2121          * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2122          * clock for LVDS.
2123          */
2124         i915->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2125                                                            !HAS_PCH_SPLIT(i915));
2126         drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2127                     i915->vbt.lvds_ssc_freq);
2128 }
2129
2130 /* Defaults to initialize only if there is no VBT. */
2131 static void
2132 init_vbt_missing_defaults(struct drm_i915_private *i915)
2133 {
2134         enum port port;
2135         int ports = PORT_A | PORT_B | PORT_C | PORT_D | PORT_E | PORT_F;
2136
2137         if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2138                 return;
2139
2140         for_each_port_masked(port, ports) {
2141                 struct intel_bios_encoder_data *devdata;
2142                 struct child_device_config *child;
2143                 enum phy phy = intel_port_to_phy(i915, port);
2144
2145                 /*
2146                  * VBT has the TypeC mode (native,TBT/USB) and we don't want
2147                  * to detect it.
2148                  */
2149                 if (intel_phy_is_tc(i915, phy))
2150                         continue;
2151
2152                 /* Create fake child device config */
2153                 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2154                 if (!devdata)
2155                         break;
2156
2157                 devdata->i915 = i915;
2158                 child = &devdata->child;
2159
2160                 if (port == PORT_F)
2161                         child->dvo_port = DVO_PORT_HDMIF;
2162                 else if (port == PORT_E)
2163                         child->dvo_port = DVO_PORT_HDMIE;
2164                 else
2165                         child->dvo_port = DVO_PORT_HDMIA + port;
2166
2167                 if (port != PORT_A && port != PORT_E)
2168                         child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2169
2170                 if (port != PORT_E)
2171                         child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2172
2173                 if (port == PORT_A)
2174                         child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2175
2176                 list_add_tail(&devdata->node, &i915->vbt.display_devices);
2177
2178                 drm_dbg_kms(&i915->drm,
2179                             "Generating default VBT child device with type 0x04%x on port %c\n",
2180                             child->device_type, port_name(port));
2181         }
2182
2183         /* Bypass some minimum baseline VBT version checks */
2184         i915->vbt.version = 155;
2185 }
2186
2187 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2188 {
2189         const void *_vbt = vbt;
2190
2191         return _vbt + vbt->bdb_offset;
2192 }
2193
2194 /**
2195  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2196  * @buf:        pointer to a buffer to validate
2197  * @size:       size of the buffer
2198  *
2199  * Returns true on valid VBT.
2200  */
2201 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2202 {
2203         const struct vbt_header *vbt = buf;
2204         const struct bdb_header *bdb;
2205
2206         if (!vbt)
2207                 return false;
2208
2209         if (sizeof(struct vbt_header) > size) {
2210                 DRM_DEBUG_DRIVER("VBT header incomplete\n");
2211                 return false;
2212         }
2213
2214         if (memcmp(vbt->signature, "$VBT", 4)) {
2215                 DRM_DEBUG_DRIVER("VBT invalid signature\n");
2216                 return false;
2217         }
2218
2219         if (vbt->vbt_size > size) {
2220                 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2221                 return false;
2222         }
2223
2224         size = vbt->vbt_size;
2225
2226         if (range_overflows_t(size_t,
2227                               vbt->bdb_offset,
2228                               sizeof(struct bdb_header),
2229                               size)) {
2230                 DRM_DEBUG_DRIVER("BDB header incomplete\n");
2231                 return false;
2232         }
2233
2234         bdb = get_bdb_header(vbt);
2235         if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2236                 DRM_DEBUG_DRIVER("BDB incomplete\n");
2237                 return false;
2238         }
2239
2240         return vbt;
2241 }
2242
2243 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
2244 {
2245         struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
2246         void __iomem *p = NULL, *oprom;
2247         struct vbt_header *vbt;
2248         u16 vbt_size;
2249         size_t i, size;
2250
2251         oprom = pci_map_rom(pdev, &size);
2252         if (!oprom)
2253                 return NULL;
2254
2255         /* Scour memory looking for the VBT signature. */
2256         for (i = 0; i + 4 < size; i += 4) {
2257                 if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
2258                         continue;
2259
2260                 p = oprom + i;
2261                 size -= i;
2262                 break;
2263         }
2264
2265         if (!p)
2266                 goto err_unmap_oprom;
2267
2268         if (sizeof(struct vbt_header) > size) {
2269                 drm_dbg(&i915->drm, "VBT header incomplete\n");
2270                 goto err_unmap_oprom;
2271         }
2272
2273         vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
2274         if (vbt_size > size) {
2275                 drm_dbg(&i915->drm,
2276                         "VBT incomplete (vbt_size overflows)\n");
2277                 goto err_unmap_oprom;
2278         }
2279
2280         /* The rest will be validated by intel_bios_is_valid_vbt() */
2281         vbt = kmalloc(vbt_size, GFP_KERNEL);
2282         if (!vbt)
2283                 goto err_unmap_oprom;
2284
2285         memcpy_fromio(vbt, p, vbt_size);
2286
2287         if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2288                 goto err_free_vbt;
2289
2290         pci_unmap_rom(pdev, oprom);
2291
2292         return vbt;
2293
2294 err_free_vbt:
2295         kfree(vbt);
2296 err_unmap_oprom:
2297         pci_unmap_rom(pdev, oprom);
2298
2299         return NULL;
2300 }
2301
2302 /**
2303  * intel_bios_init - find VBT and initialize settings from the BIOS
2304  * @i915: i915 device instance
2305  *
2306  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
2307  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
2308  * initialize some defaults if the VBT is not present at all.
2309  */
2310 void intel_bios_init(struct drm_i915_private *i915)
2311 {
2312         const struct vbt_header *vbt = i915->opregion.vbt;
2313         struct vbt_header *oprom_vbt = NULL;
2314         const struct bdb_header *bdb;
2315
2316         INIT_LIST_HEAD(&i915->vbt.display_devices);
2317
2318         if (!HAS_DISPLAY(i915)) {
2319                 drm_dbg_kms(&i915->drm,
2320                             "Skipping VBT init due to disabled display.\n");
2321                 return;
2322         }
2323
2324         init_vbt_defaults(i915);
2325
2326         /* If the OpRegion does not have VBT, look in PCI ROM. */
2327         if (!vbt) {
2328                 oprom_vbt = oprom_get_vbt(i915);
2329                 if (!oprom_vbt)
2330                         goto out;
2331
2332                 vbt = oprom_vbt;
2333
2334                 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
2335         }
2336
2337         bdb = get_bdb_header(vbt);
2338         i915->vbt.version = bdb->version;
2339
2340         drm_dbg_kms(&i915->drm,
2341                     "VBT signature \"%.*s\", BDB version %d\n",
2342                     (int)sizeof(vbt->signature), vbt->signature, bdb->version);
2343
2344         /* Grab useful general definitions */
2345         parse_general_features(i915, bdb);
2346         parse_general_definitions(i915, bdb);
2347         parse_panel_options(i915, bdb);
2348         parse_panel_dtd(i915, bdb);
2349         parse_lfp_backlight(i915, bdb);
2350         parse_sdvo_panel_data(i915, bdb);
2351         parse_driver_features(i915, bdb);
2352         parse_power_conservation_features(i915, bdb);
2353         parse_edp(i915, bdb);
2354         parse_psr(i915, bdb);
2355         parse_mipi_config(i915, bdb);
2356         parse_mipi_sequence(i915, bdb);
2357
2358         /* Depends on child device list */
2359         parse_compression_parameters(i915, bdb);
2360
2361 out:
2362         if (!vbt) {
2363                 drm_info(&i915->drm,
2364                          "Failed to find VBIOS tables (VBT)\n");
2365                 init_vbt_missing_defaults(i915);
2366         }
2367
2368         /* Further processing on pre-parsed or generated child device data */
2369         parse_sdvo_device_mapping(i915);
2370         parse_ddi_ports(i915);
2371
2372         kfree(oprom_vbt);
2373 }
2374
2375 /**
2376  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
2377  * @i915: i915 device instance
2378  */
2379 void intel_bios_driver_remove(struct drm_i915_private *i915)
2380 {
2381         struct intel_bios_encoder_data *devdata, *n;
2382
2383         list_for_each_entry_safe(devdata, n, &i915->vbt.display_devices, node) {
2384                 list_del(&devdata->node);
2385                 kfree(devdata->dsc);
2386                 kfree(devdata);
2387         }
2388
2389         kfree(i915->vbt.sdvo_lvds_vbt_mode);
2390         i915->vbt.sdvo_lvds_vbt_mode = NULL;
2391         kfree(i915->vbt.lfp_lvds_vbt_mode);
2392         i915->vbt.lfp_lvds_vbt_mode = NULL;
2393         kfree(i915->vbt.dsi.data);
2394         i915->vbt.dsi.data = NULL;
2395         kfree(i915->vbt.dsi.pps);
2396         i915->vbt.dsi.pps = NULL;
2397         kfree(i915->vbt.dsi.config);
2398         i915->vbt.dsi.config = NULL;
2399         kfree(i915->vbt.dsi.deassert_seq);
2400         i915->vbt.dsi.deassert_seq = NULL;
2401 }
2402
2403 /**
2404  * intel_bios_is_tv_present - is integrated TV present in VBT
2405  * @i915: i915 device instance
2406  *
2407  * Return true if TV is present. If no child devices were parsed from VBT,
2408  * assume TV is present.
2409  */
2410 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
2411 {
2412         const struct intel_bios_encoder_data *devdata;
2413         const struct child_device_config *child;
2414
2415         if (!i915->vbt.int_tv_support)
2416                 return false;
2417
2418         if (list_empty(&i915->vbt.display_devices))
2419                 return true;
2420
2421         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2422                 child = &devdata->child;
2423
2424                 /*
2425                  * If the device type is not TV, continue.
2426                  */
2427                 switch (child->device_type) {
2428                 case DEVICE_TYPE_INT_TV:
2429                 case DEVICE_TYPE_TV:
2430                 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
2431                         break;
2432                 default:
2433                         continue;
2434                 }
2435                 /* Only when the addin_offset is non-zero, it is regarded
2436                  * as present.
2437                  */
2438                 if (child->addin_offset)
2439                         return true;
2440         }
2441
2442         return false;
2443 }
2444
2445 /**
2446  * intel_bios_is_lvds_present - is LVDS present in VBT
2447  * @i915:       i915 device instance
2448  * @i2c_pin:    i2c pin for LVDS if present
2449  *
2450  * Return true if LVDS is present. If no child devices were parsed from VBT,
2451  * assume LVDS is present.
2452  */
2453 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
2454 {
2455         const struct intel_bios_encoder_data *devdata;
2456         const struct child_device_config *child;
2457
2458         if (list_empty(&i915->vbt.display_devices))
2459                 return true;
2460
2461         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2462                 child = &devdata->child;
2463
2464                 /* If the device type is not LFP, continue.
2465                  * We have to check both the new identifiers as well as the
2466                  * old for compatibility with some BIOSes.
2467                  */
2468                 if (child->device_type != DEVICE_TYPE_INT_LFP &&
2469                     child->device_type != DEVICE_TYPE_LFP)
2470                         continue;
2471
2472                 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
2473                         *i2c_pin = child->i2c_pin;
2474
2475                 /* However, we cannot trust the BIOS writers to populate
2476                  * the VBT correctly.  Since LVDS requires additional
2477                  * information from AIM blocks, a non-zero addin offset is
2478                  * a good indicator that the LVDS is actually present.
2479                  */
2480                 if (child->addin_offset)
2481                         return true;
2482
2483                 /* But even then some BIOS writers perform some black magic
2484                  * and instantiate the device without reference to any
2485                  * additional data.  Trust that if the VBT was written into
2486                  * the OpRegion then they have validated the LVDS's existence.
2487                  */
2488                 if (i915->opregion.vbt)
2489                         return true;
2490         }
2491
2492         return false;
2493 }
2494
2495 /**
2496  * intel_bios_is_port_present - is the specified digital port present
2497  * @i915:       i915 device instance
2498  * @port:       port to check
2499  *
2500  * Return true if the device in %port is present.
2501  */
2502 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
2503 {
2504         const struct intel_bios_encoder_data *devdata;
2505         const struct child_device_config *child;
2506         static const struct {
2507                 u16 dp, hdmi;
2508         } port_mapping[] = {
2509                 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2510                 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2511                 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2512                 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2513                 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2514         };
2515
2516         if (HAS_DDI(i915)) {
2517                 const struct ddi_vbt_port_info *port_info =
2518                         &i915->vbt.ddi_port_info[port];
2519
2520                 return port_info->devdata;
2521         }
2522
2523         /* FIXME maybe deal with port A as well? */
2524         if (drm_WARN_ON(&i915->drm,
2525                         port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
2526                 return false;
2527
2528         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2529                 child = &devdata->child;
2530
2531                 if ((child->dvo_port == port_mapping[port].dp ||
2532                      child->dvo_port == port_mapping[port].hdmi) &&
2533                     (child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
2534                                            DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
2535                         return true;
2536         }
2537
2538         return false;
2539 }
2540
2541 /**
2542  * intel_bios_is_port_edp - is the device in given port eDP
2543  * @i915:       i915 device instance
2544  * @port:       port to check
2545  *
2546  * Return true if the device in %port is eDP.
2547  */
2548 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
2549 {
2550         const struct intel_bios_encoder_data *devdata;
2551         const struct child_device_config *child;
2552         static const short port_mapping[] = {
2553                 [PORT_B] = DVO_PORT_DPB,
2554                 [PORT_C] = DVO_PORT_DPC,
2555                 [PORT_D] = DVO_PORT_DPD,
2556                 [PORT_E] = DVO_PORT_DPE,
2557                 [PORT_F] = DVO_PORT_DPF,
2558         };
2559
2560         if (HAS_DDI(i915)) {
2561                 const struct intel_bios_encoder_data *devdata;
2562
2563                 devdata = intel_bios_encoder_data_lookup(i915, port);
2564
2565                 return devdata && intel_bios_encoder_supports_edp(devdata);
2566         }
2567
2568         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2569                 child = &devdata->child;
2570
2571                 if (child->dvo_port == port_mapping[port] &&
2572                     (child->device_type & DEVICE_TYPE_eDP_BITS) ==
2573                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
2574                         return true;
2575         }
2576
2577         return false;
2578 }
2579
2580 static bool child_dev_is_dp_dual_mode(const struct child_device_config *child,
2581                                       enum port port)
2582 {
2583         static const struct {
2584                 u16 dp, hdmi;
2585         } port_mapping[] = {
2586                 /*
2587                  * Buggy VBTs may declare DP ports as having
2588                  * HDMI type dvo_port :( So let's check both.
2589                  */
2590                 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2591                 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2592                 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2593                 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2594                 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2595         };
2596
2597         if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
2598                 return false;
2599
2600         if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
2601             (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
2602                 return false;
2603
2604         if (child->dvo_port == port_mapping[port].dp)
2605                 return true;
2606
2607         /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
2608         if (child->dvo_port == port_mapping[port].hdmi &&
2609             child->aux_channel != 0)
2610                 return true;
2611
2612         return false;
2613 }
2614
2615 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
2616                                      enum port port)
2617 {
2618         const struct intel_bios_encoder_data *devdata;
2619
2620         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2621                 if (child_dev_is_dp_dual_mode(&devdata->child, port))
2622                         return true;
2623         }
2624
2625         return false;
2626 }
2627
2628 /**
2629  * intel_bios_is_dsi_present - is DSI present in VBT
2630  * @i915:       i915 device instance
2631  * @port:       port for DSI if present
2632  *
2633  * Return true if DSI is present, and return the port in %port.
2634  */
2635 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
2636                                enum port *port)
2637 {
2638         const struct intel_bios_encoder_data *devdata;
2639         const struct child_device_config *child;
2640         u8 dvo_port;
2641
2642         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2643                 child = &devdata->child;
2644
2645                 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2646                         continue;
2647
2648                 dvo_port = child->dvo_port;
2649
2650                 if (dvo_port == DVO_PORT_MIPIA ||
2651                     (dvo_port == DVO_PORT_MIPIB && INTEL_GEN(i915) >= 11) ||
2652                     (dvo_port == DVO_PORT_MIPIC && INTEL_GEN(i915) < 11)) {
2653                         if (port)
2654                                 *port = dvo_port - DVO_PORT_MIPIA;
2655                         return true;
2656                 } else if (dvo_port == DVO_PORT_MIPIB ||
2657                            dvo_port == DVO_PORT_MIPIC ||
2658                            dvo_port == DVO_PORT_MIPID) {
2659                         drm_dbg_kms(&i915->drm,
2660                                     "VBT has unsupported DSI port %c\n",
2661                                     port_name(dvo_port - DVO_PORT_MIPIA));
2662                 }
2663         }
2664
2665         return false;
2666 }
2667
2668 static void fill_dsc(struct intel_crtc_state *crtc_state,
2669                      struct dsc_compression_parameters_entry *dsc,
2670                      int dsc_max_bpc)
2671 {
2672         struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2673         int bpc = 8;
2674
2675         vdsc_cfg->dsc_version_major = dsc->version_major;
2676         vdsc_cfg->dsc_version_minor = dsc->version_minor;
2677
2678         if (dsc->support_12bpc && dsc_max_bpc >= 12)
2679                 bpc = 12;
2680         else if (dsc->support_10bpc && dsc_max_bpc >= 10)
2681                 bpc = 10;
2682         else if (dsc->support_8bpc && dsc_max_bpc >= 8)
2683                 bpc = 8;
2684         else
2685                 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
2686                               dsc_max_bpc);
2687
2688         crtc_state->pipe_bpp = bpc * 3;
2689
2690         crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
2691                                              VBT_DSC_MAX_BPP(dsc->max_bpp));
2692
2693         /*
2694          * FIXME: This is ugly, and slice count should take DSC engine
2695          * throughput etc. into account.
2696          *
2697          * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
2698          */
2699         if (dsc->slices_per_line & BIT(2)) {
2700                 crtc_state->dsc.slice_count = 4;
2701         } else if (dsc->slices_per_line & BIT(1)) {
2702                 crtc_state->dsc.slice_count = 2;
2703         } else {
2704                 /* FIXME */
2705                 if (!(dsc->slices_per_line & BIT(0)))
2706                         DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
2707
2708                 crtc_state->dsc.slice_count = 1;
2709         }
2710
2711         if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
2712             crtc_state->dsc.slice_count != 0)
2713                 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
2714                               crtc_state->hw.adjusted_mode.crtc_hdisplay,
2715                               crtc_state->dsc.slice_count);
2716
2717         /*
2718          * The VBT rc_buffer_block_size and rc_buffer_size definitions
2719          * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
2720          */
2721         vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
2722                                                             dsc->rc_buffer_size);
2723
2724         /* FIXME: DSI spec says bpc + 1 for this one */
2725         vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
2726
2727         vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
2728
2729         vdsc_cfg->slice_height = dsc->slice_height;
2730 }
2731
2732 /* FIXME: initially DSI specific */
2733 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
2734                                struct intel_crtc_state *crtc_state,
2735                                int dsc_max_bpc)
2736 {
2737         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2738         const struct intel_bios_encoder_data *devdata;
2739         const struct child_device_config *child;
2740
2741         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2742                 child = &devdata->child;
2743
2744                 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2745                         continue;
2746
2747                 if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
2748                         if (!devdata->dsc)
2749                                 return false;
2750
2751                         if (crtc_state)
2752                                 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
2753
2754                         return true;
2755                 }
2756         }
2757
2758         return false;
2759 }
2760
2761 /**
2762  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
2763  * @i915:       i915 device instance
2764  * @port:       port to check
2765  *
2766  * Return true if HPD should be inverted for %port.
2767  */
2768 bool
2769 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
2770                                 enum port port)
2771 {
2772         const struct intel_bios_encoder_data *devdata =
2773                 i915->vbt.ddi_port_info[port].devdata;
2774
2775         if (drm_WARN_ON_ONCE(&i915->drm, !IS_GEN9_LP(i915)))
2776                 return false;
2777
2778         return devdata && devdata->child.hpd_invert;
2779 }
2780
2781 /**
2782  * intel_bios_is_lspcon_present - if LSPCON is attached on %port
2783  * @i915:       i915 device instance
2784  * @port:       port to check
2785  *
2786  * Return true if LSPCON is present on this port
2787  */
2788 bool
2789 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
2790                              enum port port)
2791 {
2792         const struct intel_bios_encoder_data *devdata =
2793                 i915->vbt.ddi_port_info[port].devdata;
2794
2795         return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
2796 }
2797
2798 /**
2799  * intel_bios_is_lane_reversal_needed - if lane reversal needed on port
2800  * @i915:       i915 device instance
2801  * @port:       port to check
2802  *
2803  * Return true if port requires lane reversal
2804  */
2805 bool
2806 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
2807                                    enum port port)
2808 {
2809         const struct intel_bios_encoder_data *devdata =
2810                 i915->vbt.ddi_port_info[port].devdata;
2811
2812         return devdata && devdata->child.lane_reversal;
2813 }
2814
2815 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
2816                                    enum port port)
2817 {
2818         const struct ddi_vbt_port_info *info =
2819                 &i915->vbt.ddi_port_info[port];
2820         enum aux_ch aux_ch;
2821
2822         if (!info->alternate_aux_channel) {
2823                 aux_ch = (enum aux_ch)port;
2824
2825                 drm_dbg_kms(&i915->drm,
2826                             "using AUX %c for port %c (platform default)\n",
2827                             aux_ch_name(aux_ch), port_name(port));
2828                 return aux_ch;
2829         }
2830
2831         /*
2832          * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
2833          * map to DDI A,B,TC1,TC2 respectively.
2834          *
2835          * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
2836          * map to DDI A,TC1,TC2,TC3,TC4 respectively.
2837          */
2838         switch (info->alternate_aux_channel) {
2839         case DP_AUX_A:
2840                 aux_ch = AUX_CH_A;
2841                 break;
2842         case DP_AUX_B:
2843                 if (IS_ALDERLAKE_S(i915))
2844                         aux_ch = AUX_CH_USBC1;
2845                 else
2846                         aux_ch = AUX_CH_B;
2847                 break;
2848         case DP_AUX_C:
2849                 if (IS_ALDERLAKE_S(i915))
2850                         aux_ch = AUX_CH_USBC2;
2851                 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2852                         aux_ch = AUX_CH_USBC1;
2853                 else
2854                         aux_ch = AUX_CH_C;
2855                 break;
2856         case DP_AUX_D:
2857                 if (IS_ALDERLAKE_S(i915))
2858                         aux_ch = AUX_CH_USBC3;
2859                 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2860                         aux_ch = AUX_CH_USBC2;
2861                 else
2862                         aux_ch = AUX_CH_D;
2863                 break;
2864         case DP_AUX_E:
2865                 if (IS_ALDERLAKE_S(i915))
2866                         aux_ch = AUX_CH_USBC4;
2867                 else
2868                         aux_ch = AUX_CH_E;
2869                 break;
2870         case DP_AUX_F:
2871                 aux_ch = AUX_CH_F;
2872                 break;
2873         case DP_AUX_G:
2874                 aux_ch = AUX_CH_G;
2875                 break;
2876         case DP_AUX_H:
2877                 aux_ch = AUX_CH_H;
2878                 break;
2879         case DP_AUX_I:
2880                 aux_ch = AUX_CH_I;
2881                 break;
2882         default:
2883                 MISSING_CASE(info->alternate_aux_channel);
2884                 aux_ch = AUX_CH_A;
2885                 break;
2886         }
2887
2888         drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
2889                     aux_ch_name(aux_ch), port_name(port));
2890
2891         return aux_ch;
2892 }
2893
2894 int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
2895 {
2896         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2897
2898         return i915->vbt.ddi_port_info[encoder->port].max_tmds_clock;
2899 }
2900
2901 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
2902 {
2903         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2904         const struct ddi_vbt_port_info *info =
2905                 &i915->vbt.ddi_port_info[encoder->port];
2906
2907         return info->hdmi_level_shift_set ? info->hdmi_level_shift : -1;
2908 }
2909
2910 int intel_bios_dp_boost_level(struct intel_encoder *encoder)
2911 {
2912         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2913
2914         return i915->vbt.ddi_port_info[encoder->port].dp_boost_level;
2915 }
2916
2917 int intel_bios_hdmi_boost_level(struct intel_encoder *encoder)
2918 {
2919         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2920
2921         return i915->vbt.ddi_port_info[encoder->port].hdmi_boost_level;
2922 }
2923
2924 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
2925 {
2926         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2927
2928         return i915->vbt.ddi_port_info[encoder->port].dp_max_link_rate;
2929 }
2930
2931 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
2932 {
2933         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2934
2935         return i915->vbt.ddi_port_info[encoder->port].alternate_ddc_pin;
2936 }
2937
2938 bool intel_bios_port_supports_typec_usb(struct drm_i915_private *i915,
2939                                         enum port port)
2940 {
2941         return i915->vbt.ddi_port_info[port].supports_typec_usb;
2942 }
2943
2944 bool intel_bios_port_supports_tbt(struct drm_i915_private *i915, enum port port)
2945 {
2946         return i915->vbt.ddi_port_info[port].supports_tbt;
2947 }
2948
2949 const struct intel_bios_encoder_data *
2950 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
2951 {
2952         return i915->vbt.ddi_port_info[port].devdata;
2953 }