m68k: Fix asm register constraints for atomic ops
[sfrench/cifs-2.6.git] / drivers / gpu / drm / i915 / display / intel_bios.c
1 /*
2  * Copyright © 2006 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drm_dp_helper.h>
29
30 #include "display/intel_display.h"
31 #include "display/intel_display_types.h"
32 #include "display/intel_gmbus.h"
33
34 #include "i915_drv.h"
35
36 #define _INTEL_BIOS_PRIVATE
37 #include "intel_vbt_defs.h"
38
39 /**
40  * DOC: Video BIOS Table (VBT)
41  *
42  * The Video BIOS Table, or VBT, provides platform and board specific
43  * configuration information to the driver that is not discoverable or available
44  * through other means. The configuration is mostly related to display
45  * hardware. The VBT is available via the ACPI OpRegion or, on older systems, in
46  * the PCI ROM.
47  *
48  * The VBT consists of a VBT Header (defined as &struct vbt_header), a BDB
49  * Header (&struct bdb_header), and a number of BIOS Data Blocks (BDB) that
50  * contain the actual configuration information. The VBT Header, and thus the
51  * VBT, begins with "$VBT" signature. The VBT Header contains the offset of the
52  * BDB Header. The data blocks are concatenated after the BDB Header. The data
53  * blocks have a 1-byte Block ID, 2-byte Block Size, and Block Size bytes of
54  * data. (Block 53, the MIPI Sequence Block is an exception.)
55  *
56  * The driver parses the VBT during load. The relevant information is stored in
57  * driver private data for ease of use, and the actual VBT is not read after
58  * that.
59  */
60
61 /* Wrapper for VBT child device config */
62 struct intel_bios_encoder_data {
63         struct drm_i915_private *i915;
64
65         struct child_device_config child;
66         struct dsc_compression_parameters_entry *dsc;
67         struct list_head node;
68 };
69
70 #define SLAVE_ADDR1     0x70
71 #define SLAVE_ADDR2     0x72
72
73 /* Get BDB block size given a pointer to Block ID. */
74 static u32 _get_blocksize(const u8 *block_base)
75 {
76         /* The MIPI Sequence Block v3+ has a separate size field. */
77         if (*block_base == BDB_MIPI_SEQUENCE && *(block_base + 3) >= 3)
78                 return *((const u32 *)(block_base + 4));
79         else
80                 return *((const u16 *)(block_base + 1));
81 }
82
83 /* Get BDB block size give a pointer to data after Block ID and Block Size. */
84 static u32 get_blocksize(const void *block_data)
85 {
86         return _get_blocksize(block_data - 3);
87 }
88
89 static const void *
90 find_section(const void *_bdb, enum bdb_block_id section_id)
91 {
92         const struct bdb_header *bdb = _bdb;
93         const u8 *base = _bdb;
94         int index = 0;
95         u32 total, current_size;
96         enum bdb_block_id current_id;
97
98         /* skip to first section */
99         index += bdb->header_size;
100         total = bdb->bdb_size;
101
102         /* walk the sections looking for section_id */
103         while (index + 3 < total) {
104                 current_id = *(base + index);
105                 current_size = _get_blocksize(base + index);
106                 index += 3;
107
108                 if (index + current_size > total)
109                         return NULL;
110
111                 if (current_id == section_id)
112                         return base + index;
113
114                 index += current_size;
115         }
116
117         return NULL;
118 }
119
120 static void
121 fill_detail_timing_data(struct drm_display_mode *panel_fixed_mode,
122                         const struct lvds_dvo_timing *dvo_timing)
123 {
124         panel_fixed_mode->hdisplay = (dvo_timing->hactive_hi << 8) |
125                 dvo_timing->hactive_lo;
126         panel_fixed_mode->hsync_start = panel_fixed_mode->hdisplay +
127                 ((dvo_timing->hsync_off_hi << 8) | dvo_timing->hsync_off_lo);
128         panel_fixed_mode->hsync_end = panel_fixed_mode->hsync_start +
129                 ((dvo_timing->hsync_pulse_width_hi << 8) |
130                         dvo_timing->hsync_pulse_width_lo);
131         panel_fixed_mode->htotal = panel_fixed_mode->hdisplay +
132                 ((dvo_timing->hblank_hi << 8) | dvo_timing->hblank_lo);
133
134         panel_fixed_mode->vdisplay = (dvo_timing->vactive_hi << 8) |
135                 dvo_timing->vactive_lo;
136         panel_fixed_mode->vsync_start = panel_fixed_mode->vdisplay +
137                 ((dvo_timing->vsync_off_hi << 4) | dvo_timing->vsync_off_lo);
138         panel_fixed_mode->vsync_end = panel_fixed_mode->vsync_start +
139                 ((dvo_timing->vsync_pulse_width_hi << 4) |
140                         dvo_timing->vsync_pulse_width_lo);
141         panel_fixed_mode->vtotal = panel_fixed_mode->vdisplay +
142                 ((dvo_timing->vblank_hi << 8) | dvo_timing->vblank_lo);
143         panel_fixed_mode->clock = dvo_timing->clock * 10;
144         panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
145
146         if (dvo_timing->hsync_positive)
147                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
148         else
149                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
150
151         if (dvo_timing->vsync_positive)
152                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
153         else
154                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
155
156         panel_fixed_mode->width_mm = (dvo_timing->himage_hi << 8) |
157                 dvo_timing->himage_lo;
158         panel_fixed_mode->height_mm = (dvo_timing->vimage_hi << 8) |
159                 dvo_timing->vimage_lo;
160
161         /* Some VBTs have bogus h/vtotal values */
162         if (panel_fixed_mode->hsync_end > panel_fixed_mode->htotal)
163                 panel_fixed_mode->htotal = panel_fixed_mode->hsync_end + 1;
164         if (panel_fixed_mode->vsync_end > panel_fixed_mode->vtotal)
165                 panel_fixed_mode->vtotal = panel_fixed_mode->vsync_end + 1;
166
167         drm_mode_set_name(panel_fixed_mode);
168 }
169
170 static const struct lvds_dvo_timing *
171 get_lvds_dvo_timing(const struct bdb_lvds_lfp_data *lvds_lfp_data,
172                     const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs,
173                     int index)
174 {
175         /*
176          * the size of fp_timing varies on the different platform.
177          * So calculate the DVO timing relative offset in LVDS data
178          * entry to get the DVO timing entry
179          */
180
181         int lfp_data_size =
182                 lvds_lfp_data_ptrs->ptr[1].dvo_timing_offset -
183                 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset;
184         int dvo_timing_offset =
185                 lvds_lfp_data_ptrs->ptr[0].dvo_timing_offset -
186                 lvds_lfp_data_ptrs->ptr[0].fp_timing_offset;
187         char *entry = (char *)lvds_lfp_data->data + lfp_data_size * index;
188
189         return (struct lvds_dvo_timing *)(entry + dvo_timing_offset);
190 }
191
192 /* get lvds_fp_timing entry
193  * this function may return NULL if the corresponding entry is invalid
194  */
195 static const struct lvds_fp_timing *
196 get_lvds_fp_timing(const struct bdb_header *bdb,
197                    const struct bdb_lvds_lfp_data *data,
198                    const struct bdb_lvds_lfp_data_ptrs *ptrs,
199                    int index)
200 {
201         size_t data_ofs = (const u8 *)data - (const u8 *)bdb;
202         u16 data_size = ((const u16 *)data)[-1]; /* stored in header */
203         size_t ofs;
204
205         if (index >= ARRAY_SIZE(ptrs->ptr))
206                 return NULL;
207         ofs = ptrs->ptr[index].fp_timing_offset;
208         if (ofs < data_ofs ||
209             ofs + sizeof(struct lvds_fp_timing) > data_ofs + data_size)
210                 return NULL;
211         return (const struct lvds_fp_timing *)((const u8 *)bdb + ofs);
212 }
213
214 /* Parse general panel options */
215 static void
216 parse_panel_options(struct drm_i915_private *i915,
217                     const struct bdb_header *bdb)
218 {
219         const struct bdb_lvds_options *lvds_options;
220         int panel_type;
221         int drrs_mode;
222         int ret;
223
224         lvds_options = find_section(bdb, BDB_LVDS_OPTIONS);
225         if (!lvds_options)
226                 return;
227
228         i915->vbt.lvds_dither = lvds_options->pixel_dither;
229
230         ret = intel_opregion_get_panel_type(i915);
231         if (ret >= 0) {
232                 drm_WARN_ON(&i915->drm, ret > 0xf);
233                 panel_type = ret;
234                 drm_dbg_kms(&i915->drm, "Panel type: %d (OpRegion)\n",
235                             panel_type);
236         } else {
237                 if (lvds_options->panel_type > 0xf) {
238                         drm_dbg_kms(&i915->drm,
239                                     "Invalid VBT panel type 0x%x\n",
240                                     lvds_options->panel_type);
241                         return;
242                 }
243                 panel_type = lvds_options->panel_type;
244                 drm_dbg_kms(&i915->drm, "Panel type: %d (VBT)\n",
245                             panel_type);
246         }
247
248         i915->vbt.panel_type = panel_type;
249
250         drrs_mode = (lvds_options->dps_panel_type_bits
251                                 >> (panel_type * 2)) & MODE_MASK;
252         /*
253          * VBT has static DRRS = 0 and seamless DRRS = 2.
254          * The below piece of code is required to adjust vbt.drrs_type
255          * to match the enum drrs_support_type.
256          */
257         switch (drrs_mode) {
258         case 0:
259                 i915->vbt.drrs_type = STATIC_DRRS_SUPPORT;
260                 drm_dbg_kms(&i915->drm, "DRRS supported mode is static\n");
261                 break;
262         case 2:
263                 i915->vbt.drrs_type = SEAMLESS_DRRS_SUPPORT;
264                 drm_dbg_kms(&i915->drm,
265                             "DRRS supported mode is seamless\n");
266                 break;
267         default:
268                 i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
269                 drm_dbg_kms(&i915->drm,
270                             "DRRS not supported (VBT input)\n");
271                 break;
272         }
273 }
274
275 /* Try to find integrated panel timing data */
276 static void
277 parse_lfp_panel_dtd(struct drm_i915_private *i915,
278                     const struct bdb_header *bdb)
279 {
280         const struct bdb_lvds_lfp_data *lvds_lfp_data;
281         const struct bdb_lvds_lfp_data_ptrs *lvds_lfp_data_ptrs;
282         const struct lvds_dvo_timing *panel_dvo_timing;
283         const struct lvds_fp_timing *fp_timing;
284         struct drm_display_mode *panel_fixed_mode;
285         int panel_type = i915->vbt.panel_type;
286
287         lvds_lfp_data = find_section(bdb, BDB_LVDS_LFP_DATA);
288         if (!lvds_lfp_data)
289                 return;
290
291         lvds_lfp_data_ptrs = find_section(bdb, BDB_LVDS_LFP_DATA_PTRS);
292         if (!lvds_lfp_data_ptrs)
293                 return;
294
295         panel_dvo_timing = get_lvds_dvo_timing(lvds_lfp_data,
296                                                lvds_lfp_data_ptrs,
297                                                panel_type);
298
299         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
300         if (!panel_fixed_mode)
301                 return;
302
303         fill_detail_timing_data(panel_fixed_mode, panel_dvo_timing);
304
305         i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
306
307         drm_dbg_kms(&i915->drm,
308                     "Found panel mode in BIOS VBT legacy lfp table:\n");
309         drm_mode_debug_printmodeline(panel_fixed_mode);
310
311         fp_timing = get_lvds_fp_timing(bdb, lvds_lfp_data,
312                                        lvds_lfp_data_ptrs,
313                                        panel_type);
314         if (fp_timing) {
315                 /* check the resolution, just to be sure */
316                 if (fp_timing->x_res == panel_fixed_mode->hdisplay &&
317                     fp_timing->y_res == panel_fixed_mode->vdisplay) {
318                         i915->vbt.bios_lvds_val = fp_timing->lvds_reg_val;
319                         drm_dbg_kms(&i915->drm,
320                                     "VBT initial LVDS value %x\n",
321                                     i915->vbt.bios_lvds_val);
322                 }
323         }
324 }
325
326 static void
327 parse_generic_dtd(struct drm_i915_private *i915,
328                   const struct bdb_header *bdb)
329 {
330         const struct bdb_generic_dtd *generic_dtd;
331         const struct generic_dtd_entry *dtd;
332         struct drm_display_mode *panel_fixed_mode;
333         int num_dtd;
334
335         generic_dtd = find_section(bdb, BDB_GENERIC_DTD);
336         if (!generic_dtd)
337                 return;
338
339         if (generic_dtd->gdtd_size < sizeof(struct generic_dtd_entry)) {
340                 drm_err(&i915->drm, "GDTD size %u is too small.\n",
341                         generic_dtd->gdtd_size);
342                 return;
343         } else if (generic_dtd->gdtd_size !=
344                    sizeof(struct generic_dtd_entry)) {
345                 drm_err(&i915->drm, "Unexpected GDTD size %u\n",
346                         generic_dtd->gdtd_size);
347                 /* DTD has unknown fields, but keep going */
348         }
349
350         num_dtd = (get_blocksize(generic_dtd) -
351                    sizeof(struct bdb_generic_dtd)) / generic_dtd->gdtd_size;
352         if (i915->vbt.panel_type >= num_dtd) {
353                 drm_err(&i915->drm,
354                         "Panel type %d not found in table of %d DTD's\n",
355                         i915->vbt.panel_type, num_dtd);
356                 return;
357         }
358
359         dtd = &generic_dtd->dtd[i915->vbt.panel_type];
360
361         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
362         if (!panel_fixed_mode)
363                 return;
364
365         panel_fixed_mode->hdisplay = dtd->hactive;
366         panel_fixed_mode->hsync_start =
367                 panel_fixed_mode->hdisplay + dtd->hfront_porch;
368         panel_fixed_mode->hsync_end =
369                 panel_fixed_mode->hsync_start + dtd->hsync;
370         panel_fixed_mode->htotal =
371                 panel_fixed_mode->hdisplay + dtd->hblank;
372
373         panel_fixed_mode->vdisplay = dtd->vactive;
374         panel_fixed_mode->vsync_start =
375                 panel_fixed_mode->vdisplay + dtd->vfront_porch;
376         panel_fixed_mode->vsync_end =
377                 panel_fixed_mode->vsync_start + dtd->vsync;
378         panel_fixed_mode->vtotal =
379                 panel_fixed_mode->vdisplay + dtd->vblank;
380
381         panel_fixed_mode->clock = dtd->pixel_clock;
382         panel_fixed_mode->width_mm = dtd->width_mm;
383         panel_fixed_mode->height_mm = dtd->height_mm;
384
385         panel_fixed_mode->type = DRM_MODE_TYPE_PREFERRED;
386         drm_mode_set_name(panel_fixed_mode);
387
388         if (dtd->hsync_positive_polarity)
389                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PHSYNC;
390         else
391                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NHSYNC;
392
393         if (dtd->vsync_positive_polarity)
394                 panel_fixed_mode->flags |= DRM_MODE_FLAG_PVSYNC;
395         else
396                 panel_fixed_mode->flags |= DRM_MODE_FLAG_NVSYNC;
397
398         drm_dbg_kms(&i915->drm,
399                     "Found panel mode in BIOS VBT generic dtd table:\n");
400         drm_mode_debug_printmodeline(panel_fixed_mode);
401
402         i915->vbt.lfp_lvds_vbt_mode = panel_fixed_mode;
403 }
404
405 static void
406 parse_panel_dtd(struct drm_i915_private *i915,
407                 const struct bdb_header *bdb)
408 {
409         /*
410          * Older VBTs provided provided DTD information for internal displays
411          * through the "LFP panel DTD" block (42).  As of VBT revision 229,
412          * that block is now deprecated and DTD information should be provided
413          * via a newer "generic DTD" block (58).  Just to be safe, we'll
414          * try the new generic DTD block first on VBT >= 229, but still fall
415          * back to trying the old LFP block if that fails.
416          */
417         if (bdb->version >= 229)
418                 parse_generic_dtd(i915, bdb);
419         if (!i915->vbt.lfp_lvds_vbt_mode)
420                 parse_lfp_panel_dtd(i915, bdb);
421 }
422
423 static void
424 parse_lfp_backlight(struct drm_i915_private *i915,
425                     const struct bdb_header *bdb)
426 {
427         const struct bdb_lfp_backlight_data *backlight_data;
428         const struct lfp_backlight_data_entry *entry;
429         int panel_type = i915->vbt.panel_type;
430         u16 level;
431
432         backlight_data = find_section(bdb, BDB_LVDS_BACKLIGHT);
433         if (!backlight_data)
434                 return;
435
436         if (backlight_data->entry_size != sizeof(backlight_data->data[0])) {
437                 drm_dbg_kms(&i915->drm,
438                             "Unsupported backlight data entry size %u\n",
439                             backlight_data->entry_size);
440                 return;
441         }
442
443         entry = &backlight_data->data[panel_type];
444
445         i915->vbt.backlight.present = entry->type == BDB_BACKLIGHT_TYPE_PWM;
446         if (!i915->vbt.backlight.present) {
447                 drm_dbg_kms(&i915->drm,
448                             "PWM backlight not present in VBT (type %u)\n",
449                             entry->type);
450                 return;
451         }
452
453         i915->vbt.backlight.type = INTEL_BACKLIGHT_DISPLAY_DDI;
454         if (bdb->version >= 191 &&
455             get_blocksize(backlight_data) >= sizeof(*backlight_data)) {
456                 const struct lfp_backlight_control_method *method;
457
458                 method = &backlight_data->backlight_control[panel_type];
459                 i915->vbt.backlight.type = method->type;
460                 i915->vbt.backlight.controller = method->controller;
461         }
462
463         i915->vbt.backlight.pwm_freq_hz = entry->pwm_freq_hz;
464         i915->vbt.backlight.active_low_pwm = entry->active_low_pwm;
465
466         if (bdb->version >= 234) {
467                 u16 min_level;
468                 bool scale;
469
470                 level = backlight_data->brightness_level[panel_type].level;
471                 min_level = backlight_data->brightness_min_level[panel_type].level;
472
473                 if (bdb->version >= 236)
474                         scale = backlight_data->brightness_precision_bits[panel_type] == 16;
475                 else
476                         scale = level > 255;
477
478                 if (scale)
479                         min_level = min_level / 255;
480
481                 if (min_level > 255) {
482                         drm_warn(&i915->drm, "Brightness min level > 255\n");
483                         level = 255;
484                 }
485                 i915->vbt.backlight.min_brightness = min_level;
486         } else {
487                 level = backlight_data->level[panel_type];
488                 i915->vbt.backlight.min_brightness = entry->min_brightness;
489         }
490
491         drm_dbg_kms(&i915->drm,
492                     "VBT backlight PWM modulation frequency %u Hz, "
493                     "active %s, min brightness %u, level %u, controller %u\n",
494                     i915->vbt.backlight.pwm_freq_hz,
495                     i915->vbt.backlight.active_low_pwm ? "low" : "high",
496                     i915->vbt.backlight.min_brightness,
497                     level,
498                     i915->vbt.backlight.controller);
499 }
500
501 /* Try to find sdvo panel data */
502 static void
503 parse_sdvo_panel_data(struct drm_i915_private *i915,
504                       const struct bdb_header *bdb)
505 {
506         const struct bdb_sdvo_panel_dtds *dtds;
507         struct drm_display_mode *panel_fixed_mode;
508         int index;
509
510         index = i915->params.vbt_sdvo_panel_type;
511         if (index == -2) {
512                 drm_dbg_kms(&i915->drm,
513                             "Ignore SDVO panel mode from BIOS VBT tables.\n");
514                 return;
515         }
516
517         if (index == -1) {
518                 const struct bdb_sdvo_lvds_options *sdvo_lvds_options;
519
520                 sdvo_lvds_options = find_section(bdb, BDB_SDVO_LVDS_OPTIONS);
521                 if (!sdvo_lvds_options)
522                         return;
523
524                 index = sdvo_lvds_options->panel_type;
525         }
526
527         dtds = find_section(bdb, BDB_SDVO_PANEL_DTDS);
528         if (!dtds)
529                 return;
530
531         panel_fixed_mode = kzalloc(sizeof(*panel_fixed_mode), GFP_KERNEL);
532         if (!panel_fixed_mode)
533                 return;
534
535         fill_detail_timing_data(panel_fixed_mode, &dtds->dtds[index]);
536
537         i915->vbt.sdvo_lvds_vbt_mode = panel_fixed_mode;
538
539         drm_dbg_kms(&i915->drm,
540                     "Found SDVO panel mode in BIOS VBT tables:\n");
541         drm_mode_debug_printmodeline(panel_fixed_mode);
542 }
543
544 static int intel_bios_ssc_frequency(struct drm_i915_private *i915,
545                                     bool alternate)
546 {
547         switch (DISPLAY_VER(i915)) {
548         case 2:
549                 return alternate ? 66667 : 48000;
550         case 3:
551         case 4:
552                 return alternate ? 100000 : 96000;
553         default:
554                 return alternate ? 100000 : 120000;
555         }
556 }
557
558 static void
559 parse_general_features(struct drm_i915_private *i915,
560                        const struct bdb_header *bdb)
561 {
562         const struct bdb_general_features *general;
563
564         general = find_section(bdb, BDB_GENERAL_FEATURES);
565         if (!general)
566                 return;
567
568         i915->vbt.int_tv_support = general->int_tv_support;
569         /* int_crt_support can't be trusted on earlier platforms */
570         if (bdb->version >= 155 &&
571             (HAS_DDI(i915) || IS_VALLEYVIEW(i915)))
572                 i915->vbt.int_crt_support = general->int_crt_support;
573         i915->vbt.lvds_use_ssc = general->enable_ssc;
574         i915->vbt.lvds_ssc_freq =
575                 intel_bios_ssc_frequency(i915, general->ssc_freq);
576         i915->vbt.display_clock_mode = general->display_clock_mode;
577         i915->vbt.fdi_rx_polarity_inverted = general->fdi_rx_polarity_inverted;
578         if (bdb->version >= 181) {
579                 i915->vbt.orientation = general->rotate_180 ?
580                         DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP :
581                         DRM_MODE_PANEL_ORIENTATION_NORMAL;
582         } else {
583                 i915->vbt.orientation = DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
584         }
585         drm_dbg_kms(&i915->drm,
586                     "BDB_GENERAL_FEATURES int_tv_support %d int_crt_support %d lvds_use_ssc %d lvds_ssc_freq %d display_clock_mode %d fdi_rx_polarity_inverted %d\n",
587                     i915->vbt.int_tv_support,
588                     i915->vbt.int_crt_support,
589                     i915->vbt.lvds_use_ssc,
590                     i915->vbt.lvds_ssc_freq,
591                     i915->vbt.display_clock_mode,
592                     i915->vbt.fdi_rx_polarity_inverted);
593 }
594
595 static const struct child_device_config *
596 child_device_ptr(const struct bdb_general_definitions *defs, int i)
597 {
598         return (const void *) &defs->devices[i * defs->child_dev_size];
599 }
600
601 static void
602 parse_sdvo_device_mapping(struct drm_i915_private *i915)
603 {
604         struct sdvo_device_mapping *mapping;
605         const struct intel_bios_encoder_data *devdata;
606         const struct child_device_config *child;
607         int count = 0;
608
609         /*
610          * Only parse SDVO mappings on gens that could have SDVO. This isn't
611          * accurate and doesn't have to be, as long as it's not too strict.
612          */
613         if (!IS_DISPLAY_VER(i915, 3, 7)) {
614                 drm_dbg_kms(&i915->drm, "Skipping SDVO device mapping\n");
615                 return;
616         }
617
618         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
619                 child = &devdata->child;
620
621                 if (child->slave_addr != SLAVE_ADDR1 &&
622                     child->slave_addr != SLAVE_ADDR2) {
623                         /*
624                          * If the slave address is neither 0x70 nor 0x72,
625                          * it is not a SDVO device. Skip it.
626                          */
627                         continue;
628                 }
629                 if (child->dvo_port != DEVICE_PORT_DVOB &&
630                     child->dvo_port != DEVICE_PORT_DVOC) {
631                         /* skip the incorrect SDVO port */
632                         drm_dbg_kms(&i915->drm,
633                                     "Incorrect SDVO port. Skip it\n");
634                         continue;
635                 }
636                 drm_dbg_kms(&i915->drm,
637                             "the SDVO device with slave addr %2x is found on"
638                             " %s port\n",
639                             child->slave_addr,
640                             (child->dvo_port == DEVICE_PORT_DVOB) ?
641                             "SDVOB" : "SDVOC");
642                 mapping = &i915->vbt.sdvo_mappings[child->dvo_port - 1];
643                 if (!mapping->initialized) {
644                         mapping->dvo_port = child->dvo_port;
645                         mapping->slave_addr = child->slave_addr;
646                         mapping->dvo_wiring = child->dvo_wiring;
647                         mapping->ddc_pin = child->ddc_pin;
648                         mapping->i2c_pin = child->i2c_pin;
649                         mapping->initialized = 1;
650                         drm_dbg_kms(&i915->drm,
651                                     "SDVO device: dvo=%x, addr=%x, wiring=%d, ddc_pin=%d, i2c_pin=%d\n",
652                                     mapping->dvo_port, mapping->slave_addr,
653                                     mapping->dvo_wiring, mapping->ddc_pin,
654                                     mapping->i2c_pin);
655                 } else {
656                         drm_dbg_kms(&i915->drm,
657                                     "Maybe one SDVO port is shared by "
658                                     "two SDVO device.\n");
659                 }
660                 if (child->slave2_addr) {
661                         /* Maybe this is a SDVO device with multiple inputs */
662                         /* And the mapping info is not added */
663                         drm_dbg_kms(&i915->drm,
664                                     "there exists the slave2_addr. Maybe this"
665                                     " is a SDVO device with multiple inputs.\n");
666                 }
667                 count++;
668         }
669
670         if (!count) {
671                 /* No SDVO device info is found */
672                 drm_dbg_kms(&i915->drm,
673                             "No SDVO device info is found in VBT\n");
674         }
675 }
676
677 static void
678 parse_driver_features(struct drm_i915_private *i915,
679                       const struct bdb_header *bdb)
680 {
681         const struct bdb_driver_features *driver;
682
683         driver = find_section(bdb, BDB_DRIVER_FEATURES);
684         if (!driver)
685                 return;
686
687         if (DISPLAY_VER(i915) >= 5) {
688                 /*
689                  * Note that we consider BDB_DRIVER_FEATURE_INT_SDVO_LVDS
690                  * to mean "eDP". The VBT spec doesn't agree with that
691                  * interpretation, but real world VBTs seem to.
692                  */
693                 if (driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS)
694                         i915->vbt.int_lvds_support = 0;
695         } else {
696                 /*
697                  * FIXME it's not clear which BDB version has the LVDS config
698                  * bits defined. Revision history in the VBT spec says:
699                  * "0.92 | Add two definitions for VBT value of LVDS Active
700                  *  Config (00b and 11b values defined) | 06/13/2005"
701                  * but does not the specify the BDB version.
702                  *
703                  * So far version 134 (on i945gm) is the oldest VBT observed
704                  * in the wild with the bits correctly populated. Version
705                  * 108 (on i85x) does not have the bits correctly populated.
706                  */
707                 if (bdb->version >= 134 &&
708                     driver->lvds_config != BDB_DRIVER_FEATURE_INT_LVDS &&
709                     driver->lvds_config != BDB_DRIVER_FEATURE_INT_SDVO_LVDS)
710                         i915->vbt.int_lvds_support = 0;
711         }
712
713         if (bdb->version < 228) {
714                 drm_dbg_kms(&i915->drm, "DRRS State Enabled:%d\n",
715                             driver->drrs_enabled);
716                 /*
717                  * If DRRS is not supported, drrs_type has to be set to 0.
718                  * This is because, VBT is configured in such a way that
719                  * static DRRS is 0 and DRRS not supported is represented by
720                  * driver->drrs_enabled=false
721                  */
722                 if (!driver->drrs_enabled)
723                         i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
724
725                 i915->vbt.psr.enable = driver->psr_enabled;
726         }
727 }
728
729 static void
730 parse_power_conservation_features(struct drm_i915_private *i915,
731                                   const struct bdb_header *bdb)
732 {
733         const struct bdb_lfp_power *power;
734         u8 panel_type = i915->vbt.panel_type;
735
736         if (bdb->version < 228)
737                 return;
738
739         power = find_section(bdb, BDB_LFP_POWER);
740         if (!power)
741                 return;
742
743         i915->vbt.psr.enable = power->psr & BIT(panel_type);
744
745         /*
746          * If DRRS is not supported, drrs_type has to be set to 0.
747          * This is because, VBT is configured in such a way that
748          * static DRRS is 0 and DRRS not supported is represented by
749          * power->drrs & BIT(panel_type)=false
750          */
751         if (!(power->drrs & BIT(panel_type)))
752                 i915->vbt.drrs_type = DRRS_NOT_SUPPORTED;
753
754         if (bdb->version >= 232)
755                 i915->vbt.edp.hobl = power->hobl & BIT(panel_type);
756 }
757
758 static void
759 parse_edp(struct drm_i915_private *i915, const struct bdb_header *bdb)
760 {
761         const struct bdb_edp *edp;
762         const struct edp_power_seq *edp_pps;
763         const struct edp_fast_link_params *edp_link_params;
764         int panel_type = i915->vbt.panel_type;
765
766         edp = find_section(bdb, BDB_EDP);
767         if (!edp)
768                 return;
769
770         switch ((edp->color_depth >> (panel_type * 2)) & 3) {
771         case EDP_18BPP:
772                 i915->vbt.edp.bpp = 18;
773                 break;
774         case EDP_24BPP:
775                 i915->vbt.edp.bpp = 24;
776                 break;
777         case EDP_30BPP:
778                 i915->vbt.edp.bpp = 30;
779                 break;
780         }
781
782         /* Get the eDP sequencing and link info */
783         edp_pps = &edp->power_seqs[panel_type];
784         edp_link_params = &edp->fast_link_params[panel_type];
785
786         i915->vbt.edp.pps = *edp_pps;
787
788         switch (edp_link_params->rate) {
789         case EDP_RATE_1_62:
790                 i915->vbt.edp.rate = DP_LINK_BW_1_62;
791                 break;
792         case EDP_RATE_2_7:
793                 i915->vbt.edp.rate = DP_LINK_BW_2_7;
794                 break;
795         default:
796                 drm_dbg_kms(&i915->drm,
797                             "VBT has unknown eDP link rate value %u\n",
798                              edp_link_params->rate);
799                 break;
800         }
801
802         switch (edp_link_params->lanes) {
803         case EDP_LANE_1:
804                 i915->vbt.edp.lanes = 1;
805                 break;
806         case EDP_LANE_2:
807                 i915->vbt.edp.lanes = 2;
808                 break;
809         case EDP_LANE_4:
810                 i915->vbt.edp.lanes = 4;
811                 break;
812         default:
813                 drm_dbg_kms(&i915->drm,
814                             "VBT has unknown eDP lane count value %u\n",
815                             edp_link_params->lanes);
816                 break;
817         }
818
819         switch (edp_link_params->preemphasis) {
820         case EDP_PREEMPHASIS_NONE:
821                 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_0;
822                 break;
823         case EDP_PREEMPHASIS_3_5dB:
824                 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_1;
825                 break;
826         case EDP_PREEMPHASIS_6dB:
827                 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_2;
828                 break;
829         case EDP_PREEMPHASIS_9_5dB:
830                 i915->vbt.edp.preemphasis = DP_TRAIN_PRE_EMPH_LEVEL_3;
831                 break;
832         default:
833                 drm_dbg_kms(&i915->drm,
834                             "VBT has unknown eDP pre-emphasis value %u\n",
835                             edp_link_params->preemphasis);
836                 break;
837         }
838
839         switch (edp_link_params->vswing) {
840         case EDP_VSWING_0_4V:
841                 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_0;
842                 break;
843         case EDP_VSWING_0_6V:
844                 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_1;
845                 break;
846         case EDP_VSWING_0_8V:
847                 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
848                 break;
849         case EDP_VSWING_1_2V:
850                 i915->vbt.edp.vswing = DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
851                 break;
852         default:
853                 drm_dbg_kms(&i915->drm,
854                             "VBT has unknown eDP voltage swing value %u\n",
855                             edp_link_params->vswing);
856                 break;
857         }
858
859         if (bdb->version >= 173) {
860                 u8 vswing;
861
862                 /* Don't read from VBT if module parameter has valid value*/
863                 if (i915->params.edp_vswing) {
864                         i915->vbt.edp.low_vswing =
865                                 i915->params.edp_vswing == 1;
866                 } else {
867                         vswing = (edp->edp_vswing_preemph >> (panel_type * 4)) & 0xF;
868                         i915->vbt.edp.low_vswing = vswing == 0;
869                 }
870         }
871 }
872
873 static void
874 parse_psr(struct drm_i915_private *i915, const struct bdb_header *bdb)
875 {
876         const struct bdb_psr *psr;
877         const struct psr_table *psr_table;
878         int panel_type = i915->vbt.panel_type;
879
880         psr = find_section(bdb, BDB_PSR);
881         if (!psr) {
882                 drm_dbg_kms(&i915->drm, "No PSR BDB found.\n");
883                 return;
884         }
885
886         psr_table = &psr->psr_table[panel_type];
887
888         i915->vbt.psr.full_link = psr_table->full_link;
889         i915->vbt.psr.require_aux_wakeup = psr_table->require_aux_to_wakeup;
890
891         /* Allowed VBT values goes from 0 to 15 */
892         i915->vbt.psr.idle_frames = psr_table->idle_frames < 0 ? 0 :
893                 psr_table->idle_frames > 15 ? 15 : psr_table->idle_frames;
894
895         switch (psr_table->lines_to_wait) {
896         case 0:
897                 i915->vbt.psr.lines_to_wait = PSR_0_LINES_TO_WAIT;
898                 break;
899         case 1:
900                 i915->vbt.psr.lines_to_wait = PSR_1_LINE_TO_WAIT;
901                 break;
902         case 2:
903                 i915->vbt.psr.lines_to_wait = PSR_4_LINES_TO_WAIT;
904                 break;
905         case 3:
906                 i915->vbt.psr.lines_to_wait = PSR_8_LINES_TO_WAIT;
907                 break;
908         default:
909                 drm_dbg_kms(&i915->drm,
910                             "VBT has unknown PSR lines to wait %u\n",
911                             psr_table->lines_to_wait);
912                 break;
913         }
914
915         /*
916          * New psr options 0=500us, 1=100us, 2=2500us, 3=0us
917          * Old decimal value is wake up time in multiples of 100 us.
918          */
919         if (bdb->version >= 205 &&
920             (DISPLAY_VER(i915) >= 9 && !IS_BROXTON(i915))) {
921                 switch (psr_table->tp1_wakeup_time) {
922                 case 0:
923                         i915->vbt.psr.tp1_wakeup_time_us = 500;
924                         break;
925                 case 1:
926                         i915->vbt.psr.tp1_wakeup_time_us = 100;
927                         break;
928                 case 3:
929                         i915->vbt.psr.tp1_wakeup_time_us = 0;
930                         break;
931                 default:
932                         drm_dbg_kms(&i915->drm,
933                                     "VBT tp1 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
934                                     psr_table->tp1_wakeup_time);
935                         fallthrough;
936                 case 2:
937                         i915->vbt.psr.tp1_wakeup_time_us = 2500;
938                         break;
939                 }
940
941                 switch (psr_table->tp2_tp3_wakeup_time) {
942                 case 0:
943                         i915->vbt.psr.tp2_tp3_wakeup_time_us = 500;
944                         break;
945                 case 1:
946                         i915->vbt.psr.tp2_tp3_wakeup_time_us = 100;
947                         break;
948                 case 3:
949                         i915->vbt.psr.tp2_tp3_wakeup_time_us = 0;
950                         break;
951                 default:
952                         drm_dbg_kms(&i915->drm,
953                                     "VBT tp2_tp3 wakeup time value %d is outside range[0-3], defaulting to max value 2500us\n",
954                                     psr_table->tp2_tp3_wakeup_time);
955                         fallthrough;
956                 case 2:
957                         i915->vbt.psr.tp2_tp3_wakeup_time_us = 2500;
958                 break;
959                 }
960         } else {
961                 i915->vbt.psr.tp1_wakeup_time_us = psr_table->tp1_wakeup_time * 100;
962                 i915->vbt.psr.tp2_tp3_wakeup_time_us = psr_table->tp2_tp3_wakeup_time * 100;
963         }
964
965         if (bdb->version >= 226) {
966                 u32 wakeup_time = psr->psr2_tp2_tp3_wakeup_time;
967
968                 wakeup_time = (wakeup_time >> (2 * panel_type)) & 0x3;
969                 switch (wakeup_time) {
970                 case 0:
971                         wakeup_time = 500;
972                         break;
973                 case 1:
974                         wakeup_time = 100;
975                         break;
976                 case 3:
977                         wakeup_time = 50;
978                         break;
979                 default:
980                 case 2:
981                         wakeup_time = 2500;
982                         break;
983                 }
984                 i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = wakeup_time;
985         } else {
986                 /* Reusing PSR1 wakeup time for PSR2 in older VBTs */
987                 i915->vbt.psr.psr2_tp2_tp3_wakeup_time_us = i915->vbt.psr.tp2_tp3_wakeup_time_us;
988         }
989 }
990
991 static void parse_dsi_backlight_ports(struct drm_i915_private *i915,
992                                       u16 version, enum port port)
993 {
994         if (!i915->vbt.dsi.config->dual_link || version < 197) {
995                 i915->vbt.dsi.bl_ports = BIT(port);
996                 if (i915->vbt.dsi.config->cabc_supported)
997                         i915->vbt.dsi.cabc_ports = BIT(port);
998
999                 return;
1000         }
1001
1002         switch (i915->vbt.dsi.config->dl_dcs_backlight_ports) {
1003         case DL_DCS_PORT_A:
1004                 i915->vbt.dsi.bl_ports = BIT(PORT_A);
1005                 break;
1006         case DL_DCS_PORT_C:
1007                 i915->vbt.dsi.bl_ports = BIT(PORT_C);
1008                 break;
1009         default:
1010         case DL_DCS_PORT_A_AND_C:
1011                 i915->vbt.dsi.bl_ports = BIT(PORT_A) | BIT(PORT_C);
1012                 break;
1013         }
1014
1015         if (!i915->vbt.dsi.config->cabc_supported)
1016                 return;
1017
1018         switch (i915->vbt.dsi.config->dl_dcs_cabc_ports) {
1019         case DL_DCS_PORT_A:
1020                 i915->vbt.dsi.cabc_ports = BIT(PORT_A);
1021                 break;
1022         case DL_DCS_PORT_C:
1023                 i915->vbt.dsi.cabc_ports = BIT(PORT_C);
1024                 break;
1025         default:
1026         case DL_DCS_PORT_A_AND_C:
1027                 i915->vbt.dsi.cabc_ports =
1028                                         BIT(PORT_A) | BIT(PORT_C);
1029                 break;
1030         }
1031 }
1032
1033 static void
1034 parse_mipi_config(struct drm_i915_private *i915,
1035                   const struct bdb_header *bdb)
1036 {
1037         const struct bdb_mipi_config *start;
1038         const struct mipi_config *config;
1039         const struct mipi_pps_data *pps;
1040         int panel_type = i915->vbt.panel_type;
1041         enum port port;
1042
1043         /* parse MIPI blocks only if LFP type is MIPI */
1044         if (!intel_bios_is_dsi_present(i915, &port))
1045                 return;
1046
1047         /* Initialize this to undefined indicating no generic MIPI support */
1048         i915->vbt.dsi.panel_id = MIPI_DSI_UNDEFINED_PANEL_ID;
1049
1050         /* Block #40 is already parsed and panel_fixed_mode is
1051          * stored in i915->lfp_lvds_vbt_mode
1052          * resuse this when needed
1053          */
1054
1055         /* Parse #52 for panel index used from panel_type already
1056          * parsed
1057          */
1058         start = find_section(bdb, BDB_MIPI_CONFIG);
1059         if (!start) {
1060                 drm_dbg_kms(&i915->drm, "No MIPI config BDB found");
1061                 return;
1062         }
1063
1064         drm_dbg(&i915->drm, "Found MIPI Config block, panel index = %d\n",
1065                 panel_type);
1066
1067         /*
1068          * get hold of the correct configuration block and pps data as per
1069          * the panel_type as index
1070          */
1071         config = &start->config[panel_type];
1072         pps = &start->pps[panel_type];
1073
1074         /* store as of now full data. Trim when we realise all is not needed */
1075         i915->vbt.dsi.config = kmemdup(config, sizeof(struct mipi_config), GFP_KERNEL);
1076         if (!i915->vbt.dsi.config)
1077                 return;
1078
1079         i915->vbt.dsi.pps = kmemdup(pps, sizeof(struct mipi_pps_data), GFP_KERNEL);
1080         if (!i915->vbt.dsi.pps) {
1081                 kfree(i915->vbt.dsi.config);
1082                 return;
1083         }
1084
1085         parse_dsi_backlight_ports(i915, bdb->version, port);
1086
1087         /* FIXME is the 90 vs. 270 correct? */
1088         switch (config->rotation) {
1089         case ENABLE_ROTATION_0:
1090                 /*
1091                  * Most (all?) VBTs claim 0 degrees despite having
1092                  * an upside down panel, thus we do not trust this.
1093                  */
1094                 i915->vbt.dsi.orientation =
1095                         DRM_MODE_PANEL_ORIENTATION_UNKNOWN;
1096                 break;
1097         case ENABLE_ROTATION_90:
1098                 i915->vbt.dsi.orientation =
1099                         DRM_MODE_PANEL_ORIENTATION_RIGHT_UP;
1100                 break;
1101         case ENABLE_ROTATION_180:
1102                 i915->vbt.dsi.orientation =
1103                         DRM_MODE_PANEL_ORIENTATION_BOTTOM_UP;
1104                 break;
1105         case ENABLE_ROTATION_270:
1106                 i915->vbt.dsi.orientation =
1107                         DRM_MODE_PANEL_ORIENTATION_LEFT_UP;
1108                 break;
1109         }
1110
1111         /* We have mandatory mipi config blocks. Initialize as generic panel */
1112         i915->vbt.dsi.panel_id = MIPI_DSI_GENERIC_PANEL_ID;
1113 }
1114
1115 /* Find the sequence block and size for the given panel. */
1116 static const u8 *
1117 find_panel_sequence_block(const struct bdb_mipi_sequence *sequence,
1118                           u16 panel_id, u32 *seq_size)
1119 {
1120         u32 total = get_blocksize(sequence);
1121         const u8 *data = &sequence->data[0];
1122         u8 current_id;
1123         u32 current_size;
1124         int header_size = sequence->version >= 3 ? 5 : 3;
1125         int index = 0;
1126         int i;
1127
1128         /* skip new block size */
1129         if (sequence->version >= 3)
1130                 data += 4;
1131
1132         for (i = 0; i < MAX_MIPI_CONFIGURATIONS && index < total; i++) {
1133                 if (index + header_size > total) {
1134                         DRM_ERROR("Invalid sequence block (header)\n");
1135                         return NULL;
1136                 }
1137
1138                 current_id = *(data + index);
1139                 if (sequence->version >= 3)
1140                         current_size = *((const u32 *)(data + index + 1));
1141                 else
1142                         current_size = *((const u16 *)(data + index + 1));
1143
1144                 index += header_size;
1145
1146                 if (index + current_size > total) {
1147                         DRM_ERROR("Invalid sequence block\n");
1148                         return NULL;
1149                 }
1150
1151                 if (current_id == panel_id) {
1152                         *seq_size = current_size;
1153                         return data + index;
1154                 }
1155
1156                 index += current_size;
1157         }
1158
1159         DRM_ERROR("Sequence block detected but no valid configuration\n");
1160
1161         return NULL;
1162 }
1163
1164 static int goto_next_sequence(const u8 *data, int index, int total)
1165 {
1166         u16 len;
1167
1168         /* Skip Sequence Byte. */
1169         for (index = index + 1; index < total; index += len) {
1170                 u8 operation_byte = *(data + index);
1171                 index++;
1172
1173                 switch (operation_byte) {
1174                 case MIPI_SEQ_ELEM_END:
1175                         return index;
1176                 case MIPI_SEQ_ELEM_SEND_PKT:
1177                         if (index + 4 > total)
1178                                 return 0;
1179
1180                         len = *((const u16 *)(data + index + 2)) + 4;
1181                         break;
1182                 case MIPI_SEQ_ELEM_DELAY:
1183                         len = 4;
1184                         break;
1185                 case MIPI_SEQ_ELEM_GPIO:
1186                         len = 2;
1187                         break;
1188                 case MIPI_SEQ_ELEM_I2C:
1189                         if (index + 7 > total)
1190                                 return 0;
1191                         len = *(data + index + 6) + 7;
1192                         break;
1193                 default:
1194                         DRM_ERROR("Unknown operation byte\n");
1195                         return 0;
1196                 }
1197         }
1198
1199         return 0;
1200 }
1201
1202 static int goto_next_sequence_v3(const u8 *data, int index, int total)
1203 {
1204         int seq_end;
1205         u16 len;
1206         u32 size_of_sequence;
1207
1208         /*
1209          * Could skip sequence based on Size of Sequence alone, but also do some
1210          * checking on the structure.
1211          */
1212         if (total < 5) {
1213                 DRM_ERROR("Too small sequence size\n");
1214                 return 0;
1215         }
1216
1217         /* Skip Sequence Byte. */
1218         index++;
1219
1220         /*
1221          * Size of Sequence. Excludes the Sequence Byte and the size itself,
1222          * includes MIPI_SEQ_ELEM_END byte, excludes the final MIPI_SEQ_END
1223          * byte.
1224          */
1225         size_of_sequence = *((const u32 *)(data + index));
1226         index += 4;
1227
1228         seq_end = index + size_of_sequence;
1229         if (seq_end > total) {
1230                 DRM_ERROR("Invalid sequence size\n");
1231                 return 0;
1232         }
1233
1234         for (; index < total; index += len) {
1235                 u8 operation_byte = *(data + index);
1236                 index++;
1237
1238                 if (operation_byte == MIPI_SEQ_ELEM_END) {
1239                         if (index != seq_end) {
1240                                 DRM_ERROR("Invalid element structure\n");
1241                                 return 0;
1242                         }
1243                         return index;
1244                 }
1245
1246                 len = *(data + index);
1247                 index++;
1248
1249                 /*
1250                  * FIXME: Would be nice to check elements like for v1/v2 in
1251                  * goto_next_sequence() above.
1252                  */
1253                 switch (operation_byte) {
1254                 case MIPI_SEQ_ELEM_SEND_PKT:
1255                 case MIPI_SEQ_ELEM_DELAY:
1256                 case MIPI_SEQ_ELEM_GPIO:
1257                 case MIPI_SEQ_ELEM_I2C:
1258                 case MIPI_SEQ_ELEM_SPI:
1259                 case MIPI_SEQ_ELEM_PMIC:
1260                         break;
1261                 default:
1262                         DRM_ERROR("Unknown operation byte %u\n",
1263                                   operation_byte);
1264                         break;
1265                 }
1266         }
1267
1268         return 0;
1269 }
1270
1271 /*
1272  * Get len of pre-fixed deassert fragment from a v1 init OTP sequence,
1273  * skip all delay + gpio operands and stop at the first DSI packet op.
1274  */
1275 static int get_init_otp_deassert_fragment_len(struct drm_i915_private *i915)
1276 {
1277         const u8 *data = i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1278         int index, len;
1279
1280         if (drm_WARN_ON(&i915->drm,
1281                         !data || i915->vbt.dsi.seq_version != 1))
1282                 return 0;
1283
1284         /* index = 1 to skip sequence byte */
1285         for (index = 1; data[index] != MIPI_SEQ_ELEM_END; index += len) {
1286                 switch (data[index]) {
1287                 case MIPI_SEQ_ELEM_SEND_PKT:
1288                         return index == 1 ? 0 : index;
1289                 case MIPI_SEQ_ELEM_DELAY:
1290                         len = 5; /* 1 byte for operand + uint32 */
1291                         break;
1292                 case MIPI_SEQ_ELEM_GPIO:
1293                         len = 3; /* 1 byte for op, 1 for gpio_nr, 1 for value */
1294                         break;
1295                 default:
1296                         return 0;
1297                 }
1298         }
1299
1300         return 0;
1301 }
1302
1303 /*
1304  * Some v1 VBT MIPI sequences do the deassert in the init OTP sequence.
1305  * The deassert must be done before calling intel_dsi_device_ready, so for
1306  * these devices we split the init OTP sequence into a deassert sequence and
1307  * the actual init OTP part.
1308  */
1309 static void fixup_mipi_sequences(struct drm_i915_private *i915)
1310 {
1311         u8 *init_otp;
1312         int len;
1313
1314         /* Limit this to VLV for now. */
1315         if (!IS_VALLEYVIEW(i915))
1316                 return;
1317
1318         /* Limit this to v1 vid-mode sequences */
1319         if (i915->vbt.dsi.config->is_cmd_mode ||
1320             i915->vbt.dsi.seq_version != 1)
1321                 return;
1322
1323         /* Only do this if there are otp and assert seqs and no deassert seq */
1324         if (!i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] ||
1325             !i915->vbt.dsi.sequence[MIPI_SEQ_ASSERT_RESET] ||
1326             i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET])
1327                 return;
1328
1329         /* The deassert-sequence ends at the first DSI packet */
1330         len = get_init_otp_deassert_fragment_len(i915);
1331         if (!len)
1332                 return;
1333
1334         drm_dbg_kms(&i915->drm,
1335                     "Using init OTP fragment to deassert reset\n");
1336
1337         /* Copy the fragment, update seq byte and terminate it */
1338         init_otp = (u8 *)i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP];
1339         i915->vbt.dsi.deassert_seq = kmemdup(init_otp, len + 1, GFP_KERNEL);
1340         if (!i915->vbt.dsi.deassert_seq)
1341                 return;
1342         i915->vbt.dsi.deassert_seq[0] = MIPI_SEQ_DEASSERT_RESET;
1343         i915->vbt.dsi.deassert_seq[len] = MIPI_SEQ_ELEM_END;
1344         /* Use the copy for deassert */
1345         i915->vbt.dsi.sequence[MIPI_SEQ_DEASSERT_RESET] =
1346                 i915->vbt.dsi.deassert_seq;
1347         /* Replace the last byte of the fragment with init OTP seq byte */
1348         init_otp[len - 1] = MIPI_SEQ_INIT_OTP;
1349         /* And make MIPI_MIPI_SEQ_INIT_OTP point to it */
1350         i915->vbt.dsi.sequence[MIPI_SEQ_INIT_OTP] = init_otp + len - 1;
1351 }
1352
1353 static void
1354 parse_mipi_sequence(struct drm_i915_private *i915,
1355                     const struct bdb_header *bdb)
1356 {
1357         int panel_type = i915->vbt.panel_type;
1358         const struct bdb_mipi_sequence *sequence;
1359         const u8 *seq_data;
1360         u32 seq_size;
1361         u8 *data;
1362         int index = 0;
1363
1364         /* Only our generic panel driver uses the sequence block. */
1365         if (i915->vbt.dsi.panel_id != MIPI_DSI_GENERIC_PANEL_ID)
1366                 return;
1367
1368         sequence = find_section(bdb, BDB_MIPI_SEQUENCE);
1369         if (!sequence) {
1370                 drm_dbg_kms(&i915->drm,
1371                             "No MIPI Sequence found, parsing complete\n");
1372                 return;
1373         }
1374
1375         /* Fail gracefully for forward incompatible sequence block. */
1376         if (sequence->version >= 4) {
1377                 drm_err(&i915->drm,
1378                         "Unable to parse MIPI Sequence Block v%u\n",
1379                         sequence->version);
1380                 return;
1381         }
1382
1383         drm_dbg(&i915->drm, "Found MIPI sequence block v%u\n",
1384                 sequence->version);
1385
1386         seq_data = find_panel_sequence_block(sequence, panel_type, &seq_size);
1387         if (!seq_data)
1388                 return;
1389
1390         data = kmemdup(seq_data, seq_size, GFP_KERNEL);
1391         if (!data)
1392                 return;
1393
1394         /* Parse the sequences, store pointers to each sequence. */
1395         for (;;) {
1396                 u8 seq_id = *(data + index);
1397                 if (seq_id == MIPI_SEQ_END)
1398                         break;
1399
1400                 if (seq_id >= MIPI_SEQ_MAX) {
1401                         drm_err(&i915->drm, "Unknown sequence %u\n",
1402                                 seq_id);
1403                         goto err;
1404                 }
1405
1406                 /* Log about presence of sequences we won't run. */
1407                 if (seq_id == MIPI_SEQ_TEAR_ON || seq_id == MIPI_SEQ_TEAR_OFF)
1408                         drm_dbg_kms(&i915->drm,
1409                                     "Unsupported sequence %u\n", seq_id);
1410
1411                 i915->vbt.dsi.sequence[seq_id] = data + index;
1412
1413                 if (sequence->version >= 3)
1414                         index = goto_next_sequence_v3(data, index, seq_size);
1415                 else
1416                         index = goto_next_sequence(data, index, seq_size);
1417                 if (!index) {
1418                         drm_err(&i915->drm, "Invalid sequence %u\n",
1419                                 seq_id);
1420                         goto err;
1421                 }
1422         }
1423
1424         i915->vbt.dsi.data = data;
1425         i915->vbt.dsi.size = seq_size;
1426         i915->vbt.dsi.seq_version = sequence->version;
1427
1428         fixup_mipi_sequences(i915);
1429
1430         drm_dbg(&i915->drm, "MIPI related VBT parsing complete\n");
1431         return;
1432
1433 err:
1434         kfree(data);
1435         memset(i915->vbt.dsi.sequence, 0, sizeof(i915->vbt.dsi.sequence));
1436 }
1437
1438 static void
1439 parse_compression_parameters(struct drm_i915_private *i915,
1440                              const struct bdb_header *bdb)
1441 {
1442         const struct bdb_compression_parameters *params;
1443         struct intel_bios_encoder_data *devdata;
1444         const struct child_device_config *child;
1445         u16 block_size;
1446         int index;
1447
1448         if (bdb->version < 198)
1449                 return;
1450
1451         params = find_section(bdb, BDB_COMPRESSION_PARAMETERS);
1452         if (params) {
1453                 /* Sanity checks */
1454                 if (params->entry_size != sizeof(params->data[0])) {
1455                         drm_dbg_kms(&i915->drm,
1456                                     "VBT: unsupported compression param entry size\n");
1457                         return;
1458                 }
1459
1460                 block_size = get_blocksize(params);
1461                 if (block_size < sizeof(*params)) {
1462                         drm_dbg_kms(&i915->drm,
1463                                     "VBT: expected 16 compression param entries\n");
1464                         return;
1465                 }
1466         }
1467
1468         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
1469                 child = &devdata->child;
1470
1471                 if (!child->compression_enable)
1472                         continue;
1473
1474                 if (!params) {
1475                         drm_dbg_kms(&i915->drm,
1476                                     "VBT: compression params not available\n");
1477                         continue;
1478                 }
1479
1480                 if (child->compression_method_cps) {
1481                         drm_dbg_kms(&i915->drm,
1482                                     "VBT: CPS compression not supported\n");
1483                         continue;
1484                 }
1485
1486                 index = child->compression_structure_index;
1487
1488                 devdata->dsc = kmemdup(&params->data[index],
1489                                        sizeof(*devdata->dsc), GFP_KERNEL);
1490         }
1491 }
1492
1493 static u8 translate_iboost(u8 val)
1494 {
1495         static const u8 mapping[] = { 1, 3, 7 }; /* See VBT spec */
1496
1497         if (val >= ARRAY_SIZE(mapping)) {
1498                 DRM_DEBUG_KMS("Unsupported I_boost value found in VBT (%d), display may not work properly\n", val);
1499                 return 0;
1500         }
1501         return mapping[val];
1502 }
1503
1504 static enum port get_port_by_ddc_pin(struct drm_i915_private *i915, u8 ddc_pin)
1505 {
1506         const struct ddi_vbt_port_info *info;
1507         enum port port;
1508
1509         if (!ddc_pin)
1510                 return PORT_NONE;
1511
1512         for_each_port(port) {
1513                 info = &i915->vbt.ddi_port_info[port];
1514
1515                 if (info->devdata && ddc_pin == info->alternate_ddc_pin)
1516                         return port;
1517         }
1518
1519         return PORT_NONE;
1520 }
1521
1522 static void sanitize_ddc_pin(struct drm_i915_private *i915,
1523                              enum port port)
1524 {
1525         struct ddi_vbt_port_info *info = &i915->vbt.ddi_port_info[port];
1526         struct child_device_config *child;
1527         enum port p;
1528
1529         p = get_port_by_ddc_pin(i915, info->alternate_ddc_pin);
1530         if (p == PORT_NONE)
1531                 return;
1532
1533         drm_dbg_kms(&i915->drm,
1534                     "port %c trying to use the same DDC pin (0x%x) as port %c, "
1535                     "disabling port %c DVI/HDMI support\n",
1536                     port_name(port), info->alternate_ddc_pin,
1537                     port_name(p), port_name(p));
1538
1539         /*
1540          * If we have multiple ports supposedly sharing the pin, then dvi/hdmi
1541          * couldn't exist on the shared port. Otherwise they share the same ddc
1542          * pin and system couldn't communicate with them separately.
1543          *
1544          * Give inverse child device order the priority, last one wins. Yes,
1545          * there are real machines (eg. Asrock B250M-HDV) where VBT has both
1546          * port A and port E with the same AUX ch and we must pick port E :(
1547          */
1548         info = &i915->vbt.ddi_port_info[p];
1549         child = &info->devdata->child;
1550
1551         child->device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
1552         child->device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
1553
1554         info->alternate_ddc_pin = 0;
1555 }
1556
1557 static enum port get_port_by_aux_ch(struct drm_i915_private *i915, u8 aux_ch)
1558 {
1559         const struct ddi_vbt_port_info *info;
1560         enum port port;
1561
1562         if (!aux_ch)
1563                 return PORT_NONE;
1564
1565         for_each_port(port) {
1566                 info = &i915->vbt.ddi_port_info[port];
1567
1568                 if (info->devdata && aux_ch == info->alternate_aux_channel)
1569                         return port;
1570         }
1571
1572         return PORT_NONE;
1573 }
1574
1575 static void sanitize_aux_ch(struct drm_i915_private *i915,
1576                             enum port port)
1577 {
1578         struct ddi_vbt_port_info *info = &i915->vbt.ddi_port_info[port];
1579         struct child_device_config *child;
1580         enum port p;
1581
1582         p = get_port_by_aux_ch(i915, info->alternate_aux_channel);
1583         if (p == PORT_NONE)
1584                 return;
1585
1586         drm_dbg_kms(&i915->drm,
1587                     "port %c trying to use the same AUX CH (0x%x) as port %c, "
1588                     "disabling port %c DP support\n",
1589                     port_name(port), info->alternate_aux_channel,
1590                     port_name(p), port_name(p));
1591
1592         /*
1593          * If we have multiple ports supposedly sharing the aux channel, then DP
1594          * couldn't exist on the shared port. Otherwise they share the same aux
1595          * channel and system couldn't communicate with them separately.
1596          *
1597          * Give inverse child device order the priority, last one wins. Yes,
1598          * there are real machines (eg. Asrock B250M-HDV) where VBT has both
1599          * port A and port E with the same AUX ch and we must pick port E :(
1600          */
1601         info = &i915->vbt.ddi_port_info[p];
1602         child = &info->devdata->child;
1603
1604         child->device_type &= ~DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1605         info->alternate_aux_channel = 0;
1606 }
1607
1608 static const u8 cnp_ddc_pin_map[] = {
1609         [0] = 0, /* N/A */
1610         [DDC_BUS_DDI_B] = GMBUS_PIN_1_BXT,
1611         [DDC_BUS_DDI_C] = GMBUS_PIN_2_BXT,
1612         [DDC_BUS_DDI_D] = GMBUS_PIN_4_CNP, /* sic */
1613         [DDC_BUS_DDI_F] = GMBUS_PIN_3_BXT, /* sic */
1614 };
1615
1616 static const u8 icp_ddc_pin_map[] = {
1617         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1618         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1619         [TGL_DDC_BUS_DDI_C] = GMBUS_PIN_3_BXT,
1620         [ICL_DDC_BUS_PORT_1] = GMBUS_PIN_9_TC1_ICP,
1621         [ICL_DDC_BUS_PORT_2] = GMBUS_PIN_10_TC2_ICP,
1622         [ICL_DDC_BUS_PORT_3] = GMBUS_PIN_11_TC3_ICP,
1623         [ICL_DDC_BUS_PORT_4] = GMBUS_PIN_12_TC4_ICP,
1624         [TGL_DDC_BUS_PORT_5] = GMBUS_PIN_13_TC5_TGP,
1625         [TGL_DDC_BUS_PORT_6] = GMBUS_PIN_14_TC6_TGP,
1626 };
1627
1628 static const u8 rkl_pch_tgp_ddc_pin_map[] = {
1629         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1630         [ICL_DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1631         [RKL_DDC_BUS_DDI_D] = GMBUS_PIN_9_TC1_ICP,
1632         [RKL_DDC_BUS_DDI_E] = GMBUS_PIN_10_TC2_ICP,
1633 };
1634
1635 static const u8 adls_ddc_pin_map[] = {
1636         [ICL_DDC_BUS_DDI_A] = GMBUS_PIN_1_BXT,
1637         [ADLS_DDC_BUS_PORT_TC1] = GMBUS_PIN_9_TC1_ICP,
1638         [ADLS_DDC_BUS_PORT_TC2] = GMBUS_PIN_10_TC2_ICP,
1639         [ADLS_DDC_BUS_PORT_TC3] = GMBUS_PIN_11_TC3_ICP,
1640         [ADLS_DDC_BUS_PORT_TC4] = GMBUS_PIN_12_TC4_ICP,
1641 };
1642
1643 static const u8 gen9bc_tgp_ddc_pin_map[] = {
1644         [DDC_BUS_DDI_B] = GMBUS_PIN_2_BXT,
1645         [DDC_BUS_DDI_C] = GMBUS_PIN_9_TC1_ICP,
1646         [DDC_BUS_DDI_D] = GMBUS_PIN_10_TC2_ICP,
1647 };
1648
1649 static u8 map_ddc_pin(struct drm_i915_private *i915, u8 vbt_pin)
1650 {
1651         const u8 *ddc_pin_map;
1652         int n_entries;
1653
1654         if (IS_ALDERLAKE_S(i915)) {
1655                 ddc_pin_map = adls_ddc_pin_map;
1656                 n_entries = ARRAY_SIZE(adls_ddc_pin_map);
1657         } else if (INTEL_PCH_TYPE(i915) >= PCH_DG1) {
1658                 return vbt_pin;
1659         } else if (IS_ROCKETLAKE(i915) && INTEL_PCH_TYPE(i915) == PCH_TGP) {
1660                 ddc_pin_map = rkl_pch_tgp_ddc_pin_map;
1661                 n_entries = ARRAY_SIZE(rkl_pch_tgp_ddc_pin_map);
1662         } else if (HAS_PCH_TGP(i915) && DISPLAY_VER(i915) == 9) {
1663                 ddc_pin_map = gen9bc_tgp_ddc_pin_map;
1664                 n_entries = ARRAY_SIZE(gen9bc_tgp_ddc_pin_map);
1665         } else if (INTEL_PCH_TYPE(i915) >= PCH_ICP) {
1666                 ddc_pin_map = icp_ddc_pin_map;
1667                 n_entries = ARRAY_SIZE(icp_ddc_pin_map);
1668         } else if (HAS_PCH_CNP(i915)) {
1669                 ddc_pin_map = cnp_ddc_pin_map;
1670                 n_entries = ARRAY_SIZE(cnp_ddc_pin_map);
1671         } else {
1672                 /* Assuming direct map */
1673                 return vbt_pin;
1674         }
1675
1676         if (vbt_pin < n_entries && ddc_pin_map[vbt_pin] != 0)
1677                 return ddc_pin_map[vbt_pin];
1678
1679         drm_dbg_kms(&i915->drm,
1680                     "Ignoring alternate pin: VBT claims DDC pin %d, which is not valid for this platform\n",
1681                     vbt_pin);
1682         return 0;
1683 }
1684
1685 static enum port __dvo_port_to_port(int n_ports, int n_dvo,
1686                                     const int port_mapping[][3], u8 dvo_port)
1687 {
1688         enum port port;
1689         int i;
1690
1691         for (port = PORT_A; port < n_ports; port++) {
1692                 for (i = 0; i < n_dvo; i++) {
1693                         if (port_mapping[port][i] == -1)
1694                                 break;
1695
1696                         if (dvo_port == port_mapping[port][i])
1697                                 return port;
1698                 }
1699         }
1700
1701         return PORT_NONE;
1702 }
1703
1704 static enum port dvo_port_to_port(struct drm_i915_private *i915,
1705                                   u8 dvo_port)
1706 {
1707         /*
1708          * Each DDI port can have more than one value on the "DVO Port" field,
1709          * so look for all the possible values for each port.
1710          */
1711         static const int port_mapping[][3] = {
1712                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1713                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1714                 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1715                 [PORT_D] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1716                 [PORT_E] = { DVO_PORT_HDMIE, DVO_PORT_DPE, DVO_PORT_CRT },
1717                 [PORT_F] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
1718                 [PORT_G] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
1719                 [PORT_H] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
1720                 [PORT_I] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
1721         };
1722         /*
1723          * RKL VBT uses PHY based mapping. Combo PHYs A,B,C,D
1724          * map to DDI A,B,TC1,TC2 respectively.
1725          */
1726         static const int rkl_port_mapping[][3] = {
1727                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1728                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1729                 [PORT_C] = { -1 },
1730                 [PORT_TC1] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1731                 [PORT_TC2] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1732         };
1733         /*
1734          * Alderlake S ports used in the driver are PORT_A, PORT_D, PORT_E,
1735          * PORT_F and PORT_G, we need to map that to correct VBT sections.
1736          */
1737         static const int adls_port_mapping[][3] = {
1738                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1739                 [PORT_B] = { -1 },
1740                 [PORT_C] = { -1 },
1741                 [PORT_TC1] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1742                 [PORT_TC2] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1743                 [PORT_TC3] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1744                 [PORT_TC4] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
1745         };
1746         static const int xelpd_port_mapping[][3] = {
1747                 [PORT_A] = { DVO_PORT_HDMIA, DVO_PORT_DPA, -1 },
1748                 [PORT_B] = { DVO_PORT_HDMIB, DVO_PORT_DPB, -1 },
1749                 [PORT_C] = { DVO_PORT_HDMIC, DVO_PORT_DPC, -1 },
1750                 [PORT_D_XELPD] = { DVO_PORT_HDMID, DVO_PORT_DPD, -1 },
1751                 [PORT_E_XELPD] = { DVO_PORT_HDMIE, DVO_PORT_DPE, -1 },
1752                 [PORT_TC1] = { DVO_PORT_HDMIF, DVO_PORT_DPF, -1 },
1753                 [PORT_TC2] = { DVO_PORT_HDMIG, DVO_PORT_DPG, -1 },
1754                 [PORT_TC3] = { DVO_PORT_HDMIH, DVO_PORT_DPH, -1 },
1755                 [PORT_TC4] = { DVO_PORT_HDMII, DVO_PORT_DPI, -1 },
1756         };
1757
1758         if (DISPLAY_VER(i915) == 13)
1759                 return __dvo_port_to_port(ARRAY_SIZE(xelpd_port_mapping),
1760                                           ARRAY_SIZE(xelpd_port_mapping[0]),
1761                                           xelpd_port_mapping,
1762                                           dvo_port);
1763         else if (IS_ALDERLAKE_S(i915))
1764                 return __dvo_port_to_port(ARRAY_SIZE(adls_port_mapping),
1765                                           ARRAY_SIZE(adls_port_mapping[0]),
1766                                           adls_port_mapping,
1767                                           dvo_port);
1768         else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
1769                 return __dvo_port_to_port(ARRAY_SIZE(rkl_port_mapping),
1770                                           ARRAY_SIZE(rkl_port_mapping[0]),
1771                                           rkl_port_mapping,
1772                                           dvo_port);
1773         else
1774                 return __dvo_port_to_port(ARRAY_SIZE(port_mapping),
1775                                           ARRAY_SIZE(port_mapping[0]),
1776                                           port_mapping,
1777                                           dvo_port);
1778 }
1779
1780 static int parse_bdb_230_dp_max_link_rate(const int vbt_max_link_rate)
1781 {
1782         switch (vbt_max_link_rate) {
1783         default:
1784         case BDB_230_VBT_DP_MAX_LINK_RATE_DEF:
1785                 return 0;
1786         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR20:
1787                 return 2000000;
1788         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR13P5:
1789                 return 1350000;
1790         case BDB_230_VBT_DP_MAX_LINK_RATE_UHBR10:
1791                 return 1000000;
1792         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR3:
1793                 return 810000;
1794         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR2:
1795                 return 540000;
1796         case BDB_230_VBT_DP_MAX_LINK_RATE_HBR:
1797                 return 270000;
1798         case BDB_230_VBT_DP_MAX_LINK_RATE_LBR:
1799                 return 162000;
1800         }
1801 }
1802
1803 static int parse_bdb_216_dp_max_link_rate(const int vbt_max_link_rate)
1804 {
1805         switch (vbt_max_link_rate) {
1806         default:
1807         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR3:
1808                 return 810000;
1809         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR2:
1810                 return 540000;
1811         case BDB_216_VBT_DP_MAX_LINK_RATE_HBR:
1812                 return 270000;
1813         case BDB_216_VBT_DP_MAX_LINK_RATE_LBR:
1814                 return 162000;
1815         }
1816 }
1817
1818 static void sanitize_device_type(struct intel_bios_encoder_data *devdata,
1819                                  enum port port)
1820 {
1821         struct drm_i915_private *i915 = devdata->i915;
1822         bool is_hdmi;
1823
1824         if (port != PORT_A || DISPLAY_VER(i915) >= 12)
1825                 return;
1826
1827         if (!(devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING))
1828                 return;
1829
1830         is_hdmi = !(devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT);
1831
1832         drm_dbg_kms(&i915->drm, "VBT claims port A supports DVI%s, ignoring\n",
1833                     is_hdmi ? "/HDMI" : "");
1834
1835         devdata->child.device_type &= ~DEVICE_TYPE_TMDS_DVI_SIGNALING;
1836         devdata->child.device_type |= DEVICE_TYPE_NOT_HDMI_OUTPUT;
1837 }
1838
1839 static bool
1840 intel_bios_encoder_supports_crt(const struct intel_bios_encoder_data *devdata)
1841 {
1842         return devdata->child.device_type & DEVICE_TYPE_ANALOG_OUTPUT;
1843 }
1844
1845 bool
1846 intel_bios_encoder_supports_dvi(const struct intel_bios_encoder_data *devdata)
1847 {
1848         return devdata->child.device_type & DEVICE_TYPE_TMDS_DVI_SIGNALING;
1849 }
1850
1851 bool
1852 intel_bios_encoder_supports_hdmi(const struct intel_bios_encoder_data *devdata)
1853 {
1854         return intel_bios_encoder_supports_dvi(devdata) &&
1855                 (devdata->child.device_type & DEVICE_TYPE_NOT_HDMI_OUTPUT) == 0;
1856 }
1857
1858 bool
1859 intel_bios_encoder_supports_dp(const struct intel_bios_encoder_data *devdata)
1860 {
1861         return devdata->child.device_type & DEVICE_TYPE_DISPLAYPORT_OUTPUT;
1862 }
1863
1864 static bool
1865 intel_bios_encoder_supports_edp(const struct intel_bios_encoder_data *devdata)
1866 {
1867         return intel_bios_encoder_supports_dp(devdata) &&
1868                 devdata->child.device_type & DEVICE_TYPE_INTERNAL_CONNECTOR;
1869 }
1870
1871 static bool is_port_valid(struct drm_i915_private *i915, enum port port)
1872 {
1873         /*
1874          * On some ICL/CNL SKUs port F is not present, but broken VBTs mark
1875          * the port as present. Only try to initialize port F for the
1876          * SKUs that may actually have it.
1877          */
1878         if (port == PORT_F && (IS_ICELAKE(i915) || IS_CANNONLAKE(i915)))
1879                 return IS_ICL_WITH_PORT_F(i915) || IS_CNL_WITH_PORT_F(i915);
1880
1881         return true;
1882 }
1883
1884 static void parse_ddi_port(struct drm_i915_private *i915,
1885                            struct intel_bios_encoder_data *devdata)
1886 {
1887         const struct child_device_config *child = &devdata->child;
1888         struct ddi_vbt_port_info *info;
1889         bool is_dvi, is_hdmi, is_dp, is_edp, is_crt, supports_typec_usb, supports_tbt;
1890         int dp_boost_level, hdmi_boost_level;
1891         enum port port;
1892
1893         port = dvo_port_to_port(i915, child->dvo_port);
1894         if (port == PORT_NONE)
1895                 return;
1896
1897         if (!is_port_valid(i915, port)) {
1898                 drm_dbg_kms(&i915->drm,
1899                             "VBT reports port %c as supported, but that can't be true: skipping\n",
1900                             port_name(port));
1901                 return;
1902         }
1903
1904         info = &i915->vbt.ddi_port_info[port];
1905
1906         if (info->devdata) {
1907                 drm_dbg_kms(&i915->drm,
1908                             "More than one child device for port %c in VBT, using the first.\n",
1909                             port_name(port));
1910                 return;
1911         }
1912
1913         sanitize_device_type(devdata, port);
1914
1915         is_dvi = intel_bios_encoder_supports_dvi(devdata);
1916         is_dp = intel_bios_encoder_supports_dp(devdata);
1917         is_crt = intel_bios_encoder_supports_crt(devdata);
1918         is_hdmi = intel_bios_encoder_supports_hdmi(devdata);
1919         is_edp = intel_bios_encoder_supports_edp(devdata);
1920
1921         supports_typec_usb = intel_bios_encoder_supports_typec_usb(devdata);
1922         supports_tbt = intel_bios_encoder_supports_tbt(devdata);
1923
1924         drm_dbg_kms(&i915->drm,
1925                     "Port %c VBT info: CRT:%d DVI:%d HDMI:%d DP:%d eDP:%d LSPCON:%d USB-Type-C:%d TBT:%d DSC:%d\n",
1926                     port_name(port), is_crt, is_dvi, is_hdmi, is_dp, is_edp,
1927                     HAS_LSPCON(i915) && child->lspcon,
1928                     supports_typec_usb, supports_tbt,
1929                     devdata->dsc != NULL);
1930
1931         if (is_dvi) {
1932                 u8 ddc_pin;
1933
1934                 ddc_pin = map_ddc_pin(i915, child->ddc_pin);
1935                 if (intel_gmbus_is_valid_pin(i915, ddc_pin)) {
1936                         info->alternate_ddc_pin = ddc_pin;
1937                         sanitize_ddc_pin(i915, port);
1938                 } else {
1939                         drm_dbg_kms(&i915->drm,
1940                                     "Port %c has invalid DDC pin %d, "
1941                                     "sticking to defaults\n",
1942                                     port_name(port), ddc_pin);
1943                 }
1944         }
1945
1946         if (is_dp) {
1947                 info->alternate_aux_channel = child->aux_channel;
1948
1949                 sanitize_aux_ch(i915, port);
1950         }
1951
1952         if (i915->vbt.version >= 158) {
1953                 /* The VBT HDMI level shift values match the table we have. */
1954                 u8 hdmi_level_shift = child->hdmi_level_shifter_value;
1955                 drm_dbg_kms(&i915->drm,
1956                             "Port %c VBT HDMI level shift: %d\n",
1957                             port_name(port),
1958                             hdmi_level_shift);
1959                 info->hdmi_level_shift = hdmi_level_shift;
1960                 info->hdmi_level_shift_set = true;
1961         }
1962
1963         if (i915->vbt.version >= 204) {
1964                 int max_tmds_clock;
1965
1966                 switch (child->hdmi_max_data_rate) {
1967                 default:
1968                         MISSING_CASE(child->hdmi_max_data_rate);
1969                         fallthrough;
1970                 case HDMI_MAX_DATA_RATE_PLATFORM:
1971                         max_tmds_clock = 0;
1972                         break;
1973                 case HDMI_MAX_DATA_RATE_297:
1974                         max_tmds_clock = 297000;
1975                         break;
1976                 case HDMI_MAX_DATA_RATE_165:
1977                         max_tmds_clock = 165000;
1978                         break;
1979                 }
1980
1981                 if (max_tmds_clock)
1982                         drm_dbg_kms(&i915->drm,
1983                                     "Port %c VBT HDMI max TMDS clock: %d kHz\n",
1984                                     port_name(port), max_tmds_clock);
1985                 info->max_tmds_clock = max_tmds_clock;
1986         }
1987
1988         /* I_boost config for SKL and above */
1989         dp_boost_level = intel_bios_encoder_dp_boost_level(devdata);
1990         if (dp_boost_level)
1991                 drm_dbg_kms(&i915->drm,
1992                             "Port %c VBT (e)DP boost level: %d\n",
1993                             port_name(port), dp_boost_level);
1994
1995         hdmi_boost_level = intel_bios_encoder_hdmi_boost_level(devdata);
1996         if (hdmi_boost_level)
1997                 drm_dbg_kms(&i915->drm,
1998                             "Port %c VBT HDMI boost level: %d\n",
1999                             port_name(port), hdmi_boost_level);
2000
2001         /* DP max link rate for CNL+ */
2002         if (i915->vbt.version >= 216) {
2003                 if (i915->vbt.version >= 230)
2004                         info->dp_max_link_rate = parse_bdb_230_dp_max_link_rate(child->dp_max_link_rate);
2005                 else
2006                         info->dp_max_link_rate = parse_bdb_216_dp_max_link_rate(child->dp_max_link_rate);
2007
2008                 drm_dbg_kms(&i915->drm,
2009                             "Port %c VBT DP max link rate: %d\n",
2010                             port_name(port), info->dp_max_link_rate);
2011         }
2012
2013         info->devdata = devdata;
2014 }
2015
2016 static void parse_ddi_ports(struct drm_i915_private *i915)
2017 {
2018         struct intel_bios_encoder_data *devdata;
2019
2020         if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2021                 return;
2022
2023         if (i915->vbt.version < 155)
2024                 return;
2025
2026         list_for_each_entry(devdata, &i915->vbt.display_devices, node)
2027                 parse_ddi_port(i915, devdata);
2028 }
2029
2030 static void
2031 parse_general_definitions(struct drm_i915_private *i915,
2032                           const struct bdb_header *bdb)
2033 {
2034         const struct bdb_general_definitions *defs;
2035         struct intel_bios_encoder_data *devdata;
2036         const struct child_device_config *child;
2037         int i, child_device_num;
2038         u8 expected_size;
2039         u16 block_size;
2040         int bus_pin;
2041
2042         defs = find_section(bdb, BDB_GENERAL_DEFINITIONS);
2043         if (!defs) {
2044                 drm_dbg_kms(&i915->drm,
2045                             "No general definition block is found, no devices defined.\n");
2046                 return;
2047         }
2048
2049         block_size = get_blocksize(defs);
2050         if (block_size < sizeof(*defs)) {
2051                 drm_dbg_kms(&i915->drm,
2052                             "General definitions block too small (%u)\n",
2053                             block_size);
2054                 return;
2055         }
2056
2057         bus_pin = defs->crt_ddc_gmbus_pin;
2058         drm_dbg_kms(&i915->drm, "crt_ddc_bus_pin: %d\n", bus_pin);
2059         if (intel_gmbus_is_valid_pin(i915, bus_pin))
2060                 i915->vbt.crt_ddc_pin = bus_pin;
2061
2062         if (bdb->version < 106) {
2063                 expected_size = 22;
2064         } else if (bdb->version < 111) {
2065                 expected_size = 27;
2066         } else if (bdb->version < 195) {
2067                 expected_size = LEGACY_CHILD_DEVICE_CONFIG_SIZE;
2068         } else if (bdb->version == 195) {
2069                 expected_size = 37;
2070         } else if (bdb->version <= 215) {
2071                 expected_size = 38;
2072         } else if (bdb->version <= 237) {
2073                 expected_size = 39;
2074         } else {
2075                 expected_size = sizeof(*child);
2076                 BUILD_BUG_ON(sizeof(*child) < 39);
2077                 drm_dbg(&i915->drm,
2078                         "Expected child device config size for VBT version %u not known; assuming %u\n",
2079                         bdb->version, expected_size);
2080         }
2081
2082         /* Flag an error for unexpected size, but continue anyway. */
2083         if (defs->child_dev_size != expected_size)
2084                 drm_err(&i915->drm,
2085                         "Unexpected child device config size %u (expected %u for VBT version %u)\n",
2086                         defs->child_dev_size, expected_size, bdb->version);
2087
2088         /* The legacy sized child device config is the minimum we need. */
2089         if (defs->child_dev_size < LEGACY_CHILD_DEVICE_CONFIG_SIZE) {
2090                 drm_dbg_kms(&i915->drm,
2091                             "Child device config size %u is too small.\n",
2092                             defs->child_dev_size);
2093                 return;
2094         }
2095
2096         /* get the number of child device */
2097         child_device_num = (block_size - sizeof(*defs)) / defs->child_dev_size;
2098
2099         for (i = 0; i < child_device_num; i++) {
2100                 child = child_device_ptr(defs, i);
2101                 if (!child->device_type)
2102                         continue;
2103
2104                 drm_dbg_kms(&i915->drm,
2105                             "Found VBT child device with type 0x%x\n",
2106                             child->device_type);
2107
2108                 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2109                 if (!devdata)
2110                         break;
2111
2112                 devdata->i915 = i915;
2113
2114                 /*
2115                  * Copy as much as we know (sizeof) and is available
2116                  * (child_dev_size) of the child device config. Accessing the
2117                  * data must depend on VBT version.
2118                  */
2119                 memcpy(&devdata->child, child,
2120                        min_t(size_t, defs->child_dev_size, sizeof(*child)));
2121
2122                 list_add_tail(&devdata->node, &i915->vbt.display_devices);
2123         }
2124
2125         if (list_empty(&i915->vbt.display_devices))
2126                 drm_dbg_kms(&i915->drm,
2127                             "no child dev is parsed from VBT\n");
2128 }
2129
2130 /* Common defaults which may be overridden by VBT. */
2131 static void
2132 init_vbt_defaults(struct drm_i915_private *i915)
2133 {
2134         i915->vbt.crt_ddc_pin = GMBUS_PIN_VGADDC;
2135
2136         /* Default to having backlight */
2137         i915->vbt.backlight.present = true;
2138
2139         /* LFP panel data */
2140         i915->vbt.lvds_dither = 1;
2141
2142         /* SDVO panel data */
2143         i915->vbt.sdvo_lvds_vbt_mode = NULL;
2144
2145         /* general features */
2146         i915->vbt.int_tv_support = 1;
2147         i915->vbt.int_crt_support = 1;
2148
2149         /* driver features */
2150         i915->vbt.int_lvds_support = 1;
2151
2152         /* Default to using SSC */
2153         i915->vbt.lvds_use_ssc = 1;
2154         /*
2155          * Core/SandyBridge/IvyBridge use alternative (120MHz) reference
2156          * clock for LVDS.
2157          */
2158         i915->vbt.lvds_ssc_freq = intel_bios_ssc_frequency(i915,
2159                                                            !HAS_PCH_SPLIT(i915));
2160         drm_dbg_kms(&i915->drm, "Set default to SSC at %d kHz\n",
2161                     i915->vbt.lvds_ssc_freq);
2162 }
2163
2164 /* Defaults to initialize only if there is no VBT. */
2165 static void
2166 init_vbt_missing_defaults(struct drm_i915_private *i915)
2167 {
2168         enum port port;
2169         int ports = PORT_A | PORT_B | PORT_C | PORT_D | PORT_E | PORT_F;
2170
2171         if (!HAS_DDI(i915) && !IS_CHERRYVIEW(i915))
2172                 return;
2173
2174         for_each_port_masked(port, ports) {
2175                 struct intel_bios_encoder_data *devdata;
2176                 struct child_device_config *child;
2177                 enum phy phy = intel_port_to_phy(i915, port);
2178
2179                 /*
2180                  * VBT has the TypeC mode (native,TBT/USB) and we don't want
2181                  * to detect it.
2182                  */
2183                 if (intel_phy_is_tc(i915, phy))
2184                         continue;
2185
2186                 /* Create fake child device config */
2187                 devdata = kzalloc(sizeof(*devdata), GFP_KERNEL);
2188                 if (!devdata)
2189                         break;
2190
2191                 devdata->i915 = i915;
2192                 child = &devdata->child;
2193
2194                 if (port == PORT_F)
2195                         child->dvo_port = DVO_PORT_HDMIF;
2196                 else if (port == PORT_E)
2197                         child->dvo_port = DVO_PORT_HDMIE;
2198                 else
2199                         child->dvo_port = DVO_PORT_HDMIA + port;
2200
2201                 if (port != PORT_A && port != PORT_E)
2202                         child->device_type |= DEVICE_TYPE_TMDS_DVI_SIGNALING;
2203
2204                 if (port != PORT_E)
2205                         child->device_type |= DEVICE_TYPE_DISPLAYPORT_OUTPUT;
2206
2207                 if (port == PORT_A)
2208                         child->device_type |= DEVICE_TYPE_INTERNAL_CONNECTOR;
2209
2210                 list_add_tail(&devdata->node, &i915->vbt.display_devices);
2211
2212                 drm_dbg_kms(&i915->drm,
2213                             "Generating default VBT child device with type 0x04%x on port %c\n",
2214                             child->device_type, port_name(port));
2215         }
2216
2217         /* Bypass some minimum baseline VBT version checks */
2218         i915->vbt.version = 155;
2219 }
2220
2221 static const struct bdb_header *get_bdb_header(const struct vbt_header *vbt)
2222 {
2223         const void *_vbt = vbt;
2224
2225         return _vbt + vbt->bdb_offset;
2226 }
2227
2228 /**
2229  * intel_bios_is_valid_vbt - does the given buffer contain a valid VBT
2230  * @buf:        pointer to a buffer to validate
2231  * @size:       size of the buffer
2232  *
2233  * Returns true on valid VBT.
2234  */
2235 bool intel_bios_is_valid_vbt(const void *buf, size_t size)
2236 {
2237         const struct vbt_header *vbt = buf;
2238         const struct bdb_header *bdb;
2239
2240         if (!vbt)
2241                 return false;
2242
2243         if (sizeof(struct vbt_header) > size) {
2244                 DRM_DEBUG_DRIVER("VBT header incomplete\n");
2245                 return false;
2246         }
2247
2248         if (memcmp(vbt->signature, "$VBT", 4)) {
2249                 DRM_DEBUG_DRIVER("VBT invalid signature\n");
2250                 return false;
2251         }
2252
2253         if (vbt->vbt_size > size) {
2254                 DRM_DEBUG_DRIVER("VBT incomplete (vbt_size overflows)\n");
2255                 return false;
2256         }
2257
2258         size = vbt->vbt_size;
2259
2260         if (range_overflows_t(size_t,
2261                               vbt->bdb_offset,
2262                               sizeof(struct bdb_header),
2263                               size)) {
2264                 DRM_DEBUG_DRIVER("BDB header incomplete\n");
2265                 return false;
2266         }
2267
2268         bdb = get_bdb_header(vbt);
2269         if (range_overflows_t(size_t, vbt->bdb_offset, bdb->bdb_size, size)) {
2270                 DRM_DEBUG_DRIVER("BDB incomplete\n");
2271                 return false;
2272         }
2273
2274         return vbt;
2275 }
2276
2277 static struct vbt_header *oprom_get_vbt(struct drm_i915_private *i915)
2278 {
2279         struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
2280         void __iomem *p = NULL, *oprom;
2281         struct vbt_header *vbt;
2282         u16 vbt_size;
2283         size_t i, size;
2284
2285         oprom = pci_map_rom(pdev, &size);
2286         if (!oprom)
2287                 return NULL;
2288
2289         /* Scour memory looking for the VBT signature. */
2290         for (i = 0; i + 4 < size; i += 4) {
2291                 if (ioread32(oprom + i) != *((const u32 *)"$VBT"))
2292                         continue;
2293
2294                 p = oprom + i;
2295                 size -= i;
2296                 break;
2297         }
2298
2299         if (!p)
2300                 goto err_unmap_oprom;
2301
2302         if (sizeof(struct vbt_header) > size) {
2303                 drm_dbg(&i915->drm, "VBT header incomplete\n");
2304                 goto err_unmap_oprom;
2305         }
2306
2307         vbt_size = ioread16(p + offsetof(struct vbt_header, vbt_size));
2308         if (vbt_size > size) {
2309                 drm_dbg(&i915->drm,
2310                         "VBT incomplete (vbt_size overflows)\n");
2311                 goto err_unmap_oprom;
2312         }
2313
2314         /* The rest will be validated by intel_bios_is_valid_vbt() */
2315         vbt = kmalloc(vbt_size, GFP_KERNEL);
2316         if (!vbt)
2317                 goto err_unmap_oprom;
2318
2319         memcpy_fromio(vbt, p, vbt_size);
2320
2321         if (!intel_bios_is_valid_vbt(vbt, vbt_size))
2322                 goto err_free_vbt;
2323
2324         pci_unmap_rom(pdev, oprom);
2325
2326         return vbt;
2327
2328 err_free_vbt:
2329         kfree(vbt);
2330 err_unmap_oprom:
2331         pci_unmap_rom(pdev, oprom);
2332
2333         return NULL;
2334 }
2335
2336 /**
2337  * intel_bios_init - find VBT and initialize settings from the BIOS
2338  * @i915: i915 device instance
2339  *
2340  * Parse and initialize settings from the Video BIOS Tables (VBT). If the VBT
2341  * was not found in ACPI OpRegion, try to find it in PCI ROM first. Also
2342  * initialize some defaults if the VBT is not present at all.
2343  */
2344 void intel_bios_init(struct drm_i915_private *i915)
2345 {
2346         const struct vbt_header *vbt = i915->opregion.vbt;
2347         struct vbt_header *oprom_vbt = NULL;
2348         const struct bdb_header *bdb;
2349
2350         INIT_LIST_HEAD(&i915->vbt.display_devices);
2351
2352         if (!HAS_DISPLAY(i915)) {
2353                 drm_dbg_kms(&i915->drm,
2354                             "Skipping VBT init due to disabled display.\n");
2355                 return;
2356         }
2357
2358         init_vbt_defaults(i915);
2359
2360         /* If the OpRegion does not have VBT, look in PCI ROM. */
2361         if (!vbt) {
2362                 oprom_vbt = oprom_get_vbt(i915);
2363                 if (!oprom_vbt)
2364                         goto out;
2365
2366                 vbt = oprom_vbt;
2367
2368                 drm_dbg_kms(&i915->drm, "Found valid VBT in PCI ROM\n");
2369         }
2370
2371         bdb = get_bdb_header(vbt);
2372         i915->vbt.version = bdb->version;
2373
2374         drm_dbg_kms(&i915->drm,
2375                     "VBT signature \"%.*s\", BDB version %d\n",
2376                     (int)sizeof(vbt->signature), vbt->signature, bdb->version);
2377
2378         /* Grab useful general definitions */
2379         parse_general_features(i915, bdb);
2380         parse_general_definitions(i915, bdb);
2381         parse_panel_options(i915, bdb);
2382         parse_panel_dtd(i915, bdb);
2383         parse_lfp_backlight(i915, bdb);
2384         parse_sdvo_panel_data(i915, bdb);
2385         parse_driver_features(i915, bdb);
2386         parse_power_conservation_features(i915, bdb);
2387         parse_edp(i915, bdb);
2388         parse_psr(i915, bdb);
2389         parse_mipi_config(i915, bdb);
2390         parse_mipi_sequence(i915, bdb);
2391
2392         /* Depends on child device list */
2393         parse_compression_parameters(i915, bdb);
2394
2395 out:
2396         if (!vbt) {
2397                 drm_info(&i915->drm,
2398                          "Failed to find VBIOS tables (VBT)\n");
2399                 init_vbt_missing_defaults(i915);
2400         }
2401
2402         /* Further processing on pre-parsed or generated child device data */
2403         parse_sdvo_device_mapping(i915);
2404         parse_ddi_ports(i915);
2405
2406         kfree(oprom_vbt);
2407 }
2408
2409 /**
2410  * intel_bios_driver_remove - Free any resources allocated by intel_bios_init()
2411  * @i915: i915 device instance
2412  */
2413 void intel_bios_driver_remove(struct drm_i915_private *i915)
2414 {
2415         struct intel_bios_encoder_data *devdata, *n;
2416
2417         list_for_each_entry_safe(devdata, n, &i915->vbt.display_devices, node) {
2418                 list_del(&devdata->node);
2419                 kfree(devdata->dsc);
2420                 kfree(devdata);
2421         }
2422
2423         kfree(i915->vbt.sdvo_lvds_vbt_mode);
2424         i915->vbt.sdvo_lvds_vbt_mode = NULL;
2425         kfree(i915->vbt.lfp_lvds_vbt_mode);
2426         i915->vbt.lfp_lvds_vbt_mode = NULL;
2427         kfree(i915->vbt.dsi.data);
2428         i915->vbt.dsi.data = NULL;
2429         kfree(i915->vbt.dsi.pps);
2430         i915->vbt.dsi.pps = NULL;
2431         kfree(i915->vbt.dsi.config);
2432         i915->vbt.dsi.config = NULL;
2433         kfree(i915->vbt.dsi.deassert_seq);
2434         i915->vbt.dsi.deassert_seq = NULL;
2435 }
2436
2437 /**
2438  * intel_bios_is_tv_present - is integrated TV present in VBT
2439  * @i915: i915 device instance
2440  *
2441  * Return true if TV is present. If no child devices were parsed from VBT,
2442  * assume TV is present.
2443  */
2444 bool intel_bios_is_tv_present(struct drm_i915_private *i915)
2445 {
2446         const struct intel_bios_encoder_data *devdata;
2447         const struct child_device_config *child;
2448
2449         if (!i915->vbt.int_tv_support)
2450                 return false;
2451
2452         if (list_empty(&i915->vbt.display_devices))
2453                 return true;
2454
2455         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2456                 child = &devdata->child;
2457
2458                 /*
2459                  * If the device type is not TV, continue.
2460                  */
2461                 switch (child->device_type) {
2462                 case DEVICE_TYPE_INT_TV:
2463                 case DEVICE_TYPE_TV:
2464                 case DEVICE_TYPE_TV_SVIDEO_COMPOSITE:
2465                         break;
2466                 default:
2467                         continue;
2468                 }
2469                 /* Only when the addin_offset is non-zero, it is regarded
2470                  * as present.
2471                  */
2472                 if (child->addin_offset)
2473                         return true;
2474         }
2475
2476         return false;
2477 }
2478
2479 /**
2480  * intel_bios_is_lvds_present - is LVDS present in VBT
2481  * @i915:       i915 device instance
2482  * @i2c_pin:    i2c pin for LVDS if present
2483  *
2484  * Return true if LVDS is present. If no child devices were parsed from VBT,
2485  * assume LVDS is present.
2486  */
2487 bool intel_bios_is_lvds_present(struct drm_i915_private *i915, u8 *i2c_pin)
2488 {
2489         const struct intel_bios_encoder_data *devdata;
2490         const struct child_device_config *child;
2491
2492         if (list_empty(&i915->vbt.display_devices))
2493                 return true;
2494
2495         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2496                 child = &devdata->child;
2497
2498                 /* If the device type is not LFP, continue.
2499                  * We have to check both the new identifiers as well as the
2500                  * old for compatibility with some BIOSes.
2501                  */
2502                 if (child->device_type != DEVICE_TYPE_INT_LFP &&
2503                     child->device_type != DEVICE_TYPE_LFP)
2504                         continue;
2505
2506                 if (intel_gmbus_is_valid_pin(i915, child->i2c_pin))
2507                         *i2c_pin = child->i2c_pin;
2508
2509                 /* However, we cannot trust the BIOS writers to populate
2510                  * the VBT correctly.  Since LVDS requires additional
2511                  * information from AIM blocks, a non-zero addin offset is
2512                  * a good indicator that the LVDS is actually present.
2513                  */
2514                 if (child->addin_offset)
2515                         return true;
2516
2517                 /* But even then some BIOS writers perform some black magic
2518                  * and instantiate the device without reference to any
2519                  * additional data.  Trust that if the VBT was written into
2520                  * the OpRegion then they have validated the LVDS's existence.
2521                  */
2522                 if (i915->opregion.vbt)
2523                         return true;
2524         }
2525
2526         return false;
2527 }
2528
2529 /**
2530  * intel_bios_is_port_present - is the specified digital port present
2531  * @i915:       i915 device instance
2532  * @port:       port to check
2533  *
2534  * Return true if the device in %port is present.
2535  */
2536 bool intel_bios_is_port_present(struct drm_i915_private *i915, enum port port)
2537 {
2538         const struct intel_bios_encoder_data *devdata;
2539         const struct child_device_config *child;
2540         static const struct {
2541                 u16 dp, hdmi;
2542         } port_mapping[] = {
2543                 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2544                 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2545                 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2546                 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2547                 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2548         };
2549
2550         if (HAS_DDI(i915)) {
2551                 const struct ddi_vbt_port_info *port_info =
2552                         &i915->vbt.ddi_port_info[port];
2553
2554                 return port_info->devdata;
2555         }
2556
2557         /* FIXME maybe deal with port A as well? */
2558         if (drm_WARN_ON(&i915->drm,
2559                         port == PORT_A) || port >= ARRAY_SIZE(port_mapping))
2560                 return false;
2561
2562         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2563                 child = &devdata->child;
2564
2565                 if ((child->dvo_port == port_mapping[port].dp ||
2566                      child->dvo_port == port_mapping[port].hdmi) &&
2567                     (child->device_type & (DEVICE_TYPE_TMDS_DVI_SIGNALING |
2568                                            DEVICE_TYPE_DISPLAYPORT_OUTPUT)))
2569                         return true;
2570         }
2571
2572         return false;
2573 }
2574
2575 /**
2576  * intel_bios_is_port_edp - is the device in given port eDP
2577  * @i915:       i915 device instance
2578  * @port:       port to check
2579  *
2580  * Return true if the device in %port is eDP.
2581  */
2582 bool intel_bios_is_port_edp(struct drm_i915_private *i915, enum port port)
2583 {
2584         const struct intel_bios_encoder_data *devdata;
2585         const struct child_device_config *child;
2586         static const short port_mapping[] = {
2587                 [PORT_B] = DVO_PORT_DPB,
2588                 [PORT_C] = DVO_PORT_DPC,
2589                 [PORT_D] = DVO_PORT_DPD,
2590                 [PORT_E] = DVO_PORT_DPE,
2591                 [PORT_F] = DVO_PORT_DPF,
2592         };
2593
2594         if (HAS_DDI(i915)) {
2595                 const struct intel_bios_encoder_data *devdata;
2596
2597                 devdata = intel_bios_encoder_data_lookup(i915, port);
2598
2599                 return devdata && intel_bios_encoder_supports_edp(devdata);
2600         }
2601
2602         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2603                 child = &devdata->child;
2604
2605                 if (child->dvo_port == port_mapping[port] &&
2606                     (child->device_type & DEVICE_TYPE_eDP_BITS) ==
2607                     (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
2608                         return true;
2609         }
2610
2611         return false;
2612 }
2613
2614 static bool child_dev_is_dp_dual_mode(const struct child_device_config *child,
2615                                       enum port port)
2616 {
2617         static const struct {
2618                 u16 dp, hdmi;
2619         } port_mapping[] = {
2620                 /*
2621                  * Buggy VBTs may declare DP ports as having
2622                  * HDMI type dvo_port :( So let's check both.
2623                  */
2624                 [PORT_B] = { DVO_PORT_DPB, DVO_PORT_HDMIB, },
2625                 [PORT_C] = { DVO_PORT_DPC, DVO_PORT_HDMIC, },
2626                 [PORT_D] = { DVO_PORT_DPD, DVO_PORT_HDMID, },
2627                 [PORT_E] = { DVO_PORT_DPE, DVO_PORT_HDMIE, },
2628                 [PORT_F] = { DVO_PORT_DPF, DVO_PORT_HDMIF, },
2629         };
2630
2631         if (port == PORT_A || port >= ARRAY_SIZE(port_mapping))
2632                 return false;
2633
2634         if ((child->device_type & DEVICE_TYPE_DP_DUAL_MODE_BITS) !=
2635             (DEVICE_TYPE_DP_DUAL_MODE & DEVICE_TYPE_DP_DUAL_MODE_BITS))
2636                 return false;
2637
2638         if (child->dvo_port == port_mapping[port].dp)
2639                 return true;
2640
2641         /* Only accept a HDMI dvo_port as DP++ if it has an AUX channel */
2642         if (child->dvo_port == port_mapping[port].hdmi &&
2643             child->aux_channel != 0)
2644                 return true;
2645
2646         return false;
2647 }
2648
2649 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *i915,
2650                                      enum port port)
2651 {
2652         const struct intel_bios_encoder_data *devdata;
2653
2654         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2655                 if (child_dev_is_dp_dual_mode(&devdata->child, port))
2656                         return true;
2657         }
2658
2659         return false;
2660 }
2661
2662 /**
2663  * intel_bios_is_dsi_present - is DSI present in VBT
2664  * @i915:       i915 device instance
2665  * @port:       port for DSI if present
2666  *
2667  * Return true if DSI is present, and return the port in %port.
2668  */
2669 bool intel_bios_is_dsi_present(struct drm_i915_private *i915,
2670                                enum port *port)
2671 {
2672         const struct intel_bios_encoder_data *devdata;
2673         const struct child_device_config *child;
2674         u8 dvo_port;
2675
2676         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2677                 child = &devdata->child;
2678
2679                 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2680                         continue;
2681
2682                 dvo_port = child->dvo_port;
2683
2684                 if (dvo_port == DVO_PORT_MIPIA ||
2685                     (dvo_port == DVO_PORT_MIPIB && DISPLAY_VER(i915) >= 11) ||
2686                     (dvo_port == DVO_PORT_MIPIC && DISPLAY_VER(i915) < 11)) {
2687                         if (port)
2688                                 *port = dvo_port - DVO_PORT_MIPIA;
2689                         return true;
2690                 } else if (dvo_port == DVO_PORT_MIPIB ||
2691                            dvo_port == DVO_PORT_MIPIC ||
2692                            dvo_port == DVO_PORT_MIPID) {
2693                         drm_dbg_kms(&i915->drm,
2694                                     "VBT has unsupported DSI port %c\n",
2695                                     port_name(dvo_port - DVO_PORT_MIPIA));
2696                 }
2697         }
2698
2699         return false;
2700 }
2701
2702 static void fill_dsc(struct intel_crtc_state *crtc_state,
2703                      struct dsc_compression_parameters_entry *dsc,
2704                      int dsc_max_bpc)
2705 {
2706         struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2707         int bpc = 8;
2708
2709         vdsc_cfg->dsc_version_major = dsc->version_major;
2710         vdsc_cfg->dsc_version_minor = dsc->version_minor;
2711
2712         if (dsc->support_12bpc && dsc_max_bpc >= 12)
2713                 bpc = 12;
2714         else if (dsc->support_10bpc && dsc_max_bpc >= 10)
2715                 bpc = 10;
2716         else if (dsc->support_8bpc && dsc_max_bpc >= 8)
2717                 bpc = 8;
2718         else
2719                 DRM_DEBUG_KMS("VBT: Unsupported BPC %d for DCS\n",
2720                               dsc_max_bpc);
2721
2722         crtc_state->pipe_bpp = bpc * 3;
2723
2724         crtc_state->dsc.compressed_bpp = min(crtc_state->pipe_bpp,
2725                                              VBT_DSC_MAX_BPP(dsc->max_bpp));
2726
2727         /*
2728          * FIXME: This is ugly, and slice count should take DSC engine
2729          * throughput etc. into account.
2730          *
2731          * Also, per spec DSI supports 1, 2, 3 or 4 horizontal slices.
2732          */
2733         if (dsc->slices_per_line & BIT(2)) {
2734                 crtc_state->dsc.slice_count = 4;
2735         } else if (dsc->slices_per_line & BIT(1)) {
2736                 crtc_state->dsc.slice_count = 2;
2737         } else {
2738                 /* FIXME */
2739                 if (!(dsc->slices_per_line & BIT(0)))
2740                         DRM_DEBUG_KMS("VBT: Unsupported DSC slice count for DSI\n");
2741
2742                 crtc_state->dsc.slice_count = 1;
2743         }
2744
2745         if (crtc_state->hw.adjusted_mode.crtc_hdisplay %
2746             crtc_state->dsc.slice_count != 0)
2747                 DRM_DEBUG_KMS("VBT: DSC hdisplay %d not divisible by slice count %d\n",
2748                               crtc_state->hw.adjusted_mode.crtc_hdisplay,
2749                               crtc_state->dsc.slice_count);
2750
2751         /*
2752          * The VBT rc_buffer_block_size and rc_buffer_size definitions
2753          * correspond to DP 1.4 DPCD offsets 0x62 and 0x63.
2754          */
2755         vdsc_cfg->rc_model_size = drm_dsc_dp_rc_buffer_size(dsc->rc_buffer_block_size,
2756                                                             dsc->rc_buffer_size);
2757
2758         /* FIXME: DSI spec says bpc + 1 for this one */
2759         vdsc_cfg->line_buf_depth = VBT_DSC_LINE_BUFFER_DEPTH(dsc->line_buffer_depth);
2760
2761         vdsc_cfg->block_pred_enable = dsc->block_prediction_enable;
2762
2763         vdsc_cfg->slice_height = dsc->slice_height;
2764 }
2765
2766 /* FIXME: initially DSI specific */
2767 bool intel_bios_get_dsc_params(struct intel_encoder *encoder,
2768                                struct intel_crtc_state *crtc_state,
2769                                int dsc_max_bpc)
2770 {
2771         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2772         const struct intel_bios_encoder_data *devdata;
2773         const struct child_device_config *child;
2774
2775         list_for_each_entry(devdata, &i915->vbt.display_devices, node) {
2776                 child = &devdata->child;
2777
2778                 if (!(child->device_type & DEVICE_TYPE_MIPI_OUTPUT))
2779                         continue;
2780
2781                 if (child->dvo_port - DVO_PORT_MIPIA == encoder->port) {
2782                         if (!devdata->dsc)
2783                                 return false;
2784
2785                         if (crtc_state)
2786                                 fill_dsc(crtc_state, devdata->dsc, dsc_max_bpc);
2787
2788                         return true;
2789                 }
2790         }
2791
2792         return false;
2793 }
2794
2795 /**
2796  * intel_bios_is_port_hpd_inverted - is HPD inverted for %port
2797  * @i915:       i915 device instance
2798  * @port:       port to check
2799  *
2800  * Return true if HPD should be inverted for %port.
2801  */
2802 bool
2803 intel_bios_is_port_hpd_inverted(const struct drm_i915_private *i915,
2804                                 enum port port)
2805 {
2806         const struct intel_bios_encoder_data *devdata =
2807                 i915->vbt.ddi_port_info[port].devdata;
2808
2809         if (drm_WARN_ON_ONCE(&i915->drm,
2810                              !IS_GEMINILAKE(i915) && !IS_BROXTON(i915)))
2811                 return false;
2812
2813         return devdata && devdata->child.hpd_invert;
2814 }
2815
2816 /**
2817  * intel_bios_is_lspcon_present - if LSPCON is attached on %port
2818  * @i915:       i915 device instance
2819  * @port:       port to check
2820  *
2821  * Return true if LSPCON is present on this port
2822  */
2823 bool
2824 intel_bios_is_lspcon_present(const struct drm_i915_private *i915,
2825                              enum port port)
2826 {
2827         const struct intel_bios_encoder_data *devdata =
2828                 i915->vbt.ddi_port_info[port].devdata;
2829
2830         return HAS_LSPCON(i915) && devdata && devdata->child.lspcon;
2831 }
2832
2833 /**
2834  * intel_bios_is_lane_reversal_needed - if lane reversal needed on port
2835  * @i915:       i915 device instance
2836  * @port:       port to check
2837  *
2838  * Return true if port requires lane reversal
2839  */
2840 bool
2841 intel_bios_is_lane_reversal_needed(const struct drm_i915_private *i915,
2842                                    enum port port)
2843 {
2844         const struct intel_bios_encoder_data *devdata =
2845                 i915->vbt.ddi_port_info[port].devdata;
2846
2847         return devdata && devdata->child.lane_reversal;
2848 }
2849
2850 enum aux_ch intel_bios_port_aux_ch(struct drm_i915_private *i915,
2851                                    enum port port)
2852 {
2853         const struct ddi_vbt_port_info *info =
2854                 &i915->vbt.ddi_port_info[port];
2855         enum aux_ch aux_ch;
2856
2857         if (!info->alternate_aux_channel) {
2858                 aux_ch = (enum aux_ch)port;
2859
2860                 drm_dbg_kms(&i915->drm,
2861                             "using AUX %c for port %c (platform default)\n",
2862                             aux_ch_name(aux_ch), port_name(port));
2863                 return aux_ch;
2864         }
2865
2866         /*
2867          * RKL/DG1 VBT uses PHY based mapping. Combo PHYs A,B,C,D
2868          * map to DDI A,B,TC1,TC2 respectively.
2869          *
2870          * ADL-S VBT uses PHY based mapping. Combo PHYs A,B,C,D,E
2871          * map to DDI A,TC1,TC2,TC3,TC4 respectively.
2872          */
2873         switch (info->alternate_aux_channel) {
2874         case DP_AUX_A:
2875                 aux_ch = AUX_CH_A;
2876                 break;
2877         case DP_AUX_B:
2878                 if (IS_ALDERLAKE_S(i915))
2879                         aux_ch = AUX_CH_USBC1;
2880                 else
2881                         aux_ch = AUX_CH_B;
2882                 break;
2883         case DP_AUX_C:
2884                 if (IS_ALDERLAKE_S(i915))
2885                         aux_ch = AUX_CH_USBC2;
2886                 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2887                         aux_ch = AUX_CH_USBC1;
2888                 else
2889                         aux_ch = AUX_CH_C;
2890                 break;
2891         case DP_AUX_D:
2892                 if (DISPLAY_VER(i915) == 13)
2893                         aux_ch = AUX_CH_D_XELPD;
2894                 else if (IS_ALDERLAKE_S(i915))
2895                         aux_ch = AUX_CH_USBC3;
2896                 else if (IS_DG1(i915) || IS_ROCKETLAKE(i915))
2897                         aux_ch = AUX_CH_USBC2;
2898                 else
2899                         aux_ch = AUX_CH_D;
2900                 break;
2901         case DP_AUX_E:
2902                 if (DISPLAY_VER(i915) == 13)
2903                         aux_ch = AUX_CH_E_XELPD;
2904                 else if (IS_ALDERLAKE_S(i915))
2905                         aux_ch = AUX_CH_USBC4;
2906                 else
2907                         aux_ch = AUX_CH_E;
2908                 break;
2909         case DP_AUX_F:
2910                 if (DISPLAY_VER(i915) == 13)
2911                         aux_ch = AUX_CH_USBC1;
2912                 else
2913                         aux_ch = AUX_CH_F;
2914                 break;
2915         case DP_AUX_G:
2916                 if (DISPLAY_VER(i915) == 13)
2917                         aux_ch = AUX_CH_USBC2;
2918                 else
2919                         aux_ch = AUX_CH_G;
2920                 break;
2921         case DP_AUX_H:
2922                 if (DISPLAY_VER(i915) == 13)
2923                         aux_ch = AUX_CH_USBC3;
2924                 else
2925                         aux_ch = AUX_CH_H;
2926                 break;
2927         case DP_AUX_I:
2928                 if (DISPLAY_VER(i915) == 13)
2929                         aux_ch = AUX_CH_USBC4;
2930                 else
2931                         aux_ch = AUX_CH_I;
2932                 break;
2933         default:
2934                 MISSING_CASE(info->alternate_aux_channel);
2935                 aux_ch = AUX_CH_A;
2936                 break;
2937         }
2938
2939         drm_dbg_kms(&i915->drm, "using AUX %c for port %c (VBT)\n",
2940                     aux_ch_name(aux_ch), port_name(port));
2941
2942         return aux_ch;
2943 }
2944
2945 int intel_bios_max_tmds_clock(struct intel_encoder *encoder)
2946 {
2947         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2948
2949         return i915->vbt.ddi_port_info[encoder->port].max_tmds_clock;
2950 }
2951
2952 int intel_bios_hdmi_level_shift(struct intel_encoder *encoder)
2953 {
2954         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2955         const struct ddi_vbt_port_info *info =
2956                 &i915->vbt.ddi_port_info[encoder->port];
2957
2958         return info->hdmi_level_shift_set ? info->hdmi_level_shift : -1;
2959 }
2960
2961 int intel_bios_encoder_dp_boost_level(const struct intel_bios_encoder_data *devdata)
2962 {
2963         if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
2964                 return 0;
2965
2966         return translate_iboost(devdata->child.dp_iboost_level);
2967 }
2968
2969 int intel_bios_encoder_hdmi_boost_level(const struct intel_bios_encoder_data *devdata)
2970 {
2971         if (!devdata || devdata->i915->vbt.version < 196 || !devdata->child.iboost)
2972                 return 0;
2973
2974         return translate_iboost(devdata->child.hdmi_iboost_level);
2975 }
2976
2977 int intel_bios_dp_max_link_rate(struct intel_encoder *encoder)
2978 {
2979         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2980
2981         return i915->vbt.ddi_port_info[encoder->port].dp_max_link_rate;
2982 }
2983
2984 int intel_bios_alternate_ddc_pin(struct intel_encoder *encoder)
2985 {
2986         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2987
2988         return i915->vbt.ddi_port_info[encoder->port].alternate_ddc_pin;
2989 }
2990
2991 bool intel_bios_encoder_supports_typec_usb(const struct intel_bios_encoder_data *devdata)
2992 {
2993         return devdata->i915->vbt.version >= 195 && devdata->child.dp_usb_type_c;
2994 }
2995
2996 bool intel_bios_encoder_supports_tbt(const struct intel_bios_encoder_data *devdata)
2997 {
2998         return devdata->i915->vbt.version >= 209 && devdata->child.tbt;
2999 }
3000
3001 const struct intel_bios_encoder_data *
3002 intel_bios_encoder_data_lookup(struct drm_i915_private *i915, enum port port)
3003 {
3004         return i915->vbt.ddi_port_info[port].devdata;
3005 }