3c3561942eb661e807cc59013d63bf91b7f28443
[sfrench/cifs-2.6.git] / drivers / gpu / drm / bridge / ti-sn65dsi86.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4  * datasheet: https://www.ti.com/lit/ds/symlink/sn65dsi86.pdf
5  */
6
7 #include <linux/atomic.h>
8 #include <linux/auxiliary_bus.h>
9 #include <linux/bitfield.h>
10 #include <linux/bits.h>
11 #include <linux/clk.h>
12 #include <linux/debugfs.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/gpio/driver.h>
15 #include <linux/i2c.h>
16 #include <linux/iopoll.h>
17 #include <linux/module.h>
18 #include <linux/of_graph.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/pwm.h>
21 #include <linux/regmap.h>
22 #include <linux/regulator/consumer.h>
23
24 #include <asm/unaligned.h>
25
26 #include <drm/display/drm_dp_aux_bus.h>
27 #include <drm/display/drm_dp_helper.h>
28 #include <drm/drm_atomic.h>
29 #include <drm/drm_atomic_helper.h>
30 #include <drm/drm_bridge.h>
31 #include <drm/drm_bridge_connector.h>
32 #include <drm/drm_edid.h>
33 #include <drm/drm_mipi_dsi.h>
34 #include <drm/drm_of.h>
35 #include <drm/drm_panel.h>
36 #include <drm/drm_print.h>
37 #include <drm/drm_probe_helper.h>
38
39 #define SN_DEVICE_REV_REG                       0x08
40 #define SN_DPPLL_SRC_REG                        0x0A
41 #define  DPPLL_CLK_SRC_DSICLK                   BIT(0)
42 #define  REFCLK_FREQ_MASK                       GENMASK(3, 1)
43 #define  REFCLK_FREQ(x)                         ((x) << 1)
44 #define  DPPLL_SRC_DP_PLL_LOCK                  BIT(7)
45 #define SN_PLL_ENABLE_REG                       0x0D
46 #define SN_DSI_LANES_REG                        0x10
47 #define  CHA_DSI_LANES_MASK                     GENMASK(4, 3)
48 #define  CHA_DSI_LANES(x)                       ((x) << 3)
49 #define SN_DSIA_CLK_FREQ_REG                    0x12
50 #define SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG       0x20
51 #define SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG    0x24
52 #define SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG        0x2C
53 #define SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG       0x2D
54 #define  CHA_HSYNC_POLARITY                     BIT(7)
55 #define SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG        0x30
56 #define SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG       0x31
57 #define  CHA_VSYNC_POLARITY                     BIT(7)
58 #define SN_CHA_HORIZONTAL_BACK_PORCH_REG        0x34
59 #define SN_CHA_VERTICAL_BACK_PORCH_REG          0x36
60 #define SN_CHA_HORIZONTAL_FRONT_PORCH_REG       0x38
61 #define SN_CHA_VERTICAL_FRONT_PORCH_REG         0x3A
62 #define SN_LN_ASSIGN_REG                        0x59
63 #define  LN_ASSIGN_WIDTH                        2
64 #define SN_ENH_FRAME_REG                        0x5A
65 #define  VSTREAM_ENABLE                         BIT(3)
66 #define  LN_POLRS_OFFSET                        4
67 #define  LN_POLRS_MASK                          0xf0
68 #define SN_DATA_FORMAT_REG                      0x5B
69 #define  BPP_18_RGB                             BIT(0)
70 #define SN_HPD_DISABLE_REG                      0x5C
71 #define  HPD_DISABLE                            BIT(0)
72 #define  HPD_DEBOUNCED_STATE                    BIT(4)
73 #define SN_GPIO_IO_REG                          0x5E
74 #define  SN_GPIO_INPUT_SHIFT                    4
75 #define  SN_GPIO_OUTPUT_SHIFT                   0
76 #define SN_GPIO_CTRL_REG                        0x5F
77 #define  SN_GPIO_MUX_INPUT                      0
78 #define  SN_GPIO_MUX_OUTPUT                     1
79 #define  SN_GPIO_MUX_SPECIAL                    2
80 #define  SN_GPIO_MUX_MASK                       0x3
81 #define SN_AUX_WDATA_REG(x)                     (0x64 + (x))
82 #define SN_AUX_ADDR_19_16_REG                   0x74
83 #define SN_AUX_ADDR_15_8_REG                    0x75
84 #define SN_AUX_ADDR_7_0_REG                     0x76
85 #define SN_AUX_ADDR_MASK                        GENMASK(19, 0)
86 #define SN_AUX_LENGTH_REG                       0x77
87 #define SN_AUX_CMD_REG                          0x78
88 #define  AUX_CMD_SEND                           BIT(0)
89 #define  AUX_CMD_REQ(x)                         ((x) << 4)
90 #define SN_AUX_RDATA_REG(x)                     (0x79 + (x))
91 #define SN_SSC_CONFIG_REG                       0x93
92 #define  DP_NUM_LANES_MASK                      GENMASK(5, 4)
93 #define  DP_NUM_LANES(x)                        ((x) << 4)
94 #define SN_DATARATE_CONFIG_REG                  0x94
95 #define  DP_DATARATE_MASK                       GENMASK(7, 5)
96 #define  DP_DATARATE(x)                         ((x) << 5)
97 #define SN_TRAINING_SETTING_REG                 0x95
98 #define  SCRAMBLE_DISABLE                       BIT(4)
99 #define SN_ML_TX_MODE_REG                       0x96
100 #define  ML_TX_MAIN_LINK_OFF                    0
101 #define  ML_TX_NORMAL_MODE                      BIT(0)
102 #define SN_PWM_PRE_DIV_REG                      0xA0
103 #define SN_BACKLIGHT_SCALE_REG                  0xA1
104 #define  BACKLIGHT_SCALE_MAX                    0xFFFF
105 #define SN_BACKLIGHT_REG                        0xA3
106 #define SN_PWM_EN_INV_REG                       0xA5
107 #define  SN_PWM_INV_MASK                        BIT(0)
108 #define  SN_PWM_EN_MASK                         BIT(1)
109 #define SN_AUX_CMD_STATUS_REG                   0xF4
110 #define  AUX_IRQ_STATUS_AUX_RPLY_TOUT           BIT(3)
111 #define  AUX_IRQ_STATUS_AUX_SHORT               BIT(5)
112 #define  AUX_IRQ_STATUS_NAT_I2C_FAIL            BIT(6)
113
114 #define MIN_DSI_CLK_FREQ_MHZ    40
115
116 /* fudge factor required to account for 8b/10b encoding */
117 #define DP_CLK_FUDGE_NUM        10
118 #define DP_CLK_FUDGE_DEN        8
119
120 /* Matches DP_AUX_MAX_PAYLOAD_BYTES (for now) */
121 #define SN_AUX_MAX_PAYLOAD_BYTES        16
122
123 #define SN_REGULATOR_SUPPLY_NUM         4
124
125 #define SN_MAX_DP_LANES                 4
126 #define SN_NUM_GPIOS                    4
127 #define SN_GPIO_PHYSICAL_OFFSET         1
128
129 #define SN_LINK_TRAINING_TRIES          10
130
131 #define SN_PWM_GPIO_IDX                 3 /* 4th GPIO */
132
133 /**
134  * struct ti_sn65dsi86 - Platform data for ti-sn65dsi86 driver.
135  * @bridge_aux:   AUX-bus sub device for MIPI-to-eDP bridge functionality.
136  * @gpio_aux:     AUX-bus sub device for GPIO controller functionality.
137  * @aux_aux:      AUX-bus sub device for eDP AUX channel functionality.
138  * @pwm_aux:      AUX-bus sub device for PWM controller functionality.
139  *
140  * @dev:          Pointer to the top level (i2c) device.
141  * @regmap:       Regmap for accessing i2c.
142  * @aux:          Our aux channel.
143  * @bridge:       Our bridge.
144  * @connector:    Our connector.
145  * @host_node:    Remote DSI node.
146  * @dsi:          Our MIPI DSI source.
147  * @refclk:       Our reference clock.
148  * @next_bridge:  The bridge on the eDP side.
149  * @enable_gpio:  The GPIO we toggle to enable the bridge.
150  * @supplies:     Data for bulk enabling/disabling our regulators.
151  * @dp_lanes:     Count of dp_lanes we're using.
152  * @ln_assign:    Value to program to the LN_ASSIGN register.
153  * @ln_polrs:     Value for the 4-bit LN_POLRS field of SN_ENH_FRAME_REG.
154  * @comms_enabled: If true then communication over the aux channel is enabled.
155  * @comms_mutex:   Protects modification of comms_enabled.
156  *
157  * @gchip:        If we expose our GPIOs, this is used.
158  * @gchip_output: A cache of whether we've set GPIOs to output.  This
159  *                serves double-duty of keeping track of the direction and
160  *                also keeping track of whether we've incremented the
161  *                pm_runtime reference count for this pin, which we do
162  *                whenever a pin is configured as an output.  This is a
163  *                bitmap so we can do atomic ops on it without an extra
164  *                lock so concurrent users of our 4 GPIOs don't stomp on
165  *                each other's read-modify-write.
166  *
167  * @pchip:        pwm_chip if the PWM is exposed.
168  * @pwm_enabled:  Used to track if the PWM signal is currently enabled.
169  * @pwm_pin_busy: Track if GPIO4 is currently requested for GPIO or PWM.
170  * @pwm_refclk_freq: Cache for the reference clock input to the PWM.
171  */
172 struct ti_sn65dsi86 {
173         struct auxiliary_device         bridge_aux;
174         struct auxiliary_device         gpio_aux;
175         struct auxiliary_device         aux_aux;
176         struct auxiliary_device         pwm_aux;
177
178         struct device                   *dev;
179         struct regmap                   *regmap;
180         struct drm_dp_aux               aux;
181         struct drm_bridge               bridge;
182         struct drm_connector            *connector;
183         struct device_node              *host_node;
184         struct mipi_dsi_device          *dsi;
185         struct clk                      *refclk;
186         struct drm_bridge               *next_bridge;
187         struct gpio_desc                *enable_gpio;
188         struct regulator_bulk_data      supplies[SN_REGULATOR_SUPPLY_NUM];
189         int                             dp_lanes;
190         u8                              ln_assign;
191         u8                              ln_polrs;
192         bool                            comms_enabled;
193         struct mutex                    comms_mutex;
194
195 #if defined(CONFIG_OF_GPIO)
196         struct gpio_chip                gchip;
197         DECLARE_BITMAP(gchip_output, SN_NUM_GPIOS);
198 #endif
199 #if defined(CONFIG_PWM)
200         struct pwm_chip                 pchip;
201         bool                            pwm_enabled;
202         atomic_t                        pwm_pin_busy;
203 #endif
204         unsigned int                    pwm_refclk_freq;
205 };
206
207 static const struct regmap_range ti_sn65dsi86_volatile_ranges[] = {
208         { .range_min = 0, .range_max = 0xFF },
209 };
210
211 static const struct regmap_access_table ti_sn_bridge_volatile_table = {
212         .yes_ranges = ti_sn65dsi86_volatile_ranges,
213         .n_yes_ranges = ARRAY_SIZE(ti_sn65dsi86_volatile_ranges),
214 };
215
216 static const struct regmap_config ti_sn65dsi86_regmap_config = {
217         .reg_bits = 8,
218         .val_bits = 8,
219         .volatile_table = &ti_sn_bridge_volatile_table,
220         .cache_type = REGCACHE_NONE,
221         .max_register = 0xFF,
222 };
223
224 static int __maybe_unused ti_sn65dsi86_read_u16(struct ti_sn65dsi86 *pdata,
225                                                 unsigned int reg, u16 *val)
226 {
227         u8 buf[2];
228         int ret;
229
230         ret = regmap_bulk_read(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
231         if (ret)
232                 return ret;
233
234         *val = buf[0] | (buf[1] << 8);
235
236         return 0;
237 }
238
239 static void ti_sn65dsi86_write_u16(struct ti_sn65dsi86 *pdata,
240                                    unsigned int reg, u16 val)
241 {
242         u8 buf[2] = { val & 0xff, val >> 8 };
243
244         regmap_bulk_write(pdata->regmap, reg, buf, ARRAY_SIZE(buf));
245 }
246
247 static u32 ti_sn_bridge_get_dsi_freq(struct ti_sn65dsi86 *pdata)
248 {
249         u32 bit_rate_khz, clk_freq_khz;
250         struct drm_display_mode *mode =
251                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
252
253         bit_rate_khz = mode->clock *
254                         mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
255         clk_freq_khz = bit_rate_khz / (pdata->dsi->lanes * 2);
256
257         return clk_freq_khz;
258 }
259
260 /* clk frequencies supported by bridge in Hz in case derived from REFCLK pin */
261 static const u32 ti_sn_bridge_refclk_lut[] = {
262         12000000,
263         19200000,
264         26000000,
265         27000000,
266         38400000,
267 };
268
269 /* clk frequencies supported by bridge in Hz in case derived from DACP/N pin */
270 static const u32 ti_sn_bridge_dsiclk_lut[] = {
271         468000000,
272         384000000,
273         416000000,
274         486000000,
275         460800000,
276 };
277
278 static void ti_sn_bridge_set_refclk_freq(struct ti_sn65dsi86 *pdata)
279 {
280         int i;
281         u32 refclk_rate;
282         const u32 *refclk_lut;
283         size_t refclk_lut_size;
284
285         if (pdata->refclk) {
286                 refclk_rate = clk_get_rate(pdata->refclk);
287                 refclk_lut = ti_sn_bridge_refclk_lut;
288                 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_refclk_lut);
289                 clk_prepare_enable(pdata->refclk);
290         } else {
291                 refclk_rate = ti_sn_bridge_get_dsi_freq(pdata) * 1000;
292                 refclk_lut = ti_sn_bridge_dsiclk_lut;
293                 refclk_lut_size = ARRAY_SIZE(ti_sn_bridge_dsiclk_lut);
294         }
295
296         /* for i equals to refclk_lut_size means default frequency */
297         for (i = 0; i < refclk_lut_size; i++)
298                 if (refclk_lut[i] == refclk_rate)
299                         break;
300
301         regmap_update_bits(pdata->regmap, SN_DPPLL_SRC_REG, REFCLK_FREQ_MASK,
302                            REFCLK_FREQ(i));
303
304         /*
305          * The PWM refclk is based on the value written to SN_DPPLL_SRC_REG,
306          * regardless of its actual sourcing.
307          */
308         pdata->pwm_refclk_freq = ti_sn_bridge_refclk_lut[i];
309 }
310
311 static void ti_sn65dsi86_enable_comms(struct ti_sn65dsi86 *pdata)
312 {
313         mutex_lock(&pdata->comms_mutex);
314
315         /* configure bridge ref_clk */
316         ti_sn_bridge_set_refclk_freq(pdata);
317
318         /*
319          * HPD on this bridge chip is a bit useless.  This is an eDP bridge
320          * so the HPD is an internal signal that's only there to signal that
321          * the panel is done powering up.  ...but the bridge chip debounces
322          * this signal by between 100 ms and 400 ms (depending on process,
323          * voltage, and temperate--I measured it at about 200 ms).  One
324          * particular panel asserted HPD 84 ms after it was powered on meaning
325          * that we saw HPD 284 ms after power on.  ...but the same panel said
326          * that instead of looking at HPD you could just hardcode a delay of
327          * 200 ms.  We'll assume that the panel driver will have the hardcoded
328          * delay in its prepare and always disable HPD.
329          *
330          * If HPD somehow makes sense on some future panel we'll have to
331          * change this to be conditional on someone specifying that HPD should
332          * be used.
333          */
334         regmap_update_bits(pdata->regmap, SN_HPD_DISABLE_REG, HPD_DISABLE,
335                            HPD_DISABLE);
336
337         pdata->comms_enabled = true;
338
339         mutex_unlock(&pdata->comms_mutex);
340 }
341
342 static void ti_sn65dsi86_disable_comms(struct ti_sn65dsi86 *pdata)
343 {
344         mutex_lock(&pdata->comms_mutex);
345
346         pdata->comms_enabled = false;
347         clk_disable_unprepare(pdata->refclk);
348
349         mutex_unlock(&pdata->comms_mutex);
350 }
351
352 static int __maybe_unused ti_sn65dsi86_resume(struct device *dev)
353 {
354         struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
355         int ret;
356
357         ret = regulator_bulk_enable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
358         if (ret) {
359                 DRM_ERROR("failed to enable supplies %d\n", ret);
360                 return ret;
361         }
362
363         /* td2: min 100 us after regulators before enabling the GPIO */
364         usleep_range(100, 110);
365
366         gpiod_set_value(pdata->enable_gpio, 1);
367
368         /*
369          * If we have a reference clock we can enable communication w/ the
370          * panel (including the aux channel) w/out any need for an input clock
371          * so we can do it in resume which lets us read the EDID before
372          * pre_enable(). Without a reference clock we need the MIPI reference
373          * clock so reading early doesn't work.
374          */
375         if (pdata->refclk)
376                 ti_sn65dsi86_enable_comms(pdata);
377
378         return ret;
379 }
380
381 static int __maybe_unused ti_sn65dsi86_suspend(struct device *dev)
382 {
383         struct ti_sn65dsi86 *pdata = dev_get_drvdata(dev);
384         int ret;
385
386         if (pdata->refclk)
387                 ti_sn65dsi86_disable_comms(pdata);
388
389         gpiod_set_value(pdata->enable_gpio, 0);
390
391         ret = regulator_bulk_disable(SN_REGULATOR_SUPPLY_NUM, pdata->supplies);
392         if (ret)
393                 DRM_ERROR("failed to disable supplies %d\n", ret);
394
395         return ret;
396 }
397
398 static const struct dev_pm_ops ti_sn65dsi86_pm_ops = {
399         SET_RUNTIME_PM_OPS(ti_sn65dsi86_suspend, ti_sn65dsi86_resume, NULL)
400         SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
401                                 pm_runtime_force_resume)
402 };
403
404 static int status_show(struct seq_file *s, void *data)
405 {
406         struct ti_sn65dsi86 *pdata = s->private;
407         unsigned int reg, val;
408
409         seq_puts(s, "STATUS REGISTERS:\n");
410
411         pm_runtime_get_sync(pdata->dev);
412
413         /* IRQ Status Registers, see Table 31 in datasheet */
414         for (reg = 0xf0; reg <= 0xf8; reg++) {
415                 regmap_read(pdata->regmap, reg, &val);
416                 seq_printf(s, "[0x%02x] = 0x%08x\n", reg, val);
417         }
418
419         pm_runtime_put_autosuspend(pdata->dev);
420
421         return 0;
422 }
423
424 DEFINE_SHOW_ATTRIBUTE(status);
425
426 static void ti_sn65dsi86_debugfs_remove(void *data)
427 {
428         debugfs_remove_recursive(data);
429 }
430
431 static void ti_sn65dsi86_debugfs_init(struct ti_sn65dsi86 *pdata)
432 {
433         struct device *dev = pdata->dev;
434         struct dentry *debugfs;
435         int ret;
436
437         debugfs = debugfs_create_dir(dev_name(dev), NULL);
438
439         /*
440          * We might get an error back if debugfs wasn't enabled in the kernel
441          * so let's just silently return upon failure.
442          */
443         if (IS_ERR_OR_NULL(debugfs))
444                 return;
445
446         ret = devm_add_action_or_reset(dev, ti_sn65dsi86_debugfs_remove, debugfs);
447         if (ret)
448                 return;
449
450         debugfs_create_file("status", 0600, debugfs, pdata, &status_fops);
451 }
452
453 /* -----------------------------------------------------------------------------
454  * Auxiliary Devices (*not* AUX)
455  */
456
457 static void ti_sn65dsi86_uninit_aux(void *data)
458 {
459         auxiliary_device_uninit(data);
460 }
461
462 static void ti_sn65dsi86_delete_aux(void *data)
463 {
464         auxiliary_device_delete(data);
465 }
466
467 /*
468  * AUX bus docs say that a non-NULL release is mandatory, but it makes no
469  * sense for the model used here where all of the aux devices are allocated
470  * in the single shared structure. We'll use this noop as a workaround.
471  */
472 static void ti_sn65dsi86_noop(struct device *dev) {}
473
474 static int ti_sn65dsi86_add_aux_device(struct ti_sn65dsi86 *pdata,
475                                        struct auxiliary_device *aux,
476                                        const char *name)
477 {
478         struct device *dev = pdata->dev;
479         int ret;
480
481         aux->name = name;
482         aux->dev.parent = dev;
483         aux->dev.release = ti_sn65dsi86_noop;
484         device_set_of_node_from_dev(&aux->dev, dev);
485         ret = auxiliary_device_init(aux);
486         if (ret)
487                 return ret;
488         ret = devm_add_action_or_reset(dev, ti_sn65dsi86_uninit_aux, aux);
489         if (ret)
490                 return ret;
491
492         ret = auxiliary_device_add(aux);
493         if (ret)
494                 return ret;
495         ret = devm_add_action_or_reset(dev, ti_sn65dsi86_delete_aux, aux);
496
497         return ret;
498 }
499
500 /* -----------------------------------------------------------------------------
501  * AUX Adapter
502  */
503
504 static struct ti_sn65dsi86 *aux_to_ti_sn65dsi86(struct drm_dp_aux *aux)
505 {
506         return container_of(aux, struct ti_sn65dsi86, aux);
507 }
508
509 static ssize_t ti_sn_aux_transfer(struct drm_dp_aux *aux,
510                                   struct drm_dp_aux_msg *msg)
511 {
512         struct ti_sn65dsi86 *pdata = aux_to_ti_sn65dsi86(aux);
513         u32 request = msg->request & ~(DP_AUX_I2C_MOT | DP_AUX_I2C_WRITE_STATUS_UPDATE);
514         u32 request_val = AUX_CMD_REQ(msg->request);
515         u8 *buf = msg->buffer;
516         unsigned int len = msg->size;
517         unsigned int val;
518         int ret;
519         u8 addr_len[SN_AUX_LENGTH_REG + 1 - SN_AUX_ADDR_19_16_REG];
520
521         if (len > SN_AUX_MAX_PAYLOAD_BYTES)
522                 return -EINVAL;
523
524         pm_runtime_get_sync(pdata->dev);
525         mutex_lock(&pdata->comms_mutex);
526
527         /*
528          * If someone tries to do a DDC over AUX transaction before pre_enable()
529          * on a device without a dedicated reference clock then we just can't
530          * do it. Fail right away. This prevents non-refclk users from reading
531          * the EDID before enabling the panel but such is life.
532          */
533         if (!pdata->comms_enabled) {
534                 ret = -EIO;
535                 goto exit;
536         }
537
538         switch (request) {
539         case DP_AUX_NATIVE_WRITE:
540         case DP_AUX_I2C_WRITE:
541         case DP_AUX_NATIVE_READ:
542         case DP_AUX_I2C_READ:
543                 regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val);
544                 /* Assume it's good */
545                 msg->reply = 0;
546                 break;
547         default:
548                 ret = -EINVAL;
549                 goto exit;
550         }
551
552         BUILD_BUG_ON(sizeof(addr_len) != sizeof(__be32));
553         put_unaligned_be32((msg->address & SN_AUX_ADDR_MASK) << 8 | len,
554                            addr_len);
555         regmap_bulk_write(pdata->regmap, SN_AUX_ADDR_19_16_REG, addr_len,
556                           ARRAY_SIZE(addr_len));
557
558         if (request == DP_AUX_NATIVE_WRITE || request == DP_AUX_I2C_WRITE)
559                 regmap_bulk_write(pdata->regmap, SN_AUX_WDATA_REG(0), buf, len);
560
561         /* Clear old status bits before start so we don't get confused */
562         regmap_write(pdata->regmap, SN_AUX_CMD_STATUS_REG,
563                      AUX_IRQ_STATUS_NAT_I2C_FAIL |
564                      AUX_IRQ_STATUS_AUX_RPLY_TOUT |
565                      AUX_IRQ_STATUS_AUX_SHORT);
566
567         regmap_write(pdata->regmap, SN_AUX_CMD_REG, request_val | AUX_CMD_SEND);
568
569         /* Zero delay loop because i2c transactions are slow already */
570         ret = regmap_read_poll_timeout(pdata->regmap, SN_AUX_CMD_REG, val,
571                                        !(val & AUX_CMD_SEND), 0, 50 * 1000);
572         if (ret)
573                 goto exit;
574
575         ret = regmap_read(pdata->regmap, SN_AUX_CMD_STATUS_REG, &val);
576         if (ret)
577                 goto exit;
578
579         if (val & AUX_IRQ_STATUS_AUX_RPLY_TOUT) {
580                 /*
581                  * The hardware tried the message seven times per the DP spec
582                  * but it hit a timeout. We ignore defers here because they're
583                  * handled in hardware.
584                  */
585                 ret = -ETIMEDOUT;
586                 goto exit;
587         }
588
589         if (val & AUX_IRQ_STATUS_AUX_SHORT) {
590                 ret = regmap_read(pdata->regmap, SN_AUX_LENGTH_REG, &len);
591                 if (ret)
592                         goto exit;
593         } else if (val & AUX_IRQ_STATUS_NAT_I2C_FAIL) {
594                 switch (request) {
595                 case DP_AUX_I2C_WRITE:
596                 case DP_AUX_I2C_READ:
597                         msg->reply |= DP_AUX_I2C_REPLY_NACK;
598                         break;
599                 case DP_AUX_NATIVE_READ:
600                 case DP_AUX_NATIVE_WRITE:
601                         msg->reply |= DP_AUX_NATIVE_REPLY_NACK;
602                         break;
603                 }
604                 len = 0;
605                 goto exit;
606         }
607
608         if (request != DP_AUX_NATIVE_WRITE && request != DP_AUX_I2C_WRITE && len != 0)
609                 ret = regmap_bulk_read(pdata->regmap, SN_AUX_RDATA_REG(0), buf, len);
610
611 exit:
612         mutex_unlock(&pdata->comms_mutex);
613         pm_runtime_mark_last_busy(pdata->dev);
614         pm_runtime_put_autosuspend(pdata->dev);
615
616         if (ret)
617                 return ret;
618         return len;
619 }
620
621 static int ti_sn_aux_probe(struct auxiliary_device *adev,
622                            const struct auxiliary_device_id *id)
623 {
624         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
625         int ret;
626
627         pdata->aux.name = "ti-sn65dsi86-aux";
628         pdata->aux.dev = &adev->dev;
629         pdata->aux.transfer = ti_sn_aux_transfer;
630         drm_dp_aux_init(&pdata->aux);
631
632         ret = devm_of_dp_aux_populate_ep_devices(&pdata->aux);
633         if (ret)
634                 return ret;
635
636         /*
637          * The eDP to MIPI bridge parts don't work until the AUX channel is
638          * setup so we don't add it in the main driver probe, we add it now.
639          */
640         return ti_sn65dsi86_add_aux_device(pdata, &pdata->bridge_aux, "bridge");
641 }
642
643 static const struct auxiliary_device_id ti_sn_aux_id_table[] = {
644         { .name = "ti_sn65dsi86.aux", },
645         {},
646 };
647
648 static struct auxiliary_driver ti_sn_aux_driver = {
649         .name = "aux",
650         .probe = ti_sn_aux_probe,
651         .id_table = ti_sn_aux_id_table,
652 };
653
654 /*------------------------------------------------------------------------------
655  * DRM Bridge
656  */
657
658 static struct ti_sn65dsi86 *bridge_to_ti_sn65dsi86(struct drm_bridge *bridge)
659 {
660         return container_of(bridge, struct ti_sn65dsi86, bridge);
661 }
662
663 static int ti_sn_attach_host(struct ti_sn65dsi86 *pdata)
664 {
665         int val;
666         struct mipi_dsi_host *host;
667         struct mipi_dsi_device *dsi;
668         struct device *dev = pdata->dev;
669         const struct mipi_dsi_device_info info = { .type = "ti_sn_bridge",
670                                                    .channel = 0,
671                                                    .node = NULL,
672         };
673
674         host = of_find_mipi_dsi_host_by_node(pdata->host_node);
675         if (!host)
676                 return -EPROBE_DEFER;
677
678         dsi = devm_mipi_dsi_device_register_full(dev, host, &info);
679         if (IS_ERR(dsi))
680                 return PTR_ERR(dsi);
681
682         /* TODO: setting to 4 MIPI lanes always for now */
683         dsi->lanes = 4;
684         dsi->format = MIPI_DSI_FMT_RGB888;
685         dsi->mode_flags = MIPI_DSI_MODE_VIDEO;
686
687         /* check if continuous dsi clock is required or not */
688         pm_runtime_get_sync(dev);
689         regmap_read(pdata->regmap, SN_DPPLL_SRC_REG, &val);
690         pm_runtime_put_autosuspend(dev);
691         if (!(val & DPPLL_CLK_SRC_DSICLK))
692                 dsi->mode_flags |= MIPI_DSI_CLOCK_NON_CONTINUOUS;
693
694         pdata->dsi = dsi;
695
696         return devm_mipi_dsi_attach(dev, dsi);
697 }
698
699 static int ti_sn_bridge_attach(struct drm_bridge *bridge,
700                                enum drm_bridge_attach_flags flags)
701 {
702         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
703         int ret;
704
705         pdata->aux.drm_dev = bridge->dev;
706         ret = drm_dp_aux_register(&pdata->aux);
707         if (ret < 0) {
708                 drm_err(bridge->dev, "Failed to register DP AUX channel: %d\n", ret);
709                 return ret;
710         }
711
712         /*
713          * Attach the next bridge.
714          * We never want the next bridge to *also* create a connector.
715          */
716         ret = drm_bridge_attach(bridge->encoder, pdata->next_bridge,
717                                 &pdata->bridge, flags | DRM_BRIDGE_ATTACH_NO_CONNECTOR);
718         if (ret < 0)
719                 goto err_initted_aux;
720
721         if (flags & DRM_BRIDGE_ATTACH_NO_CONNECTOR)
722                 return 0;
723
724         pdata->connector = drm_bridge_connector_init(pdata->bridge.dev,
725                                                      pdata->bridge.encoder);
726         if (IS_ERR(pdata->connector)) {
727                 ret = PTR_ERR(pdata->connector);
728                 goto err_initted_aux;
729         }
730
731         drm_connector_attach_encoder(pdata->connector, pdata->bridge.encoder);
732
733         return 0;
734
735 err_initted_aux:
736         drm_dp_aux_unregister(&pdata->aux);
737         return ret;
738 }
739
740 static void ti_sn_bridge_detach(struct drm_bridge *bridge)
741 {
742         drm_dp_aux_unregister(&bridge_to_ti_sn65dsi86(bridge)->aux);
743 }
744
745 static enum drm_mode_status
746 ti_sn_bridge_mode_valid(struct drm_bridge *bridge,
747                         const struct drm_display_info *info,
748                         const struct drm_display_mode *mode)
749 {
750         /* maximum supported resolution is 4K at 60 fps */
751         if (mode->clock > 594000)
752                 return MODE_CLOCK_HIGH;
753
754         /*
755          * The front and back porch registers are 8 bits, and pulse width
756          * registers are 15 bits, so reject any modes with larger periods.
757          */
758
759         if ((mode->hsync_start - mode->hdisplay) > 0xff)
760                 return MODE_HBLANK_WIDE;
761
762         if ((mode->vsync_start - mode->vdisplay) > 0xff)
763                 return MODE_VBLANK_WIDE;
764
765         if ((mode->hsync_end - mode->hsync_start) > 0x7fff)
766                 return MODE_HSYNC_WIDE;
767
768         if ((mode->vsync_end - mode->vsync_start) > 0x7fff)
769                 return MODE_VSYNC_WIDE;
770
771         if ((mode->htotal - mode->hsync_end) > 0xff)
772                 return MODE_HBLANK_WIDE;
773
774         if ((mode->vtotal - mode->vsync_end) > 0xff)
775                 return MODE_VBLANK_WIDE;
776
777         return MODE_OK;
778 }
779
780 static void ti_sn_bridge_atomic_disable(struct drm_bridge *bridge,
781                                         struct drm_bridge_state *old_bridge_state)
782 {
783         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
784
785         /* disable video stream */
786         regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE, 0);
787 }
788
789 static void ti_sn_bridge_set_dsi_rate(struct ti_sn65dsi86 *pdata)
790 {
791         unsigned int bit_rate_mhz, clk_freq_mhz;
792         unsigned int val;
793         struct drm_display_mode *mode =
794                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
795
796         /* set DSIA clk frequency */
797         bit_rate_mhz = (mode->clock / 1000) *
798                         mipi_dsi_pixel_format_to_bpp(pdata->dsi->format);
799         clk_freq_mhz = bit_rate_mhz / (pdata->dsi->lanes * 2);
800
801         /* for each increment in val, frequency increases by 5MHz */
802         val = (MIN_DSI_CLK_FREQ_MHZ / 5) +
803                 (((clk_freq_mhz - MIN_DSI_CLK_FREQ_MHZ) / 5) & 0xFF);
804         regmap_write(pdata->regmap, SN_DSIA_CLK_FREQ_REG, val);
805 }
806
807 static unsigned int ti_sn_bridge_get_bpp(struct drm_connector *connector)
808 {
809         if (connector->display_info.bpc <= 6)
810                 return 18;
811         else
812                 return 24;
813 }
814
815 /*
816  * LUT index corresponds to register value and
817  * LUT values corresponds to dp data rate supported
818  * by the bridge in Mbps unit.
819  */
820 static const unsigned int ti_sn_bridge_dp_rate_lut[] = {
821         0, 1620, 2160, 2430, 2700, 3240, 4320, 5400
822 };
823
824 static int ti_sn_bridge_calc_min_dp_rate_idx(struct ti_sn65dsi86 *pdata, unsigned int bpp)
825 {
826         unsigned int bit_rate_khz, dp_rate_mhz;
827         unsigned int i;
828         struct drm_display_mode *mode =
829                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
830
831         /* Calculate minimum bit rate based on our pixel clock. */
832         bit_rate_khz = mode->clock * bpp;
833
834         /* Calculate minimum DP data rate, taking 80% as per DP spec */
835         dp_rate_mhz = DIV_ROUND_UP(bit_rate_khz * DP_CLK_FUDGE_NUM,
836                                    1000 * pdata->dp_lanes * DP_CLK_FUDGE_DEN);
837
838         for (i = 1; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut) - 1; i++)
839                 if (ti_sn_bridge_dp_rate_lut[i] >= dp_rate_mhz)
840                         break;
841
842         return i;
843 }
844
845 static unsigned int ti_sn_bridge_read_valid_rates(struct ti_sn65dsi86 *pdata)
846 {
847         unsigned int valid_rates = 0;
848         unsigned int rate_per_200khz;
849         unsigned int rate_mhz;
850         u8 dpcd_val;
851         int ret;
852         int i, j;
853
854         ret = drm_dp_dpcd_readb(&pdata->aux, DP_EDP_DPCD_REV, &dpcd_val);
855         if (ret != 1) {
856                 DRM_DEV_ERROR(pdata->dev,
857                               "Can't read eDP rev (%d), assuming 1.1\n", ret);
858                 dpcd_val = DP_EDP_11;
859         }
860
861         if (dpcd_val >= DP_EDP_14) {
862                 /* eDP 1.4 devices must provide a custom table */
863                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
864
865                 ret = drm_dp_dpcd_read(&pdata->aux, DP_SUPPORTED_LINK_RATES,
866                                        sink_rates, sizeof(sink_rates));
867
868                 if (ret != sizeof(sink_rates)) {
869                         DRM_DEV_ERROR(pdata->dev,
870                                 "Can't read supported rate table (%d)\n", ret);
871
872                         /* By zeroing we'll fall back to DP_MAX_LINK_RATE. */
873                         memset(sink_rates, 0, sizeof(sink_rates));
874                 }
875
876                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
877                         rate_per_200khz = le16_to_cpu(sink_rates[i]);
878
879                         if (!rate_per_200khz)
880                                 break;
881
882                         rate_mhz = rate_per_200khz * 200 / 1000;
883                         for (j = 0;
884                              j < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
885                              j++) {
886                                 if (ti_sn_bridge_dp_rate_lut[j] == rate_mhz)
887                                         valid_rates |= BIT(j);
888                         }
889                 }
890
891                 for (i = 0; i < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut); i++) {
892                         if (valid_rates & BIT(i))
893                                 return valid_rates;
894                 }
895                 DRM_DEV_ERROR(pdata->dev,
896                               "No matching eDP rates in table; falling back\n");
897         }
898
899         /* On older versions best we can do is use DP_MAX_LINK_RATE */
900         ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LINK_RATE, &dpcd_val);
901         if (ret != 1) {
902                 DRM_DEV_ERROR(pdata->dev,
903                               "Can't read max rate (%d); assuming 5.4 GHz\n",
904                               ret);
905                 dpcd_val = DP_LINK_BW_5_4;
906         }
907
908         switch (dpcd_val) {
909         default:
910                 DRM_DEV_ERROR(pdata->dev,
911                               "Unexpected max rate (%#x); assuming 5.4 GHz\n",
912                               (int)dpcd_val);
913                 fallthrough;
914         case DP_LINK_BW_5_4:
915                 valid_rates |= BIT(7);
916                 fallthrough;
917         case DP_LINK_BW_2_7:
918                 valid_rates |= BIT(4);
919                 fallthrough;
920         case DP_LINK_BW_1_62:
921                 valid_rates |= BIT(1);
922                 break;
923         }
924
925         return valid_rates;
926 }
927
928 static void ti_sn_bridge_set_video_timings(struct ti_sn65dsi86 *pdata)
929 {
930         struct drm_display_mode *mode =
931                 &pdata->bridge.encoder->crtc->state->adjusted_mode;
932         u8 hsync_polarity = 0, vsync_polarity = 0;
933
934         if (mode->flags & DRM_MODE_FLAG_PHSYNC)
935                 hsync_polarity = CHA_HSYNC_POLARITY;
936         if (mode->flags & DRM_MODE_FLAG_PVSYNC)
937                 vsync_polarity = CHA_VSYNC_POLARITY;
938
939         ti_sn65dsi86_write_u16(pdata, SN_CHA_ACTIVE_LINE_LENGTH_LOW_REG,
940                                mode->hdisplay);
941         ti_sn65dsi86_write_u16(pdata, SN_CHA_VERTICAL_DISPLAY_SIZE_LOW_REG,
942                                mode->vdisplay);
943         regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_LOW_REG,
944                      (mode->hsync_end - mode->hsync_start) & 0xFF);
945         regmap_write(pdata->regmap, SN_CHA_HSYNC_PULSE_WIDTH_HIGH_REG,
946                      (((mode->hsync_end - mode->hsync_start) >> 8) & 0x7F) |
947                      hsync_polarity);
948         regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_LOW_REG,
949                      (mode->vsync_end - mode->vsync_start) & 0xFF);
950         regmap_write(pdata->regmap, SN_CHA_VSYNC_PULSE_WIDTH_HIGH_REG,
951                      (((mode->vsync_end - mode->vsync_start) >> 8) & 0x7F) |
952                      vsync_polarity);
953
954         regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_BACK_PORCH_REG,
955                      (mode->htotal - mode->hsync_end) & 0xFF);
956         regmap_write(pdata->regmap, SN_CHA_VERTICAL_BACK_PORCH_REG,
957                      (mode->vtotal - mode->vsync_end) & 0xFF);
958
959         regmap_write(pdata->regmap, SN_CHA_HORIZONTAL_FRONT_PORCH_REG,
960                      (mode->hsync_start - mode->hdisplay) & 0xFF);
961         regmap_write(pdata->regmap, SN_CHA_VERTICAL_FRONT_PORCH_REG,
962                      (mode->vsync_start - mode->vdisplay) & 0xFF);
963
964         usleep_range(10000, 10500); /* 10ms delay recommended by spec */
965 }
966
967 static unsigned int ti_sn_get_max_lanes(struct ti_sn65dsi86 *pdata)
968 {
969         u8 data;
970         int ret;
971
972         ret = drm_dp_dpcd_readb(&pdata->aux, DP_MAX_LANE_COUNT, &data);
973         if (ret != 1) {
974                 DRM_DEV_ERROR(pdata->dev,
975                               "Can't read lane count (%d); assuming 4\n", ret);
976                 return 4;
977         }
978
979         return data & DP_LANE_COUNT_MASK;
980 }
981
982 static int ti_sn_link_training(struct ti_sn65dsi86 *pdata, int dp_rate_idx,
983                                const char **last_err_str)
984 {
985         unsigned int val;
986         int ret;
987         int i;
988
989         /* set dp clk frequency value */
990         regmap_update_bits(pdata->regmap, SN_DATARATE_CONFIG_REG,
991                            DP_DATARATE_MASK, DP_DATARATE(dp_rate_idx));
992
993         /* enable DP PLL */
994         regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 1);
995
996         ret = regmap_read_poll_timeout(pdata->regmap, SN_DPPLL_SRC_REG, val,
997                                        val & DPPLL_SRC_DP_PLL_LOCK, 1000,
998                                        50 * 1000);
999         if (ret) {
1000                 *last_err_str = "DP_PLL_LOCK polling failed";
1001                 goto exit;
1002         }
1003
1004         /*
1005          * We'll try to link train several times.  As part of link training
1006          * the bridge chip will write DP_SET_POWER_D0 to DP_SET_POWER.  If
1007          * the panel isn't ready quite it might respond NAK here which means
1008          * we need to try again.
1009          */
1010         for (i = 0; i < SN_LINK_TRAINING_TRIES; i++) {
1011                 /* Semi auto link training mode */
1012                 regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0x0A);
1013                 ret = regmap_read_poll_timeout(pdata->regmap, SN_ML_TX_MODE_REG, val,
1014                                                val == ML_TX_MAIN_LINK_OFF ||
1015                                                val == ML_TX_NORMAL_MODE, 1000,
1016                                                500 * 1000);
1017                 if (ret) {
1018                         *last_err_str = "Training complete polling failed";
1019                 } else if (val == ML_TX_MAIN_LINK_OFF) {
1020                         *last_err_str = "Link training failed, link is off";
1021                         ret = -EIO;
1022                         continue;
1023                 }
1024
1025                 break;
1026         }
1027
1028         /* If we saw quite a few retries, add a note about it */
1029         if (!ret && i > SN_LINK_TRAINING_TRIES / 2)
1030                 DRM_DEV_INFO(pdata->dev, "Link training needed %d retries\n", i);
1031
1032 exit:
1033         /* Disable the PLL if we failed */
1034         if (ret)
1035                 regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1036
1037         return ret;
1038 }
1039
1040 static void ti_sn_bridge_atomic_enable(struct drm_bridge *bridge,
1041                                        struct drm_bridge_state *old_bridge_state)
1042 {
1043         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1044         struct drm_connector *connector;
1045         const char *last_err_str = "No supported DP rate";
1046         unsigned int valid_rates;
1047         int dp_rate_idx;
1048         unsigned int val;
1049         int ret = -EINVAL;
1050         int max_dp_lanes;
1051         unsigned int bpp;
1052
1053         connector = drm_atomic_get_new_connector_for_encoder(old_bridge_state->base.state,
1054                                                              bridge->encoder);
1055         if (!connector) {
1056                 dev_err_ratelimited(pdata->dev, "Could not get the connector\n");
1057                 return;
1058         }
1059
1060         max_dp_lanes = ti_sn_get_max_lanes(pdata);
1061         pdata->dp_lanes = min(pdata->dp_lanes, max_dp_lanes);
1062
1063         /* DSI_A lane config */
1064         val = CHA_DSI_LANES(SN_MAX_DP_LANES - pdata->dsi->lanes);
1065         regmap_update_bits(pdata->regmap, SN_DSI_LANES_REG,
1066                            CHA_DSI_LANES_MASK, val);
1067
1068         regmap_write(pdata->regmap, SN_LN_ASSIGN_REG, pdata->ln_assign);
1069         regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, LN_POLRS_MASK,
1070                            pdata->ln_polrs << LN_POLRS_OFFSET);
1071
1072         /* set dsi clk frequency value */
1073         ti_sn_bridge_set_dsi_rate(pdata);
1074
1075         /*
1076          * The SN65DSI86 only supports ASSR Display Authentication method and
1077          * this method is enabled for eDP panels. An eDP panel must support this
1078          * authentication method. We need to enable this method in the eDP panel
1079          * at DisplayPort address 0x0010A prior to link training.
1080          *
1081          * As only ASSR is supported by SN65DSI86, for full DisplayPort displays
1082          * we need to disable the scrambler.
1083          */
1084         if (pdata->bridge.type == DRM_MODE_CONNECTOR_eDP) {
1085                 drm_dp_dpcd_writeb(&pdata->aux, DP_EDP_CONFIGURATION_SET,
1086                                    DP_ALTERNATE_SCRAMBLER_RESET_ENABLE);
1087
1088                 regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1089                                    SCRAMBLE_DISABLE, 0);
1090         } else {
1091                 regmap_update_bits(pdata->regmap, SN_TRAINING_SETTING_REG,
1092                                    SCRAMBLE_DISABLE, SCRAMBLE_DISABLE);
1093         }
1094
1095         bpp = ti_sn_bridge_get_bpp(connector);
1096         /* Set the DP output format (18 bpp or 24 bpp) */
1097         val = bpp == 18 ? BPP_18_RGB : 0;
1098         regmap_update_bits(pdata->regmap, SN_DATA_FORMAT_REG, BPP_18_RGB, val);
1099
1100         /* DP lane config */
1101         val = DP_NUM_LANES(min(pdata->dp_lanes, 3));
1102         regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK,
1103                            val);
1104
1105         valid_rates = ti_sn_bridge_read_valid_rates(pdata);
1106
1107         /* Train until we run out of rates */
1108         for (dp_rate_idx = ti_sn_bridge_calc_min_dp_rate_idx(pdata, bpp);
1109              dp_rate_idx < ARRAY_SIZE(ti_sn_bridge_dp_rate_lut);
1110              dp_rate_idx++) {
1111                 if (!(valid_rates & BIT(dp_rate_idx)))
1112                         continue;
1113
1114                 ret = ti_sn_link_training(pdata, dp_rate_idx, &last_err_str);
1115                 if (!ret)
1116                         break;
1117         }
1118         if (ret) {
1119                 DRM_DEV_ERROR(pdata->dev, "%s (%d)\n", last_err_str, ret);
1120                 return;
1121         }
1122
1123         /* config video parameters */
1124         ti_sn_bridge_set_video_timings(pdata);
1125
1126         /* enable video stream */
1127         regmap_update_bits(pdata->regmap, SN_ENH_FRAME_REG, VSTREAM_ENABLE,
1128                            VSTREAM_ENABLE);
1129 }
1130
1131 static void ti_sn_bridge_atomic_pre_enable(struct drm_bridge *bridge,
1132                                            struct drm_bridge_state *old_bridge_state)
1133 {
1134         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1135
1136         pm_runtime_get_sync(pdata->dev);
1137
1138         if (!pdata->refclk)
1139                 ti_sn65dsi86_enable_comms(pdata);
1140
1141         /* td7: min 100 us after enable before DSI data */
1142         usleep_range(100, 110);
1143 }
1144
1145 static void ti_sn_bridge_atomic_post_disable(struct drm_bridge *bridge,
1146                                              struct drm_bridge_state *old_bridge_state)
1147 {
1148         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1149
1150         /* semi auto link training mode OFF */
1151         regmap_write(pdata->regmap, SN_ML_TX_MODE_REG, 0);
1152         /* Num lanes to 0 as per power sequencing in data sheet */
1153         regmap_update_bits(pdata->regmap, SN_SSC_CONFIG_REG, DP_NUM_LANES_MASK, 0);
1154         /* disable DP PLL */
1155         regmap_write(pdata->regmap, SN_PLL_ENABLE_REG, 0);
1156
1157         if (!pdata->refclk)
1158                 ti_sn65dsi86_disable_comms(pdata);
1159
1160         pm_runtime_put_sync(pdata->dev);
1161 }
1162
1163 static enum drm_connector_status ti_sn_bridge_detect(struct drm_bridge *bridge)
1164 {
1165         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1166         int val = 0;
1167
1168         pm_runtime_get_sync(pdata->dev);
1169         regmap_read(pdata->regmap, SN_HPD_DISABLE_REG, &val);
1170         pm_runtime_put_autosuspend(pdata->dev);
1171
1172         return val & HPD_DEBOUNCED_STATE ? connector_status_connected
1173                                          : connector_status_disconnected;
1174 }
1175
1176 static struct edid *ti_sn_bridge_get_edid(struct drm_bridge *bridge,
1177                                           struct drm_connector *connector)
1178 {
1179         struct ti_sn65dsi86 *pdata = bridge_to_ti_sn65dsi86(bridge);
1180
1181         return drm_get_edid(connector, &pdata->aux.ddc);
1182 }
1183
1184 static const struct drm_bridge_funcs ti_sn_bridge_funcs = {
1185         .attach = ti_sn_bridge_attach,
1186         .detach = ti_sn_bridge_detach,
1187         .mode_valid = ti_sn_bridge_mode_valid,
1188         .get_edid = ti_sn_bridge_get_edid,
1189         .detect = ti_sn_bridge_detect,
1190         .atomic_pre_enable = ti_sn_bridge_atomic_pre_enable,
1191         .atomic_enable = ti_sn_bridge_atomic_enable,
1192         .atomic_disable = ti_sn_bridge_atomic_disable,
1193         .atomic_post_disable = ti_sn_bridge_atomic_post_disable,
1194         .atomic_reset = drm_atomic_helper_bridge_reset,
1195         .atomic_duplicate_state = drm_atomic_helper_bridge_duplicate_state,
1196         .atomic_destroy_state = drm_atomic_helper_bridge_destroy_state,
1197 };
1198
1199 static void ti_sn_bridge_parse_lanes(struct ti_sn65dsi86 *pdata,
1200                                      struct device_node *np)
1201 {
1202         u32 lane_assignments[SN_MAX_DP_LANES] = { 0, 1, 2, 3 };
1203         u32 lane_polarities[SN_MAX_DP_LANES] = { };
1204         struct device_node *endpoint;
1205         u8 ln_assign = 0;
1206         u8 ln_polrs = 0;
1207         int dp_lanes;
1208         int i;
1209
1210         /*
1211          * Read config from the device tree about lane remapping and lane
1212          * polarities.  These are optional and we assume identity map and
1213          * normal polarity if nothing is specified.  It's OK to specify just
1214          * data-lanes but not lane-polarities but not vice versa.
1215          *
1216          * Error checking is light (we just make sure we don't crash or
1217          * buffer overrun) and we assume dts is well formed and specifying
1218          * mappings that the hardware supports.
1219          */
1220         endpoint = of_graph_get_endpoint_by_regs(np, 1, -1);
1221         dp_lanes = drm_of_get_data_lanes_count(endpoint, 1, SN_MAX_DP_LANES);
1222         if (dp_lanes > 0) {
1223                 of_property_read_u32_array(endpoint, "data-lanes",
1224                                            lane_assignments, dp_lanes);
1225                 of_property_read_u32_array(endpoint, "lane-polarities",
1226                                            lane_polarities, dp_lanes);
1227         } else {
1228                 dp_lanes = SN_MAX_DP_LANES;
1229         }
1230         of_node_put(endpoint);
1231
1232         /*
1233          * Convert into register format.  Loop over all lanes even if
1234          * data-lanes had fewer elements so that we nicely initialize
1235          * the LN_ASSIGN register.
1236          */
1237         for (i = SN_MAX_DP_LANES - 1; i >= 0; i--) {
1238                 ln_assign = ln_assign << LN_ASSIGN_WIDTH | lane_assignments[i];
1239                 ln_polrs = ln_polrs << 1 | lane_polarities[i];
1240         }
1241
1242         /* Stash in our struct for when we power on */
1243         pdata->dp_lanes = dp_lanes;
1244         pdata->ln_assign = ln_assign;
1245         pdata->ln_polrs = ln_polrs;
1246 }
1247
1248 static int ti_sn_bridge_parse_dsi_host(struct ti_sn65dsi86 *pdata)
1249 {
1250         struct device_node *np = pdata->dev->of_node;
1251
1252         pdata->host_node = of_graph_get_remote_node(np, 0, 0);
1253
1254         if (!pdata->host_node) {
1255                 DRM_ERROR("remote dsi host node not found\n");
1256                 return -ENODEV;
1257         }
1258
1259         return 0;
1260 }
1261
1262 static int ti_sn_bridge_probe(struct auxiliary_device *adev,
1263                               const struct auxiliary_device_id *id)
1264 {
1265         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1266         struct device_node *np = pdata->dev->of_node;
1267         int ret;
1268
1269         pdata->next_bridge = devm_drm_of_get_bridge(pdata->dev, np, 1, 0);
1270         if (IS_ERR(pdata->next_bridge))
1271                 return dev_err_probe(pdata->dev, PTR_ERR(pdata->next_bridge),
1272                                      "failed to create panel bridge\n");
1273
1274         ti_sn_bridge_parse_lanes(pdata, np);
1275
1276         ret = ti_sn_bridge_parse_dsi_host(pdata);
1277         if (ret)
1278                 return ret;
1279
1280         pdata->bridge.funcs = &ti_sn_bridge_funcs;
1281         pdata->bridge.of_node = np;
1282         pdata->bridge.type = pdata->next_bridge->type == DRM_MODE_CONNECTOR_DisplayPort
1283                            ? DRM_MODE_CONNECTOR_DisplayPort : DRM_MODE_CONNECTOR_eDP;
1284
1285         if (pdata->bridge.type == DRM_MODE_CONNECTOR_DisplayPort)
1286                 pdata->bridge.ops = DRM_BRIDGE_OP_EDID | DRM_BRIDGE_OP_DETECT;
1287
1288         drm_bridge_add(&pdata->bridge);
1289
1290         ret = ti_sn_attach_host(pdata);
1291         if (ret) {
1292                 dev_err_probe(pdata->dev, ret, "failed to attach dsi host\n");
1293                 goto err_remove_bridge;
1294         }
1295
1296         return 0;
1297
1298 err_remove_bridge:
1299         drm_bridge_remove(&pdata->bridge);
1300         return ret;
1301 }
1302
1303 static void ti_sn_bridge_remove(struct auxiliary_device *adev)
1304 {
1305         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1306
1307         if (!pdata)
1308                 return;
1309
1310         drm_bridge_remove(&pdata->bridge);
1311
1312         of_node_put(pdata->host_node);
1313 }
1314
1315 static const struct auxiliary_device_id ti_sn_bridge_id_table[] = {
1316         { .name = "ti_sn65dsi86.bridge", },
1317         {},
1318 };
1319
1320 static struct auxiliary_driver ti_sn_bridge_driver = {
1321         .name = "bridge",
1322         .probe = ti_sn_bridge_probe,
1323         .remove = ti_sn_bridge_remove,
1324         .id_table = ti_sn_bridge_id_table,
1325 };
1326
1327 /* -----------------------------------------------------------------------------
1328  * PWM Controller
1329  */
1330 #if defined(CONFIG_PWM)
1331 static int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata)
1332 {
1333         return atomic_xchg(&pdata->pwm_pin_busy, 1) ? -EBUSY : 0;
1334 }
1335
1336 static void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata)
1337 {
1338         atomic_set(&pdata->pwm_pin_busy, 0);
1339 }
1340
1341 static struct ti_sn65dsi86 *pwm_chip_to_ti_sn_bridge(struct pwm_chip *chip)
1342 {
1343         return container_of(chip, struct ti_sn65dsi86, pchip);
1344 }
1345
1346 static int ti_sn_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm)
1347 {
1348         struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1349
1350         return ti_sn_pwm_pin_request(pdata);
1351 }
1352
1353 static void ti_sn_pwm_free(struct pwm_chip *chip, struct pwm_device *pwm)
1354 {
1355         struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1356
1357         ti_sn_pwm_pin_release(pdata);
1358 }
1359
1360 /*
1361  * Limitations:
1362  * - The PWM signal is not driven when the chip is powered down, or in its
1363  *   reset state and the driver does not implement the "suspend state"
1364  *   described in the documentation. In order to save power, state->enabled is
1365  *   interpreted as denoting if the signal is expected to be valid, and is used
1366  *   to determine if the chip needs to be kept powered.
1367  * - Changing both period and duty_cycle is not done atomically, neither is the
1368  *   multi-byte register updates, so the output might briefly be undefined
1369  *   during update.
1370  */
1371 static int ti_sn_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
1372                            const struct pwm_state *state)
1373 {
1374         struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1375         unsigned int pwm_en_inv;
1376         unsigned int backlight;
1377         unsigned int pre_div;
1378         unsigned int scale;
1379         u64 period_max;
1380         u64 period;
1381         int ret;
1382
1383         if (!pdata->pwm_enabled) {
1384                 ret = pm_runtime_get_sync(pdata->dev);
1385                 if (ret < 0) {
1386                         pm_runtime_put_sync(pdata->dev);
1387                         return ret;
1388                 }
1389         }
1390
1391         if (state->enabled) {
1392                 if (!pdata->pwm_enabled) {
1393                         /*
1394                          * The chip might have been powered down while we
1395                          * didn't hold a PM runtime reference, so mux in the
1396                          * PWM function on the GPIO pin again.
1397                          */
1398                         ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1399                                                  SN_GPIO_MUX_MASK << (2 * SN_PWM_GPIO_IDX),
1400                                                  SN_GPIO_MUX_SPECIAL << (2 * SN_PWM_GPIO_IDX));
1401                         if (ret) {
1402                                 dev_err(pdata->dev, "failed to mux in PWM function\n");
1403                                 goto out;
1404                         }
1405                 }
1406
1407                 /*
1408                  * Per the datasheet the PWM frequency is given by:
1409                  *
1410                  *                          REFCLK_FREQ
1411                  *   PWM_FREQ = -----------------------------------
1412                  *               PWM_PRE_DIV * BACKLIGHT_SCALE + 1
1413                  *
1414                  * However, after careful review the author is convinced that
1415                  * the documentation has lost some parenthesis around
1416                  * "BACKLIGHT_SCALE + 1".
1417                  *
1418                  * With the period T_pwm = 1/PWM_FREQ this can be written:
1419                  *
1420                  *   T_pwm * REFCLK_FREQ = PWM_PRE_DIV * (BACKLIGHT_SCALE + 1)
1421                  *
1422                  * In order to keep BACKLIGHT_SCALE within its 16 bits,
1423                  * PWM_PRE_DIV must be:
1424                  *
1425                  *                     T_pwm * REFCLK_FREQ
1426                  *   PWM_PRE_DIV >= -------------------------
1427                  *                   BACKLIGHT_SCALE_MAX + 1
1428                  *
1429                  * To simplify the search and to favour higher resolution of
1430                  * the duty cycle over accuracy of the period, the lowest
1431                  * possible PWM_PRE_DIV is used. Finally the scale is
1432                  * calculated as:
1433                  *
1434                  *                      T_pwm * REFCLK_FREQ
1435                  *   BACKLIGHT_SCALE = ---------------------- - 1
1436                  *                          PWM_PRE_DIV
1437                  *
1438                  * Here T_pwm is represented in seconds, so appropriate scaling
1439                  * to nanoseconds is necessary.
1440                  */
1441
1442                 /* Minimum T_pwm is 1 / REFCLK_FREQ */
1443                 if (state->period <= NSEC_PER_SEC / pdata->pwm_refclk_freq) {
1444                         ret = -EINVAL;
1445                         goto out;
1446                 }
1447
1448                 /*
1449                  * Maximum T_pwm is 255 * (65535 + 1) / REFCLK_FREQ
1450                  * Limit period to this to avoid overflows
1451                  */
1452                 period_max = div_u64((u64)NSEC_PER_SEC * 255 * (65535 + 1),
1453                                      pdata->pwm_refclk_freq);
1454                 period = min(state->period, period_max);
1455
1456                 pre_div = DIV64_U64_ROUND_UP(period * pdata->pwm_refclk_freq,
1457                                              (u64)NSEC_PER_SEC * (BACKLIGHT_SCALE_MAX + 1));
1458                 scale = div64_u64(period * pdata->pwm_refclk_freq, (u64)NSEC_PER_SEC * pre_div) - 1;
1459
1460                 /*
1461                  * The documentation has the duty ratio given as:
1462                  *
1463                  *     duty          BACKLIGHT
1464                  *   ------- = ---------------------
1465                  *    period    BACKLIGHT_SCALE + 1
1466                  *
1467                  * Solve for BACKLIGHT, substituting BACKLIGHT_SCALE according
1468                  * to definition above and adjusting for nanosecond
1469                  * representation of duty cycle gives us:
1470                  */
1471                 backlight = div64_u64(state->duty_cycle * pdata->pwm_refclk_freq,
1472                                       (u64)NSEC_PER_SEC * pre_div);
1473                 if (backlight > scale)
1474                         backlight = scale;
1475
1476                 ret = regmap_write(pdata->regmap, SN_PWM_PRE_DIV_REG, pre_div);
1477                 if (ret) {
1478                         dev_err(pdata->dev, "failed to update PWM_PRE_DIV\n");
1479                         goto out;
1480                 }
1481
1482                 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_SCALE_REG, scale);
1483                 ti_sn65dsi86_write_u16(pdata, SN_BACKLIGHT_REG, backlight);
1484         }
1485
1486         pwm_en_inv = FIELD_PREP(SN_PWM_EN_MASK, state->enabled) |
1487                      FIELD_PREP(SN_PWM_INV_MASK, state->polarity == PWM_POLARITY_INVERSED);
1488         ret = regmap_write(pdata->regmap, SN_PWM_EN_INV_REG, pwm_en_inv);
1489         if (ret) {
1490                 dev_err(pdata->dev, "failed to update PWM_EN/PWM_INV\n");
1491                 goto out;
1492         }
1493
1494         pdata->pwm_enabled = state->enabled;
1495 out:
1496
1497         if (!pdata->pwm_enabled)
1498                 pm_runtime_put_sync(pdata->dev);
1499
1500         return ret;
1501 }
1502
1503 static void ti_sn_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
1504                                 struct pwm_state *state)
1505 {
1506         struct ti_sn65dsi86 *pdata = pwm_chip_to_ti_sn_bridge(chip);
1507         unsigned int pwm_en_inv;
1508         unsigned int pre_div;
1509         u16 backlight;
1510         u16 scale;
1511         int ret;
1512
1513         ret = regmap_read(pdata->regmap, SN_PWM_EN_INV_REG, &pwm_en_inv);
1514         if (ret)
1515                 return;
1516
1517         ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_SCALE_REG, &scale);
1518         if (ret)
1519                 return;
1520
1521         ret = ti_sn65dsi86_read_u16(pdata, SN_BACKLIGHT_REG, &backlight);
1522         if (ret)
1523                 return;
1524
1525         ret = regmap_read(pdata->regmap, SN_PWM_PRE_DIV_REG, &pre_div);
1526         if (ret)
1527                 return;
1528
1529         state->enabled = FIELD_GET(SN_PWM_EN_MASK, pwm_en_inv);
1530         if (FIELD_GET(SN_PWM_INV_MASK, pwm_en_inv))
1531                 state->polarity = PWM_POLARITY_INVERSED;
1532         else
1533                 state->polarity = PWM_POLARITY_NORMAL;
1534
1535         state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * (scale + 1),
1536                                          pdata->pwm_refclk_freq);
1537         state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pre_div * backlight,
1538                                              pdata->pwm_refclk_freq);
1539
1540         if (state->duty_cycle > state->period)
1541                 state->duty_cycle = state->period;
1542 }
1543
1544 static const struct pwm_ops ti_sn_pwm_ops = {
1545         .request = ti_sn_pwm_request,
1546         .free = ti_sn_pwm_free,
1547         .apply = ti_sn_pwm_apply,
1548         .get_state = ti_sn_pwm_get_state,
1549         .owner = THIS_MODULE,
1550 };
1551
1552 static int ti_sn_pwm_probe(struct auxiliary_device *adev,
1553                            const struct auxiliary_device_id *id)
1554 {
1555         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1556
1557         pdata->pchip.dev = pdata->dev;
1558         pdata->pchip.ops = &ti_sn_pwm_ops;
1559         pdata->pchip.npwm = 1;
1560         pdata->pchip.of_xlate = of_pwm_single_xlate;
1561         pdata->pchip.of_pwm_n_cells = 1;
1562
1563         return pwmchip_add(&pdata->pchip);
1564 }
1565
1566 static void ti_sn_pwm_remove(struct auxiliary_device *adev)
1567 {
1568         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1569
1570         pwmchip_remove(&pdata->pchip);
1571
1572         if (pdata->pwm_enabled)
1573                 pm_runtime_put_sync(pdata->dev);
1574 }
1575
1576 static const struct auxiliary_device_id ti_sn_pwm_id_table[] = {
1577         { .name = "ti_sn65dsi86.pwm", },
1578         {},
1579 };
1580
1581 static struct auxiliary_driver ti_sn_pwm_driver = {
1582         .name = "pwm",
1583         .probe = ti_sn_pwm_probe,
1584         .remove = ti_sn_pwm_remove,
1585         .id_table = ti_sn_pwm_id_table,
1586 };
1587
1588 static int __init ti_sn_pwm_register(void)
1589 {
1590         return auxiliary_driver_register(&ti_sn_pwm_driver);
1591 }
1592
1593 static void ti_sn_pwm_unregister(void)
1594 {
1595         auxiliary_driver_unregister(&ti_sn_pwm_driver);
1596 }
1597
1598 #else
1599 static inline int ti_sn_pwm_pin_request(struct ti_sn65dsi86 *pdata) { return 0; }
1600 static inline void ti_sn_pwm_pin_release(struct ti_sn65dsi86 *pdata) {}
1601
1602 static inline int ti_sn_pwm_register(void) { return 0; }
1603 static inline void ti_sn_pwm_unregister(void) {}
1604 #endif
1605
1606 /* -----------------------------------------------------------------------------
1607  * GPIO Controller
1608  */
1609 #if defined(CONFIG_OF_GPIO)
1610
1611 static int tn_sn_bridge_of_xlate(struct gpio_chip *chip,
1612                                  const struct of_phandle_args *gpiospec,
1613                                  u32 *flags)
1614 {
1615         if (WARN_ON(gpiospec->args_count < chip->of_gpio_n_cells))
1616                 return -EINVAL;
1617
1618         if (gpiospec->args[0] > chip->ngpio || gpiospec->args[0] < 1)
1619                 return -EINVAL;
1620
1621         if (flags)
1622                 *flags = gpiospec->args[1];
1623
1624         return gpiospec->args[0] - SN_GPIO_PHYSICAL_OFFSET;
1625 }
1626
1627 static int ti_sn_bridge_gpio_get_direction(struct gpio_chip *chip,
1628                                            unsigned int offset)
1629 {
1630         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1631
1632         /*
1633          * We already have to keep track of the direction because we use
1634          * that to figure out whether we've powered the device.  We can
1635          * just return that rather than (maybe) powering up the device
1636          * to ask its direction.
1637          */
1638         return test_bit(offset, pdata->gchip_output) ?
1639                 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1640 }
1641
1642 static int ti_sn_bridge_gpio_get(struct gpio_chip *chip, unsigned int offset)
1643 {
1644         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1645         unsigned int val;
1646         int ret;
1647
1648         /*
1649          * When the pin is an input we don't forcibly keep the bridge
1650          * powered--we just power it on to read the pin.  NOTE: part of
1651          * the reason this works is that the bridge defaults (when
1652          * powered back on) to all 4 GPIOs being configured as GPIO input.
1653          * Also note that if something else is keeping the chip powered the
1654          * pm_runtime functions are lightweight increments of a refcount.
1655          */
1656         pm_runtime_get_sync(pdata->dev);
1657         ret = regmap_read(pdata->regmap, SN_GPIO_IO_REG, &val);
1658         pm_runtime_put_autosuspend(pdata->dev);
1659
1660         if (ret)
1661                 return ret;
1662
1663         return !!(val & BIT(SN_GPIO_INPUT_SHIFT + offset));
1664 }
1665
1666 static void ti_sn_bridge_gpio_set(struct gpio_chip *chip, unsigned int offset,
1667                                   int val)
1668 {
1669         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1670         int ret;
1671
1672         if (!test_bit(offset, pdata->gchip_output)) {
1673                 dev_err(pdata->dev, "Ignoring GPIO set while input\n");
1674                 return;
1675         }
1676
1677         val &= 1;
1678         ret = regmap_update_bits(pdata->regmap, SN_GPIO_IO_REG,
1679                                  BIT(SN_GPIO_OUTPUT_SHIFT + offset),
1680                                  val << (SN_GPIO_OUTPUT_SHIFT + offset));
1681         if (ret)
1682                 dev_warn(pdata->dev,
1683                          "Failed to set bridge GPIO %u: %d\n", offset, ret);
1684 }
1685
1686 static int ti_sn_bridge_gpio_direction_input(struct gpio_chip *chip,
1687                                              unsigned int offset)
1688 {
1689         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1690         int shift = offset * 2;
1691         int ret;
1692
1693         if (!test_and_clear_bit(offset, pdata->gchip_output))
1694                 return 0;
1695
1696         ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1697                                  SN_GPIO_MUX_MASK << shift,
1698                                  SN_GPIO_MUX_INPUT << shift);
1699         if (ret) {
1700                 set_bit(offset, pdata->gchip_output);
1701                 return ret;
1702         }
1703
1704         /*
1705          * NOTE: if nobody else is powering the device this may fully power
1706          * it off and when it comes back it will have lost all state, but
1707          * that's OK because the default is input and we're now an input.
1708          */
1709         pm_runtime_put_autosuspend(pdata->dev);
1710
1711         return 0;
1712 }
1713
1714 static int ti_sn_bridge_gpio_direction_output(struct gpio_chip *chip,
1715                                               unsigned int offset, int val)
1716 {
1717         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1718         int shift = offset * 2;
1719         int ret;
1720
1721         if (test_and_set_bit(offset, pdata->gchip_output))
1722                 return 0;
1723
1724         pm_runtime_get_sync(pdata->dev);
1725
1726         /* Set value first to avoid glitching */
1727         ti_sn_bridge_gpio_set(chip, offset, val);
1728
1729         /* Set direction */
1730         ret = regmap_update_bits(pdata->regmap, SN_GPIO_CTRL_REG,
1731                                  SN_GPIO_MUX_MASK << shift,
1732                                  SN_GPIO_MUX_OUTPUT << shift);
1733         if (ret) {
1734                 clear_bit(offset, pdata->gchip_output);
1735                 pm_runtime_put_autosuspend(pdata->dev);
1736         }
1737
1738         return ret;
1739 }
1740
1741 static int ti_sn_bridge_gpio_request(struct gpio_chip *chip, unsigned int offset)
1742 {
1743         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1744
1745         if (offset == SN_PWM_GPIO_IDX)
1746                 return ti_sn_pwm_pin_request(pdata);
1747
1748         return 0;
1749 }
1750
1751 static void ti_sn_bridge_gpio_free(struct gpio_chip *chip, unsigned int offset)
1752 {
1753         struct ti_sn65dsi86 *pdata = gpiochip_get_data(chip);
1754
1755         /* We won't keep pm_runtime if we're input, so switch there on free */
1756         ti_sn_bridge_gpio_direction_input(chip, offset);
1757
1758         if (offset == SN_PWM_GPIO_IDX)
1759                 ti_sn_pwm_pin_release(pdata);
1760 }
1761
1762 static const char * const ti_sn_bridge_gpio_names[SN_NUM_GPIOS] = {
1763         "GPIO1", "GPIO2", "GPIO3", "GPIO4"
1764 };
1765
1766 static int ti_sn_gpio_probe(struct auxiliary_device *adev,
1767                             const struct auxiliary_device_id *id)
1768 {
1769         struct ti_sn65dsi86 *pdata = dev_get_drvdata(adev->dev.parent);
1770         int ret;
1771
1772         /* Only init if someone is going to use us as a GPIO controller */
1773         if (!of_property_read_bool(pdata->dev->of_node, "gpio-controller"))
1774                 return 0;
1775
1776         pdata->gchip.label = dev_name(pdata->dev);
1777         pdata->gchip.parent = pdata->dev;
1778         pdata->gchip.owner = THIS_MODULE;
1779         pdata->gchip.of_xlate = tn_sn_bridge_of_xlate;
1780         pdata->gchip.of_gpio_n_cells = 2;
1781         pdata->gchip.request = ti_sn_bridge_gpio_request;
1782         pdata->gchip.free = ti_sn_bridge_gpio_free;
1783         pdata->gchip.get_direction = ti_sn_bridge_gpio_get_direction;
1784         pdata->gchip.direction_input = ti_sn_bridge_gpio_direction_input;
1785         pdata->gchip.direction_output = ti_sn_bridge_gpio_direction_output;
1786         pdata->gchip.get = ti_sn_bridge_gpio_get;
1787         pdata->gchip.set = ti_sn_bridge_gpio_set;
1788         pdata->gchip.can_sleep = true;
1789         pdata->gchip.names = ti_sn_bridge_gpio_names;
1790         pdata->gchip.ngpio = SN_NUM_GPIOS;
1791         pdata->gchip.base = -1;
1792         ret = devm_gpiochip_add_data(&adev->dev, &pdata->gchip, pdata);
1793         if (ret)
1794                 dev_err(pdata->dev, "can't add gpio chip\n");
1795
1796         return ret;
1797 }
1798
1799 static const struct auxiliary_device_id ti_sn_gpio_id_table[] = {
1800         { .name = "ti_sn65dsi86.gpio", },
1801         {},
1802 };
1803
1804 MODULE_DEVICE_TABLE(auxiliary, ti_sn_gpio_id_table);
1805
1806 static struct auxiliary_driver ti_sn_gpio_driver = {
1807         .name = "gpio",
1808         .probe = ti_sn_gpio_probe,
1809         .id_table = ti_sn_gpio_id_table,
1810 };
1811
1812 static int __init ti_sn_gpio_register(void)
1813 {
1814         return auxiliary_driver_register(&ti_sn_gpio_driver);
1815 }
1816
1817 static void ti_sn_gpio_unregister(void)
1818 {
1819         auxiliary_driver_unregister(&ti_sn_gpio_driver);
1820 }
1821
1822 #else
1823
1824 static inline int ti_sn_gpio_register(void) { return 0; }
1825 static inline void ti_sn_gpio_unregister(void) {}
1826
1827 #endif
1828
1829 /* -----------------------------------------------------------------------------
1830  * Probe & Remove
1831  */
1832
1833 static void ti_sn65dsi86_runtime_disable(void *data)
1834 {
1835         pm_runtime_dont_use_autosuspend(data);
1836         pm_runtime_disable(data);
1837 }
1838
1839 static int ti_sn65dsi86_parse_regulators(struct ti_sn65dsi86 *pdata)
1840 {
1841         unsigned int i;
1842         const char * const ti_sn_bridge_supply_names[] = {
1843                 "vcca", "vcc", "vccio", "vpll",
1844         };
1845
1846         for (i = 0; i < SN_REGULATOR_SUPPLY_NUM; i++)
1847                 pdata->supplies[i].supply = ti_sn_bridge_supply_names[i];
1848
1849         return devm_regulator_bulk_get(pdata->dev, SN_REGULATOR_SUPPLY_NUM,
1850                                        pdata->supplies);
1851 }
1852
1853 static int ti_sn65dsi86_probe(struct i2c_client *client,
1854                               const struct i2c_device_id *id)
1855 {
1856         struct device *dev = &client->dev;
1857         struct ti_sn65dsi86 *pdata;
1858         int ret;
1859
1860         if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
1861                 DRM_ERROR("device doesn't support I2C\n");
1862                 return -ENODEV;
1863         }
1864
1865         pdata = devm_kzalloc(dev, sizeof(struct ti_sn65dsi86), GFP_KERNEL);
1866         if (!pdata)
1867                 return -ENOMEM;
1868         dev_set_drvdata(dev, pdata);
1869         pdata->dev = dev;
1870
1871         mutex_init(&pdata->comms_mutex);
1872
1873         pdata->regmap = devm_regmap_init_i2c(client,
1874                                              &ti_sn65dsi86_regmap_config);
1875         if (IS_ERR(pdata->regmap))
1876                 return dev_err_probe(dev, PTR_ERR(pdata->regmap),
1877                                      "regmap i2c init failed\n");
1878
1879         pdata->enable_gpio = devm_gpiod_get_optional(dev, "enable",
1880                                                      GPIOD_OUT_LOW);
1881         if (IS_ERR(pdata->enable_gpio))
1882                 return dev_err_probe(dev, PTR_ERR(pdata->enable_gpio),
1883                                      "failed to get enable gpio from DT\n");
1884
1885         ret = ti_sn65dsi86_parse_regulators(pdata);
1886         if (ret)
1887                 return dev_err_probe(dev, ret, "failed to parse regulators\n");
1888
1889         pdata->refclk = devm_clk_get_optional(dev, "refclk");
1890         if (IS_ERR(pdata->refclk))
1891                 return dev_err_probe(dev, PTR_ERR(pdata->refclk),
1892                                      "failed to get reference clock\n");
1893
1894         pm_runtime_enable(dev);
1895         pm_runtime_set_autosuspend_delay(pdata->dev, 500);
1896         pm_runtime_use_autosuspend(pdata->dev);
1897         ret = devm_add_action_or_reset(dev, ti_sn65dsi86_runtime_disable, dev);
1898         if (ret)
1899                 return ret;
1900
1901         ti_sn65dsi86_debugfs_init(pdata);
1902
1903         /*
1904          * Break ourselves up into a collection of aux devices. The only real
1905          * motiviation here is to solve the chicken-and-egg problem of probe
1906          * ordering. The bridge wants the panel to be there when it probes.
1907          * The panel wants its HPD GPIO (provided by sn65dsi86 on some boards)
1908          * when it probes. The panel and maybe backlight might want the DDC
1909          * bus or the pwm_chip. Having sub-devices allows the some sub devices
1910          * to finish probing even if others return -EPROBE_DEFER and gets us
1911          * around the problems.
1912          */
1913
1914         if (IS_ENABLED(CONFIG_OF_GPIO)) {
1915                 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->gpio_aux, "gpio");
1916                 if (ret)
1917                         return ret;
1918         }
1919
1920         if (IS_ENABLED(CONFIG_PWM)) {
1921                 ret = ti_sn65dsi86_add_aux_device(pdata, &pdata->pwm_aux, "pwm");
1922                 if (ret)
1923                         return ret;
1924         }
1925
1926         /*
1927          * NOTE: At the end of the AUX channel probe we'll add the aux device
1928          * for the bridge. This is because the bridge can't be used until the
1929          * AUX channel is there and this is a very simple solution to the
1930          * dependency problem.
1931          */
1932         return ti_sn65dsi86_add_aux_device(pdata, &pdata->aux_aux, "aux");
1933 }
1934
1935 static struct i2c_device_id ti_sn65dsi86_id[] = {
1936         { "ti,sn65dsi86", 0},
1937         {},
1938 };
1939 MODULE_DEVICE_TABLE(i2c, ti_sn65dsi86_id);
1940
1941 static const struct of_device_id ti_sn65dsi86_match_table[] = {
1942         {.compatible = "ti,sn65dsi86"},
1943         {},
1944 };
1945 MODULE_DEVICE_TABLE(of, ti_sn65dsi86_match_table);
1946
1947 static struct i2c_driver ti_sn65dsi86_driver = {
1948         .driver = {
1949                 .name = "ti_sn65dsi86",
1950                 .of_match_table = ti_sn65dsi86_match_table,
1951                 .pm = &ti_sn65dsi86_pm_ops,
1952         },
1953         .probe = ti_sn65dsi86_probe,
1954         .id_table = ti_sn65dsi86_id,
1955 };
1956
1957 static int __init ti_sn65dsi86_init(void)
1958 {
1959         int ret;
1960
1961         ret = i2c_add_driver(&ti_sn65dsi86_driver);
1962         if (ret)
1963                 return ret;
1964
1965         ret = ti_sn_gpio_register();
1966         if (ret)
1967                 goto err_main_was_registered;
1968
1969         ret = ti_sn_pwm_register();
1970         if (ret)
1971                 goto err_gpio_was_registered;
1972
1973         ret = auxiliary_driver_register(&ti_sn_aux_driver);
1974         if (ret)
1975                 goto err_pwm_was_registered;
1976
1977         ret = auxiliary_driver_register(&ti_sn_bridge_driver);
1978         if (ret)
1979                 goto err_aux_was_registered;
1980
1981         return 0;
1982
1983 err_aux_was_registered:
1984         auxiliary_driver_unregister(&ti_sn_aux_driver);
1985 err_pwm_was_registered:
1986         ti_sn_pwm_unregister();
1987 err_gpio_was_registered:
1988         ti_sn_gpio_unregister();
1989 err_main_was_registered:
1990         i2c_del_driver(&ti_sn65dsi86_driver);
1991
1992         return ret;
1993 }
1994 module_init(ti_sn65dsi86_init);
1995
1996 static void __exit ti_sn65dsi86_exit(void)
1997 {
1998         auxiliary_driver_unregister(&ti_sn_bridge_driver);
1999         auxiliary_driver_unregister(&ti_sn_aux_driver);
2000         ti_sn_pwm_unregister();
2001         ti_sn_gpio_unregister();
2002         i2c_del_driver(&ti_sn65dsi86_driver);
2003 }
2004 module_exit(ti_sn65dsi86_exit);
2005
2006 MODULE_AUTHOR("Sandeep Panda <spanda@codeaurora.org>");
2007 MODULE_DESCRIPTION("sn65dsi86 DSI to eDP bridge driver");
2008 MODULE_LICENSE("GPL v2");