Linux 5.4-rc1
[sfrench/cifs-2.6.git] / drivers / gpu / drm / arm / display / komeda / d71 / d71_component.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
4  * Author: James.Qian.Wang <james.qian.wang@arm.com>
5  *
6  */
7 #include "d71_dev.h"
8 #include "komeda_kms.h"
9 #include "malidp_io.h"
10 #include "komeda_framebuffer.h"
11 #include "komeda_color_mgmt.h"
12
13 static void get_resources_id(u32 hw_id, u32 *pipe_id, u32 *comp_id)
14 {
15         u32 id = BLOCK_INFO_BLK_ID(hw_id);
16         u32 pipe = id;
17
18         switch (BLOCK_INFO_BLK_TYPE(hw_id)) {
19         case D71_BLK_TYPE_LPU_WB_LAYER:
20                 id = KOMEDA_COMPONENT_WB_LAYER;
21                 break;
22         case D71_BLK_TYPE_CU_SPLITTER:
23                 id = KOMEDA_COMPONENT_SPLITTER;
24                 break;
25         case D71_BLK_TYPE_CU_SCALER:
26                 pipe = id / D71_PIPELINE_MAX_SCALERS;
27                 id %= D71_PIPELINE_MAX_SCALERS;
28                 id += KOMEDA_COMPONENT_SCALER0;
29                 break;
30         case D71_BLK_TYPE_CU:
31                 id += KOMEDA_COMPONENT_COMPIZ0;
32                 break;
33         case D71_BLK_TYPE_LPU_LAYER:
34                 pipe = id / D71_PIPELINE_MAX_LAYERS;
35                 id %= D71_PIPELINE_MAX_LAYERS;
36                 id += KOMEDA_COMPONENT_LAYER0;
37                 break;
38         case D71_BLK_TYPE_DOU_IPS:
39                 id += KOMEDA_COMPONENT_IPS0;
40                 break;
41         case D71_BLK_TYPE_CU_MERGER:
42                 id = KOMEDA_COMPONENT_MERGER;
43                 break;
44         case D71_BLK_TYPE_DOU:
45                 id = KOMEDA_COMPONENT_TIMING_CTRLR;
46                 break;
47         default:
48                 id = 0xFFFFFFFF;
49         }
50
51         if (comp_id)
52                 *comp_id = id;
53
54         if (pipe_id)
55                 *pipe_id = pipe;
56 }
57
58 static u32 get_valid_inputs(struct block_header *blk)
59 {
60         u32 valid_inputs = 0, comp_id;
61         int i;
62
63         for (i = 0; i < PIPELINE_INFO_N_VALID_INPUTS(blk->pipeline_info); i++) {
64                 get_resources_id(blk->input_ids[i], NULL, &comp_id);
65                 if (comp_id == 0xFFFFFFFF)
66                         continue;
67                 valid_inputs |= BIT(comp_id);
68         }
69
70         return valid_inputs;
71 }
72
73 static void get_values_from_reg(void __iomem *reg, u32 offset,
74                                 u32 count, u32 *val)
75 {
76         u32 i, addr;
77
78         for (i = 0; i < count; i++) {
79                 addr = offset + (i << 2);
80                 /* 0xA4 is WO register */
81                 if (addr != 0xA4)
82                         val[i] = malidp_read32(reg, addr);
83                 else
84                         val[i] = 0xDEADDEAD;
85         }
86 }
87
88 static void dump_block_header(struct seq_file *sf, void __iomem *reg)
89 {
90         struct block_header hdr;
91         u32 i, n_input, n_output;
92
93         d71_read_block_header(reg, &hdr);
94         seq_printf(sf, "BLOCK_INFO:\t\t0x%X\n", hdr.block_info);
95         seq_printf(sf, "PIPELINE_INFO:\t\t0x%X\n", hdr.pipeline_info);
96
97         n_output = PIPELINE_INFO_N_OUTPUTS(hdr.pipeline_info);
98         n_input  = PIPELINE_INFO_N_VALID_INPUTS(hdr.pipeline_info);
99
100         for (i = 0; i < n_input; i++)
101                 seq_printf(sf, "VALID_INPUT_ID%u:\t0x%X\n",
102                            i, hdr.input_ids[i]);
103
104         for (i = 0; i < n_output; i++)
105                 seq_printf(sf, "OUTPUT_ID%u:\t\t0x%X\n",
106                            i, hdr.output_ids[i]);
107 }
108
109 static u32 to_rot_ctrl(u32 rot)
110 {
111         u32 lr_ctrl = 0;
112
113         switch (rot & DRM_MODE_ROTATE_MASK) {
114         case DRM_MODE_ROTATE_0:
115                 lr_ctrl |= L_ROT(L_ROT_R0);
116                 break;
117         case DRM_MODE_ROTATE_90:
118                 lr_ctrl |= L_ROT(L_ROT_R90);
119                 break;
120         case DRM_MODE_ROTATE_180:
121                 lr_ctrl |= L_ROT(L_ROT_R180);
122                 break;
123         case DRM_MODE_ROTATE_270:
124                 lr_ctrl |= L_ROT(L_ROT_R270);
125                 break;
126         }
127
128         if (rot & DRM_MODE_REFLECT_X)
129                 lr_ctrl |= L_HFLIP;
130         if (rot & DRM_MODE_REFLECT_Y)
131                 lr_ctrl |= L_VFLIP;
132
133         return lr_ctrl;
134 }
135
136 static u32 to_ad_ctrl(u64 modifier)
137 {
138         u32 afbc_ctrl = AD_AEN;
139
140         if (!modifier)
141                 return 0;
142
143         if ((modifier & AFBC_FORMAT_MOD_BLOCK_SIZE_MASK) ==
144             AFBC_FORMAT_MOD_BLOCK_SIZE_32x8)
145                 afbc_ctrl |= AD_WB;
146
147         if (modifier & AFBC_FORMAT_MOD_YTR)
148                 afbc_ctrl |= AD_YT;
149         if (modifier & AFBC_FORMAT_MOD_SPLIT)
150                 afbc_ctrl |= AD_BS;
151         if (modifier & AFBC_FORMAT_MOD_TILED)
152                 afbc_ctrl |= AD_TH;
153
154         return afbc_ctrl;
155 }
156
157 static inline u32 to_d71_input_id(struct komeda_component_state *st, int idx)
158 {
159         struct komeda_component_output *input = &st->inputs[idx];
160
161         /* if input is not active, set hw input_id(0) to disable it */
162         if (has_bit(idx, st->active_inputs))
163                 return input->component->hw_id + input->output_port;
164         else
165                 return 0;
166 }
167
168 static void d71_layer_update_fb(struct komeda_component *c,
169                                 struct komeda_fb *kfb,
170                                 dma_addr_t *addr)
171 {
172         struct drm_framebuffer *fb = &kfb->base;
173         const struct drm_format_info *info = fb->format;
174         u32 __iomem *reg = c->reg;
175         int block_h;
176
177         if (info->num_planes > 2)
178                 malidp_write64(reg, BLK_P2_PTR_LOW, addr[2]);
179
180         if (info->num_planes > 1) {
181                 block_h = drm_format_info_block_height(info, 1);
182                 malidp_write32(reg, BLK_P1_STRIDE, fb->pitches[1] * block_h);
183                 malidp_write64(reg, BLK_P1_PTR_LOW, addr[1]);
184         }
185
186         block_h = drm_format_info_block_height(info, 0);
187         malidp_write32(reg, BLK_P0_STRIDE, fb->pitches[0] * block_h);
188         malidp_write64(reg, BLK_P0_PTR_LOW, addr[0]);
189         malidp_write32(reg, LAYER_FMT, kfb->format_caps->hw_id);
190 }
191
192 static void d71_layer_disable(struct komeda_component *c)
193 {
194         malidp_write32_mask(c->reg, BLK_CONTROL, L_EN, 0);
195 }
196
197 static void d71_layer_update(struct komeda_component *c,
198                              struct komeda_component_state *state)
199 {
200         struct komeda_layer_state *st = to_layer_st(state);
201         struct drm_plane_state *plane_st = state->plane->state;
202         struct drm_framebuffer *fb = plane_st->fb;
203         struct komeda_fb *kfb = to_kfb(fb);
204         u32 __iomem *reg = c->reg;
205         u32 ctrl_mask = L_EN | L_ROT(L_ROT_R270) | L_HFLIP | L_VFLIP | L_TBU_EN;
206         u32 ctrl = L_EN | to_rot_ctrl(st->rot);
207
208         d71_layer_update_fb(c, kfb, st->addr);
209
210         malidp_write32(reg, AD_CONTROL, to_ad_ctrl(fb->modifier));
211         if (fb->modifier) {
212                 u64 addr;
213
214                 malidp_write32(reg, LAYER_AD_H_CROP, HV_CROP(st->afbc_crop_l,
215                                                              st->afbc_crop_r));
216                 malidp_write32(reg, LAYER_AD_V_CROP, HV_CROP(st->afbc_crop_t,
217                                                              st->afbc_crop_b));
218                 /* afbc 1.2 wants payload, afbc 1.0/1.1 wants end_addr */
219                 if (fb->modifier & AFBC_FORMAT_MOD_TILED)
220                         addr = st->addr[0] + kfb->offset_payload;
221                 else
222                         addr = st->addr[0] + kfb->afbc_size - 1;
223
224                 malidp_write32(reg, BLK_P1_PTR_LOW, lower_32_bits(addr));
225                 malidp_write32(reg, BLK_P1_PTR_HIGH, upper_32_bits(addr));
226         }
227
228         if (fb->format->is_yuv) {
229                 u32 upsampling = 0;
230
231                 switch (kfb->format_caps->fourcc) {
232                 case DRM_FORMAT_YUYV:
233                         upsampling = fb->modifier ? LR_CHI422_BILINEAR :
234                                      LR_CHI422_REPLICATION;
235                         break;
236                 case DRM_FORMAT_UYVY:
237                         upsampling = LR_CHI422_REPLICATION;
238                         break;
239                 case DRM_FORMAT_NV12:
240                 case DRM_FORMAT_YUV420_8BIT:
241                 case DRM_FORMAT_YUV420_10BIT:
242                 case DRM_FORMAT_YUV420:
243                 case DRM_FORMAT_P010:
244                 /* these fmt support MPGE/JPEG both, here perfer JPEG*/
245                         upsampling = LR_CHI420_JPEG;
246                         break;
247                 case DRM_FORMAT_X0L2:
248                         upsampling = LR_CHI420_JPEG;
249                         break;
250                 default:
251                         break;
252                 }
253
254                 malidp_write32(reg, LAYER_R_CONTROL, upsampling);
255                 malidp_write_group(reg, LAYER_YUV_RGB_COEFF0,
256                                    KOMEDA_N_YUV2RGB_COEFFS,
257                                    komeda_select_yuv2rgb_coeffs(
258                                         plane_st->color_encoding,
259                                         plane_st->color_range));
260         }
261
262         malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize, st->vsize));
263
264         if (kfb->is_va)
265                 ctrl |= L_TBU_EN;
266         malidp_write32_mask(reg, BLK_CONTROL, ctrl_mask, ctrl);
267 }
268
269 static void d71_layer_dump(struct komeda_component *c, struct seq_file *sf)
270 {
271         u32 v[15], i;
272         bool rich, rgb2rgb;
273         char *prefix;
274
275         get_values_from_reg(c->reg, LAYER_INFO, 1, &v[14]);
276         if (v[14] & 0x1) {
277                 rich = true;
278                 prefix = "LR_";
279         } else {
280                 rich = false;
281                 prefix = "LS_";
282         }
283
284         rgb2rgb = !!(v[14] & L_INFO_CM);
285
286         dump_block_header(sf, c->reg);
287
288         seq_printf(sf, "%sLAYER_INFO:\t\t0x%X\n", prefix, v[14]);
289
290         get_values_from_reg(c->reg, 0xD0, 1, v);
291         seq_printf(sf, "%sCONTROL:\t\t0x%X\n", prefix, v[0]);
292         if (rich) {
293                 get_values_from_reg(c->reg, 0xD4, 1, v);
294                 seq_printf(sf, "LR_RICH_CONTROL:\t0x%X\n", v[0]);
295         }
296         get_values_from_reg(c->reg, 0xD8, 4, v);
297         seq_printf(sf, "%sFORMAT:\t\t0x%X\n", prefix, v[0]);
298         seq_printf(sf, "%sIT_COEFFTAB:\t\t0x%X\n", prefix, v[1]);
299         seq_printf(sf, "%sIN_SIZE:\t\t0x%X\n", prefix, v[2]);
300         seq_printf(sf, "%sPALPHA:\t\t0x%X\n", prefix, v[3]);
301
302         get_values_from_reg(c->reg, 0x100, 3, v);
303         seq_printf(sf, "%sP0_PTR_LOW:\t\t0x%X\n", prefix, v[0]);
304         seq_printf(sf, "%sP0_PTR_HIGH:\t\t0x%X\n", prefix, v[1]);
305         seq_printf(sf, "%sP0_STRIDE:\t\t0x%X\n", prefix, v[2]);
306
307         get_values_from_reg(c->reg, 0x110, 2, v);
308         seq_printf(sf, "%sP1_PTR_LOW:\t\t0x%X\n", prefix, v[0]);
309         seq_printf(sf, "%sP1_PTR_HIGH:\t\t0x%X\n", prefix, v[1]);
310         if (rich) {
311                 get_values_from_reg(c->reg, 0x118, 1, v);
312                 seq_printf(sf, "LR_P1_STRIDE:\t\t0x%X\n", v[0]);
313
314                 get_values_from_reg(c->reg, 0x120, 2, v);
315                 seq_printf(sf, "LR_P2_PTR_LOW:\t\t0x%X\n", v[0]);
316                 seq_printf(sf, "LR_P2_PTR_HIGH:\t\t0x%X\n", v[1]);
317
318                 get_values_from_reg(c->reg, 0x130, 12, v);
319                 for (i = 0; i < 12; i++)
320                         seq_printf(sf, "LR_YUV_RGB_COEFF%u:\t0x%X\n", i, v[i]);
321         }
322
323         if (rgb2rgb) {
324                 get_values_from_reg(c->reg, LAYER_RGB_RGB_COEFF0, 12, v);
325                 for (i = 0; i < 12; i++)
326                         seq_printf(sf, "LS_RGB_RGB_COEFF%u:\t0x%X\n", i, v[i]);
327         }
328
329         get_values_from_reg(c->reg, 0x160, 3, v);
330         seq_printf(sf, "%sAD_CONTROL:\t\t0x%X\n", prefix, v[0]);
331         seq_printf(sf, "%sAD_H_CROP:\t\t0x%X\n", prefix, v[1]);
332         seq_printf(sf, "%sAD_V_CROP:\t\t0x%X\n", prefix, v[2]);
333 }
334
335 static const struct komeda_component_funcs d71_layer_funcs = {
336         .update         = d71_layer_update,
337         .disable        = d71_layer_disable,
338         .dump_register  = d71_layer_dump,
339 };
340
341 static int d71_layer_init(struct d71_dev *d71,
342                           struct block_header *blk, u32 __iomem *reg)
343 {
344         struct komeda_component *c;
345         struct komeda_layer *layer;
346         u32 pipe_id, layer_id, layer_info;
347
348         get_resources_id(blk->block_info, &pipe_id, &layer_id);
349         c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*layer),
350                                  layer_id,
351                                  BLOCK_INFO_INPUT_ID(blk->block_info),
352                                  &d71_layer_funcs, 0,
353                                  get_valid_inputs(blk),
354                                  1, reg, "LPU%d_LAYER%d", pipe_id, layer_id);
355         if (IS_ERR(c)) {
356                 DRM_ERROR("Failed to add layer component\n");
357                 return PTR_ERR(c);
358         }
359
360         layer = to_layer(c);
361         layer_info = malidp_read32(reg, LAYER_INFO);
362
363         if (layer_info & L_INFO_RF)
364                 layer->layer_type = KOMEDA_FMT_RICH_LAYER;
365         else
366                 layer->layer_type = KOMEDA_FMT_SIMPLE_LAYER;
367
368         set_range(&layer->hsize_in, 4, d71->max_line_size);
369         set_range(&layer->vsize_in, 4, d71->max_vsize);
370
371         malidp_write32(reg, LAYER_PALPHA, D71_PALPHA_DEF_MAP);
372
373         layer->supported_rots = DRM_MODE_ROTATE_MASK | DRM_MODE_REFLECT_MASK;
374
375         return 0;
376 }
377
378 static void d71_wb_layer_update(struct komeda_component *c,
379                                 struct komeda_component_state *state)
380 {
381         struct komeda_layer_state *st = to_layer_st(state);
382         struct drm_connector_state *conn_st = state->wb_conn->state;
383         struct komeda_fb *kfb = to_kfb(conn_st->writeback_job->fb);
384         u32 ctrl = L_EN | LW_OFM, mask = L_EN | LW_OFM | LW_TBU_EN;
385         u32 __iomem *reg = c->reg;
386
387         d71_layer_update_fb(c, kfb, st->addr);
388
389         if (kfb->is_va)
390                 ctrl |= LW_TBU_EN;
391
392         malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize, st->vsize));
393         malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
394         malidp_write32_mask(reg, BLK_CONTROL, mask, ctrl);
395 }
396
397 static void d71_wb_layer_dump(struct komeda_component *c, struct seq_file *sf)
398 {
399         u32 v[12], i;
400
401         dump_block_header(sf, c->reg);
402
403         get_values_from_reg(c->reg, 0x80, 1, v);
404         seq_printf(sf, "LW_INPUT_ID0:\t\t0x%X\n", v[0]);
405
406         get_values_from_reg(c->reg, 0xD0, 3, v);
407         seq_printf(sf, "LW_CONTROL:\t\t0x%X\n", v[0]);
408         seq_printf(sf, "LW_PROG_LINE:\t\t0x%X\n", v[1]);
409         seq_printf(sf, "LW_FORMAT:\t\t0x%X\n", v[2]);
410
411         get_values_from_reg(c->reg, 0xE0, 1, v);
412         seq_printf(sf, "LW_IN_SIZE:\t\t0x%X\n", v[0]);
413
414         for (i = 0; i < 2; i++) {
415                 get_values_from_reg(c->reg, 0x100 + i * 0x10, 3, v);
416                 seq_printf(sf, "LW_P%u_PTR_LOW:\t\t0x%X\n", i, v[0]);
417                 seq_printf(sf, "LW_P%u_PTR_HIGH:\t\t0x%X\n", i, v[1]);
418                 seq_printf(sf, "LW_P%u_STRIDE:\t\t0x%X\n", i, v[2]);
419         }
420
421         get_values_from_reg(c->reg, 0x130, 12, v);
422         for (i = 0; i < 12; i++)
423                 seq_printf(sf, "LW_RGB_YUV_COEFF%u:\t0x%X\n", i, v[i]);
424 }
425
426 static void d71_wb_layer_disable(struct komeda_component *c)
427 {
428         malidp_write32(c->reg, BLK_INPUT_ID0, 0);
429         malidp_write32_mask(c->reg, BLK_CONTROL, L_EN, 0);
430 }
431
432 static const struct komeda_component_funcs d71_wb_layer_funcs = {
433         .update         = d71_wb_layer_update,
434         .disable        = d71_wb_layer_disable,
435         .dump_register  = d71_wb_layer_dump,
436 };
437
438 static int d71_wb_layer_init(struct d71_dev *d71,
439                              struct block_header *blk, u32 __iomem *reg)
440 {
441         struct komeda_component *c;
442         struct komeda_layer *wb_layer;
443         u32 pipe_id, layer_id;
444
445         get_resources_id(blk->block_info, &pipe_id, &layer_id);
446
447         c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*wb_layer),
448                                  layer_id, BLOCK_INFO_INPUT_ID(blk->block_info),
449                                  &d71_wb_layer_funcs,
450                                  1, get_valid_inputs(blk), 0, reg,
451                                  "LPU%d_LAYER_WR", pipe_id);
452         if (IS_ERR(c)) {
453                 DRM_ERROR("Failed to add wb_layer component\n");
454                 return PTR_ERR(c);
455         }
456
457         wb_layer = to_layer(c);
458         wb_layer->layer_type = KOMEDA_FMT_WB_LAYER;
459
460         set_range(&wb_layer->hsize_in, D71_MIN_LINE_SIZE, d71->max_line_size);
461         set_range(&wb_layer->vsize_in, D71_MIN_VERTICAL_SIZE, d71->max_vsize);
462
463         return 0;
464 }
465
466 static void d71_component_disable(struct komeda_component *c)
467 {
468         u32 __iomem *reg = c->reg;
469         u32 i;
470
471         malidp_write32(reg, BLK_CONTROL, 0);
472
473         for (i = 0; i < c->max_active_inputs; i++) {
474                 malidp_write32(reg, BLK_INPUT_ID0 + (i << 2), 0);
475
476                 /* Besides clearing the input ID to zero, D71 compiz also has
477                  * input enable bit in CU_INPUTx_CONTROL which need to be
478                  * cleared.
479                  */
480                 if (has_bit(c->id, KOMEDA_PIPELINE_COMPIZS))
481                         malidp_write32(reg, CU_INPUT0_CONTROL +
482                                        i * CU_PER_INPUT_REGS * 4,
483                                        CU_INPUT_CTRL_ALPHA(0xFF));
484         }
485 }
486
487 static void compiz_enable_input(u32 __iomem *id_reg,
488                                 u32 __iomem *cfg_reg,
489                                 u32 input_hw_id,
490                                 struct komeda_compiz_input_cfg *cin)
491 {
492         u32 ctrl = CU_INPUT_CTRL_EN;
493         u8 blend = cin->pixel_blend_mode;
494
495         if (blend == DRM_MODE_BLEND_PIXEL_NONE)
496                 ctrl |= CU_INPUT_CTRL_PAD;
497         else if (blend == DRM_MODE_BLEND_PREMULTI)
498                 ctrl |= CU_INPUT_CTRL_PMUL;
499
500         ctrl |= CU_INPUT_CTRL_ALPHA(cin->layer_alpha);
501
502         malidp_write32(id_reg, BLK_INPUT_ID0, input_hw_id);
503
504         malidp_write32(cfg_reg, CU_INPUT0_SIZE,
505                        HV_SIZE(cin->hsize, cin->vsize));
506         malidp_write32(cfg_reg, CU_INPUT0_OFFSET,
507                        HV_OFFSET(cin->hoffset, cin->voffset));
508         malidp_write32(cfg_reg, CU_INPUT0_CONTROL, ctrl);
509 }
510
511 static void d71_compiz_update(struct komeda_component *c,
512                               struct komeda_component_state *state)
513 {
514         struct komeda_compiz_state *st = to_compiz_st(state);
515         u32 __iomem *reg = c->reg;
516         u32 __iomem *id_reg, *cfg_reg;
517         u32 index;
518
519         for_each_changed_input(state, index) {
520                 id_reg = reg + index;
521                 cfg_reg = reg + index * CU_PER_INPUT_REGS;
522                 if (state->active_inputs & BIT(index)) {
523                         compiz_enable_input(id_reg, cfg_reg,
524                                             to_d71_input_id(state, index),
525                                             &st->cins[index]);
526                 } else {
527                         malidp_write32(id_reg, BLK_INPUT_ID0, 0);
528                         malidp_write32(cfg_reg, CU_INPUT0_CONTROL, 0);
529                 }
530         }
531
532         malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
533 }
534
535 static void d71_compiz_dump(struct komeda_component *c, struct seq_file *sf)
536 {
537         u32 v[8], i;
538
539         dump_block_header(sf, c->reg);
540
541         get_values_from_reg(c->reg, 0x80, 5, v);
542         for (i = 0; i < 5; i++)
543                 seq_printf(sf, "CU_INPUT_ID%u:\t\t0x%X\n", i, v[i]);
544
545         get_values_from_reg(c->reg, 0xA0, 5, v);
546         seq_printf(sf, "CU_IRQ_RAW_STATUS:\t0x%X\n", v[0]);
547         seq_printf(sf, "CU_IRQ_CLEAR:\t\t0x%X\n", v[1]);
548         seq_printf(sf, "CU_IRQ_MASK:\t\t0x%X\n", v[2]);
549         seq_printf(sf, "CU_IRQ_STATUS:\t\t0x%X\n", v[3]);
550         seq_printf(sf, "CU_STATUS:\t\t0x%X\n", v[4]);
551
552         get_values_from_reg(c->reg, 0xD0, 2, v);
553         seq_printf(sf, "CU_CONTROL:\t\t0x%X\n", v[0]);
554         seq_printf(sf, "CU_SIZE:\t\t0x%X\n", v[1]);
555
556         get_values_from_reg(c->reg, 0xDC, 1, v);
557         seq_printf(sf, "CU_BG_COLOR:\t\t0x%X\n", v[0]);
558
559         for (i = 0, v[4] = 0xE0; i < 5; i++, v[4] += 0x10) {
560                 get_values_from_reg(c->reg, v[4], 3, v);
561                 seq_printf(sf, "CU_INPUT%u_SIZE:\t\t0x%X\n", i, v[0]);
562                 seq_printf(sf, "CU_INPUT%u_OFFSET:\t0x%X\n", i, v[1]);
563                 seq_printf(sf, "CU_INPUT%u_CONTROL:\t0x%X\n", i, v[2]);
564         }
565
566         get_values_from_reg(c->reg, 0x130, 2, v);
567         seq_printf(sf, "CU_USER_LOW:\t\t0x%X\n", v[0]);
568         seq_printf(sf, "CU_USER_HIGH:\t\t0x%X\n", v[1]);
569 }
570
571 static const struct komeda_component_funcs d71_compiz_funcs = {
572         .update         = d71_compiz_update,
573         .disable        = d71_component_disable,
574         .dump_register  = d71_compiz_dump,
575 };
576
577 static int d71_compiz_init(struct d71_dev *d71,
578                            struct block_header *blk, u32 __iomem *reg)
579 {
580         struct komeda_component *c;
581         struct komeda_compiz *compiz;
582         u32 pipe_id, comp_id;
583
584         get_resources_id(blk->block_info, &pipe_id, &comp_id);
585
586         c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*compiz),
587                                  comp_id,
588                                  BLOCK_INFO_INPUT_ID(blk->block_info),
589                                  &d71_compiz_funcs,
590                                  CU_NUM_INPUT_IDS, get_valid_inputs(blk),
591                                  CU_NUM_OUTPUT_IDS, reg,
592                                  "CU%d", pipe_id);
593         if (IS_ERR(c))
594                 return PTR_ERR(c);
595
596         compiz = to_compiz(c);
597
598         set_range(&compiz->hsize, D71_MIN_LINE_SIZE, d71->max_line_size);
599         set_range(&compiz->vsize, D71_MIN_VERTICAL_SIZE, d71->max_vsize);
600
601         return 0;
602 }
603
604 static void d71_scaler_update_filter_lut(u32 __iomem *reg, u32 hsize_in,
605                                          u32 vsize_in, u32 hsize_out,
606                                          u32 vsize_out)
607 {
608         u32 val = 0;
609
610         if (hsize_in <= hsize_out)
611                 val  |= 0x62;
612         else if (hsize_in <= (hsize_out + hsize_out / 2))
613                 val |= 0x63;
614         else if (hsize_in <= hsize_out * 2)
615                 val |= 0x64;
616         else if (hsize_in <= hsize_out * 2 + (hsize_out * 3) / 4)
617                 val |= 0x65;
618         else
619                 val |= 0x66;
620
621         if (vsize_in <= vsize_out)
622                 val  |= SC_VTSEL(0x6A);
623         else if (vsize_in <= (vsize_out + vsize_out / 2))
624                 val |= SC_VTSEL(0x6B);
625         else if (vsize_in <= vsize_out * 2)
626                 val |= SC_VTSEL(0x6C);
627         else if (vsize_in <= vsize_out * 2 + vsize_out * 3 / 4)
628                 val |= SC_VTSEL(0x6D);
629         else
630                 val |= SC_VTSEL(0x6E);
631
632         malidp_write32(reg, SC_COEFFTAB, val);
633 }
634
635 static void d71_scaler_update(struct komeda_component *c,
636                               struct komeda_component_state *state)
637 {
638         struct komeda_scaler_state *st = to_scaler_st(state);
639         u32 __iomem *reg = c->reg;
640         u32 init_ph, delta_ph, ctrl;
641
642         d71_scaler_update_filter_lut(reg, st->hsize_in, st->vsize_in,
643                                      st->hsize_out, st->vsize_out);
644
645         malidp_write32(reg, BLK_IN_SIZE, HV_SIZE(st->hsize_in, st->vsize_in));
646         malidp_write32(reg, SC_OUT_SIZE, HV_SIZE(st->hsize_out, st->vsize_out));
647         malidp_write32(reg, SC_H_CROP, HV_CROP(st->left_crop, st->right_crop));
648
649         /* for right part, HW only sample the valid pixel which means the pixels
650          * in left_crop will be jumpped, and the first sample pixel is:
651          *
652          * dst_a = st->total_hsize_out - st->hsize_out + st->left_crop + 0.5;
653          *
654          * Then the corresponding texel in src is:
655          *
656          * h_delta_phase = st->total_hsize_in / st->total_hsize_out;
657          * src_a = dst_A * h_delta_phase;
658          *
659          * and h_init_phase is src_a deduct the real source start src_S;
660          *
661          * src_S = st->total_hsize_in - st->hsize_in;
662          * h_init_phase = src_a - src_S;
663          *
664          * And HW precision for the initial/delta_phase is 16:16 fixed point,
665          * the following is the simplified formula
666          */
667         if (st->right_part) {
668                 u32 dst_a = st->total_hsize_out - st->hsize_out + st->left_crop;
669
670                 if (st->en_img_enhancement)
671                         dst_a -= 1;
672
673                 init_ph = ((st->total_hsize_in * (2 * dst_a + 1) -
674                             2 * st->total_hsize_out * (st->total_hsize_in -
675                             st->hsize_in)) << 15) / st->total_hsize_out;
676         } else {
677                 init_ph = (st->total_hsize_in << 15) / st->total_hsize_out;
678         }
679
680         malidp_write32(reg, SC_H_INIT_PH, init_ph);
681
682         delta_ph = (st->total_hsize_in << 16) / st->total_hsize_out;
683         malidp_write32(reg, SC_H_DELTA_PH, delta_ph);
684
685         init_ph = (st->total_vsize_in << 15) / st->vsize_out;
686         malidp_write32(reg, SC_V_INIT_PH, init_ph);
687
688         delta_ph = (st->total_vsize_in << 16) / st->vsize_out;
689         malidp_write32(reg, SC_V_DELTA_PH, delta_ph);
690
691         ctrl = 0;
692         ctrl |= st->en_scaling ? SC_CTRL_SCL : 0;
693         ctrl |= st->en_alpha ? SC_CTRL_AP : 0;
694         ctrl |= st->en_img_enhancement ? SC_CTRL_IENH : 0;
695         /* If we use the hardware splitter we shouldn't set SC_CTRL_LS */
696         if (st->en_split &&
697             state->inputs[0].component->id != KOMEDA_COMPONENT_SPLITTER)
698                 ctrl |= SC_CTRL_LS;
699
700         malidp_write32(reg, BLK_CONTROL, ctrl);
701         malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
702 }
703
704 static void d71_scaler_dump(struct komeda_component *c, struct seq_file *sf)
705 {
706         u32 v[9];
707
708         dump_block_header(sf, c->reg);
709
710         get_values_from_reg(c->reg, 0x80, 1, v);
711         seq_printf(sf, "SC_INPUT_ID0:\t\t0x%X\n", v[0]);
712
713         get_values_from_reg(c->reg, 0xD0, 1, v);
714         seq_printf(sf, "SC_CONTROL:\t\t0x%X\n", v[0]);
715
716         get_values_from_reg(c->reg, 0xDC, 9, v);
717         seq_printf(sf, "SC_COEFFTAB:\t\t0x%X\n", v[0]);
718         seq_printf(sf, "SC_IN_SIZE:\t\t0x%X\n", v[1]);
719         seq_printf(sf, "SC_OUT_SIZE:\t\t0x%X\n", v[2]);
720         seq_printf(sf, "SC_H_CROP:\t\t0x%X\n", v[3]);
721         seq_printf(sf, "SC_V_CROP:\t\t0x%X\n", v[4]);
722         seq_printf(sf, "SC_H_INIT_PH:\t\t0x%X\n", v[5]);
723         seq_printf(sf, "SC_H_DELTA_PH:\t\t0x%X\n", v[6]);
724         seq_printf(sf, "SC_V_INIT_PH:\t\t0x%X\n", v[7]);
725         seq_printf(sf, "SC_V_DELTA_PH:\t\t0x%X\n", v[8]);
726 }
727
728 static const struct komeda_component_funcs d71_scaler_funcs = {
729         .update         = d71_scaler_update,
730         .disable        = d71_component_disable,
731         .dump_register  = d71_scaler_dump,
732 };
733
734 static int d71_scaler_init(struct d71_dev *d71,
735                            struct block_header *blk, u32 __iomem *reg)
736 {
737         struct komeda_component *c;
738         struct komeda_scaler *scaler;
739         u32 pipe_id, comp_id;
740
741         get_resources_id(blk->block_info, &pipe_id, &comp_id);
742
743         c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*scaler),
744                                  comp_id, BLOCK_INFO_INPUT_ID(blk->block_info),
745                                  &d71_scaler_funcs,
746                                  1, get_valid_inputs(blk), 1, reg,
747                                  "CU%d_SCALER%d",
748                                  pipe_id, BLOCK_INFO_BLK_ID(blk->block_info));
749
750         if (IS_ERR(c)) {
751                 DRM_ERROR("Failed to initialize scaler");
752                 return PTR_ERR(c);
753         }
754
755         scaler = to_scaler(c);
756         set_range(&scaler->hsize, 4, 2048);
757         set_range(&scaler->vsize, 4, 4096);
758         scaler->max_downscaling = 6;
759         scaler->max_upscaling = 64;
760         scaler->scaling_split_overlap = 8;
761         scaler->enh_split_overlap = 1;
762
763         malidp_write32(c->reg, BLK_CONTROL, 0);
764
765         return 0;
766 }
767
768 static int d71_downscaling_clk_check(struct komeda_pipeline *pipe,
769                                      struct drm_display_mode *mode,
770                                      unsigned long aclk_rate,
771                                      struct komeda_data_flow_cfg *dflow)
772 {
773         u32 h_in = dflow->in_w;
774         u32 v_in = dflow->in_h;
775         u32 v_out = dflow->out_h;
776         u64 fraction, denominator;
777
778         /* D71 downscaling must satisfy the following equation
779          *
780          *   ACLK                   h_in * v_in
781          * ------- >= ---------------------------------------------
782          *  PXLCLK     (h_total - (1 + 2 * v_in / v_out)) * v_out
783          *
784          * In only horizontal downscaling situation, the right side should be
785          * multiplied by (h_total - 3) / (h_active - 3), then equation becomes
786          *
787          *   ACLK          h_in
788          * ------- >= ----------------
789          *  PXLCLK     (h_active - 3)
790          *
791          * To avoid precision lost the equation 1 will be convert to:
792          *
793          *   ACLK             h_in * v_in
794          * ------- >= -----------------------------------
795          *  PXLCLK     (h_total -1 ) * v_out -  2 * v_in
796          */
797         if (v_in == v_out) {
798                 fraction = h_in;
799                 denominator = mode->hdisplay - 3;
800         } else {
801                 fraction = h_in * v_in;
802                 denominator = (mode->htotal - 1) * v_out -  2 * v_in;
803         }
804
805         return aclk_rate * denominator >= mode->crtc_clock * 1000 * fraction ?
806                0 : -EINVAL;
807 }
808
809 static void d71_splitter_update(struct komeda_component *c,
810                                 struct komeda_component_state *state)
811 {
812         struct komeda_splitter_state *st = to_splitter_st(state);
813         u32 __iomem *reg = c->reg;
814
815         malidp_write32(reg, BLK_INPUT_ID0, to_d71_input_id(state, 0));
816         malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
817         malidp_write32(reg, SP_OVERLAP_SIZE, st->overlap & 0x1FFF);
818         malidp_write32(reg, BLK_CONTROL, BLK_CTRL_EN);
819 }
820
821 static void d71_splitter_dump(struct komeda_component *c, struct seq_file *sf)
822 {
823         u32 v[3];
824
825         dump_block_header(sf, c->reg);
826
827         get_values_from_reg(c->reg, BLK_INPUT_ID0, 1, v);
828         seq_printf(sf, "SP_INPUT_ID0:\t\t0x%X\n", v[0]);
829
830         get_values_from_reg(c->reg, BLK_CONTROL, 3, v);
831         seq_printf(sf, "SP_CONTROL:\t\t0x%X\n", v[0]);
832         seq_printf(sf, "SP_SIZE:\t\t0x%X\n", v[1]);
833         seq_printf(sf, "SP_OVERLAP_SIZE:\t0x%X\n", v[2]);
834 }
835
836 static const struct komeda_component_funcs d71_splitter_funcs = {
837         .update         = d71_splitter_update,
838         .disable        = d71_component_disable,
839         .dump_register  = d71_splitter_dump,
840 };
841
842 static int d71_splitter_init(struct d71_dev *d71,
843                              struct block_header *blk, u32 __iomem *reg)
844 {
845         struct komeda_component *c;
846         struct komeda_splitter *splitter;
847         u32 pipe_id, comp_id;
848
849         get_resources_id(blk->block_info, &pipe_id, &comp_id);
850
851         c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*splitter),
852                                  comp_id,
853                                  BLOCK_INFO_INPUT_ID(blk->block_info),
854                                  &d71_splitter_funcs,
855                                  1, get_valid_inputs(blk), 2, reg,
856                                  "CU%d_SPLITTER", pipe_id);
857
858         if (IS_ERR(c)) {
859                 DRM_ERROR("Failed to initialize splitter");
860                 return -1;
861         }
862
863         splitter = to_splitter(c);
864
865         set_range(&splitter->hsize, 4, d71->max_line_size);
866         set_range(&splitter->vsize, 4, d71->max_vsize);
867
868         return 0;
869 }
870
871 static void d71_merger_update(struct komeda_component *c,
872                               struct komeda_component_state *state)
873 {
874         struct komeda_merger_state *st = to_merger_st(state);
875         u32 __iomem *reg = c->reg;
876         u32 index;
877
878         for_each_changed_input(state, index)
879                 malidp_write32(reg, MG_INPUT_ID0 + index * 4,
880                                to_d71_input_id(state, index));
881
882         malidp_write32(reg, MG_SIZE, HV_SIZE(st->hsize_merged,
883                                              st->vsize_merged));
884         malidp_write32(reg, BLK_CONTROL, BLK_CTRL_EN);
885 }
886
887 static void d71_merger_dump(struct komeda_component *c, struct seq_file *sf)
888 {
889         u32 v;
890
891         dump_block_header(sf, c->reg);
892
893         get_values_from_reg(c->reg, MG_INPUT_ID0, 1, &v);
894         seq_printf(sf, "MG_INPUT_ID0:\t\t0x%X\n", v);
895
896         get_values_from_reg(c->reg, MG_INPUT_ID1, 1, &v);
897         seq_printf(sf, "MG_INPUT_ID1:\t\t0x%X\n", v);
898
899         get_values_from_reg(c->reg, BLK_CONTROL, 1, &v);
900         seq_printf(sf, "MG_CONTROL:\t\t0x%X\n", v);
901
902         get_values_from_reg(c->reg, MG_SIZE, 1, &v);
903         seq_printf(sf, "MG_SIZE:\t\t0x%X\n", v);
904 }
905
906 static const struct komeda_component_funcs d71_merger_funcs = {
907         .update         = d71_merger_update,
908         .disable        = d71_component_disable,
909         .dump_register  = d71_merger_dump,
910 };
911
912 static int d71_merger_init(struct d71_dev *d71,
913                            struct block_header *blk, u32 __iomem *reg)
914 {
915         struct komeda_component *c;
916         struct komeda_merger *merger;
917         u32 pipe_id, comp_id;
918
919         get_resources_id(blk->block_info, &pipe_id, &comp_id);
920
921         c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*merger),
922                                  comp_id,
923                                  BLOCK_INFO_INPUT_ID(blk->block_info),
924                                  &d71_merger_funcs,
925                                  MG_NUM_INPUTS_IDS, get_valid_inputs(blk),
926                                  MG_NUM_OUTPUTS_IDS, reg,
927                                  "CU%d_MERGER", pipe_id);
928
929         if (IS_ERR(c)) {
930                 DRM_ERROR("Failed to initialize merger.\n");
931                 return PTR_ERR(c);
932         }
933
934         merger = to_merger(c);
935
936         set_range(&merger->hsize_merged, 4, 4032);
937         set_range(&merger->vsize_merged, 4, 4096);
938
939         return 0;
940 }
941
942 static void d71_improc_update(struct komeda_component *c,
943                               struct komeda_component_state *state)
944 {
945         struct komeda_improc_state *st = to_improc_st(state);
946         u32 __iomem *reg = c->reg;
947         u32 index;
948
949         for_each_changed_input(state, index)
950                 malidp_write32(reg, BLK_INPUT_ID0 + index * 4,
951                                to_d71_input_id(state, index));
952
953         malidp_write32(reg, BLK_SIZE, HV_SIZE(st->hsize, st->vsize));
954 }
955
956 static void d71_improc_dump(struct komeda_component *c, struct seq_file *sf)
957 {
958         u32 v[12], i;
959
960         dump_block_header(sf, c->reg);
961
962         get_values_from_reg(c->reg, 0x80, 2, v);
963         seq_printf(sf, "IPS_INPUT_ID0:\t\t0x%X\n", v[0]);
964         seq_printf(sf, "IPS_INPUT_ID1:\t\t0x%X\n", v[1]);
965
966         get_values_from_reg(c->reg, 0xC0, 1, v);
967         seq_printf(sf, "IPS_INFO:\t\t0x%X\n", v[0]);
968
969         get_values_from_reg(c->reg, 0xD0, 3, v);
970         seq_printf(sf, "IPS_CONTROL:\t\t0x%X\n", v[0]);
971         seq_printf(sf, "IPS_SIZE:\t\t0x%X\n", v[1]);
972         seq_printf(sf, "IPS_DEPTH:\t\t0x%X\n", v[2]);
973
974         get_values_from_reg(c->reg, 0x130, 12, v);
975         for (i = 0; i < 12; i++)
976                 seq_printf(sf, "IPS_RGB_RGB_COEFF%u:\t0x%X\n", i, v[i]);
977
978         get_values_from_reg(c->reg, 0x170, 12, v);
979         for (i = 0; i < 12; i++)
980                 seq_printf(sf, "IPS_RGB_YUV_COEFF%u:\t0x%X\n", i, v[i]);
981 }
982
983 static const struct komeda_component_funcs d71_improc_funcs = {
984         .update         = d71_improc_update,
985         .disable        = d71_component_disable,
986         .dump_register  = d71_improc_dump,
987 };
988
989 static int d71_improc_init(struct d71_dev *d71,
990                            struct block_header *blk, u32 __iomem *reg)
991 {
992         struct komeda_component *c;
993         struct komeda_improc *improc;
994         u32 pipe_id, comp_id, value;
995
996         get_resources_id(blk->block_info, &pipe_id, &comp_id);
997
998         c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*improc),
999                                  comp_id,
1000                                  BLOCK_INFO_INPUT_ID(blk->block_info),
1001                                  &d71_improc_funcs, IPS_NUM_INPUT_IDS,
1002                                  get_valid_inputs(blk),
1003                                  IPS_NUM_OUTPUT_IDS, reg, "DOU%d_IPS", pipe_id);
1004         if (IS_ERR(c)) {
1005                 DRM_ERROR("Failed to add improc component\n");
1006                 return PTR_ERR(c);
1007         }
1008
1009         improc = to_improc(c);
1010         improc->supported_color_depths = BIT(8) | BIT(10);
1011         improc->supported_color_formats = DRM_COLOR_FORMAT_RGB444 |
1012                                           DRM_COLOR_FORMAT_YCRCB444 |
1013                                           DRM_COLOR_FORMAT_YCRCB422;
1014         value = malidp_read32(reg, BLK_INFO);
1015         if (value & IPS_INFO_CHD420)
1016                 improc->supported_color_formats |= DRM_COLOR_FORMAT_YCRCB420;
1017
1018         improc->supports_csc = true;
1019         improc->supports_gamma = true;
1020
1021         return 0;
1022 }
1023
1024 static void d71_timing_ctrlr_disable(struct komeda_component *c)
1025 {
1026         malidp_write32_mask(c->reg, BLK_CONTROL, BS_CTRL_EN, 0);
1027 }
1028
1029 static void d71_timing_ctrlr_update(struct komeda_component *c,
1030                                     struct komeda_component_state *state)
1031 {
1032         struct drm_crtc_state *crtc_st = state->crtc->state;
1033         struct drm_display_mode *mode = &crtc_st->adjusted_mode;
1034         u32 __iomem *reg = c->reg;
1035         u32 hactive, hfront_porch, hback_porch, hsync_len;
1036         u32 vactive, vfront_porch, vback_porch, vsync_len;
1037         u32 value;
1038
1039         hactive = mode->crtc_hdisplay;
1040         hfront_porch = mode->crtc_hsync_start - mode->crtc_hdisplay;
1041         hsync_len = mode->crtc_hsync_end - mode->crtc_hsync_start;
1042         hback_porch = mode->crtc_htotal - mode->crtc_hsync_end;
1043
1044         vactive = mode->crtc_vdisplay;
1045         vfront_porch = mode->crtc_vsync_start - mode->crtc_vdisplay;
1046         vsync_len = mode->crtc_vsync_end - mode->crtc_vsync_start;
1047         vback_porch = mode->crtc_vtotal - mode->crtc_vsync_end;
1048
1049         malidp_write32(reg, BS_ACTIVESIZE, HV_SIZE(hactive, vactive));
1050         malidp_write32(reg, BS_HINTERVALS, BS_H_INTVALS(hfront_porch,
1051                                                         hback_porch));
1052         malidp_write32(reg, BS_VINTERVALS, BS_V_INTVALS(vfront_porch,
1053                                                         vback_porch));
1054
1055         value = BS_SYNC_VSW(vsync_len) | BS_SYNC_HSW(hsync_len);
1056         value |= mode->flags & DRM_MODE_FLAG_PVSYNC ? BS_SYNC_VSP : 0;
1057         value |= mode->flags & DRM_MODE_FLAG_PHSYNC ? BS_SYNC_HSP : 0;
1058         malidp_write32(reg, BS_SYNC, value);
1059
1060         malidp_write32(reg, BS_PROG_LINE, D71_DEFAULT_PREPRETCH_LINE - 1);
1061         malidp_write32(reg, BS_PREFETCH_LINE, D71_DEFAULT_PREPRETCH_LINE);
1062
1063         /* configure bs control register */
1064         value = BS_CTRL_EN | BS_CTRL_VM;
1065         if (c->pipeline->dual_link) {
1066                 malidp_write32(reg, BS_DRIFT_TO, hfront_porch + 16);
1067                 value |= BS_CTRL_DL;
1068         }
1069
1070         malidp_write32(reg, BLK_CONTROL, value);
1071 }
1072
1073 static void d71_timing_ctrlr_dump(struct komeda_component *c,
1074                                   struct seq_file *sf)
1075 {
1076         u32 v[8], i;
1077
1078         dump_block_header(sf, c->reg);
1079
1080         get_values_from_reg(c->reg, 0xC0, 1, v);
1081         seq_printf(sf, "BS_INFO:\t\t0x%X\n", v[0]);
1082
1083         get_values_from_reg(c->reg, 0xD0, 8, v);
1084         seq_printf(sf, "BS_CONTROL:\t\t0x%X\n", v[0]);
1085         seq_printf(sf, "BS_PROG_LINE:\t\t0x%X\n", v[1]);
1086         seq_printf(sf, "BS_PREFETCH_LINE:\t0x%X\n", v[2]);
1087         seq_printf(sf, "BS_BG_COLOR:\t\t0x%X\n", v[3]);
1088         seq_printf(sf, "BS_ACTIVESIZE:\t\t0x%X\n", v[4]);
1089         seq_printf(sf, "BS_HINTERVALS:\t\t0x%X\n", v[5]);
1090         seq_printf(sf, "BS_VINTERVALS:\t\t0x%X\n", v[6]);
1091         seq_printf(sf, "BS_SYNC:\t\t0x%X\n", v[7]);
1092
1093         get_values_from_reg(c->reg, 0x100, 3, v);
1094         seq_printf(sf, "BS_DRIFT_TO:\t\t0x%X\n", v[0]);
1095         seq_printf(sf, "BS_FRAME_TO:\t\t0x%X\n", v[1]);
1096         seq_printf(sf, "BS_TE_TO:\t\t0x%X\n", v[2]);
1097
1098         get_values_from_reg(c->reg, 0x110, 3, v);
1099         for (i = 0; i < 3; i++)
1100                 seq_printf(sf, "BS_T%u_INTERVAL:\t\t0x%X\n", i, v[i]);
1101
1102         get_values_from_reg(c->reg, 0x120, 5, v);
1103         for (i = 0; i < 2; i++) {
1104                 seq_printf(sf, "BS_CRC%u_LOW:\t\t0x%X\n", i, v[i << 1]);
1105                 seq_printf(sf, "BS_CRC%u_HIGH:\t\t0x%X\n", i, v[(i << 1) + 1]);
1106         }
1107         seq_printf(sf, "BS_USER:\t\t0x%X\n", v[4]);
1108 }
1109
1110 static const struct komeda_component_funcs d71_timing_ctrlr_funcs = {
1111         .update         = d71_timing_ctrlr_update,
1112         .disable        = d71_timing_ctrlr_disable,
1113         .dump_register  = d71_timing_ctrlr_dump,
1114 };
1115
1116 static int d71_timing_ctrlr_init(struct d71_dev *d71,
1117                                  struct block_header *blk, u32 __iomem *reg)
1118 {
1119         struct komeda_component *c;
1120         struct komeda_timing_ctrlr *ctrlr;
1121         u32 pipe_id, comp_id;
1122
1123         get_resources_id(blk->block_info, &pipe_id, &comp_id);
1124
1125         c = komeda_component_add(&d71->pipes[pipe_id]->base, sizeof(*ctrlr),
1126                                  KOMEDA_COMPONENT_TIMING_CTRLR,
1127                                  BLOCK_INFO_INPUT_ID(blk->block_info),
1128                                  &d71_timing_ctrlr_funcs,
1129                                  1, BIT(KOMEDA_COMPONENT_IPS0 + pipe_id),
1130                                  BS_NUM_OUTPUT_IDS, reg, "DOU%d_BS", pipe_id);
1131         if (IS_ERR(c)) {
1132                 DRM_ERROR("Failed to add display_ctrl component\n");
1133                 return PTR_ERR(c);
1134         }
1135
1136         ctrlr = to_ctrlr(c);
1137
1138         ctrlr->supports_dual_link = true;
1139
1140         return 0;
1141 }
1142
1143 int d71_probe_block(struct d71_dev *d71,
1144                     struct block_header *blk, u32 __iomem *reg)
1145 {
1146         struct d71_pipeline *pipe;
1147         int blk_id = BLOCK_INFO_BLK_ID(blk->block_info);
1148
1149         int err = 0;
1150
1151         switch (BLOCK_INFO_BLK_TYPE(blk->block_info)) {
1152         case D71_BLK_TYPE_GCU:
1153                 break;
1154
1155         case D71_BLK_TYPE_LPU:
1156                 pipe = d71->pipes[blk_id];
1157                 pipe->lpu_addr = reg;
1158                 break;
1159
1160         case D71_BLK_TYPE_LPU_LAYER:
1161                 err = d71_layer_init(d71, blk, reg);
1162                 break;
1163
1164         case D71_BLK_TYPE_LPU_WB_LAYER:
1165                 err = d71_wb_layer_init(d71, blk, reg);
1166                 break;
1167
1168         case D71_BLK_TYPE_CU:
1169                 pipe = d71->pipes[blk_id];
1170                 pipe->cu_addr = reg;
1171                 err = d71_compiz_init(d71, blk, reg);
1172                 break;
1173
1174         case D71_BLK_TYPE_CU_SCALER:
1175                 err = d71_scaler_init(d71, blk, reg);
1176                 break;
1177
1178         case D71_BLK_TYPE_CU_SPLITTER:
1179                 err = d71_splitter_init(d71, blk, reg);
1180                 break;
1181
1182         case D71_BLK_TYPE_CU_MERGER:
1183                 err = d71_merger_init(d71, blk, reg);
1184                 break;
1185
1186         case D71_BLK_TYPE_DOU:
1187                 pipe = d71->pipes[blk_id];
1188                 pipe->dou_addr = reg;
1189                 break;
1190
1191         case D71_BLK_TYPE_DOU_IPS:
1192                 err = d71_improc_init(d71, blk, reg);
1193                 break;
1194
1195         case D71_BLK_TYPE_DOU_FT_COEFF:
1196                 pipe = d71->pipes[blk_id];
1197                 pipe->dou_ft_coeff_addr = reg;
1198                 break;
1199
1200         case D71_BLK_TYPE_DOU_BS:
1201                 err = d71_timing_ctrlr_init(d71, blk, reg);
1202                 break;
1203
1204         case D71_BLK_TYPE_GLB_LT_COEFF:
1205                 break;
1206
1207         case D71_BLK_TYPE_GLB_SCL_COEFF:
1208                 d71->glb_scl_coeff_addr[blk_id] = reg;
1209                 break;
1210
1211         default:
1212                 DRM_ERROR("Unknown block (block_info: 0x%x) is found\n",
1213                           blk->block_info);
1214                 err = -EINVAL;
1215                 break;
1216         }
1217
1218         return err;
1219 }
1220
1221 const struct komeda_pipeline_funcs d71_pipeline_funcs = {
1222         .downscaling_clk_check = d71_downscaling_clk_check,
1223 };