rust: upgrade to Rust 1.76.0
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / display / dc / dml / dcn32 / dcn32_fpu.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright 2022 Advanced Micro Devices, Inc.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21  * OTHER DEALINGS IN THE SOFTWARE.
22  *
23  * Authors: AMD
24  *
25  */
26 #include "dcn32_fpu.h"
27 #include "dcn32/dcn32_resource.h"
28 #include "dcn20/dcn20_resource.h"
29 #include "display_mode_vba_util_32.h"
30 #include "dml/dcn32/display_mode_vba_32.h"
31 // We need this includes for WATERMARKS_* defines
32 #include "clk_mgr/dcn32/dcn32_smu13_driver_if.h"
33 #include "dcn30/dcn30_resource.h"
34 #include "link.h"
35 #include "dc_state_priv.h"
36
37 #define DC_LOGGER_INIT(logger)
38
39 static const struct subvp_high_refresh_list subvp_high_refresh_list = {
40                         .min_refresh = 120,
41                         .max_refresh = 175,
42                         .res = {
43                                 {.width = 3840, .height = 2160, },
44                                 {.width = 3440, .height = 1440, },
45                                 {.width = 2560, .height = 1440, },
46                                 {.width = 1920, .height = 1080, }},
47 };
48
49 static const struct subvp_active_margin_list subvp_active_margin_list = {
50                         .min_refresh = 55,
51                         .max_refresh = 65,
52                         .res = {
53                                 {.width = 2560, .height = 1440, },
54                                 {.width = 1920, .height = 1080, }},
55 };
56
57 struct _vcs_dpi_ip_params_st dcn3_2_ip = {
58         .gpuvm_enable = 0,
59         .gpuvm_max_page_table_levels = 4,
60         .hostvm_enable = 0,
61         .rob_buffer_size_kbytes = 128,
62         .det_buffer_size_kbytes = DCN3_2_DEFAULT_DET_SIZE,
63         .config_return_buffer_size_in_kbytes = 1280,
64         .compressed_buffer_segment_size_in_kbytes = 64,
65         .meta_fifo_size_in_kentries = 22,
66         .zero_size_buffer_entries = 512,
67         .compbuf_reserved_space_64b = 256,
68         .compbuf_reserved_space_zs = 64,
69         .dpp_output_buffer_pixels = 2560,
70         .opp_output_buffer_lines = 1,
71         .pixel_chunk_size_kbytes = 8,
72         .alpha_pixel_chunk_size_kbytes = 4,
73         .min_pixel_chunk_size_bytes = 1024,
74         .dcc_meta_buffer_size_bytes = 6272,
75         .meta_chunk_size_kbytes = 2,
76         .min_meta_chunk_size_bytes = 256,
77         .writeback_chunk_size_kbytes = 8,
78         .ptoi_supported = false,
79         .num_dsc = 4,
80         .maximum_dsc_bits_per_component = 12,
81         .maximum_pixels_per_line_per_dsc_unit = 6016,
82         .dsc422_native_support = true,
83         .is_line_buffer_bpp_fixed = true,
84         .line_buffer_fixed_bpp = 57,
85         .line_buffer_size_bits = 1171920,
86         .max_line_buffer_lines = 32,
87         .writeback_interface_buffer_size_kbytes = 90,
88         .max_num_dpp = 4,
89         .max_num_otg = 4,
90         .max_num_hdmi_frl_outputs = 1,
91         .max_num_wb = 1,
92         .max_dchub_pscl_bw_pix_per_clk = 4,
93         .max_pscl_lb_bw_pix_per_clk = 2,
94         .max_lb_vscl_bw_pix_per_clk = 4,
95         .max_vscl_hscl_bw_pix_per_clk = 4,
96         .max_hscl_ratio = 6,
97         .max_vscl_ratio = 6,
98         .max_hscl_taps = 8,
99         .max_vscl_taps = 8,
100         .dpte_buffer_size_in_pte_reqs_luma = 64,
101         .dpte_buffer_size_in_pte_reqs_chroma = 34,
102         .dispclk_ramp_margin_percent = 1,
103         .max_inter_dcn_tile_repeaters = 8,
104         .cursor_buffer_size = 16,
105         .cursor_chunk_size = 2,
106         .writeback_line_buffer_buffer_size = 0,
107         .writeback_min_hscl_ratio = 1,
108         .writeback_min_vscl_ratio = 1,
109         .writeback_max_hscl_ratio = 1,
110         .writeback_max_vscl_ratio = 1,
111         .writeback_max_hscl_taps = 1,
112         .writeback_max_vscl_taps = 1,
113         .dppclk_delay_subtotal = 47,
114         .dppclk_delay_scl = 50,
115         .dppclk_delay_scl_lb_only = 16,
116         .dppclk_delay_cnvc_formatter = 28,
117         .dppclk_delay_cnvc_cursor = 6,
118         .dispclk_delay_subtotal = 125,
119         .dynamic_metadata_vm_enabled = false,
120         .odm_combine_4to1_supported = false,
121         .dcc_supported = true,
122         .max_num_dp2p0_outputs = 2,
123         .max_num_dp2p0_streams = 4,
124 };
125
126 struct _vcs_dpi_soc_bounding_box_st dcn3_2_soc = {
127         .clock_limits = {
128                 {
129                         .state = 0,
130                         .dcfclk_mhz = 1564.0,
131                         .fabricclk_mhz = 2500.0,
132                         .dispclk_mhz = 2150.0,
133                         .dppclk_mhz = 2150.0,
134                         .phyclk_mhz = 810.0,
135                         .phyclk_d18_mhz = 667.0,
136                         .phyclk_d32_mhz = 625.0,
137                         .socclk_mhz = 1200.0,
138                         .dscclk_mhz = 716.667,
139                         .dram_speed_mts = 18000.0,
140                         .dtbclk_mhz = 1564.0,
141                 },
142         },
143         .num_states = 1,
144         .sr_exit_time_us = 42.97,
145         .sr_enter_plus_exit_time_us = 49.94,
146         .sr_exit_z8_time_us = 285.0,
147         .sr_enter_plus_exit_z8_time_us = 320,
148         .writeback_latency_us = 12.0,
149         .round_trip_ping_latency_dcfclk_cycles = 263,
150         .urgent_latency_pixel_data_only_us = 4.0,
151         .urgent_latency_pixel_mixed_with_vm_data_us = 4.0,
152         .urgent_latency_vm_data_only_us = 4.0,
153         .fclk_change_latency_us = 25,
154         .usr_retraining_latency_us = 2,
155         .smn_latency_us = 2,
156         .mall_allocated_for_dcn_mbytes = 64,
157         .urgent_out_of_order_return_per_channel_pixel_only_bytes = 4096,
158         .urgent_out_of_order_return_per_channel_pixel_and_vm_bytes = 4096,
159         .urgent_out_of_order_return_per_channel_vm_only_bytes = 4096,
160         .pct_ideal_sdp_bw_after_urgent = 90.0,
161         .pct_ideal_fabric_bw_after_urgent = 67.0,
162         .pct_ideal_dram_sdp_bw_after_urgent_pixel_only = 20.0,
163         .pct_ideal_dram_sdp_bw_after_urgent_pixel_and_vm = 60.0, // N/A, for now keep as is until DML implemented
164         .pct_ideal_dram_sdp_bw_after_urgent_vm_only = 30.0, // N/A, for now keep as is until DML implemented
165         .pct_ideal_dram_bw_after_urgent_strobe = 67.0,
166         .max_avg_sdp_bw_use_normal_percent = 80.0,
167         .max_avg_fabric_bw_use_normal_percent = 60.0,
168         .max_avg_dram_bw_use_normal_strobe_percent = 50.0,
169         .max_avg_dram_bw_use_normal_percent = 15.0,
170         .num_chans = 24,
171         .dram_channel_width_bytes = 2,
172         .fabric_datapath_to_dcn_data_return_bytes = 64,
173         .return_bus_width_bytes = 64,
174         .downspread_percent = 0.38,
175         .dcn_downspread_percent = 0.5,
176         .dram_clock_change_latency_us = 400,
177         .dispclk_dppclk_vco_speed_mhz = 4300.0,
178         .do_urgent_latency_adjustment = true,
179         .urgent_latency_adjustment_fabric_clock_component_us = 1.0,
180         .urgent_latency_adjustment_fabric_clock_reference_mhz = 3000,
181 };
182
183 void dcn32_build_wm_range_table_fpu(struct clk_mgr_internal *clk_mgr)
184 {
185         /* defaults */
186         double pstate_latency_us = clk_mgr->base.ctx->dc->dml.soc.dram_clock_change_latency_us;
187         double fclk_change_latency_us = clk_mgr->base.ctx->dc->dml.soc.fclk_change_latency_us;
188         double sr_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_exit_time_us;
189         double sr_enter_plus_exit_time_us = clk_mgr->base.ctx->dc->dml.soc.sr_enter_plus_exit_time_us;
190         /* For min clocks use as reported by PM FW and report those as min */
191         uint16_t min_uclk_mhz                   = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz;
192         uint16_t min_dcfclk_mhz                 = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
193         uint16_t setb_min_uclk_mhz              = min_uclk_mhz;
194         uint16_t dcfclk_mhz_for_the_second_state = clk_mgr->base.ctx->dc->dml.soc.clock_limits[2].dcfclk_mhz;
195
196         dc_assert_fp_enabled();
197
198         /* For Set B ranges use min clocks state 2 when available, and report those to PM FW */
199         if (dcfclk_mhz_for_the_second_state)
200                 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = dcfclk_mhz_for_the_second_state;
201         else
202                 clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_dcfclk = clk_mgr->base.bw_params->clk_table.entries[0].dcfclk_mhz;
203
204         if (clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz)
205                 setb_min_uclk_mhz = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz;
206
207         /* Set A - Normal - default values */
208         clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].valid = true;
209         clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us = pstate_latency_us;
210         clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us = fclk_change_latency_us;
211         clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us = sr_exit_time_us;
212         clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
213         clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
214         clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
215         clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_dcfclk = 0xFFFF;
216         clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.min_uclk = min_uclk_mhz;
217         clk_mgr->base.bw_params->wm_table.nv_entries[WM_A].pmfw_breakdown.max_uclk = 0xFFFF;
218
219         /* Set B - Performance - higher clocks, using DPM[2] DCFCLK and UCLK */
220         clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].valid = true;
221         clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us = pstate_latency_us;
222         clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us = fclk_change_latency_us;
223         clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us = sr_exit_time_us;
224         clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
225         clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.wm_type = WATERMARKS_CLOCK_RANGE;
226         clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_dcfclk = 0xFFFF;
227         clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.min_uclk = setb_min_uclk_mhz;
228         clk_mgr->base.bw_params->wm_table.nv_entries[WM_B].pmfw_breakdown.max_uclk = 0xFFFF;
229
230         /* Set C - Dummy P-State - P-State latency set to "dummy p-state" value */
231         /* 'DalDummyClockChangeLatencyNs' registry key option set to 0x7FFFFFFF can be used to disable Set C for dummy p-state */
232         if (clk_mgr->base.ctx->dc->bb_overrides.dummy_clock_change_latency_ns != 0x7FFFFFFF) {
233                 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].valid = true;
234                 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.pstate_latency_us = 50;
235                 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us = fclk_change_latency_us;
236                 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us = sr_exit_time_us;
237                 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us;
238                 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.wm_type = WATERMARKS_DUMMY_PSTATE;
239                 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
240                 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_dcfclk = 0xFFFF;
241                 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.min_uclk = min_uclk_mhz;
242                 clk_mgr->base.bw_params->wm_table.nv_entries[WM_C].pmfw_breakdown.max_uclk = 0xFFFF;
243                 clk_mgr->base.bw_params->dummy_pstate_table[0].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[0].memclk_mhz * 16;
244                 clk_mgr->base.bw_params->dummy_pstate_table[0].dummy_pstate_latency_us = 50;
245                 clk_mgr->base.bw_params->dummy_pstate_table[1].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[1].memclk_mhz * 16;
246                 clk_mgr->base.bw_params->dummy_pstate_table[1].dummy_pstate_latency_us = 9;
247                 clk_mgr->base.bw_params->dummy_pstate_table[2].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[2].memclk_mhz * 16;
248                 clk_mgr->base.bw_params->dummy_pstate_table[2].dummy_pstate_latency_us = 8;
249                 clk_mgr->base.bw_params->dummy_pstate_table[3].dram_speed_mts = clk_mgr->base.bw_params->clk_table.entries[3].memclk_mhz * 16;
250                 clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us = 5;
251         }
252         /* Set D - MALL - SR enter and exit time specific to MALL, TBD after bringup or later phase for now use DRAM values / 2 */
253         /* For MALL DRAM clock change latency is N/A, for watermak calculations use lowest value dummy P state latency */
254         clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].valid = true;
255         clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us = clk_mgr->base.bw_params->dummy_pstate_table[3].dummy_pstate_latency_us;
256         clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us = fclk_change_latency_us;
257         clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us = sr_exit_time_us / 2; // TBD
258         clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us = sr_enter_plus_exit_time_us / 2; // TBD
259         clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.wm_type = WATERMARKS_MALL;
260         clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_dcfclk = min_dcfclk_mhz;
261         clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_dcfclk = 0xFFFF;
262         clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.min_uclk = min_uclk_mhz;
263         clk_mgr->base.bw_params->wm_table.nv_entries[WM_D].pmfw_breakdown.max_uclk = 0xFFFF;
264 }
265
266 /*
267  * Finds dummy_latency_index when MCLK switching using firmware based
268  * vblank stretch is enabled. This function will iterate through the
269  * table of dummy pstate latencies until the lowest value that allows
270  * dm_allow_self_refresh_and_mclk_switch to happen is found
271  */
272 int dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(struct dc *dc,
273                                                             struct dc_state *context,
274                                                             display_e2e_pipe_params_st *pipes,
275                                                             int pipe_cnt,
276                                                             int vlevel)
277 {
278         const int max_latency_table_entries = 4;
279         struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
280         int dummy_latency_index = 0;
281         enum clock_change_support temp_clock_change_support = vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
282
283         dc_assert_fp_enabled();
284
285         while (dummy_latency_index < max_latency_table_entries) {
286                 if (temp_clock_change_support != dm_dram_clock_change_unsupported)
287                         vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
288                 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
289                                 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
290                 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
291
292                 /* for subvp + DRR case, if subvp pipes are still present we support pstate */
293                 if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported &&
294                                 dcn32_subvp_in_use(dc, context))
295                         vba->DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] = temp_clock_change_support;
296
297                 if (vlevel < context->bw_ctx.dml.vba.soc.num_states &&
298                                 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported)
299                         break;
300
301                 dummy_latency_index++;
302         }
303
304         if (dummy_latency_index == max_latency_table_entries) {
305                 ASSERT(dummy_latency_index != max_latency_table_entries);
306                 /* If the execution gets here, it means dummy p_states are
307                  * not possible. This should never happen and would mean
308                  * something is severely wrong.
309                  * Here we reset dummy_latency_index to 3, because it is
310                  * better to have underflows than system crashes.
311                  */
312                 dummy_latency_index = max_latency_table_entries - 1;
313         }
314
315         return dummy_latency_index;
316 }
317
318 /**
319  * dcn32_helper_populate_phantom_dlg_params - Get DLG params for phantom pipes
320  * and populate pipe_ctx with those params.
321  * @dc: [in] current dc state
322  * @context: [in] new dc state
323  * @pipes: [in] DML pipe params array
324  * @pipe_cnt: [in] DML pipe count
325  *
326  * This function must be called AFTER the phantom pipes are added to context
327  * and run through DML (so that the DLG params for the phantom pipes can be
328  * populated), and BEFORE we program the timing for the phantom pipes.
329  */
330 void dcn32_helper_populate_phantom_dlg_params(struct dc *dc,
331                                               struct dc_state *context,
332                                               display_e2e_pipe_params_st *pipes,
333                                               int pipe_cnt)
334 {
335         uint32_t i, pipe_idx;
336
337         dc_assert_fp_enabled();
338
339         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
340                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
341
342                 if (!pipe->stream)
343                         continue;
344
345                 if (pipe->plane_state && dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_PHANTOM) {
346                         pipes[pipe_idx].pipe.dest.vstartup_start =
347                                 get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
348                         pipes[pipe_idx].pipe.dest.vupdate_offset =
349                                 get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
350                         pipes[pipe_idx].pipe.dest.vupdate_width =
351                                 get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
352                         pipes[pipe_idx].pipe.dest.vready_offset =
353                                 get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
354                         pipe->pipe_dlg_param = pipes[pipe_idx].pipe.dest;
355                 }
356                 pipe_idx++;
357         }
358 }
359
360 static float calculate_net_bw_in_kbytes_sec(struct _vcs_dpi_voltage_scaling_st *entry)
361 {
362         float memory_bw_kbytes_sec;
363         float fabric_bw_kbytes_sec;
364         float sdp_bw_kbytes_sec;
365         float limiting_bw_kbytes_sec;
366
367         memory_bw_kbytes_sec = entry->dram_speed_mts *
368                                 dcn3_2_soc.num_chans *
369                                 dcn3_2_soc.dram_channel_width_bytes *
370                                 ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
371
372         fabric_bw_kbytes_sec = entry->fabricclk_mhz *
373                                 dcn3_2_soc.return_bus_width_bytes *
374                                 ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
375
376         sdp_bw_kbytes_sec = entry->dcfclk_mhz *
377                                 dcn3_2_soc.return_bus_width_bytes *
378                                 ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
379
380         limiting_bw_kbytes_sec = memory_bw_kbytes_sec;
381
382         if (fabric_bw_kbytes_sec < limiting_bw_kbytes_sec)
383                 limiting_bw_kbytes_sec = fabric_bw_kbytes_sec;
384
385         if (sdp_bw_kbytes_sec < limiting_bw_kbytes_sec)
386                 limiting_bw_kbytes_sec = sdp_bw_kbytes_sec;
387
388         return limiting_bw_kbytes_sec;
389 }
390
391 static void get_optimal_ntuple(struct _vcs_dpi_voltage_scaling_st *entry)
392 {
393         if (entry->dcfclk_mhz > 0) {
394                 float bw_on_sdp = entry->dcfclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100);
395
396                 entry->fabricclk_mhz = bw_on_sdp / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
397                 entry->dram_speed_mts = bw_on_sdp / (dcn3_2_soc.num_chans *
398                                 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
399         } else if (entry->fabricclk_mhz > 0) {
400                 float bw_on_fabric = entry->fabricclk_mhz * dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100);
401
402                 entry->dcfclk_mhz = bw_on_fabric / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
403                 entry->dram_speed_mts = bw_on_fabric / (dcn3_2_soc.num_chans *
404                                 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100));
405         } else if (entry->dram_speed_mts > 0) {
406                 float bw_on_dram = entry->dram_speed_mts * dcn3_2_soc.num_chans *
407                                 dcn3_2_soc.dram_channel_width_bytes * ((float)dcn3_2_soc.pct_ideal_dram_sdp_bw_after_urgent_pixel_only / 100);
408
409                 entry->fabricclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_fabric_bw_after_urgent / 100));
410                 entry->dcfclk_mhz = bw_on_dram / (dcn3_2_soc.return_bus_width_bytes * ((float)dcn3_2_soc.pct_ideal_sdp_bw_after_urgent / 100));
411         }
412 }
413
414 static void insert_entry_into_table_sorted(struct _vcs_dpi_voltage_scaling_st *table,
415                                     unsigned int *num_entries,
416                                     struct _vcs_dpi_voltage_scaling_st *entry)
417 {
418         int i = 0;
419         int index = 0;
420
421         dc_assert_fp_enabled();
422
423         if (*num_entries == 0) {
424                 table[0] = *entry;
425                 (*num_entries)++;
426         } else {
427                 while (entry->net_bw_in_kbytes_sec > table[index].net_bw_in_kbytes_sec) {
428                         index++;
429                         if (index >= *num_entries)
430                                 break;
431                 }
432
433                 for (i = *num_entries; i > index; i--)
434                         table[i] = table[i - 1];
435
436                 table[index] = *entry;
437                 (*num_entries)++;
438         }
439 }
440
441 /**
442  * dcn32_set_phantom_stream_timing - Set timing params for the phantom stream
443  * @dc: current dc state
444  * @context: new dc state
445  * @ref_pipe: Main pipe for the phantom stream
446  * @phantom_stream: target phantom stream state
447  * @pipes: DML pipe params
448  * @pipe_cnt: number of DML pipes
449  * @dc_pipe_idx: DC pipe index for the main pipe (i.e. ref_pipe)
450  *
451  * Set timing params of the phantom stream based on calculated output from DML.
452  * This function first gets the DML pipe index using the DC pipe index, then
453  * calls into DML (get_subviewport_lines_needed_in_mall) to get the number of
454  * lines required for SubVP MCLK switching and assigns to the phantom stream
455  * accordingly.
456  *
457  * - The number of SubVP lines calculated in DML does not take into account
458  * FW processing delays and required pstate allow width, so we must include
459  * that separately.
460  *
461  * - Set phantom backporch = vstartup of main pipe
462  */
463 void dcn32_set_phantom_stream_timing(struct dc *dc,
464                                      struct dc_state *context,
465                                      struct pipe_ctx *ref_pipe,
466                                      struct dc_stream_state *phantom_stream,
467                                      display_e2e_pipe_params_st *pipes,
468                                      unsigned int pipe_cnt,
469                                      unsigned int dc_pipe_idx)
470 {
471         unsigned int i, pipe_idx;
472         struct pipe_ctx *pipe;
473         uint32_t phantom_vactive, phantom_bp, pstate_width_fw_delay_lines;
474         unsigned int num_dpp;
475         unsigned int vlevel = context->bw_ctx.dml.vba.VoltageLevel;
476         unsigned int dcfclk = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
477         unsigned int socclk = context->bw_ctx.dml.vba.SOCCLKPerState[vlevel];
478         struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
479         struct dc_stream_state *main_stream = ref_pipe->stream;
480
481         dc_assert_fp_enabled();
482
483         // Find DML pipe index (pipe_idx) using dc_pipe_idx
484         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
485                 pipe = &context->res_ctx.pipe_ctx[i];
486
487                 if (!pipe->stream)
488                         continue;
489
490                 if (i == dc_pipe_idx)
491                         break;
492
493                 pipe_idx++;
494         }
495
496         // Calculate lines required for pstate allow width and FW processing delays
497         pstate_width_fw_delay_lines = ((double)(dc->caps.subvp_fw_processing_delay_us +
498                         dc->caps.subvp_pstate_allow_width_us) / 1000000) *
499                         (ref_pipe->stream->timing.pix_clk_100hz * 100) /
500                         (double)ref_pipe->stream->timing.h_total;
501
502         // Update clks_cfg for calling into recalculate
503         pipes[0].clks_cfg.voltage = vlevel;
504         pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
505         pipes[0].clks_cfg.socclk_mhz = socclk;
506
507         // DML calculation for MALL region doesn't take into account FW delay
508         // and required pstate allow width for multi-display cases
509         /* Add 16 lines margin to the MALL REGION because SUB_VP_START_LINE must be aligned
510          * to 2 swaths (i.e. 16 lines)
511          */
512         phantom_vactive = get_subviewport_lines_needed_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx) +
513                                 pstate_width_fw_delay_lines + dc->caps.subvp_swath_height_margin_lines;
514
515         // W/A for DCC corruption with certain high resolution timings.
516         // Determing if pipesplit is used. If so, add meta_row_height to the phantom vactive.
517         num_dpp = vba->NoOfDPP[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]];
518         phantom_vactive += num_dpp > 1 ? vba->meta_row_height[vba->pipe_plane[pipe_idx]] : 0;
519
520         /* dc->debug.subvp_extra_lines 0 by default*/
521         phantom_vactive += dc->debug.subvp_extra_lines;
522
523         // For backporch of phantom pipe, use vstartup of the main pipe
524         phantom_bp = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
525
526         phantom_stream->dst.y = 0;
527         phantom_stream->dst.height = phantom_vactive;
528         /* When scaling, DML provides the end to end required number of lines for MALL.
529          * dst.height is always correct for this case, but src.height is not which causes a
530          * delta between main and phantom pipe scaling outputs. Need to adjust src.height on
531          * phantom for this case.
532          */
533         phantom_stream->src.y = 0;
534         phantom_stream->src.height = (double)phantom_vactive * (double)main_stream->src.height / (double)main_stream->dst.height;
535
536         phantom_stream->timing.v_addressable = phantom_vactive;
537         phantom_stream->timing.v_front_porch = 1;
538         phantom_stream->timing.v_total = phantom_stream->timing.v_addressable +
539                                                 phantom_stream->timing.v_front_porch +
540                                                 phantom_stream->timing.v_sync_width +
541                                                 phantom_bp;
542         phantom_stream->timing.flags.DSC = 0; // Don't need DSC for phantom timing
543 }
544
545 /**
546  * dcn32_get_num_free_pipes - Calculate number of free pipes
547  * @dc: current dc state
548  * @context: new dc state
549  *
550  * This function assumes that a "used" pipe is a pipe that has
551  * both a stream and a plane assigned to it.
552  *
553  * Return: Number of free pipes available in the context
554  */
555 static unsigned int dcn32_get_num_free_pipes(struct dc *dc, struct dc_state *context)
556 {
557         unsigned int i;
558         unsigned int free_pipes = 0;
559         unsigned int num_pipes = 0;
560
561         for (i = 0; i < dc->res_pool->pipe_count; i++) {
562                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
563
564                 if (pipe->stream && !pipe->top_pipe) {
565                         while (pipe) {
566                                 num_pipes++;
567                                 pipe = pipe->bottom_pipe;
568                         }
569                 }
570         }
571
572         free_pipes = dc->res_pool->pipe_count - num_pipes;
573         return free_pipes;
574 }
575
576 /**
577  * dcn32_assign_subvp_pipe - Function to decide which pipe will use Sub-VP.
578  * @dc: current dc state
579  * @context: new dc state
580  * @index: [out] dc pipe index for the pipe chosen to have phantom pipes assigned
581  *
582  * We enter this function if we are Sub-VP capable (i.e. enough pipes available)
583  * and regular P-State switching (i.e. VACTIVE/VBLANK) is not supported, or if
584  * we are forcing SubVP P-State switching on the current config.
585  *
586  * The number of pipes used for the chosen surface must be less than or equal to the
587  * number of free pipes available.
588  *
589  * In general we choose surfaces with the longest frame time first (better for SubVP + VBLANK).
590  * For multi-display cases the ActiveDRAMClockChangeMargin doesn't provide enough info on its own
591  * for determining which should be the SubVP pipe (need a way to determine if a pipe / plane doesn't
592  * support MCLK switching naturally [i.e. ACTIVE or VBLANK]).
593  *
594  * Return: True if a valid pipe assignment was found for Sub-VP. Otherwise false.
595  */
596 static bool dcn32_assign_subvp_pipe(struct dc *dc,
597                                     struct dc_state *context,
598                                     unsigned int *index)
599 {
600         unsigned int i, pipe_idx;
601         unsigned int max_frame_time = 0;
602         bool valid_assignment_found = false;
603         unsigned int free_pipes = dcn32_get_num_free_pipes(dc, context);
604         struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
605
606         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
607                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
608                 unsigned int num_pipes = 0;
609                 unsigned int refresh_rate = 0;
610
611                 if (!pipe->stream)
612                         continue;
613
614                 // Round up
615                 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
616                                 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
617                                 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
618                 /* SubVP pipe candidate requirements:
619                  * - Refresh rate < 120hz
620                  * - Not able to switch in vactive naturally (switching in active means the
621                  *   DET provides enough buffer to hide the P-State switch latency -- trying
622                  *   to combine this with SubVP can cause issues with the scheduling).
623                  * - Not TMZ surface
624                  */
625                 if (pipe->plane_state && !pipe->top_pipe && !dcn32_is_center_timing(pipe) &&
626                                 !(pipe->stream->timing.pix_clk_100hz / 10000 > DCN3_2_MAX_SUBVP_PIXEL_RATE_MHZ) &&
627                                 (!dcn32_is_psr_capable(pipe) || (context->stream_count == 1 && dc->caps.dmub_caps.subvp_psr)) &&
628                                 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE &&
629                                 (refresh_rate < 120 || dcn32_allow_subvp_high_refresh_rate(dc, context, pipe)) &&
630                                 !pipe->plane_state->address.tmz_surface &&
631                                 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0 ||
632                                 (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
633                                                 dcn32_allow_subvp_with_active_margin(pipe)))) {
634                         while (pipe) {
635                                 num_pipes++;
636                                 pipe = pipe->bottom_pipe;
637                         }
638
639                         pipe = &context->res_ctx.pipe_ctx[i];
640                         if (num_pipes <= free_pipes) {
641                                 struct dc_stream_state *stream = pipe->stream;
642                                 unsigned int frame_us = (stream->timing.v_total * stream->timing.h_total /
643                                                 (double)(stream->timing.pix_clk_100hz * 100)) * 1000000;
644                                 if (frame_us > max_frame_time) {
645                                         *index = i;
646                                         max_frame_time = frame_us;
647                                         valid_assignment_found = true;
648                                 }
649                         }
650                 }
651                 pipe_idx++;
652         }
653         return valid_assignment_found;
654 }
655
656 /**
657  * dcn32_enough_pipes_for_subvp - Function to check if there are "enough" pipes for SubVP.
658  * @dc: current dc state
659  * @context: new dc state
660  *
661  * This function returns true if there are enough free pipes
662  * to create the required phantom pipes for any given stream
663  * (that does not already have phantom pipe assigned).
664  *
665  * e.g. For a 2 stream config where the first stream uses one
666  * pipe and the second stream uses 2 pipes (i.e. pipe split),
667  * this function will return true because there is 1 remaining
668  * pipe which can be used as the phantom pipe for the non pipe
669  * split pipe.
670  *
671  * Return:
672  * True if there are enough free pipes to assign phantom pipes to at least one
673  * stream that does not already have phantom pipes assigned. Otherwise false.
674  */
675 static bool dcn32_enough_pipes_for_subvp(struct dc *dc, struct dc_state *context)
676 {
677         unsigned int i, split_cnt, free_pipes;
678         unsigned int min_pipe_split = dc->res_pool->pipe_count + 1; // init as max number of pipes + 1
679         bool subvp_possible = false;
680
681         for (i = 0; i < dc->res_pool->pipe_count; i++) {
682                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
683
684                 // Find the minimum pipe split count for non SubVP pipes
685                 if (resource_is_pipe_type(pipe, OPP_HEAD) &&
686                         dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_NONE) {
687                         split_cnt = 0;
688                         while (pipe) {
689                                 split_cnt++;
690                                 pipe = pipe->bottom_pipe;
691                         }
692
693                         if (split_cnt < min_pipe_split)
694                                 min_pipe_split = split_cnt;
695                 }
696         }
697
698         free_pipes = dcn32_get_num_free_pipes(dc, context);
699
700         // SubVP only possible if at least one pipe is being used (i.e. free_pipes
701         // should not equal to the pipe_count)
702         if (free_pipes >= min_pipe_split && free_pipes < dc->res_pool->pipe_count)
703                 subvp_possible = true;
704
705         return subvp_possible;
706 }
707
708 /**
709  * subvp_subvp_schedulable - Determine if SubVP + SubVP config is schedulable
710  * @dc: current dc state
711  * @context: new dc state
712  *
713  * High level algorithm:
714  * 1. Find longest microschedule length (in us) between the two SubVP pipes
715  * 2. Check if the worst case overlap (VBLANK in middle of ACTIVE) for both
716  * pipes still allows for the maximum microschedule to fit in the active
717  * region for both pipes.
718  *
719  * Return: True if the SubVP + SubVP config is schedulable, false otherwise
720  */
721 static bool subvp_subvp_schedulable(struct dc *dc, struct dc_state *context)
722 {
723         struct pipe_ctx *subvp_pipes[2];
724         struct dc_stream_state *phantom = NULL;
725         uint32_t microschedule_lines = 0;
726         uint32_t index = 0;
727         uint32_t i;
728         uint32_t max_microschedule_us = 0;
729         int32_t vactive1_us, vactive2_us, vblank1_us, vblank2_us;
730
731         for (i = 0; i < dc->res_pool->pipe_count; i++) {
732                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
733                 uint32_t time_us = 0;
734
735                 /* Loop to calculate the maximum microschedule time between the two SubVP pipes,
736                  * and also to store the two main SubVP pipe pointers in subvp_pipes[2].
737                  */
738                 if (pipe->stream && pipe->plane_state && !pipe->top_pipe &&
739                         dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
740                         phantom = dc_state_get_paired_subvp_stream(context, pipe->stream);
741                         microschedule_lines = (phantom->timing.v_total - phantom->timing.v_front_porch) +
742                                         phantom->timing.v_addressable;
743
744                         // Round up when calculating microschedule time (+ 1 at the end)
745                         time_us = (microschedule_lines * phantom->timing.h_total) /
746                                         (double)(phantom->timing.pix_clk_100hz * 100) * 1000000 +
747                                                 dc->caps.subvp_prefetch_end_to_mall_start_us +
748                                                 dc->caps.subvp_fw_processing_delay_us + 1;
749                         if (time_us > max_microschedule_us)
750                                 max_microschedule_us = time_us;
751
752                         subvp_pipes[index] = pipe;
753                         index++;
754
755                         // Maximum 2 SubVP pipes
756                         if (index == 2)
757                                 break;
758                 }
759         }
760         vactive1_us = ((subvp_pipes[0]->stream->timing.v_addressable * subvp_pipes[0]->stream->timing.h_total) /
761                         (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
762         vactive2_us = ((subvp_pipes[1]->stream->timing.v_addressable * subvp_pipes[1]->stream->timing.h_total) /
763                                 (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
764         vblank1_us = (((subvp_pipes[0]->stream->timing.v_total - subvp_pipes[0]->stream->timing.v_addressable) *
765                         subvp_pipes[0]->stream->timing.h_total) /
766                         (double)(subvp_pipes[0]->stream->timing.pix_clk_100hz * 100)) * 1000000;
767         vblank2_us = (((subvp_pipes[1]->stream->timing.v_total - subvp_pipes[1]->stream->timing.v_addressable) *
768                         subvp_pipes[1]->stream->timing.h_total) /
769                         (double)(subvp_pipes[1]->stream->timing.pix_clk_100hz * 100)) * 1000000;
770
771         if ((vactive1_us - vblank2_us) / 2 > max_microschedule_us &&
772             (vactive2_us - vblank1_us) / 2 > max_microschedule_us)
773                 return true;
774
775         return false;
776 }
777
778 /**
779  * subvp_drr_schedulable() - Determine if SubVP + DRR config is schedulable
780  * @dc: current dc state
781  * @context: new dc state
782  *
783  * High level algorithm:
784  * 1. Get timing for SubVP pipe, phantom pipe, and DRR pipe
785  * 2. Determine the frame time for the DRR display when adding required margin for MCLK switching
786  * (the margin is equal to the MALL region + DRR margin (500us))
787  * 3.If (SubVP Active - Prefetch > Stretched DRR frame + max(MALL region, Stretched DRR frame))
788  * then report the configuration as supported
789  *
790  * Return: True if the SubVP + DRR config is schedulable, false otherwise
791  */
792 static bool subvp_drr_schedulable(struct dc *dc, struct dc_state *context)
793 {
794         bool schedulable = false;
795         uint32_t i;
796         struct pipe_ctx *pipe = NULL;
797         struct pipe_ctx *drr_pipe = NULL;
798         struct dc_crtc_timing *main_timing = NULL;
799         struct dc_crtc_timing *phantom_timing = NULL;
800         struct dc_crtc_timing *drr_timing = NULL;
801         int16_t prefetch_us = 0;
802         int16_t mall_region_us = 0;
803         int16_t drr_frame_us = 0;       // nominal frame time
804         int16_t subvp_active_us = 0;
805         int16_t stretched_drr_us = 0;
806         int16_t drr_stretched_vblank_us = 0;
807         int16_t max_vblank_mallregion = 0;
808         struct dc_stream_state *phantom_stream;
809         bool subvp_found = false;
810         bool drr_found = false;
811
812         // Find SubVP pipe
813         for (i = 0; i < dc->res_pool->pipe_count; i++) {
814                 pipe = &context->res_ctx.pipe_ctx[i];
815
816                 // We check for master pipe, but it shouldn't matter since we only need
817                 // the pipe for timing info (stream should be same for any pipe splits)
818                 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
819                                 !resource_is_pipe_type(pipe, DPP_PIPE))
820                         continue;
821
822                 // Find the SubVP pipe
823                 if (dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
824                         subvp_found = true;
825                         break;
826                 }
827         }
828
829         // Find the DRR pipe
830         for (i = 0; i < dc->res_pool->pipe_count; i++) {
831                 drr_pipe = &context->res_ctx.pipe_ctx[i];
832
833                 // We check for master pipe only
834                 if (!resource_is_pipe_type(drr_pipe, OTG_MASTER) ||
835                                 !resource_is_pipe_type(drr_pipe, DPP_PIPE))
836                         continue;
837
838                 if (dc_state_get_pipe_subvp_type(context, drr_pipe) == SUBVP_NONE && drr_pipe->stream->ignore_msa_timing_param &&
839                                 (drr_pipe->stream->allow_freesync || drr_pipe->stream->vrr_active_variable || drr_pipe->stream->vrr_active_fixed)) {
840                         drr_found = true;
841                         break;
842                 }
843         }
844
845         if (subvp_found && drr_found) {
846                 phantom_stream = dc_state_get_paired_subvp_stream(context, pipe->stream);
847                 main_timing = &pipe->stream->timing;
848                 phantom_timing = &phantom_stream->timing;
849                 drr_timing = &drr_pipe->stream->timing;
850                 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
851                                 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
852                                 dc->caps.subvp_prefetch_end_to_mall_start_us;
853                 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
854                                 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
855                 drr_frame_us = drr_timing->v_total * drr_timing->h_total /
856                                 (double)(drr_timing->pix_clk_100hz * 100) * 1000000;
857                 // P-State allow width and FW delays already included phantom_timing->v_addressable
858                 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
859                                 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
860                 stretched_drr_us = drr_frame_us + mall_region_us + SUBVP_DRR_MARGIN_US;
861                 drr_stretched_vblank_us = (drr_timing->v_total - drr_timing->v_addressable) * drr_timing->h_total /
862                                 (double)(drr_timing->pix_clk_100hz * 100) * 1000000 + (stretched_drr_us - drr_frame_us);
863                 max_vblank_mallregion = drr_stretched_vblank_us > mall_region_us ? drr_stretched_vblank_us : mall_region_us;
864         }
865
866         /* We consider SubVP + DRR schedulable if the stretched frame duration of the DRR display (i.e. the
867          * highest refresh rate + margin that can support UCLK P-State switch) passes the static analysis
868          * for VBLANK: (VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
869          * and the max of (VBLANK blanking time, MALL region)).
870          */
871         if (stretched_drr_us < (1 / (double)drr_timing->min_refresh_in_uhz) * 1000000 * 1000000 &&
872                         subvp_active_us - prefetch_us - stretched_drr_us - max_vblank_mallregion > 0)
873                 schedulable = true;
874
875         return schedulable;
876 }
877
878
879 /**
880  * subvp_vblank_schedulable - Determine if SubVP + VBLANK config is schedulable
881  * @dc: current dc state
882  * @context: new dc state
883  *
884  * High level algorithm:
885  * 1. Get timing for SubVP pipe, phantom pipe, and VBLANK pipe
886  * 2. If (SubVP Active - Prefetch > Vblank Frame Time + max(MALL region, Vblank blanking time))
887  * then report the configuration as supported
888  * 3. If the VBLANK display is DRR, then take the DRR static schedulability path
889  *
890  * Return: True if the SubVP + VBLANK/DRR config is schedulable, false otherwise
891  */
892 static bool subvp_vblank_schedulable(struct dc *dc, struct dc_state *context)
893 {
894         struct pipe_ctx *pipe = NULL;
895         struct pipe_ctx *subvp_pipe = NULL;
896         bool found = false;
897         bool schedulable = false;
898         uint32_t i = 0;
899         uint8_t vblank_index = 0;
900         uint16_t prefetch_us = 0;
901         uint16_t mall_region_us = 0;
902         uint16_t vblank_frame_us = 0;
903         uint16_t subvp_active_us = 0;
904         uint16_t vblank_blank_us = 0;
905         uint16_t max_vblank_mallregion = 0;
906         struct dc_crtc_timing *main_timing = NULL;
907         struct dc_crtc_timing *phantom_timing = NULL;
908         struct dc_crtc_timing *vblank_timing = NULL;
909         struct dc_stream_state *phantom_stream;
910         enum mall_stream_type pipe_mall_type;
911
912         /* For SubVP + VBLANK/DRR cases, we assume there can only be
913          * a single VBLANK/DRR display. If DML outputs SubVP + VBLANK
914          * is supported, it is either a single VBLANK case or two VBLANK
915          * displays which are synchronized (in which case they have identical
916          * timings).
917          */
918         for (i = 0; i < dc->res_pool->pipe_count; i++) {
919                 pipe = &context->res_ctx.pipe_ctx[i];
920                 pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
921
922                 // We check for master pipe, but it shouldn't matter since we only need
923                 // the pipe for timing info (stream should be same for any pipe splits)
924                 if (!resource_is_pipe_type(pipe, OTG_MASTER) ||
925                                 !resource_is_pipe_type(pipe, DPP_PIPE))
926                         continue;
927
928                 if (!found && pipe_mall_type == SUBVP_NONE) {
929                         // Found pipe which is not SubVP or Phantom (i.e. the VBLANK pipe).
930                         vblank_index = i;
931                         found = true;
932                 }
933
934                 if (!subvp_pipe && pipe_mall_type == SUBVP_MAIN)
935                         subvp_pipe = pipe;
936         }
937         if (found) {
938                 phantom_stream = dc_state_get_paired_subvp_stream(context, subvp_pipe->stream);
939                 main_timing = &subvp_pipe->stream->timing;
940                 phantom_timing = &phantom_stream->timing;
941                 vblank_timing = &context->res_ctx.pipe_ctx[vblank_index].stream->timing;
942                 // Prefetch time is equal to VACTIVE + BP + VSYNC of the phantom pipe
943                 // Also include the prefetch end to mallstart delay time
944                 prefetch_us = (phantom_timing->v_total - phantom_timing->v_front_porch) * phantom_timing->h_total /
945                                 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000 +
946                                 dc->caps.subvp_prefetch_end_to_mall_start_us;
947                 // P-State allow width and FW delays already included phantom_timing->v_addressable
948                 mall_region_us = phantom_timing->v_addressable * phantom_timing->h_total /
949                                 (double)(phantom_timing->pix_clk_100hz * 100) * 1000000;
950                 vblank_frame_us = vblank_timing->v_total * vblank_timing->h_total /
951                                 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
952                 vblank_blank_us =  (vblank_timing->v_total - vblank_timing->v_addressable) * vblank_timing->h_total /
953                                 (double)(vblank_timing->pix_clk_100hz * 100) * 1000000;
954                 subvp_active_us = main_timing->v_addressable * main_timing->h_total /
955                                 (double)(main_timing->pix_clk_100hz * 100) * 1000000;
956                 max_vblank_mallregion = vblank_blank_us > mall_region_us ? vblank_blank_us : mall_region_us;
957
958                 // Schedulable if VACTIVE region of the SubVP pipe can fit the MALL prefetch, VBLANK frame time,
959                 // and the max of (VBLANK blanking time, MALL region)
960                 // TODO: Possibly add some margin (i.e. the below conditions should be [...] > X instead of [...] > 0)
961                 if (subvp_active_us - prefetch_us - vblank_frame_us - max_vblank_mallregion > 0)
962                         schedulable = true;
963         }
964         return schedulable;
965 }
966
967 /**
968  * subvp_subvp_admissable() - Determine if subvp + subvp config is admissible
969  *
970  * @dc: Current DC state
971  * @context: New DC state to be programmed
972  *
973  * SubVP + SubVP is admissible under the following conditions:
974  * - All SubVP pipes are < 120Hz OR
975  * - All SubVP pipes are >= 120hz
976  *
977  * Return: True if admissible, false otherwise
978  */
979 static bool subvp_subvp_admissable(struct dc *dc,
980                                 struct dc_state *context)
981 {
982         bool result = false;
983         uint32_t i;
984         uint8_t subvp_count = 0;
985         uint32_t min_refresh = subvp_high_refresh_list.min_refresh, max_refresh = 0;
986         uint64_t refresh_rate = 0;
987
988         for (i = 0; i < dc->res_pool->pipe_count; i++) {
989                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
990
991                 if (!pipe->stream)
992                         continue;
993
994                 if (pipe->plane_state && !pipe->top_pipe &&
995                                 dc_state_get_pipe_subvp_type(context, pipe) == SUBVP_MAIN) {
996                         refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
997                                 pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
998                         refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
999                         refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
1000
1001                         if ((uint32_t)refresh_rate < min_refresh)
1002                                 min_refresh = (uint32_t)refresh_rate;
1003                         if ((uint32_t)refresh_rate > max_refresh)
1004                                 max_refresh = (uint32_t)refresh_rate;
1005                         subvp_count++;
1006                 }
1007         }
1008
1009         if (subvp_count == 2 && ((min_refresh < 120 && max_refresh < 120) ||
1010                 (min_refresh >= subvp_high_refresh_list.min_refresh &&
1011                                 max_refresh <= subvp_high_refresh_list.max_refresh)))
1012                 result = true;
1013
1014         return result;
1015 }
1016
1017 /**
1018  * subvp_validate_static_schedulability - Check which SubVP case is calculated
1019  * and handle static analysis based on the case.
1020  * @dc: current dc state
1021  * @context: new dc state
1022  * @vlevel: Voltage level calculated by DML
1023  *
1024  * Three cases:
1025  * 1. SubVP + SubVP
1026  * 2. SubVP + VBLANK (DRR checked internally)
1027  * 3. SubVP + VACTIVE (currently unsupported)
1028  *
1029  * Return: True if statically schedulable, false otherwise
1030  */
1031 static bool subvp_validate_static_schedulability(struct dc *dc,
1032                                 struct dc_state *context,
1033                                 int vlevel)
1034 {
1035         bool schedulable = false;
1036         struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1037         uint32_t i, pipe_idx;
1038         uint8_t subvp_count = 0;
1039         uint8_t vactive_count = 0;
1040         uint8_t non_subvp_pipes = 0;
1041
1042         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1043                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
1044                 enum mall_stream_type pipe_mall_type = dc_state_get_pipe_subvp_type(context, pipe);
1045
1046                 if (!pipe->stream)
1047                         continue;
1048
1049                 if (pipe->plane_state && !pipe->top_pipe) {
1050                         if (pipe_mall_type == SUBVP_MAIN)
1051                                 subvp_count++;
1052                         if (pipe_mall_type == SUBVP_NONE)
1053                                 non_subvp_pipes++;
1054                 }
1055
1056                 // Count how many planes that aren't SubVP/phantom are capable of VACTIVE
1057                 // switching (SubVP + VACTIVE unsupported). In situations where we force
1058                 // SubVP for a VACTIVE plane, we don't want to increment the vactive_count.
1059                 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vlevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0 &&
1060                                 pipe_mall_type == SUBVP_NONE) {
1061                         vactive_count++;
1062                 }
1063                 pipe_idx++;
1064         }
1065
1066         if (subvp_count == 2) {
1067                 // Static schedulability check for SubVP + SubVP case
1068                 schedulable = subvp_subvp_admissable(dc, context) && subvp_subvp_schedulable(dc, context);
1069         } else if (subvp_count == 1 && non_subvp_pipes == 0) {
1070                 // Single SubVP configs will be supported by default as long as it's suppported by DML
1071                 schedulable = true;
1072         } else if (subvp_count == 1 && non_subvp_pipes == 1) {
1073                 if (dcn32_subvp_drr_admissable(dc, context))
1074                         schedulable = subvp_drr_schedulable(dc, context);
1075                 else if (dcn32_subvp_vblank_admissable(dc, context, vlevel))
1076                         schedulable = subvp_vblank_schedulable(dc, context);
1077         } else if (vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_vactive_w_mall_sub_vp &&
1078                         vactive_count > 0) {
1079                 // For single display SubVP cases, DML will output dm_dram_clock_change_vactive_w_mall_sub_vp by default.
1080                 // We tell the difference between SubVP vs. SubVP + VACTIVE by checking the vactive_count.
1081                 // SubVP + VACTIVE currently unsupported
1082                 schedulable = false;
1083         }
1084         return schedulable;
1085 }
1086
1087 static void assign_subvp_index(struct dc *dc, struct dc_state *context)
1088 {
1089         int i;
1090         int index = 0;
1091
1092         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1093                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1094
1095                 if (resource_is_pipe_type(pipe_ctx, OTG_MASTER) &&
1096                                 dc_state_get_pipe_subvp_type(context, pipe_ctx) == SUBVP_MAIN) {
1097                         pipe_ctx->subvp_index = index++;
1098                 } else {
1099                         pipe_ctx->subvp_index = 0;
1100                 }
1101         }
1102 }
1103
1104 struct pipe_slice_table {
1105         struct {
1106                 struct dc_stream_state *stream;
1107                 int slice_count;
1108         } odm_combines[MAX_STREAMS];
1109         int odm_combine_count;
1110
1111         struct {
1112                 struct pipe_ctx *pri_pipe;
1113                 struct dc_plane_state *plane;
1114                 int slice_count;
1115         } mpc_combines[MAX_SURFACES];
1116         int mpc_combine_count;
1117 };
1118
1119
1120 static void update_slice_table_for_stream(struct pipe_slice_table *table,
1121                 struct dc_stream_state *stream, int diff)
1122 {
1123         int i;
1124
1125         for (i = 0; i < table->odm_combine_count; i++) {
1126                 if (table->odm_combines[i].stream == stream) {
1127                         table->odm_combines[i].slice_count += diff;
1128                         break;
1129                 }
1130         }
1131
1132         if (i == table->odm_combine_count) {
1133                 table->odm_combine_count++;
1134                 table->odm_combines[i].stream = stream;
1135                 table->odm_combines[i].slice_count = diff;
1136         }
1137 }
1138
1139 static void update_slice_table_for_plane(struct pipe_slice_table *table,
1140                 struct pipe_ctx *dpp_pipe, struct dc_plane_state *plane, int diff)
1141 {
1142         int i;
1143         struct pipe_ctx *pri_dpp_pipe = resource_get_primary_dpp_pipe(dpp_pipe);
1144
1145         for (i = 0; i < table->mpc_combine_count; i++) {
1146                 if (table->mpc_combines[i].plane == plane &&
1147                                 table->mpc_combines[i].pri_pipe == pri_dpp_pipe) {
1148                         table->mpc_combines[i].slice_count += diff;
1149                         break;
1150                 }
1151         }
1152
1153         if (i == table->mpc_combine_count) {
1154                 table->mpc_combine_count++;
1155                 table->mpc_combines[i].plane = plane;
1156                 table->mpc_combines[i].pri_pipe = pri_dpp_pipe;
1157                 table->mpc_combines[i].slice_count = diff;
1158         }
1159 }
1160
1161 static void init_pipe_slice_table_from_context(
1162                 struct pipe_slice_table *table,
1163                 struct dc_state *context)
1164 {
1165         int i, j;
1166         struct pipe_ctx *otg_master;
1167         struct pipe_ctx *dpp_pipes[MAX_PIPES];
1168         struct dc_stream_state *stream;
1169         int count;
1170
1171         memset(table, 0, sizeof(*table));
1172
1173         for (i = 0; i < context->stream_count; i++) {
1174                 stream = context->streams[i];
1175                 otg_master = resource_get_otg_master_for_stream(
1176                                 &context->res_ctx, stream);
1177                 count = resource_get_odm_slice_count(otg_master);
1178                 update_slice_table_for_stream(table, stream, count);
1179
1180                 count = resource_get_dpp_pipes_for_opp_head(otg_master,
1181                                 &context->res_ctx, dpp_pipes);
1182                 for (j = 0; j < count; j++)
1183                         if (dpp_pipes[j]->plane_state)
1184                                 update_slice_table_for_plane(table, dpp_pipes[j],
1185                                                 dpp_pipes[j]->plane_state, 1);
1186         }
1187 }
1188
1189 static bool update_pipe_slice_table_with_split_flags(
1190                 struct pipe_slice_table *table,
1191                 struct dc *dc,
1192                 struct dc_state *context,
1193                 struct vba_vars_st *vba,
1194                 int split[MAX_PIPES],
1195                 bool merge[MAX_PIPES])
1196 {
1197         /* NOTE: we are deprecating the support for the concept of pipe splitting
1198          * or pipe merging. Instead we append slices to the end and remove
1199          * slices from the end. The following code converts a pipe split or
1200          * merge to an append or remove operation.
1201          *
1202          * For example:
1203          * When split flags describe the following pipe connection transition
1204          *
1205          * from:
1206          *  pipe 0 (split=2) -> pipe 1 (split=2)
1207          * to: (old behavior)
1208          *  pipe 0 -> pipe 2 -> pipe 1 -> pipe 3
1209          *
1210          * the code below actually does:
1211          *  pipe 0 -> pipe 1 -> pipe 2 -> pipe 3
1212          *
1213          * This is the new intended behavior and for future DCNs we will retire
1214          * the old concept completely.
1215          */
1216         struct pipe_ctx *pipe;
1217         bool odm;
1218         int dc_pipe_idx, dml_pipe_idx = 0;
1219         bool updated = false;
1220
1221         for (dc_pipe_idx = 0;
1222                         dc_pipe_idx < dc->res_pool->pipe_count; dc_pipe_idx++) {
1223                 pipe = &context->res_ctx.pipe_ctx[dc_pipe_idx];
1224                 if (resource_is_pipe_type(pipe, FREE_PIPE))
1225                         continue;
1226
1227                 if (merge[dc_pipe_idx]) {
1228                         if (resource_is_pipe_type(pipe, OPP_HEAD))
1229                                 /* merging OPP head means reducing ODM slice
1230                                  * count by 1
1231                                  */
1232                                 update_slice_table_for_stream(table, pipe->stream, -1);
1233                         else if (resource_is_pipe_type(pipe, DPP_PIPE) &&
1234                                         resource_get_odm_slice_index(resource_get_opp_head(pipe)) == 0)
1235                                 /* merging DPP pipe of the first ODM slice means
1236                                  * reducing MPC slice count by 1
1237                                  */
1238                                 update_slice_table_for_plane(table, pipe, pipe->plane_state, -1);
1239                         updated = true;
1240                 }
1241
1242                 if (split[dc_pipe_idx]) {
1243                         odm = vba->ODMCombineEnabled[vba->pipe_plane[dml_pipe_idx]] !=
1244                                         dm_odm_combine_mode_disabled;
1245                         if (odm && resource_is_pipe_type(pipe, OPP_HEAD))
1246                                 update_slice_table_for_stream(
1247                                                 table, pipe->stream, split[dc_pipe_idx] - 1);
1248                         else if (!odm && resource_is_pipe_type(pipe, DPP_PIPE))
1249                                 update_slice_table_for_plane(table, pipe,
1250                                                 pipe->plane_state, split[dc_pipe_idx] - 1);
1251                         updated = true;
1252                 }
1253                 dml_pipe_idx++;
1254         }
1255         return updated;
1256 }
1257
1258 static void update_pipes_with_slice_table(struct dc *dc, struct dc_state *context,
1259                 struct pipe_slice_table *table)
1260 {
1261         int i;
1262
1263         for (i = 0; i < table->odm_combine_count; i++)
1264                 resource_update_pipes_for_stream_with_slice_count(context,
1265                                 dc->current_state, dc->res_pool,
1266                                 table->odm_combines[i].stream,
1267                                 table->odm_combines[i].slice_count);
1268
1269         for (i = 0; i < table->mpc_combine_count; i++)
1270                 resource_update_pipes_for_plane_with_slice_count(context,
1271                                 dc->current_state, dc->res_pool,
1272                                 table->mpc_combines[i].plane,
1273                                 table->mpc_combines[i].slice_count);
1274 }
1275
1276 static bool update_pipes_with_split_flags(struct dc *dc, struct dc_state *context,
1277                 struct vba_vars_st *vba, int split[MAX_PIPES],
1278                 bool merge[MAX_PIPES])
1279 {
1280         struct pipe_slice_table slice_table;
1281         bool updated;
1282
1283         init_pipe_slice_table_from_context(&slice_table, context);
1284         updated = update_pipe_slice_table_with_split_flags(
1285                         &slice_table, dc, context, vba,
1286                         split, merge);
1287         update_pipes_with_slice_table(dc, context, &slice_table);
1288         return updated;
1289 }
1290
1291 static bool should_allow_odm_power_optimization(struct dc *dc,
1292                 struct dc_state *context, struct vba_vars_st *v, int *split,
1293                 bool *merge)
1294 {
1295         struct dc_stream_state *stream = context->streams[0];
1296         struct pipe_slice_table slice_table;
1297         int i;
1298
1299         /*
1300          * this debug flag allows us to disable ODM power optimization feature
1301          * unconditionally. we force the feature off if this is set to false.
1302          */
1303         if (!dc->debug.enable_single_display_2to1_odm_policy)
1304                 return false;
1305
1306         /* current design and test coverage is only limited to allow ODM power
1307          * optimization for single stream. Supporting it for multiple streams
1308          * use case would require additional algorithm to decide how to
1309          * optimize power consumption when there are not enough free pipes to
1310          * allocate for all the streams. This level of optimization would
1311          * require multiple attempts of revalidation to make an optimized
1312          * decision. Unfortunately We do not support revalidation flow in
1313          * current version of DML.
1314          */
1315         if (context->stream_count != 1)
1316                 return false;
1317
1318         /*
1319          * Our hardware doesn't support ODM for HDMI TMDS
1320          */
1321         if (dc_is_hdmi_signal(stream->signal))
1322                 return false;
1323
1324         /*
1325          * ODM Combine 2:1 requires horizontal timing divisible by 2 so each
1326          * ODM segment has the same size.
1327          */
1328         if (!is_h_timing_divisible_by_2(stream))
1329                 return false;
1330
1331         /*
1332          * No power benefits if the timing's pixel clock is not high enough to
1333          * raise display clock from minimum power state.
1334          */
1335         if (stream->timing.pix_clk_100hz * 100 <= DCN3_2_VMIN_DISPCLK_HZ)
1336                 return false;
1337
1338         if (dc->config.enable_windowed_mpo_odm) {
1339                 /*
1340                  * ODM power optimization should only be allowed if the feature
1341                  * can be seamlessly toggled off within an update. This would
1342                  * require that the feature is applied on top of a minimal
1343                  * state. A minimal state is defined as a state validated
1344                  * without the need of pipe split. Therefore, when transition to
1345                  * toggle the feature off, the same stream and plane
1346                  * configuration can be supported by the pipe resource in the
1347                  * first ODM slice alone without the need to acquire extra
1348                  * resources.
1349                  */
1350                 init_pipe_slice_table_from_context(&slice_table, context);
1351                 update_pipe_slice_table_with_split_flags(
1352                                 &slice_table, dc, context, v,
1353                                 split, merge);
1354                 for (i = 0; i < slice_table.mpc_combine_count; i++)
1355                         if (slice_table.mpc_combines[i].slice_count > 1)
1356                                 return false;
1357
1358                 for (i = 0; i < slice_table.odm_combine_count; i++)
1359                         if (slice_table.odm_combines[i].slice_count > 1)
1360                                 return false;
1361         } else {
1362                 /*
1363                  * the new ODM power optimization feature reduces software
1364                  * design limitation and allows ODM power optimization to be
1365                  * supported even with presence of overlay planes. The new
1366                  * feature is enabled based on enable_windowed_mpo_odm flag. If
1367                  * the flag is not set, we limit our feature scope due to
1368                  * previous software design limitation
1369                  */
1370                 if (context->stream_status[0].plane_count != 1)
1371                         return false;
1372
1373                 if (memcmp(&context->stream_status[0].plane_states[0]->clip_rect,
1374                                 &stream->src, sizeof(struct rect)) != 0)
1375                         return false;
1376
1377                 if (stream->src.width >= 5120 &&
1378                                 stream->src.width > stream->dst.width)
1379                         return false;
1380         }
1381         return true;
1382 }
1383
1384 static void try_odm_power_optimization_and_revalidate(
1385                 struct dc *dc,
1386                 struct dc_state *context,
1387                 display_e2e_pipe_params_st *pipes,
1388                 int *split,
1389                 bool *merge,
1390                 unsigned int *vlevel,
1391                 int pipe_cnt)
1392 {
1393         int i;
1394         unsigned int new_vlevel;
1395
1396         for (i = 0; i < pipe_cnt; i++)
1397                 pipes[i].pipe.dest.odm_combine_policy = dm_odm_combine_policy_2to1;
1398
1399         new_vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1400
1401         if (new_vlevel < context->bw_ctx.dml.soc.num_states) {
1402                 memset(split, 0, MAX_PIPES * sizeof(int));
1403                 memset(merge, 0, MAX_PIPES * sizeof(bool));
1404                 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, new_vlevel, split, merge);
1405                 context->bw_ctx.dml.vba.VoltageLevel = *vlevel;
1406         }
1407 }
1408
1409 static bool is_test_pattern_enabled(
1410                 struct dc_state *context)
1411 {
1412         int i;
1413
1414         for (i = 0; i < context->stream_count; i++) {
1415                 if (context->streams[i]->test_pattern.type != DP_TEST_PATTERN_VIDEO_MODE)
1416                         return true;
1417         }
1418
1419         return false;
1420 }
1421
1422 static void dcn32_full_validate_bw_helper(struct dc *dc,
1423                                    struct dc_state *context,
1424                                    display_e2e_pipe_params_st *pipes,
1425                                    int *vlevel,
1426                                    int *split,
1427                                    bool *merge,
1428                                    int *pipe_cnt)
1429 {
1430         struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1431         unsigned int dc_pipe_idx = 0;
1432         int i = 0;
1433         bool found_supported_config = false;
1434         int vlevel_temp = 0;
1435
1436         dc_assert_fp_enabled();
1437
1438         /*
1439          * DML favors voltage over p-state, but we're more interested in
1440          * supporting p-state over voltage. We can't support p-state in
1441          * prefetch mode > 0 so try capping the prefetch mode to start.
1442          * Override present for testing.
1443          */
1444         if (dc->debug.dml_disallow_alternate_prefetch_modes)
1445                 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1446                         dm_prefetch_support_uclk_fclk_and_stutter;
1447         else
1448                 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1449                         dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
1450
1451         *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1452         /* This may adjust vlevel and maxMpcComb */
1453         if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1454                 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1455                 vba->VoltageLevel = *vlevel;
1456         }
1457
1458         /* Conditions for setting up phantom pipes for SubVP:
1459          * 1. Not force disable SubVP
1460          * 2. Full update (i.e. !fast_validate)
1461          * 3. Enough pipes are available to support SubVP (TODO: Which pipes will use VACTIVE / VBLANK / SUBVP?)
1462          * 4. Display configuration passes validation
1463          * 5. (Config doesn't support MCLK in VACTIVE/VBLANK || dc->debug.force_subvp_mclk_switch)
1464          */
1465         if (!dc->debug.force_disable_subvp && !dc->caps.dmub_caps.gecc_enable && dcn32_all_pipes_have_stream_and_plane(dc, context) &&
1466             !dcn32_mpo_in_use(context) && !dcn32_any_surfaces_rotated(dc, context) && !is_test_pattern_enabled(context) &&
1467                 (*vlevel == context->bw_ctx.dml.soc.num_states || (vba->DRAMSpeedPerState[*vlevel] != vba->DRAMSpeedPerState[0] &&
1468                                 vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] != dm_dram_clock_change_unsupported) ||
1469             vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported ||
1470             dc->debug.force_subvp_mclk_switch)) {
1471
1472                 dcn32_merge_pipes_for_subvp(dc, context);
1473                 memset(merge, 0, MAX_PIPES * sizeof(bool));
1474
1475                 vlevel_temp = *vlevel;
1476                 /* to re-initialize viewport after the pipe merge */
1477                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
1478                         struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1479
1480                         if (!pipe_ctx->plane_state || !pipe_ctx->stream)
1481                                 continue;
1482
1483                         resource_build_scaling_params(pipe_ctx);
1484                 }
1485
1486                 while (!found_supported_config && dcn32_enough_pipes_for_subvp(dc, context) &&
1487                         dcn32_assign_subvp_pipe(dc, context, &dc_pipe_idx)) {
1488                         /* For the case where *vlevel = num_states, bandwidth validation has failed for this config.
1489                          * Adding phantom pipes won't change the validation result, so change the DML input param
1490                          * for P-State support before adding phantom pipes and recalculating the DML result.
1491                          * However, this case is only applicable for SubVP + DRR cases because the prefetch mode
1492                          * will not allow for switch in VBLANK. The DRR display must have it's VBLANK stretched
1493                          * enough to support MCLK switching.
1494                          */
1495                         if (*vlevel == context->bw_ctx.dml.soc.num_states &&
1496                                 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final ==
1497                                         dm_prefetch_support_uclk_fclk_and_stutter) {
1498                                 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1499                                                                 dm_prefetch_support_fclk_and_stutter;
1500                                 /* There are params (such as FabricClock) that need to be recalculated
1501                                  * after validation fails (otherwise it will be 0). Calculation for
1502                                  * phantom vactive requires call into DML, so we must ensure all the
1503                                  * vba params are valid otherwise we'll get incorrect phantom vactive.
1504                                  */
1505                                 *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1506                         }
1507
1508                         dc->res_pool->funcs->add_phantom_pipes(dc, context, pipes, *pipe_cnt, dc_pipe_idx);
1509
1510                         *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1511                         // Populate dppclk to trigger a recalculate in dml_get_voltage_level
1512                         // so the phantom pipe DLG params can be assigned correctly.
1513                         pipes[0].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, *pipe_cnt, 0);
1514                         *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1515
1516                         /* Check that vlevel requested supports pstate or not
1517                          * if not, select the lowest vlevel that supports it
1518                          */
1519                         for (i = *vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
1520                                 if (vba->DRAMClockChangeSupport[i][vba->maxMpcComb] != dm_dram_clock_change_unsupported) {
1521                                         *vlevel = i;
1522                                         break;
1523                                 }
1524                         }
1525
1526                         if (*vlevel < context->bw_ctx.dml.soc.num_states
1527                             && subvp_validate_static_schedulability(dc, context, *vlevel))
1528                                 found_supported_config = true;
1529                         if (found_supported_config) {
1530                                 // For SubVP + DRR cases, we can force the lowest vlevel that supports the mode
1531                                 if (dcn32_subvp_drr_admissable(dc, context) && subvp_drr_schedulable(dc, context)) {
1532                                         /* find lowest vlevel that supports the config */
1533                                         for (i = *vlevel; i >= 0; i--) {
1534                                                 if (vba->ModeSupport[i][vba->maxMpcComb]) {
1535                                                         *vlevel = i;
1536                                                 } else {
1537                                                         break;
1538                                                 }
1539                                         }
1540                                 }
1541                         }
1542                 }
1543
1544                 if (vba->DRAMSpeedPerState[*vlevel] >= vba->DRAMSpeedPerState[vlevel_temp])
1545                         found_supported_config = false;
1546
1547                 // If SubVP pipe config is unsupported (or cannot be used for UCLK switching)
1548                 // remove phantom pipes and repopulate dml pipes
1549                 if (!found_supported_config) {
1550                         dc_state_remove_phantom_streams_and_planes(dc, context);
1551                         dc_state_release_phantom_streams_and_planes(dc, context);
1552                         vba->DRAMClockChangeSupport[*vlevel][vba->maxMpcComb] = dm_dram_clock_change_unsupported;
1553                         *pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, false);
1554
1555                         *vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, *pipe_cnt);
1556                         /* This may adjust vlevel and maxMpcComb */
1557                         if (*vlevel < context->bw_ctx.dml.soc.num_states) {
1558                                 *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1559                                 vba->VoltageLevel = *vlevel;
1560                         }
1561                 } else {
1562                         // Most populate phantom DLG params before programming hardware / timing for phantom pipe
1563                         dcn32_helper_populate_phantom_dlg_params(dc, context, pipes, *pipe_cnt);
1564
1565                         /* Call validate_apply_pipe_split flags after calling DML getters for
1566                          * phantom dlg params, or some of the VBA params indicating pipe split
1567                          * can be overwritten by the getters.
1568                          *
1569                          * When setting up SubVP config, all pipes are merged before attempting to
1570                          * add phantom pipes. If pipe split (ODM / MPC) is required, both the main
1571                          * and phantom pipes will be split in the regular pipe splitting sequence.
1572                          */
1573                         memset(split, 0, MAX_PIPES * sizeof(int));
1574                         memset(merge, 0, MAX_PIPES * sizeof(bool));
1575                         *vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, *vlevel, split, merge);
1576                         vba->VoltageLevel = *vlevel;
1577                         // Note: We can't apply the phantom pipes to hardware at this time. We have to wait
1578                         // until driver has acquired the DMCUB lock to do it safely.
1579                         assign_subvp_index(dc, context);
1580                 }
1581         }
1582
1583         if (should_allow_odm_power_optimization(dc, context, vba, split, merge))
1584                 try_odm_power_optimization_and_revalidate(
1585                                 dc, context, pipes, split, merge, vlevel, *pipe_cnt);
1586
1587 }
1588
1589 static bool is_dtbclk_required(struct dc *dc, struct dc_state *context)
1590 {
1591         int i;
1592
1593         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1594                 if (!context->res_ctx.pipe_ctx[i].stream)
1595                         continue;
1596                 if (dc->link_srv->dp_is_128b_132b_signal(&context->res_ctx.pipe_ctx[i]))
1597                         return true;
1598         }
1599         return false;
1600 }
1601
1602 static void dcn20_adjust_freesync_v_startup(const struct dc_crtc_timing *dc_crtc_timing, int *vstartup_start)
1603 {
1604         struct dc_crtc_timing patched_crtc_timing;
1605         uint32_t asic_blank_end   = 0;
1606         uint32_t asic_blank_start = 0;
1607         uint32_t newVstartup      = 0;
1608
1609         patched_crtc_timing = *dc_crtc_timing;
1610
1611         if (patched_crtc_timing.flags.INTERLACE == 1) {
1612                 if (patched_crtc_timing.v_front_porch < 2)
1613                         patched_crtc_timing.v_front_porch = 2;
1614         } else {
1615                 if (patched_crtc_timing.v_front_porch < 1)
1616                         patched_crtc_timing.v_front_porch = 1;
1617         }
1618
1619         /* blank_start = frame end - front porch */
1620         asic_blank_start = patched_crtc_timing.v_total -
1621                                         patched_crtc_timing.v_front_porch;
1622
1623         /* blank_end = blank_start - active */
1624         asic_blank_end = asic_blank_start -
1625                                         patched_crtc_timing.v_border_bottom -
1626                                         patched_crtc_timing.v_addressable -
1627                                         patched_crtc_timing.v_border_top;
1628
1629         newVstartup = asic_blank_end + (patched_crtc_timing.v_total - asic_blank_start);
1630
1631         *vstartup_start = ((newVstartup > *vstartup_start) ? newVstartup : *vstartup_start);
1632 }
1633
1634 static void dcn32_calculate_dlg_params(struct dc *dc, struct dc_state *context,
1635                                        display_e2e_pipe_params_st *pipes,
1636                                        int pipe_cnt, int vlevel)
1637 {
1638         int i, pipe_idx, active_hubp_count = 0;
1639         bool usr_retraining_support = false;
1640         bool unbounded_req_enabled = false;
1641         struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1642
1643         dc_assert_fp_enabled();
1644
1645         /* Writeback MCIF_WB arbitration parameters */
1646         dc->res_pool->funcs->set_mcif_arb_params(dc, context, pipes, pipe_cnt);
1647
1648         context->bw_ctx.bw.dcn.clk.dispclk_khz = context->bw_ctx.dml.vba.DISPCLK * 1000;
1649         context->bw_ctx.bw.dcn.clk.dcfclk_khz = context->bw_ctx.dml.vba.DCFCLK * 1000;
1650         context->bw_ctx.bw.dcn.clk.socclk_khz = context->bw_ctx.dml.vba.SOCCLK * 1000;
1651         context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
1652         context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = context->bw_ctx.dml.vba.DCFCLKDeepSleep * 1000;
1653         context->bw_ctx.bw.dcn.clk.fclk_khz = context->bw_ctx.dml.vba.FabricClock * 1000;
1654         context->bw_ctx.bw.dcn.clk.p_state_change_support =
1655                         context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb]
1656                                         != dm_dram_clock_change_unsupported;
1657
1658         /* Pstate change might not be supported by hardware, but it might be
1659          * possible with firmware driven vertical blank stretching.
1660          */
1661         context->bw_ctx.bw.dcn.clk.p_state_change_support |= context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching;
1662
1663         context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1664         context->bw_ctx.bw.dcn.clk.dtbclk_en = is_dtbclk_required(dc, context);
1665         context->bw_ctx.bw.dcn.clk.ref_dtbclk_khz = context->bw_ctx.dml.vba.DTBCLKPerState[vlevel] * 1000;
1666         if (context->bw_ctx.dml.vba.FCLKChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] == dm_fclock_change_unsupported)
1667                 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = false;
1668         else
1669                 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1670
1671         usr_retraining_support = context->bw_ctx.dml.vba.USRRetrainingSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
1672         ASSERT(usr_retraining_support);
1673
1674         if (context->bw_ctx.bw.dcn.clk.dispclk_khz < dc->debug.min_disp_clk_khz)
1675                 context->bw_ctx.bw.dcn.clk.dispclk_khz = dc->debug.min_disp_clk_khz;
1676
1677         unbounded_req_enabled = get_unbounded_request_enabled(&context->bw_ctx.dml, pipes, pipe_cnt);
1678
1679         if (unbounded_req_enabled && pipe_cnt > 1) {
1680                 // Unbounded requesting should not ever be used when more than 1 pipe is enabled.
1681                 ASSERT(false);
1682                 unbounded_req_enabled = false;
1683         }
1684
1685         context->bw_ctx.bw.dcn.mall_ss_size_bytes = 0;
1686         context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes = 0;
1687         context->bw_ctx.bw.dcn.mall_subvp_size_bytes = 0;
1688
1689         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1690                 if (!context->res_ctx.pipe_ctx[i].stream)
1691                         continue;
1692                 if (context->res_ctx.pipe_ctx[i].plane_state)
1693                         active_hubp_count++;
1694                 pipes[pipe_idx].pipe.dest.vstartup_start = get_vstartup(&context->bw_ctx.dml, pipes, pipe_cnt,
1695                                 pipe_idx);
1696                 pipes[pipe_idx].pipe.dest.vupdate_offset = get_vupdate_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1697                                 pipe_idx);
1698                 pipes[pipe_idx].pipe.dest.vupdate_width = get_vupdate_width(&context->bw_ctx.dml, pipes, pipe_cnt,
1699                                 pipe_idx);
1700                 pipes[pipe_idx].pipe.dest.vready_offset = get_vready_offset(&context->bw_ctx.dml, pipes, pipe_cnt,
1701                                 pipe_idx);
1702
1703                 if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) == SUBVP_PHANTOM) {
1704                         // Phantom pipe requires that DET_SIZE = 0 and no unbounded requests
1705                         context->res_ctx.pipe_ctx[i].det_buffer_size_kb = 0;
1706                         context->res_ctx.pipe_ctx[i].unbounded_req = false;
1707                 } else {
1708                         context->res_ctx.pipe_ctx[i].det_buffer_size_kb = get_det_buffer_size_kbytes(&context->bw_ctx.dml, pipes, pipe_cnt,
1709                                                         pipe_idx);
1710                         context->res_ctx.pipe_ctx[i].unbounded_req = unbounded_req_enabled;
1711                 }
1712
1713                 if (context->bw_ctx.bw.dcn.clk.dppclk_khz < pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
1714                         context->bw_ctx.bw.dcn.clk.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1715                 if (context->res_ctx.pipe_ctx[i].plane_state)
1716                         context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000;
1717                 else
1718                         context->res_ctx.pipe_ctx[i].plane_res.bw.dppclk_khz = 0;
1719                 context->res_ctx.pipe_ctx[i].pipe_dlg_param = pipes[pipe_idx].pipe.dest;
1720
1721                 context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes = get_surface_size_in_mall(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1722
1723                 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] > 0)
1724                         context->res_ctx.pipe_ctx[i].has_vactive_margin = true;
1725                 else
1726                         context->res_ctx.pipe_ctx[i].has_vactive_margin = false;
1727
1728                 /* MALL Allocation Sizes */
1729                 /* count from active, top pipes per plane only */
1730                 if (context->res_ctx.pipe_ctx[i].stream && context->res_ctx.pipe_ctx[i].plane_state &&
1731                                 (context->res_ctx.pipe_ctx[i].top_pipe == NULL ||
1732                                 context->res_ctx.pipe_ctx[i].plane_state != context->res_ctx.pipe_ctx[i].top_pipe->plane_state) &&
1733                                 context->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1734                         /* SS: all active surfaces stored in MALL */
1735                         if (dc_state_get_pipe_subvp_type(context, &context->res_ctx.pipe_ctx[i]) != SUBVP_PHANTOM) {
1736                                 context->bw_ctx.bw.dcn.mall_ss_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1737
1738                                 if (context->res_ctx.pipe_ctx[i].stream->link->psr_settings.psr_version == DC_PSR_VERSION_UNSUPPORTED) {
1739                                         /* SS PSR On: all active surfaces part of streams not supporting PSR stored in MALL */
1740                                         context->bw_ctx.bw.dcn.mall_ss_psr_active_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1741                                 }
1742                         } else {
1743                                 /* SUBVP: phantom surfaces only stored in MALL */
1744                                 context->bw_ctx.bw.dcn.mall_subvp_size_bytes += context->res_ctx.pipe_ctx[i].surface_size_in_mall_bytes;
1745                         }
1746                 }
1747
1748                 if (context->res_ctx.pipe_ctx[i].stream->adaptive_sync_infopacket.valid)
1749                         dcn20_adjust_freesync_v_startup(
1750                                 &context->res_ctx.pipe_ctx[i].stream->timing,
1751                                 &context->res_ctx.pipe_ctx[i].pipe_dlg_param.vstartup_start);
1752
1753                 pipe_idx++;
1754         }
1755         /* If DCN isn't making memory requests we can allow pstate change and lower clocks */
1756         if (!active_hubp_count) {
1757                 context->bw_ctx.bw.dcn.clk.socclk_khz = 0;
1758                 context->bw_ctx.bw.dcn.clk.dppclk_khz = 0;
1759                 context->bw_ctx.bw.dcn.clk.dcfclk_khz = 0;
1760                 context->bw_ctx.bw.dcn.clk.dcfclk_deep_sleep_khz = 0;
1761                 context->bw_ctx.bw.dcn.clk.dramclk_khz = 0;
1762                 context->bw_ctx.bw.dcn.clk.fclk_khz = 0;
1763                 context->bw_ctx.bw.dcn.clk.p_state_change_support = true;
1764                 context->bw_ctx.bw.dcn.clk.fclk_p_state_change_support = true;
1765         }
1766         /*save a original dppclock copy*/
1767         context->bw_ctx.bw.dcn.clk.bw_dppclk_khz = context->bw_ctx.bw.dcn.clk.dppclk_khz;
1768         context->bw_ctx.bw.dcn.clk.bw_dispclk_khz = context->bw_ctx.bw.dcn.clk.dispclk_khz;
1769         context->bw_ctx.bw.dcn.clk.max_supported_dppclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dppclk_mhz
1770                         * 1000;
1771         context->bw_ctx.bw.dcn.clk.max_supported_dispclk_khz = context->bw_ctx.dml.soc.clock_limits[vlevel].dispclk_mhz
1772                         * 1000;
1773
1774         context->bw_ctx.bw.dcn.clk.num_ways = dcn32_helper_calculate_num_ways_for_subvp(dc, context);
1775
1776         context->bw_ctx.bw.dcn.compbuf_size_kb = context->bw_ctx.dml.ip.config_return_buffer_size_in_kbytes;
1777
1778         for (i = 0; i < dc->res_pool->pipe_count; i++) {
1779                 if (context->res_ctx.pipe_ctx[i].stream)
1780                         context->bw_ctx.bw.dcn.compbuf_size_kb -= context->res_ctx.pipe_ctx[i].det_buffer_size_kb;
1781         }
1782
1783         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
1784
1785                 if (!context->res_ctx.pipe_ctx[i].stream)
1786                         continue;
1787
1788                 context->bw_ctx.dml.funcs.rq_dlg_get_dlg_reg_v2(&context->bw_ctx.dml,
1789                                 &context->res_ctx.pipe_ctx[i].dlg_regs, &context->res_ctx.pipe_ctx[i].ttu_regs, pipes,
1790                                 pipe_cnt, pipe_idx);
1791
1792                 context->bw_ctx.dml.funcs.rq_dlg_get_rq_reg_v2(&context->res_ctx.pipe_ctx[i].rq_regs,
1793                                 &context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
1794                 pipe_idx++;
1795         }
1796 }
1797
1798 static struct pipe_ctx *dcn32_find_split_pipe(
1799                 struct dc *dc,
1800                 struct dc_state *context,
1801                 int old_index)
1802 {
1803         struct pipe_ctx *pipe = NULL;
1804         int i;
1805
1806         if (old_index >= 0 && context->res_ctx.pipe_ctx[old_index].stream == NULL) {
1807                 pipe = &context->res_ctx.pipe_ctx[old_index];
1808                 pipe->pipe_idx = old_index;
1809         }
1810
1811         if (!pipe)
1812                 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1813                         if (dc->current_state->res_ctx.pipe_ctx[i].top_pipe == NULL
1814                                         && dc->current_state->res_ctx.pipe_ctx[i].prev_odm_pipe == NULL) {
1815                                 if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1816                                         pipe = &context->res_ctx.pipe_ctx[i];
1817                                         pipe->pipe_idx = i;
1818                                         break;
1819                                 }
1820                         }
1821                 }
1822
1823         /*
1824          * May need to fix pipes getting tossed from 1 opp to another on flip
1825          * Add for debugging transient underflow during topology updates:
1826          * ASSERT(pipe);
1827          */
1828         if (!pipe)
1829                 for (i = dc->res_pool->pipe_count - 1; i >= 0; i--) {
1830                         if (context->res_ctx.pipe_ctx[i].stream == NULL) {
1831                                 pipe = &context->res_ctx.pipe_ctx[i];
1832                                 pipe->pipe_idx = i;
1833                                 break;
1834                         }
1835                 }
1836
1837         return pipe;
1838 }
1839
1840 static bool dcn32_split_stream_for_mpc_or_odm(
1841                 const struct dc *dc,
1842                 struct resource_context *res_ctx,
1843                 struct pipe_ctx *pri_pipe,
1844                 struct pipe_ctx *sec_pipe,
1845                 bool odm)
1846 {
1847         int pipe_idx = sec_pipe->pipe_idx;
1848         const struct resource_pool *pool = dc->res_pool;
1849
1850         DC_LOGGER_INIT(dc->ctx->logger);
1851
1852         if (odm && pri_pipe->plane_state) {
1853                 /* ODM + window MPO, where MPO window is on left half only */
1854                 if (pri_pipe->plane_state->clip_rect.x + pri_pipe->plane_state->clip_rect.width <=
1855                                 pri_pipe->stream->src.x + pri_pipe->stream->src.width/2) {
1856
1857                         DC_LOG_SCALER("%s - ODM + window MPO(left). pri_pipe:%d\n",
1858                                         __func__,
1859                                         pri_pipe->pipe_idx);
1860                         return true;
1861                 }
1862
1863                 /* ODM + window MPO, where MPO window is on right half only */
1864                 if (pri_pipe->plane_state->clip_rect.x >= pri_pipe->stream->src.x +  pri_pipe->stream->src.width/2) {
1865
1866                         DC_LOG_SCALER("%s - ODM + window MPO(right). pri_pipe:%d\n",
1867                                         __func__,
1868                                         pri_pipe->pipe_idx);
1869                         return true;
1870                 }
1871         }
1872
1873         *sec_pipe = *pri_pipe;
1874
1875         sec_pipe->pipe_idx = pipe_idx;
1876         sec_pipe->plane_res.mi = pool->mis[pipe_idx];
1877         sec_pipe->plane_res.hubp = pool->hubps[pipe_idx];
1878         sec_pipe->plane_res.ipp = pool->ipps[pipe_idx];
1879         sec_pipe->plane_res.xfm = pool->transforms[pipe_idx];
1880         sec_pipe->plane_res.dpp = pool->dpps[pipe_idx];
1881         sec_pipe->plane_res.mpcc_inst = pool->dpps[pipe_idx]->inst;
1882         sec_pipe->stream_res.dsc = NULL;
1883         if (odm) {
1884                 if (pri_pipe->next_odm_pipe) {
1885                         ASSERT(pri_pipe->next_odm_pipe != sec_pipe);
1886                         sec_pipe->next_odm_pipe = pri_pipe->next_odm_pipe;
1887                         sec_pipe->next_odm_pipe->prev_odm_pipe = sec_pipe;
1888                 }
1889                 if (pri_pipe->top_pipe && pri_pipe->top_pipe->next_odm_pipe) {
1890                         pri_pipe->top_pipe->next_odm_pipe->bottom_pipe = sec_pipe;
1891                         sec_pipe->top_pipe = pri_pipe->top_pipe->next_odm_pipe;
1892                 }
1893                 if (pri_pipe->bottom_pipe && pri_pipe->bottom_pipe->next_odm_pipe) {
1894                         pri_pipe->bottom_pipe->next_odm_pipe->top_pipe = sec_pipe;
1895                         sec_pipe->bottom_pipe = pri_pipe->bottom_pipe->next_odm_pipe;
1896                 }
1897                 pri_pipe->next_odm_pipe = sec_pipe;
1898                 sec_pipe->prev_odm_pipe = pri_pipe;
1899                 ASSERT(sec_pipe->top_pipe == NULL);
1900
1901                 if (!sec_pipe->top_pipe)
1902                         sec_pipe->stream_res.opp = pool->opps[pipe_idx];
1903                 else
1904                         sec_pipe->stream_res.opp = sec_pipe->top_pipe->stream_res.opp;
1905                 if (sec_pipe->stream->timing.flags.DSC == 1) {
1906                         dcn20_acquire_dsc(dc, res_ctx, &sec_pipe->stream_res.dsc, pipe_idx);
1907                         ASSERT(sec_pipe->stream_res.dsc);
1908                         if (sec_pipe->stream_res.dsc == NULL)
1909                                 return false;
1910                 }
1911         } else {
1912                 if (pri_pipe->bottom_pipe) {
1913                         ASSERT(pri_pipe->bottom_pipe != sec_pipe);
1914                         sec_pipe->bottom_pipe = pri_pipe->bottom_pipe;
1915                         sec_pipe->bottom_pipe->top_pipe = sec_pipe;
1916                 }
1917                 pri_pipe->bottom_pipe = sec_pipe;
1918                 sec_pipe->top_pipe = pri_pipe;
1919
1920                 ASSERT(pri_pipe->plane_state);
1921         }
1922
1923         return true;
1924 }
1925
1926 bool dcn32_internal_validate_bw(struct dc *dc,
1927                                 struct dc_state *context,
1928                                 display_e2e_pipe_params_st *pipes,
1929                                 int *pipe_cnt_out,
1930                                 int *vlevel_out,
1931                                 bool fast_validate)
1932 {
1933         bool out = false;
1934         bool repopulate_pipes = false;
1935         int split[MAX_PIPES] = { 0 };
1936         bool merge[MAX_PIPES] = { false };
1937         bool newly_split[MAX_PIPES] = { false };
1938         int pipe_cnt, i, pipe_idx;
1939         int vlevel = context->bw_ctx.dml.soc.num_states;
1940         struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
1941
1942         dc_assert_fp_enabled();
1943
1944         ASSERT(pipes);
1945         if (!pipes)
1946                 return false;
1947
1948         // For each full update, remove all existing phantom pipes first
1949         dc_state_remove_phantom_streams_and_planes(dc, context);
1950         dc_state_release_phantom_streams_and_planes(dc, context);
1951
1952         dc->res_pool->funcs->update_soc_for_wm_a(dc, context);
1953
1954         pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
1955
1956         if (!pipe_cnt) {
1957                 out = true;
1958                 goto validate_out;
1959         }
1960
1961         dml_log_pipe_params(&context->bw_ctx.dml, pipes, pipe_cnt);
1962         context->bw_ctx.dml.soc.max_vratio_pre = dcn32_determine_max_vratio_prefetch(dc, context);
1963
1964         if (!fast_validate)
1965                 dcn32_full_validate_bw_helper(dc, context, pipes, &vlevel, split, merge, &pipe_cnt);
1966
1967         if (fast_validate ||
1968                         (dc->debug.dml_disallow_alternate_prefetch_modes &&
1969                         (vlevel == context->bw_ctx.dml.soc.num_states ||
1970                                 vba->DRAMClockChangeSupport[vlevel][vba->maxMpcComb] == dm_dram_clock_change_unsupported))) {
1971                 /*
1972                  * If dml_disallow_alternate_prefetch_modes is false, then we have already
1973                  * tried alternate prefetch modes during full validation.
1974                  *
1975                  * If mode is unsupported or there is no p-state support, then
1976                  * fall back to favouring voltage.
1977                  *
1978                  * If Prefetch mode 0 failed for this config, or passed with Max UCLK, then try
1979                  * to support with Prefetch mode 1 (dm_prefetch_support_fclk_and_stutter == 2)
1980                  */
1981                 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
1982                         dm_prefetch_support_none;
1983
1984                 context->bw_ctx.dml.validate_max_state = fast_validate;
1985                 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
1986
1987                 context->bw_ctx.dml.validate_max_state = false;
1988
1989                 if (vlevel < context->bw_ctx.dml.soc.num_states) {
1990                         memset(split, 0, sizeof(split));
1991                         memset(merge, 0, sizeof(merge));
1992                         vlevel = dcn20_validate_apply_pipe_split_flags(dc, context, vlevel, split, merge);
1993                         // dcn20_validate_apply_pipe_split_flags can modify voltage level outside of DML
1994                         vba->VoltageLevel = vlevel;
1995                 }
1996         }
1997
1998         dml_log_mode_support_params(&context->bw_ctx.dml);
1999
2000         if (vlevel == context->bw_ctx.dml.soc.num_states)
2001                 goto validate_fail;
2002
2003         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2004                 struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2005                 struct pipe_ctx *mpo_pipe = pipe->bottom_pipe;
2006
2007                 if (!pipe->stream)
2008                         continue;
2009
2010                 if (vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled
2011                                 && !dc->config.enable_windowed_mpo_odm
2012                                 && pipe->plane_state && mpo_pipe
2013                                 && memcmp(&mpo_pipe->plane_state->clip_rect,
2014                                                 &pipe->stream->src,
2015                                                 sizeof(struct rect)) != 0) {
2016                         ASSERT(mpo_pipe->plane_state != pipe->plane_state);
2017                         goto validate_fail;
2018                 }
2019                 pipe_idx++;
2020         }
2021
2022         if (dc->config.enable_windowed_mpo_odm) {
2023                 repopulate_pipes = update_pipes_with_split_flags(
2024                                 dc, context, vba, split, merge);
2025         } else {
2026                 /* the code below will be removed once windowed mpo odm is fully
2027                  * enabled.
2028                  */
2029                 /* merge pipes if necessary */
2030                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2031                         struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2032
2033                         /*skip pipes that don't need merging*/
2034                         if (!merge[i])
2035                                 continue;
2036
2037                         /* if ODM merge we ignore mpc tree, mpo pipes will have their own flags */
2038                         if (pipe->prev_odm_pipe) {
2039                                 /*split off odm pipe*/
2040                                 pipe->prev_odm_pipe->next_odm_pipe = pipe->next_odm_pipe;
2041                                 if (pipe->next_odm_pipe)
2042                                         pipe->next_odm_pipe->prev_odm_pipe = pipe->prev_odm_pipe;
2043
2044                                 /*2:1ODM+MPC Split MPO to Single Pipe + MPC Split MPO*/
2045                                 if (pipe->bottom_pipe) {
2046                                         if (pipe->bottom_pipe->prev_odm_pipe || pipe->bottom_pipe->next_odm_pipe) {
2047                                                 /*MPC split rules will handle this case*/
2048                                                 pipe->bottom_pipe->top_pipe = NULL;
2049                                         } else {
2050                                                 /* when merging an ODM pipes, the bottom MPC pipe must now point to
2051                                                  * the previous ODM pipe and its associated stream assets
2052                                                  */
2053                                                 if (pipe->prev_odm_pipe->bottom_pipe) {
2054                                                         /* 3 plane MPO*/
2055                                                         pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe->bottom_pipe;
2056                                                         pipe->prev_odm_pipe->bottom_pipe->bottom_pipe = pipe->bottom_pipe;
2057                                                 } else {
2058                                                         /* 2 plane MPO*/
2059                                                         pipe->bottom_pipe->top_pipe = pipe->prev_odm_pipe;
2060                                                         pipe->prev_odm_pipe->bottom_pipe = pipe->bottom_pipe;
2061                                                 }
2062
2063                                                 memcpy(&pipe->bottom_pipe->stream_res, &pipe->bottom_pipe->top_pipe->stream_res, sizeof(struct stream_resource));
2064                                         }
2065                                 }
2066
2067                                 if (pipe->top_pipe) {
2068                                         pipe->top_pipe->bottom_pipe = NULL;
2069                                 }
2070
2071                                 pipe->bottom_pipe = NULL;
2072                                 pipe->next_odm_pipe = NULL;
2073                                 pipe->plane_state = NULL;
2074                                 pipe->stream = NULL;
2075                                 pipe->top_pipe = NULL;
2076                                 pipe->prev_odm_pipe = NULL;
2077                                 if (pipe->stream_res.dsc)
2078                                         dcn20_release_dsc(&context->res_ctx, dc->res_pool, &pipe->stream_res.dsc);
2079                                 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2080                                 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2081                                 memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2082                                 repopulate_pipes = true;
2083                         } else if (pipe->top_pipe && pipe->top_pipe->plane_state == pipe->plane_state) {
2084                                 struct pipe_ctx *top_pipe = pipe->top_pipe;
2085                                 struct pipe_ctx *bottom_pipe = pipe->bottom_pipe;
2086
2087                                 top_pipe->bottom_pipe = bottom_pipe;
2088                                 if (bottom_pipe)
2089                                         bottom_pipe->top_pipe = top_pipe;
2090
2091                                 pipe->top_pipe = NULL;
2092                                 pipe->bottom_pipe = NULL;
2093                                 pipe->plane_state = NULL;
2094                                 pipe->stream = NULL;
2095                                 memset(&pipe->plane_res, 0, sizeof(pipe->plane_res));
2096                                 memset(&pipe->stream_res, 0, sizeof(pipe->stream_res));
2097                                 memset(&pipe->link_res, 0, sizeof(pipe->link_res));
2098                                 repopulate_pipes = true;
2099                         } else
2100                                 ASSERT(0); /* Should never try to merge master pipe */
2101
2102                 }
2103
2104                 for (i = 0, pipe_idx = -1; i < dc->res_pool->pipe_count; i++) {
2105                         struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2106                         struct pipe_ctx *old_pipe = &dc->current_state->res_ctx.pipe_ctx[i];
2107                         struct pipe_ctx *hsplit_pipe = NULL;
2108                         bool odm;
2109                         int old_index = -1;
2110
2111                         if (!pipe->stream || newly_split[i])
2112                                 continue;
2113
2114                         pipe_idx++;
2115                         odm = vba->ODMCombineEnabled[vba->pipe_plane[pipe_idx]] != dm_odm_combine_mode_disabled;
2116
2117                         if (!pipe->plane_state && !odm)
2118                                 continue;
2119
2120                         if (split[i]) {
2121                                 if (odm) {
2122                                         if (split[i] == 4 && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe)
2123                                                 old_index = old_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2124                                         else if (old_pipe->next_odm_pipe)
2125                                                 old_index = old_pipe->next_odm_pipe->pipe_idx;
2126                                 } else {
2127                                         if (split[i] == 4 && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2128                                                         old_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2129                                                 old_index = old_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2130                                         else if (old_pipe->bottom_pipe &&
2131                                                         old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2132                                                 old_index = old_pipe->bottom_pipe->pipe_idx;
2133                                 }
2134                                 hsplit_pipe = dcn32_find_split_pipe(dc, context, old_index);
2135                                 ASSERT(hsplit_pipe);
2136                                 if (!hsplit_pipe)
2137                                         goto validate_fail;
2138
2139                                 if (!dcn32_split_stream_for_mpc_or_odm(
2140                                                 dc, &context->res_ctx,
2141                                                 pipe, hsplit_pipe, odm))
2142                                         goto validate_fail;
2143
2144                                 newly_split[hsplit_pipe->pipe_idx] = true;
2145                                 repopulate_pipes = true;
2146                         }
2147                         if (split[i] == 4) {
2148                                 struct pipe_ctx *pipe_4to1;
2149
2150                                 if (odm && old_pipe->next_odm_pipe)
2151                                         old_index = old_pipe->next_odm_pipe->pipe_idx;
2152                                 else if (!odm && old_pipe->bottom_pipe &&
2153                                                         old_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2154                                         old_index = old_pipe->bottom_pipe->pipe_idx;
2155                                 else
2156                                         old_index = -1;
2157                                 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2158                                 ASSERT(pipe_4to1);
2159                                 if (!pipe_4to1)
2160                                         goto validate_fail;
2161                                 if (!dcn32_split_stream_for_mpc_or_odm(
2162                                                 dc, &context->res_ctx,
2163                                                 pipe, pipe_4to1, odm))
2164                                         goto validate_fail;
2165                                 newly_split[pipe_4to1->pipe_idx] = true;
2166
2167                                 if (odm && old_pipe->next_odm_pipe && old_pipe->next_odm_pipe->next_odm_pipe
2168                                                 && old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe)
2169                                         old_index = old_pipe->next_odm_pipe->next_odm_pipe->next_odm_pipe->pipe_idx;
2170                                 else if (!odm && old_pipe->bottom_pipe && old_pipe->bottom_pipe->bottom_pipe &&
2171                                                 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe &&
2172                                                 old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->plane_state == old_pipe->plane_state)
2173                                         old_index = old_pipe->bottom_pipe->bottom_pipe->bottom_pipe->pipe_idx;
2174                                 else
2175                                         old_index = -1;
2176                                 pipe_4to1 = dcn32_find_split_pipe(dc, context, old_index);
2177                                 ASSERT(pipe_4to1);
2178                                 if (!pipe_4to1)
2179                                         goto validate_fail;
2180                                 if (!dcn32_split_stream_for_mpc_or_odm(
2181                                                 dc, &context->res_ctx,
2182                                                 hsplit_pipe, pipe_4to1, odm))
2183                                         goto validate_fail;
2184                                 newly_split[pipe_4to1->pipe_idx] = true;
2185                         }
2186                         if (odm)
2187                                 dcn20_build_mapped_resource(dc, context, pipe->stream);
2188                 }
2189
2190                 for (i = 0; i < dc->res_pool->pipe_count; i++) {
2191                         struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
2192
2193                         if (pipe->plane_state) {
2194                                 if (!resource_build_scaling_params(pipe))
2195                                         goto validate_fail;
2196                         }
2197                 }
2198         }
2199
2200         /* Actual dsc count per stream dsc validation*/
2201         if (!dcn20_validate_dsc(dc, context)) {
2202                 vba->ValidationStatus[vba->soc.num_states] = DML_FAIL_DSC_VALIDATION_FAILURE;
2203                 goto validate_fail;
2204         }
2205
2206         if (repopulate_pipes) {
2207                 int flag_max_mpc_comb = vba->maxMpcComb;
2208                 int flag_vlevel = vlevel;
2209                 int i;
2210
2211                 pipe_cnt = dc->res_pool->funcs->populate_dml_pipes(dc, context, pipes, fast_validate);
2212                 dcn32_update_dml_pipes_odm_policy_based_on_context(dc, context, pipes);
2213
2214                 /* repopulate_pipes = 1 means the pipes were either split or merged. In this case
2215                  * we have to re-calculate the DET allocation and run through DML once more to
2216                  * ensure all the params are calculated correctly. We do not need to run the
2217                  * pipe split check again after this call (pipes are already split / merged).
2218                  * */
2219                 context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final =
2220                                         dm_prefetch_support_uclk_fclk_and_stutter_if_possible;
2221
2222                 vlevel = dml_get_voltage_level(&context->bw_ctx.dml, pipes, pipe_cnt);
2223
2224                 if (vlevel == context->bw_ctx.dml.soc.num_states) {
2225                         /* failed after DET size changes */
2226                         goto validate_fail;
2227                 } else if (flag_max_mpc_comb == 0 &&
2228                                 flag_max_mpc_comb != context->bw_ctx.dml.vba.maxMpcComb) {
2229                         /* check the context constructed with pipe split flags is still valid*/
2230                         bool flags_valid = false;
2231                         for (i = flag_vlevel; i < context->bw_ctx.dml.soc.num_states; i++) {
2232                                 if (vba->ModeSupport[i][flag_max_mpc_comb]) {
2233                                         vba->maxMpcComb = flag_max_mpc_comb;
2234                                         vba->VoltageLevel = i;
2235                                         vlevel = i;
2236                                         flags_valid = true;
2237                                         break;
2238                                 }
2239                         }
2240
2241                         /* this should never happen */
2242                         if (!flags_valid)
2243                                 goto validate_fail;
2244                 }
2245         }
2246         *vlevel_out = vlevel;
2247         *pipe_cnt_out = pipe_cnt;
2248
2249         out = true;
2250         goto validate_out;
2251
2252 validate_fail:
2253         out = false;
2254
2255 validate_out:
2256         return out;
2257 }
2258
2259
2260 void dcn32_calculate_wm_and_dlg_fpu(struct dc *dc, struct dc_state *context,
2261                                 display_e2e_pipe_params_st *pipes,
2262                                 int pipe_cnt,
2263                                 int vlevel)
2264 {
2265         int i, pipe_idx, vlevel_temp = 0;
2266         double dcfclk = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2267         double dcfclk_from_validation = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2268         double dram_speed_from_validation = context->bw_ctx.dml.vba.DRAMSpeed;
2269         double dcfclk_from_fw_based_mclk_switching = dcfclk_from_validation;
2270         bool pstate_en = context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][context->bw_ctx.dml.vba.maxMpcComb] !=
2271                         dm_dram_clock_change_unsupported;
2272         unsigned int dummy_latency_index = 0;
2273         int maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2274         unsigned int min_dram_speed_mts = context->bw_ctx.dml.vba.DRAMSpeed;
2275         bool subvp_in_use = dcn32_subvp_in_use(dc, context);
2276         unsigned int min_dram_speed_mts_margin;
2277         bool need_fclk_lat_as_dummy = false;
2278         bool is_subvp_p_drr = false;
2279         struct dc_stream_state *fpo_candidate_stream = NULL;
2280
2281         dc_assert_fp_enabled();
2282
2283         /* need to find dummy latency index for subvp */
2284         if (subvp_in_use) {
2285                 /* Override DRAMClockChangeSupport for SubVP + DRR case where the DRR cannot switch without stretching it's VBLANK */
2286                 if (!pstate_en) {
2287                         context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2288                         context->bw_ctx.dml.soc.allow_for_pstate_or_stutter_in_vblank_final = dm_prefetch_support_fclk_and_stutter;
2289                         pstate_en = true;
2290                         is_subvp_p_drr = true;
2291                 }
2292                 dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2293                                                 context, pipes, pipe_cnt, vlevel);
2294
2295                 /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so prefetch is
2296                  * scheduled correctly to account for dummy pstate.
2297                  */
2298                 if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2299                         need_fclk_lat_as_dummy = true;
2300                         context->bw_ctx.dml.soc.fclk_change_latency_us =
2301                                         dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2302                 }
2303                 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2304                                                         dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2305                 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2306                 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2307                 if (is_subvp_p_drr) {
2308                         context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank_w_mall_sub_vp;
2309                 }
2310         }
2311
2312         context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2313         for (i = 0; i < context->stream_count; i++) {
2314                 if (context->streams[i])
2315                         context->streams[i]->fpo_in_use = false;
2316         }
2317
2318         if (!pstate_en || (!dc->debug.disable_fpo_optimizations &&
2319                         pstate_en && vlevel != 0)) {
2320                 /* only when the mclk switch can not be natural, is the fw based vblank stretch attempted */
2321                 fpo_candidate_stream = dcn32_can_support_mclk_switch_using_fw_based_vblank_stretch(dc, context);
2322                 if (fpo_candidate_stream) {
2323                         fpo_candidate_stream->fpo_in_use = true;
2324                         context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = true;
2325                 }
2326
2327                 if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2328                         dummy_latency_index = dcn32_find_dummy_latency_index_for_fw_based_mclk_switch(dc,
2329                                 context, pipes, pipe_cnt, vlevel);
2330
2331                         /* After calling dcn30_find_dummy_latency_index_for_fw_based_mclk_switch
2332                          * we reinstate the original dram_clock_change_latency_us on the context
2333                          * and all variables that may have changed up to this point, except the
2334                          * newly found dummy_latency_index
2335                          */
2336                         context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2337                                         dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2338                         /* For DCN32/321 need to validate with fclk pstate change latency equal to dummy so
2339                          * prefetch is scheduled correctly to account for dummy pstate.
2340                          */
2341                         if (context->bw_ctx.dml.soc.fclk_change_latency_us < dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us) {
2342                                 need_fclk_lat_as_dummy = true;
2343                                 context->bw_ctx.dml.soc.fclk_change_latency_us =
2344                                                 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2345                         }
2346                         dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel_temp, false);
2347                         if (vlevel_temp < vlevel) {
2348                                 vlevel = vlevel_temp;
2349                                 maxMpcComb = context->bw_ctx.dml.vba.maxMpcComb;
2350                                 dcfclk_from_fw_based_mclk_switching = context->bw_ctx.dml.vba.DCFCLKState[vlevel][context->bw_ctx.dml.vba.maxMpcComb];
2351                                 pstate_en = true;
2352                                 context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] = dm_dram_clock_change_vblank;
2353                         } else {
2354                                 /* Restore FCLK latency and re-run validation to go back to original validation
2355                                  * output if we find that enabling FPO does not give us any benefit (i.e. lower
2356                                  * voltage level)
2357                                  */
2358                                 context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching = false;
2359                                 for (i = 0; i < context->stream_count; i++) {
2360                                         if (context->streams[i])
2361                                                 context->streams[i]->fpo_in_use = false;
2362                                 }
2363                                 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2364                                 dcn32_internal_validate_bw(dc, context, pipes, &pipe_cnt, &vlevel, false);
2365                         }
2366                 }
2367         }
2368
2369         /* Set B:
2370          * For Set B calculations use clocks from clock_limits[2] when available i.e. when SMU is present,
2371          * otherwise use arbitrary low value from spreadsheet for DCFCLK as lower is safer for watermark
2372          * calculations to cover bootup clocks.
2373          * DCFCLK: soc.clock_limits[2] when available
2374          * UCLK: soc.clock_limits[2] when available
2375          */
2376         if (dcn3_2_soc.num_states > 2) {
2377                 vlevel_temp = 2;
2378                 dcfclk = dcn3_2_soc.clock_limits[2].dcfclk_mhz;
2379         } else
2380                 dcfclk = 615; //DCFCLK Vmin_lv
2381
2382         pipes[0].clks_cfg.voltage = vlevel_temp;
2383         pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2384         pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2385
2386         if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].valid) {
2387                 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.pstate_latency_us;
2388                 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.fclk_change_latency_us;
2389                 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_enter_plus_exit_time_us;
2390                 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_B].dml_input.sr_exit_time_us;
2391         }
2392         context->bw_ctx.bw.dcn.watermarks.b.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2393         context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2394         context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2395         context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2396         context->bw_ctx.bw.dcn.watermarks.b.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2397         context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2398         context->bw_ctx.bw.dcn.watermarks.b.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2399         context->bw_ctx.bw.dcn.watermarks.b.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2400         context->bw_ctx.bw.dcn.watermarks.b.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2401         context->bw_ctx.bw.dcn.watermarks.b.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2402
2403         /* Set D:
2404          * All clocks min.
2405          * DCFCLK: Min, as reported by PM FW when available
2406          * UCLK  : Min, as reported by PM FW when available
2407          * sr_enter_exit/sr_exit should be lower than used for DRAM (TBD after bringup or later, use as decided in Clk Mgr)
2408          */
2409
2410         /*
2411         if (dcn3_2_soc.num_states > 2) {
2412                 vlevel_temp = 0;
2413                 dcfclk = dc->clk_mgr->bw_params->clk_table.entries[0].dcfclk_mhz;
2414         } else
2415                 dcfclk = 615; //DCFCLK Vmin_lv
2416
2417         pipes[0].clks_cfg.voltage = vlevel_temp;
2418         pipes[0].clks_cfg.dcfclk_mhz = dcfclk;
2419         pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel_temp].socclk_mhz;
2420
2421         if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].valid) {
2422                 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.pstate_latency_us;
2423                 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.fclk_change_latency_us;
2424                 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_enter_plus_exit_time_us;
2425                 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_D].dml_input.sr_exit_time_us;
2426         }
2427         context->bw_ctx.bw.dcn.watermarks.d.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2428         context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2429         context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2430         context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2431         context->bw_ctx.bw.dcn.watermarks.d.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2432         context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2433         context->bw_ctx.bw.dcn.watermarks.d.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2434         context->bw_ctx.bw.dcn.watermarks.d.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2435         context->bw_ctx.bw.dcn.watermarks.d.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2436         context->bw_ctx.bw.dcn.watermarks.d.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2437         */
2438
2439         /* Set C, for Dummy P-State:
2440          * All clocks min.
2441          * DCFCLK: Min, as reported by PM FW, when available
2442          * UCLK  : Min,  as reported by PM FW, when available
2443          * pstate latency as per UCLK state dummy pstate latency
2444          */
2445
2446         // For Set A and Set C use values from validation
2447         pipes[0].clks_cfg.voltage = vlevel;
2448         pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_validation;
2449         pipes[0].clks_cfg.socclk_mhz = context->bw_ctx.dml.soc.clock_limits[vlevel].socclk_mhz;
2450
2451         if (context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching) {
2452                 pipes[0].clks_cfg.dcfclk_mhz = dcfclk_from_fw_based_mclk_switching;
2453         }
2454
2455         if (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid) {
2456                 min_dram_speed_mts = dram_speed_from_validation;
2457                 min_dram_speed_mts_margin = 160;
2458
2459                 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2460                         dc->clk_mgr->bw_params->dummy_pstate_table[0].dummy_pstate_latency_us;
2461
2462                 if (context->bw_ctx.dml.vba.DRAMClockChangeSupport[vlevel][maxMpcComb] ==
2463                         dm_dram_clock_change_unsupported) {
2464                         int min_dram_speed_mts_offset = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels - 1;
2465
2466                         min_dram_speed_mts =
2467                                 dc->clk_mgr->bw_params->clk_table.entries[min_dram_speed_mts_offset].memclk_mhz * 16;
2468                 }
2469
2470                 if (!context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching && !subvp_in_use) {
2471                         /* find largest table entry that is lower than dram speed,
2472                          * but lower than DPM0 still uses DPM0
2473                          */
2474                         for (dummy_latency_index = 3; dummy_latency_index > 0; dummy_latency_index--)
2475                                 if (min_dram_speed_mts + min_dram_speed_mts_margin >
2476                                         dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dram_speed_mts)
2477                                         break;
2478                 }
2479
2480                 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2481                         dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2482
2483                 context->bw_ctx.dml.soc.fclk_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.fclk_change_latency_us;
2484                 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_enter_plus_exit_time_us;
2485                 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].dml_input.sr_exit_time_us;
2486         }
2487
2488         context->bw_ctx.bw.dcn.watermarks.c.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2489         context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2490         context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2491         context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2492         context->bw_ctx.bw.dcn.watermarks.c.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2493         context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2494         context->bw_ctx.bw.dcn.watermarks.c.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2495         context->bw_ctx.bw.dcn.watermarks.c.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2496         /* On DCN32/321, PMFW will set PSTATE_CHANGE_TYPE = 1 (FCLK) for UCLK dummy p-state.
2497          * In this case we must program FCLK WM Set C to use the UCLK dummy p-state WM
2498          * value.
2499          */
2500         context->bw_ctx.bw.dcn.watermarks.c.cstate_pstate.fclk_pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2501         context->bw_ctx.bw.dcn.watermarks.c.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2502
2503         if ((!pstate_en) && (dc->clk_mgr->bw_params->wm_table.nv_entries[WM_C].valid)) {
2504                 /* The only difference between A and C is p-state latency, if p-state is not supported
2505                  * with full p-state latency we want to calculate DLG based on dummy p-state latency,
2506                  * Set A p-state watermark set to 0 on DCN30, when p-state unsupported, for now keep as DCN30.
2507                  */
2508                 context->bw_ctx.bw.dcn.watermarks.a = context->bw_ctx.bw.dcn.watermarks.c;
2509                 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = 0;
2510                 /* Calculate FCLK p-state change watermark based on FCLK pstate change latency in case
2511                  * UCLK p-state is not supported, to avoid underflow in case FCLK pstate is supported
2512                  */
2513                 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2514         } else {
2515                 /* Set A:
2516                  * All clocks min.
2517                  * DCFCLK: Min, as reported by PM FW, when available
2518                  * UCLK: Min, as reported by PM FW, when available
2519                  */
2520
2521                 /* For set A set the correct latency values (i.e. non-dummy values) unconditionally
2522                  */
2523                 context->bw_ctx.dml.soc.dram_clock_change_latency_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2524                 context->bw_ctx.dml.soc.sr_enter_plus_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_enter_plus_exit_time_us;
2525                 context->bw_ctx.dml.soc.sr_exit_time_us = dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.sr_exit_time_us;
2526
2527                 context->bw_ctx.bw.dcn.watermarks.a.urgent_ns = get_wm_urgent(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2528                 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_enter_plus_exit_ns = get_wm_stutter_enter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2529                 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.cstate_exit_ns = get_wm_stutter_exit(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2530                 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.pstate_change_ns = get_wm_dram_clock_change(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2531                 context->bw_ctx.bw.dcn.watermarks.a.pte_meta_urgent_ns = get_wm_memory_trip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2532                 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_nom = get_fraction_of_urgent_bandwidth(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2533                 context->bw_ctx.bw.dcn.watermarks.a.frac_urg_bw_flip = get_fraction_of_urgent_bandwidth_imm_flip(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2534                 context->bw_ctx.bw.dcn.watermarks.a.urgent_latency_ns = get_urgent_latency(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2535                 context->bw_ctx.bw.dcn.watermarks.a.cstate_pstate.fclk_pstate_change_ns = get_fclk_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2536                 context->bw_ctx.bw.dcn.watermarks.a.usr_retraining_ns = get_usr_retraining_watermark(&context->bw_ctx.dml, pipes, pipe_cnt) * 1000;
2537         }
2538
2539         /* Make set D = set A since we do not optimized watermarks for MALL */
2540         context->bw_ctx.bw.dcn.watermarks.d = context->bw_ctx.bw.dcn.watermarks.a;
2541
2542         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
2543                 if (!context->res_ctx.pipe_ctx[i].stream)
2544                         continue;
2545
2546                 pipes[pipe_idx].clks_cfg.dispclk_mhz = get_dispclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt);
2547                 pipes[pipe_idx].clks_cfg.dppclk_mhz = get_dppclk_calculated(&context->bw_ctx.dml, pipes, pipe_cnt, pipe_idx);
2548
2549                 if (dc->config.forced_clocks) {
2550                         pipes[pipe_idx].clks_cfg.dispclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dispclk_mhz;
2551                         pipes[pipe_idx].clks_cfg.dppclk_mhz = context->bw_ctx.dml.soc.clock_limits[0].dppclk_mhz;
2552                 }
2553                 if (dc->debug.min_disp_clk_khz > pipes[pipe_idx].clks_cfg.dispclk_mhz * 1000)
2554                         pipes[pipe_idx].clks_cfg.dispclk_mhz = dc->debug.min_disp_clk_khz / 1000.0;
2555                 if (dc->debug.min_dpp_clk_khz > pipes[pipe_idx].clks_cfg.dppclk_mhz * 1000)
2556                         pipes[pipe_idx].clks_cfg.dppclk_mhz = dc->debug.min_dpp_clk_khz / 1000.0;
2557
2558                 pipe_idx++;
2559         }
2560
2561         context->perf_params.stutter_period_us = context->bw_ctx.dml.vba.StutterPeriod;
2562
2563         /* for proper prefetch calculations, if dummy lat > fclk lat, use fclk lat = dummy lat */
2564         if (need_fclk_lat_as_dummy)
2565                 context->bw_ctx.dml.soc.fclk_change_latency_us =
2566                                 dc->clk_mgr->bw_params->dummy_pstate_table[dummy_latency_index].dummy_pstate_latency_us;
2567
2568         dcn32_calculate_dlg_params(dc, context, pipes, pipe_cnt, vlevel);
2569
2570         if (!pstate_en)
2571                 /* Restore full p-state latency */
2572                 context->bw_ctx.dml.soc.dram_clock_change_latency_us =
2573                                 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.pstate_latency_us;
2574
2575         /* revert fclk lat changes if required */
2576         if (need_fclk_lat_as_dummy)
2577                 context->bw_ctx.dml.soc.fclk_change_latency_us =
2578                                 dc->clk_mgr->bw_params->wm_table.nv_entries[WM_A].dml_input.fclk_change_latency_us;
2579 }
2580
2581 static void dcn32_get_optimal_dcfclk_fclk_for_uclk(unsigned int uclk_mts,
2582                 unsigned int *optimal_dcfclk,
2583                 unsigned int *optimal_fclk)
2584 {
2585         double bw_from_dram, bw_from_dram1, bw_from_dram2;
2586
2587         bw_from_dram1 = uclk_mts * dcn3_2_soc.num_chans *
2588                 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_dram_bw_use_normal_percent / 100);
2589         bw_from_dram2 = uclk_mts * dcn3_2_soc.num_chans *
2590                 dcn3_2_soc.dram_channel_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100);
2591
2592         bw_from_dram = (bw_from_dram1 < bw_from_dram2) ? bw_from_dram1 : bw_from_dram2;
2593
2594         if (optimal_fclk)
2595                 *optimal_fclk = bw_from_dram /
2596                 (dcn3_2_soc.fabric_datapath_to_dcn_data_return_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2597
2598         if (optimal_dcfclk)
2599                 *optimal_dcfclk =  bw_from_dram /
2600                 (dcn3_2_soc.return_bus_width_bytes * (dcn3_2_soc.max_avg_sdp_bw_use_normal_percent / 100));
2601 }
2602
2603 static void remove_entry_from_table_at_index(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries,
2604                 unsigned int index)
2605 {
2606         int i;
2607
2608         if (*num_entries == 0)
2609                 return;
2610
2611         for (i = index; i < *num_entries - 1; i++) {
2612                 table[i] = table[i + 1];
2613         }
2614         memset(&table[--(*num_entries)], 0, sizeof(struct _vcs_dpi_voltage_scaling_st));
2615 }
2616
2617 void dcn32_patch_dpm_table(struct clk_bw_params *bw_params)
2618 {
2619         int i;
2620         unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0,
2621                         max_phyclk_mhz = 0, max_dtbclk_mhz = 0, max_fclk_mhz = 0, max_uclk_mhz = 0;
2622
2623         for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2624                 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
2625                         max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2626                 if (bw_params->clk_table.entries[i].fclk_mhz > max_fclk_mhz)
2627                         max_fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2628                 if (bw_params->clk_table.entries[i].memclk_mhz > max_uclk_mhz)
2629                         max_uclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2630                 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
2631                         max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2632                 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
2633                         max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2634                 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
2635                         max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2636                 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_dtbclk_mhz)
2637                         max_dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2638         }
2639
2640         /* Scan through clock values we currently have and if they are 0,
2641          *  then populate it with dcn3_2_soc.clock_limits[] value.
2642          *
2643          * Do it for DCFCLK, DISPCLK, DTBCLK and UCLK as any of those being
2644          *  0, will cause it to skip building the clock table.
2645          */
2646         if (max_dcfclk_mhz == 0)
2647                 bw_params->clk_table.entries[0].dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
2648         if (max_dispclk_mhz == 0)
2649                 bw_params->clk_table.entries[0].dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
2650         if (max_dtbclk_mhz == 0)
2651                 bw_params->clk_table.entries[0].dtbclk_mhz = dcn3_2_soc.clock_limits[0].dtbclk_mhz;
2652         if (max_uclk_mhz == 0)
2653                 bw_params->clk_table.entries[0].memclk_mhz = dcn3_2_soc.clock_limits[0].dram_speed_mts / 16;
2654 }
2655
2656 static void swap_table_entries(struct _vcs_dpi_voltage_scaling_st *first_entry,
2657                 struct _vcs_dpi_voltage_scaling_st *second_entry)
2658 {
2659         struct _vcs_dpi_voltage_scaling_st temp_entry = *first_entry;
2660         *first_entry = *second_entry;
2661         *second_entry = temp_entry;
2662 }
2663
2664 /*
2665  * sort_entries_with_same_bw - Sort entries sharing the same bandwidth by DCFCLK
2666  */
2667 static void sort_entries_with_same_bw(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2668 {
2669         unsigned int start_index = 0;
2670         unsigned int end_index = 0;
2671         unsigned int current_bw = 0;
2672
2673         for (int i = 0; i < (*num_entries - 1); i++) {
2674                 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2675                         current_bw = table[i].net_bw_in_kbytes_sec;
2676                         start_index = i;
2677                         end_index = ++i;
2678
2679                         while ((i < (*num_entries - 1)) && (table[i+1].net_bw_in_kbytes_sec == current_bw))
2680                                 end_index = ++i;
2681                 }
2682
2683                 if (start_index != end_index) {
2684                         for (int j = start_index; j < end_index; j++) {
2685                                 for (int k = start_index; k < end_index; k++) {
2686                                         if (table[k].dcfclk_mhz > table[k+1].dcfclk_mhz)
2687                                                 swap_table_entries(&table[k], &table[k+1]);
2688                                 }
2689                         }
2690                 }
2691
2692                 start_index = 0;
2693                 end_index = 0;
2694
2695         }
2696 }
2697
2698 /*
2699  * remove_inconsistent_entries - Ensure entries with the same bandwidth have MEMCLK and FCLK monotonically increasing
2700  *                               and remove entries that do not
2701  */
2702 static void remove_inconsistent_entries(struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2703 {
2704         for (int i = 0; i < (*num_entries - 1); i++) {
2705                 if (table[i].net_bw_in_kbytes_sec == table[i+1].net_bw_in_kbytes_sec) {
2706                         if ((table[i].dram_speed_mts > table[i+1].dram_speed_mts) ||
2707                                 (table[i].fabricclk_mhz > table[i+1].fabricclk_mhz))
2708                                 remove_entry_from_table_at_index(table, num_entries, i);
2709                 }
2710         }
2711 }
2712
2713 /*
2714  * override_max_clk_values - Overwrite the max clock frequencies with the max DC mode timings
2715  * Input:
2716  *      max_clk_limit - struct containing the desired clock timings
2717  * Output:
2718  *      curr_clk_limit  - struct containing the timings that need to be overwritten
2719  * Return: 0 upon success, non-zero for failure
2720  */
2721 static int override_max_clk_values(struct clk_limit_table_entry *max_clk_limit,
2722                 struct clk_limit_table_entry *curr_clk_limit)
2723 {
2724         if (NULL == max_clk_limit || NULL == curr_clk_limit)
2725                 return -1; //invalid parameters
2726
2727         //only overwrite if desired max clock frequency is initialized
2728         if (max_clk_limit->dcfclk_mhz != 0)
2729                 curr_clk_limit->dcfclk_mhz = max_clk_limit->dcfclk_mhz;
2730
2731         if (max_clk_limit->fclk_mhz != 0)
2732                 curr_clk_limit->fclk_mhz = max_clk_limit->fclk_mhz;
2733
2734         if (max_clk_limit->memclk_mhz != 0)
2735                 curr_clk_limit->memclk_mhz = max_clk_limit->memclk_mhz;
2736
2737         if (max_clk_limit->socclk_mhz != 0)
2738                 curr_clk_limit->socclk_mhz = max_clk_limit->socclk_mhz;
2739
2740         if (max_clk_limit->dtbclk_mhz != 0)
2741                 curr_clk_limit->dtbclk_mhz = max_clk_limit->dtbclk_mhz;
2742
2743         if (max_clk_limit->dispclk_mhz != 0)
2744                 curr_clk_limit->dispclk_mhz = max_clk_limit->dispclk_mhz;
2745
2746         return 0;
2747 }
2748
2749 static int build_synthetic_soc_states(bool disable_dc_mode_overwrite, struct clk_bw_params *bw_params,
2750                 struct _vcs_dpi_voltage_scaling_st *table, unsigned int *num_entries)
2751 {
2752         int i, j;
2753         struct _vcs_dpi_voltage_scaling_st entry = {0};
2754         struct clk_limit_table_entry max_clk_data = {0};
2755
2756         unsigned int min_dcfclk_mhz = 199, min_fclk_mhz = 299;
2757
2758         static const unsigned int num_dcfclk_stas = 5;
2759         unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
2760
2761         unsigned int num_uclk_dpms = 0;
2762         unsigned int num_fclk_dpms = 0;
2763         unsigned int num_dcfclk_dpms = 0;
2764
2765         unsigned int num_dc_uclk_dpms = 0;
2766         unsigned int num_dc_fclk_dpms = 0;
2767         unsigned int num_dc_dcfclk_dpms = 0;
2768
2769         for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
2770                 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_clk_data.dcfclk_mhz)
2771                         max_clk_data.dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
2772                 if (bw_params->clk_table.entries[i].fclk_mhz > max_clk_data.fclk_mhz)
2773                         max_clk_data.fclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2774                 if (bw_params->clk_table.entries[i].memclk_mhz > max_clk_data.memclk_mhz)
2775                         max_clk_data.memclk_mhz = bw_params->clk_table.entries[i].memclk_mhz;
2776                 if (bw_params->clk_table.entries[i].dispclk_mhz > max_clk_data.dispclk_mhz)
2777                         max_clk_data.dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
2778                 if (bw_params->clk_table.entries[i].dppclk_mhz > max_clk_data.dppclk_mhz)
2779                         max_clk_data.dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
2780                 if (bw_params->clk_table.entries[i].phyclk_mhz > max_clk_data.phyclk_mhz)
2781                         max_clk_data.phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
2782                 if (bw_params->clk_table.entries[i].dtbclk_mhz > max_clk_data.dtbclk_mhz)
2783                         max_clk_data.dtbclk_mhz = bw_params->clk_table.entries[i].dtbclk_mhz;
2784
2785                 if (bw_params->clk_table.entries[i].memclk_mhz > 0) {
2786                         num_uclk_dpms++;
2787                         if (bw_params->clk_table.entries[i].memclk_mhz <= bw_params->dc_mode_limit.memclk_mhz)
2788                                 num_dc_uclk_dpms++;
2789                 }
2790                 if (bw_params->clk_table.entries[i].fclk_mhz > 0) {
2791                         num_fclk_dpms++;
2792                         if (bw_params->clk_table.entries[i].fclk_mhz <= bw_params->dc_mode_limit.fclk_mhz)
2793                                 num_dc_fclk_dpms++;
2794                 }
2795                 if (bw_params->clk_table.entries[i].dcfclk_mhz > 0) {
2796                         num_dcfclk_dpms++;
2797                         if (bw_params->clk_table.entries[i].dcfclk_mhz <= bw_params->dc_mode_limit.dcfclk_mhz)
2798                                 num_dc_dcfclk_dpms++;
2799                 }
2800         }
2801
2802         if (!disable_dc_mode_overwrite) {
2803                 //Overwrite max frequencies with max DC mode frequencies for DC mode systems
2804                 override_max_clk_values(&bw_params->dc_mode_limit, &max_clk_data);
2805                 num_uclk_dpms = num_dc_uclk_dpms;
2806                 num_fclk_dpms = num_dc_fclk_dpms;
2807                 num_dcfclk_dpms = num_dc_dcfclk_dpms;
2808                 bw_params->clk_table.num_entries_per_clk.num_memclk_levels = num_uclk_dpms;
2809                 bw_params->clk_table.num_entries_per_clk.num_fclk_levels = num_fclk_dpms;
2810         }
2811
2812         if (num_dcfclk_dpms > 0 && bw_params->clk_table.entries[0].fclk_mhz > min_fclk_mhz)
2813                 min_fclk_mhz = bw_params->clk_table.entries[0].fclk_mhz;
2814
2815         if (!max_clk_data.dcfclk_mhz || !max_clk_data.dispclk_mhz || !max_clk_data.dtbclk_mhz)
2816                 return -1;
2817
2818         if (max_clk_data.dppclk_mhz == 0)
2819                 max_clk_data.dppclk_mhz = max_clk_data.dispclk_mhz;
2820
2821         if (max_clk_data.fclk_mhz == 0)
2822                 max_clk_data.fclk_mhz = max_clk_data.dcfclk_mhz *
2823                                 dcn3_2_soc.pct_ideal_sdp_bw_after_urgent /
2824                                 dcn3_2_soc.pct_ideal_fabric_bw_after_urgent;
2825
2826         if (max_clk_data.phyclk_mhz == 0)
2827                 max_clk_data.phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
2828
2829         *num_entries = 0;
2830         entry.dispclk_mhz = max_clk_data.dispclk_mhz;
2831         entry.dscclk_mhz = max_clk_data.dispclk_mhz / 3;
2832         entry.dppclk_mhz = max_clk_data.dppclk_mhz;
2833         entry.dtbclk_mhz = max_clk_data.dtbclk_mhz;
2834         entry.phyclk_mhz = max_clk_data.phyclk_mhz;
2835         entry.phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
2836         entry.phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
2837
2838         // Insert all the DCFCLK STAs
2839         for (i = 0; i < num_dcfclk_stas; i++) {
2840                 entry.dcfclk_mhz = dcfclk_sta_targets[i];
2841                 entry.fabricclk_mhz = 0;
2842                 entry.dram_speed_mts = 0;
2843
2844                 get_optimal_ntuple(&entry);
2845                 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2846                 insert_entry_into_table_sorted(table, num_entries, &entry);
2847         }
2848
2849         // Insert the max DCFCLK
2850         entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2851         entry.fabricclk_mhz = 0;
2852         entry.dram_speed_mts = 0;
2853
2854         get_optimal_ntuple(&entry);
2855         entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2856         insert_entry_into_table_sorted(table, num_entries, &entry);
2857
2858         // Insert the UCLK DPMS
2859         for (i = 0; i < num_uclk_dpms; i++) {
2860                 entry.dcfclk_mhz = 0;
2861                 entry.fabricclk_mhz = 0;
2862                 entry.dram_speed_mts = bw_params->clk_table.entries[i].memclk_mhz * 16;
2863
2864                 get_optimal_ntuple(&entry);
2865                 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2866                 insert_entry_into_table_sorted(table, num_entries, &entry);
2867         }
2868
2869         // If FCLK is coarse grained, insert individual DPMs.
2870         if (num_fclk_dpms > 2) {
2871                 for (i = 0; i < num_fclk_dpms; i++) {
2872                         entry.dcfclk_mhz = 0;
2873                         entry.fabricclk_mhz = bw_params->clk_table.entries[i].fclk_mhz;
2874                         entry.dram_speed_mts = 0;
2875
2876                         get_optimal_ntuple(&entry);
2877                         entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2878                         insert_entry_into_table_sorted(table, num_entries, &entry);
2879                 }
2880         }
2881         // If FCLK fine grained, only insert max
2882         else {
2883                 entry.dcfclk_mhz = 0;
2884                 entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2885                 entry.dram_speed_mts = 0;
2886
2887                 get_optimal_ntuple(&entry);
2888                 entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&entry);
2889                 insert_entry_into_table_sorted(table, num_entries, &entry);
2890         }
2891
2892         // At this point, the table contains all "points of interest" based on
2893         // DPMs from PMFW, and STAs.  Table is sorted by BW, and all clock
2894         // ratios (by derate, are exact).
2895
2896         // Remove states that require higher clocks than are supported
2897         for (i = *num_entries - 1; i >= 0 ; i--) {
2898                 if (table[i].dcfclk_mhz > max_clk_data.dcfclk_mhz ||
2899                                 table[i].fabricclk_mhz > max_clk_data.fclk_mhz ||
2900                                 table[i].dram_speed_mts > max_clk_data.memclk_mhz * 16)
2901                         remove_entry_from_table_at_index(table, num_entries, i);
2902         }
2903
2904         // Insert entry with all max dc limits without bandwidth matching
2905         if (!disable_dc_mode_overwrite) {
2906                 struct _vcs_dpi_voltage_scaling_st max_dc_limits_entry = entry;
2907
2908                 max_dc_limits_entry.dcfclk_mhz = max_clk_data.dcfclk_mhz;
2909                 max_dc_limits_entry.fabricclk_mhz = max_clk_data.fclk_mhz;
2910                 max_dc_limits_entry.dram_speed_mts = max_clk_data.memclk_mhz * 16;
2911
2912                 max_dc_limits_entry.net_bw_in_kbytes_sec = calculate_net_bw_in_kbytes_sec(&max_dc_limits_entry);
2913                 insert_entry_into_table_sorted(table, num_entries, &max_dc_limits_entry);
2914
2915                 sort_entries_with_same_bw(table, num_entries);
2916                 remove_inconsistent_entries(table, num_entries);
2917         }
2918
2919         // At this point, the table only contains supported points of interest
2920         // it could be used as is, but some states may be redundant due to
2921         // coarse grained nature of some clocks, so we want to round up to
2922         // coarse grained DPMs and remove duplicates.
2923
2924         // Round up UCLKs
2925         for (i = *num_entries - 1; i >= 0 ; i--) {
2926                 for (j = 0; j < num_uclk_dpms; j++) {
2927                         if (bw_params->clk_table.entries[j].memclk_mhz * 16 >= table[i].dram_speed_mts) {
2928                                 table[i].dram_speed_mts = bw_params->clk_table.entries[j].memclk_mhz * 16;
2929                                 break;
2930                         }
2931                 }
2932         }
2933
2934         // If FCLK is coarse grained, round up to next DPMs
2935         if (num_fclk_dpms > 2) {
2936                 for (i = *num_entries - 1; i >= 0 ; i--) {
2937                         for (j = 0; j < num_fclk_dpms; j++) {
2938                                 if (bw_params->clk_table.entries[j].fclk_mhz >= table[i].fabricclk_mhz) {
2939                                         table[i].fabricclk_mhz = bw_params->clk_table.entries[j].fclk_mhz;
2940                                         break;
2941                                 }
2942                         }
2943                 }
2944         }
2945         // Otherwise, round up to minimum.
2946         else {
2947                 for (i = *num_entries - 1; i >= 0 ; i--) {
2948                         if (table[i].fabricclk_mhz < min_fclk_mhz) {
2949                                 table[i].fabricclk_mhz = min_fclk_mhz;
2950                         }
2951                 }
2952         }
2953
2954         // Round DCFCLKs up to minimum
2955         for (i = *num_entries - 1; i >= 0 ; i--) {
2956                 if (table[i].dcfclk_mhz < min_dcfclk_mhz) {
2957                         table[i].dcfclk_mhz = min_dcfclk_mhz;
2958                 }
2959         }
2960
2961         // Remove duplicate states, note duplicate states are always neighbouring since table is sorted.
2962         i = 0;
2963         while (i < *num_entries - 1) {
2964                 if (table[i].dcfclk_mhz == table[i + 1].dcfclk_mhz &&
2965                                 table[i].fabricclk_mhz == table[i + 1].fabricclk_mhz &&
2966                                 table[i].dram_speed_mts == table[i + 1].dram_speed_mts)
2967                         remove_entry_from_table_at_index(table, num_entries, i + 1);
2968                 else
2969                         i++;
2970         }
2971
2972         // Fix up the state indicies
2973         for (i = *num_entries - 1; i >= 0 ; i--) {
2974                 table[i].state = i;
2975         }
2976
2977         return 0;
2978 }
2979
2980 /*
2981  * dcn32_update_bw_bounding_box
2982  *
2983  * This would override some dcn3_2 ip_or_soc initial parameters hardcoded from
2984  * spreadsheet with actual values as per dGPU SKU:
2985  * - with passed few options from dc->config
2986  * - with dentist_vco_frequency from Clk Mgr (currently hardcoded, but might
2987  *   need to get it from PM FW)
2988  * - with passed latency values (passed in ns units) in dc-> bb override for
2989  *   debugging purposes
2990  * - with passed latencies from VBIOS (in 100_ns units) if available for
2991  *   certain dGPU SKU
2992  * - with number of DRAM channels from VBIOS (which differ for certain dGPU SKU
2993  *   of the same ASIC)
2994  * - clocks levels with passed clk_table entries from Clk Mgr as reported by PM
2995  *   FW for different clocks (which might differ for certain dGPU SKU of the
2996  *   same ASIC)
2997  */
2998 void dcn32_update_bw_bounding_box_fpu(struct dc *dc, struct clk_bw_params *bw_params)
2999 {
3000         dc_assert_fp_enabled();
3001
3002         /* Overrides from dc->config options */
3003         dcn3_2_ip.clamp_min_dcfclk = dc->config.clamp_min_dcfclk;
3004
3005         /* Override from passed dc->bb_overrides if available*/
3006         if ((int)(dcn3_2_soc.sr_exit_time_us * 1000) != dc->bb_overrides.sr_exit_time_ns
3007                         && dc->bb_overrides.sr_exit_time_ns) {
3008                 dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3009                 dcn3_2_soc.sr_exit_time_us = dc->bb_overrides.sr_exit_time_ns / 1000.0;
3010         }
3011
3012         if ((int)(dcn3_2_soc.sr_enter_plus_exit_time_us * 1000)
3013                         != dc->bb_overrides.sr_enter_plus_exit_time_ns
3014                         && dc->bb_overrides.sr_enter_plus_exit_time_ns) {
3015                 dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3016                 dcn3_2_soc.sr_enter_plus_exit_time_us =
3017                         dc->bb_overrides.sr_enter_plus_exit_time_ns / 1000.0;
3018         }
3019
3020         if ((int)(dcn3_2_soc.urgent_latency_us * 1000) != dc->bb_overrides.urgent_latency_ns
3021                 && dc->bb_overrides.urgent_latency_ns) {
3022                 dcn3_2_soc.urgent_latency_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3023                 dc->dml2_options.bbox_overrides.urgent_latency_us =
3024                 dcn3_2_soc.urgent_latency_pixel_data_only_us = dc->bb_overrides.urgent_latency_ns / 1000.0;
3025         }
3026
3027         if ((int)(dcn3_2_soc.dram_clock_change_latency_us * 1000)
3028                         != dc->bb_overrides.dram_clock_change_latency_ns
3029                         && dc->bb_overrides.dram_clock_change_latency_ns) {
3030                 dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3031                 dcn3_2_soc.dram_clock_change_latency_us =
3032                         dc->bb_overrides.dram_clock_change_latency_ns / 1000.0;
3033         }
3034
3035         if ((int)(dcn3_2_soc.fclk_change_latency_us * 1000)
3036                         != dc->bb_overrides.fclk_clock_change_latency_ns
3037                         && dc->bb_overrides.fclk_clock_change_latency_ns) {
3038                 dc->dml2_options.bbox_overrides.fclk_change_latency_us =
3039                 dcn3_2_soc.fclk_change_latency_us =
3040                         dc->bb_overrides.fclk_clock_change_latency_ns / 1000;
3041         }
3042
3043         if ((int)(dcn3_2_soc.dummy_pstate_latency_us * 1000)
3044                         != dc->bb_overrides.dummy_clock_change_latency_ns
3045                         && dc->bb_overrides.dummy_clock_change_latency_ns) {
3046                 dcn3_2_soc.dummy_pstate_latency_us =
3047                         dc->bb_overrides.dummy_clock_change_latency_ns / 1000.0;
3048         }
3049
3050         /* Override from VBIOS if VBIOS bb_info available */
3051         if (dc->ctx->dc_bios->funcs->get_soc_bb_info) {
3052                 struct bp_soc_bb_info bb_info = {0};
3053
3054                 if (dc->ctx->dc_bios->funcs->get_soc_bb_info(dc->ctx->dc_bios, &bb_info) == BP_RESULT_OK) {
3055                         if (bb_info.dram_clock_change_latency_100ns > 0)
3056                                 dc->dml2_options.bbox_overrides.dram_clock_change_latency_us =
3057                                 dcn3_2_soc.dram_clock_change_latency_us =
3058                                         bb_info.dram_clock_change_latency_100ns * 10;
3059
3060                         if (bb_info.dram_sr_enter_exit_latency_100ns > 0)
3061                                 dc->dml2_options.bbox_overrides.sr_enter_plus_exit_latency_us =
3062                                 dcn3_2_soc.sr_enter_plus_exit_time_us =
3063                                         bb_info.dram_sr_enter_exit_latency_100ns * 10;
3064
3065                         if (bb_info.dram_sr_exit_latency_100ns > 0)
3066                                 dc->dml2_options.bbox_overrides.sr_exit_latency_us =
3067                                 dcn3_2_soc.sr_exit_time_us =
3068                                         bb_info.dram_sr_exit_latency_100ns * 10;
3069                 }
3070         }
3071
3072         /* Override from VBIOS for num_chan */
3073         if (dc->ctx->dc_bios->vram_info.num_chans) {
3074                 dc->dml2_options.bbox_overrides.dram_num_chan =
3075                 dcn3_2_soc.num_chans = dc->ctx->dc_bios->vram_info.num_chans;
3076                 dcn3_2_soc.mall_allocated_for_dcn_mbytes = (double)(dcn32_calc_num_avail_chans_for_mall(dc,
3077                         dc->ctx->dc_bios->vram_info.num_chans) * dc->caps.mall_size_per_mem_channel);
3078         }
3079
3080         if (dc->ctx->dc_bios->vram_info.dram_channel_width_bytes)
3081                 dc->dml2_options.bbox_overrides.dram_chanel_width_bytes =
3082                 dcn3_2_soc.dram_channel_width_bytes = dc->ctx->dc_bios->vram_info.dram_channel_width_bytes;
3083
3084         /* DML DSC delay factor workaround */
3085         dcn3_2_ip.dsc_delay_factor_wa = dc->debug.dsc_delay_factor_wa_x1000 / 1000.0;
3086
3087         dcn3_2_ip.min_prefetch_in_strobe_us = dc->debug.min_prefetch_in_strobe_ns / 1000.0;
3088
3089         /* Override dispclk_dppclk_vco_speed_mhz from Clk Mgr */
3090         dcn3_2_soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3091         dc->dml.soc.dispclk_dppclk_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3092         dc->dml2_options.bbox_overrides.disp_pll_vco_speed_mhz = dc->clk_mgr->dentist_vco_freq_khz / 1000.0;
3093         dc->dml2_options.bbox_overrides.xtalclk_mhz = dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency / 1000.0;
3094         dc->dml2_options.bbox_overrides.dchub_refclk_mhz = dc->res_pool->ref_clocks.dchub_ref_clock_inKhz / 1000.0;
3095         dc->dml2_options.bbox_overrides.dprefclk_mhz = dc->clk_mgr->dprefclk_khz / 1000.0;
3096
3097         /* Overrides Clock levelsfrom CLK Mgr table entries as reported by PM FW */
3098         if (bw_params->clk_table.entries[0].memclk_mhz) {
3099                 if (dc->debug.use_legacy_soc_bb_mechanism) {
3100                         unsigned int i = 0, j = 0, num_states = 0;
3101
3102                         unsigned int dcfclk_mhz[DC__VOLTAGE_STATES] = {0};
3103                         unsigned int dram_speed_mts[DC__VOLTAGE_STATES] = {0};
3104                         unsigned int optimal_uclk_for_dcfclk_sta_targets[DC__VOLTAGE_STATES] = {0};
3105                         unsigned int optimal_dcfclk_for_uclk[DC__VOLTAGE_STATES] = {0};
3106                         unsigned int min_dcfclk = UINT_MAX;
3107                         /* Set 199 as first value in STA target array to have a minimum DCFCLK value.
3108                          * For DCN32 we set min to 199 so minimum FCLK DPM0 (300Mhz can be achieved) */
3109                         unsigned int dcfclk_sta_targets[DC__VOLTAGE_STATES] = {199, 615, 906, 1324, 1564};
3110                         unsigned int num_dcfclk_sta_targets = 4, num_uclk_states = 0;
3111                         unsigned int max_dcfclk_mhz = 0, max_dispclk_mhz = 0, max_dppclk_mhz = 0, max_phyclk_mhz = 0;
3112
3113                         for (i = 0; i < MAX_NUM_DPM_LVL; i++) {
3114                                 if (bw_params->clk_table.entries[i].dcfclk_mhz > max_dcfclk_mhz)
3115                                         max_dcfclk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
3116                                 if (bw_params->clk_table.entries[i].dcfclk_mhz != 0 &&
3117                                                 bw_params->clk_table.entries[i].dcfclk_mhz < min_dcfclk)
3118                                         min_dcfclk = bw_params->clk_table.entries[i].dcfclk_mhz;
3119                                 if (bw_params->clk_table.entries[i].dispclk_mhz > max_dispclk_mhz)
3120                                         max_dispclk_mhz = bw_params->clk_table.entries[i].dispclk_mhz;
3121                                 if (bw_params->clk_table.entries[i].dppclk_mhz > max_dppclk_mhz)
3122                                         max_dppclk_mhz = bw_params->clk_table.entries[i].dppclk_mhz;
3123                                 if (bw_params->clk_table.entries[i].phyclk_mhz > max_phyclk_mhz)
3124                                         max_phyclk_mhz = bw_params->clk_table.entries[i].phyclk_mhz;
3125                         }
3126                         if (min_dcfclk > dcfclk_sta_targets[0])
3127                                 dcfclk_sta_targets[0] = min_dcfclk;
3128                         if (!max_dcfclk_mhz)
3129                                 max_dcfclk_mhz = dcn3_2_soc.clock_limits[0].dcfclk_mhz;
3130                         if (!max_dispclk_mhz)
3131                                 max_dispclk_mhz = dcn3_2_soc.clock_limits[0].dispclk_mhz;
3132                         if (!max_dppclk_mhz)
3133                                 max_dppclk_mhz = dcn3_2_soc.clock_limits[0].dppclk_mhz;
3134                         if (!max_phyclk_mhz)
3135                                 max_phyclk_mhz = dcn3_2_soc.clock_limits[0].phyclk_mhz;
3136
3137                         if (max_dcfclk_mhz > dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3138                                 // If max DCFCLK is greater than the max DCFCLK STA target, insert into the DCFCLK STA target array
3139                                 dcfclk_sta_targets[num_dcfclk_sta_targets] = max_dcfclk_mhz;
3140                                 num_dcfclk_sta_targets++;
3141                         } else if (max_dcfclk_mhz < dcfclk_sta_targets[num_dcfclk_sta_targets-1]) {
3142                                 // If max DCFCLK is less than the max DCFCLK STA target, cap values and remove duplicates
3143                                 for (i = 0; i < num_dcfclk_sta_targets; i++) {
3144                                         if (dcfclk_sta_targets[i] > max_dcfclk_mhz) {
3145                                                 dcfclk_sta_targets[i] = max_dcfclk_mhz;
3146                                                 break;
3147                                         }
3148                                 }
3149                                 // Update size of array since we "removed" duplicates
3150                                 num_dcfclk_sta_targets = i + 1;
3151                         }
3152
3153                         num_uclk_states = bw_params->clk_table.num_entries;
3154
3155                         // Calculate optimal dcfclk for each uclk
3156                         for (i = 0; i < num_uclk_states; i++) {
3157                                 dcn32_get_optimal_dcfclk_fclk_for_uclk(bw_params->clk_table.entries[i].memclk_mhz * 16,
3158                                                 &optimal_dcfclk_for_uclk[i], NULL);
3159                                 if (optimal_dcfclk_for_uclk[i] < bw_params->clk_table.entries[0].dcfclk_mhz) {
3160                                         optimal_dcfclk_for_uclk[i] = bw_params->clk_table.entries[0].dcfclk_mhz;
3161                                 }
3162                         }
3163
3164                         // Calculate optimal uclk for each dcfclk sta target
3165                         for (i = 0; i < num_dcfclk_sta_targets; i++) {
3166                                 for (j = 0; j < num_uclk_states; j++) {
3167                                         if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j]) {
3168                                                 optimal_uclk_for_dcfclk_sta_targets[i] =
3169                                                                 bw_params->clk_table.entries[j].memclk_mhz * 16;
3170                                                 break;
3171                                         }
3172                                 }
3173                         }
3174
3175                         i = 0;
3176                         j = 0;
3177                         // create the final dcfclk and uclk table
3178                         while (i < num_dcfclk_sta_targets && j < num_uclk_states && num_states < DC__VOLTAGE_STATES) {
3179                                 if (dcfclk_sta_targets[i] < optimal_dcfclk_for_uclk[j] && i < num_dcfclk_sta_targets) {
3180                                         dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3181                                         dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3182                                 } else {
3183                                         if (j < num_uclk_states && optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3184                                                 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3185                                                 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3186                                         } else {
3187                                                 j = num_uclk_states;
3188                                         }
3189                                 }
3190                         }
3191
3192                         while (i < num_dcfclk_sta_targets && num_states < DC__VOLTAGE_STATES) {
3193                                 dcfclk_mhz[num_states] = dcfclk_sta_targets[i];
3194                                 dram_speed_mts[num_states++] = optimal_uclk_for_dcfclk_sta_targets[i++];
3195                         }
3196
3197                         while (j < num_uclk_states && num_states < DC__VOLTAGE_STATES &&
3198                                         optimal_dcfclk_for_uclk[j] <= max_dcfclk_mhz) {
3199                                 dcfclk_mhz[num_states] = optimal_dcfclk_for_uclk[j];
3200                                 dram_speed_mts[num_states++] = bw_params->clk_table.entries[j++].memclk_mhz * 16;
3201                         }
3202
3203                         dcn3_2_soc.num_states = num_states;
3204                         for (i = 0; i < dcn3_2_soc.num_states; i++) {
3205                                 dcn3_2_soc.clock_limits[i].state = i;
3206                                 dcn3_2_soc.clock_limits[i].dcfclk_mhz = dcfclk_mhz[i];
3207                                 dcn3_2_soc.clock_limits[i].fabricclk_mhz = dcfclk_mhz[i];
3208
3209                                 /* Fill all states with max values of all these clocks */
3210                                 dcn3_2_soc.clock_limits[i].dispclk_mhz = max_dispclk_mhz;
3211                                 dcn3_2_soc.clock_limits[i].dppclk_mhz  = max_dppclk_mhz;
3212                                 dcn3_2_soc.clock_limits[i].phyclk_mhz  = max_phyclk_mhz;
3213                                 dcn3_2_soc.clock_limits[i].dscclk_mhz  = max_dispclk_mhz / 3;
3214
3215                                 /* Populate from bw_params for DTBCLK, SOCCLK */
3216                                 if (i > 0) {
3217                                         if (!bw_params->clk_table.entries[i].dtbclk_mhz) {
3218                                                 dcn3_2_soc.clock_limits[i].dtbclk_mhz  = dcn3_2_soc.clock_limits[i-1].dtbclk_mhz;
3219                                         } else {
3220                                                 dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
3221                                         }
3222                                 } else if (bw_params->clk_table.entries[i].dtbclk_mhz) {
3223                                         dcn3_2_soc.clock_limits[i].dtbclk_mhz  = bw_params->clk_table.entries[i].dtbclk_mhz;
3224                                 }
3225
3226                                 if (!bw_params->clk_table.entries[i].socclk_mhz && i > 0)
3227                                         dcn3_2_soc.clock_limits[i].socclk_mhz = dcn3_2_soc.clock_limits[i-1].socclk_mhz;
3228                                 else
3229                                         dcn3_2_soc.clock_limits[i].socclk_mhz = bw_params->clk_table.entries[i].socclk_mhz;
3230
3231                                 if (!dram_speed_mts[i] && i > 0)
3232                                         dcn3_2_soc.clock_limits[i].dram_speed_mts = dcn3_2_soc.clock_limits[i-1].dram_speed_mts;
3233                                 else
3234                                         dcn3_2_soc.clock_limits[i].dram_speed_mts = dram_speed_mts[i];
3235
3236                                 /* These clocks cannot come from bw_params, always fill from dcn3_2_soc[0] */
3237                                 /* PHYCLK_D18, PHYCLK_D32 */
3238                                 dcn3_2_soc.clock_limits[i].phyclk_d18_mhz = dcn3_2_soc.clock_limits[0].phyclk_d18_mhz;
3239                                 dcn3_2_soc.clock_limits[i].phyclk_d32_mhz = dcn3_2_soc.clock_limits[0].phyclk_d32_mhz;
3240                         }
3241                 } else {
3242                         build_synthetic_soc_states(dc->debug.disable_dc_mode_overwrite, bw_params,
3243                                         dcn3_2_soc.clock_limits, &dcn3_2_soc.num_states);
3244                 }
3245
3246                 /* Re-init DML with updated bb */
3247                 dml_init_instance(&dc->dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3248                 if (dc->current_state)
3249                         dml_init_instance(&dc->current_state->bw_ctx.dml, &dcn3_2_soc, &dcn3_2_ip, DML_PROJECT_DCN32);
3250         }
3251
3252         if (dc->clk_mgr->bw_params->clk_table.num_entries > 1) {
3253                 unsigned int i = 0;
3254
3255                 dc->dml2_options.bbox_overrides.clks_table.num_states = dc->clk_mgr->bw_params->clk_table.num_entries;
3256
3257                 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dcfclk_levels =
3258                         dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels;
3259
3260                 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_fclk_levels =
3261                         dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels;
3262
3263                 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_memclk_levels =
3264                         dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3265
3266                 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_socclk_levels =
3267                         dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels;
3268
3269                 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dtbclk_levels =
3270                         dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels;
3271
3272                 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dispclk_levels =
3273                         dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels;
3274
3275                 dc->dml2_options.bbox_overrides.clks_table.num_entries_per_clk.num_dppclk_levels =
3276                         dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dppclk_levels;
3277
3278                 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dcfclk_levels; i++) {
3279                         if (dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz)
3280                                 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dcfclk_mhz =
3281                                         dc->clk_mgr->bw_params->clk_table.entries[i].dcfclk_mhz;
3282                 }
3283
3284                 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_fclk_levels; i++) {
3285                         if (dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz)
3286                                 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].fclk_mhz =
3287                                         dc->clk_mgr->bw_params->clk_table.entries[i].fclk_mhz;
3288                 }
3289
3290                 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels; i++) {
3291                         if (dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz)
3292                                 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].memclk_mhz =
3293                                         dc->clk_mgr->bw_params->clk_table.entries[i].memclk_mhz;
3294                 }
3295
3296                 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_socclk_levels; i++) {
3297                         if (dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz)
3298                                 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].socclk_mhz =
3299                                         dc->clk_mgr->bw_params->clk_table.entries[i].socclk_mhz;
3300                 }
3301
3302                 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dtbclk_levels; i++) {
3303                         if (dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz)
3304                                 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dtbclk_mhz =
3305                                         dc->clk_mgr->bw_params->clk_table.entries[i].dtbclk_mhz;
3306                 }
3307
3308                 for (i = 0; i < dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_dispclk_levels; i++) {
3309                         if (dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz) {
3310                                 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dispclk_mhz =
3311                                         dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3312                                 dc->dml2_options.bbox_overrides.clks_table.clk_entries[i].dppclk_mhz =
3313                                         dc->clk_mgr->bw_params->clk_table.entries[i].dispclk_mhz;
3314                         }
3315                 }
3316         }
3317 }
3318
3319 void dcn32_zero_pipe_dcc_fraction(display_e2e_pipe_params_st *pipes,
3320                                   int pipe_cnt)
3321 {
3322         dc_assert_fp_enabled();
3323
3324         pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_luma = 0;
3325         pipes[pipe_cnt].pipe.src.dcc_fraction_of_zs_req_chroma = 0;
3326 }
3327
3328 bool dcn32_allow_subvp_with_active_margin(struct pipe_ctx *pipe)
3329 {
3330         bool allow = false;
3331         uint32_t refresh_rate = 0;
3332         uint32_t min_refresh = subvp_active_margin_list.min_refresh;
3333         uint32_t max_refresh = subvp_active_margin_list.max_refresh;
3334         uint32_t i;
3335
3336         for (i = 0; i < SUBVP_ACTIVE_MARGIN_LIST_LEN; i++) {
3337                 uint32_t width = subvp_active_margin_list.res[i].width;
3338                 uint32_t height = subvp_active_margin_list.res[i].height;
3339
3340                 refresh_rate = (pipe->stream->timing.pix_clk_100hz * (uint64_t)100 +
3341                         pipe->stream->timing.v_total * pipe->stream->timing.h_total - (uint64_t)1);
3342                 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.v_total);
3343                 refresh_rate = div_u64(refresh_rate, pipe->stream->timing.h_total);
3344
3345                 if (refresh_rate >= min_refresh && refresh_rate <= max_refresh &&
3346                                 dcn32_check_native_scaling_for_res(pipe, width, height)) {
3347                         allow = true;
3348                         break;
3349                 }
3350         }
3351         return allow;
3352 }
3353
3354 /**
3355  * dcn32_allow_subvp_high_refresh_rate: Determine if the high refresh rate config will allow subvp
3356  *
3357  * @dc: Current DC state
3358  * @context: New DC state to be programmed
3359  * @pipe: Pipe to be considered for use in subvp
3360  *
3361  * On high refresh rate display configs, we will allow subvp under the following conditions:
3362  * 1. Resolution is 3840x2160, 3440x1440, or 2560x1440
3363  * 2. Refresh rate is between 120hz - 165hz
3364  * 3. No scaling
3365  * 4. Freesync is inactive
3366  * 5. For single display cases, freesync must be disabled
3367  *
3368  * Return: True if pipe can be used for subvp, false otherwise
3369  */
3370 bool dcn32_allow_subvp_high_refresh_rate(struct dc *dc, struct dc_state *context, struct pipe_ctx *pipe)
3371 {
3372         bool allow = false;
3373         uint32_t refresh_rate = 0;
3374         uint32_t subvp_min_refresh = subvp_high_refresh_list.min_refresh;
3375         uint32_t subvp_max_refresh = subvp_high_refresh_list.max_refresh;
3376         uint32_t min_refresh = subvp_max_refresh;
3377         uint32_t i;
3378
3379         /* Only allow SubVP on high refresh displays if all connected displays
3380          * are considered "high refresh" (i.e. >= 120hz). We do not want to
3381          * allow combinations such as 120hz (SubVP) + 60hz (SubVP).
3382          */
3383         for (i = 0; i < dc->res_pool->pipe_count; i++) {
3384                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
3385
3386                 if (!pipe_ctx->stream)
3387                         continue;
3388                 refresh_rate = (pipe_ctx->stream->timing.pix_clk_100hz * 100 +
3389                                 pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total - 1)
3390                                                 / (double)(pipe_ctx->stream->timing.v_total * pipe_ctx->stream->timing.h_total);
3391
3392                 if (refresh_rate < min_refresh)
3393                         min_refresh = refresh_rate;
3394         }
3395
3396         if (!dc->debug.disable_subvp_high_refresh && min_refresh >= subvp_min_refresh && pipe->stream &&
3397                         pipe->plane_state && !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed)) {
3398                 refresh_rate = (pipe->stream->timing.pix_clk_100hz * 100 +
3399                                                 pipe->stream->timing.v_total * pipe->stream->timing.h_total - 1)
3400                                                 / (double)(pipe->stream->timing.v_total * pipe->stream->timing.h_total);
3401                 if (refresh_rate >= subvp_min_refresh && refresh_rate <= subvp_max_refresh) {
3402                         for (i = 0; i < SUBVP_HIGH_REFRESH_LIST_LEN; i++) {
3403                                 uint32_t width = subvp_high_refresh_list.res[i].width;
3404                                 uint32_t height = subvp_high_refresh_list.res[i].height;
3405
3406                                 if (dcn32_check_native_scaling_for_res(pipe, width, height)) {
3407                                         if ((context->stream_count == 1 && !pipe->stream->allow_freesync) || context->stream_count > 1) {
3408                                                 allow = true;
3409                                                 break;
3410                                         }
3411                                 }
3412                         }
3413                 }
3414         }
3415         return allow;
3416 }
3417
3418 /**
3419  * dcn32_determine_max_vratio_prefetch: Determine max Vratio for prefetch by driver policy
3420  *
3421  * @dc: Current DC state
3422  * @context: New DC state to be programmed
3423  *
3424  * Return: Max vratio for prefetch
3425  */
3426 double dcn32_determine_max_vratio_prefetch(struct dc *dc, struct dc_state *context)
3427 {
3428         double max_vratio_pre = __DML_MAX_BW_RATIO_PRE__; // Default value is 4
3429         int i;
3430
3431         /* For single display MPO configs, allow the max vratio to be 8
3432          * if any plane is YUV420 format
3433          */
3434         if (context->stream_count == 1 && context->stream_status[0].plane_count > 1) {
3435                 for (i = 0; i < context->stream_status[0].plane_count; i++) {
3436                         if (context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr ||
3437                                         context->stream_status[0].plane_states[i]->format == SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb) {
3438                                 max_vratio_pre = __DML_MAX_VRATIO_PRE__;
3439                         }
3440                 }
3441         }
3442         return max_vratio_pre;
3443 }
3444
3445 /**
3446  * dcn32_assign_fpo_vactive_candidate - Assign the FPO stream candidate for FPO + VActive case
3447  *
3448  * This function chooses the FPO candidate stream for FPO + VActive cases (2 stream config).
3449  * For FPO + VAtive cases, the assumption is that one display has ActiveMargin > 0, and the
3450  * other display has ActiveMargin <= 0. This function will choose the pipe/stream that has
3451  * ActiveMargin <= 0 to be the FPO stream candidate if found.
3452  *
3453  *
3454  * @dc: current dc state
3455  * @context: new dc state
3456  * @fpo_candidate_stream: pointer to FPO stream candidate if one is found
3457  *
3458  * Return: void
3459  */
3460 void dcn32_assign_fpo_vactive_candidate(struct dc *dc, const struct dc_state *context, struct dc_stream_state **fpo_candidate_stream)
3461 {
3462         unsigned int i, pipe_idx;
3463         const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3464
3465         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3466                 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3467
3468                 /* In DCN32/321, FPO uses per-pipe P-State force.
3469                  * If there's no planes, HUBP is power gated and
3470                  * therefore programming UCLK_PSTATE_FORCE does
3471                  * nothing (P-State will always be asserted naturally
3472                  * on a pipe that has HUBP power gated. Therefore we
3473                  * only want to enable FPO if the FPO pipe has both
3474                  * a stream and a plane.
3475                  */
3476                 if (!pipe->stream || !pipe->plane_state)
3477                         continue;
3478
3479                 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] <= 0) {
3480                         *fpo_candidate_stream = pipe->stream;
3481                         break;
3482                 }
3483                 pipe_idx++;
3484         }
3485 }
3486
3487 /**
3488  * dcn32_find_vactive_pipe - Determines if the config has a pipe that can switch in VACTIVE
3489  *
3490  * @dc: current dc state
3491  * @context: new dc state
3492  * @vactive_margin_req_us: The vactive marign required for a vactive pipe to be considered "found"
3493  *
3494  * Return: True if VACTIVE display is found, false otherwise
3495  */
3496 bool dcn32_find_vactive_pipe(struct dc *dc, const struct dc_state *context, uint32_t vactive_margin_req_us)
3497 {
3498         unsigned int i, pipe_idx;
3499         const struct vba_vars_st *vba = &context->bw_ctx.dml.vba;
3500         bool vactive_found = false;
3501         unsigned int blank_us = 0;
3502
3503         for (i = 0, pipe_idx = 0; i < dc->res_pool->pipe_count; i++) {
3504                 const struct pipe_ctx *pipe = &context->res_ctx.pipe_ctx[i];
3505
3506                 if (!pipe->stream)
3507                         continue;
3508
3509                 blank_us = ((pipe->stream->timing.v_total - pipe->stream->timing.v_addressable) * pipe->stream->timing.h_total /
3510                                 (double)(pipe->stream->timing.pix_clk_100hz * 100)) * 1000000;
3511                 if (vba->ActiveDRAMClockChangeLatencyMarginPerState[vba->VoltageLevel][vba->maxMpcComb][vba->pipe_plane[pipe_idx]] >= vactive_margin_req_us &&
3512                                 !(pipe->stream->vrr_active_variable || pipe->stream->vrr_active_fixed) && blank_us < dc->debug.fpo_vactive_max_blank_us) {
3513                         vactive_found = true;
3514                         break;
3515                 }
3516                 pipe_idx++;
3517         }
3518         return vactive_found;
3519 }
3520
3521 void dcn32_set_clock_limits(const struct _vcs_dpi_soc_bounding_box_st *soc_bb)
3522 {
3523         dc_assert_fp_enabled();
3524         dcn3_2_soc.clock_limits[0].dcfclk_mhz = 1200.0;
3525 }
3526
3527 void dcn32_override_min_req_memclk(struct dc *dc, struct dc_state *context)
3528 {
3529         // WA: restrict FPO and SubVP to use first non-strobe mode (DCN32 BW issue)
3530         if ((context->bw_ctx.bw.dcn.clk.fw_based_mclk_switching || dcn32_subvp_in_use(dc, context)) &&
3531                         dc->dml.soc.num_chans <= 8) {
3532                 int num_mclk_levels = dc->clk_mgr->bw_params->clk_table.num_entries_per_clk.num_memclk_levels;
3533
3534                 if (context->bw_ctx.dml.vba.DRAMSpeed <= dc->clk_mgr->bw_params->clk_table.entries[0].memclk_mhz * 16 &&
3535                                 num_mclk_levels > 1) {
3536                         context->bw_ctx.dml.vba.DRAMSpeed = dc->clk_mgr->bw_params->clk_table.entries[1].memclk_mhz * 16;
3537                         context->bw_ctx.bw.dcn.clk.dramclk_khz = context->bw_ctx.dml.vba.DRAMSpeed * 1000 / 16;
3538                 }
3539         }
3540 }