Merge https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / display / dc / core / dc_resource.c
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include <linux/slab.h>
27
28 #include "dm_services.h"
29
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44 #include "link_enc_cfg.h"
45 #include "dc_link_dp.h"
46 #include "virtual/virtual_link_hwss.h"
47 #include "link/link_hwss_dio.h"
48 #include "link/link_hwss_dpia.h"
49 #include "link/link_hwss_hpo_dp.h"
50
51 #if defined(CONFIG_DRM_AMD_DC_SI)
52 #include "dce60/dce60_resource.h"
53 #endif
54 #include "dce80/dce80_resource.h"
55 #include "dce100/dce100_resource.h"
56 #include "dce110/dce110_resource.h"
57 #include "dce112/dce112_resource.h"
58 #include "dce120/dce120_resource.h"
59 #if defined(CONFIG_DRM_AMD_DC_DCN)
60 #include "dcn10/dcn10_resource.h"
61 #include "dcn20/dcn20_resource.h"
62 #include "dcn21/dcn21_resource.h"
63 #include "dcn201/dcn201_resource.h"
64 #include "dcn30/dcn30_resource.h"
65 #include "dcn301/dcn301_resource.h"
66 #include "dcn302/dcn302_resource.h"
67 #include "dcn303/dcn303_resource.h"
68 #include "dcn31/dcn31_resource.h"
69 #include "dcn315/dcn315_resource.h"
70 #include "dcn316/dcn316_resource.h"
71 #endif
72
73 #define DC_LOGGER_INIT(logger)
74
75 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
76 {
77         enum dce_version dc_version = DCE_VERSION_UNKNOWN;
78         switch (asic_id.chip_family) {
79
80 #if defined(CONFIG_DRM_AMD_DC_SI)
81         case FAMILY_SI:
82                 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
83                     ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
84                     ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
85                         dc_version = DCE_VERSION_6_0;
86                 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
87                         dc_version = DCE_VERSION_6_4;
88                 else
89                         dc_version = DCE_VERSION_6_1;
90                 break;
91 #endif
92         case FAMILY_CI:
93                 dc_version = DCE_VERSION_8_0;
94                 break;
95         case FAMILY_KV:
96                 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
97                     ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
98                     ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
99                         dc_version = DCE_VERSION_8_3;
100                 else
101                         dc_version = DCE_VERSION_8_1;
102                 break;
103         case FAMILY_CZ:
104                 dc_version = DCE_VERSION_11_0;
105                 break;
106
107         case FAMILY_VI:
108                 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
109                                 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
110                         dc_version = DCE_VERSION_10_0;
111                         break;
112                 }
113                 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
114                                 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
115                                 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
116                         dc_version = DCE_VERSION_11_2;
117                 }
118                 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
119                         dc_version = DCE_VERSION_11_22;
120                 break;
121         case FAMILY_AI:
122                 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
123                         dc_version = DCE_VERSION_12_1;
124                 else
125                         dc_version = DCE_VERSION_12_0;
126                 break;
127 #if defined(CONFIG_DRM_AMD_DC_DCN)
128         case FAMILY_RV:
129                 dc_version = DCN_VERSION_1_0;
130                 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
131                         dc_version = DCN_VERSION_1_01;
132                 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
133                         dc_version = DCN_VERSION_2_1;
134                 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
135                         dc_version = DCN_VERSION_2_1;
136                 break;
137
138         case FAMILY_NV:
139                 dc_version = DCN_VERSION_2_0;
140                 if (asic_id.chip_id == DEVICE_ID_NV_13FE || asic_id.chip_id == DEVICE_ID_NV_143F) {
141                         dc_version = DCN_VERSION_2_01;
142                         break;
143                 }
144                 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
145                         dc_version = DCN_VERSION_3_0;
146                 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
147                         dc_version = DCN_VERSION_3_02;
148                 if (ASICREV_IS_BEIGE_GOBY_P(asic_id.hw_internal_rev))
149                         dc_version = DCN_VERSION_3_03;
150                 break;
151
152         case FAMILY_VGH:
153                 dc_version = DCN_VERSION_3_01;
154                 break;
155
156         case FAMILY_YELLOW_CARP:
157                 if (ASICREV_IS_YELLOW_CARP(asic_id.hw_internal_rev))
158                         dc_version = DCN_VERSION_3_1;
159                 break;
160         case AMDGPU_FAMILY_GC_10_3_6:
161                 if (ASICREV_IS_GC_10_3_6(asic_id.hw_internal_rev))
162                         dc_version = DCN_VERSION_3_15;
163                 break;
164         case AMDGPU_FAMILY_GC_10_3_7:
165                 if (ASICREV_IS_GC_10_3_7(asic_id.hw_internal_rev))
166                         dc_version = DCN_VERSION_3_16;
167                 break;
168 #endif
169
170         default:
171                 dc_version = DCE_VERSION_UNKNOWN;
172                 break;
173         }
174         return dc_version;
175 }
176
177 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
178                                               const struct dc_init_data *init_data,
179                                               enum dce_version dc_version)
180 {
181         struct resource_pool *res_pool = NULL;
182
183         switch (dc_version) {
184 #if defined(CONFIG_DRM_AMD_DC_SI)
185         case DCE_VERSION_6_0:
186                 res_pool = dce60_create_resource_pool(
187                         init_data->num_virtual_links, dc);
188                 break;
189         case DCE_VERSION_6_1:
190                 res_pool = dce61_create_resource_pool(
191                         init_data->num_virtual_links, dc);
192                 break;
193         case DCE_VERSION_6_4:
194                 res_pool = dce64_create_resource_pool(
195                         init_data->num_virtual_links, dc);
196                 break;
197 #endif
198         case DCE_VERSION_8_0:
199                 res_pool = dce80_create_resource_pool(
200                                 init_data->num_virtual_links, dc);
201                 break;
202         case DCE_VERSION_8_1:
203                 res_pool = dce81_create_resource_pool(
204                                 init_data->num_virtual_links, dc);
205                 break;
206         case DCE_VERSION_8_3:
207                 res_pool = dce83_create_resource_pool(
208                                 init_data->num_virtual_links, dc);
209                 break;
210         case DCE_VERSION_10_0:
211                 res_pool = dce100_create_resource_pool(
212                                 init_data->num_virtual_links, dc);
213                 break;
214         case DCE_VERSION_11_0:
215                 res_pool = dce110_create_resource_pool(
216                                 init_data->num_virtual_links, dc,
217                                 init_data->asic_id);
218                 break;
219         case DCE_VERSION_11_2:
220         case DCE_VERSION_11_22:
221                 res_pool = dce112_create_resource_pool(
222                                 init_data->num_virtual_links, dc);
223                 break;
224         case DCE_VERSION_12_0:
225         case DCE_VERSION_12_1:
226                 res_pool = dce120_create_resource_pool(
227                                 init_data->num_virtual_links, dc);
228                 break;
229
230 #if defined(CONFIG_DRM_AMD_DC_DCN)
231         case DCN_VERSION_1_0:
232         case DCN_VERSION_1_01:
233                 res_pool = dcn10_create_resource_pool(init_data, dc);
234                 break;
235         case DCN_VERSION_2_0:
236                 res_pool = dcn20_create_resource_pool(init_data, dc);
237                 break;
238         case DCN_VERSION_2_1:
239                 res_pool = dcn21_create_resource_pool(init_data, dc);
240                 break;
241         case DCN_VERSION_2_01:
242                 res_pool = dcn201_create_resource_pool(init_data, dc);
243                 break;
244         case DCN_VERSION_3_0:
245                 res_pool = dcn30_create_resource_pool(init_data, dc);
246                 break;
247         case DCN_VERSION_3_01:
248                 res_pool = dcn301_create_resource_pool(init_data, dc);
249                 break;
250         case DCN_VERSION_3_02:
251                 res_pool = dcn302_create_resource_pool(init_data, dc);
252                 break;
253         case DCN_VERSION_3_03:
254                 res_pool = dcn303_create_resource_pool(init_data, dc);
255                 break;
256         case DCN_VERSION_3_1:
257                 res_pool = dcn31_create_resource_pool(init_data, dc);
258                 break;
259         case DCN_VERSION_3_15:
260                 res_pool = dcn315_create_resource_pool(init_data, dc);
261                 break;
262         case DCN_VERSION_3_16:
263                 res_pool = dcn316_create_resource_pool(init_data, dc);
264                 break;
265 #endif
266         default:
267                 break;
268         }
269
270         if (res_pool != NULL) {
271                 if (dc->ctx->dc_bios->fw_info_valid) {
272                         res_pool->ref_clocks.xtalin_clock_inKhz =
273                                 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
274                         /* initialize with firmware data first, no all
275                          * ASIC have DCCG SW component. FPGA or
276                          * simulation need initialization of
277                          * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
278                          * with xtalin_clock_inKhz
279                          */
280                         res_pool->ref_clocks.dccg_ref_clock_inKhz =
281                                 res_pool->ref_clocks.xtalin_clock_inKhz;
282                         res_pool->ref_clocks.dchub_ref_clock_inKhz =
283                                 res_pool->ref_clocks.xtalin_clock_inKhz;
284                 } else
285                         ASSERT_CRITICAL(false);
286         }
287
288         return res_pool;
289 }
290
291 void dc_destroy_resource_pool(struct dc  *dc)
292 {
293         if (dc) {
294                 if (dc->res_pool)
295                         dc->res_pool->funcs->destroy(&dc->res_pool);
296
297                 kfree(dc->hwseq);
298         }
299 }
300
301 static void update_num_audio(
302         const struct resource_straps *straps,
303         unsigned int *num_audio,
304         struct audio_support *aud_support)
305 {
306         aud_support->dp_audio = true;
307         aud_support->hdmi_audio_native = false;
308         aud_support->hdmi_audio_on_dongle = false;
309
310         if (straps->hdmi_disable == 0) {
311                 if (straps->dc_pinstraps_audio & 0x2) {
312                         aud_support->hdmi_audio_on_dongle = true;
313                         aud_support->hdmi_audio_native = true;
314                 }
315         }
316
317         switch (straps->audio_stream_number) {
318         case 0: /* multi streams supported */
319                 break;
320         case 1: /* multi streams not supported */
321                 *num_audio = 1;
322                 break;
323         default:
324                 DC_ERR("DC: unexpected audio fuse!\n");
325         }
326 }
327
328 bool resource_construct(
329         unsigned int num_virtual_links,
330         struct dc  *dc,
331         struct resource_pool *pool,
332         const struct resource_create_funcs *create_funcs)
333 {
334         struct dc_context *ctx = dc->ctx;
335         const struct resource_caps *caps = pool->res_cap;
336         int i;
337         unsigned int num_audio = caps->num_audio;
338         struct resource_straps straps = {0};
339
340         if (create_funcs->read_dce_straps)
341                 create_funcs->read_dce_straps(dc->ctx, &straps);
342
343         pool->audio_count = 0;
344         if (create_funcs->create_audio) {
345                 /* find the total number of streams available via the
346                  * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
347                  * registers (one for each pin) starting from pin 1
348                  * up to the max number of audio pins.
349                  * We stop on the first pin where
350                  * PORT_CONNECTIVITY == 1 (as instructed by HW team).
351                  */
352                 update_num_audio(&straps, &num_audio, &pool->audio_support);
353                 for (i = 0; i < caps->num_audio; i++) {
354                         struct audio *aud = create_funcs->create_audio(ctx, i);
355
356                         if (aud == NULL) {
357                                 DC_ERR("DC: failed to create audio!\n");
358                                 return false;
359                         }
360                         if (!aud->funcs->endpoint_valid(aud)) {
361                                 aud->funcs->destroy(&aud);
362                                 break;
363                         }
364                         pool->audios[i] = aud;
365                         pool->audio_count++;
366                 }
367         }
368
369         pool->stream_enc_count = 0;
370         if (create_funcs->create_stream_encoder) {
371                 for (i = 0; i < caps->num_stream_encoder; i++) {
372                         pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
373                         if (pool->stream_enc[i] == NULL)
374                                 DC_ERR("DC: failed to create stream_encoder!\n");
375                         pool->stream_enc_count++;
376                 }
377         }
378
379         pool->hpo_dp_stream_enc_count = 0;
380         if (create_funcs->create_hpo_dp_stream_encoder) {
381                 for (i = 0; i < caps->num_hpo_dp_stream_encoder; i++) {
382                         pool->hpo_dp_stream_enc[i] = create_funcs->create_hpo_dp_stream_encoder(i+ENGINE_ID_HPO_DP_0, ctx);
383                         if (pool->hpo_dp_stream_enc[i] == NULL)
384                                 DC_ERR("DC: failed to create HPO DP stream encoder!\n");
385                         pool->hpo_dp_stream_enc_count++;
386
387                 }
388         }
389
390         pool->hpo_dp_link_enc_count = 0;
391         if (create_funcs->create_hpo_dp_link_encoder) {
392                 for (i = 0; i < caps->num_hpo_dp_link_encoder; i++) {
393                         pool->hpo_dp_link_enc[i] = create_funcs->create_hpo_dp_link_encoder(i, ctx);
394                         if (pool->hpo_dp_link_enc[i] == NULL)
395                                 DC_ERR("DC: failed to create HPO DP link encoder!\n");
396                         pool->hpo_dp_link_enc_count++;
397                 }
398         }
399
400 #if defined(CONFIG_DRM_AMD_DC_DCN)
401         for (i = 0; i < caps->num_mpc_3dlut; i++) {
402                 pool->mpc_lut[i] = dc_create_3dlut_func();
403                 if (pool->mpc_lut[i] == NULL)
404                         DC_ERR("DC: failed to create MPC 3dlut!\n");
405                 pool->mpc_shaper[i] = dc_create_transfer_func();
406                 if (pool->mpc_shaper[i] == NULL)
407                         DC_ERR("DC: failed to create MPC shaper!\n");
408         }
409 #endif
410         dc->caps.dynamic_audio = false;
411         if (pool->audio_count < pool->stream_enc_count) {
412                 dc->caps.dynamic_audio = true;
413         }
414         for (i = 0; i < num_virtual_links; i++) {
415                 pool->stream_enc[pool->stream_enc_count] =
416                         virtual_stream_encoder_create(
417                                         ctx, ctx->dc_bios);
418                 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
419                         DC_ERR("DC: failed to create stream_encoder!\n");
420                         return false;
421                 }
422                 pool->stream_enc_count++;
423         }
424
425         dc->hwseq = create_funcs->create_hwseq(ctx);
426
427         return true;
428 }
429 static int find_matching_clock_source(
430                 const struct resource_pool *pool,
431                 struct clock_source *clock_source)
432 {
433
434         int i;
435
436         for (i = 0; i < pool->clk_src_count; i++) {
437                 if (pool->clock_sources[i] == clock_source)
438                         return i;
439         }
440         return -1;
441 }
442
443 void resource_unreference_clock_source(
444                 struct resource_context *res_ctx,
445                 const struct resource_pool *pool,
446                 struct clock_source *clock_source)
447 {
448         int i = find_matching_clock_source(pool, clock_source);
449
450         if (i > -1)
451                 res_ctx->clock_source_ref_count[i]--;
452
453         if (pool->dp_clock_source == clock_source)
454                 res_ctx->dp_clock_source_ref_count--;
455 }
456
457 void resource_reference_clock_source(
458                 struct resource_context *res_ctx,
459                 const struct resource_pool *pool,
460                 struct clock_source *clock_source)
461 {
462         int i = find_matching_clock_source(pool, clock_source);
463
464         if (i > -1)
465                 res_ctx->clock_source_ref_count[i]++;
466
467         if (pool->dp_clock_source == clock_source)
468                 res_ctx->dp_clock_source_ref_count++;
469 }
470
471 int resource_get_clock_source_reference(
472                 struct resource_context *res_ctx,
473                 const struct resource_pool *pool,
474                 struct clock_source *clock_source)
475 {
476         int i = find_matching_clock_source(pool, clock_source);
477
478         if (i > -1)
479                 return res_ctx->clock_source_ref_count[i];
480
481         if (pool->dp_clock_source == clock_source)
482                 return res_ctx->dp_clock_source_ref_count;
483
484         return -1;
485 }
486
487 bool resource_are_vblanks_synchronizable(
488         struct dc_stream_state *stream1,
489         struct dc_stream_state *stream2)
490 {
491         uint32_t base60_refresh_rates[] = {10, 20, 5};
492         uint8_t i;
493         uint8_t rr_count = ARRAY_SIZE(base60_refresh_rates);
494         uint64_t frame_time_diff;
495
496         if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
497                 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
498                 dc_is_dp_signal(stream1->signal) &&
499                 dc_is_dp_signal(stream2->signal) &&
500                 false == stream1->has_non_synchronizable_pclk &&
501                 false == stream2->has_non_synchronizable_pclk &&
502                 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
503                 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
504                 /* disable refresh rates higher than 60Hz for now */
505                 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
506                                 stream1->timing.v_total > 60)
507                         return false;
508                 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
509                                 stream2->timing.v_total > 60)
510                         return false;
511                 frame_time_diff = (uint64_t)10000 *
512                         stream1->timing.h_total *
513                         stream1->timing.v_total *
514                         stream2->timing.pix_clk_100hz;
515                 frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
516                 frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
517                 frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
518                 for (i = 0; i < rr_count; i++) {
519                         int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
520
521                         if (diff < 0)
522                                 diff = -diff;
523                         if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
524                                 return true;
525                 }
526         }
527         return false;
528 }
529
530 bool resource_are_streams_timing_synchronizable(
531         struct dc_stream_state *stream1,
532         struct dc_stream_state *stream2)
533 {
534         if (stream1->timing.h_total != stream2->timing.h_total)
535                 return false;
536
537         if (stream1->timing.v_total != stream2->timing.v_total)
538                 return false;
539
540         if (stream1->timing.h_addressable
541                                 != stream2->timing.h_addressable)
542                 return false;
543
544         if (stream1->timing.v_addressable
545                                 != stream2->timing.v_addressable)
546                 return false;
547
548         if (stream1->timing.v_front_porch
549                                 != stream2->timing.v_front_porch)
550                 return false;
551
552         if (stream1->timing.pix_clk_100hz
553                                 != stream2->timing.pix_clk_100hz)
554                 return false;
555
556         if (stream1->clamping.c_depth != stream2->clamping.c_depth)
557                 return false;
558
559         if (stream1->phy_pix_clk != stream2->phy_pix_clk
560                         && (!dc_is_dp_signal(stream1->signal)
561                         || !dc_is_dp_signal(stream2->signal)))
562                 return false;
563
564         if (stream1->view_format != stream2->view_format)
565                 return false;
566
567         if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
568                 return false;
569
570         return true;
571 }
572 static bool is_dp_and_hdmi_sharable(
573                 struct dc_stream_state *stream1,
574                 struct dc_stream_state *stream2)
575 {
576         if (stream1->ctx->dc->caps.disable_dp_clk_share)
577                 return false;
578
579         if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
580                 stream2->clamping.c_depth != COLOR_DEPTH_888)
581                 return false;
582
583         return true;
584
585 }
586
587 static bool is_sharable_clk_src(
588         const struct pipe_ctx *pipe_with_clk_src,
589         const struct pipe_ctx *pipe)
590 {
591         if (pipe_with_clk_src->clock_source == NULL)
592                 return false;
593
594         if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
595                 return false;
596
597         if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
598                 (dc_is_dp_signal(pipe->stream->signal) &&
599                 !is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
600                                      pipe->stream)))
601                 return false;
602
603         if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
604                         && dc_is_dual_link_signal(pipe->stream->signal))
605                 return false;
606
607         if (dc_is_hdmi_signal(pipe->stream->signal)
608                         && dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
609                 return false;
610
611         if (!resource_are_streams_timing_synchronizable(
612                         pipe_with_clk_src->stream, pipe->stream))
613                 return false;
614
615         return true;
616 }
617
618 struct clock_source *resource_find_used_clk_src_for_sharing(
619                                         struct resource_context *res_ctx,
620                                         struct pipe_ctx *pipe_ctx)
621 {
622         int i;
623
624         for (i = 0; i < MAX_PIPES; i++) {
625                 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
626                         return res_ctx->pipe_ctx[i].clock_source;
627         }
628
629         return NULL;
630 }
631
632 static enum pixel_format convert_pixel_format_to_dalsurface(
633                 enum surface_pixel_format surface_pixel_format)
634 {
635         enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
636
637         switch (surface_pixel_format) {
638         case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
639                 dal_pixel_format = PIXEL_FORMAT_INDEX8;
640                 break;
641         case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
642                 dal_pixel_format = PIXEL_FORMAT_RGB565;
643                 break;
644         case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
645                 dal_pixel_format = PIXEL_FORMAT_RGB565;
646                 break;
647         case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
648                 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
649                 break;
650         case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
651                 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
652                 break;
653         case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
654                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
655                 break;
656         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
657                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
658                 break;
659         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
660                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
661                 break;
662         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
663         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
664                 dal_pixel_format = PIXEL_FORMAT_FP16;
665                 break;
666         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
667         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
668                 dal_pixel_format = PIXEL_FORMAT_420BPP8;
669                 break;
670         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
671         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
672                 dal_pixel_format = PIXEL_FORMAT_420BPP10;
673                 break;
674         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
675         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
676         default:
677                 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
678                 break;
679         }
680         return dal_pixel_format;
681 }
682
683 static inline void get_vp_scan_direction(
684         enum dc_rotation_angle rotation,
685         bool horizontal_mirror,
686         bool *orthogonal_rotation,
687         bool *flip_vert_scan_dir,
688         bool *flip_horz_scan_dir)
689 {
690         *orthogonal_rotation = false;
691         *flip_vert_scan_dir = false;
692         *flip_horz_scan_dir = false;
693         if (rotation == ROTATION_ANGLE_180) {
694                 *flip_vert_scan_dir = true;
695                 *flip_horz_scan_dir = true;
696         } else if (rotation == ROTATION_ANGLE_90) {
697                 *orthogonal_rotation = true;
698                 *flip_horz_scan_dir = true;
699         } else if (rotation == ROTATION_ANGLE_270) {
700                 *orthogonal_rotation = true;
701                 *flip_vert_scan_dir = true;
702         }
703
704         if (horizontal_mirror)
705                 *flip_horz_scan_dir = !*flip_horz_scan_dir;
706 }
707
708 int get_num_mpc_splits(struct pipe_ctx *pipe)
709 {
710         int mpc_split_count = 0;
711         struct pipe_ctx *other_pipe = pipe->bottom_pipe;
712
713         while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
714                 mpc_split_count++;
715                 other_pipe = other_pipe->bottom_pipe;
716         }
717         other_pipe = pipe->top_pipe;
718         while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
719                 mpc_split_count++;
720                 other_pipe = other_pipe->top_pipe;
721         }
722
723         return mpc_split_count;
724 }
725
726 int get_num_odm_splits(struct pipe_ctx *pipe)
727 {
728         int odm_split_count = 0;
729         struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
730         while (next_pipe) {
731                 odm_split_count++;
732                 next_pipe = next_pipe->next_odm_pipe;
733         }
734         pipe = pipe->prev_odm_pipe;
735         while (pipe) {
736                 odm_split_count++;
737                 pipe = pipe->prev_odm_pipe;
738         }
739         return odm_split_count;
740 }
741
742 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
743 {
744         *split_count = get_num_odm_splits(pipe_ctx);
745         *split_idx = 0;
746         if (*split_count == 0) {
747                 /*Check for mpc split*/
748                 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
749
750                 *split_count = get_num_mpc_splits(pipe_ctx);
751                 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
752                         (*split_idx)++;
753                         split_pipe = split_pipe->top_pipe;
754                 }
755         } else {
756                 /*Get odm split index*/
757                 struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
758
759                 while (split_pipe) {
760                         (*split_idx)++;
761                         split_pipe = split_pipe->prev_odm_pipe;
762                 }
763         }
764 }
765
766 /*
767  * This is a preliminary vp size calculation to allow us to check taps support.
768  * The result is completely overridden afterwards.
769  */
770 static void calculate_viewport_size(struct pipe_ctx *pipe_ctx)
771 {
772         struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
773
774         data->viewport.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz, data->recout.width));
775         data->viewport.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert, data->recout.height));
776         data->viewport_c.width = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.horz_c, data->recout.width));
777         data->viewport_c.height = dc_fixpt_ceil(dc_fixpt_mul_int(data->ratios.vert_c, data->recout.height));
778         if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
779                         pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270) {
780                 swap(data->viewport.width, data->viewport.height);
781                 swap(data->viewport_c.width, data->viewport_c.height);
782         }
783 }
784
785 static void calculate_recout(struct pipe_ctx *pipe_ctx)
786 {
787         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
788         const struct dc_stream_state *stream = pipe_ctx->stream;
789         struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
790         struct rect surf_clip = plane_state->clip_rect;
791         bool split_tb = stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
792         int split_count, split_idx;
793
794         calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
795         if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
796                 split_idx = 0;
797
798         /*
799          * Only the leftmost ODM pipe should be offset by a nonzero distance
800          */
801         if (!pipe_ctx->prev_odm_pipe || split_idx == split_count) {
802                 data->recout.x = stream->dst.x;
803                 if (stream->src.x < surf_clip.x)
804                         data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
805                                                 / stream->src.width;
806         } else
807                 data->recout.x = 0;
808
809         if (stream->src.x > surf_clip.x)
810                 surf_clip.width -= stream->src.x - surf_clip.x;
811         data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
812         if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
813                 data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
814
815         data->recout.y = stream->dst.y;
816         if (stream->src.y < surf_clip.y)
817                 data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
818                                                 / stream->src.height;
819         else if (stream->src.y > surf_clip.y)
820                 surf_clip.height -= stream->src.y - surf_clip.y;
821
822         data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
823         if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
824                 data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
825
826         /* Handle h & v split */
827         if (split_tb) {
828                 ASSERT(data->recout.height % 2 == 0);
829                 data->recout.height /= 2;
830         } else if (split_count) {
831                 if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
832                         /* extra pixels in the division remainder need to go to pipes after
833                          * the extra pixel index minus one(epimo) defined here as:
834                          */
835                         int epimo = split_count - data->recout.width % (split_count + 1);
836
837                         data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
838                         if (split_idx > epimo)
839                                 data->recout.x += split_idx - epimo - 1;
840                         ASSERT(stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE || data->recout.width % 2 == 0);
841                         data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
842                 } else {
843                         /* odm */
844                         if (split_idx == split_count) {
845                                 /* rightmost pipe is the remainder recout */
846                                 data->recout.width -= data->h_active * split_count - data->recout.x;
847
848                                 /* ODM combine cases with MPO we can get negative widths */
849                                 if (data->recout.width < 0)
850                                         data->recout.width = 0;
851
852                                 data->recout.x = 0;
853                         } else
854                                 data->recout.width = data->h_active - data->recout.x;
855                 }
856         }
857 }
858
859 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
860 {
861         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
862         const struct dc_stream_state *stream = pipe_ctx->stream;
863         struct rect surf_src = plane_state->src_rect;
864         const int in_w = stream->src.width;
865         const int in_h = stream->src.height;
866         const int out_w = stream->dst.width;
867         const int out_h = stream->dst.height;
868
869         /*Swap surf_src height and width since scaling ratios are in recout rotation*/
870         if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
871                         pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
872                 swap(surf_src.height, surf_src.width);
873
874         pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
875                                         surf_src.width,
876                                         plane_state->dst_rect.width);
877         pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
878                                         surf_src.height,
879                                         plane_state->dst_rect.height);
880
881         if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
882                 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
883         else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
884                 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
885
886         pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
887                 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
888         pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
889                 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
890
891         pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
892         pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
893
894         if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
895                         || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
896                 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
897                 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
898         }
899         pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
900                         pipe_ctx->plane_res.scl_data.ratios.horz, 19);
901         pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
902                         pipe_ctx->plane_res.scl_data.ratios.vert, 19);
903         pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
904                         pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
905         pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
906                         pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
907 }
908
909
910 /*
911  * We completely calculate vp offset, size and inits here based entirely on scaling
912  * ratios and recout for pixel perfect pipe combine.
913  */
914 static void calculate_init_and_vp(
915                 bool flip_scan_dir,
916                 int recout_offset_within_recout_full,
917                 int recout_size,
918                 int src_size,
919                 int taps,
920                 struct fixed31_32 ratio,
921                 struct fixed31_32 *init,
922                 int *vp_offset,
923                 int *vp_size)
924 {
925         struct fixed31_32 temp;
926         int int_part;
927
928         /*
929          * First of the taps starts sampling pixel number <init_int_part> corresponding to recout
930          * pixel 1. Next recout pixel samples int part of <init + scaling ratio> and so on.
931          * All following calculations are based on this logic.
932          *
933          * Init calculated according to formula:
934          *      init = (scaling_ratio + number_of_taps + 1) / 2
935          *      init_bot = init + scaling_ratio
936          *      to get pixel perfect combine add the fraction from calculating vp offset
937          */
938         temp = dc_fixpt_mul_int(ratio, recout_offset_within_recout_full);
939         *vp_offset = dc_fixpt_floor(temp);
940         temp.value &= 0xffffffff;
941         *init = dc_fixpt_truncate(dc_fixpt_add(dc_fixpt_div_int(
942                         dc_fixpt_add_int(ratio, taps + 1), 2), temp), 19);
943         /*
944          * If viewport has non 0 offset and there are more taps than covered by init then
945          * we should decrease the offset and increase init so we are never sampling
946          * outside of viewport.
947          */
948         int_part = dc_fixpt_floor(*init);
949         if (int_part < taps) {
950                 int_part = taps - int_part;
951                 if (int_part > *vp_offset)
952                         int_part = *vp_offset;
953                 *vp_offset -= int_part;
954                 *init = dc_fixpt_add_int(*init, int_part);
955         }
956         /*
957          * If taps are sampling outside of viewport at end of recout and there are more pixels
958          * available in the surface we should increase the viewport size, regardless set vp to
959          * only what is used.
960          */
961         temp = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_size - 1));
962         *vp_size = dc_fixpt_floor(temp);
963         if (*vp_size + *vp_offset > src_size)
964                 *vp_size = src_size - *vp_offset;
965
966         /* We did all the math assuming we are scanning same direction as display does,
967          * however mirror/rotation changes how vp scans vs how it is offset. If scan direction
968          * is flipped we simply need to calculate offset from the other side of plane.
969          * Note that outside of viewport all scaling hardware works in recout space.
970          */
971         if (flip_scan_dir)
972                 *vp_offset = src_size - *vp_offset - *vp_size;
973 }
974
975 static void calculate_inits_and_viewports(struct pipe_ctx *pipe_ctx)
976 {
977         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
978         const struct dc_stream_state *stream = pipe_ctx->stream;
979         struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
980         struct rect src = plane_state->src_rect;
981         int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
982                                 || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
983         int split_count, split_idx, ro_lb, ro_tb, recout_full_x, recout_full_y;
984         bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
985
986         calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
987         /*
988          * recout full is what the recout would have been if we didnt clip
989          * the source plane at all. We only care about left(ro_lb) and top(ro_tb)
990          * offsets of recout within recout full because those are the directions
991          * we scan from and therefore the only ones that affect inits.
992          */
993         recout_full_x = stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
994                         * stream->dst.width / stream->src.width;
995         recout_full_y = stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
996                         * stream->dst.height / stream->src.height;
997         if (pipe_ctx->prev_odm_pipe && split_idx)
998                 ro_lb = data->h_active * split_idx - recout_full_x;
999         else
1000                 ro_lb = data->recout.x - recout_full_x;
1001         ro_tb = data->recout.y - recout_full_y;
1002         ASSERT(ro_lb >= 0 && ro_tb >= 0);
1003
1004         /*
1005          * Work in recout rotation since that requires less transformations
1006          */
1007         get_vp_scan_direction(
1008                         plane_state->rotation,
1009                         plane_state->horizontal_mirror,
1010                         &orthogonal_rotation,
1011                         &flip_vert_scan_dir,
1012                         &flip_horz_scan_dir);
1013
1014         if (orthogonal_rotation) {
1015                 swap(src.width, src.height);
1016                 swap(flip_vert_scan_dir, flip_horz_scan_dir);
1017         }
1018
1019         calculate_init_and_vp(
1020                         flip_horz_scan_dir,
1021                         ro_lb,
1022                         data->recout.width,
1023                         src.width,
1024                         data->taps.h_taps,
1025                         data->ratios.horz,
1026                         &data->inits.h,
1027                         &data->viewport.x,
1028                         &data->viewport.width);
1029         calculate_init_and_vp(
1030                         flip_horz_scan_dir,
1031                         ro_lb,
1032                         data->recout.width,
1033                         src.width / vpc_div,
1034                         data->taps.h_taps_c,
1035                         data->ratios.horz_c,
1036                         &data->inits.h_c,
1037                         &data->viewport_c.x,
1038                         &data->viewport_c.width);
1039         calculate_init_and_vp(
1040                         flip_vert_scan_dir,
1041                         ro_tb,
1042                         data->recout.height,
1043                         src.height,
1044                         data->taps.v_taps,
1045                         data->ratios.vert,
1046                         &data->inits.v,
1047                         &data->viewport.y,
1048                         &data->viewport.height);
1049         calculate_init_and_vp(
1050                         flip_vert_scan_dir,
1051                         ro_tb,
1052                         data->recout.height,
1053                         src.height / vpc_div,
1054                         data->taps.v_taps_c,
1055                         data->ratios.vert_c,
1056                         &data->inits.v_c,
1057                         &data->viewport_c.y,
1058                         &data->viewport_c.height);
1059         if (orthogonal_rotation) {
1060                 swap(data->viewport.x, data->viewport.y);
1061                 swap(data->viewport.width, data->viewport.height);
1062                 swap(data->viewport_c.x, data->viewport_c.y);
1063                 swap(data->viewport_c.width, data->viewport_c.height);
1064         }
1065         data->viewport.x += src.x;
1066         data->viewport.y += src.y;
1067         ASSERT(src.x % vpc_div == 0 && src.y % vpc_div == 0);
1068         data->viewport_c.x += src.x / vpc_div;
1069         data->viewport_c.y += src.y / vpc_div;
1070 }
1071
1072 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1073 {
1074         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1075         struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1076         bool res = false;
1077         DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1078
1079         pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1080                         pipe_ctx->plane_state->format);
1081
1082         /* Timing borders are part of vactive that we are also supposed to skip in addition
1083          * to any stream dst offset. Since dm logic assumes dst is in addressable
1084          * space we need to add the left and top borders to dst offsets temporarily.
1085          * TODO: fix in DM, stream dst is supposed to be in vactive
1086          */
1087         pipe_ctx->stream->dst.x += timing->h_border_left;
1088         pipe_ctx->stream->dst.y += timing->v_border_top;
1089
1090         /* Calculate H and V active size */
1091         pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1092                         timing->h_border_left + timing->h_border_right;
1093         pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1094                 timing->v_border_top + timing->v_border_bottom;
1095         if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
1096                 pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1097
1098         /* depends on h_active */
1099         calculate_recout(pipe_ctx);
1100         /* depends on pixel format */
1101         calculate_scaling_ratios(pipe_ctx);
1102         /* depends on scaling ratios and recout, does not calculate offset yet */
1103         calculate_viewport_size(pipe_ctx);
1104
1105         /* Stopgap for validation of ODM + MPO on one side of screen case */
1106         if (pipe_ctx->plane_res.scl_data.viewport.height < 1 ||
1107                         pipe_ctx->plane_res.scl_data.viewport.width < 1)
1108                 return false;
1109
1110         /*
1111          * LB calculations depend on vp size, h/v_active and scaling ratios
1112          * Setting line buffer pixel depth to 24bpp yields banding
1113          * on certain displays, such as the Sharp 4k. 36bpp is needed
1114          * to support SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616 and
1115          * SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616 with actual > 10 bpc
1116          * precision on at least DCN display engines. However, at least
1117          * Carrizo with DCE_VERSION_11_0 does not like 36 bpp lb depth,
1118          * so use only 30 bpp on DCE_VERSION_11_0. Testing with DCE 11.2 and 8.3
1119          * did not show such problems, so this seems to be the exception.
1120          */
1121         if (plane_state->ctx->dce_version > DCE_VERSION_11_0)
1122                 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_36BPP;
1123         else
1124                 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1125
1126         pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1127
1128         if (pipe_ctx->plane_res.xfm != NULL)
1129                 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1130                                 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1131
1132         if (pipe_ctx->plane_res.dpp != NULL)
1133                 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1134                                 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1135
1136
1137         if (!res) {
1138                 /* Try 24 bpp linebuffer */
1139                 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1140
1141                 if (pipe_ctx->plane_res.xfm != NULL)
1142                         res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1143                                         pipe_ctx->plane_res.xfm,
1144                                         &pipe_ctx->plane_res.scl_data,
1145                                         &plane_state->scaling_quality);
1146
1147                 if (pipe_ctx->plane_res.dpp != NULL)
1148                         res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1149                                         pipe_ctx->plane_res.dpp,
1150                                         &pipe_ctx->plane_res.scl_data,
1151                                         &plane_state->scaling_quality);
1152         }
1153
1154         /*
1155          * Depends on recout, scaling ratios, h_active and taps
1156          * May need to re-check lb size after this in some obscure scenario
1157          */
1158         if (res)
1159                 calculate_inits_and_viewports(pipe_ctx);
1160
1161         /*
1162          * Handle side by side and top bottom 3d recout offsets after vp calculation
1163          * since 3d is special and needs to calculate vp as if there is no recout offset
1164          * This may break with rotation, good thing we aren't mixing hw rotation and 3d
1165          */
1166         if (pipe_ctx->top_pipe && pipe_ctx->top_pipe->plane_state == plane_state) {
1167                 ASSERT(plane_state->rotation == ROTATION_ANGLE_0 ||
1168                         (pipe_ctx->stream->view_format != VIEW_3D_FORMAT_TOP_AND_BOTTOM &&
1169                                 pipe_ctx->stream->view_format != VIEW_3D_FORMAT_SIDE_BY_SIDE));
1170                 if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
1171                         pipe_ctx->plane_res.scl_data.recout.y += pipe_ctx->plane_res.scl_data.recout.height;
1172                 else if (pipe_ctx->stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
1173                         pipe_ctx->plane_res.scl_data.recout.x += pipe_ctx->plane_res.scl_data.recout.width;
1174         }
1175
1176         if (!pipe_ctx->stream->ctx->dc->config.enable_windowed_mpo_odm) {
1177                 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1178                                 pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1179                         res = false;
1180         } else {
1181                 /* Clamp minimum viewport size */
1182                 if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE)
1183                         pipe_ctx->plane_res.scl_data.viewport.height = MIN_VIEWPORT_SIZE;
1184                 if (pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE)
1185                         pipe_ctx->plane_res.scl_data.viewport.width = MIN_VIEWPORT_SIZE;
1186         }
1187
1188         DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1189                         "src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1190                         __func__,
1191                         pipe_ctx->pipe_idx,
1192                         pipe_ctx->plane_res.scl_data.viewport.height,
1193                         pipe_ctx->plane_res.scl_data.viewport.width,
1194                         pipe_ctx->plane_res.scl_data.viewport.x,
1195                         pipe_ctx->plane_res.scl_data.viewport.y,
1196                         pipe_ctx->plane_res.scl_data.recout.height,
1197                         pipe_ctx->plane_res.scl_data.recout.width,
1198                         pipe_ctx->plane_res.scl_data.recout.x,
1199                         pipe_ctx->plane_res.scl_data.recout.y,
1200                         pipe_ctx->plane_res.scl_data.h_active,
1201                         pipe_ctx->plane_res.scl_data.v_active,
1202                         plane_state->src_rect.height,
1203                         plane_state->src_rect.width,
1204                         plane_state->src_rect.x,
1205                         plane_state->src_rect.y,
1206                         plane_state->dst_rect.height,
1207                         plane_state->dst_rect.width,
1208                         plane_state->dst_rect.x,
1209                         plane_state->dst_rect.y,
1210                         plane_state->clip_rect.height,
1211                         plane_state->clip_rect.width,
1212                         plane_state->clip_rect.x,
1213                         plane_state->clip_rect.y);
1214
1215         pipe_ctx->stream->dst.x -= timing->h_border_left;
1216         pipe_ctx->stream->dst.y -= timing->v_border_top;
1217
1218         return res;
1219 }
1220
1221
1222 enum dc_status resource_build_scaling_params_for_context(
1223         const struct dc  *dc,
1224         struct dc_state *context)
1225 {
1226         int i;
1227
1228         for (i = 0; i < MAX_PIPES; i++) {
1229                 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1230                                 context->res_ctx.pipe_ctx[i].stream != NULL)
1231                         if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1232                                 return DC_FAIL_SCALING;
1233         }
1234
1235         return DC_OK;
1236 }
1237
1238 struct pipe_ctx *find_idle_secondary_pipe(
1239                 struct resource_context *res_ctx,
1240                 const struct resource_pool *pool,
1241                 const struct pipe_ctx *primary_pipe)
1242 {
1243         int i;
1244         struct pipe_ctx *secondary_pipe = NULL;
1245
1246         /*
1247          * We add a preferred pipe mapping to avoid the chance that
1248          * MPCCs already in use will need to be reassigned to other trees.
1249          * For example, if we went with the strict, assign backwards logic:
1250          *
1251          * (State 1)
1252          * Display A on, no surface, top pipe = 0
1253          * Display B on, no surface, top pipe = 1
1254          *
1255          * (State 2)
1256          * Display A on, no surface, top pipe = 0
1257          * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1258          *
1259          * (State 3)
1260          * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1261          * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1262          *
1263          * The state 2->3 transition requires remapping MPCC 5 from display B
1264          * to display A.
1265          *
1266          * However, with the preferred pipe logic, state 2 would look like:
1267          *
1268          * (State 2)
1269          * Display A on, no surface, top pipe = 0
1270          * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1271          *
1272          * This would then cause 2->3 to not require remapping any MPCCs.
1273          */
1274         if (primary_pipe) {
1275                 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1276                 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1277                         secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1278                         secondary_pipe->pipe_idx = preferred_pipe_idx;
1279                 }
1280         }
1281
1282         /*
1283          * search backwards for the second pipe to keep pipe
1284          * assignment more consistent
1285          */
1286         if (!secondary_pipe)
1287                 for (i = pool->pipe_count - 1; i >= 0; i--) {
1288                         if (res_ctx->pipe_ctx[i].stream == NULL) {
1289                                 secondary_pipe = &res_ctx->pipe_ctx[i];
1290                                 secondary_pipe->pipe_idx = i;
1291                                 break;
1292                         }
1293                 }
1294
1295         return secondary_pipe;
1296 }
1297
1298 struct pipe_ctx *resource_get_head_pipe_for_stream(
1299                 struct resource_context *res_ctx,
1300                 struct dc_stream_state *stream)
1301 {
1302         int i;
1303
1304         for (i = 0; i < MAX_PIPES; i++) {
1305                 if (res_ctx->pipe_ctx[i].stream == stream
1306                                 && !res_ctx->pipe_ctx[i].top_pipe
1307                                 && !res_ctx->pipe_ctx[i].prev_odm_pipe)
1308                         return &res_ctx->pipe_ctx[i];
1309         }
1310         return NULL;
1311 }
1312
1313 static struct pipe_ctx *resource_get_tail_pipe(
1314                 struct resource_context *res_ctx,
1315                 struct pipe_ctx *head_pipe)
1316 {
1317         struct pipe_ctx *tail_pipe;
1318
1319         tail_pipe = head_pipe->bottom_pipe;
1320
1321         while (tail_pipe) {
1322                 head_pipe = tail_pipe;
1323                 tail_pipe = tail_pipe->bottom_pipe;
1324         }
1325
1326         return head_pipe;
1327 }
1328
1329 /*
1330  * A free_pipe for a stream is defined here as a pipe
1331  * that has no surface attached yet
1332  */
1333 static struct pipe_ctx *acquire_free_pipe_for_head(
1334                 struct dc_state *context,
1335                 const struct resource_pool *pool,
1336                 struct pipe_ctx *head_pipe)
1337 {
1338         int i;
1339         struct resource_context *res_ctx = &context->res_ctx;
1340
1341         if (!head_pipe->plane_state)
1342                 return head_pipe;
1343
1344         /* Re-use pipe already acquired for this stream if available*/
1345         for (i = pool->pipe_count - 1; i >= 0; i--) {
1346                 if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1347                                 !res_ctx->pipe_ctx[i].plane_state) {
1348                         return &res_ctx->pipe_ctx[i];
1349                 }
1350         }
1351
1352         /*
1353          * At this point we have no re-useable pipe for this stream and we need
1354          * to acquire an idle one to satisfy the request
1355          */
1356
1357         if (!pool->funcs->acquire_idle_pipe_for_layer)
1358                 return NULL;
1359
1360         return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1361 }
1362
1363 #if defined(CONFIG_DRM_AMD_DC_DCN)
1364 static int acquire_first_split_pipe(
1365                 struct resource_context *res_ctx,
1366                 const struct resource_pool *pool,
1367                 struct dc_stream_state *stream)
1368 {
1369         int i;
1370
1371         for (i = 0; i < pool->pipe_count; i++) {
1372                 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1373
1374                 if (split_pipe->top_pipe &&
1375                                 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1376                         split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1377                         if (split_pipe->bottom_pipe)
1378                                 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1379
1380                         if (split_pipe->top_pipe->plane_state)
1381                                 resource_build_scaling_params(split_pipe->top_pipe);
1382
1383                         memset(split_pipe, 0, sizeof(*split_pipe));
1384                         split_pipe->stream_res.tg = pool->timing_generators[i];
1385                         split_pipe->plane_res.hubp = pool->hubps[i];
1386                         split_pipe->plane_res.ipp = pool->ipps[i];
1387                         split_pipe->plane_res.dpp = pool->dpps[i];
1388                         split_pipe->stream_res.opp = pool->opps[i];
1389                         split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1390                         split_pipe->pipe_idx = i;
1391
1392                         split_pipe->stream = stream;
1393                         return i;
1394                 }
1395         }
1396         return -1;
1397 }
1398 #endif
1399
1400 bool dc_add_plane_to_context(
1401                 const struct dc *dc,
1402                 struct dc_stream_state *stream,
1403                 struct dc_plane_state *plane_state,
1404                 struct dc_state *context)
1405 {
1406         int i;
1407         struct resource_pool *pool = dc->res_pool;
1408         struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1409         struct dc_stream_status *stream_status = NULL;
1410
1411         for (i = 0; i < context->stream_count; i++)
1412                 if (context->streams[i] == stream) {
1413                         stream_status = &context->stream_status[i];
1414                         break;
1415                 }
1416         if (stream_status == NULL) {
1417                 dm_error("Existing stream not found; failed to attach surface!\n");
1418                 return false;
1419         }
1420
1421
1422         if (stream_status->plane_count == MAX_SURFACE_NUM) {
1423                 dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1424                                 plane_state, MAX_SURFACE_NUM);
1425                 return false;
1426         }
1427
1428         head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1429
1430         if (!head_pipe) {
1431                 dm_error("Head pipe not found for stream_state %p !\n", stream);
1432                 return false;
1433         }
1434
1435         /* retain new surface, but only once per stream */
1436         dc_plane_state_retain(plane_state);
1437
1438         while (head_pipe) {
1439                 free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1440
1441         #if defined(CONFIG_DRM_AMD_DC_DCN)
1442                 if (!free_pipe) {
1443                         int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1444                         if (pipe_idx >= 0)
1445                                 free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1446                 }
1447         #endif
1448                 if (!free_pipe) {
1449                         dc_plane_state_release(plane_state);
1450                         return false;
1451                 }
1452
1453                 free_pipe->plane_state = plane_state;
1454
1455                 if (head_pipe != free_pipe) {
1456                         tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1457                         ASSERT(tail_pipe);
1458                         free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1459                         free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1460                         free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1461                         free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1462                         free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1463                         free_pipe->clock_source = tail_pipe->clock_source;
1464                         free_pipe->top_pipe = tail_pipe;
1465                         tail_pipe->bottom_pipe = free_pipe;
1466                         if (!free_pipe->next_odm_pipe && tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1467                                 free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1468                                 tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1469                         }
1470                         if (!free_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1471                                 free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1472                                 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1473                         }
1474                 }
1475                 head_pipe = head_pipe->next_odm_pipe;
1476         }
1477         /* assign new surfaces*/
1478         stream_status->plane_states[stream_status->plane_count] = plane_state;
1479
1480         stream_status->plane_count++;
1481
1482         return true;
1483 }
1484
1485 bool dc_remove_plane_from_context(
1486                 const struct dc *dc,
1487                 struct dc_stream_state *stream,
1488                 struct dc_plane_state *plane_state,
1489                 struct dc_state *context)
1490 {
1491         int i;
1492         struct dc_stream_status *stream_status = NULL;
1493         struct resource_pool *pool = dc->res_pool;
1494
1495         for (i = 0; i < context->stream_count; i++)
1496                 if (context->streams[i] == stream) {
1497                         stream_status = &context->stream_status[i];
1498                         break;
1499                 }
1500
1501         if (stream_status == NULL) {
1502                 dm_error("Existing stream not found; failed to remove plane.\n");
1503                 return false;
1504         }
1505
1506         /* release pipe for plane*/
1507         for (i = pool->pipe_count - 1; i >= 0; i--) {
1508                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1509
1510                 if (pipe_ctx->plane_state == plane_state) {
1511                         if (pipe_ctx->top_pipe)
1512                                 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1513
1514                         /* Second condition is to avoid setting NULL to top pipe
1515                          * of tail pipe making it look like head pipe in subsequent
1516                          * deletes
1517                          */
1518                         if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1519                                 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1520
1521                         /*
1522                          * For head pipe detach surfaces from pipe for tail
1523                          * pipe just zero it out
1524                          */
1525                         if (!pipe_ctx->top_pipe)
1526                                 pipe_ctx->plane_state = NULL;
1527                         else
1528                                 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1529                 }
1530         }
1531
1532
1533         for (i = 0; i < stream_status->plane_count; i++) {
1534                 if (stream_status->plane_states[i] == plane_state) {
1535
1536                         dc_plane_state_release(stream_status->plane_states[i]);
1537                         break;
1538                 }
1539         }
1540
1541         if (i == stream_status->plane_count) {
1542                 dm_error("Existing plane_state not found; failed to detach it!\n");
1543                 return false;
1544         }
1545
1546         stream_status->plane_count--;
1547
1548         /* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1549         for (; i < stream_status->plane_count; i++)
1550                 stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1551
1552         stream_status->plane_states[stream_status->plane_count] = NULL;
1553
1554         return true;
1555 }
1556
1557 bool dc_rem_all_planes_for_stream(
1558                 const struct dc *dc,
1559                 struct dc_stream_state *stream,
1560                 struct dc_state *context)
1561 {
1562         int i, old_plane_count;
1563         struct dc_stream_status *stream_status = NULL;
1564         struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1565
1566         for (i = 0; i < context->stream_count; i++)
1567                         if (context->streams[i] == stream) {
1568                                 stream_status = &context->stream_status[i];
1569                                 break;
1570                         }
1571
1572         if (stream_status == NULL) {
1573                 dm_error("Existing stream %p not found!\n", stream);
1574                 return false;
1575         }
1576
1577         old_plane_count = stream_status->plane_count;
1578
1579         for (i = 0; i < old_plane_count; i++)
1580                 del_planes[i] = stream_status->plane_states[i];
1581
1582         for (i = 0; i < old_plane_count; i++)
1583                 if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1584                         return false;
1585
1586         return true;
1587 }
1588
1589 static bool add_all_planes_for_stream(
1590                 const struct dc *dc,
1591                 struct dc_stream_state *stream,
1592                 const struct dc_validation_set set[],
1593                 int set_count,
1594                 struct dc_state *context)
1595 {
1596         int i, j;
1597
1598         for (i = 0; i < set_count; i++)
1599                 if (set[i].stream == stream)
1600                         break;
1601
1602         if (i == set_count) {
1603                 dm_error("Stream %p not found in set!\n", stream);
1604                 return false;
1605         }
1606
1607         for (j = 0; j < set[i].plane_count; j++)
1608                 if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1609                         return false;
1610
1611         return true;
1612 }
1613
1614 bool dc_add_all_planes_for_stream(
1615                 const struct dc *dc,
1616                 struct dc_stream_state *stream,
1617                 struct dc_plane_state * const *plane_states,
1618                 int plane_count,
1619                 struct dc_state *context)
1620 {
1621         struct dc_validation_set set;
1622         int i;
1623
1624         set.stream = stream;
1625         set.plane_count = plane_count;
1626
1627         for (i = 0; i < plane_count; i++)
1628                 set.plane_states[i] = plane_states[i];
1629
1630         return add_all_planes_for_stream(dc, stream, &set, 1, context);
1631 }
1632
1633 bool is_timing_changed(struct dc_stream_state *cur_stream,
1634                        struct dc_stream_state *new_stream)
1635 {
1636         if (cur_stream == NULL)
1637                 return true;
1638
1639         /* If output color space is changed, need to reprogram info frames */
1640         if (cur_stream->output_color_space != new_stream->output_color_space)
1641                 return true;
1642
1643         return memcmp(
1644                 &cur_stream->timing,
1645                 &new_stream->timing,
1646                 sizeof(struct dc_crtc_timing)) != 0;
1647 }
1648
1649 static bool are_stream_backends_same(
1650         struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1651 {
1652         if (stream_a == stream_b)
1653                 return true;
1654
1655         if (stream_a == NULL || stream_b == NULL)
1656                 return false;
1657
1658         if (is_timing_changed(stream_a, stream_b))
1659                 return false;
1660
1661         if (stream_a->signal != stream_b->signal)
1662                 return false;
1663
1664         if (stream_a->dpms_off != stream_b->dpms_off)
1665                 return false;
1666
1667         return true;
1668 }
1669
1670 /*
1671  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1672  *
1673  * Checks if there a difference between the two states
1674  * that would require a mode change.
1675  *
1676  * Does not compare cursor position or attributes.
1677  */
1678 bool dc_is_stream_unchanged(
1679         struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1680 {
1681
1682         if (!are_stream_backends_same(old_stream, stream))
1683                 return false;
1684
1685         if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1686                 return false;
1687
1688         /*compare audio info*/
1689         if (memcmp(&old_stream->audio_info, &stream->audio_info, sizeof(stream->audio_info)) != 0)
1690                 return false;
1691
1692         return true;
1693 }
1694
1695 /*
1696  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1697  */
1698 bool dc_is_stream_scaling_unchanged(struct dc_stream_state *old_stream,
1699                                     struct dc_stream_state *stream)
1700 {
1701         if (old_stream == stream)
1702                 return true;
1703
1704         if (old_stream == NULL || stream == NULL)
1705                 return false;
1706
1707         if (memcmp(&old_stream->src,
1708                         &stream->src,
1709                         sizeof(struct rect)) != 0)
1710                 return false;
1711
1712         if (memcmp(&old_stream->dst,
1713                         &stream->dst,
1714                         sizeof(struct rect)) != 0)
1715                 return false;
1716
1717         return true;
1718 }
1719
1720 static void update_stream_engine_usage(
1721                 struct resource_context *res_ctx,
1722                 const struct resource_pool *pool,
1723                 struct stream_encoder *stream_enc,
1724                 bool acquired)
1725 {
1726         int i;
1727
1728         for (i = 0; i < pool->stream_enc_count; i++) {
1729                 if (pool->stream_enc[i] == stream_enc)
1730                         res_ctx->is_stream_enc_acquired[i] = acquired;
1731         }
1732 }
1733
1734 static void update_hpo_dp_stream_engine_usage(
1735                 struct resource_context *res_ctx,
1736                 const struct resource_pool *pool,
1737                 struct hpo_dp_stream_encoder *hpo_dp_stream_enc,
1738                 bool acquired)
1739 {
1740         int i;
1741
1742         for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
1743                 if (pool->hpo_dp_stream_enc[i] == hpo_dp_stream_enc)
1744                         res_ctx->is_hpo_dp_stream_enc_acquired[i] = acquired;
1745         }
1746 }
1747
1748 static inline int find_acquired_hpo_dp_link_enc_for_link(
1749                 const struct resource_context *res_ctx,
1750                 const struct dc_link *link)
1751 {
1752         int i;
1753
1754         for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_to_link_idx); i++)
1755                 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] > 0 &&
1756                                 res_ctx->hpo_dp_link_enc_to_link_idx[i] == link->link_index)
1757                         return i;
1758
1759         return -1;
1760 }
1761
1762 static inline int find_free_hpo_dp_link_enc(const struct resource_context *res_ctx,
1763                 const struct resource_pool *pool)
1764 {
1765         int i;
1766
1767         for (i = 0; i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts); i++)
1768                 if (res_ctx->hpo_dp_link_enc_ref_cnts[i] == 0)
1769                         break;
1770
1771         return (i < ARRAY_SIZE(res_ctx->hpo_dp_link_enc_ref_cnts) &&
1772                         i < pool->hpo_dp_link_enc_count) ? i : -1;
1773 }
1774
1775 static inline void acquire_hpo_dp_link_enc(
1776                 struct resource_context *res_ctx,
1777                 unsigned int link_index,
1778                 int enc_index)
1779 {
1780         res_ctx->hpo_dp_link_enc_to_link_idx[enc_index] = link_index;
1781         res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] = 1;
1782 }
1783
1784 static inline void retain_hpo_dp_link_enc(
1785                 struct resource_context *res_ctx,
1786                 int enc_index)
1787 {
1788         res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]++;
1789 }
1790
1791 static inline void release_hpo_dp_link_enc(
1792                 struct resource_context *res_ctx,
1793                 int enc_index)
1794 {
1795         ASSERT(res_ctx->hpo_dp_link_enc_ref_cnts[enc_index] > 0);
1796         res_ctx->hpo_dp_link_enc_ref_cnts[enc_index]--;
1797 }
1798
1799 static bool add_hpo_dp_link_enc_to_ctx(struct resource_context *res_ctx,
1800                 const struct resource_pool *pool,
1801                 struct pipe_ctx *pipe_ctx,
1802                 struct dc_stream_state *stream)
1803 {
1804         int enc_index;
1805
1806         enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
1807
1808         if (enc_index >= 0) {
1809                 retain_hpo_dp_link_enc(res_ctx, enc_index);
1810         } else {
1811                 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
1812                 if (enc_index >= 0)
1813                         acquire_hpo_dp_link_enc(res_ctx, stream->link->link_index, enc_index);
1814         }
1815
1816         if (enc_index >= 0)
1817                 pipe_ctx->link_res.hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
1818
1819         return pipe_ctx->link_res.hpo_dp_link_enc != NULL;
1820 }
1821
1822 static void remove_hpo_dp_link_enc_from_ctx(struct resource_context *res_ctx,
1823                 struct pipe_ctx *pipe_ctx,
1824                 struct dc_stream_state *stream)
1825 {
1826         int enc_index;
1827
1828         enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, stream->link);
1829
1830         if (enc_index >= 0) {
1831                 release_hpo_dp_link_enc(res_ctx, enc_index);
1832                 pipe_ctx->link_res.hpo_dp_link_enc = NULL;
1833         }
1834 }
1835
1836 /* TODO: release audio object */
1837 void update_audio_usage(
1838                 struct resource_context *res_ctx,
1839                 const struct resource_pool *pool,
1840                 struct audio *audio,
1841                 bool acquired)
1842 {
1843         int i;
1844         for (i = 0; i < pool->audio_count; i++) {
1845                 if (pool->audios[i] == audio)
1846                         res_ctx->is_audio_acquired[i] = acquired;
1847         }
1848 }
1849
1850 static int acquire_first_free_pipe(
1851                 struct resource_context *res_ctx,
1852                 const struct resource_pool *pool,
1853                 struct dc_stream_state *stream)
1854 {
1855         int i;
1856
1857         for (i = 0; i < pool->pipe_count; i++) {
1858                 if (!res_ctx->pipe_ctx[i].stream) {
1859                         struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1860
1861                         pipe_ctx->stream_res.tg = pool->timing_generators[i];
1862                         pipe_ctx->plane_res.mi = pool->mis[i];
1863                         pipe_ctx->plane_res.hubp = pool->hubps[i];
1864                         pipe_ctx->plane_res.ipp = pool->ipps[i];
1865                         pipe_ctx->plane_res.xfm = pool->transforms[i];
1866                         pipe_ctx->plane_res.dpp = pool->dpps[i];
1867                         pipe_ctx->stream_res.opp = pool->opps[i];
1868                         if (pool->dpps[i])
1869                                 pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1870                         pipe_ctx->pipe_idx = i;
1871
1872
1873                         pipe_ctx->stream = stream;
1874                         return i;
1875                 }
1876         }
1877         return -1;
1878 }
1879
1880 static struct hpo_dp_stream_encoder *find_first_free_match_hpo_dp_stream_enc_for_link(
1881                 struct resource_context *res_ctx,
1882                 const struct resource_pool *pool,
1883                 struct dc_stream_state *stream)
1884 {
1885         int i;
1886
1887         for (i = 0; i < pool->hpo_dp_stream_enc_count; i++) {
1888                 if (!res_ctx->is_hpo_dp_stream_enc_acquired[i] &&
1889                                 pool->hpo_dp_stream_enc[i]) {
1890
1891                         return pool->hpo_dp_stream_enc[i];
1892                 }
1893         }
1894
1895         return NULL;
1896 }
1897
1898 static struct audio *find_first_free_audio(
1899                 struct resource_context *res_ctx,
1900                 const struct resource_pool *pool,
1901                 enum engine_id id,
1902                 enum dce_version dc_version)
1903 {
1904         int i, available_audio_count;
1905
1906         available_audio_count = pool->audio_count;
1907
1908         for (i = 0; i < available_audio_count; i++) {
1909                 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1910                         /*we have enough audio endpoint, find the matching inst*/
1911                         if (id != i)
1912                                 continue;
1913                         return pool->audios[i];
1914                 }
1915         }
1916
1917         /* use engine id to find free audio */
1918         if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1919                 return pool->audios[id];
1920         }
1921         /*not found the matching one, first come first serve*/
1922         for (i = 0; i < available_audio_count; i++) {
1923                 if (res_ctx->is_audio_acquired[i] == false) {
1924                         return pool->audios[i];
1925                 }
1926         }
1927         return NULL;
1928 }
1929
1930 /*
1931  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1932  */
1933 enum dc_status dc_add_stream_to_ctx(
1934                 struct dc *dc,
1935                 struct dc_state *new_ctx,
1936                 struct dc_stream_state *stream)
1937 {
1938         enum dc_status res;
1939         DC_LOGGER_INIT(dc->ctx->logger);
1940
1941         if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1942                 DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1943                 return DC_ERROR_UNEXPECTED;
1944         }
1945
1946         new_ctx->streams[new_ctx->stream_count] = stream;
1947         dc_stream_retain(stream);
1948         new_ctx->stream_count++;
1949
1950         res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1951         if (res != DC_OK)
1952                 DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1953
1954         return res;
1955 }
1956
1957 /*
1958  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1959  */
1960 enum dc_status dc_remove_stream_from_ctx(
1961                         struct dc *dc,
1962                         struct dc_state *new_ctx,
1963                         struct dc_stream_state *stream)
1964 {
1965         int i;
1966         struct dc_context *dc_ctx = dc->ctx;
1967         struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1968         struct pipe_ctx *odm_pipe;
1969
1970         if (!del_pipe) {
1971                 DC_ERROR("Pipe not found for stream %p !\n", stream);
1972                 return DC_ERROR_UNEXPECTED;
1973         }
1974
1975         odm_pipe = del_pipe->next_odm_pipe;
1976
1977         /* Release primary pipe */
1978         ASSERT(del_pipe->stream_res.stream_enc);
1979         update_stream_engine_usage(
1980                         &new_ctx->res_ctx,
1981                                 dc->res_pool,
1982                         del_pipe->stream_res.stream_enc,
1983                         false);
1984         if (is_dp_128b_132b_signal(del_pipe)) {
1985                 update_hpo_dp_stream_engine_usage(
1986                         &new_ctx->res_ctx, dc->res_pool,
1987                         del_pipe->stream_res.hpo_dp_stream_enc,
1988                         false);
1989                 remove_hpo_dp_link_enc_from_ctx(&new_ctx->res_ctx, del_pipe, del_pipe->stream);
1990         }
1991
1992         if (del_pipe->stream_res.audio)
1993                 update_audio_usage(
1994                         &new_ctx->res_ctx,
1995                         dc->res_pool,
1996                         del_pipe->stream_res.audio,
1997                         false);
1998
1999         resource_unreference_clock_source(&new_ctx->res_ctx,
2000                                           dc->res_pool,
2001                                           del_pipe->clock_source);
2002
2003         if (dc->res_pool->funcs->remove_stream_from_ctx)
2004                 dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
2005
2006         while (odm_pipe) {
2007                 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
2008
2009                 memset(odm_pipe, 0, sizeof(*odm_pipe));
2010                 odm_pipe = next_odm_pipe;
2011         }
2012         memset(del_pipe, 0, sizeof(*del_pipe));
2013
2014         for (i = 0; i < new_ctx->stream_count; i++)
2015                 if (new_ctx->streams[i] == stream)
2016                         break;
2017
2018         if (new_ctx->streams[i] != stream) {
2019                 DC_ERROR("Context doesn't have stream %p !\n", stream);
2020                 return DC_ERROR_UNEXPECTED;
2021         }
2022
2023         dc_stream_release(new_ctx->streams[i]);
2024         new_ctx->stream_count--;
2025
2026         /* Trim back arrays */
2027         for (; i < new_ctx->stream_count; i++) {
2028                 new_ctx->streams[i] = new_ctx->streams[i + 1];
2029                 new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
2030         }
2031
2032         new_ctx->streams[new_ctx->stream_count] = NULL;
2033         memset(
2034                         &new_ctx->stream_status[new_ctx->stream_count],
2035                         0,
2036                         sizeof(new_ctx->stream_status[0]));
2037
2038         return DC_OK;
2039 }
2040
2041 static struct dc_stream_state *find_pll_sharable_stream(
2042                 struct dc_stream_state *stream_needs_pll,
2043                 struct dc_state *context)
2044 {
2045         int i;
2046
2047         for (i = 0; i < context->stream_count; i++) {
2048                 struct dc_stream_state *stream_has_pll = context->streams[i];
2049
2050                 /* We are looking for non dp, non virtual stream */
2051                 if (resource_are_streams_timing_synchronizable(
2052                         stream_needs_pll, stream_has_pll)
2053                         && !dc_is_dp_signal(stream_has_pll->signal)
2054                         && stream_has_pll->link->connector_signal
2055                         != SIGNAL_TYPE_VIRTUAL)
2056                         return stream_has_pll;
2057
2058         }
2059
2060         return NULL;
2061 }
2062
2063 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
2064 {
2065         uint32_t pix_clk = timing->pix_clk_100hz;
2066         uint32_t normalized_pix_clk = pix_clk;
2067
2068         if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
2069                 pix_clk /= 2;
2070         if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
2071                 switch (timing->display_color_depth) {
2072                 case COLOR_DEPTH_666:
2073                 case COLOR_DEPTH_888:
2074                         normalized_pix_clk = pix_clk;
2075                         break;
2076                 case COLOR_DEPTH_101010:
2077                         normalized_pix_clk = (pix_clk * 30) / 24;
2078                         break;
2079                 case COLOR_DEPTH_121212:
2080                         normalized_pix_clk = (pix_clk * 36) / 24;
2081                 break;
2082                 case COLOR_DEPTH_161616:
2083                         normalized_pix_clk = (pix_clk * 48) / 24;
2084                 break;
2085                 default:
2086                         ASSERT(0);
2087                 break;
2088                 }
2089         }
2090         return normalized_pix_clk;
2091 }
2092
2093 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
2094 {
2095         /* update actual pixel clock on all streams */
2096         if (dc_is_hdmi_signal(stream->signal))
2097                 stream->phy_pix_clk = get_norm_pix_clk(
2098                         &stream->timing) / 10;
2099         else
2100                 stream->phy_pix_clk =
2101                         stream->timing.pix_clk_100hz / 10;
2102
2103         if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2104                 stream->phy_pix_clk *= 2;
2105 }
2106
2107 static int acquire_resource_from_hw_enabled_state(
2108                 struct resource_context *res_ctx,
2109                 const struct resource_pool *pool,
2110                 struct dc_stream_state *stream)
2111 {
2112         struct dc_link *link = stream->link;
2113         unsigned int i, inst, tg_inst = 0;
2114
2115         /* Check for enabled DIG to identify enabled display */
2116         if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2117                 return -1;
2118
2119         inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2120
2121         if (inst == ENGINE_ID_UNKNOWN)
2122                 return -1;
2123
2124         for (i = 0; i < pool->stream_enc_count; i++) {
2125                 if (pool->stream_enc[i]->id == inst) {
2126                         tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2127                                 pool->stream_enc[i]);
2128                         break;
2129                 }
2130         }
2131
2132         // tg_inst not found
2133         if (i == pool->stream_enc_count)
2134                 return -1;
2135
2136         if (tg_inst >= pool->timing_generator_count)
2137                 return -1;
2138
2139         if (!res_ctx->pipe_ctx[tg_inst].stream) {
2140                 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2141
2142                 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2143                 pipe_ctx->plane_res.mi = pool->mis[tg_inst];
2144                 pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
2145                 pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
2146                 pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
2147                 pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
2148                 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2149
2150                 if (pool->dpps[tg_inst]) {
2151                         pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
2152
2153                         // Read DPP->MPCC->OPP Pipe from HW State
2154                         if (pool->mpc->funcs->read_mpcc_state) {
2155                                 struct mpcc_state s = {0};
2156
2157                                 pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2158
2159                                 if (s.dpp_id < MAX_MPCC)
2160                                         pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
2161
2162                                 if (s.bot_mpcc_id < MAX_MPCC)
2163                                         pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2164                                                         &pool->mpc->mpcc_array[s.bot_mpcc_id];
2165
2166                                 if (s.opp_id < MAX_OPP)
2167                                         pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2168                         }
2169                 }
2170                 pipe_ctx->pipe_idx = tg_inst;
2171
2172                 pipe_ctx->stream = stream;
2173                 return tg_inst;
2174         }
2175
2176         return -1;
2177 }
2178
2179 static void mark_seamless_boot_stream(
2180                 const struct dc  *dc,
2181                 struct dc_stream_state *stream)
2182 {
2183         struct dc_bios *dcb = dc->ctx->dc_bios;
2184
2185         if (dc->config.allow_seamless_boot_optimization &&
2186                         !dcb->funcs->is_accelerated_mode(dcb)) {
2187                 if (dc_validate_boot_timing(dc, stream->sink, &stream->timing))
2188                         stream->apply_seamless_boot_optimization = true;
2189         }
2190 }
2191
2192 enum dc_status resource_map_pool_resources(
2193                 const struct dc  *dc,
2194                 struct dc_state *context,
2195                 struct dc_stream_state *stream)
2196 {
2197         const struct resource_pool *pool = dc->res_pool;
2198         int i;
2199         struct dc_context *dc_ctx = dc->ctx;
2200         struct pipe_ctx *pipe_ctx = NULL;
2201         int pipe_idx = -1;
2202
2203         calculate_phy_pix_clks(stream);
2204
2205         mark_seamless_boot_stream(dc, stream);
2206
2207         if (stream->apply_seamless_boot_optimization) {
2208                 pipe_idx = acquire_resource_from_hw_enabled_state(
2209                                 &context->res_ctx,
2210                                 pool,
2211                                 stream);
2212                 if (pipe_idx < 0)
2213                         /* hw resource was assigned to other stream */
2214                         stream->apply_seamless_boot_optimization = false;
2215         }
2216
2217         if (pipe_idx < 0)
2218                 /* acquire new resources */
2219                 pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2220
2221 #ifdef CONFIG_DRM_AMD_DC_DCN
2222         if (pipe_idx < 0)
2223                 pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2224 #endif
2225
2226         if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2227                 return DC_NO_CONTROLLER_RESOURCE;
2228
2229         pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2230
2231         pipe_ctx->stream_res.stream_enc =
2232                 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2233                         &context->res_ctx, pool, stream);
2234
2235         if (!pipe_ctx->stream_res.stream_enc)
2236                 return DC_NO_STREAM_ENC_RESOURCE;
2237
2238         update_stream_engine_usage(
2239                 &context->res_ctx, pool,
2240                 pipe_ctx->stream_res.stream_enc,
2241                 true);
2242
2243         /* Allocate DP HPO Stream Encoder based on signal, hw capabilities
2244          * and link settings
2245          */
2246         if (dc_is_dp_signal(stream->signal) &&
2247                         dc->caps.dp_hpo) {
2248                 struct dc_link_settings link_settings = {0};
2249
2250                 decide_link_settings(stream, &link_settings);
2251                 if (dp_get_link_encoding_format(&link_settings) == DP_128b_132b_ENCODING) {
2252                         pipe_ctx->stream_res.hpo_dp_stream_enc =
2253                                         find_first_free_match_hpo_dp_stream_enc_for_link(
2254                                                         &context->res_ctx, pool, stream);
2255
2256                         if (!pipe_ctx->stream_res.hpo_dp_stream_enc)
2257                                 return DC_NO_STREAM_ENC_RESOURCE;
2258
2259                         update_hpo_dp_stream_engine_usage(
2260                                         &context->res_ctx, pool,
2261                                         pipe_ctx->stream_res.hpo_dp_stream_enc,
2262                                         true);
2263                         if (!add_hpo_dp_link_enc_to_ctx(&context->res_ctx, pool, pipe_ctx, stream))
2264                                 return DC_NO_LINK_ENC_RESOURCE;
2265                 }
2266         }
2267
2268         /* TODO: Add check if ASIC support and EDID audio */
2269         if (!stream->converter_disable_audio &&
2270             dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2271             stream->audio_info.mode_count && stream->audio_info.flags.all) {
2272                 pipe_ctx->stream_res.audio = find_first_free_audio(
2273                 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2274
2275                 /*
2276                  * Audio assigned in order first come first get.
2277                  * There are asics which has number of audio
2278                  * resources less then number of pipes
2279                  */
2280                 if (pipe_ctx->stream_res.audio)
2281                         update_audio_usage(&context->res_ctx, pool,
2282                                            pipe_ctx->stream_res.audio, true);
2283         }
2284
2285         /* Add ABM to the resource if on EDP */
2286         if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2287 #if defined(CONFIG_DRM_AMD_DC_DCN)
2288                 if (pool->abm)
2289                         pipe_ctx->stream_res.abm = pool->abm;
2290                 else
2291                         pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2292 #else
2293                 pipe_ctx->stream_res.abm = pool->abm;
2294 #endif
2295         }
2296
2297         for (i = 0; i < context->stream_count; i++)
2298                 if (context->streams[i] == stream) {
2299                         context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2300                         context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2301                         context->stream_status[i].audio_inst =
2302                                 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2303
2304                         return DC_OK;
2305                 }
2306
2307         DC_ERROR("Stream %p not found in new ctx!\n", stream);
2308         return DC_ERROR_UNEXPECTED;
2309 }
2310
2311 /**
2312  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2313  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2314  * @dc: copy out of dc->current_state
2315  * @dst_ctx: copy into this
2316  */
2317 void dc_resource_state_copy_construct_current(
2318                 const struct dc *dc,
2319                 struct dc_state *dst_ctx)
2320 {
2321         dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2322 }
2323
2324
2325 void dc_resource_state_construct(
2326                 const struct dc *dc,
2327                 struct dc_state *dst_ctx)
2328 {
2329         dst_ctx->clk_mgr = dc->clk_mgr;
2330
2331         /* Initialise DIG link encoder resource tracking variables. */
2332         link_enc_cfg_init(dc, dst_ctx);
2333 }
2334
2335
2336 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2337 {
2338         if (dc->res_pool == NULL)
2339                 return false;
2340
2341         return dc->res_pool->res_cap->num_dsc > 0;
2342 }
2343
2344
2345 /**
2346  * dc_validate_global_state() - Determine if HW can support a given state
2347  * Checks HW resource availability and bandwidth requirement.
2348  * @dc: dc struct for this driver
2349  * @new_ctx: state to be validated
2350  * @fast_validate: set to true if only yes/no to support matters
2351  *
2352  * Return: DC_OK if the result can be programmed.  Otherwise, an error code.
2353  */
2354 enum dc_status dc_validate_global_state(
2355                 struct dc *dc,
2356                 struct dc_state *new_ctx,
2357                 bool fast_validate)
2358 {
2359         enum dc_status result = DC_ERROR_UNEXPECTED;
2360         int i, j;
2361
2362         if (!new_ctx)
2363                 return DC_ERROR_UNEXPECTED;
2364
2365         if (dc->res_pool->funcs->validate_global) {
2366                 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2367                 if (result != DC_OK)
2368                         return result;
2369         }
2370
2371         for (i = 0; i < new_ctx->stream_count; i++) {
2372                 struct dc_stream_state *stream = new_ctx->streams[i];
2373
2374                 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2375                         struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2376
2377                         if (pipe_ctx->stream != stream)
2378                                 continue;
2379
2380                         if (dc->res_pool->funcs->patch_unknown_plane_state &&
2381                                         pipe_ctx->plane_state &&
2382                                         pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2383                                 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2384                                 if (result != DC_OK)
2385                                         return result;
2386                         }
2387
2388                         /* Switch to dp clock source only if there is
2389                          * no non dp stream that shares the same timing
2390                          * with the dp stream.
2391                          */
2392                         if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2393                                 !find_pll_sharable_stream(stream, new_ctx)) {
2394
2395                                 resource_unreference_clock_source(
2396                                                 &new_ctx->res_ctx,
2397                                                 dc->res_pool,
2398                                                 pipe_ctx->clock_source);
2399
2400                                 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2401                                 resource_reference_clock_source(
2402                                                 &new_ctx->res_ctx,
2403                                                 dc->res_pool,
2404                                                  pipe_ctx->clock_source);
2405                         }
2406                 }
2407         }
2408
2409         result = resource_build_scaling_params_for_context(dc, new_ctx);
2410
2411         if (result == DC_OK)
2412                 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2413                         result = DC_FAIL_BANDWIDTH_VALIDATE;
2414
2415 #if defined(CONFIG_DRM_AMD_DC_DCN)
2416         /*
2417          * Only update link encoder to stream assignment after bandwidth validation passed.
2418          * TODO: Split out assignment and validation.
2419          */
2420         if (result == DC_OK && dc->res_pool->funcs->link_encs_assign && fast_validate == false)
2421                 dc->res_pool->funcs->link_encs_assign(
2422                         dc, new_ctx, new_ctx->streams, new_ctx->stream_count);
2423 #endif
2424
2425         return result;
2426 }
2427
2428 static void patch_gamut_packet_checksum(
2429                 struct dc_info_packet *gamut_packet)
2430 {
2431         /* For gamut we recalc checksum */
2432         if (gamut_packet->valid) {
2433                 uint8_t chk_sum = 0;
2434                 uint8_t *ptr;
2435                 uint8_t i;
2436
2437                 /*start of the Gamut data. */
2438                 ptr = &gamut_packet->sb[3];
2439
2440                 for (i = 0; i <= gamut_packet->sb[1]; i++)
2441                         chk_sum += ptr[i];
2442
2443                 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2444         }
2445 }
2446
2447 static void set_avi_info_frame(
2448                 struct dc_info_packet *info_packet,
2449                 struct pipe_ctx *pipe_ctx)
2450 {
2451         struct dc_stream_state *stream = pipe_ctx->stream;
2452         enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2453         uint32_t pixel_encoding = 0;
2454         enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2455         enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2456         bool itc = false;
2457         uint8_t itc_value = 0;
2458         uint8_t cn0_cn1 = 0;
2459         unsigned int cn0_cn1_value = 0;
2460         uint8_t *check_sum = NULL;
2461         uint8_t byte_index = 0;
2462         union hdmi_info_packet hdmi_info;
2463         union display_content_support support = {0};
2464         unsigned int vic = pipe_ctx->stream->timing.vic;
2465         enum dc_timing_3d_format format;
2466
2467         memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2468
2469         color_space = pipe_ctx->stream->output_color_space;
2470         if (color_space == COLOR_SPACE_UNKNOWN)
2471                 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2472                         COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2473
2474         /* Initialize header */
2475         hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2476         /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2477         * not be used in HDMI 2.0 (Section 10.1) */
2478         hdmi_info.bits.header.version = 2;
2479         hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2480
2481         /*
2482          * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2483          * according to HDMI 2.0 spec (Section 10.1)
2484          */
2485
2486         switch (stream->timing.pixel_encoding) {
2487         case PIXEL_ENCODING_YCBCR422:
2488                 pixel_encoding = 1;
2489                 break;
2490
2491         case PIXEL_ENCODING_YCBCR444:
2492                 pixel_encoding = 2;
2493                 break;
2494         case PIXEL_ENCODING_YCBCR420:
2495                 pixel_encoding = 3;
2496                 break;
2497
2498         case PIXEL_ENCODING_RGB:
2499         default:
2500                 pixel_encoding = 0;
2501         }
2502
2503         /* Y0_Y1_Y2 : The pixel encoding */
2504         /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2505         hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2506
2507         /* A0 = 1 Active Format Information valid */
2508         hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2509
2510         /* B0, B1 = 3; Bar info data is valid */
2511         hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2512
2513         hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2514
2515         /* S0, S1 : Underscan / Overscan */
2516         /* TODO: un-hardcode scan type */
2517         scan_type = SCANNING_TYPE_UNDERSCAN;
2518         hdmi_info.bits.S0_S1 = scan_type;
2519
2520         /* C0, C1 : Colorimetry */
2521         if (color_space == COLOR_SPACE_YCBCR709 ||
2522                         color_space == COLOR_SPACE_YCBCR709_LIMITED)
2523                 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2524         else if (color_space == COLOR_SPACE_YCBCR601 ||
2525                         color_space == COLOR_SPACE_YCBCR601_LIMITED)
2526                 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2527         else {
2528                 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2529         }
2530         if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2531                         color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2532                         color_space == COLOR_SPACE_2020_YCBCR) {
2533                 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2534                 hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2535         } else if (color_space == COLOR_SPACE_ADOBERGB) {
2536                 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2537                 hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2538         }
2539
2540         /* TODO: un-hardcode aspect ratio */
2541         aspect = stream->timing.aspect_ratio;
2542
2543         switch (aspect) {
2544         case ASPECT_RATIO_4_3:
2545         case ASPECT_RATIO_16_9:
2546                 hdmi_info.bits.M0_M1 = aspect;
2547                 break;
2548
2549         case ASPECT_RATIO_NO_DATA:
2550         case ASPECT_RATIO_64_27:
2551         case ASPECT_RATIO_256_135:
2552         default:
2553                 hdmi_info.bits.M0_M1 = 0;
2554         }
2555
2556         /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2557         hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2558
2559         /* TODO: un-hardcode cn0_cn1 and itc */
2560
2561         cn0_cn1 = 0;
2562         cn0_cn1_value = 0;
2563
2564         itc = true;
2565         itc_value = 1;
2566
2567         support = stream->content_support;
2568
2569         if (itc) {
2570                 if (!support.bits.valid_content_type) {
2571                         cn0_cn1_value = 0;
2572                 } else {
2573                         if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2574                                 if (support.bits.graphics_content == 1) {
2575                                         cn0_cn1_value = 0;
2576                                 }
2577                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2578                                 if (support.bits.photo_content == 1) {
2579                                         cn0_cn1_value = 1;
2580                                 } else {
2581                                         cn0_cn1_value = 0;
2582                                         itc_value = 0;
2583                                 }
2584                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2585                                 if (support.bits.cinema_content == 1) {
2586                                         cn0_cn1_value = 2;
2587                                 } else {
2588                                         cn0_cn1_value = 0;
2589                                         itc_value = 0;
2590                                 }
2591                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2592                                 if (support.bits.game_content == 1) {
2593                                         cn0_cn1_value = 3;
2594                                 } else {
2595                                         cn0_cn1_value = 0;
2596                                         itc_value = 0;
2597                                 }
2598                         }
2599                 }
2600                 hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2601                 hdmi_info.bits.ITC = itc_value;
2602         }
2603
2604         if (stream->qs_bit == 1) {
2605                 if (color_space == COLOR_SPACE_SRGB ||
2606                         color_space == COLOR_SPACE_2020_RGB_FULLRANGE)
2607                         hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2608                 else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2609                                         color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE)
2610                         hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2611                 else
2612                         hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2613         } else
2614                 hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2615
2616         /* TODO : We should handle YCC quantization */
2617         /* but we do not have matrix calculation */
2618         hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2619
2620         ///VIC
2621         if (pipe_ctx->stream->timing.hdmi_vic != 0)
2622                 vic = 0;
2623         format = stream->timing.timing_3d_format;
2624         /*todo, add 3DStereo support*/
2625         if (format != TIMING_3D_FORMAT_NONE) {
2626                 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2627                 switch (pipe_ctx->stream->timing.hdmi_vic) {
2628                 case 1:
2629                         vic = 95;
2630                         break;
2631                 case 2:
2632                         vic = 94;
2633                         break;
2634                 case 3:
2635                         vic = 93;
2636                         break;
2637                 case 4:
2638                         vic = 98;
2639                         break;
2640                 default:
2641                         break;
2642                 }
2643         }
2644         /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2645         hdmi_info.bits.VIC0_VIC7 = vic;
2646         if (vic >= 128)
2647                 hdmi_info.bits.header.version = 3;
2648         /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2649          * the Source shall use 20 AVI InfoFrame Version 4
2650          */
2651         if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2652                         hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2653                 hdmi_info.bits.header.version = 4;
2654                 hdmi_info.bits.header.length = 14;
2655         }
2656
2657         /* pixel repetition
2658          * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2659          * repetition start from 1 */
2660         hdmi_info.bits.PR0_PR3 = 0;
2661
2662         /* Bar Info
2663          * barTop:    Line Number of End of Top Bar.
2664          * barBottom: Line Number of Start of Bottom Bar.
2665          * barLeft:   Pixel Number of End of Left Bar.
2666          * barRight:  Pixel Number of Start of Right Bar. */
2667         hdmi_info.bits.bar_top = stream->timing.v_border_top;
2668         hdmi_info.bits.bar_bottom = (stream->timing.v_total
2669                         - stream->timing.v_border_bottom + 1);
2670         hdmi_info.bits.bar_left  = stream->timing.h_border_left;
2671         hdmi_info.bits.bar_right = (stream->timing.h_total
2672                         - stream->timing.h_border_right + 1);
2673
2674     /* Additional Colorimetry Extension
2675      * Used in conduction with C0-C1 and EC0-EC2
2676      * 0 = DCI-P3 RGB (D65)
2677      * 1 = DCI-P3 RGB (theater)
2678      */
2679         hdmi_info.bits.ACE0_ACE3 = 0;
2680
2681         /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2682         check_sum = &hdmi_info.packet_raw_data.sb[0];
2683
2684         *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2685
2686         for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2687                 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2688
2689         /* one byte complement */
2690         *check_sum = (uint8_t) (0x100 - *check_sum);
2691
2692         /* Store in hw_path_mode */
2693         info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2694         info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2695         info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2696
2697         for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2698                 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2699
2700         info_packet->valid = true;
2701 }
2702
2703 static void set_vendor_info_packet(
2704                 struct dc_info_packet *info_packet,
2705                 struct dc_stream_state *stream)
2706 {
2707         /* SPD info packet for FreeSync */
2708
2709         /* Check if Freesync is supported. Return if false. If true,
2710          * set the corresponding bit in the info packet
2711          */
2712         if (!stream->vsp_infopacket.valid)
2713                 return;
2714
2715         *info_packet = stream->vsp_infopacket;
2716 }
2717
2718 static void set_spd_info_packet(
2719                 struct dc_info_packet *info_packet,
2720                 struct dc_stream_state *stream)
2721 {
2722         /* SPD info packet for FreeSync */
2723
2724         /* Check if Freesync is supported. Return if false. If true,
2725          * set the corresponding bit in the info packet
2726          */
2727         if (!stream->vrr_infopacket.valid)
2728                 return;
2729
2730         *info_packet = stream->vrr_infopacket;
2731 }
2732
2733 static void set_hdr_static_info_packet(
2734                 struct dc_info_packet *info_packet,
2735                 struct dc_stream_state *stream)
2736 {
2737         /* HDR Static Metadata info packet for HDR10 */
2738
2739         if (!stream->hdr_static_metadata.valid ||
2740                         stream->use_dynamic_meta)
2741                 return;
2742
2743         *info_packet = stream->hdr_static_metadata;
2744 }
2745
2746 static void set_vsc_info_packet(
2747                 struct dc_info_packet *info_packet,
2748                 struct dc_stream_state *stream)
2749 {
2750         if (!stream->vsc_infopacket.valid)
2751                 return;
2752
2753         *info_packet = stream->vsc_infopacket;
2754 }
2755
2756 void dc_resource_state_destruct(struct dc_state *context)
2757 {
2758         int i, j;
2759
2760         for (i = 0; i < context->stream_count; i++) {
2761                 for (j = 0; j < context->stream_status[i].plane_count; j++)
2762                         dc_plane_state_release(
2763                                 context->stream_status[i].plane_states[j]);
2764
2765                 context->stream_status[i].plane_count = 0;
2766                 dc_stream_release(context->streams[i]);
2767                 context->streams[i] = NULL;
2768         }
2769         context->stream_count = 0;
2770 }
2771
2772 void dc_resource_state_copy_construct(
2773                 const struct dc_state *src_ctx,
2774                 struct dc_state *dst_ctx)
2775 {
2776         int i, j;
2777         struct kref refcount = dst_ctx->refcount;
2778
2779         *dst_ctx = *src_ctx;
2780
2781         for (i = 0; i < MAX_PIPES; i++) {
2782                 struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2783
2784                 if (cur_pipe->top_pipe)
2785                         cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2786
2787                 if (cur_pipe->bottom_pipe)
2788                         cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2789
2790                 if (cur_pipe->next_odm_pipe)
2791                         cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2792
2793                 if (cur_pipe->prev_odm_pipe)
2794                         cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2795         }
2796
2797         for (i = 0; i < dst_ctx->stream_count; i++) {
2798                 dc_stream_retain(dst_ctx->streams[i]);
2799                 for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2800                         dc_plane_state_retain(
2801                                 dst_ctx->stream_status[i].plane_states[j]);
2802         }
2803
2804         /* context refcount should not be overridden */
2805         dst_ctx->refcount = refcount;
2806
2807 }
2808
2809 struct clock_source *dc_resource_find_first_free_pll(
2810                 struct resource_context *res_ctx,
2811                 const struct resource_pool *pool)
2812 {
2813         int i;
2814
2815         for (i = 0; i < pool->clk_src_count; ++i) {
2816                 if (res_ctx->clock_source_ref_count[i] == 0)
2817                         return pool->clock_sources[i];
2818         }
2819
2820         return NULL;
2821 }
2822
2823 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2824 {
2825         enum signal_type signal = SIGNAL_TYPE_NONE;
2826         struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2827
2828         /* default all packets to invalid */
2829         info->avi.valid = false;
2830         info->gamut.valid = false;
2831         info->vendor.valid = false;
2832         info->spd.valid = false;
2833         info->hdrsmd.valid = false;
2834         info->vsc.valid = false;
2835
2836         signal = pipe_ctx->stream->signal;
2837
2838         /* HDMi and DP have different info packets*/
2839         if (dc_is_hdmi_signal(signal)) {
2840                 set_avi_info_frame(&info->avi, pipe_ctx);
2841
2842                 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2843
2844                 set_spd_info_packet(&info->spd, pipe_ctx->stream);
2845
2846                 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2847
2848         } else if (dc_is_dp_signal(signal)) {
2849                 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2850
2851                 set_spd_info_packet(&info->spd, pipe_ctx->stream);
2852
2853                 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2854         }
2855
2856         patch_gamut_packet_checksum(&info->gamut);
2857 }
2858
2859 enum dc_status resource_map_clock_resources(
2860                 const struct dc  *dc,
2861                 struct dc_state *context,
2862                 struct dc_stream_state *stream)
2863 {
2864         /* acquire new resources */
2865         const struct resource_pool *pool = dc->res_pool;
2866         struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2867                                 &context->res_ctx, stream);
2868
2869         if (!pipe_ctx)
2870                 return DC_ERROR_UNEXPECTED;
2871
2872         if (dc_is_dp_signal(pipe_ctx->stream->signal)
2873                 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2874                 pipe_ctx->clock_source = pool->dp_clock_source;
2875         else {
2876                 pipe_ctx->clock_source = NULL;
2877
2878                 if (!dc->config.disable_disp_pll_sharing)
2879                         pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2880                                 &context->res_ctx,
2881                                 pipe_ctx);
2882
2883                 if (pipe_ctx->clock_source == NULL)
2884                         pipe_ctx->clock_source =
2885                                 dc_resource_find_first_free_pll(
2886                                         &context->res_ctx,
2887                                         pool);
2888         }
2889
2890         if (pipe_ctx->clock_source == NULL)
2891                 return DC_NO_CLOCK_SOURCE_RESOURCE;
2892
2893         resource_reference_clock_source(
2894                 &context->res_ctx, pool,
2895                 pipe_ctx->clock_source);
2896
2897         return DC_OK;
2898 }
2899
2900 /*
2901  * Note: We need to disable output if clock sources change,
2902  * since bios does optimization and doesn't apply if changing
2903  * PHY when not already disabled.
2904  */
2905 bool pipe_need_reprogram(
2906                 struct pipe_ctx *pipe_ctx_old,
2907                 struct pipe_ctx *pipe_ctx)
2908 {
2909         if (!pipe_ctx_old->stream)
2910                 return false;
2911
2912         if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2913                 return true;
2914
2915         if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2916                 return true;
2917
2918         if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2919                 return true;
2920
2921         if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2922                         && pipe_ctx_old->stream != pipe_ctx->stream)
2923                 return true;
2924
2925         if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2926                 return true;
2927
2928         if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2929                 return true;
2930
2931         if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2932                 return true;
2933
2934         if (false == pipe_ctx_old->stream->link->link_state_valid &&
2935                 false == pipe_ctx_old->stream->dpms_off)
2936                 return true;
2937
2938         if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
2939                 return true;
2940
2941         if (pipe_ctx_old->stream_res.hpo_dp_stream_enc != pipe_ctx->stream_res.hpo_dp_stream_enc)
2942                 return true;
2943         if (pipe_ctx_old->link_res.hpo_dp_link_enc != pipe_ctx->link_res.hpo_dp_link_enc)
2944                 return true;
2945
2946         /* DIG link encoder resource assignment for stream changed. */
2947         if (pipe_ctx_old->stream->ctx->dc->res_pool->funcs->link_encs_assign) {
2948                 bool need_reprogram = false;
2949                 struct dc *dc = pipe_ctx_old->stream->ctx->dc;
2950                 enum link_enc_cfg_mode mode = dc->current_state->res_ctx.link_enc_cfg_ctx.mode;
2951
2952                 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = LINK_ENC_CFG_STEADY;
2953                 if (link_enc_cfg_get_link_enc_used_by_stream(dc, pipe_ctx_old->stream) != pipe_ctx->stream->link_enc)
2954                         need_reprogram = true;
2955                 dc->current_state->res_ctx.link_enc_cfg_ctx.mode = mode;
2956
2957                 return need_reprogram;
2958         }
2959
2960         return false;
2961 }
2962
2963 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2964                 struct bit_depth_reduction_params *fmt_bit_depth)
2965 {
2966         enum dc_dither_option option = stream->dither_option;
2967         enum dc_pixel_encoding pixel_encoding =
2968                         stream->timing.pixel_encoding;
2969
2970         memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2971
2972         if (option == DITHER_OPTION_DEFAULT) {
2973                 switch (stream->timing.display_color_depth) {
2974                 case COLOR_DEPTH_666:
2975                         option = DITHER_OPTION_SPATIAL6;
2976                         break;
2977                 case COLOR_DEPTH_888:
2978                         option = DITHER_OPTION_SPATIAL8;
2979                         break;
2980                 case COLOR_DEPTH_101010:
2981                         option = DITHER_OPTION_SPATIAL10;
2982                         break;
2983                 default:
2984                         option = DITHER_OPTION_DISABLE;
2985                 }
2986         }
2987
2988         if (option == DITHER_OPTION_DISABLE)
2989                 return;
2990
2991         if (option == DITHER_OPTION_TRUN6) {
2992                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2993                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2994         } else if (option == DITHER_OPTION_TRUN8 ||
2995                         option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2996                         option == DITHER_OPTION_TRUN8_FM6) {
2997                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2998                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2999         } else if (option == DITHER_OPTION_TRUN10        ||
3000                         option == DITHER_OPTION_TRUN10_SPATIAL6   ||
3001                         option == DITHER_OPTION_TRUN10_SPATIAL8   ||
3002                         option == DITHER_OPTION_TRUN10_FM8     ||
3003                         option == DITHER_OPTION_TRUN10_FM6     ||
3004                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3005                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3006                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3007         }
3008
3009         /* special case - Formatter can only reduce by 4 bits at most.
3010          * When reducing from 12 to 6 bits,
3011          * HW recommends we use trunc with round mode
3012          * (if we did nothing, trunc to 10 bits would be used)
3013          * note that any 12->10 bit reduction is ignored prior to DCE8,
3014          * as the input was 10 bits.
3015          */
3016         if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
3017                         option == DITHER_OPTION_SPATIAL6 ||
3018                         option == DITHER_OPTION_FM6) {
3019                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
3020                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
3021                 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
3022         }
3023
3024         /* spatial dither
3025          * note that spatial modes 1-3 are never used
3026          */
3027         if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
3028                         option == DITHER_OPTION_SPATIAL6 ||
3029                         option == DITHER_OPTION_TRUN10_SPATIAL6      ||
3030                         option == DITHER_OPTION_TRUN8_SPATIAL6) {
3031                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3032                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
3033                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3034                 fmt_bit_depth->flags.RGB_RANDOM =
3035                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3036         } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
3037                         option == DITHER_OPTION_SPATIAL8 ||
3038                         option == DITHER_OPTION_SPATIAL8_FM6        ||
3039                         option == DITHER_OPTION_TRUN10_SPATIAL8      ||
3040                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3041                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3042                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
3043                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3044                 fmt_bit_depth->flags.RGB_RANDOM =
3045                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3046         } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
3047                         option == DITHER_OPTION_SPATIAL10 ||
3048                         option == DITHER_OPTION_SPATIAL10_FM8 ||
3049                         option == DITHER_OPTION_SPATIAL10_FM6) {
3050                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
3051                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
3052                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
3053                 fmt_bit_depth->flags.RGB_RANDOM =
3054                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
3055         }
3056
3057         if (option == DITHER_OPTION_SPATIAL6 ||
3058                         option == DITHER_OPTION_SPATIAL8 ||
3059                         option == DITHER_OPTION_SPATIAL10) {
3060                 fmt_bit_depth->flags.FRAME_RANDOM = 0;
3061         } else {
3062                 fmt_bit_depth->flags.FRAME_RANDOM = 1;
3063         }
3064
3065         //////////////////////
3066         //// temporal dither
3067         //////////////////////
3068         if (option == DITHER_OPTION_FM6           ||
3069                         option == DITHER_OPTION_SPATIAL8_FM6     ||
3070                         option == DITHER_OPTION_SPATIAL10_FM6     ||
3071                         option == DITHER_OPTION_TRUN10_FM6     ||
3072                         option == DITHER_OPTION_TRUN8_FM6      ||
3073                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
3074                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3075                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
3076         } else if (option == DITHER_OPTION_FM8        ||
3077                         option == DITHER_OPTION_SPATIAL10_FM8  ||
3078                         option == DITHER_OPTION_TRUN10_FM8) {
3079                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3080                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
3081         } else if (option == DITHER_OPTION_FM10) {
3082                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
3083                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
3084         }
3085
3086         fmt_bit_depth->pixel_encoding = pixel_encoding;
3087 }
3088
3089 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
3090 {
3091         struct dc_link *link = stream->link;
3092         struct timing_generator *tg = dc->res_pool->timing_generators[0];
3093         enum dc_status res = DC_OK;
3094
3095         calculate_phy_pix_clks(stream);
3096
3097         if (!tg->funcs->validate_timing(tg, &stream->timing))
3098                 res = DC_FAIL_CONTROLLER_VALIDATE;
3099
3100         if (res == DC_OK) {
3101                 if (link->ep_type == DISPLAY_ENDPOINT_PHY &&
3102                                 !link->link_enc->funcs->validate_output_with_stream(
3103                                                 link->link_enc, stream))
3104                         res = DC_FAIL_ENC_VALIDATE;
3105         }
3106
3107         /* TODO: validate audio ASIC caps, encoder */
3108
3109         if (res == DC_OK)
3110                 res = dc_link_validate_mode_timing(stream,
3111                       link,
3112                       &stream->timing);
3113
3114         return res;
3115 }
3116
3117 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3118 {
3119         enum dc_status res = DC_OK;
3120
3121         /* check if surface has invalid dimensions */
3122         if (plane_state->src_rect.width == 0 || plane_state->src_rect.height == 0 ||
3123                 plane_state->dst_rect.width == 0 || plane_state->dst_rect.height == 0)
3124                 return DC_FAIL_SURFACE_VALIDATE;
3125
3126         /* TODO For now validates pixel format only */
3127         if (dc->res_pool->funcs->validate_plane)
3128                 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3129
3130         return res;
3131 }
3132
3133 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3134 {
3135         switch (format) {
3136         case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3137                 return 8;
3138         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3139         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3140                 return 12;
3141         case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3142         case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3143         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3144         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3145                 return 16;
3146         case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3147         case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3148         case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3149         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3150         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3151 #if defined(CONFIG_DRM_AMD_DC_DCN)
3152         case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3153         case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3154 #endif
3155                 return 32;
3156         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3157         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616:
3158         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3159         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3160                 return 64;
3161         default:
3162                 ASSERT_CRITICAL(false);
3163                 return -1;
3164         }
3165 }
3166 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
3167 {
3168         if (modes) {
3169                 if (modes->sample_rates.rate.RATE_192)
3170                         return 192000;
3171                 if (modes->sample_rates.rate.RATE_176_4)
3172                         return 176400;
3173                 if (modes->sample_rates.rate.RATE_96)
3174                         return 96000;
3175                 if (modes->sample_rates.rate.RATE_88_2)
3176                         return 88200;
3177                 if (modes->sample_rates.rate.RATE_48)
3178                         return 48000;
3179                 if (modes->sample_rates.rate.RATE_44_1)
3180                         return 44100;
3181                 if (modes->sample_rates.rate.RATE_32)
3182                         return 32000;
3183         }
3184         /*original logic when no audio info*/
3185         return 441000;
3186 }
3187
3188 void get_audio_check(struct audio_info *aud_modes,
3189         struct audio_check *audio_chk)
3190 {
3191         unsigned int i;
3192         unsigned int max_sample_rate = 0;
3193
3194         if (aud_modes) {
3195                 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
3196
3197                 audio_chk->max_audiosample_rate = 0;
3198                 for (i = 0; i < aud_modes->mode_count; i++) {
3199                         max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
3200                         if (audio_chk->max_audiosample_rate < max_sample_rate)
3201                                 audio_chk->max_audiosample_rate = max_sample_rate;
3202                         /*dts takes the same as type 2: AP = 0.25*/
3203                 }
3204                 /*check which one take more bandwidth*/
3205                 if (audio_chk->max_audiosample_rate > 192000)
3206                         audio_chk->audio_packet_type = 0x9;/*AP =1*/
3207                 audio_chk->acat = 0;/*not support*/
3208         }
3209 }
3210
3211 static struct hpo_dp_link_encoder *get_temp_hpo_dp_link_enc(
3212                 const struct resource_context *res_ctx,
3213                 const struct resource_pool *const pool,
3214                 const struct dc_link *link)
3215 {
3216         struct hpo_dp_link_encoder *hpo_dp_link_enc = NULL;
3217         int enc_index;
3218
3219         enc_index = find_acquired_hpo_dp_link_enc_for_link(res_ctx, link);
3220
3221         if (enc_index < 0)
3222                 enc_index = find_free_hpo_dp_link_enc(res_ctx, pool);
3223
3224         if (enc_index >= 0)
3225                 hpo_dp_link_enc = pool->hpo_dp_link_enc[enc_index];
3226
3227         return hpo_dp_link_enc;
3228 }
3229
3230 bool get_temp_dp_link_res(struct dc_link *link,
3231                 struct link_resource *link_res,
3232                 struct dc_link_settings *link_settings)
3233 {
3234         const struct dc *dc  = link->dc;
3235         const struct resource_context *res_ctx = &dc->current_state->res_ctx;
3236
3237         memset(link_res, 0, sizeof(*link_res));
3238
3239         if (dp_get_link_encoding_format(link_settings) == DP_128b_132b_ENCODING) {
3240                 link_res->hpo_dp_link_enc = get_temp_hpo_dp_link_enc(res_ctx,
3241                                 dc->res_pool, link);
3242                 if (!link_res->hpo_dp_link_enc)
3243                         return false;
3244         }
3245         return true;
3246 }
3247
3248 void reset_syncd_pipes_from_disabled_pipes(struct dc *dc,
3249                 struct dc_state *context)
3250 {
3251         int i, j;
3252         struct pipe_ctx *pipe_ctx_old, *pipe_ctx, *pipe_ctx_syncd;
3253
3254         /* If pipe backend is reset, need to reset pipe syncd status */
3255         for (i = 0; i < dc->res_pool->pipe_count; i++) {
3256                 pipe_ctx_old =  &dc->current_state->res_ctx.pipe_ctx[i];
3257                 pipe_ctx = &context->res_ctx.pipe_ctx[i];
3258
3259                 if (!pipe_ctx_old->stream)
3260                         continue;
3261
3262                 if (pipe_ctx_old->top_pipe || pipe_ctx_old->prev_odm_pipe)
3263                         continue;
3264
3265                 if (!pipe_ctx->stream ||
3266                                 pipe_need_reprogram(pipe_ctx_old, pipe_ctx)) {
3267
3268                         /* Reset all the syncd pipes from the disabled pipe */
3269                         for (j = 0; j < dc->res_pool->pipe_count; j++) {
3270                                 pipe_ctx_syncd = &context->res_ctx.pipe_ctx[j];
3271                                 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_syncd) == pipe_ctx_old->pipe_idx) ||
3272                                         !IS_PIPE_SYNCD_VALID(pipe_ctx_syncd))
3273                                         SET_PIPE_SYNCD_TO_PIPE(pipe_ctx_syncd, j);
3274                         }
3275                 }
3276         }
3277 }
3278
3279 void check_syncd_pipes_for_disabled_master_pipe(struct dc *dc,
3280         struct dc_state *context,
3281         uint8_t disabled_master_pipe_idx)
3282 {
3283         int i;
3284         struct pipe_ctx *pipe_ctx, *pipe_ctx_check;
3285
3286         pipe_ctx = &context->res_ctx.pipe_ctx[disabled_master_pipe_idx];
3287         if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx) != disabled_master_pipe_idx) ||
3288                 !IS_PIPE_SYNCD_VALID(pipe_ctx))
3289                 SET_PIPE_SYNCD_TO_PIPE(pipe_ctx, disabled_master_pipe_idx);
3290
3291         /* for the pipe disabled, check if any slave pipe exists and assert */
3292         for (i = 0; i < dc->res_pool->pipe_count; i++) {
3293                 pipe_ctx_check = &context->res_ctx.pipe_ctx[i];
3294
3295                 if ((GET_PIPE_SYNCD_FROM_PIPE(pipe_ctx_check) == disabled_master_pipe_idx) &&
3296                         IS_PIPE_SYNCD_VALID(pipe_ctx_check) && (i != disabled_master_pipe_idx))
3297                         DC_ERR("DC: Failure: pipe_idx[%d] syncd with disabled master pipe_idx[%d]\n",
3298                                 i, disabled_master_pipe_idx);
3299         }
3300 }
3301
3302 uint8_t resource_transmitter_to_phy_idx(const struct dc *dc, enum transmitter transmitter)
3303 {
3304         /* TODO - get transmitter to phy idx mapping from DMUB */
3305         uint8_t phy_idx = transmitter - TRANSMITTER_UNIPHY_A;
3306
3307 #if defined(CONFIG_DRM_AMD_DC_DCN)
3308         if (dc->ctx->dce_version == DCN_VERSION_3_1 &&
3309                         dc->ctx->asic_id.hw_internal_rev == YELLOW_CARP_B0) {
3310                 switch (transmitter) {
3311                 case TRANSMITTER_UNIPHY_A:
3312                         phy_idx = 0;
3313                         break;
3314                 case TRANSMITTER_UNIPHY_B:
3315                         phy_idx = 1;
3316                         break;
3317                 case TRANSMITTER_UNIPHY_C:
3318                         phy_idx = 5;
3319                         break;
3320                 case TRANSMITTER_UNIPHY_D:
3321                         phy_idx = 6;
3322                         break;
3323                 case TRANSMITTER_UNIPHY_E:
3324                         phy_idx = 4;
3325                         break;
3326                 default:
3327                         phy_idx = 0;
3328                         break;
3329                 }
3330         }
3331 #endif
3332         return phy_idx;
3333 }
3334
3335 const struct link_hwss *get_link_hwss(const struct dc_link *link,
3336                 const struct link_resource *link_res)
3337 {
3338         /* Link_hwss is only accessible by getter function instead of accessing
3339          * by pointers in dc with the intent to protect against breaking polymorphism.
3340          */
3341         if (can_use_hpo_dp_link_hwss(link, link_res))
3342                 /* TODO: some assumes that if decided link settings is 128b/132b
3343                  * channel coding format hpo_dp_link_enc should be used.
3344                  * Others believe that if hpo_dp_link_enc is available in link
3345                  * resource then hpo_dp_link_enc must be used. This bound between
3346                  * hpo_dp_link_enc != NULL and decided link settings is loosely coupled
3347                  * with a premise that both hpo_dp_link_enc pointer and decided link
3348                  * settings are determined based on single policy function like
3349                  * "decide_link_settings" from upper layer. This "convention"
3350                  * cannot be maintained and enforced at current level.
3351                  * Therefore a refactor is due so we can enforce a strong bound
3352                  * between those two parameters at this level.
3353                  *
3354                  * To put it simple, we want to make enforcement at low level so that
3355                  * we will not return link hwss if caller plans to do 8b/10b
3356                  * with an hpo encoder. Or we can return a very dummy one that doesn't
3357                  * do work for all functions
3358                  */
3359                 return get_hpo_dp_link_hwss();
3360         else if (can_use_dpia_link_hwss(link, link_res))
3361                 return get_dpia_link_hwss();
3362         else if (can_use_dio_link_hwss(link, link_res))
3363                 return get_dio_link_hwss();
3364         else
3365                 return get_virtual_link_hwss();
3366 }