Merge tag 'amd-drm-next-5.13-2021-04-12' of https://gitlab.freedesktop.org/agd5f...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / display / dc / core / dc_resource.c
1 /*
2  * Copyright 2012-15 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include <linux/slab.h>
27
28 #include "dm_services.h"
29
30 #include "resource.h"
31 #include "include/irq_service_interface.h"
32 #include "link_encoder.h"
33 #include "stream_encoder.h"
34 #include "opp.h"
35 #include "timing_generator.h"
36 #include "transform.h"
37 #include "dccg.h"
38 #include "dchubbub.h"
39 #include "dpp.h"
40 #include "core_types.h"
41 #include "set_mode_types.h"
42 #include "virtual/virtual_stream_encoder.h"
43 #include "dpcd_defs.h"
44
45 #if defined(CONFIG_DRM_AMD_DC_SI)
46 #include "dce60/dce60_resource.h"
47 #endif
48 #include "dce80/dce80_resource.h"
49 #include "dce100/dce100_resource.h"
50 #include "dce110/dce110_resource.h"
51 #include "dce112/dce112_resource.h"
52 #include "dce120/dce120_resource.h"
53 #if defined(CONFIG_DRM_AMD_DC_DCN)
54 #include "dcn10/dcn10_resource.h"
55 #include "dcn20/dcn20_resource.h"
56 #include "dcn21/dcn21_resource.h"
57 #include "dcn30/dcn30_resource.h"
58 #include "dcn301/dcn301_resource.h"
59 #include "dcn302/dcn302_resource.h"
60 #endif
61
62 #define DC_LOGGER_INIT(logger)
63
64 enum dce_version resource_parse_asic_id(struct hw_asic_id asic_id)
65 {
66         enum dce_version dc_version = DCE_VERSION_UNKNOWN;
67         switch (asic_id.chip_family) {
68
69 #if defined(CONFIG_DRM_AMD_DC_SI)
70         case FAMILY_SI:
71                 if (ASIC_REV_IS_TAHITI_P(asic_id.hw_internal_rev) ||
72                     ASIC_REV_IS_PITCAIRN_PM(asic_id.hw_internal_rev) ||
73                     ASIC_REV_IS_CAPEVERDE_M(asic_id.hw_internal_rev))
74                         dc_version = DCE_VERSION_6_0;
75                 else if (ASIC_REV_IS_OLAND_M(asic_id.hw_internal_rev))
76                         dc_version = DCE_VERSION_6_4;
77                 else
78                         dc_version = DCE_VERSION_6_1;
79                 break;
80 #endif
81         case FAMILY_CI:
82                 dc_version = DCE_VERSION_8_0;
83                 break;
84         case FAMILY_KV:
85                 if (ASIC_REV_IS_KALINDI(asic_id.hw_internal_rev) ||
86                     ASIC_REV_IS_BHAVANI(asic_id.hw_internal_rev) ||
87                     ASIC_REV_IS_GODAVARI(asic_id.hw_internal_rev))
88                         dc_version = DCE_VERSION_8_3;
89                 else
90                         dc_version = DCE_VERSION_8_1;
91                 break;
92         case FAMILY_CZ:
93                 dc_version = DCE_VERSION_11_0;
94                 break;
95
96         case FAMILY_VI:
97                 if (ASIC_REV_IS_TONGA_P(asic_id.hw_internal_rev) ||
98                                 ASIC_REV_IS_FIJI_P(asic_id.hw_internal_rev)) {
99                         dc_version = DCE_VERSION_10_0;
100                         break;
101                 }
102                 if (ASIC_REV_IS_POLARIS10_P(asic_id.hw_internal_rev) ||
103                                 ASIC_REV_IS_POLARIS11_M(asic_id.hw_internal_rev) ||
104                                 ASIC_REV_IS_POLARIS12_V(asic_id.hw_internal_rev)) {
105                         dc_version = DCE_VERSION_11_2;
106                 }
107                 if (ASIC_REV_IS_VEGAM(asic_id.hw_internal_rev))
108                         dc_version = DCE_VERSION_11_22;
109                 break;
110         case FAMILY_AI:
111                 if (ASICREV_IS_VEGA20_P(asic_id.hw_internal_rev))
112                         dc_version = DCE_VERSION_12_1;
113                 else
114                         dc_version = DCE_VERSION_12_0;
115                 break;
116 #if defined(CONFIG_DRM_AMD_DC_DCN)
117         case FAMILY_RV:
118                 dc_version = DCN_VERSION_1_0;
119                 if (ASICREV_IS_RAVEN2(asic_id.hw_internal_rev))
120                         dc_version = DCN_VERSION_1_01;
121                 if (ASICREV_IS_RENOIR(asic_id.hw_internal_rev))
122                         dc_version = DCN_VERSION_2_1;
123                 if (ASICREV_IS_GREEN_SARDINE(asic_id.hw_internal_rev))
124                         dc_version = DCN_VERSION_2_1;
125                 break;
126
127         case FAMILY_NV:
128                 dc_version = DCN_VERSION_2_0;
129                 if (ASICREV_IS_SIENNA_CICHLID_P(asic_id.hw_internal_rev))
130                         dc_version = DCN_VERSION_3_0;
131                 if (ASICREV_IS_DIMGREY_CAVEFISH_P(asic_id.hw_internal_rev))
132                         dc_version = DCN_VERSION_3_02;
133                 break;
134
135         case FAMILY_VGH:
136                 dc_version = DCN_VERSION_3_01;
137                 break;
138 #endif
139         default:
140                 dc_version = DCE_VERSION_UNKNOWN;
141                 break;
142         }
143         return dc_version;
144 }
145
146 struct resource_pool *dc_create_resource_pool(struct dc  *dc,
147                                               const struct dc_init_data *init_data,
148                                               enum dce_version dc_version)
149 {
150         struct resource_pool *res_pool = NULL;
151
152         switch (dc_version) {
153 #if defined(CONFIG_DRM_AMD_DC_SI)
154         case DCE_VERSION_6_0:
155                 res_pool = dce60_create_resource_pool(
156                         init_data->num_virtual_links, dc);
157                 break;
158         case DCE_VERSION_6_1:
159                 res_pool = dce61_create_resource_pool(
160                         init_data->num_virtual_links, dc);
161                 break;
162         case DCE_VERSION_6_4:
163                 res_pool = dce64_create_resource_pool(
164                         init_data->num_virtual_links, dc);
165                 break;
166 #endif
167         case DCE_VERSION_8_0:
168                 res_pool = dce80_create_resource_pool(
169                                 init_data->num_virtual_links, dc);
170                 break;
171         case DCE_VERSION_8_1:
172                 res_pool = dce81_create_resource_pool(
173                                 init_data->num_virtual_links, dc);
174                 break;
175         case DCE_VERSION_8_3:
176                 res_pool = dce83_create_resource_pool(
177                                 init_data->num_virtual_links, dc);
178                 break;
179         case DCE_VERSION_10_0:
180                 res_pool = dce100_create_resource_pool(
181                                 init_data->num_virtual_links, dc);
182                 break;
183         case DCE_VERSION_11_0:
184                 res_pool = dce110_create_resource_pool(
185                                 init_data->num_virtual_links, dc,
186                                 init_data->asic_id);
187                 break;
188         case DCE_VERSION_11_2:
189         case DCE_VERSION_11_22:
190                 res_pool = dce112_create_resource_pool(
191                                 init_data->num_virtual_links, dc);
192                 break;
193         case DCE_VERSION_12_0:
194         case DCE_VERSION_12_1:
195                 res_pool = dce120_create_resource_pool(
196                                 init_data->num_virtual_links, dc);
197                 break;
198
199 #if defined(CONFIG_DRM_AMD_DC_DCN)
200         case DCN_VERSION_1_0:
201         case DCN_VERSION_1_01:
202                 res_pool = dcn10_create_resource_pool(init_data, dc);
203                 break;
204         case DCN_VERSION_2_0:
205                 res_pool = dcn20_create_resource_pool(init_data, dc);
206                 break;
207         case DCN_VERSION_2_1:
208                 res_pool = dcn21_create_resource_pool(init_data, dc);
209                 break;
210         case DCN_VERSION_3_0:
211                 res_pool = dcn30_create_resource_pool(init_data, dc);
212                 break;
213         case DCN_VERSION_3_01:
214                 res_pool = dcn301_create_resource_pool(init_data, dc);
215                 break;
216         case DCN_VERSION_3_02:
217                 res_pool = dcn302_create_resource_pool(init_data, dc);
218                 break;
219 #endif
220         default:
221                 break;
222         }
223
224         if (res_pool != NULL) {
225                 if (dc->ctx->dc_bios->fw_info_valid) {
226                         res_pool->ref_clocks.xtalin_clock_inKhz =
227                                 dc->ctx->dc_bios->fw_info.pll_info.crystal_frequency;
228                         /* initialize with firmware data first, no all
229                          * ASIC have DCCG SW component. FPGA or
230                          * simulation need initialization of
231                          * dccg_ref_clock_inKhz, dchub_ref_clock_inKhz
232                          * with xtalin_clock_inKhz
233                          */
234                         res_pool->ref_clocks.dccg_ref_clock_inKhz =
235                                 res_pool->ref_clocks.xtalin_clock_inKhz;
236                         res_pool->ref_clocks.dchub_ref_clock_inKhz =
237                                 res_pool->ref_clocks.xtalin_clock_inKhz;
238                 } else
239                         ASSERT_CRITICAL(false);
240         }
241
242         return res_pool;
243 }
244
245 void dc_destroy_resource_pool(struct dc  *dc)
246 {
247         if (dc) {
248                 if (dc->res_pool)
249                         dc->res_pool->funcs->destroy(&dc->res_pool);
250
251                 kfree(dc->hwseq);
252         }
253 }
254
255 static void update_num_audio(
256         const struct resource_straps *straps,
257         unsigned int *num_audio,
258         struct audio_support *aud_support)
259 {
260         aud_support->dp_audio = true;
261         aud_support->hdmi_audio_native = false;
262         aud_support->hdmi_audio_on_dongle = false;
263
264         if (straps->hdmi_disable == 0) {
265                 if (straps->dc_pinstraps_audio & 0x2) {
266                         aud_support->hdmi_audio_on_dongle = true;
267                         aud_support->hdmi_audio_native = true;
268                 }
269         }
270
271         switch (straps->audio_stream_number) {
272         case 0: /* multi streams supported */
273                 break;
274         case 1: /* multi streams not supported */
275                 *num_audio = 1;
276                 break;
277         default:
278                 DC_ERR("DC: unexpected audio fuse!\n");
279         }
280 }
281
282 bool resource_construct(
283         unsigned int num_virtual_links,
284         struct dc  *dc,
285         struct resource_pool *pool,
286         const struct resource_create_funcs *create_funcs)
287 {
288         struct dc_context *ctx = dc->ctx;
289         const struct resource_caps *caps = pool->res_cap;
290         int i;
291         unsigned int num_audio = caps->num_audio;
292         struct resource_straps straps = {0};
293
294         if (create_funcs->read_dce_straps)
295                 create_funcs->read_dce_straps(dc->ctx, &straps);
296
297         pool->audio_count = 0;
298         if (create_funcs->create_audio) {
299                 /* find the total number of streams available via the
300                  * AZALIA_F0_CODEC_PIN_CONTROL_RESPONSE_CONFIGURATION_DEFAULT
301                  * registers (one for each pin) starting from pin 1
302                  * up to the max number of audio pins.
303                  * We stop on the first pin where
304                  * PORT_CONNECTIVITY == 1 (as instructed by HW team).
305                  */
306                 update_num_audio(&straps, &num_audio, &pool->audio_support);
307                 for (i = 0; i < caps->num_audio; i++) {
308                         struct audio *aud = create_funcs->create_audio(ctx, i);
309
310                         if (aud == NULL) {
311                                 DC_ERR("DC: failed to create audio!\n");
312                                 return false;
313                         }
314                         if (!aud->funcs->endpoint_valid(aud)) {
315                                 aud->funcs->destroy(&aud);
316                                 break;
317                         }
318                         pool->audios[i] = aud;
319                         pool->audio_count++;
320                 }
321         }
322
323         pool->stream_enc_count = 0;
324         if (create_funcs->create_stream_encoder) {
325                 for (i = 0; i < caps->num_stream_encoder; i++) {
326                         pool->stream_enc[i] = create_funcs->create_stream_encoder(i, ctx);
327                         if (pool->stream_enc[i] == NULL)
328                                 DC_ERR("DC: failed to create stream_encoder!\n");
329                         pool->stream_enc_count++;
330                 }
331         }
332
333 #if defined(CONFIG_DRM_AMD_DC_DCN)
334         for (i = 0; i < caps->num_mpc_3dlut; i++) {
335                 pool->mpc_lut[i] = dc_create_3dlut_func();
336                 if (pool->mpc_lut[i] == NULL)
337                         DC_ERR("DC: failed to create MPC 3dlut!\n");
338                 pool->mpc_shaper[i] = dc_create_transfer_func();
339                 if (pool->mpc_shaper[i] == NULL)
340                         DC_ERR("DC: failed to create MPC shaper!\n");
341         }
342 #endif
343         dc->caps.dynamic_audio = false;
344         if (pool->audio_count < pool->stream_enc_count) {
345                 dc->caps.dynamic_audio = true;
346         }
347         for (i = 0; i < num_virtual_links; i++) {
348                 pool->stream_enc[pool->stream_enc_count] =
349                         virtual_stream_encoder_create(
350                                         ctx, ctx->dc_bios);
351                 if (pool->stream_enc[pool->stream_enc_count] == NULL) {
352                         DC_ERR("DC: failed to create stream_encoder!\n");
353                         return false;
354                 }
355                 pool->stream_enc_count++;
356         }
357
358         dc->hwseq = create_funcs->create_hwseq(ctx);
359
360         return true;
361 }
362 static int find_matching_clock_source(
363                 const struct resource_pool *pool,
364                 struct clock_source *clock_source)
365 {
366
367         int i;
368
369         for (i = 0; i < pool->clk_src_count; i++) {
370                 if (pool->clock_sources[i] == clock_source)
371                         return i;
372         }
373         return -1;
374 }
375
376 void resource_unreference_clock_source(
377                 struct resource_context *res_ctx,
378                 const struct resource_pool *pool,
379                 struct clock_source *clock_source)
380 {
381         int i = find_matching_clock_source(pool, clock_source);
382
383         if (i > -1)
384                 res_ctx->clock_source_ref_count[i]--;
385
386         if (pool->dp_clock_source == clock_source)
387                 res_ctx->dp_clock_source_ref_count--;
388 }
389
390 void resource_reference_clock_source(
391                 struct resource_context *res_ctx,
392                 const struct resource_pool *pool,
393                 struct clock_source *clock_source)
394 {
395         int i = find_matching_clock_source(pool, clock_source);
396
397         if (i > -1)
398                 res_ctx->clock_source_ref_count[i]++;
399
400         if (pool->dp_clock_source == clock_source)
401                 res_ctx->dp_clock_source_ref_count++;
402 }
403
404 int resource_get_clock_source_reference(
405                 struct resource_context *res_ctx,
406                 const struct resource_pool *pool,
407                 struct clock_source *clock_source)
408 {
409         int i = find_matching_clock_source(pool, clock_source);
410
411         if (i > -1)
412                 return res_ctx->clock_source_ref_count[i];
413
414         if (pool->dp_clock_source == clock_source)
415                 return res_ctx->dp_clock_source_ref_count;
416
417         return -1;
418 }
419
420 bool resource_are_vblanks_synchronizable(
421         struct dc_stream_state *stream1,
422         struct dc_stream_state *stream2)
423 {
424         uint32_t base60_refresh_rates[] = {10, 20, 5};
425         uint8_t i;
426         uint8_t rr_count = sizeof(base60_refresh_rates)/sizeof(base60_refresh_rates[0]);
427         uint64_t frame_time_diff;
428
429         if (stream1->ctx->dc->config.vblank_alignment_dto_params &&
430                 stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff > 0 &&
431                 dc_is_dp_signal(stream1->signal) &&
432                 dc_is_dp_signal(stream2->signal) &&
433                 false == stream1->has_non_synchronizable_pclk &&
434                 false == stream2->has_non_synchronizable_pclk &&
435                 stream1->timing.flags.VBLANK_SYNCHRONIZABLE &&
436                 stream2->timing.flags.VBLANK_SYNCHRONIZABLE) {
437                 /* disable refresh rates higher than 60Hz for now */
438                 if (stream1->timing.pix_clk_100hz*100/stream1->timing.h_total/
439                                 stream1->timing.v_total > 60)
440                         return false;
441                 if (stream2->timing.pix_clk_100hz*100/stream2->timing.h_total/
442                                 stream2->timing.v_total > 60)
443                         return false;
444                 frame_time_diff = (uint64_t)10000 *
445                         stream1->timing.h_total *
446                         stream1->timing.v_total *
447                         stream2->timing.pix_clk_100hz;
448                 frame_time_diff = div_u64(frame_time_diff, stream1->timing.pix_clk_100hz);
449                 frame_time_diff = div_u64(frame_time_diff, stream2->timing.h_total);
450                 frame_time_diff = div_u64(frame_time_diff, stream2->timing.v_total);
451                 for (i = 0; i < rr_count; i++) {
452                         int64_t diff = (int64_t)div_u64(frame_time_diff * base60_refresh_rates[i], 10) - 10000;
453
454                         if (diff < 0)
455                                 diff = -diff;
456                         if (diff < stream1->ctx->dc->config.vblank_alignment_max_frame_time_diff)
457                                 return true;
458                 }
459         }
460         return false;
461 }
462
463 bool resource_are_streams_timing_synchronizable(
464         struct dc_stream_state *stream1,
465         struct dc_stream_state *stream2)
466 {
467         if (stream1->timing.h_total != stream2->timing.h_total)
468                 return false;
469
470         if (stream1->timing.v_total != stream2->timing.v_total)
471                 return false;
472
473         if (stream1->timing.h_addressable
474                                 != stream2->timing.h_addressable)
475                 return false;
476
477         if (stream1->timing.v_addressable
478                                 != stream2->timing.v_addressable)
479                 return false;
480
481         if (stream1->timing.v_front_porch
482                                 != stream2->timing.v_front_porch)
483                 return false;
484
485         if (stream1->timing.pix_clk_100hz
486                                 != stream2->timing.pix_clk_100hz)
487                 return false;
488
489         if (stream1->clamping.c_depth != stream2->clamping.c_depth)
490                 return false;
491
492         if (stream1->phy_pix_clk != stream2->phy_pix_clk
493                         && (!dc_is_dp_signal(stream1->signal)
494                         || !dc_is_dp_signal(stream2->signal)))
495                 return false;
496
497         if (stream1->view_format != stream2->view_format)
498                 return false;
499
500         if (stream1->ignore_msa_timing_param || stream2->ignore_msa_timing_param)
501                 return false;
502
503         return true;
504 }
505 static bool is_dp_and_hdmi_sharable(
506                 struct dc_stream_state *stream1,
507                 struct dc_stream_state *stream2)
508 {
509         if (stream1->ctx->dc->caps.disable_dp_clk_share)
510                 return false;
511
512         if (stream1->clamping.c_depth != COLOR_DEPTH_888 ||
513                 stream2->clamping.c_depth != COLOR_DEPTH_888)
514                 return false;
515
516         return true;
517
518 }
519
520 static bool is_sharable_clk_src(
521         const struct pipe_ctx *pipe_with_clk_src,
522         const struct pipe_ctx *pipe)
523 {
524         if (pipe_with_clk_src->clock_source == NULL)
525                 return false;
526
527         if (pipe_with_clk_src->stream->signal == SIGNAL_TYPE_VIRTUAL)
528                 return false;
529
530         if (dc_is_dp_signal(pipe_with_clk_src->stream->signal) ||
531                 (dc_is_dp_signal(pipe->stream->signal) &&
532                 !is_dp_and_hdmi_sharable(pipe_with_clk_src->stream,
533                                      pipe->stream)))
534                 return false;
535
536         if (dc_is_hdmi_signal(pipe_with_clk_src->stream->signal)
537                         && dc_is_dual_link_signal(pipe->stream->signal))
538                 return false;
539
540         if (dc_is_hdmi_signal(pipe->stream->signal)
541                         && dc_is_dual_link_signal(pipe_with_clk_src->stream->signal))
542                 return false;
543
544         if (!resource_are_streams_timing_synchronizable(
545                         pipe_with_clk_src->stream, pipe->stream))
546                 return false;
547
548         return true;
549 }
550
551 struct clock_source *resource_find_used_clk_src_for_sharing(
552                                         struct resource_context *res_ctx,
553                                         struct pipe_ctx *pipe_ctx)
554 {
555         int i;
556
557         for (i = 0; i < MAX_PIPES; i++) {
558                 if (is_sharable_clk_src(&res_ctx->pipe_ctx[i], pipe_ctx))
559                         return res_ctx->pipe_ctx[i].clock_source;
560         }
561
562         return NULL;
563 }
564
565 static enum pixel_format convert_pixel_format_to_dalsurface(
566                 enum surface_pixel_format surface_pixel_format)
567 {
568         enum pixel_format dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
569
570         switch (surface_pixel_format) {
571         case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
572                 dal_pixel_format = PIXEL_FORMAT_INDEX8;
573                 break;
574         case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
575                 dal_pixel_format = PIXEL_FORMAT_RGB565;
576                 break;
577         case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
578                 dal_pixel_format = PIXEL_FORMAT_RGB565;
579                 break;
580         case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
581                 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
582                 break;
583         case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
584                 dal_pixel_format = PIXEL_FORMAT_ARGB8888;
585                 break;
586         case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
587                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
588                 break;
589         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
590                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010;
591                 break;
592         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
593                 dal_pixel_format = PIXEL_FORMAT_ARGB2101010_XRBIAS;
594                 break;
595         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
596         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
597                 dal_pixel_format = PIXEL_FORMAT_FP16;
598                 break;
599         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
600         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
601                 dal_pixel_format = PIXEL_FORMAT_420BPP8;
602                 break;
603         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
604         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
605                 dal_pixel_format = PIXEL_FORMAT_420BPP10;
606                 break;
607         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
608         default:
609                 dal_pixel_format = PIXEL_FORMAT_UNKNOWN;
610                 break;
611         }
612         return dal_pixel_format;
613 }
614
615 static inline void get_vp_scan_direction(
616         enum dc_rotation_angle rotation,
617         bool horizontal_mirror,
618         bool *orthogonal_rotation,
619         bool *flip_vert_scan_dir,
620         bool *flip_horz_scan_dir)
621 {
622         *orthogonal_rotation = false;
623         *flip_vert_scan_dir = false;
624         *flip_horz_scan_dir = false;
625         if (rotation == ROTATION_ANGLE_180) {
626                 *flip_vert_scan_dir = true;
627                 *flip_horz_scan_dir = true;
628         } else if (rotation == ROTATION_ANGLE_90) {
629                 *orthogonal_rotation = true;
630                 *flip_horz_scan_dir = true;
631         } else if (rotation == ROTATION_ANGLE_270) {
632                 *orthogonal_rotation = true;
633                 *flip_vert_scan_dir = true;
634         }
635
636         if (horizontal_mirror)
637                 *flip_horz_scan_dir = !*flip_horz_scan_dir;
638 }
639
640 int get_num_mpc_splits(struct pipe_ctx *pipe)
641 {
642         int mpc_split_count = 0;
643         struct pipe_ctx *other_pipe = pipe->bottom_pipe;
644
645         while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
646                 mpc_split_count++;
647                 other_pipe = other_pipe->bottom_pipe;
648         }
649         other_pipe = pipe->top_pipe;
650         while (other_pipe && other_pipe->plane_state == pipe->plane_state) {
651                 mpc_split_count++;
652                 other_pipe = other_pipe->top_pipe;
653         }
654
655         return mpc_split_count;
656 }
657
658 int get_num_odm_splits(struct pipe_ctx *pipe)
659 {
660         int odm_split_count = 0;
661         struct pipe_ctx *next_pipe = pipe->next_odm_pipe;
662         while (next_pipe) {
663                 odm_split_count++;
664                 next_pipe = next_pipe->next_odm_pipe;
665         }
666         pipe = pipe->prev_odm_pipe;
667         while (pipe) {
668                 odm_split_count++;
669                 pipe = pipe->prev_odm_pipe;
670         }
671         return odm_split_count;
672 }
673
674 static void calculate_split_count_and_index(struct pipe_ctx *pipe_ctx, int *split_count, int *split_idx)
675 {
676         *split_count = get_num_odm_splits(pipe_ctx);
677         *split_idx = 0;
678         if (*split_count == 0) {
679                 /*Check for mpc split*/
680                 struct pipe_ctx *split_pipe = pipe_ctx->top_pipe;
681
682                 *split_count = get_num_mpc_splits(pipe_ctx);
683                 while (split_pipe && split_pipe->plane_state == pipe_ctx->plane_state) {
684                         (*split_idx)++;
685                         split_pipe = split_pipe->top_pipe;
686                 }
687         } else {
688                 /*Get odm split index*/
689                 struct pipe_ctx *split_pipe = pipe_ctx->prev_odm_pipe;
690
691                 while (split_pipe) {
692                         (*split_idx)++;
693                         split_pipe = split_pipe->prev_odm_pipe;
694                 }
695         }
696 }
697
698 static void calculate_viewport(struct pipe_ctx *pipe_ctx)
699 {
700         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
701         const struct dc_stream_state *stream = pipe_ctx->stream;
702         struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
703         struct rect surf_src = plane_state->src_rect;
704         struct rect clip, dest;
705         int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
706                         || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
707         int split_count = 0;
708         int split_idx = 0;
709         bool orthogonal_rotation, flip_y_start, flip_x_start;
710
711         calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
712
713         if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE ||
714                 stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM) {
715                 split_count = 0;
716                 split_idx = 0;
717         }
718
719         /* The actual clip is an intersection between stream
720          * source and surface clip
721          */
722         dest = plane_state->dst_rect;
723         clip.x = stream->src.x > plane_state->clip_rect.x ?
724                         stream->src.x : plane_state->clip_rect.x;
725
726         clip.width = stream->src.x + stream->src.width <
727                         plane_state->clip_rect.x + plane_state->clip_rect.width ?
728                         stream->src.x + stream->src.width - clip.x :
729                         plane_state->clip_rect.x + plane_state->clip_rect.width - clip.x ;
730
731         clip.y = stream->src.y > plane_state->clip_rect.y ?
732                         stream->src.y : plane_state->clip_rect.y;
733
734         clip.height = stream->src.y + stream->src.height <
735                         plane_state->clip_rect.y + plane_state->clip_rect.height ?
736                         stream->src.y + stream->src.height - clip.y :
737                         plane_state->clip_rect.y + plane_state->clip_rect.height - clip.y ;
738
739         /*
740          * Need to calculate how scan origin is shifted in vp space
741          * to correctly rotate clip and dst
742          */
743         get_vp_scan_direction(
744                         plane_state->rotation,
745                         plane_state->horizontal_mirror,
746                         &orthogonal_rotation,
747                         &flip_y_start,
748                         &flip_x_start);
749
750         if (orthogonal_rotation) {
751                 swap(clip.x, clip.y);
752                 swap(clip.width, clip.height);
753                 swap(dest.x, dest.y);
754                 swap(dest.width, dest.height);
755         }
756         if (flip_x_start) {
757                 clip.x = dest.x + dest.width - clip.x - clip.width;
758                 dest.x = 0;
759         }
760         if (flip_y_start) {
761                 clip.y = dest.y + dest.height - clip.y - clip.height;
762                 dest.y = 0;
763         }
764
765         /* offset = surf_src.ofs + (clip.ofs - surface->dst_rect.ofs) * scl_ratio
766          * num_pixels = clip.num_pix * scl_ratio
767          */
768         data->viewport.x = surf_src.x + (clip.x - dest.x) * surf_src.width / dest.width;
769         data->viewport.width = clip.width * surf_src.width / dest.width;
770
771         data->viewport.y = surf_src.y + (clip.y - dest.y) * surf_src.height / dest.height;
772         data->viewport.height = clip.height * surf_src.height / dest.height;
773
774         /* Handle split */
775         if (split_count) {
776                 /* extra pixels in the division remainder need to go to pipes after
777                  * the extra pixel index minus one(epimo) defined here as:
778                  */
779                 int epimo = 0;
780
781                 if (orthogonal_rotation) {
782                         if (flip_y_start)
783                                 split_idx = split_count - split_idx;
784
785                         epimo = split_count - data->viewport.height % (split_count + 1);
786
787                         data->viewport.y += (data->viewport.height / (split_count + 1)) * split_idx;
788                         if (split_idx > epimo)
789                                 data->viewport.y += split_idx - epimo - 1;
790                         data->viewport.height = data->viewport.height / (split_count + 1) + (split_idx > epimo ? 1 : 0);
791                 } else {
792                         if (flip_x_start)
793                                 split_idx = split_count - split_idx;
794
795                         epimo = split_count - data->viewport.width % (split_count + 1);
796
797                         data->viewport.x += (data->viewport.width / (split_count + 1)) * split_idx;
798                         if (split_idx > epimo)
799                                 data->viewport.x += split_idx - epimo - 1;
800                         data->viewport.width = data->viewport.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
801                 }
802         }
803
804         /* Round down, compensate in init */
805         data->viewport_c.x = data->viewport.x / vpc_div;
806         data->viewport_c.y = data->viewport.y / vpc_div;
807         data->inits.h_c = (data->viewport.x % vpc_div) != 0 ? dc_fixpt_half : dc_fixpt_zero;
808         data->inits.v_c = (data->viewport.y % vpc_div) != 0 ? dc_fixpt_half : dc_fixpt_zero;
809
810         /* Round up, assume original video size always even dimensions */
811         data->viewport_c.width = (data->viewport.width + vpc_div - 1) / vpc_div;
812         data->viewport_c.height = (data->viewport.height + vpc_div - 1) / vpc_div;
813
814         data->viewport_unadjusted = data->viewport;
815         data->viewport_c_unadjusted = data->viewport_c;
816 }
817
818 static void calculate_recout(struct pipe_ctx *pipe_ctx)
819 {
820         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
821         const struct dc_stream_state *stream = pipe_ctx->stream;
822         struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
823         struct rect surf_clip = plane_state->clip_rect;
824         bool pri_split_tb = pipe_ctx->bottom_pipe &&
825                         pipe_ctx->bottom_pipe->plane_state == pipe_ctx->plane_state &&
826                         stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
827         bool sec_split_tb = pipe_ctx->top_pipe &&
828                         pipe_ctx->top_pipe->plane_state == pipe_ctx->plane_state &&
829                         stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM;
830         int split_count = 0;
831         int split_idx = 0;
832
833         calculate_split_count_and_index(pipe_ctx, &split_count, &split_idx);
834
835         /*
836          * Only the leftmost ODM pipe should be offset by a nonzero distance
837          */
838         if (!pipe_ctx->prev_odm_pipe) {
839                 data->recout.x = stream->dst.x;
840                 if (stream->src.x < surf_clip.x)
841                         data->recout.x += (surf_clip.x - stream->src.x) * stream->dst.width
842                                                 / stream->src.width;
843
844         } else
845                 data->recout.x = 0;
846
847         if (stream->src.x > surf_clip.x)
848                 surf_clip.width -= stream->src.x - surf_clip.x;
849         data->recout.width = surf_clip.width * stream->dst.width / stream->src.width;
850         if (data->recout.width + data->recout.x > stream->dst.x + stream->dst.width)
851                 data->recout.width = stream->dst.x + stream->dst.width - data->recout.x;
852
853         data->recout.y = stream->dst.y;
854         if (stream->src.y < surf_clip.y)
855                 data->recout.y += (surf_clip.y - stream->src.y) * stream->dst.height
856                                                 / stream->src.height;
857         else if (stream->src.y > surf_clip.y)
858                 surf_clip.height -= stream->src.y - surf_clip.y;
859
860         data->recout.height = surf_clip.height * stream->dst.height / stream->src.height;
861         if (data->recout.height + data->recout.y > stream->dst.y + stream->dst.height)
862                 data->recout.height = stream->dst.y + stream->dst.height - data->recout.y;
863
864         /* Handle h & v split, handle rotation using viewport */
865         if (sec_split_tb) {
866                 data->recout.y += data->recout.height / 2;
867                 /* Floor primary pipe, ceil 2ndary pipe */
868                 data->recout.height = (data->recout.height + 1) / 2;
869         } else if (pri_split_tb)
870                 data->recout.height /= 2;
871         else if (split_count) {
872                 /* extra pixels in the division remainder need to go to pipes after
873                  * the extra pixel index minus one(epimo) defined here as:
874                  */
875                 int epimo = split_count - data->recout.width % (split_count + 1);
876
877                 /*no recout offset due to odm */
878                 if (!pipe_ctx->next_odm_pipe && !pipe_ctx->prev_odm_pipe) {
879                         data->recout.x += (data->recout.width / (split_count + 1)) * split_idx;
880                         if (split_idx > epimo)
881                                 data->recout.x += split_idx - epimo - 1;
882                 }
883                 data->recout.width = data->recout.width / (split_count + 1) + (split_idx > epimo ? 1 : 0);
884         }
885 }
886
887 static void calculate_scaling_ratios(struct pipe_ctx *pipe_ctx)
888 {
889         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
890         const struct dc_stream_state *stream = pipe_ctx->stream;
891         struct rect surf_src = plane_state->src_rect;
892         const int in_w = stream->src.width;
893         const int in_h = stream->src.height;
894         const int out_w = stream->dst.width;
895         const int out_h = stream->dst.height;
896
897         /*Swap surf_src height and width since scaling ratios are in recout rotation*/
898         if (pipe_ctx->plane_state->rotation == ROTATION_ANGLE_90 ||
899                         pipe_ctx->plane_state->rotation == ROTATION_ANGLE_270)
900                 swap(surf_src.height, surf_src.width);
901
902         pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_from_fraction(
903                                         surf_src.width,
904                                         plane_state->dst_rect.width);
905         pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_from_fraction(
906                                         surf_src.height,
907                                         plane_state->dst_rect.height);
908
909         if (stream->view_format == VIEW_3D_FORMAT_SIDE_BY_SIDE)
910                 pipe_ctx->plane_res.scl_data.ratios.horz.value *= 2;
911         else if (stream->view_format == VIEW_3D_FORMAT_TOP_AND_BOTTOM)
912                 pipe_ctx->plane_res.scl_data.ratios.vert.value *= 2;
913
914         pipe_ctx->plane_res.scl_data.ratios.vert.value = div64_s64(
915                 pipe_ctx->plane_res.scl_data.ratios.vert.value * in_h, out_h);
916         pipe_ctx->plane_res.scl_data.ratios.horz.value = div64_s64(
917                 pipe_ctx->plane_res.scl_data.ratios.horz.value * in_w, out_w);
918
919         pipe_ctx->plane_res.scl_data.ratios.horz_c = pipe_ctx->plane_res.scl_data.ratios.horz;
920         pipe_ctx->plane_res.scl_data.ratios.vert_c = pipe_ctx->plane_res.scl_data.ratios.vert;
921
922         if (pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP8
923                         || pipe_ctx->plane_res.scl_data.format == PIXEL_FORMAT_420BPP10) {
924                 pipe_ctx->plane_res.scl_data.ratios.horz_c.value /= 2;
925                 pipe_ctx->plane_res.scl_data.ratios.vert_c.value /= 2;
926         }
927         pipe_ctx->plane_res.scl_data.ratios.horz = dc_fixpt_truncate(
928                         pipe_ctx->plane_res.scl_data.ratios.horz, 19);
929         pipe_ctx->plane_res.scl_data.ratios.vert = dc_fixpt_truncate(
930                         pipe_ctx->plane_res.scl_data.ratios.vert, 19);
931         pipe_ctx->plane_res.scl_data.ratios.horz_c = dc_fixpt_truncate(
932                         pipe_ctx->plane_res.scl_data.ratios.horz_c, 19);
933         pipe_ctx->plane_res.scl_data.ratios.vert_c = dc_fixpt_truncate(
934                         pipe_ctx->plane_res.scl_data.ratios.vert_c, 19);
935 }
936
937 static inline void adjust_vp_and_init_for_seamless_clip(
938                 bool flip_scan_dir,
939                 int recout_skip,
940                 int src_size,
941                 int taps,
942                 struct fixed31_32 ratio,
943                 struct fixed31_32 *init,
944                 int *vp_offset,
945                 int *vp_size)
946 {
947         if (!flip_scan_dir) {
948                 /* Adjust for viewport end clip-off */
949                 if ((*vp_offset + *vp_size) < src_size) {
950                         int vp_clip = src_size - *vp_size - *vp_offset;
951                         int int_part = dc_fixpt_floor(dc_fixpt_sub(*init, ratio));
952
953                         int_part = int_part > 0 ? int_part : 0;
954                         *vp_size += int_part < vp_clip ? int_part : vp_clip;
955                 }
956
957                 /* Adjust for non-0 viewport offset */
958                 if (*vp_offset) {
959                         int int_part;
960
961                         *init = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_skip));
962                         int_part = dc_fixpt_floor(*init) - *vp_offset;
963                         if (int_part < taps) {
964                                 int int_adj = *vp_offset >= (taps - int_part) ?
965                                                         (taps - int_part) : *vp_offset;
966                                 *vp_offset -= int_adj;
967                                 *vp_size += int_adj;
968                                 int_part += int_adj;
969                         } else if (int_part > taps) {
970                                 *vp_offset += int_part - taps;
971                                 *vp_size -= int_part - taps;
972                                 int_part = taps;
973                         }
974                         init->value &= 0xffffffff;
975                         *init = dc_fixpt_add_int(*init, int_part);
976                 }
977         } else {
978                 /* Adjust for non-0 viewport offset */
979                 if (*vp_offset) {
980                         int int_part = dc_fixpt_floor(dc_fixpt_sub(*init, ratio));
981
982                         int_part = int_part > 0 ? int_part : 0;
983                         *vp_size += int_part < *vp_offset ? int_part : *vp_offset;
984                         *vp_offset -= int_part < *vp_offset ? int_part : *vp_offset;
985                 }
986
987                 /* Adjust for viewport end clip-off */
988                 if ((*vp_offset + *vp_size) < src_size) {
989                         int int_part;
990                         int end_offset = src_size - *vp_offset - *vp_size;
991
992                         /*
993                          * this is init if vp had no offset, keep in mind this is from the
994                          * right side of vp due to scan direction
995                          */
996                         *init = dc_fixpt_add(*init, dc_fixpt_mul_int(ratio, recout_skip));
997                         /*
998                          * this is the difference between first pixel of viewport available to read
999                          * and init position, takning into account scan direction
1000                          */
1001                         int_part = dc_fixpt_floor(*init) - end_offset;
1002                         if (int_part < taps) {
1003                                 int int_adj = end_offset >= (taps - int_part) ?
1004                                                         (taps - int_part) : end_offset;
1005                                 *vp_size += int_adj;
1006                                 int_part += int_adj;
1007                         } else if (int_part > taps) {
1008                                 *vp_size += int_part - taps;
1009                                 int_part = taps;
1010                         }
1011                         init->value &= 0xffffffff;
1012                         *init = dc_fixpt_add_int(*init, int_part);
1013                 }
1014         }
1015 }
1016
1017 static void calculate_inits_and_adj_vp(struct pipe_ctx *pipe_ctx)
1018 {
1019         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1020         const struct dc_stream_state *stream = pipe_ctx->stream;
1021         struct pipe_ctx *odm_pipe = pipe_ctx;
1022         struct scaler_data *data = &pipe_ctx->plane_res.scl_data;
1023         struct rect src = pipe_ctx->plane_state->src_rect;
1024         int recout_skip_h, recout_skip_v, surf_size_h, surf_size_v;
1025         int vpc_div = (data->format == PIXEL_FORMAT_420BPP8
1026                         || data->format == PIXEL_FORMAT_420BPP10) ? 2 : 1;
1027         bool orthogonal_rotation, flip_vert_scan_dir, flip_horz_scan_dir;
1028         int odm_idx = 0;
1029
1030         /*
1031          * Need to calculate the scan direction for viewport to make adjustments
1032          */
1033         get_vp_scan_direction(
1034                         plane_state->rotation,
1035                         plane_state->horizontal_mirror,
1036                         &orthogonal_rotation,
1037                         &flip_vert_scan_dir,
1038                         &flip_horz_scan_dir);
1039
1040         /* Calculate src rect rotation adjusted to recout space */
1041         surf_size_h = src.x + src.width;
1042         surf_size_v = src.y + src.height;
1043         if (flip_horz_scan_dir)
1044                 src.x = 0;
1045         if (flip_vert_scan_dir)
1046                 src.y = 0;
1047         if (orthogonal_rotation) {
1048                 swap(src.x, src.y);
1049                 swap(src.width, src.height);
1050         }
1051
1052         /*modified recout_skip_h calculation due to odm having no recout offset*/
1053         while (odm_pipe->prev_odm_pipe) {
1054                 odm_idx++;
1055                 odm_pipe = odm_pipe->prev_odm_pipe;
1056         }
1057         /*odm_pipe is the leftmost pipe in the ODM group*/
1058         recout_skip_h = odm_idx * data->recout.width;
1059
1060         /* Recout matching initial vp offset = recout_offset - (stream dst offset +
1061          *                      ((surf dst offset - stream src offset) * 1/ stream scaling ratio)
1062          *                      - (surf surf_src offset * 1/ full scl ratio))
1063          */
1064         recout_skip_h += odm_pipe->plane_res.scl_data.recout.x
1065                                 - (stream->dst.x + (plane_state->dst_rect.x - stream->src.x)
1066                                         * stream->dst.width / stream->src.width -
1067                                         src.x * plane_state->dst_rect.width / src.width
1068                                         * stream->dst.width / stream->src.width);
1069
1070
1071         recout_skip_v = data->recout.y - (stream->dst.y + (plane_state->dst_rect.y - stream->src.y)
1072                                         * stream->dst.height / stream->src.height -
1073                                         src.y * plane_state->dst_rect.height / src.height
1074                                         * stream->dst.height / stream->src.height);
1075         if (orthogonal_rotation)
1076                 swap(recout_skip_h, recout_skip_v);
1077         /*
1078          * Init calculated according to formula:
1079          *      init = (scaling_ratio + number_of_taps + 1) / 2
1080          *      init_bot = init + scaling_ratio
1081          *      init_c = init + truncated_vp_c_offset(from calculate viewport)
1082          */
1083         data->inits.h = dc_fixpt_truncate(dc_fixpt_div_int(
1084                         dc_fixpt_add_int(data->ratios.horz, data->taps.h_taps + 1), 2), 19);
1085
1086         data->inits.h_c = dc_fixpt_truncate(dc_fixpt_add(data->inits.h_c, dc_fixpt_div_int(
1087                         dc_fixpt_add_int(data->ratios.horz_c, data->taps.h_taps_c + 1), 2)), 19);
1088
1089         data->inits.v = dc_fixpt_truncate(dc_fixpt_div_int(
1090                         dc_fixpt_add_int(data->ratios.vert, data->taps.v_taps + 1), 2), 19);
1091
1092         data->inits.v_c = dc_fixpt_truncate(dc_fixpt_add(data->inits.v_c, dc_fixpt_div_int(
1093                         dc_fixpt_add_int(data->ratios.vert_c, data->taps.v_taps_c + 1), 2)), 19);
1094
1095         /*
1096          * Taps, inits and scaling ratios are in recout space need to rotate
1097          * to viewport rotation before adjustment
1098          */
1099         adjust_vp_and_init_for_seamless_clip(
1100                         flip_horz_scan_dir,
1101                         recout_skip_h,
1102                         surf_size_h,
1103                         orthogonal_rotation ? data->taps.v_taps : data->taps.h_taps,
1104                         orthogonal_rotation ? data->ratios.vert : data->ratios.horz,
1105                         orthogonal_rotation ? &data->inits.v : &data->inits.h,
1106                         &data->viewport.x,
1107                         &data->viewport.width);
1108         adjust_vp_and_init_for_seamless_clip(
1109                         flip_horz_scan_dir,
1110                         recout_skip_h,
1111                         surf_size_h / vpc_div,
1112                         orthogonal_rotation ? data->taps.v_taps_c : data->taps.h_taps_c,
1113                         orthogonal_rotation ? data->ratios.vert_c : data->ratios.horz_c,
1114                         orthogonal_rotation ? &data->inits.v_c : &data->inits.h_c,
1115                         &data->viewport_c.x,
1116                         &data->viewport_c.width);
1117         adjust_vp_and_init_for_seamless_clip(
1118                         flip_vert_scan_dir,
1119                         recout_skip_v,
1120                         surf_size_v,
1121                         orthogonal_rotation ? data->taps.h_taps : data->taps.v_taps,
1122                         orthogonal_rotation ? data->ratios.horz : data->ratios.vert,
1123                         orthogonal_rotation ? &data->inits.h : &data->inits.v,
1124                         &data->viewport.y,
1125                         &data->viewport.height);
1126         adjust_vp_and_init_for_seamless_clip(
1127                         flip_vert_scan_dir,
1128                         recout_skip_v,
1129                         surf_size_v / vpc_div,
1130                         orthogonal_rotation ? data->taps.h_taps_c : data->taps.v_taps_c,
1131                         orthogonal_rotation ? data->ratios.horz_c : data->ratios.vert_c,
1132                         orthogonal_rotation ? &data->inits.h_c : &data->inits.v_c,
1133                         &data->viewport_c.y,
1134                         &data->viewport_c.height);
1135
1136         /* Interlaced inits based on final vert inits */
1137         data->inits.v_bot = dc_fixpt_add(data->inits.v, data->ratios.vert);
1138         data->inits.v_c_bot = dc_fixpt_add(data->inits.v_c, data->ratios.vert_c);
1139
1140 }
1141
1142 /*
1143  * When handling 270 rotation in mixed SLS mode, we have
1144  * stream->timing.h_border_left that is non zero.  If we are doing
1145  * pipe-splitting, this h_border_left value gets added to recout.x and when it
1146  * calls calculate_inits_and_adj_vp() and
1147  * adjust_vp_and_init_for_seamless_clip(), it can cause viewport.height for a
1148  * pipe to be incorrect.
1149  *
1150  * To fix this, instead of using stream->timing.h_border_left, we can use
1151  * stream->dst.x to represent the border instead.  So we will set h_border_left
1152  * to 0 and shift the appropriate amount in stream->dst.x.  We will then
1153  * perform all calculations in resource_build_scaling_params() based on this
1154  * and then restore the h_border_left and stream->dst.x to their original
1155  * values.
1156  *
1157  * shift_border_left_to_dst() will shift the amount of h_border_left to
1158  * stream->dst.x and set h_border_left to 0.  restore_border_left_from_dst()
1159  * will restore h_border_left and stream->dst.x back to their original values
1160  * We also need to make sure pipe_ctx->plane_res.scl_data.h_active uses the
1161  * original h_border_left value in its calculation.
1162  */
1163 static int shift_border_left_to_dst(struct pipe_ctx *pipe_ctx)
1164 {
1165         int store_h_border_left = pipe_ctx->stream->timing.h_border_left;
1166
1167         if (store_h_border_left) {
1168                 pipe_ctx->stream->timing.h_border_left = 0;
1169                 pipe_ctx->stream->dst.x += store_h_border_left;
1170         }
1171         return store_h_border_left;
1172 }
1173
1174 static void restore_border_left_from_dst(struct pipe_ctx *pipe_ctx,
1175                                          int store_h_border_left)
1176 {
1177         pipe_ctx->stream->dst.x -= store_h_border_left;
1178         pipe_ctx->stream->timing.h_border_left = store_h_border_left;
1179 }
1180
1181 bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx)
1182 {
1183         const struct dc_plane_state *plane_state = pipe_ctx->plane_state;
1184         struct dc_crtc_timing *timing = &pipe_ctx->stream->timing;
1185         bool res = false;
1186         int store_h_border_left = shift_border_left_to_dst(pipe_ctx);
1187         DC_LOGGER_INIT(pipe_ctx->stream->ctx->logger);
1188         /* Important: scaling ratio calculation requires pixel format,
1189          * lb depth calculation requires recout and taps require scaling ratios.
1190          * Inits require viewport, taps, ratios and recout of split pipe
1191          */
1192         pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(
1193                         pipe_ctx->plane_state->format);
1194
1195         calculate_scaling_ratios(pipe_ctx);
1196
1197         calculate_viewport(pipe_ctx);
1198
1199         if (pipe_ctx->plane_res.scl_data.viewport.height < MIN_VIEWPORT_SIZE ||
1200                 pipe_ctx->plane_res.scl_data.viewport.width < MIN_VIEWPORT_SIZE) {
1201                 if (store_h_border_left) {
1202                         restore_border_left_from_dst(pipe_ctx,
1203                                 store_h_border_left);
1204                 }
1205                 return false;
1206         }
1207
1208         calculate_recout(pipe_ctx);
1209
1210         /**
1211          * Setting line buffer pixel depth to 24bpp yields banding
1212          * on certain displays, such as the Sharp 4k
1213          */
1214         pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP;
1215         pipe_ctx->plane_res.scl_data.lb_params.alpha_en = plane_state->per_pixel_alpha;
1216
1217         pipe_ctx->plane_res.scl_data.recout.x += timing->h_border_left;
1218         pipe_ctx->plane_res.scl_data.recout.y += timing->v_border_top;
1219
1220         pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable +
1221                 store_h_border_left + timing->h_border_right;
1222         pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable +
1223                 timing->v_border_top + timing->v_border_bottom;
1224         if (pipe_ctx->next_odm_pipe || pipe_ctx->prev_odm_pipe)
1225                 pipe_ctx->plane_res.scl_data.h_active /= get_num_odm_splits(pipe_ctx) + 1;
1226
1227         /* Taps calculations */
1228         if (pipe_ctx->plane_res.xfm != NULL)
1229                 res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1230                                 pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1231
1232         if (pipe_ctx->plane_res.dpp != NULL)
1233                 res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1234                                 pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality);
1235
1236
1237         if (!res) {
1238                 /* Try 24 bpp linebuffer */
1239                 pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP;
1240
1241                 if (pipe_ctx->plane_res.xfm != NULL)
1242                         res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(
1243                                         pipe_ctx->plane_res.xfm,
1244                                         &pipe_ctx->plane_res.scl_data,
1245                                         &plane_state->scaling_quality);
1246
1247                 if (pipe_ctx->plane_res.dpp != NULL)
1248                         res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(
1249                                         pipe_ctx->plane_res.dpp,
1250                                         &pipe_ctx->plane_res.scl_data,
1251                                         &plane_state->scaling_quality);
1252         }
1253
1254         if (res)
1255                 /* May need to re-check lb size after this in some obscure scenario */
1256                 calculate_inits_and_adj_vp(pipe_ctx);
1257
1258         DC_LOG_SCALER("%s pipe %d:\nViewport: height:%d width:%d x:%d y:%d  Recout: height:%d width:%d x:%d y:%d  HACTIVE:%d VACTIVE:%d\n"
1259                         "src_rect: height:%d width:%d x:%d y:%d  dst_rect: height:%d width:%d x:%d y:%d  clip_rect: height:%d width:%d x:%d y:%d\n",
1260                         __func__,
1261                         pipe_ctx->pipe_idx,
1262                         pipe_ctx->plane_res.scl_data.viewport.height,
1263                         pipe_ctx->plane_res.scl_data.viewport.width,
1264                         pipe_ctx->plane_res.scl_data.viewport.x,
1265                         pipe_ctx->plane_res.scl_data.viewport.y,
1266                         pipe_ctx->plane_res.scl_data.recout.height,
1267                         pipe_ctx->plane_res.scl_data.recout.width,
1268                         pipe_ctx->plane_res.scl_data.recout.x,
1269                         pipe_ctx->plane_res.scl_data.recout.y,
1270                         pipe_ctx->plane_res.scl_data.h_active,
1271                         pipe_ctx->plane_res.scl_data.v_active,
1272                         plane_state->src_rect.height,
1273                         plane_state->src_rect.width,
1274                         plane_state->src_rect.x,
1275                         plane_state->src_rect.y,
1276                         plane_state->dst_rect.height,
1277                         plane_state->dst_rect.width,
1278                         plane_state->dst_rect.x,
1279                         plane_state->dst_rect.y,
1280                         plane_state->clip_rect.height,
1281                         plane_state->clip_rect.width,
1282                         plane_state->clip_rect.x,
1283                         plane_state->clip_rect.y);
1284
1285         if (store_h_border_left)
1286                 restore_border_left_from_dst(pipe_ctx, store_h_border_left);
1287
1288         return res;
1289 }
1290
1291
1292 enum dc_status resource_build_scaling_params_for_context(
1293         const struct dc  *dc,
1294         struct dc_state *context)
1295 {
1296         int i;
1297
1298         for (i = 0; i < MAX_PIPES; i++) {
1299                 if (context->res_ctx.pipe_ctx[i].plane_state != NULL &&
1300                                 context->res_ctx.pipe_ctx[i].stream != NULL)
1301                         if (!resource_build_scaling_params(&context->res_ctx.pipe_ctx[i]))
1302                                 return DC_FAIL_SCALING;
1303         }
1304
1305         return DC_OK;
1306 }
1307
1308 struct pipe_ctx *find_idle_secondary_pipe(
1309                 struct resource_context *res_ctx,
1310                 const struct resource_pool *pool,
1311                 const struct pipe_ctx *primary_pipe)
1312 {
1313         int i;
1314         struct pipe_ctx *secondary_pipe = NULL;
1315
1316         /*
1317          * We add a preferred pipe mapping to avoid the chance that
1318          * MPCCs already in use will need to be reassigned to other trees.
1319          * For example, if we went with the strict, assign backwards logic:
1320          *
1321          * (State 1)
1322          * Display A on, no surface, top pipe = 0
1323          * Display B on, no surface, top pipe = 1
1324          *
1325          * (State 2)
1326          * Display A on, no surface, top pipe = 0
1327          * Display B on, surface enable, top pipe = 1, bottom pipe = 5
1328          *
1329          * (State 3)
1330          * Display A on, surface enable, top pipe = 0, bottom pipe = 5
1331          * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1332          *
1333          * The state 2->3 transition requires remapping MPCC 5 from display B
1334          * to display A.
1335          *
1336          * However, with the preferred pipe logic, state 2 would look like:
1337          *
1338          * (State 2)
1339          * Display A on, no surface, top pipe = 0
1340          * Display B on, surface enable, top pipe = 1, bottom pipe = 4
1341          *
1342          * This would then cause 2->3 to not require remapping any MPCCs.
1343          */
1344         if (primary_pipe) {
1345                 int preferred_pipe_idx = (pool->pipe_count - 1) - primary_pipe->pipe_idx;
1346                 if (res_ctx->pipe_ctx[preferred_pipe_idx].stream == NULL) {
1347                         secondary_pipe = &res_ctx->pipe_ctx[preferred_pipe_idx];
1348                         secondary_pipe->pipe_idx = preferred_pipe_idx;
1349                 }
1350         }
1351
1352         /*
1353          * search backwards for the second pipe to keep pipe
1354          * assignment more consistent
1355          */
1356         if (!secondary_pipe)
1357                 for (i = pool->pipe_count - 1; i >= 0; i--) {
1358                         if (res_ctx->pipe_ctx[i].stream == NULL) {
1359                                 secondary_pipe = &res_ctx->pipe_ctx[i];
1360                                 secondary_pipe->pipe_idx = i;
1361                                 break;
1362                         }
1363                 }
1364
1365         return secondary_pipe;
1366 }
1367
1368 struct pipe_ctx *resource_get_head_pipe_for_stream(
1369                 struct resource_context *res_ctx,
1370                 struct dc_stream_state *stream)
1371 {
1372         int i;
1373
1374         for (i = 0; i < MAX_PIPES; i++) {
1375                 if (res_ctx->pipe_ctx[i].stream == stream
1376                                 && !res_ctx->pipe_ctx[i].top_pipe
1377                                 && !res_ctx->pipe_ctx[i].prev_odm_pipe)
1378                         return &res_ctx->pipe_ctx[i];
1379         }
1380         return NULL;
1381 }
1382
1383 static struct pipe_ctx *resource_get_tail_pipe(
1384                 struct resource_context *res_ctx,
1385                 struct pipe_ctx *head_pipe)
1386 {
1387         struct pipe_ctx *tail_pipe;
1388
1389         tail_pipe = head_pipe->bottom_pipe;
1390
1391         while (tail_pipe) {
1392                 head_pipe = tail_pipe;
1393                 tail_pipe = tail_pipe->bottom_pipe;
1394         }
1395
1396         return head_pipe;
1397 }
1398
1399 /*
1400  * A free_pipe for a stream is defined here as a pipe
1401  * that has no surface attached yet
1402  */
1403 static struct pipe_ctx *acquire_free_pipe_for_head(
1404                 struct dc_state *context,
1405                 const struct resource_pool *pool,
1406                 struct pipe_ctx *head_pipe)
1407 {
1408         int i;
1409         struct resource_context *res_ctx = &context->res_ctx;
1410
1411         if (!head_pipe->plane_state)
1412                 return head_pipe;
1413
1414         /* Re-use pipe already acquired for this stream if available*/
1415         for (i = pool->pipe_count - 1; i >= 0; i--) {
1416                 if (res_ctx->pipe_ctx[i].stream == head_pipe->stream &&
1417                                 !res_ctx->pipe_ctx[i].plane_state) {
1418                         return &res_ctx->pipe_ctx[i];
1419                 }
1420         }
1421
1422         /*
1423          * At this point we have no re-useable pipe for this stream and we need
1424          * to acquire an idle one to satisfy the request
1425          */
1426
1427         if (!pool->funcs->acquire_idle_pipe_for_layer)
1428                 return NULL;
1429
1430         return pool->funcs->acquire_idle_pipe_for_layer(context, pool, head_pipe->stream);
1431 }
1432
1433 #if defined(CONFIG_DRM_AMD_DC_DCN)
1434 static int acquire_first_split_pipe(
1435                 struct resource_context *res_ctx,
1436                 const struct resource_pool *pool,
1437                 struct dc_stream_state *stream)
1438 {
1439         int i;
1440
1441         for (i = 0; i < pool->pipe_count; i++) {
1442                 struct pipe_ctx *split_pipe = &res_ctx->pipe_ctx[i];
1443
1444                 if (split_pipe->top_pipe &&
1445                                 split_pipe->top_pipe->plane_state == split_pipe->plane_state) {
1446                         split_pipe->top_pipe->bottom_pipe = split_pipe->bottom_pipe;
1447                         if (split_pipe->bottom_pipe)
1448                                 split_pipe->bottom_pipe->top_pipe = split_pipe->top_pipe;
1449
1450                         if (split_pipe->top_pipe->plane_state)
1451                                 resource_build_scaling_params(split_pipe->top_pipe);
1452
1453                         memset(split_pipe, 0, sizeof(*split_pipe));
1454                         split_pipe->stream_res.tg = pool->timing_generators[i];
1455                         split_pipe->plane_res.hubp = pool->hubps[i];
1456                         split_pipe->plane_res.ipp = pool->ipps[i];
1457                         split_pipe->plane_res.dpp = pool->dpps[i];
1458                         split_pipe->stream_res.opp = pool->opps[i];
1459                         split_pipe->plane_res.mpcc_inst = pool->dpps[i]->inst;
1460                         split_pipe->pipe_idx = i;
1461
1462                         split_pipe->stream = stream;
1463                         return i;
1464                 }
1465         }
1466         return -1;
1467 }
1468 #endif
1469
1470 bool dc_add_plane_to_context(
1471                 const struct dc *dc,
1472                 struct dc_stream_state *stream,
1473                 struct dc_plane_state *plane_state,
1474                 struct dc_state *context)
1475 {
1476         int i;
1477         struct resource_pool *pool = dc->res_pool;
1478         struct pipe_ctx *head_pipe, *tail_pipe, *free_pipe;
1479         struct dc_stream_status *stream_status = NULL;
1480
1481         for (i = 0; i < context->stream_count; i++)
1482                 if (context->streams[i] == stream) {
1483                         stream_status = &context->stream_status[i];
1484                         break;
1485                 }
1486         if (stream_status == NULL) {
1487                 dm_error("Existing stream not found; failed to attach surface!\n");
1488                 return false;
1489         }
1490
1491
1492         if (stream_status->plane_count == MAX_SURFACE_NUM) {
1493                 dm_error("Surface: can not attach plane_state %p! Maximum is: %d\n",
1494                                 plane_state, MAX_SURFACE_NUM);
1495                 return false;
1496         }
1497
1498         head_pipe = resource_get_head_pipe_for_stream(&context->res_ctx, stream);
1499
1500         if (!head_pipe) {
1501                 dm_error("Head pipe not found for stream_state %p !\n", stream);
1502                 return false;
1503         }
1504
1505         /* retain new surface, but only once per stream */
1506         dc_plane_state_retain(plane_state);
1507
1508         while (head_pipe) {
1509                 free_pipe = acquire_free_pipe_for_head(context, pool, head_pipe);
1510
1511         #if defined(CONFIG_DRM_AMD_DC_DCN)
1512                 if (!free_pipe) {
1513                         int pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
1514                         if (pipe_idx >= 0)
1515                                 free_pipe = &context->res_ctx.pipe_ctx[pipe_idx];
1516                 }
1517         #endif
1518                 if (!free_pipe) {
1519                         dc_plane_state_release(plane_state);
1520                         return false;
1521                 }
1522
1523                 free_pipe->plane_state = plane_state;
1524
1525                 if (head_pipe != free_pipe) {
1526                         tail_pipe = resource_get_tail_pipe(&context->res_ctx, head_pipe);
1527                         ASSERT(tail_pipe);
1528                         free_pipe->stream_res.tg = tail_pipe->stream_res.tg;
1529                         free_pipe->stream_res.abm = tail_pipe->stream_res.abm;
1530                         free_pipe->stream_res.opp = tail_pipe->stream_res.opp;
1531                         free_pipe->stream_res.stream_enc = tail_pipe->stream_res.stream_enc;
1532                         free_pipe->stream_res.audio = tail_pipe->stream_res.audio;
1533                         free_pipe->clock_source = tail_pipe->clock_source;
1534                         free_pipe->top_pipe = tail_pipe;
1535                         tail_pipe->bottom_pipe = free_pipe;
1536                         if (!free_pipe->next_odm_pipe && tail_pipe->next_odm_pipe && tail_pipe->next_odm_pipe->bottom_pipe) {
1537                                 free_pipe->next_odm_pipe = tail_pipe->next_odm_pipe->bottom_pipe;
1538                                 tail_pipe->next_odm_pipe->bottom_pipe->prev_odm_pipe = free_pipe;
1539                         }
1540                         if (!free_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe && tail_pipe->prev_odm_pipe->bottom_pipe) {
1541                                 free_pipe->prev_odm_pipe = tail_pipe->prev_odm_pipe->bottom_pipe;
1542                                 tail_pipe->prev_odm_pipe->bottom_pipe->next_odm_pipe = free_pipe;
1543                         }
1544                 }
1545                 head_pipe = head_pipe->next_odm_pipe;
1546         }
1547         /* assign new surfaces*/
1548         stream_status->plane_states[stream_status->plane_count] = plane_state;
1549
1550         stream_status->plane_count++;
1551
1552         return true;
1553 }
1554
1555 bool dc_remove_plane_from_context(
1556                 const struct dc *dc,
1557                 struct dc_stream_state *stream,
1558                 struct dc_plane_state *plane_state,
1559                 struct dc_state *context)
1560 {
1561         int i;
1562         struct dc_stream_status *stream_status = NULL;
1563         struct resource_pool *pool = dc->res_pool;
1564
1565         for (i = 0; i < context->stream_count; i++)
1566                 if (context->streams[i] == stream) {
1567                         stream_status = &context->stream_status[i];
1568                         break;
1569                 }
1570
1571         if (stream_status == NULL) {
1572                 dm_error("Existing stream not found; failed to remove plane.\n");
1573                 return false;
1574         }
1575
1576         /* release pipe for plane*/
1577         for (i = pool->pipe_count - 1; i >= 0; i--) {
1578                 struct pipe_ctx *pipe_ctx = &context->res_ctx.pipe_ctx[i];
1579
1580                 if (pipe_ctx->plane_state == plane_state) {
1581                         if (pipe_ctx->top_pipe)
1582                                 pipe_ctx->top_pipe->bottom_pipe = pipe_ctx->bottom_pipe;
1583
1584                         /* Second condition is to avoid setting NULL to top pipe
1585                          * of tail pipe making it look like head pipe in subsequent
1586                          * deletes
1587                          */
1588                         if (pipe_ctx->bottom_pipe && pipe_ctx->top_pipe)
1589                                 pipe_ctx->bottom_pipe->top_pipe = pipe_ctx->top_pipe;
1590
1591                         /*
1592                          * For head pipe detach surfaces from pipe for tail
1593                          * pipe just zero it out
1594                          */
1595                         if (!pipe_ctx->top_pipe)
1596                                 pipe_ctx->plane_state = NULL;
1597                         else
1598                                 memset(pipe_ctx, 0, sizeof(*pipe_ctx));
1599                 }
1600         }
1601
1602
1603         for (i = 0; i < stream_status->plane_count; i++) {
1604                 if (stream_status->plane_states[i] == plane_state) {
1605
1606                         dc_plane_state_release(stream_status->plane_states[i]);
1607                         break;
1608                 }
1609         }
1610
1611         if (i == stream_status->plane_count) {
1612                 dm_error("Existing plane_state not found; failed to detach it!\n");
1613                 return false;
1614         }
1615
1616         stream_status->plane_count--;
1617
1618         /* Start at the plane we've just released, and move all the planes one index forward to "trim" the array */
1619         for (; i < stream_status->plane_count; i++)
1620                 stream_status->plane_states[i] = stream_status->plane_states[i + 1];
1621
1622         stream_status->plane_states[stream_status->plane_count] = NULL;
1623
1624         return true;
1625 }
1626
1627 bool dc_rem_all_planes_for_stream(
1628                 const struct dc *dc,
1629                 struct dc_stream_state *stream,
1630                 struct dc_state *context)
1631 {
1632         int i, old_plane_count;
1633         struct dc_stream_status *stream_status = NULL;
1634         struct dc_plane_state *del_planes[MAX_SURFACE_NUM] = { 0 };
1635
1636         for (i = 0; i < context->stream_count; i++)
1637                         if (context->streams[i] == stream) {
1638                                 stream_status = &context->stream_status[i];
1639                                 break;
1640                         }
1641
1642         if (stream_status == NULL) {
1643                 dm_error("Existing stream %p not found!\n", stream);
1644                 return false;
1645         }
1646
1647         old_plane_count = stream_status->plane_count;
1648
1649         for (i = 0; i < old_plane_count; i++)
1650                 del_planes[i] = stream_status->plane_states[i];
1651
1652         for (i = 0; i < old_plane_count; i++)
1653                 if (!dc_remove_plane_from_context(dc, stream, del_planes[i], context))
1654                         return false;
1655
1656         return true;
1657 }
1658
1659 static bool add_all_planes_for_stream(
1660                 const struct dc *dc,
1661                 struct dc_stream_state *stream,
1662                 const struct dc_validation_set set[],
1663                 int set_count,
1664                 struct dc_state *context)
1665 {
1666         int i, j;
1667
1668         for (i = 0; i < set_count; i++)
1669                 if (set[i].stream == stream)
1670                         break;
1671
1672         if (i == set_count) {
1673                 dm_error("Stream %p not found in set!\n", stream);
1674                 return false;
1675         }
1676
1677         for (j = 0; j < set[i].plane_count; j++)
1678                 if (!dc_add_plane_to_context(dc, stream, set[i].plane_states[j], context))
1679                         return false;
1680
1681         return true;
1682 }
1683
1684 bool dc_add_all_planes_for_stream(
1685                 const struct dc *dc,
1686                 struct dc_stream_state *stream,
1687                 struct dc_plane_state * const *plane_states,
1688                 int plane_count,
1689                 struct dc_state *context)
1690 {
1691         struct dc_validation_set set;
1692         int i;
1693
1694         set.stream = stream;
1695         set.plane_count = plane_count;
1696
1697         for (i = 0; i < plane_count; i++)
1698                 set.plane_states[i] = plane_states[i];
1699
1700         return add_all_planes_for_stream(dc, stream, &set, 1, context);
1701 }
1702
1703 static bool is_timing_changed(struct dc_stream_state *cur_stream,
1704                 struct dc_stream_state *new_stream)
1705 {
1706         if (cur_stream == NULL)
1707                 return true;
1708
1709         /* If sink pointer changed, it means this is a hotplug, we should do
1710          * full hw setting.
1711          */
1712         if (cur_stream->sink != new_stream->sink)
1713                 return true;
1714
1715         /* If output color space is changed, need to reprogram info frames */
1716         if (cur_stream->output_color_space != new_stream->output_color_space)
1717                 return true;
1718
1719         return memcmp(
1720                 &cur_stream->timing,
1721                 &new_stream->timing,
1722                 sizeof(struct dc_crtc_timing)) != 0;
1723 }
1724
1725 static bool are_stream_backends_same(
1726         struct dc_stream_state *stream_a, struct dc_stream_state *stream_b)
1727 {
1728         if (stream_a == stream_b)
1729                 return true;
1730
1731         if (stream_a == NULL || stream_b == NULL)
1732                 return false;
1733
1734         if (is_timing_changed(stream_a, stream_b))
1735                 return false;
1736
1737         if (stream_a->dpms_off != stream_b->dpms_off)
1738                 return false;
1739
1740         return true;
1741 }
1742
1743 /*
1744  * dc_is_stream_unchanged() - Compare two stream states for equivalence.
1745  *
1746  * Checks if there a difference between the two states
1747  * that would require a mode change.
1748  *
1749  * Does not compare cursor position or attributes.
1750  */
1751 bool dc_is_stream_unchanged(
1752         struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1753 {
1754
1755         if (!are_stream_backends_same(old_stream, stream))
1756                 return false;
1757
1758         if (old_stream->ignore_msa_timing_param != stream->ignore_msa_timing_param)
1759                 return false;
1760
1761         return true;
1762 }
1763
1764 /*
1765  * dc_is_stream_scaling_unchanged() - Compare scaling rectangles of two streams.
1766  */
1767 bool dc_is_stream_scaling_unchanged(
1768         struct dc_stream_state *old_stream, struct dc_stream_state *stream)
1769 {
1770         if (old_stream == stream)
1771                 return true;
1772
1773         if (old_stream == NULL || stream == NULL)
1774                 return false;
1775
1776         if (memcmp(&old_stream->src,
1777                         &stream->src,
1778                         sizeof(struct rect)) != 0)
1779                 return false;
1780
1781         if (memcmp(&old_stream->dst,
1782                         &stream->dst,
1783                         sizeof(struct rect)) != 0)
1784                 return false;
1785
1786         return true;
1787 }
1788
1789 static void update_stream_engine_usage(
1790                 struct resource_context *res_ctx,
1791                 const struct resource_pool *pool,
1792                 struct stream_encoder *stream_enc,
1793                 bool acquired)
1794 {
1795         int i;
1796
1797         for (i = 0; i < pool->stream_enc_count; i++) {
1798                 if (pool->stream_enc[i] == stream_enc)
1799                         res_ctx->is_stream_enc_acquired[i] = acquired;
1800         }
1801 }
1802
1803 /* TODO: release audio object */
1804 void update_audio_usage(
1805                 struct resource_context *res_ctx,
1806                 const struct resource_pool *pool,
1807                 struct audio *audio,
1808                 bool acquired)
1809 {
1810         int i;
1811         for (i = 0; i < pool->audio_count; i++) {
1812                 if (pool->audios[i] == audio)
1813                         res_ctx->is_audio_acquired[i] = acquired;
1814         }
1815 }
1816
1817 static int acquire_first_free_pipe(
1818                 struct resource_context *res_ctx,
1819                 const struct resource_pool *pool,
1820                 struct dc_stream_state *stream)
1821 {
1822         int i;
1823
1824         for (i = 0; i < pool->pipe_count; i++) {
1825                 if (!res_ctx->pipe_ctx[i].stream) {
1826                         struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[i];
1827
1828                         pipe_ctx->stream_res.tg = pool->timing_generators[i];
1829                         pipe_ctx->plane_res.mi = pool->mis[i];
1830                         pipe_ctx->plane_res.hubp = pool->hubps[i];
1831                         pipe_ctx->plane_res.ipp = pool->ipps[i];
1832                         pipe_ctx->plane_res.xfm = pool->transforms[i];
1833                         pipe_ctx->plane_res.dpp = pool->dpps[i];
1834                         pipe_ctx->stream_res.opp = pool->opps[i];
1835                         if (pool->dpps[i])
1836                                 pipe_ctx->plane_res.mpcc_inst = pool->dpps[i]->inst;
1837                         pipe_ctx->pipe_idx = i;
1838
1839
1840                         pipe_ctx->stream = stream;
1841                         return i;
1842                 }
1843         }
1844         return -1;
1845 }
1846
1847 static struct audio *find_first_free_audio(
1848                 struct resource_context *res_ctx,
1849                 const struct resource_pool *pool,
1850                 enum engine_id id,
1851                 enum dce_version dc_version)
1852 {
1853         int i, available_audio_count;
1854
1855         available_audio_count = pool->audio_count;
1856
1857         for (i = 0; i < available_audio_count; i++) {
1858                 if ((res_ctx->is_audio_acquired[i] == false) && (res_ctx->is_stream_enc_acquired[i] == true)) {
1859                         /*we have enough audio endpoint, find the matching inst*/
1860                         if (id != i)
1861                                 continue;
1862                         return pool->audios[i];
1863                 }
1864         }
1865
1866         /* use engine id to find free audio */
1867         if ((id < available_audio_count) && (res_ctx->is_audio_acquired[id] == false)) {
1868                 return pool->audios[id];
1869         }
1870         /*not found the matching one, first come first serve*/
1871         for (i = 0; i < available_audio_count; i++) {
1872                 if (res_ctx->is_audio_acquired[i] == false) {
1873                         return pool->audios[i];
1874                 }
1875         }
1876         return 0;
1877 }
1878
1879 /*
1880  * dc_add_stream_to_ctx() - Add a new dc_stream_state to a dc_state.
1881  */
1882 enum dc_status dc_add_stream_to_ctx(
1883                 struct dc *dc,
1884                 struct dc_state *new_ctx,
1885                 struct dc_stream_state *stream)
1886 {
1887         enum dc_status res;
1888         DC_LOGGER_INIT(dc->ctx->logger);
1889
1890         if (new_ctx->stream_count >= dc->res_pool->timing_generator_count) {
1891                 DC_LOG_WARNING("Max streams reached, can't add stream %p !\n", stream);
1892                 return DC_ERROR_UNEXPECTED;
1893         }
1894
1895         new_ctx->streams[new_ctx->stream_count] = stream;
1896         dc_stream_retain(stream);
1897         new_ctx->stream_count++;
1898
1899         res = dc->res_pool->funcs->add_stream_to_ctx(dc, new_ctx, stream);
1900         if (res != DC_OK)
1901                 DC_LOG_WARNING("Adding stream %p to context failed with err %d!\n", stream, res);
1902
1903         return res;
1904 }
1905
1906 /*
1907  * dc_remove_stream_from_ctx() - Remove a stream from a dc_state.
1908  */
1909 enum dc_status dc_remove_stream_from_ctx(
1910                         struct dc *dc,
1911                         struct dc_state *new_ctx,
1912                         struct dc_stream_state *stream)
1913 {
1914         int i;
1915         struct dc_context *dc_ctx = dc->ctx;
1916         struct pipe_ctx *del_pipe = resource_get_head_pipe_for_stream(&new_ctx->res_ctx, stream);
1917         struct pipe_ctx *odm_pipe;
1918
1919         if (!del_pipe) {
1920                 DC_ERROR("Pipe not found for stream %p !\n", stream);
1921                 return DC_ERROR_UNEXPECTED;
1922         }
1923
1924         odm_pipe = del_pipe->next_odm_pipe;
1925
1926         /* Release primary pipe */
1927         ASSERT(del_pipe->stream_res.stream_enc);
1928         update_stream_engine_usage(
1929                         &new_ctx->res_ctx,
1930                                 dc->res_pool,
1931                         del_pipe->stream_res.stream_enc,
1932                         false);
1933         /* Release link encoder from stream in new dc_state. */
1934         if (dc->res_pool->funcs->link_enc_unassign)
1935                 dc->res_pool->funcs->link_enc_unassign(new_ctx, del_pipe->stream);
1936
1937         if (del_pipe->stream_res.audio)
1938                 update_audio_usage(
1939                         &new_ctx->res_ctx,
1940                         dc->res_pool,
1941                         del_pipe->stream_res.audio,
1942                         false);
1943
1944         resource_unreference_clock_source(&new_ctx->res_ctx,
1945                                           dc->res_pool,
1946                                           del_pipe->clock_source);
1947
1948         if (dc->res_pool->funcs->remove_stream_from_ctx)
1949                 dc->res_pool->funcs->remove_stream_from_ctx(dc, new_ctx, stream);
1950
1951         while (odm_pipe) {
1952                 struct pipe_ctx *next_odm_pipe = odm_pipe->next_odm_pipe;
1953
1954                 memset(odm_pipe, 0, sizeof(*odm_pipe));
1955                 odm_pipe = next_odm_pipe;
1956         }
1957         memset(del_pipe, 0, sizeof(*del_pipe));
1958
1959         for (i = 0; i < new_ctx->stream_count; i++)
1960                 if (new_ctx->streams[i] == stream)
1961                         break;
1962
1963         if (new_ctx->streams[i] != stream) {
1964                 DC_ERROR("Context doesn't have stream %p !\n", stream);
1965                 return DC_ERROR_UNEXPECTED;
1966         }
1967
1968         dc_stream_release(new_ctx->streams[i]);
1969         new_ctx->stream_count--;
1970
1971         /* Trim back arrays */
1972         for (; i < new_ctx->stream_count; i++) {
1973                 new_ctx->streams[i] = new_ctx->streams[i + 1];
1974                 new_ctx->stream_status[i] = new_ctx->stream_status[i + 1];
1975         }
1976
1977         new_ctx->streams[new_ctx->stream_count] = NULL;
1978         memset(
1979                         &new_ctx->stream_status[new_ctx->stream_count],
1980                         0,
1981                         sizeof(new_ctx->stream_status[0]));
1982
1983         return DC_OK;
1984 }
1985
1986 static struct dc_stream_state *find_pll_sharable_stream(
1987                 struct dc_stream_state *stream_needs_pll,
1988                 struct dc_state *context)
1989 {
1990         int i;
1991
1992         for (i = 0; i < context->stream_count; i++) {
1993                 struct dc_stream_state *stream_has_pll = context->streams[i];
1994
1995                 /* We are looking for non dp, non virtual stream */
1996                 if (resource_are_streams_timing_synchronizable(
1997                         stream_needs_pll, stream_has_pll)
1998                         && !dc_is_dp_signal(stream_has_pll->signal)
1999                         && stream_has_pll->link->connector_signal
2000                         != SIGNAL_TYPE_VIRTUAL)
2001                         return stream_has_pll;
2002
2003         }
2004
2005         return NULL;
2006 }
2007
2008 static int get_norm_pix_clk(const struct dc_crtc_timing *timing)
2009 {
2010         uint32_t pix_clk = timing->pix_clk_100hz;
2011         uint32_t normalized_pix_clk = pix_clk;
2012
2013         if (timing->pixel_encoding == PIXEL_ENCODING_YCBCR420)
2014                 pix_clk /= 2;
2015         if (timing->pixel_encoding != PIXEL_ENCODING_YCBCR422) {
2016                 switch (timing->display_color_depth) {
2017                 case COLOR_DEPTH_666:
2018                 case COLOR_DEPTH_888:
2019                         normalized_pix_clk = pix_clk;
2020                         break;
2021                 case COLOR_DEPTH_101010:
2022                         normalized_pix_clk = (pix_clk * 30) / 24;
2023                         break;
2024                 case COLOR_DEPTH_121212:
2025                         normalized_pix_clk = (pix_clk * 36) / 24;
2026                 break;
2027                 case COLOR_DEPTH_161616:
2028                         normalized_pix_clk = (pix_clk * 48) / 24;
2029                 break;
2030                 default:
2031                         ASSERT(0);
2032                 break;
2033                 }
2034         }
2035         return normalized_pix_clk;
2036 }
2037
2038 static void calculate_phy_pix_clks(struct dc_stream_state *stream)
2039 {
2040         /* update actual pixel clock on all streams */
2041         if (dc_is_hdmi_signal(stream->signal))
2042                 stream->phy_pix_clk = get_norm_pix_clk(
2043                         &stream->timing) / 10;
2044         else
2045                 stream->phy_pix_clk =
2046                         stream->timing.pix_clk_100hz / 10;
2047
2048         if (stream->timing.timing_3d_format == TIMING_3D_FORMAT_HW_FRAME_PACKING)
2049                 stream->phy_pix_clk *= 2;
2050 }
2051
2052 static int acquire_resource_from_hw_enabled_state(
2053                 struct resource_context *res_ctx,
2054                 const struct resource_pool *pool,
2055                 struct dc_stream_state *stream)
2056 {
2057         struct dc_link *link = stream->link;
2058         unsigned int i, inst, tg_inst = 0;
2059
2060         /* Check for enabled DIG to identify enabled display */
2061         if (!link->link_enc->funcs->is_dig_enabled(link->link_enc))
2062                 return -1;
2063
2064         inst = link->link_enc->funcs->get_dig_frontend(link->link_enc);
2065
2066         if (inst == ENGINE_ID_UNKNOWN)
2067                 return -1;
2068
2069         for (i = 0; i < pool->stream_enc_count; i++) {
2070                 if (pool->stream_enc[i]->id == inst) {
2071                         tg_inst = pool->stream_enc[i]->funcs->dig_source_otg(
2072                                 pool->stream_enc[i]);
2073                         break;
2074                 }
2075         }
2076
2077         // tg_inst not found
2078         if (i == pool->stream_enc_count)
2079                 return -1;
2080
2081         if (tg_inst >= pool->timing_generator_count)
2082                 return -1;
2083
2084         if (!res_ctx->pipe_ctx[tg_inst].stream) {
2085                 struct pipe_ctx *pipe_ctx = &res_ctx->pipe_ctx[tg_inst];
2086
2087                 pipe_ctx->stream_res.tg = pool->timing_generators[tg_inst];
2088                 pipe_ctx->plane_res.mi = pool->mis[tg_inst];
2089                 pipe_ctx->plane_res.hubp = pool->hubps[tg_inst];
2090                 pipe_ctx->plane_res.ipp = pool->ipps[tg_inst];
2091                 pipe_ctx->plane_res.xfm = pool->transforms[tg_inst];
2092                 pipe_ctx->plane_res.dpp = pool->dpps[tg_inst];
2093                 pipe_ctx->stream_res.opp = pool->opps[tg_inst];
2094
2095                 if (pool->dpps[tg_inst]) {
2096                         pipe_ctx->plane_res.mpcc_inst = pool->dpps[tg_inst]->inst;
2097
2098                         // Read DPP->MPCC->OPP Pipe from HW State
2099                         if (pool->mpc->funcs->read_mpcc_state) {
2100                                 struct mpcc_state s = {0};
2101
2102                                 pool->mpc->funcs->read_mpcc_state(pool->mpc, pipe_ctx->plane_res.mpcc_inst, &s);
2103
2104                                 if (s.dpp_id < MAX_MPCC)
2105                                         pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].dpp_id = s.dpp_id;
2106
2107                                 if (s.bot_mpcc_id < MAX_MPCC)
2108                                         pool->mpc->mpcc_array[pipe_ctx->plane_res.mpcc_inst].mpcc_bot =
2109                                                         &pool->mpc->mpcc_array[s.bot_mpcc_id];
2110
2111                                 if (s.opp_id < MAX_OPP)
2112                                         pipe_ctx->stream_res.opp->mpc_tree_params.opp_id = s.opp_id;
2113                         }
2114                 }
2115                 pipe_ctx->pipe_idx = tg_inst;
2116
2117                 pipe_ctx->stream = stream;
2118                 return tg_inst;
2119         }
2120
2121         return -1;
2122 }
2123
2124 static void mark_seamless_boot_stream(
2125                 const struct dc  *dc,
2126                 struct dc_stream_state *stream)
2127 {
2128         struct dc_bios *dcb = dc->ctx->dc_bios;
2129
2130         /* TODO: Check Linux */
2131         if (dc->config.allow_seamless_boot_optimization &&
2132                         !dcb->funcs->is_accelerated_mode(dcb)) {
2133                 if (dc_validate_seamless_boot_timing(dc, stream->sink, &stream->timing))
2134                         stream->apply_seamless_boot_optimization = true;
2135         }
2136 }
2137
2138 enum dc_status resource_map_pool_resources(
2139                 const struct dc  *dc,
2140                 struct dc_state *context,
2141                 struct dc_stream_state *stream)
2142 {
2143         const struct resource_pool *pool = dc->res_pool;
2144         int i;
2145         struct dc_context *dc_ctx = dc->ctx;
2146         struct pipe_ctx *pipe_ctx = NULL;
2147         int pipe_idx = -1;
2148
2149         calculate_phy_pix_clks(stream);
2150
2151         mark_seamless_boot_stream(dc, stream);
2152
2153         if (stream->apply_seamless_boot_optimization) {
2154                 pipe_idx = acquire_resource_from_hw_enabled_state(
2155                                 &context->res_ctx,
2156                                 pool,
2157                                 stream);
2158                 if (pipe_idx < 0)
2159                         /* hw resource was assigned to other stream */
2160                         stream->apply_seamless_boot_optimization = false;
2161         }
2162
2163         if (pipe_idx < 0)
2164                 /* acquire new resources */
2165                 pipe_idx = acquire_first_free_pipe(&context->res_ctx, pool, stream);
2166
2167 #ifdef CONFIG_DRM_AMD_DC_DCN
2168         if (pipe_idx < 0)
2169                 pipe_idx = acquire_first_split_pipe(&context->res_ctx, pool, stream);
2170 #endif
2171
2172         if (pipe_idx < 0 || context->res_ctx.pipe_ctx[pipe_idx].stream_res.tg == NULL)
2173                 return DC_NO_CONTROLLER_RESOURCE;
2174
2175         pipe_ctx = &context->res_ctx.pipe_ctx[pipe_idx];
2176
2177         pipe_ctx->stream_res.stream_enc =
2178                 dc->res_pool->funcs->find_first_free_match_stream_enc_for_link(
2179                         &context->res_ctx, pool, stream);
2180
2181         if (!pipe_ctx->stream_res.stream_enc)
2182                 return DC_NO_STREAM_ENC_RESOURCE;
2183
2184         update_stream_engine_usage(
2185                 &context->res_ctx, pool,
2186                 pipe_ctx->stream_res.stream_enc,
2187                 true);
2188
2189         /* TODO: Add check if ASIC support and EDID audio */
2190         if (!stream->converter_disable_audio &&
2191             dc_is_audio_capable_signal(pipe_ctx->stream->signal) &&
2192             stream->audio_info.mode_count && stream->audio_info.flags.all) {
2193                 pipe_ctx->stream_res.audio = find_first_free_audio(
2194                 &context->res_ctx, pool, pipe_ctx->stream_res.stream_enc->id, dc_ctx->dce_version);
2195
2196                 /*
2197                  * Audio assigned in order first come first get.
2198                  * There are asics which has number of audio
2199                  * resources less then number of pipes
2200                  */
2201                 if (pipe_ctx->stream_res.audio)
2202                         update_audio_usage(&context->res_ctx, pool,
2203                                            pipe_ctx->stream_res.audio, true);
2204         }
2205
2206         /* Add ABM to the resource if on EDP */
2207         if (pipe_ctx->stream && dc_is_embedded_signal(pipe_ctx->stream->signal)) {
2208 #if defined(CONFIG_DRM_AMD_DC_DCN)
2209                 if (pool->abm)
2210                         pipe_ctx->stream_res.abm = pool->abm;
2211                 else
2212                         pipe_ctx->stream_res.abm = pool->multiple_abms[pipe_ctx->stream_res.tg->inst];
2213 #else
2214                 pipe_ctx->stream_res.abm = pool->abm;
2215 #endif
2216         }
2217
2218         for (i = 0; i < context->stream_count; i++)
2219                 if (context->streams[i] == stream) {
2220                         context->stream_status[i].primary_otg_inst = pipe_ctx->stream_res.tg->inst;
2221                         context->stream_status[i].stream_enc_inst = pipe_ctx->stream_res.stream_enc->stream_enc_inst;
2222                         context->stream_status[i].audio_inst =
2223                                 pipe_ctx->stream_res.audio ? pipe_ctx->stream_res.audio->inst : -1;
2224
2225                         return DC_OK;
2226                 }
2227
2228         DC_ERROR("Stream %p not found in new ctx!\n", stream);
2229         return DC_ERROR_UNEXPECTED;
2230 }
2231
2232 /**
2233  * dc_resource_state_copy_construct_current() - Creates a new dc_state from existing state
2234  * Is a shallow copy.  Increments refcounts on existing streams and planes.
2235  * @dc: copy out of dc->current_state
2236  * @dst_ctx: copy into this
2237  */
2238 void dc_resource_state_copy_construct_current(
2239                 const struct dc *dc,
2240                 struct dc_state *dst_ctx)
2241 {
2242         dc_resource_state_copy_construct(dc->current_state, dst_ctx);
2243 }
2244
2245
2246 void dc_resource_state_construct(
2247                 const struct dc *dc,
2248                 struct dc_state *dst_ctx)
2249 {
2250         dst_ctx->clk_mgr = dc->clk_mgr;
2251 }
2252
2253
2254 bool dc_resource_is_dsc_encoding_supported(const struct dc *dc)
2255 {
2256         return dc->res_pool->res_cap->num_dsc > 0;
2257 }
2258
2259
2260 /**
2261  * dc_validate_global_state() - Determine if HW can support a given state
2262  * Checks HW resource availability and bandwidth requirement.
2263  * @dc: dc struct for this driver
2264  * @new_ctx: state to be validated
2265  * @fast_validate: set to true if only yes/no to support matters
2266  *
2267  * Return: DC_OK if the result can be programmed.  Otherwise, an error code.
2268  */
2269 enum dc_status dc_validate_global_state(
2270                 struct dc *dc,
2271                 struct dc_state *new_ctx,
2272                 bool fast_validate)
2273 {
2274         enum dc_status result = DC_ERROR_UNEXPECTED;
2275         int i, j;
2276
2277         if (!new_ctx)
2278                 return DC_ERROR_UNEXPECTED;
2279
2280         if (dc->res_pool->funcs->validate_global) {
2281                 result = dc->res_pool->funcs->validate_global(dc, new_ctx);
2282                 if (result != DC_OK)
2283                         return result;
2284         }
2285
2286         for (i = 0; i < new_ctx->stream_count; i++) {
2287                 struct dc_stream_state *stream = new_ctx->streams[i];
2288
2289                 for (j = 0; j < dc->res_pool->pipe_count; j++) {
2290                         struct pipe_ctx *pipe_ctx = &new_ctx->res_ctx.pipe_ctx[j];
2291
2292                         if (pipe_ctx->stream != stream)
2293                                 continue;
2294
2295                         if (dc->res_pool->funcs->patch_unknown_plane_state &&
2296                                         pipe_ctx->plane_state &&
2297                                         pipe_ctx->plane_state->tiling_info.gfx9.swizzle == DC_SW_UNKNOWN) {
2298                                 result = dc->res_pool->funcs->patch_unknown_plane_state(pipe_ctx->plane_state);
2299                                 if (result != DC_OK)
2300                                         return result;
2301                         }
2302
2303                         /* Switch to dp clock source only if there is
2304                          * no non dp stream that shares the same timing
2305                          * with the dp stream.
2306                          */
2307                         if (dc_is_dp_signal(pipe_ctx->stream->signal) &&
2308                                 !find_pll_sharable_stream(stream, new_ctx)) {
2309
2310                                 resource_unreference_clock_source(
2311                                                 &new_ctx->res_ctx,
2312                                                 dc->res_pool,
2313                                                 pipe_ctx->clock_source);
2314
2315                                 pipe_ctx->clock_source = dc->res_pool->dp_clock_source;
2316                                 resource_reference_clock_source(
2317                                                 &new_ctx->res_ctx,
2318                                                 dc->res_pool,
2319                                                  pipe_ctx->clock_source);
2320                         }
2321                 }
2322         }
2323
2324         result = resource_build_scaling_params_for_context(dc, new_ctx);
2325
2326         if (result == DC_OK)
2327                 if (!dc->res_pool->funcs->validate_bandwidth(dc, new_ctx, fast_validate))
2328                         result = DC_FAIL_BANDWIDTH_VALIDATE;
2329
2330         return result;
2331 }
2332
2333 static void patch_gamut_packet_checksum(
2334                 struct dc_info_packet *gamut_packet)
2335 {
2336         /* For gamut we recalc checksum */
2337         if (gamut_packet->valid) {
2338                 uint8_t chk_sum = 0;
2339                 uint8_t *ptr;
2340                 uint8_t i;
2341
2342                 /*start of the Gamut data. */
2343                 ptr = &gamut_packet->sb[3];
2344
2345                 for (i = 0; i <= gamut_packet->sb[1]; i++)
2346                         chk_sum += ptr[i];
2347
2348                 gamut_packet->sb[2] = (uint8_t) (0x100 - chk_sum);
2349         }
2350 }
2351
2352 static void set_avi_info_frame(
2353                 struct dc_info_packet *info_packet,
2354                 struct pipe_ctx *pipe_ctx)
2355 {
2356         struct dc_stream_state *stream = pipe_ctx->stream;
2357         enum dc_color_space color_space = COLOR_SPACE_UNKNOWN;
2358         uint32_t pixel_encoding = 0;
2359         enum scanning_type scan_type = SCANNING_TYPE_NODATA;
2360         enum dc_aspect_ratio aspect = ASPECT_RATIO_NO_DATA;
2361         bool itc = false;
2362         uint8_t itc_value = 0;
2363         uint8_t cn0_cn1 = 0;
2364         unsigned int cn0_cn1_value = 0;
2365         uint8_t *check_sum = NULL;
2366         uint8_t byte_index = 0;
2367         union hdmi_info_packet hdmi_info;
2368         union display_content_support support = {0};
2369         unsigned int vic = pipe_ctx->stream->timing.vic;
2370         enum dc_timing_3d_format format;
2371
2372         memset(&hdmi_info, 0, sizeof(union hdmi_info_packet));
2373
2374         color_space = pipe_ctx->stream->output_color_space;
2375         if (color_space == COLOR_SPACE_UNKNOWN)
2376                 color_space = (stream->timing.pixel_encoding == PIXEL_ENCODING_RGB) ?
2377                         COLOR_SPACE_SRGB:COLOR_SPACE_YCBCR709;
2378
2379         /* Initialize header */
2380         hdmi_info.bits.header.info_frame_type = HDMI_INFOFRAME_TYPE_AVI;
2381         /* InfoFrameVersion_3 is defined by CEA861F (Section 6.4), but shall
2382         * not be used in HDMI 2.0 (Section 10.1) */
2383         hdmi_info.bits.header.version = 2;
2384         hdmi_info.bits.header.length = HDMI_AVI_INFOFRAME_SIZE;
2385
2386         /*
2387          * IDO-defined (Y2,Y1,Y0 = 1,1,1) shall not be used by devices built
2388          * according to HDMI 2.0 spec (Section 10.1)
2389          */
2390
2391         switch (stream->timing.pixel_encoding) {
2392         case PIXEL_ENCODING_YCBCR422:
2393                 pixel_encoding = 1;
2394                 break;
2395
2396         case PIXEL_ENCODING_YCBCR444:
2397                 pixel_encoding = 2;
2398                 break;
2399         case PIXEL_ENCODING_YCBCR420:
2400                 pixel_encoding = 3;
2401                 break;
2402
2403         case PIXEL_ENCODING_RGB:
2404         default:
2405                 pixel_encoding = 0;
2406         }
2407
2408         /* Y0_Y1_Y2 : The pixel encoding */
2409         /* H14b AVI InfoFrame has extension on Y-field from 2 bits to 3 bits */
2410         hdmi_info.bits.Y0_Y1_Y2 = pixel_encoding;
2411
2412         /* A0 = 1 Active Format Information valid */
2413         hdmi_info.bits.A0 = ACTIVE_FORMAT_VALID;
2414
2415         /* B0, B1 = 3; Bar info data is valid */
2416         hdmi_info.bits.B0_B1 = BAR_INFO_BOTH_VALID;
2417
2418         hdmi_info.bits.SC0_SC1 = PICTURE_SCALING_UNIFORM;
2419
2420         /* S0, S1 : Underscan / Overscan */
2421         /* TODO: un-hardcode scan type */
2422         scan_type = SCANNING_TYPE_UNDERSCAN;
2423         hdmi_info.bits.S0_S1 = scan_type;
2424
2425         /* C0, C1 : Colorimetry */
2426         if (color_space == COLOR_SPACE_YCBCR709 ||
2427                         color_space == COLOR_SPACE_YCBCR709_LIMITED)
2428                 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU709;
2429         else if (color_space == COLOR_SPACE_YCBCR601 ||
2430                         color_space == COLOR_SPACE_YCBCR601_LIMITED)
2431                 hdmi_info.bits.C0_C1 = COLORIMETRY_ITU601;
2432         else {
2433                 hdmi_info.bits.C0_C1 = COLORIMETRY_NO_DATA;
2434         }
2435         if (color_space == COLOR_SPACE_2020_RGB_FULLRANGE ||
2436                         color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE ||
2437                         color_space == COLOR_SPACE_2020_YCBCR) {
2438                 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_BT2020RGBYCBCR;
2439                 hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2440         } else if (color_space == COLOR_SPACE_ADOBERGB) {
2441                 hdmi_info.bits.EC0_EC2 = COLORIMETRYEX_ADOBERGB;
2442                 hdmi_info.bits.C0_C1   = COLORIMETRY_EXTENDED;
2443         }
2444
2445         /* TODO: un-hardcode aspect ratio */
2446         aspect = stream->timing.aspect_ratio;
2447
2448         switch (aspect) {
2449         case ASPECT_RATIO_4_3:
2450         case ASPECT_RATIO_16_9:
2451                 hdmi_info.bits.M0_M1 = aspect;
2452                 break;
2453
2454         case ASPECT_RATIO_NO_DATA:
2455         case ASPECT_RATIO_64_27:
2456         case ASPECT_RATIO_256_135:
2457         default:
2458                 hdmi_info.bits.M0_M1 = 0;
2459         }
2460
2461         /* Active Format Aspect ratio - same as Picture Aspect Ratio. */
2462         hdmi_info.bits.R0_R3 = ACTIVE_FORMAT_ASPECT_RATIO_SAME_AS_PICTURE;
2463
2464         /* TODO: un-hardcode cn0_cn1 and itc */
2465
2466         cn0_cn1 = 0;
2467         cn0_cn1_value = 0;
2468
2469         itc = true;
2470         itc_value = 1;
2471
2472         support = stream->content_support;
2473
2474         if (itc) {
2475                 if (!support.bits.valid_content_type) {
2476                         cn0_cn1_value = 0;
2477                 } else {
2478                         if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GRAPHICS) {
2479                                 if (support.bits.graphics_content == 1) {
2480                                         cn0_cn1_value = 0;
2481                                 }
2482                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_PHOTO) {
2483                                 if (support.bits.photo_content == 1) {
2484                                         cn0_cn1_value = 1;
2485                                 } else {
2486                                         cn0_cn1_value = 0;
2487                                         itc_value = 0;
2488                                 }
2489                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_CINEMA) {
2490                                 if (support.bits.cinema_content == 1) {
2491                                         cn0_cn1_value = 2;
2492                                 } else {
2493                                         cn0_cn1_value = 0;
2494                                         itc_value = 0;
2495                                 }
2496                         } else if (cn0_cn1 == DISPLAY_CONTENT_TYPE_GAME) {
2497                                 if (support.bits.game_content == 1) {
2498                                         cn0_cn1_value = 3;
2499                                 } else {
2500                                         cn0_cn1_value = 0;
2501                                         itc_value = 0;
2502                                 }
2503                         }
2504                 }
2505                 hdmi_info.bits.CN0_CN1 = cn0_cn1_value;
2506                 hdmi_info.bits.ITC = itc_value;
2507         }
2508
2509         /* TODO : We should handle YCC quantization */
2510         /* but we do not have matrix calculation */
2511         if (stream->qs_bit == 1 &&
2512                         stream->qy_bit == 1) {
2513                 if (color_space == COLOR_SPACE_SRGB ||
2514                         color_space == COLOR_SPACE_2020_RGB_FULLRANGE) {
2515                         hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_FULL_RANGE;
2516                         hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2517                 } else if (color_space == COLOR_SPACE_SRGB_LIMITED ||
2518                                         color_space == COLOR_SPACE_2020_RGB_LIMITEDRANGE) {
2519                         hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_LIMITED_RANGE;
2520                         hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2521                 } else {
2522                         hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2523                         hdmi_info.bits.YQ0_YQ1 = YYC_QUANTIZATION_LIMITED_RANGE;
2524                 }
2525         } else {
2526                 hdmi_info.bits.Q0_Q1   = RGB_QUANTIZATION_DEFAULT_RANGE;
2527                 hdmi_info.bits.YQ0_YQ1   = YYC_QUANTIZATION_LIMITED_RANGE;
2528         }
2529
2530         ///VIC
2531         format = stream->timing.timing_3d_format;
2532         /*todo, add 3DStereo support*/
2533         if (format != TIMING_3D_FORMAT_NONE) {
2534                 // Based on HDMI specs hdmi vic needs to be converted to cea vic when 3D is enabled
2535                 switch (pipe_ctx->stream->timing.hdmi_vic) {
2536                 case 1:
2537                         vic = 95;
2538                         break;
2539                 case 2:
2540                         vic = 94;
2541                         break;
2542                 case 3:
2543                         vic = 93;
2544                         break;
2545                 case 4:
2546                         vic = 98;
2547                         break;
2548                 default:
2549                         break;
2550                 }
2551         }
2552         /* If VIC >= 128, the Source shall use AVI InfoFrame Version 3*/
2553         hdmi_info.bits.VIC0_VIC7 = vic;
2554         if (vic >= 128)
2555                 hdmi_info.bits.header.version = 3;
2556         /* If (C1, C0)=(1, 1) and (EC2, EC1, EC0)=(1, 1, 1),
2557          * the Source shall use 20 AVI InfoFrame Version 4
2558          */
2559         if (hdmi_info.bits.C0_C1 == COLORIMETRY_EXTENDED &&
2560                         hdmi_info.bits.EC0_EC2 == COLORIMETRYEX_RESERVED) {
2561                 hdmi_info.bits.header.version = 4;
2562                 hdmi_info.bits.header.length = 14;
2563         }
2564
2565         /* pixel repetition
2566          * PR0 - PR3 start from 0 whereas pHwPathMode->mode.timing.flags.pixel
2567          * repetition start from 1 */
2568         hdmi_info.bits.PR0_PR3 = 0;
2569
2570         /* Bar Info
2571          * barTop:    Line Number of End of Top Bar.
2572          * barBottom: Line Number of Start of Bottom Bar.
2573          * barLeft:   Pixel Number of End of Left Bar.
2574          * barRight:  Pixel Number of Start of Right Bar. */
2575         hdmi_info.bits.bar_top = stream->timing.v_border_top;
2576         hdmi_info.bits.bar_bottom = (stream->timing.v_total
2577                         - stream->timing.v_border_bottom + 1);
2578         hdmi_info.bits.bar_left  = stream->timing.h_border_left;
2579         hdmi_info.bits.bar_right = (stream->timing.h_total
2580                         - stream->timing.h_border_right + 1);
2581
2582     /* Additional Colorimetry Extension
2583      * Used in conduction with C0-C1 and EC0-EC2
2584      * 0 = DCI-P3 RGB (D65)
2585      * 1 = DCI-P3 RGB (theater)
2586      */
2587         hdmi_info.bits.ACE0_ACE3 = 0;
2588
2589         /* check_sum - Calculate AFMT_AVI_INFO0 ~ AFMT_AVI_INFO3 */
2590         check_sum = &hdmi_info.packet_raw_data.sb[0];
2591
2592         *check_sum = HDMI_INFOFRAME_TYPE_AVI + hdmi_info.bits.header.length + hdmi_info.bits.header.version;
2593
2594         for (byte_index = 1; byte_index <= hdmi_info.bits.header.length; byte_index++)
2595                 *check_sum += hdmi_info.packet_raw_data.sb[byte_index];
2596
2597         /* one byte complement */
2598         *check_sum = (uint8_t) (0x100 - *check_sum);
2599
2600         /* Store in hw_path_mode */
2601         info_packet->hb0 = hdmi_info.packet_raw_data.hb0;
2602         info_packet->hb1 = hdmi_info.packet_raw_data.hb1;
2603         info_packet->hb2 = hdmi_info.packet_raw_data.hb2;
2604
2605         for (byte_index = 0; byte_index < sizeof(hdmi_info.packet_raw_data.sb); byte_index++)
2606                 info_packet->sb[byte_index] = hdmi_info.packet_raw_data.sb[byte_index];
2607
2608         info_packet->valid = true;
2609 }
2610
2611 static void set_vendor_info_packet(
2612                 struct dc_info_packet *info_packet,
2613                 struct dc_stream_state *stream)
2614 {
2615         /* SPD info packet for FreeSync */
2616
2617         /* Check if Freesync is supported. Return if false. If true,
2618          * set the corresponding bit in the info packet
2619          */
2620         if (!stream->vsp_infopacket.valid)
2621                 return;
2622
2623         *info_packet = stream->vsp_infopacket;
2624 }
2625
2626 static void set_spd_info_packet(
2627                 struct dc_info_packet *info_packet,
2628                 struct dc_stream_state *stream)
2629 {
2630         /* SPD info packet for FreeSync */
2631
2632         /* Check if Freesync is supported. Return if false. If true,
2633          * set the corresponding bit in the info packet
2634          */
2635         if (!stream->vrr_infopacket.valid)
2636                 return;
2637
2638         *info_packet = stream->vrr_infopacket;
2639 }
2640
2641 static void set_hdr_static_info_packet(
2642                 struct dc_info_packet *info_packet,
2643                 struct dc_stream_state *stream)
2644 {
2645         /* HDR Static Metadata info packet for HDR10 */
2646
2647         if (!stream->hdr_static_metadata.valid ||
2648                         stream->use_dynamic_meta)
2649                 return;
2650
2651         *info_packet = stream->hdr_static_metadata;
2652 }
2653
2654 static void set_vsc_info_packet(
2655                 struct dc_info_packet *info_packet,
2656                 struct dc_stream_state *stream)
2657 {
2658         if (!stream->vsc_infopacket.valid)
2659                 return;
2660
2661         *info_packet = stream->vsc_infopacket;
2662 }
2663
2664 void dc_resource_state_destruct(struct dc_state *context)
2665 {
2666         int i, j;
2667
2668         for (i = 0; i < context->stream_count; i++) {
2669                 for (j = 0; j < context->stream_status[i].plane_count; j++)
2670                         dc_plane_state_release(
2671                                 context->stream_status[i].plane_states[j]);
2672
2673                 context->stream_status[i].plane_count = 0;
2674                 dc_stream_release(context->streams[i]);
2675                 context->streams[i] = NULL;
2676         }
2677 }
2678
2679 void dc_resource_state_copy_construct(
2680                 const struct dc_state *src_ctx,
2681                 struct dc_state *dst_ctx)
2682 {
2683         int i, j;
2684         struct kref refcount = dst_ctx->refcount;
2685
2686         *dst_ctx = *src_ctx;
2687
2688         for (i = 0; i < MAX_PIPES; i++) {
2689                 struct pipe_ctx *cur_pipe = &dst_ctx->res_ctx.pipe_ctx[i];
2690
2691                 if (cur_pipe->top_pipe)
2692                         cur_pipe->top_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->top_pipe->pipe_idx];
2693
2694                 if (cur_pipe->bottom_pipe)
2695                         cur_pipe->bottom_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->bottom_pipe->pipe_idx];
2696
2697                 if (cur_pipe->next_odm_pipe)
2698                         cur_pipe->next_odm_pipe =  &dst_ctx->res_ctx.pipe_ctx[cur_pipe->next_odm_pipe->pipe_idx];
2699
2700                 if (cur_pipe->prev_odm_pipe)
2701                         cur_pipe->prev_odm_pipe = &dst_ctx->res_ctx.pipe_ctx[cur_pipe->prev_odm_pipe->pipe_idx];
2702         }
2703
2704         for (i = 0; i < dst_ctx->stream_count; i++) {
2705                 dc_stream_retain(dst_ctx->streams[i]);
2706                 for (j = 0; j < dst_ctx->stream_status[i].plane_count; j++)
2707                         dc_plane_state_retain(
2708                                 dst_ctx->stream_status[i].plane_states[j]);
2709         }
2710
2711         /* context refcount should not be overridden */
2712         dst_ctx->refcount = refcount;
2713
2714 }
2715
2716 struct clock_source *dc_resource_find_first_free_pll(
2717                 struct resource_context *res_ctx,
2718                 const struct resource_pool *pool)
2719 {
2720         int i;
2721
2722         for (i = 0; i < pool->clk_src_count; ++i) {
2723                 if (res_ctx->clock_source_ref_count[i] == 0)
2724                         return pool->clock_sources[i];
2725         }
2726
2727         return NULL;
2728 }
2729
2730 void resource_build_info_frame(struct pipe_ctx *pipe_ctx)
2731 {
2732         enum signal_type signal = SIGNAL_TYPE_NONE;
2733         struct encoder_info_frame *info = &pipe_ctx->stream_res.encoder_info_frame;
2734
2735         /* default all packets to invalid */
2736         info->avi.valid = false;
2737         info->gamut.valid = false;
2738         info->vendor.valid = false;
2739         info->spd.valid = false;
2740         info->hdrsmd.valid = false;
2741         info->vsc.valid = false;
2742
2743         signal = pipe_ctx->stream->signal;
2744
2745         /* HDMi and DP have different info packets*/
2746         if (dc_is_hdmi_signal(signal)) {
2747                 set_avi_info_frame(&info->avi, pipe_ctx);
2748
2749                 set_vendor_info_packet(&info->vendor, pipe_ctx->stream);
2750
2751                 set_spd_info_packet(&info->spd, pipe_ctx->stream);
2752
2753                 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2754
2755         } else if (dc_is_dp_signal(signal)) {
2756                 set_vsc_info_packet(&info->vsc, pipe_ctx->stream);
2757
2758                 set_spd_info_packet(&info->spd, pipe_ctx->stream);
2759
2760                 set_hdr_static_info_packet(&info->hdrsmd, pipe_ctx->stream);
2761         }
2762
2763         patch_gamut_packet_checksum(&info->gamut);
2764 }
2765
2766 enum dc_status resource_map_clock_resources(
2767                 const struct dc  *dc,
2768                 struct dc_state *context,
2769                 struct dc_stream_state *stream)
2770 {
2771         /* acquire new resources */
2772         const struct resource_pool *pool = dc->res_pool;
2773         struct pipe_ctx *pipe_ctx = resource_get_head_pipe_for_stream(
2774                                 &context->res_ctx, stream);
2775
2776         if (!pipe_ctx)
2777                 return DC_ERROR_UNEXPECTED;
2778
2779         if (dc_is_dp_signal(pipe_ctx->stream->signal)
2780                 || pipe_ctx->stream->signal == SIGNAL_TYPE_VIRTUAL)
2781                 pipe_ctx->clock_source = pool->dp_clock_source;
2782         else {
2783                 pipe_ctx->clock_source = NULL;
2784
2785                 if (!dc->config.disable_disp_pll_sharing)
2786                         pipe_ctx->clock_source = resource_find_used_clk_src_for_sharing(
2787                                 &context->res_ctx,
2788                                 pipe_ctx);
2789
2790                 if (pipe_ctx->clock_source == NULL)
2791                         pipe_ctx->clock_source =
2792                                 dc_resource_find_first_free_pll(
2793                                         &context->res_ctx,
2794                                         pool);
2795         }
2796
2797         if (pipe_ctx->clock_source == NULL)
2798                 return DC_NO_CLOCK_SOURCE_RESOURCE;
2799
2800         resource_reference_clock_source(
2801                 &context->res_ctx, pool,
2802                 pipe_ctx->clock_source);
2803
2804         return DC_OK;
2805 }
2806
2807 /*
2808  * Note: We need to disable output if clock sources change,
2809  * since bios does optimization and doesn't apply if changing
2810  * PHY when not already disabled.
2811  */
2812 bool pipe_need_reprogram(
2813                 struct pipe_ctx *pipe_ctx_old,
2814                 struct pipe_ctx *pipe_ctx)
2815 {
2816         if (!pipe_ctx_old->stream)
2817                 return false;
2818
2819         if (pipe_ctx_old->stream->sink != pipe_ctx->stream->sink)
2820                 return true;
2821
2822         if (pipe_ctx_old->stream->signal != pipe_ctx->stream->signal)
2823                 return true;
2824
2825         if (pipe_ctx_old->stream_res.audio != pipe_ctx->stream_res.audio)
2826                 return true;
2827
2828         if (pipe_ctx_old->clock_source != pipe_ctx->clock_source
2829                         && pipe_ctx_old->stream != pipe_ctx->stream)
2830                 return true;
2831
2832         if (pipe_ctx_old->stream_res.stream_enc != pipe_ctx->stream_res.stream_enc)
2833                 return true;
2834
2835         if (is_timing_changed(pipe_ctx_old->stream, pipe_ctx->stream))
2836                 return true;
2837
2838         if (pipe_ctx_old->stream->dpms_off != pipe_ctx->stream->dpms_off)
2839                 return true;
2840
2841         if (false == pipe_ctx_old->stream->link->link_state_valid &&
2842                 false == pipe_ctx_old->stream->dpms_off)
2843                 return true;
2844
2845         if (pipe_ctx_old->stream_res.dsc != pipe_ctx->stream_res.dsc)
2846                 return true;
2847
2848         /* DIG link encoder resource assignment for stream changed. */
2849         if (pipe_ctx_old->stream->link_enc != pipe_ctx->stream->link_enc)
2850                 return true;
2851
2852         return false;
2853 }
2854
2855 void resource_build_bit_depth_reduction_params(struct dc_stream_state *stream,
2856                 struct bit_depth_reduction_params *fmt_bit_depth)
2857 {
2858         enum dc_dither_option option = stream->dither_option;
2859         enum dc_pixel_encoding pixel_encoding =
2860                         stream->timing.pixel_encoding;
2861
2862         memset(fmt_bit_depth, 0, sizeof(*fmt_bit_depth));
2863
2864         if (option == DITHER_OPTION_DEFAULT) {
2865                 switch (stream->timing.display_color_depth) {
2866                 case COLOR_DEPTH_666:
2867                         option = DITHER_OPTION_SPATIAL6;
2868                         break;
2869                 case COLOR_DEPTH_888:
2870                         option = DITHER_OPTION_SPATIAL8;
2871                         break;
2872                 case COLOR_DEPTH_101010:
2873                         option = DITHER_OPTION_SPATIAL10;
2874                         break;
2875                 default:
2876                         option = DITHER_OPTION_DISABLE;
2877                 }
2878         }
2879
2880         if (option == DITHER_OPTION_DISABLE)
2881                 return;
2882
2883         if (option == DITHER_OPTION_TRUN6) {
2884                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2885                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 0;
2886         } else if (option == DITHER_OPTION_TRUN8 ||
2887                         option == DITHER_OPTION_TRUN8_SPATIAL6 ||
2888                         option == DITHER_OPTION_TRUN8_FM6) {
2889                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2890                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 1;
2891         } else if (option == DITHER_OPTION_TRUN10        ||
2892                         option == DITHER_OPTION_TRUN10_SPATIAL6   ||
2893                         option == DITHER_OPTION_TRUN10_SPATIAL8   ||
2894                         option == DITHER_OPTION_TRUN10_FM8     ||
2895                         option == DITHER_OPTION_TRUN10_FM6     ||
2896                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2897                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2898                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2899         }
2900
2901         /* special case - Formatter can only reduce by 4 bits at most.
2902          * When reducing from 12 to 6 bits,
2903          * HW recommends we use trunc with round mode
2904          * (if we did nothing, trunc to 10 bits would be used)
2905          * note that any 12->10 bit reduction is ignored prior to DCE8,
2906          * as the input was 10 bits.
2907          */
2908         if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM ||
2909                         option == DITHER_OPTION_SPATIAL6 ||
2910                         option == DITHER_OPTION_FM6) {
2911                 fmt_bit_depth->flags.TRUNCATE_ENABLED = 1;
2912                 fmt_bit_depth->flags.TRUNCATE_DEPTH = 2;
2913                 fmt_bit_depth->flags.TRUNCATE_MODE = 1;
2914         }
2915
2916         /* spatial dither
2917          * note that spatial modes 1-3 are never used
2918          */
2919         if (option == DITHER_OPTION_SPATIAL6_FRAME_RANDOM            ||
2920                         option == DITHER_OPTION_SPATIAL6 ||
2921                         option == DITHER_OPTION_TRUN10_SPATIAL6      ||
2922                         option == DITHER_OPTION_TRUN8_SPATIAL6) {
2923                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2924                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 0;
2925                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2926                 fmt_bit_depth->flags.RGB_RANDOM =
2927                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2928         } else if (option == DITHER_OPTION_SPATIAL8_FRAME_RANDOM            ||
2929                         option == DITHER_OPTION_SPATIAL8 ||
2930                         option == DITHER_OPTION_SPATIAL8_FM6        ||
2931                         option == DITHER_OPTION_TRUN10_SPATIAL8      ||
2932                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2933                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2934                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 1;
2935                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2936                 fmt_bit_depth->flags.RGB_RANDOM =
2937                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2938         } else if (option == DITHER_OPTION_SPATIAL10_FRAME_RANDOM ||
2939                         option == DITHER_OPTION_SPATIAL10 ||
2940                         option == DITHER_OPTION_SPATIAL10_FM8 ||
2941                         option == DITHER_OPTION_SPATIAL10_FM6) {
2942                 fmt_bit_depth->flags.SPATIAL_DITHER_ENABLED = 1;
2943                 fmt_bit_depth->flags.SPATIAL_DITHER_DEPTH = 2;
2944                 fmt_bit_depth->flags.HIGHPASS_RANDOM = 1;
2945                 fmt_bit_depth->flags.RGB_RANDOM =
2946                                 (pixel_encoding == PIXEL_ENCODING_RGB) ? 1 : 0;
2947         }
2948
2949         if (option == DITHER_OPTION_SPATIAL6 ||
2950                         option == DITHER_OPTION_SPATIAL8 ||
2951                         option == DITHER_OPTION_SPATIAL10) {
2952                 fmt_bit_depth->flags.FRAME_RANDOM = 0;
2953         } else {
2954                 fmt_bit_depth->flags.FRAME_RANDOM = 1;
2955         }
2956
2957         //////////////////////
2958         //// temporal dither
2959         //////////////////////
2960         if (option == DITHER_OPTION_FM6           ||
2961                         option == DITHER_OPTION_SPATIAL8_FM6     ||
2962                         option == DITHER_OPTION_SPATIAL10_FM6     ||
2963                         option == DITHER_OPTION_TRUN10_FM6     ||
2964                         option == DITHER_OPTION_TRUN8_FM6      ||
2965                         option == DITHER_OPTION_TRUN10_SPATIAL8_FM6) {
2966                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2967                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 0;
2968         } else if (option == DITHER_OPTION_FM8        ||
2969                         option == DITHER_OPTION_SPATIAL10_FM8  ||
2970                         option == DITHER_OPTION_TRUN10_FM8) {
2971                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2972                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 1;
2973         } else if (option == DITHER_OPTION_FM10) {
2974                 fmt_bit_depth->flags.FRAME_MODULATION_ENABLED = 1;
2975                 fmt_bit_depth->flags.FRAME_MODULATION_DEPTH = 2;
2976         }
2977
2978         fmt_bit_depth->pixel_encoding = pixel_encoding;
2979 }
2980
2981 enum dc_status dc_validate_stream(struct dc *dc, struct dc_stream_state *stream)
2982 {
2983         struct dc_link *link = stream->link;
2984         struct timing_generator *tg = dc->res_pool->timing_generators[0];
2985         enum dc_status res = DC_OK;
2986
2987         calculate_phy_pix_clks(stream);
2988
2989         if (!tg->funcs->validate_timing(tg, &stream->timing))
2990                 res = DC_FAIL_CONTROLLER_VALIDATE;
2991
2992         if (res == DC_OK) {
2993                 if (!link->link_enc->funcs->validate_output_with_stream(
2994                                                 link->link_enc, stream))
2995                         res = DC_FAIL_ENC_VALIDATE;
2996         }
2997
2998         /* TODO: validate audio ASIC caps, encoder */
2999
3000         if (res == DC_OK)
3001                 res = dc_link_validate_mode_timing(stream,
3002                       link,
3003                       &stream->timing);
3004
3005         return res;
3006 }
3007
3008 enum dc_status dc_validate_plane(struct dc *dc, const struct dc_plane_state *plane_state)
3009 {
3010         enum dc_status res = DC_OK;
3011
3012         /* TODO For now validates pixel format only */
3013         if (dc->res_pool->funcs->validate_plane)
3014                 return dc->res_pool->funcs->validate_plane(plane_state, &dc->caps);
3015
3016         return res;
3017 }
3018
3019 unsigned int resource_pixel_format_to_bpp(enum surface_pixel_format format)
3020 {
3021         switch (format) {
3022         case SURFACE_PIXEL_FORMAT_GRPH_PALETA_256_COLORS:
3023                 return 8;
3024         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCbCr:
3025         case SURFACE_PIXEL_FORMAT_VIDEO_420_YCrCb:
3026                 return 12;
3027         case SURFACE_PIXEL_FORMAT_GRPH_ARGB1555:
3028         case SURFACE_PIXEL_FORMAT_GRPH_RGB565:
3029         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCbCr:
3030         case SURFACE_PIXEL_FORMAT_VIDEO_420_10bpc_YCrCb:
3031                 return 16;
3032         case SURFACE_PIXEL_FORMAT_GRPH_ARGB8888:
3033         case SURFACE_PIXEL_FORMAT_GRPH_ABGR8888:
3034         case SURFACE_PIXEL_FORMAT_GRPH_ARGB2101010:
3035         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010:
3036         case SURFACE_PIXEL_FORMAT_GRPH_ABGR2101010_XR_BIAS:
3037 #if defined(CONFIG_DRM_AMD_DC_DCN)
3038         case SURFACE_PIXEL_FORMAT_GRPH_RGBE:
3039         case SURFACE_PIXEL_FORMAT_GRPH_RGBE_ALPHA:
3040 #endif
3041                 return 32;
3042         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616:
3043         case SURFACE_PIXEL_FORMAT_GRPH_ARGB16161616F:
3044         case SURFACE_PIXEL_FORMAT_GRPH_ABGR16161616F:
3045                 return 64;
3046         default:
3047                 ASSERT_CRITICAL(false);
3048                 return -1;
3049         }
3050 }
3051 static unsigned int get_max_audio_sample_rate(struct audio_mode *modes)
3052 {
3053         if (modes) {
3054                 if (modes->sample_rates.rate.RATE_192)
3055                         return 192000;
3056                 if (modes->sample_rates.rate.RATE_176_4)
3057                         return 176400;
3058                 if (modes->sample_rates.rate.RATE_96)
3059                         return 96000;
3060                 if (modes->sample_rates.rate.RATE_88_2)
3061                         return 88200;
3062                 if (modes->sample_rates.rate.RATE_48)
3063                         return 48000;
3064                 if (modes->sample_rates.rate.RATE_44_1)
3065                         return 44100;
3066                 if (modes->sample_rates.rate.RATE_32)
3067                         return 32000;
3068         }
3069         /*original logic when no audio info*/
3070         return 441000;
3071 }
3072
3073 void get_audio_check(struct audio_info *aud_modes,
3074         struct audio_check *audio_chk)
3075 {
3076         unsigned int i;
3077         unsigned int max_sample_rate = 0;
3078
3079         if (aud_modes) {
3080                 audio_chk->audio_packet_type = 0x2;/*audio sample packet AP = .25 for layout0, 1 for layout1*/
3081
3082                 audio_chk->max_audiosample_rate = 0;
3083                 for (i = 0; i < aud_modes->mode_count; i++) {
3084                         max_sample_rate = get_max_audio_sample_rate(&aud_modes->modes[i]);
3085                         if (audio_chk->max_audiosample_rate < max_sample_rate)
3086                                 audio_chk->max_audiosample_rate = max_sample_rate;
3087                         /*dts takes the same as type 2: AP = 0.25*/
3088                 }
3089                 /*check which one take more bandwidth*/
3090                 if (audio_chk->max_audiosample_rate > 192000)
3091                         audio_chk->audio_packet_type = 0x9;/*AP =1*/
3092                 audio_chk->acat = 0;/*not support*/
3093         }
3094 }
3095