Merge tag 'drm-misc-next-2021-04-09' of git://anongit.freedesktop.org/drm/drm-misc...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / display / dc / clk_mgr / dcn301 / vg_clk_mgr.c
1 /*
2  * Copyright 2020 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28
29 // For dce12_get_dp_ref_freq_khz
30 #include "dce100/dce_clk_mgr.h"
31
32 // For dcn20_update_clocks_update_dpp_dto
33 #include "dcn20/dcn20_clk_mgr.h"
34
35
36
37 #include "vg_clk_mgr.h"
38 #include "reg_helper.h"
39 #include "core_types.h"
40 #include "dm_helpers.h"
41
42 #include "atomfirmware.h"
43 #include "vangogh_ip_offset.h"
44 #include "clk/clk_11_5_0_offset.h"
45 #include "clk/clk_11_5_0_sh_mask.h"
46
47 /* Constants */
48
49 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
50
51 /* Macros */
52
53 #define REG(reg_name) \
54         (CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
55
56 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
57 int vg_get_active_display_cnt_wa(
58                 struct dc *dc,
59                 struct dc_state *context)
60 {
61         int i, display_count;
62         bool tmds_present = false;
63
64         display_count = 0;
65         for (i = 0; i < context->stream_count; i++) {
66                 const struct dc_stream_state *stream = context->streams[i];
67
68                 if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
69                                 stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
70                                 stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
71                         tmds_present = true;
72         }
73
74         for (i = 0; i < dc->link_count; i++) {
75                 const struct dc_link *link = dc->links[i];
76
77                 /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
78                 if (link->link_enc->funcs->is_dig_enabled &&
79                                 link->link_enc->funcs->is_dig_enabled(link->link_enc))
80                         display_count++;
81         }
82
83         /* WA for hang on HDMI after display off back back on*/
84         if (display_count == 0 && tmds_present)
85                 display_count = 1;
86
87         return display_count;
88 }
89
90 void vg_update_clocks(struct clk_mgr *clk_mgr_base,
91                         struct dc_state *context,
92                         bool safe_to_lower)
93 {
94         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
95         struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
96         struct dc *dc = clk_mgr_base->ctx->dc;
97         int display_count;
98         bool update_dppclk = false;
99         bool update_dispclk = false;
100         bool dpp_clock_lowered = false;
101
102         if (dc->work_arounds.skip_clock_update)
103                 return;
104
105         /*
106          * if it is safe to lower, but we are already in the lower state, we don't have to do anything
107          * also if safe to lower is false, we just go in the higher state
108          */
109         if (safe_to_lower) {
110                 /* check that we're not already in lower */
111                 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
112
113                         display_count = vg_get_active_display_cnt_wa(dc, context);
114                         /* if we can go lower, go lower */
115                         if (display_count == 0) {
116                                 union display_idle_optimization_u idle_info = { 0 };
117
118                                 idle_info.idle_info.df_request_disabled = 1;
119                                 idle_info.idle_info.phy_ref_clk_off = 1;
120
121                                 dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
122                                 /* update power state */
123                                 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
124                         }
125                 }
126         } else {
127                 /* check that we're not already in D0 */
128                 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
129                         union display_idle_optimization_u idle_info = { 0 };
130
131                         dcn301_smu_set_display_idle_optimization(clk_mgr, idle_info.data);
132                         /* update power state */
133                         clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
134                 }
135         }
136
137         if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
138                 clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
139                 dcn301_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
140         }
141
142         if (should_set_clock(safe_to_lower,
143                         new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
144                 clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
145                 dcn301_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
146         }
147
148         // workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
149         if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
150                 if (new_clocks->dppclk_khz < 100000)
151                         new_clocks->dppclk_khz = 100000;
152         }
153
154         if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr->base.clks.dppclk_khz)) {
155                 if (clk_mgr->base.clks.dppclk_khz > new_clocks->dppclk_khz)
156                         dpp_clock_lowered = true;
157                 clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
158                 update_dppclk = true;
159         }
160
161         if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
162                 clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
163                 dcn301_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
164
165                 update_dispclk = true;
166         }
167
168         if (dpp_clock_lowered) {
169                 // increase per DPP DTO before lowering global dppclk
170                 dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
171                 dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
172         } else {
173                 // increase global DPPCLK before lowering per DPP DTO
174                 if (update_dppclk || update_dispclk)
175                         dcn301_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
176                 // always update dtos unless clock is lowered and not safe to lower
177                 if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
178                         dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
179         }
180 }
181
182
183 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
184 {
185         /* get FbMult value */
186         struct fixed31_32 pll_req;
187         unsigned int fbmult_frac_val = 0;
188         unsigned int fbmult_int_val = 0;
189
190
191         /*
192          * Register value of fbmult is in 8.16 format, we are converting to 31.32
193          * to leverage the fix point operations available in driver
194          */
195
196         REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
197         REG_GET(CLK1_0_CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
198
199         pll_req = dc_fixpt_from_int(fbmult_int_val);
200
201         /*
202          * since fractional part is only 16 bit in register definition but is 32 bit
203          * in our fix point definiton, need to shift left by 16 to obtain correct value
204          */
205         pll_req.value |= fbmult_frac_val << 16;
206
207         /* multiply by REFCLK period */
208         pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
209
210         /* integer part is now VCO frequency in kHz */
211         return dc_fixpt_floor(pll_req);
212 }
213
214 static void vg_dump_clk_registers_internal(struct dcn301_clk_internal *internal, struct clk_mgr *clk_mgr_base)
215 {
216         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
217
218         internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK3_CURRENT_CNT);
219         internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_BYPASS_CNTL);
220
221         internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_0_CLK1_CLK3_DS_CNTL);       //dcf deep sleep divider
222         internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_0_CLK1_CLK3_ALLOW_DS);
223
224         internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK1_CURRENT_CNT);
225         internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK1_BYPASS_CNTL);
226
227         internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK2_CURRENT_CNT);
228         internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK2_BYPASS_CNTL);
229
230         internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_0_CLK1_CLK0_CURRENT_CNT);
231         internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_0_CLK1_CLK0_BYPASS_CNTL);
232 }
233
234 /* This function collect raw clk register values */
235 static void vg_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
236                 struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
237 {
238         struct dcn301_clk_internal internal = {0};
239         char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
240         unsigned int chars_printed = 0;
241         unsigned int remaining_buffer = log_info->bufSize;
242
243         vg_dump_clk_registers_internal(&internal, clk_mgr_base);
244
245         regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
246         regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
247         regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
248         regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
249         regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
250         regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
251
252         regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
253         if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
254                 regs_and_bypass->dppclk_bypass = 0;
255         regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
256         if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
257                 regs_and_bypass->dcfclk_bypass = 0;
258         regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
259         if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
260                 regs_and_bypass->dispclk_bypass = 0;
261         regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
262         if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
263                 regs_and_bypass->dprefclk_bypass = 0;
264
265         if (log_info->enabled) {
266                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
267                 remaining_buffer -= chars_printed;
268                 *log_info->sum_chars_printed += chars_printed;
269                 log_info->pBuf += chars_printed;
270
271                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
272                         regs_and_bypass->dcfclk,
273                         regs_and_bypass->dcf_deep_sleep_divider,
274                         regs_and_bypass->dcf_deep_sleep_allow,
275                         bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
276                 remaining_buffer -= chars_printed;
277                 *log_info->sum_chars_printed += chars_printed;
278                 log_info->pBuf += chars_printed;
279
280                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
281                         regs_and_bypass->dprefclk,
282                         bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
283                 remaining_buffer -= chars_printed;
284                 *log_info->sum_chars_printed += chars_printed;
285                 log_info->pBuf += chars_printed;
286
287                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
288                         regs_and_bypass->dispclk,
289                         bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
290                 remaining_buffer -= chars_printed;
291                 *log_info->sum_chars_printed += chars_printed;
292                 log_info->pBuf += chars_printed;
293
294                 //split
295                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
296                 remaining_buffer -= chars_printed;
297                 *log_info->sum_chars_printed += chars_printed;
298                 log_info->pBuf += chars_printed;
299
300                 // REGISTER VALUES
301                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
302                 remaining_buffer -= chars_printed;
303                 *log_info->sum_chars_printed += chars_printed;
304                 log_info->pBuf += chars_printed;
305
306                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
307                                 internal.CLK1_CLK3_CURRENT_CNT);
308                 remaining_buffer -= chars_printed;
309                 *log_info->sum_chars_printed += chars_printed;
310                 log_info->pBuf += chars_printed;
311
312                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
313                                         internal.CLK1_CLK3_DS_CNTL);
314                 remaining_buffer -= chars_printed;
315                 *log_info->sum_chars_printed += chars_printed;
316                 log_info->pBuf += chars_printed;
317
318                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
319                                         internal.CLK1_CLK3_ALLOW_DS);
320                 remaining_buffer -= chars_printed;
321                 *log_info->sum_chars_printed += chars_printed;
322                 log_info->pBuf += chars_printed;
323
324                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
325                                         internal.CLK1_CLK2_CURRENT_CNT);
326                 remaining_buffer -= chars_printed;
327                 *log_info->sum_chars_printed += chars_printed;
328                 log_info->pBuf += chars_printed;
329
330                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
331                                         internal.CLK1_CLK0_CURRENT_CNT);
332                 remaining_buffer -= chars_printed;
333                 *log_info->sum_chars_printed += chars_printed;
334                 log_info->pBuf += chars_printed;
335
336                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
337                                         internal.CLK1_CLK1_CURRENT_CNT);
338                 remaining_buffer -= chars_printed;
339                 *log_info->sum_chars_printed += chars_printed;
340                 log_info->pBuf += chars_printed;
341
342                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
343                                         internal.CLK1_CLK3_BYPASS_CNTL);
344                 remaining_buffer -= chars_printed;
345                 *log_info->sum_chars_printed += chars_printed;
346                 log_info->pBuf += chars_printed;
347
348                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
349                                         internal.CLK1_CLK2_BYPASS_CNTL);
350                 remaining_buffer -= chars_printed;
351                 *log_info->sum_chars_printed += chars_printed;
352                 log_info->pBuf += chars_printed;
353
354                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
355                                         internal.CLK1_CLK0_BYPASS_CNTL);
356                 remaining_buffer -= chars_printed;
357                 *log_info->sum_chars_printed += chars_printed;
358                 log_info->pBuf += chars_printed;
359
360                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
361                                         internal.CLK1_CLK1_BYPASS_CNTL);
362                 remaining_buffer -= chars_printed;
363                 *log_info->sum_chars_printed += chars_printed;
364                 log_info->pBuf += chars_printed;
365         }
366 }
367
368 /* This function produce translated logical clk state values*/
369 void vg_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
370 {
371
372         struct clk_state_registers_and_bypass sb = { 0 };
373         struct clk_log_info log_info = { 0 };
374
375         vg_dump_clk_registers(&sb, clk_mgr_base, &log_info);
376
377         s->dprefclk_khz = sb.dprefclk * 1000;
378 }
379
380 void vg_enable_pme_wa(struct clk_mgr *clk_mgr_base)
381 {
382         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
383
384         dcn301_smu_enable_pme_wa(clk_mgr);
385 }
386
387 void vg_init_clocks(struct clk_mgr *clk_mgr)
388 {
389         memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
390         // Assumption is that boot state always supports pstate
391         clk_mgr->clks.p_state_change_support = true;
392         clk_mgr->clks.prev_p_state_change_support = true;
393         clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
394 }
395
396 static void vg_build_watermark_ranges(struct clk_bw_params *bw_params, struct watermarks *table)
397 {
398         int i, num_valid_sets;
399
400         num_valid_sets = 0;
401
402         for (i = 0; i < WM_SET_COUNT; i++) {
403                 /* skip empty entries, the smu array has no holes*/
404                 if (!bw_params->wm_table.entries[i].valid)
405                         continue;
406
407                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmSetting = bw_params->wm_table.entries[i].wm_inst;
408                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType = bw_params->wm_table.entries[i].wm_type;
409                 /* We will not select WM based on fclk, so leave it as unconstrained */
410                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
411                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
412
413                 if (table->WatermarkRow[WM_DCFCLK][num_valid_sets].WmType == WM_TYPE_PSTATE_CHG) {
414                         if (i == 0)
415                                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk = 0;
416                         else {
417                                 /* add 1 to make it non-overlapping with next lvl */
418                                 table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinMclk =
419                                                 bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
420                         }
421                         table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxMclk =
422                                         bw_params->clk_table.entries[i].dcfclk_mhz;
423
424                 } else {
425                         /* unconstrained for memory retraining */
426                         table->WatermarkRow[WM_DCFCLK][num_valid_sets].MinClock = 0;
427                         table->WatermarkRow[WM_DCFCLK][num_valid_sets].MaxClock = 0xFFFF;
428
429                         /* Modify previous watermark range to cover up to max */
430                         table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
431                 }
432                 num_valid_sets++;
433         }
434
435         ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
436
437         /* modify the min and max to make sure we cover the whole range*/
438         table->WatermarkRow[WM_DCFCLK][0].MinMclk = 0;
439         table->WatermarkRow[WM_DCFCLK][0].MinClock = 0;
440         table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxMclk = 0xFFFF;
441         table->WatermarkRow[WM_DCFCLK][num_valid_sets - 1].MaxClock = 0xFFFF;
442
443         /* This is for writeback only, does not matter currently as no writeback support*/
444         table->WatermarkRow[WM_SOCCLK][0].WmSetting = WM_A;
445         table->WatermarkRow[WM_SOCCLK][0].MinClock = 0;
446         table->WatermarkRow[WM_SOCCLK][0].MaxClock = 0xFFFF;
447         table->WatermarkRow[WM_SOCCLK][0].MinMclk = 0;
448         table->WatermarkRow[WM_SOCCLK][0].MaxMclk = 0xFFFF;
449 }
450
451
452 void vg_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
453 {
454         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
455         struct watermarks *table = clk_mgr_base->smu_wm_set.wm_set;
456
457         if (!clk_mgr->smu_ver)
458                 return;
459
460         if (!table || clk_mgr_base->smu_wm_set.mc_address.quad_part == 0)
461                 return;
462
463         memset(table, 0, sizeof(*table));
464
465         vg_build_watermark_ranges(clk_mgr_base->bw_params, table);
466
467         dcn301_smu_set_dram_addr_high(clk_mgr,
468                         clk_mgr_base->smu_wm_set.mc_address.high_part);
469         dcn301_smu_set_dram_addr_low(clk_mgr,
470                         clk_mgr_base->smu_wm_set.mc_address.low_part);
471         dcn301_smu_transfer_wm_table_dram_2_smu(clk_mgr);
472 }
473
474 static bool vg_are_clock_states_equal(struct dc_clocks *a,
475                 struct dc_clocks *b)
476 {
477         if (a->dispclk_khz != b->dispclk_khz)
478                 return false;
479         else if (a->dppclk_khz != b->dppclk_khz)
480                 return false;
481         else if (a->dcfclk_khz != b->dcfclk_khz)
482                 return false;
483         else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
484                 return false;
485
486         return true;
487 }
488
489
490 static struct clk_mgr_funcs vg_funcs = {
491         .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
492         .update_clocks = vg_update_clocks,
493         .init_clocks = vg_init_clocks,
494         .enable_pme_wa = vg_enable_pme_wa,
495         .are_clock_states_equal = vg_are_clock_states_equal,
496         .notify_wm_ranges = vg_notify_wm_ranges
497 };
498
499 static struct clk_bw_params vg_bw_params = {
500         .vram_type = Ddr4MemType,
501         .num_channels = 1,
502         .clk_table = {
503                 .entries = {
504                         {
505                                 .voltage = 0,
506                                 .dcfclk_mhz = 400,
507                                 .fclk_mhz = 400,
508                                 .memclk_mhz = 800,
509                                 .socclk_mhz = 0,
510                         },
511                         {
512                                 .voltage = 0,
513                                 .dcfclk_mhz = 483,
514                                 .fclk_mhz = 800,
515                                 .memclk_mhz = 1600,
516                                 .socclk_mhz = 0,
517                         },
518                         {
519                                 .voltage = 0,
520                                 .dcfclk_mhz = 602,
521                                 .fclk_mhz = 1067,
522                                 .memclk_mhz = 1067,
523                                 .socclk_mhz = 0,
524                         },
525                         {
526                                 .voltage = 0,
527                                 .dcfclk_mhz = 738,
528                                 .fclk_mhz = 1333,
529                                 .memclk_mhz = 1600,
530                                 .socclk_mhz = 0,
531                         },
532                 },
533
534                 .num_entries = 4,
535         },
536
537 };
538
539 static struct wm_table ddr4_wm_table = {
540         .entries = {
541                 {
542                         .wm_inst = WM_A,
543                         .wm_type = WM_TYPE_PSTATE_CHG,
544                         .pstate_latency_us = 11.72,
545                         .sr_exit_time_us = 6.09,
546                         .sr_enter_plus_exit_time_us = 7.14,
547                         .valid = true,
548                 },
549                 {
550                         .wm_inst = WM_B,
551                         .wm_type = WM_TYPE_PSTATE_CHG,
552                         .pstate_latency_us = 11.72,
553                         .sr_exit_time_us = 10.12,
554                         .sr_enter_plus_exit_time_us = 11.48,
555                         .valid = true,
556                 },
557                 {
558                         .wm_inst = WM_C,
559                         .wm_type = WM_TYPE_PSTATE_CHG,
560                         .pstate_latency_us = 11.72,
561                         .sr_exit_time_us = 10.12,
562                         .sr_enter_plus_exit_time_us = 11.48,
563                         .valid = true,
564                 },
565                 {
566                         .wm_inst = WM_D,
567                         .wm_type = WM_TYPE_PSTATE_CHG,
568                         .pstate_latency_us = 11.72,
569                         .sr_exit_time_us = 10.12,
570                         .sr_enter_plus_exit_time_us = 11.48,
571                         .valid = true,
572                 },
573         }
574 };
575
576 static struct wm_table lpddr5_wm_table = {
577         .entries = {
578                 {
579                         .wm_inst = WM_A,
580                         .wm_type = WM_TYPE_PSTATE_CHG,
581                         .pstate_latency_us = 11.65333,
582                         .sr_exit_time_us = 5.32,
583                         .sr_enter_plus_exit_time_us = 6.38,
584                         .valid = true,
585                 },
586                 {
587                         .wm_inst = WM_B,
588                         .wm_type = WM_TYPE_PSTATE_CHG,
589                         .pstate_latency_us = 11.65333,
590                         .sr_exit_time_us = 9.82,
591                         .sr_enter_plus_exit_time_us = 11.196,
592                         .valid = true,
593                 },
594                 {
595                         .wm_inst = WM_C,
596                         .wm_type = WM_TYPE_PSTATE_CHG,
597                         .pstate_latency_us = 11.65333,
598                         .sr_exit_time_us = 9.89,
599                         .sr_enter_plus_exit_time_us = 11.24,
600                         .valid = true,
601                 },
602                 {
603                         .wm_inst = WM_D,
604                         .wm_type = WM_TYPE_PSTATE_CHG,
605                         .pstate_latency_us = 11.65333,
606                         .sr_exit_time_us = 9.748,
607                         .sr_enter_plus_exit_time_us = 11.102,
608                         .valid = true,
609                 },
610         }
611 };
612
613
614 static unsigned int find_dcfclk_for_voltage(const struct vg_dpm_clocks *clock_table,
615                 unsigned int voltage)
616 {
617         int i;
618
619         for (i = 0; i < VG_NUM_SOC_VOLTAGE_LEVELS; i++) {
620                 if (clock_table->SocVoltage[i] == voltage)
621                         return clock_table->DcfClocks[i];
622         }
623
624         ASSERT(0);
625         return 0;
626 }
627
628 void vg_clk_mgr_helper_populate_bw_params(
629                 struct clk_mgr_internal *clk_mgr,
630                 struct integrated_info *bios_info,
631                 const struct vg_dpm_clocks *clock_table)
632 {
633         int i, j;
634         struct clk_bw_params *bw_params = clk_mgr->base.bw_params;
635
636         j = -1;
637
638         ASSERT(VG_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
639
640         /* Find lowest DPM, FCLK is filled in reverse order*/
641
642         for (i = VG_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
643                 if (clock_table->DfPstateTable[i].fclk != 0) {
644                         j = i;
645                         break;
646                 }
647         }
648
649         if (j == -1) {
650                 /* clock table is all 0s, just use our own hardcode */
651                 ASSERT(0);
652                 return;
653         }
654
655         bw_params->clk_table.num_entries = j + 1;
656
657         for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
658                 bw_params->clk_table.entries[i].fclk_mhz = clock_table->DfPstateTable[j].fclk;
659                 bw_params->clk_table.entries[i].memclk_mhz = clock_table->DfPstateTable[j].memclk;
660                 bw_params->clk_table.entries[i].voltage = clock_table->DfPstateTable[j].voltage;
661                 bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->DfPstateTable[j].voltage);
662         }
663
664         bw_params->vram_type = bios_info->memory_type;
665         bw_params->num_channels = bios_info->ma_channel_number;
666
667         for (i = 0; i < WM_SET_COUNT; i++) {
668                 bw_params->wm_table.entries[i].wm_inst = i;
669
670                 if (i >= bw_params->clk_table.num_entries) {
671                         bw_params->wm_table.entries[i].valid = false;
672                         continue;
673                 }
674
675                 bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
676                 bw_params->wm_table.entries[i].valid = true;
677         }
678
679         if (bw_params->vram_type == LpDdr4MemType) {
680                 /*
681                  * WM set D will be re-purposed for memory retraining
682                  */
683                 bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
684                 bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
685                 bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
686                 bw_params->wm_table.entries[WM_D].valid = true;
687         }
688
689 }
690
691 /* Temporary Place holder until we can get them from fuse */
692 static struct vg_dpm_clocks dummy_clocks = {
693                 .DcfClocks = { 201, 403, 403, 403, 403, 403, 403 },
694                 .SocClocks = { 400, 600, 600, 600, 600, 600, 600 },
695                 .SocVoltage = { 2800, 2860, 2860, 2860, 2860, 2860, 2860, 2860 },
696                 .DfPstateTable = {
697                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 },
698                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 },
699                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 },
700                                 { .fclk = 400,  .memclk = 400, .voltage = 2800 }
701                 }
702 };
703
704 static struct watermarks dummy_wms = { 0 };
705
706 void vg_get_dpm_table_from_smu(struct clk_mgr_internal *clk_mgr,
707                 struct smu_dpm_clks *smu_dpm_clks)
708 {
709         struct vg_dpm_clocks *table = smu_dpm_clks->dpm_clks;
710
711         if (!clk_mgr->smu_ver)
712                 return;
713
714         if (!table || smu_dpm_clks->mc_address.quad_part == 0)
715                 return;
716
717         memset(table, 0, sizeof(*table));
718
719         dcn301_smu_set_dram_addr_high(clk_mgr,
720                         smu_dpm_clks->mc_address.high_part);
721         dcn301_smu_set_dram_addr_low(clk_mgr,
722                         smu_dpm_clks->mc_address.low_part);
723         dcn301_smu_transfer_dpm_table_smu_2_dram(clk_mgr);
724 }
725
726 void vg_clk_mgr_construct(
727                 struct dc_context *ctx,
728                 struct clk_mgr_internal *clk_mgr,
729                 struct pp_smu_funcs *pp_smu,
730                 struct dccg *dccg)
731 {
732         struct smu_dpm_clks smu_dpm_clks = { 0 };
733
734         clk_mgr->base.ctx = ctx;
735         clk_mgr->base.funcs = &vg_funcs;
736
737         clk_mgr->pp_smu = pp_smu;
738
739         clk_mgr->dccg = dccg;
740         clk_mgr->dfs_bypass_disp_clk = 0;
741
742         clk_mgr->dprefclk_ss_percentage = 0;
743         clk_mgr->dprefclk_ss_divider = 1000;
744         clk_mgr->ss_on_dprefclk = false;
745         clk_mgr->dfs_ref_freq_khz = 48000;
746
747         clk_mgr->base.smu_wm_set.wm_set = (struct watermarks *)dm_helpers_allocate_gpu_mem(
748                                 clk_mgr->base.ctx,
749                                 DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
750                                 sizeof(struct watermarks),
751                                 &clk_mgr->base.smu_wm_set.mc_address.quad_part);
752
753         if (clk_mgr->base.smu_wm_set.wm_set == 0) {
754                 clk_mgr->base.smu_wm_set.wm_set = &dummy_wms;
755                 clk_mgr->base.smu_wm_set.mc_address.quad_part = 0;
756         }
757         ASSERT(clk_mgr->base.smu_wm_set.wm_set);
758
759         smu_dpm_clks.dpm_clks = (struct vg_dpm_clocks *)dm_helpers_allocate_gpu_mem(
760                                 clk_mgr->base.ctx,
761                                 DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
762                                 sizeof(struct vg_dpm_clocks),
763                                 &smu_dpm_clks.mc_address.quad_part);
764
765         if (smu_dpm_clks.dpm_clks == NULL) {
766                 smu_dpm_clks.dpm_clks = &dummy_clocks;
767                 smu_dpm_clks.mc_address.quad_part = 0;
768         }
769
770         ASSERT(smu_dpm_clks.dpm_clks);
771
772         if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
773                 vg_funcs.update_clocks = dcn2_update_clocks_fpga;
774                 clk_mgr->base.dentist_vco_freq_khz = 3600000;
775         } else {
776                 struct clk_log_info log_info = {0};
777
778                 clk_mgr->smu_ver = dcn301_smu_get_smu_version(clk_mgr);
779
780                 if (clk_mgr->smu_ver)
781                         clk_mgr->smu_present = true;
782
783                 /* TODO: Check we get what we expect during bringup */
784                 clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
785
786                 /* in case we don't get a value from the register, use default */
787                 if (clk_mgr->base.dentist_vco_freq_khz == 0)
788                         clk_mgr->base.dentist_vco_freq_khz = 3600000;
789
790                 if (ctx->dc_bios->integrated_info->memory_type == LpDdr5MemType) {
791                         vg_bw_params.wm_table = lpddr5_wm_table;
792                 } else {
793                         vg_bw_params.wm_table = ddr4_wm_table;
794                 }
795                 /* Saved clocks configured at boot for debug purposes */
796                 vg_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
797         }
798
799         clk_mgr->base.dprefclk_khz = 600000;
800         dce_clock_read_ss_info(clk_mgr);
801
802         clk_mgr->base.bw_params = &vg_bw_params;
803
804         vg_get_dpm_table_from_smu(clk_mgr, &smu_dpm_clks);
805         if (ctx->dc_bios && ctx->dc_bios->integrated_info) {
806                 vg_clk_mgr_helper_populate_bw_params(
807                                 clk_mgr,
808                                 ctx->dc_bios->integrated_info,
809                                 smu_dpm_clks.dpm_clks);
810         }
811
812         if (smu_dpm_clks.dpm_clks && smu_dpm_clks.mc_address.quad_part != 0)
813                 dm_helpers_free_gpu_mem(clk_mgr->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
814                                 smu_dpm_clks.dpm_clks);
815 /*
816         if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver) {
817                  enable powerfeatures when displaycount goes to 0
818                 dcn301_smu_enable_phy_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
819         }
820 */
821 }
822
823 void vg_clk_mgr_destroy(struct clk_mgr_internal *clk_mgr)
824 {
825         if (clk_mgr->base.smu_wm_set.wm_set && clk_mgr->base.smu_wm_set.mc_address.quad_part != 0)
826                 dm_helpers_free_gpu_mem(clk_mgr->base.ctx, DC_MEM_ALLOC_TYPE_FRAME_BUFFER,
827                                 clk_mgr->base.smu_wm_set.wm_set);
828 }