Merge branches 'edac-spr', 'edac-igen6' and 'edac-misc' into edac-updates-for-v5.11
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / display / dc / clk_mgr / dcn21 / rn_clk_mgr.c
1 /*
2  * Copyright 2018 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Authors: AMD
23  *
24  */
25
26 #include "dccg.h"
27 #include "clk_mgr_internal.h"
28
29
30 #include "dcn20/dcn20_clk_mgr.h"
31 #include "rn_clk_mgr.h"
32
33
34 #include "dce100/dce_clk_mgr.h"
35 #include "rn_clk_mgr_vbios_smu.h"
36 #include "reg_helper.h"
37 #include "core_types.h"
38 #include "dm_helpers.h"
39
40 #include "atomfirmware.h"
41 #include "clk/clk_10_0_2_offset.h"
42 #include "clk/clk_10_0_2_sh_mask.h"
43 #include "renoir_ip_offset.h"
44
45
46 /* Constants */
47
48 #define LPDDR_MEM_RETRAIN_LATENCY 4.977 /* Number obtained from LPDDR4 Training Counter Requirement doc */
49 #define SMU_VER_55_51_0 0x373300 /* SMU Version that is able to set DISPCLK below 100MHz */
50
51 /* Macros */
52
53 #define REG(reg_name) \
54         (CLK_BASE.instance[0].segment[mm ## reg_name ## _BASE_IDX] + mm ## reg_name)
55
56
57 /* TODO: evaluate how to lower or disable all dcn clocks in screen off case */
58 int rn_get_active_display_cnt_wa(
59                 struct dc *dc,
60                 struct dc_state *context)
61 {
62         int i, display_count;
63         bool tmds_present = false;
64
65         display_count = 0;
66         for (i = 0; i < context->stream_count; i++) {
67                 const struct dc_stream_state *stream = context->streams[i];
68
69                 if (stream->signal == SIGNAL_TYPE_HDMI_TYPE_A ||
70                                 stream->signal == SIGNAL_TYPE_DVI_SINGLE_LINK ||
71                                 stream->signal == SIGNAL_TYPE_DVI_DUAL_LINK)
72                         tmds_present = true;
73         }
74
75         for (i = 0; i < dc->link_count; i++) {
76                 const struct dc_link *link = dc->links[i];
77
78                 /*
79                  * Only notify active stream or virtual stream.
80                  * Need to notify virtual stream to work around
81                  * headless case. HPD does not fire when system is in
82                  * S0i2.
83                  */
84                 /* abusing the fact that the dig and phy are coupled to see if the phy is enabled */
85                 if (link->connector_signal == SIGNAL_TYPE_VIRTUAL ||
86                                 link->link_enc->funcs->is_dig_enabled(link->link_enc))
87                         display_count++;
88         }
89
90         /* WA for hang on HDMI after display off back back on*/
91         if (display_count == 0 && tmds_present)
92                 display_count = 1;
93
94         return display_count;
95 }
96
97 void rn_set_low_power_state(struct clk_mgr *clk_mgr_base)
98 {
99         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
100
101         rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
102         /* update power state */
103         clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
104 }
105
106 void rn_update_clocks(struct clk_mgr *clk_mgr_base,
107                         struct dc_state *context,
108                         bool safe_to_lower)
109 {
110         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
111         struct dc_clocks *new_clocks = &context->bw_ctx.bw.dcn.clk;
112         struct dc *dc = clk_mgr_base->ctx->dc;
113         int display_count;
114         bool update_dppclk = false;
115         bool update_dispclk = false;
116         bool dpp_clock_lowered = false;
117
118         struct dmcu *dmcu = clk_mgr_base->ctx->dc->res_pool->dmcu;
119
120         if (dc->work_arounds.skip_clock_update)
121                 return;
122
123         /*
124          * if it is safe to lower, but we are already in the lower state, we don't have to do anything
125          * also if safe to lower is false, we just go in the higher state
126          */
127         if (safe_to_lower) {
128                 /* check that we're not already in lower */
129                 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_LOW_POWER) {
130
131                         display_count = rn_get_active_display_cnt_wa(dc, context);
132                         /* if we can go lower, go lower */
133                         if (display_count == 0) {
134                                 rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_LOW_POWER);
135                                 /* update power state */
136                                 clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_LOW_POWER;
137                         }
138                 }
139         } else {
140                 /* check that we're not already in D0 */
141                 if (clk_mgr_base->clks.pwr_state != DCN_PWR_STATE_MISSION_MODE) {
142                         rn_vbios_smu_set_dcn_low_power_state(clk_mgr, DCN_PWR_STATE_MISSION_MODE);
143                         /* update power state */
144                         clk_mgr_base->clks.pwr_state = DCN_PWR_STATE_MISSION_MODE;
145                 }
146         }
147
148         if (should_set_clock(safe_to_lower, new_clocks->dcfclk_khz, clk_mgr_base->clks.dcfclk_khz)) {
149                 clk_mgr_base->clks.dcfclk_khz = new_clocks->dcfclk_khz;
150                 rn_vbios_smu_set_hard_min_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_khz);
151         }
152
153         if (should_set_clock(safe_to_lower,
154                         new_clocks->dcfclk_deep_sleep_khz, clk_mgr_base->clks.dcfclk_deep_sleep_khz)) {
155                 clk_mgr_base->clks.dcfclk_deep_sleep_khz = new_clocks->dcfclk_deep_sleep_khz;
156                 rn_vbios_smu_set_min_deep_sleep_dcfclk(clk_mgr, clk_mgr_base->clks.dcfclk_deep_sleep_khz);
157         }
158
159         // workaround: Limit dppclk to 100Mhz to avoid lower eDP panel switch to plus 4K monitor underflow.
160         // Do not adjust dppclk if dppclk is 0 to avoid unexpected result
161         if (!IS_DIAG_DC(dc->ctx->dce_environment)) {
162                 if (new_clocks->dppclk_khz < 100000 && new_clocks->dppclk_khz > 0)
163                         new_clocks->dppclk_khz = 100000;
164         }
165
166         /*
167          * Temporally ignore thew 0 cases for disp and dpp clks.
168          * We may have a new feature that requires 0 clks in the future.
169          */
170         if (new_clocks->dppclk_khz == 0 || new_clocks->dispclk_khz == 0) {
171                 new_clocks->dppclk_khz = clk_mgr_base->clks.dppclk_khz;
172                 new_clocks->dispclk_khz = clk_mgr_base->clks.dispclk_khz;
173         }
174
175         if (should_set_clock(safe_to_lower, new_clocks->dppclk_khz, clk_mgr_base->clks.dppclk_khz)) {
176                 if (clk_mgr_base->clks.dppclk_khz > new_clocks->dppclk_khz)
177                         dpp_clock_lowered = true;
178                 clk_mgr_base->clks.dppclk_khz = new_clocks->dppclk_khz;
179                 update_dppclk = true;
180         }
181
182         if (should_set_clock(safe_to_lower, new_clocks->dispclk_khz, clk_mgr_base->clks.dispclk_khz)) {
183                 clk_mgr_base->clks.dispclk_khz = new_clocks->dispclk_khz;
184                 rn_vbios_smu_set_dispclk(clk_mgr, clk_mgr_base->clks.dispclk_khz);
185
186                 update_dispclk = true;
187         }
188
189         if (dpp_clock_lowered) {
190                 // increase per DPP DTO before lowering global dppclk
191                 dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
192                 rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
193         } else {
194                 // increase global DPPCLK before lowering per DPP DTO
195                 if (update_dppclk || update_dispclk)
196                         rn_vbios_smu_set_dppclk(clk_mgr, clk_mgr_base->clks.dppclk_khz);
197                 // always update dtos unless clock is lowered and not safe to lower
198                 if (new_clocks->dppclk_khz >= dc->current_state->bw_ctx.bw.dcn.clk.dppclk_khz)
199                         dcn20_update_clocks_update_dpp_dto(clk_mgr, context, safe_to_lower);
200         }
201
202         if (update_dispclk &&
203                         dmcu && dmcu->funcs->is_dmcu_initialized(dmcu)) {
204                 /*update dmcu for wait_loop count*/
205                 dmcu->funcs->set_psr_wait_loop(dmcu,
206                         clk_mgr_base->clks.dispclk_khz / 1000 / 7);
207         }
208 }
209
210
211 static int get_vco_frequency_from_reg(struct clk_mgr_internal *clk_mgr)
212 {
213         /* get FbMult value */
214         struct fixed31_32 pll_req;
215         unsigned int fbmult_frac_val = 0;
216         unsigned int fbmult_int_val = 0;
217
218
219         /*
220          * Register value of fbmult is in 8.16 format, we are converting to 31.32
221          * to leverage the fix point operations available in driver
222          */
223
224         REG_GET(CLK1_CLK_PLL_REQ, FbMult_frac, &fbmult_frac_val); /* 16 bit fractional part*/
225         REG_GET(CLK1_CLK_PLL_REQ, FbMult_int, &fbmult_int_val); /* 8 bit integer part */
226
227         pll_req = dc_fixpt_from_int(fbmult_int_val);
228
229         /*
230          * since fractional part is only 16 bit in register definition but is 32 bit
231          * in our fix point definiton, need to shift left by 16 to obtain correct value
232          */
233         pll_req.value |= fbmult_frac_val << 16;
234
235         /* multiply by REFCLK period */
236         pll_req = dc_fixpt_mul_int(pll_req, clk_mgr->dfs_ref_freq_khz);
237
238         /* integer part is now VCO frequency in kHz */
239         return dc_fixpt_floor(pll_req);
240 }
241
242 static void rn_dump_clk_registers_internal(struct rn_clk_internal *internal, struct clk_mgr *clk_mgr_base)
243 {
244         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
245
246         internal->CLK1_CLK3_CURRENT_CNT = REG_READ(CLK1_CLK3_CURRENT_CNT);
247         internal->CLK1_CLK3_BYPASS_CNTL = REG_READ(CLK1_CLK3_BYPASS_CNTL);
248
249         internal->CLK1_CLK3_DS_CNTL = REG_READ(CLK1_CLK3_DS_CNTL);      //dcf deep sleep divider
250         internal->CLK1_CLK3_ALLOW_DS = REG_READ(CLK1_CLK3_ALLOW_DS);
251
252         internal->CLK1_CLK1_CURRENT_CNT = REG_READ(CLK1_CLK1_CURRENT_CNT);
253         internal->CLK1_CLK1_BYPASS_CNTL = REG_READ(CLK1_CLK1_BYPASS_CNTL);
254
255         internal->CLK1_CLK2_CURRENT_CNT = REG_READ(CLK1_CLK2_CURRENT_CNT);
256         internal->CLK1_CLK2_BYPASS_CNTL = REG_READ(CLK1_CLK2_BYPASS_CNTL);
257
258         internal->CLK1_CLK0_CURRENT_CNT = REG_READ(CLK1_CLK0_CURRENT_CNT);
259         internal->CLK1_CLK0_BYPASS_CNTL = REG_READ(CLK1_CLK0_BYPASS_CNTL);
260 }
261
262 /* This function collect raw clk register values */
263 static void rn_dump_clk_registers(struct clk_state_registers_and_bypass *regs_and_bypass,
264                 struct clk_mgr *clk_mgr_base, struct clk_log_info *log_info)
265 {
266         struct rn_clk_internal internal = {0};
267         char *bypass_clks[5] = {"0x0 DFS", "0x1 REFCLK", "0x2 ERROR", "0x3 400 FCH", "0x4 600 FCH"};
268         unsigned int chars_printed = 0;
269         unsigned int remaining_buffer = log_info->bufSize;
270
271         rn_dump_clk_registers_internal(&internal, clk_mgr_base);
272
273         regs_and_bypass->dcfclk = internal.CLK1_CLK3_CURRENT_CNT / 10;
274         regs_and_bypass->dcf_deep_sleep_divider = internal.CLK1_CLK3_DS_CNTL / 10;
275         regs_and_bypass->dcf_deep_sleep_allow = internal.CLK1_CLK3_ALLOW_DS;
276         regs_and_bypass->dprefclk = internal.CLK1_CLK2_CURRENT_CNT / 10;
277         regs_and_bypass->dispclk = internal.CLK1_CLK0_CURRENT_CNT / 10;
278         regs_and_bypass->dppclk = internal.CLK1_CLK1_CURRENT_CNT / 10;
279
280         regs_and_bypass->dppclk_bypass = internal.CLK1_CLK1_BYPASS_CNTL & 0x0007;
281         if (regs_and_bypass->dppclk_bypass < 0 || regs_and_bypass->dppclk_bypass > 4)
282                 regs_and_bypass->dppclk_bypass = 0;
283         regs_and_bypass->dcfclk_bypass = internal.CLK1_CLK3_BYPASS_CNTL & 0x0007;
284         if (regs_and_bypass->dcfclk_bypass < 0 || regs_and_bypass->dcfclk_bypass > 4)
285                 regs_and_bypass->dcfclk_bypass = 0;
286         regs_and_bypass->dispclk_bypass = internal.CLK1_CLK0_BYPASS_CNTL & 0x0007;
287         if (regs_and_bypass->dispclk_bypass < 0 || regs_and_bypass->dispclk_bypass > 4)
288                 regs_and_bypass->dispclk_bypass = 0;
289         regs_and_bypass->dprefclk_bypass = internal.CLK1_CLK2_BYPASS_CNTL & 0x0007;
290         if (regs_and_bypass->dprefclk_bypass < 0 || regs_and_bypass->dprefclk_bypass > 4)
291                 regs_and_bypass->dprefclk_bypass = 0;
292
293         if (log_info->enabled) {
294                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "clk_type,clk_value,deepsleep_cntl,deepsleep_allow,bypass\n");
295                 remaining_buffer -= chars_printed;
296                 *log_info->sum_chars_printed += chars_printed;
297                 log_info->pBuf += chars_printed;
298
299                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dcfclk,%d,%d,%d,%s\n",
300                         regs_and_bypass->dcfclk,
301                         regs_and_bypass->dcf_deep_sleep_divider,
302                         regs_and_bypass->dcf_deep_sleep_allow,
303                         bypass_clks[(int) regs_and_bypass->dcfclk_bypass]);
304                 remaining_buffer -= chars_printed;
305                 *log_info->sum_chars_printed += chars_printed;
306                 log_info->pBuf += chars_printed;
307
308                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dprefclk,%d,N/A,N/A,%s\n",
309                         regs_and_bypass->dprefclk,
310                         bypass_clks[(int) regs_and_bypass->dprefclk_bypass]);
311                 remaining_buffer -= chars_printed;
312                 *log_info->sum_chars_printed += chars_printed;
313                 log_info->pBuf += chars_printed;
314
315                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "dispclk,%d,N/A,N/A,%s\n",
316                         regs_and_bypass->dispclk,
317                         bypass_clks[(int) regs_and_bypass->dispclk_bypass]);
318                 remaining_buffer -= chars_printed;
319                 *log_info->sum_chars_printed += chars_printed;
320                 log_info->pBuf += chars_printed;
321
322                 //split
323                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "SPLIT\n");
324                 remaining_buffer -= chars_printed;
325                 *log_info->sum_chars_printed += chars_printed;
326                 log_info->pBuf += chars_printed;
327
328                 // REGISTER VALUES
329                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "reg_name,value,clk_type\n");
330                 remaining_buffer -= chars_printed;
331                 *log_info->sum_chars_printed += chars_printed;
332                 log_info->pBuf += chars_printed;
333
334                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_CURRENT_CNT,%d,dcfclk\n",
335                                 internal.CLK1_CLK3_CURRENT_CNT);
336                 remaining_buffer -= chars_printed;
337                 *log_info->sum_chars_printed += chars_printed;
338                 log_info->pBuf += chars_printed;
339
340                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_DS_CNTL,%d,dcf_deep_sleep_divider\n",
341                                         internal.CLK1_CLK3_DS_CNTL);
342                 remaining_buffer -= chars_printed;
343                 *log_info->sum_chars_printed += chars_printed;
344                 log_info->pBuf += chars_printed;
345
346                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_ALLOW_DS,%d,dcf_deep_sleep_allow\n",
347                                         internal.CLK1_CLK3_ALLOW_DS);
348                 remaining_buffer -= chars_printed;
349                 *log_info->sum_chars_printed += chars_printed;
350                 log_info->pBuf += chars_printed;
351
352                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_CURRENT_CNT,%d,dprefclk\n",
353                                         internal.CLK1_CLK2_CURRENT_CNT);
354                 remaining_buffer -= chars_printed;
355                 *log_info->sum_chars_printed += chars_printed;
356                 log_info->pBuf += chars_printed;
357
358                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_CURRENT_CNT,%d,dispclk\n",
359                                         internal.CLK1_CLK0_CURRENT_CNT);
360                 remaining_buffer -= chars_printed;
361                 *log_info->sum_chars_printed += chars_printed;
362                 log_info->pBuf += chars_printed;
363
364                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_CURRENT_CNT,%d,dppclk\n",
365                                         internal.CLK1_CLK1_CURRENT_CNT);
366                 remaining_buffer -= chars_printed;
367                 *log_info->sum_chars_printed += chars_printed;
368                 log_info->pBuf += chars_printed;
369
370                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK3_BYPASS_CNTL,%d,dcfclk_bypass\n",
371                                         internal.CLK1_CLK3_BYPASS_CNTL);
372                 remaining_buffer -= chars_printed;
373                 *log_info->sum_chars_printed += chars_printed;
374                 log_info->pBuf += chars_printed;
375
376                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK2_BYPASS_CNTL,%d,dprefclk_bypass\n",
377                                         internal.CLK1_CLK2_BYPASS_CNTL);
378                 remaining_buffer -= chars_printed;
379                 *log_info->sum_chars_printed += chars_printed;
380                 log_info->pBuf += chars_printed;
381
382                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK0_BYPASS_CNTL,%d,dispclk_bypass\n",
383                                         internal.CLK1_CLK0_BYPASS_CNTL);
384                 remaining_buffer -= chars_printed;
385                 *log_info->sum_chars_printed += chars_printed;
386                 log_info->pBuf += chars_printed;
387
388                 chars_printed = snprintf_count(log_info->pBuf, remaining_buffer, "CLK1_CLK1_BYPASS_CNTL,%d,dppclk_bypass\n",
389                                         internal.CLK1_CLK1_BYPASS_CNTL);
390                 remaining_buffer -= chars_printed;
391                 *log_info->sum_chars_printed += chars_printed;
392                 log_info->pBuf += chars_printed;
393         }
394 }
395
396 /* This function produce translated logical clk state values*/
397 void rn_get_clk_states(struct clk_mgr *clk_mgr_base, struct clk_states *s)
398 {
399         struct clk_state_registers_and_bypass sb = { 0 };
400         struct clk_log_info log_info = { 0 };
401
402         rn_dump_clk_registers(&sb, clk_mgr_base, &log_info);
403
404         s->dprefclk_khz = sb.dprefclk * 1000;
405 }
406
407 void rn_enable_pme_wa(struct clk_mgr *clk_mgr_base)
408 {
409         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
410
411         rn_vbios_smu_enable_pme_wa(clk_mgr);
412 }
413
414 void rn_init_clocks(struct clk_mgr *clk_mgr)
415 {
416         memset(&(clk_mgr->clks), 0, sizeof(struct dc_clocks));
417         // Assumption is that boot state always supports pstate
418         clk_mgr->clks.p_state_change_support = true;
419         clk_mgr->clks.prev_p_state_change_support = true;
420         clk_mgr->clks.pwr_state = DCN_PWR_STATE_UNKNOWN;
421 }
422
423 static void build_watermark_ranges(struct clk_bw_params *bw_params, struct pp_smu_wm_range_sets *ranges)
424 {
425         int i, num_valid_sets;
426
427         num_valid_sets = 0;
428
429         for (i = 0; i < WM_SET_COUNT; i++) {
430                 /* skip empty entries, the smu array has no holes*/
431                 if (!bw_params->wm_table.entries[i].valid)
432                         continue;
433
434                 ranges->reader_wm_sets[num_valid_sets].wm_inst = bw_params->wm_table.entries[i].wm_inst;
435                 ranges->reader_wm_sets[num_valid_sets].wm_type = bw_params->wm_table.entries[i].wm_type;
436                 /* We will not select WM based on fclk, so leave it as unconstrained */
437                 ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
438                 ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
439                 /* dcfclk wil be used to select WM*/
440
441                 if (ranges->reader_wm_sets[num_valid_sets].wm_type == WM_TYPE_PSTATE_CHG) {
442                         if (i == 0)
443                                 ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = 0;
444                         else {
445                                 /* add 1 to make it non-overlapping with next lvl */
446                                 ranges->reader_wm_sets[num_valid_sets].min_drain_clk_mhz = bw_params->clk_table.entries[i - 1].dcfclk_mhz + 1;
447                         }
448                         ranges->reader_wm_sets[num_valid_sets].max_drain_clk_mhz = bw_params->clk_table.entries[i].dcfclk_mhz;
449
450                 } else {
451                         /* unconstrained for memory retraining */
452                         ranges->reader_wm_sets[num_valid_sets].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
453                         ranges->reader_wm_sets[num_valid_sets].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
454
455                         /* Modify previous watermark range to cover up to max */
456                         ranges->reader_wm_sets[num_valid_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
457                 }
458                 num_valid_sets++;
459         }
460
461         ASSERT(num_valid_sets != 0); /* Must have at least one set of valid watermarks */
462         ranges->num_reader_wm_sets = num_valid_sets;
463
464         /* modify the min and max to make sure we cover the whole range*/
465         ranges->reader_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
466         ranges->reader_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
467         ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
468         ranges->reader_wm_sets[ranges->num_reader_wm_sets - 1].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
469
470         /* This is for writeback only, does not matter currently as no writeback support*/
471         ranges->num_writer_wm_sets = 1;
472         ranges->writer_wm_sets[0].wm_inst = WM_A;
473         ranges->writer_wm_sets[0].min_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
474         ranges->writer_wm_sets[0].max_fill_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
475         ranges->writer_wm_sets[0].min_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MIN;
476         ranges->writer_wm_sets[0].max_drain_clk_mhz = PP_SMU_WM_SET_RANGE_CLK_UNCONSTRAINED_MAX;
477
478 }
479
480 static void rn_notify_wm_ranges(struct clk_mgr *clk_mgr_base)
481 {
482         struct dc_debug_options *debug = &clk_mgr_base->ctx->dc->debug;
483         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
484         struct pp_smu_funcs *pp_smu = clk_mgr->pp_smu;
485
486         if (!debug->disable_pplib_wm_range) {
487                 build_watermark_ranges(clk_mgr_base->bw_params, &clk_mgr_base->ranges);
488
489                 /* Notify PP Lib/SMU which Watermarks to use for which clock ranges */
490                 if (pp_smu && pp_smu->rn_funcs.set_wm_ranges)
491                         pp_smu->rn_funcs.set_wm_ranges(&pp_smu->rn_funcs.pp_smu, &clk_mgr_base->ranges);
492         }
493
494 }
495
496 static bool rn_are_clock_states_equal(struct dc_clocks *a,
497                 struct dc_clocks *b)
498 {
499         if (a->dispclk_khz != b->dispclk_khz)
500                 return false;
501         else if (a->dppclk_khz != b->dppclk_khz)
502                 return false;
503         else if (a->dcfclk_khz != b->dcfclk_khz)
504                 return false;
505         else if (a->dcfclk_deep_sleep_khz != b->dcfclk_deep_sleep_khz)
506                 return false;
507
508         return true;
509 }
510
511
512 /* Notify clk_mgr of a change in link rate, update phyclk frequency if necessary */
513 static void rn_notify_link_rate_change(struct clk_mgr *clk_mgr_base, struct dc_link *link)
514 {
515         struct clk_mgr_internal *clk_mgr = TO_CLK_MGR_INTERNAL(clk_mgr_base);
516         unsigned int i, max_phyclk_req = 0;
517
518         clk_mgr->cur_phyclk_req_table[link->link_index] = link->cur_link_settings.link_rate * LINK_RATE_REF_FREQ_IN_KHZ;
519
520         for (i = 0; i < MAX_PIPES * 2; i++) {
521                 if (clk_mgr->cur_phyclk_req_table[i] > max_phyclk_req)
522                         max_phyclk_req = clk_mgr->cur_phyclk_req_table[i];
523         }
524
525         if (max_phyclk_req != clk_mgr_base->clks.phyclk_khz) {
526                 clk_mgr_base->clks.phyclk_khz = max_phyclk_req;
527                 rn_vbios_smu_set_phyclk(clk_mgr, clk_mgr_base->clks.phyclk_khz);
528         }
529 }
530
531 static struct clk_mgr_funcs dcn21_funcs = {
532         .get_dp_ref_clk_frequency = dce12_get_dp_ref_freq_khz,
533         .update_clocks = rn_update_clocks,
534         .init_clocks = rn_init_clocks,
535         .enable_pme_wa = rn_enable_pme_wa,
536         .are_clock_states_equal = rn_are_clock_states_equal,
537         .set_low_power_state = rn_set_low_power_state,
538         .notify_wm_ranges = rn_notify_wm_ranges,
539         .notify_link_rate_change = rn_notify_link_rate_change,
540 };
541
542 static struct clk_bw_params rn_bw_params = {
543         .vram_type = Ddr4MemType,
544         .num_channels = 1,
545         .clk_table = {
546                 .entries = {
547                         {
548                                 .voltage = 0,
549                                 .dcfclk_mhz = 400,
550                                 .fclk_mhz = 400,
551                                 .memclk_mhz = 800,
552                                 .socclk_mhz = 0,
553                         },
554                         {
555                                 .voltage = 0,
556                                 .dcfclk_mhz = 483,
557                                 .fclk_mhz = 800,
558                                 .memclk_mhz = 1600,
559                                 .socclk_mhz = 0,
560                         },
561                         {
562                                 .voltage = 0,
563                                 .dcfclk_mhz = 602,
564                                 .fclk_mhz = 1067,
565                                 .memclk_mhz = 1067,
566                                 .socclk_mhz = 0,
567                         },
568                         {
569                                 .voltage = 0,
570                                 .dcfclk_mhz = 738,
571                                 .fclk_mhz = 1333,
572                                 .memclk_mhz = 1600,
573                                 .socclk_mhz = 0,
574                         },
575                 },
576
577                 .num_entries = 4,
578         },
579
580 };
581
582 static struct wm_table ddr4_wm_table = {
583         .entries = {
584                 {
585                         .wm_inst = WM_A,
586                         .wm_type = WM_TYPE_PSTATE_CHG,
587                         .pstate_latency_us = 11.72,
588                         .sr_exit_time_us = 6.09,
589                         .sr_enter_plus_exit_time_us = 7.14,
590                         .valid = true,
591                 },
592                 {
593                         .wm_inst = WM_B,
594                         .wm_type = WM_TYPE_PSTATE_CHG,
595                         .pstate_latency_us = 11.72,
596                         .sr_exit_time_us = 10.12,
597                         .sr_enter_plus_exit_time_us = 11.48,
598                         .valid = true,
599                 },
600                 {
601                         .wm_inst = WM_C,
602                         .wm_type = WM_TYPE_PSTATE_CHG,
603                         .pstate_latency_us = 11.72,
604                         .sr_exit_time_us = 10.12,
605                         .sr_enter_plus_exit_time_us = 11.48,
606                         .valid = true,
607                 },
608                 {
609                         .wm_inst = WM_D,
610                         .wm_type = WM_TYPE_PSTATE_CHG,
611                         .pstate_latency_us = 11.72,
612                         .sr_exit_time_us = 10.12,
613                         .sr_enter_plus_exit_time_us = 11.48,
614                         .valid = true,
615                 },
616         }
617 };
618
619 static struct wm_table lpddr4_wm_table = {
620         .entries = {
621                 {
622                         .wm_inst = WM_A,
623                         .wm_type = WM_TYPE_PSTATE_CHG,
624                         .pstate_latency_us = 11.65333,
625                         .sr_exit_time_us = 5.32,
626                         .sr_enter_plus_exit_time_us = 6.38,
627                         .valid = true,
628                 },
629                 {
630                         .wm_inst = WM_B,
631                         .wm_type = WM_TYPE_PSTATE_CHG,
632                         .pstate_latency_us = 11.65333,
633                         .sr_exit_time_us = 9.82,
634                         .sr_enter_plus_exit_time_us = 11.196,
635                         .valid = true,
636                 },
637                 {
638                         .wm_inst = WM_C,
639                         .wm_type = WM_TYPE_PSTATE_CHG,
640                         .pstate_latency_us = 11.65333,
641                         .sr_exit_time_us = 9.89,
642                         .sr_enter_plus_exit_time_us = 11.24,
643                         .valid = true,
644                 },
645                 {
646                         .wm_inst = WM_D,
647                         .wm_type = WM_TYPE_PSTATE_CHG,
648                         .pstate_latency_us = 11.65333,
649                         .sr_exit_time_us = 9.748,
650                         .sr_enter_plus_exit_time_us = 11.102,
651                         .valid = true,
652                 },
653         }
654 };
655
656 static struct wm_table lpddr4_wm_table_with_disabled_ppt = {
657         .entries = {
658                 {
659                         .wm_inst = WM_A,
660                         .wm_type = WM_TYPE_PSTATE_CHG,
661                         .pstate_latency_us = 11.65333,
662                         .sr_exit_time_us = 8.32,
663                         .sr_enter_plus_exit_time_us = 9.38,
664                         .valid = true,
665                 },
666                 {
667                         .wm_inst = WM_B,
668                         .wm_type = WM_TYPE_PSTATE_CHG,
669                         .pstate_latency_us = 11.65333,
670                         .sr_exit_time_us = 9.82,
671                         .sr_enter_plus_exit_time_us = 11.196,
672                         .valid = true,
673                 },
674                 {
675                         .wm_inst = WM_C,
676                         .wm_type = WM_TYPE_PSTATE_CHG,
677                         .pstate_latency_us = 11.65333,
678                         .sr_exit_time_us = 9.89,
679                         .sr_enter_plus_exit_time_us = 11.24,
680                         .valid = true,
681                 },
682                 {
683                         .wm_inst = WM_D,
684                         .wm_type = WM_TYPE_PSTATE_CHG,
685                         .pstate_latency_us = 11.65333,
686                         .sr_exit_time_us = 9.748,
687                         .sr_enter_plus_exit_time_us = 11.102,
688                         .valid = true,
689                 },
690         }
691 };
692
693 static unsigned int find_dcfclk_for_voltage(struct dpm_clocks *clock_table, unsigned int voltage)
694 {
695         int i;
696
697         for (i = 0; i < PP_SMU_NUM_DCFCLK_DPM_LEVELS; i++) {
698                 if (clock_table->DcfClocks[i].Vol == voltage)
699                         return clock_table->DcfClocks[i].Freq;
700         }
701
702         ASSERT(0);
703         return 0;
704 }
705
706 static void rn_clk_mgr_helper_populate_bw_params(struct clk_bw_params *bw_params, struct dpm_clocks *clock_table, struct integrated_info *bios_info)
707 {
708         int i, j = 0;
709
710         j = -1;
711
712         ASSERT(PP_SMU_NUM_FCLK_DPM_LEVELS <= MAX_NUM_DPM_LVL);
713
714         /* Find lowest DPM, FCLK is filled in reverse order*/
715
716         for (i = PP_SMU_NUM_FCLK_DPM_LEVELS - 1; i >= 0; i--) {
717                 if (clock_table->FClocks[i].Freq != 0 && clock_table->FClocks[i].Vol != 0) {
718                         j = i;
719                         break;
720                 }
721         }
722
723         if (j == -1) {
724                 /* clock table is all 0s, just use our own hardcode */
725                 ASSERT(0);
726                 return;
727         }
728
729         bw_params->clk_table.num_entries = j + 1;
730
731         for (i = 0; i < bw_params->clk_table.num_entries; i++, j--) {
732                 bw_params->clk_table.entries[i].fclk_mhz = clock_table->FClocks[j].Freq;
733                 bw_params->clk_table.entries[i].memclk_mhz = clock_table->MemClocks[j].Freq;
734                 bw_params->clk_table.entries[i].voltage = clock_table->FClocks[j].Vol;
735                 bw_params->clk_table.entries[i].dcfclk_mhz = find_dcfclk_for_voltage(clock_table, clock_table->FClocks[j].Vol);
736         }
737
738         bw_params->vram_type = bios_info->memory_type;
739         bw_params->num_channels = bios_info->ma_channel_number;
740
741         for (i = 0; i < WM_SET_COUNT; i++) {
742                 bw_params->wm_table.entries[i].wm_inst = i;
743
744                 if (i >= bw_params->clk_table.num_entries) {
745                         bw_params->wm_table.entries[i].valid = false;
746                         continue;
747                 }
748
749                 bw_params->wm_table.entries[i].wm_type = WM_TYPE_PSTATE_CHG;
750                 bw_params->wm_table.entries[i].valid = true;
751         }
752
753         if (bw_params->vram_type == LpDdr4MemType) {
754                 /*
755                  * WM set D will be re-purposed for memory retraining
756                  */
757                 bw_params->wm_table.entries[WM_D].pstate_latency_us = LPDDR_MEM_RETRAIN_LATENCY;
758                 bw_params->wm_table.entries[WM_D].wm_inst = WM_D;
759                 bw_params->wm_table.entries[WM_D].wm_type = WM_TYPE_RETRAINING;
760                 bw_params->wm_table.entries[WM_D].valid = true;
761         }
762
763 }
764
765 void rn_clk_mgr_construct(
766                 struct dc_context *ctx,
767                 struct clk_mgr_internal *clk_mgr,
768                 struct pp_smu_funcs *pp_smu,
769                 struct dccg *dccg)
770 {
771         struct dc_debug_options *debug = &ctx->dc->debug;
772         struct dpm_clocks clock_table = { 0 };
773         enum pp_smu_status status = 0;
774
775         clk_mgr->base.ctx = ctx;
776         clk_mgr->base.funcs = &dcn21_funcs;
777
778         clk_mgr->pp_smu = pp_smu;
779
780         clk_mgr->dccg = dccg;
781         clk_mgr->dfs_bypass_disp_clk = 0;
782
783         clk_mgr->dprefclk_ss_percentage = 0;
784         clk_mgr->dprefclk_ss_divider = 1000;
785         clk_mgr->ss_on_dprefclk = false;
786         clk_mgr->dfs_ref_freq_khz = 48000;
787
788         clk_mgr->smu_ver = rn_vbios_smu_get_smu_version(clk_mgr);
789
790         if (IS_FPGA_MAXIMUS_DC(ctx->dce_environment)) {
791                 dcn21_funcs.update_clocks = dcn2_update_clocks_fpga;
792                 clk_mgr->base.dentist_vco_freq_khz = 3600000;
793         } else {
794                 struct clk_log_info log_info = {0};
795
796                 clk_mgr->periodic_retraining_disabled = rn_vbios_smu_is_periodic_retraining_disabled(clk_mgr);
797
798                 /* SMU Version 55.51.0 and up no longer have an issue
799                  * that needs to limit minimum dispclk */
800                 if (clk_mgr->smu_ver >= SMU_VER_55_51_0)
801                         debug->min_disp_clk_khz = 0;
802
803                 /* TODO: Check we get what we expect during bringup */
804                 clk_mgr->base.dentist_vco_freq_khz = get_vco_frequency_from_reg(clk_mgr);
805
806                 /* in case we don't get a value from the register, use default */
807                 if (clk_mgr->base.dentist_vco_freq_khz == 0)
808                         clk_mgr->base.dentist_vco_freq_khz = 3600000;
809
810                 if (ctx->dc_bios->integrated_info->memory_type == LpDdr4MemType) {
811                         if (clk_mgr->periodic_retraining_disabled) {
812                                 rn_bw_params.wm_table = lpddr4_wm_table_with_disabled_ppt;
813                         } else {
814                                 rn_bw_params.wm_table = lpddr4_wm_table;
815                         }
816                 } else {
817                         rn_bw_params.wm_table = ddr4_wm_table;
818                 }
819                 /* Saved clocks configured at boot for debug purposes */
820                 rn_dump_clk_registers(&clk_mgr->base.boot_snapshot, &clk_mgr->base, &log_info);
821         }
822
823         clk_mgr->base.dprefclk_khz = 600000;
824         dce_clock_read_ss_info(clk_mgr);
825
826
827         clk_mgr->base.bw_params = &rn_bw_params;
828
829         if (pp_smu && pp_smu->rn_funcs.get_dpm_clock_table) {
830                 status = pp_smu->rn_funcs.get_dpm_clock_table(&pp_smu->rn_funcs.pp_smu, &clock_table);
831
832                 if (status == PP_SMU_RESULT_OK &&
833                     ctx->dc_bios && ctx->dc_bios->integrated_info) {
834                         rn_clk_mgr_helper_populate_bw_params (clk_mgr->base.bw_params, &clock_table, ctx->dc_bios->integrated_info);
835                 }
836         }
837
838         if (!IS_FPGA_MAXIMUS_DC(ctx->dce_environment) && clk_mgr->smu_ver >= 0x00371500) {
839                 /* enable powerfeatures when displaycount goes to 0 */
840                 rn_vbios_smu_enable_48mhz_tmdp_refclk_pwrdwn(clk_mgr, !debug->disable_48mhz_pwrdwn);
841         }
842 }
843