Merge tag 'amd-drm-next-5.16-2021-09-27' of https://gitlab.freedesktop.org/agd5f...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdkfd / kfd_device.c
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include "kfd_priv.h"
27 #include "kfd_device_queue_manager.h"
28 #include "kfd_pm4_headers_vi.h"
29 #include "kfd_pm4_headers_aldebaran.h"
30 #include "cwsr_trap_handler.h"
31 #include "kfd_iommu.h"
32 #include "amdgpu_amdkfd.h"
33 #include "kfd_smi_events.h"
34 #include "kfd_migrate.h"
35
36 #define MQD_SIZE_ALIGNED 768
37
38 /*
39  * kfd_locked is used to lock the kfd driver during suspend or reset
40  * once locked, kfd driver will stop any further GPU execution.
41  * create process (open) will return -EAGAIN.
42  */
43 static atomic_t kfd_locked = ATOMIC_INIT(0);
44
45 #ifdef CONFIG_DRM_AMDGPU_CIK
46 extern const struct kfd2kgd_calls gfx_v7_kfd2kgd;
47 #endif
48 extern const struct kfd2kgd_calls gfx_v8_kfd2kgd;
49 extern const struct kfd2kgd_calls gfx_v9_kfd2kgd;
50 extern const struct kfd2kgd_calls arcturus_kfd2kgd;
51 extern const struct kfd2kgd_calls aldebaran_kfd2kgd;
52 extern const struct kfd2kgd_calls gfx_v10_kfd2kgd;
53 extern const struct kfd2kgd_calls gfx_v10_3_kfd2kgd;
54
55 static const struct kfd2kgd_calls *kfd2kgd_funcs[] = {
56 #ifdef KFD_SUPPORT_IOMMU_V2
57 #ifdef CONFIG_DRM_AMDGPU_CIK
58         [CHIP_KAVERI] = &gfx_v7_kfd2kgd,
59 #endif
60         [CHIP_CARRIZO] = &gfx_v8_kfd2kgd,
61         [CHIP_RAVEN] = &gfx_v9_kfd2kgd,
62 #endif
63 #ifdef CONFIG_DRM_AMDGPU_CIK
64         [CHIP_HAWAII] = &gfx_v7_kfd2kgd,
65 #endif
66         [CHIP_TONGA] = &gfx_v8_kfd2kgd,
67         [CHIP_FIJI] = &gfx_v8_kfd2kgd,
68         [CHIP_POLARIS10] = &gfx_v8_kfd2kgd,
69         [CHIP_POLARIS11] = &gfx_v8_kfd2kgd,
70         [CHIP_POLARIS12] = &gfx_v8_kfd2kgd,
71         [CHIP_VEGAM] = &gfx_v8_kfd2kgd,
72         [CHIP_VEGA10] = &gfx_v9_kfd2kgd,
73         [CHIP_VEGA12] = &gfx_v9_kfd2kgd,
74         [CHIP_VEGA20] = &gfx_v9_kfd2kgd,
75         [CHIP_RENOIR] = &gfx_v9_kfd2kgd,
76         [CHIP_ARCTURUS] = &arcturus_kfd2kgd,
77         [CHIP_ALDEBARAN] = &aldebaran_kfd2kgd,
78         [CHIP_NAVI10] = &gfx_v10_kfd2kgd,
79         [CHIP_NAVI12] = &gfx_v10_kfd2kgd,
80         [CHIP_NAVI14] = &gfx_v10_kfd2kgd,
81         [CHIP_SIENNA_CICHLID] = &gfx_v10_3_kfd2kgd,
82         [CHIP_NAVY_FLOUNDER] = &gfx_v10_3_kfd2kgd,
83         [CHIP_VANGOGH] = &gfx_v10_3_kfd2kgd,
84         [CHIP_DIMGREY_CAVEFISH] = &gfx_v10_3_kfd2kgd,
85         [CHIP_BEIGE_GOBY] = &gfx_v10_3_kfd2kgd,
86         [CHIP_YELLOW_CARP] = &gfx_v10_3_kfd2kgd,
87         [CHIP_CYAN_SKILLFISH] = &gfx_v10_kfd2kgd,
88 };
89
90 #ifdef KFD_SUPPORT_IOMMU_V2
91 static const struct kfd_device_info kaveri_device_info = {
92         .asic_family = CHIP_KAVERI,
93         .asic_name = "kaveri",
94         .gfx_target_version = 70000,
95         .max_pasid_bits = 16,
96         /* max num of queues for KV.TODO should be a dynamic value */
97         .max_no_of_hqd  = 24,
98         .doorbell_size  = 4,
99         .ih_ring_entry_size = 4 * sizeof(uint32_t),
100         .event_interrupt_class = &event_interrupt_class_cik,
101         .num_of_watch_points = 4,
102         .mqd_size_aligned = MQD_SIZE_ALIGNED,
103         .supports_cwsr = false,
104         .needs_iommu_device = true,
105         .needs_pci_atomics = false,
106         .num_sdma_engines = 2,
107         .num_xgmi_sdma_engines = 0,
108         .num_sdma_queues_per_engine = 2,
109 };
110
111 static const struct kfd_device_info carrizo_device_info = {
112         .asic_family = CHIP_CARRIZO,
113         .asic_name = "carrizo",
114         .gfx_target_version = 80001,
115         .max_pasid_bits = 16,
116         /* max num of queues for CZ.TODO should be a dynamic value */
117         .max_no_of_hqd  = 24,
118         .doorbell_size  = 4,
119         .ih_ring_entry_size = 4 * sizeof(uint32_t),
120         .event_interrupt_class = &event_interrupt_class_cik,
121         .num_of_watch_points = 4,
122         .mqd_size_aligned = MQD_SIZE_ALIGNED,
123         .supports_cwsr = true,
124         .needs_iommu_device = true,
125         .needs_pci_atomics = false,
126         .num_sdma_engines = 2,
127         .num_xgmi_sdma_engines = 0,
128         .num_sdma_queues_per_engine = 2,
129 };
130 #endif
131
132 static const struct kfd_device_info raven_device_info = {
133         .asic_family = CHIP_RAVEN,
134         .asic_name = "raven",
135         .gfx_target_version = 90002,
136         .max_pasid_bits = 16,
137         .max_no_of_hqd  = 24,
138         .doorbell_size  = 8,
139         .ih_ring_entry_size = 8 * sizeof(uint32_t),
140         .event_interrupt_class = &event_interrupt_class_v9,
141         .num_of_watch_points = 4,
142         .mqd_size_aligned = MQD_SIZE_ALIGNED,
143         .supports_cwsr = true,
144         .needs_iommu_device = true,
145         .needs_pci_atomics = true,
146         .num_sdma_engines = 1,
147         .num_xgmi_sdma_engines = 0,
148         .num_sdma_queues_per_engine = 2,
149 };
150
151 static const struct kfd_device_info hawaii_device_info = {
152         .asic_family = CHIP_HAWAII,
153         .asic_name = "hawaii",
154         .gfx_target_version = 70001,
155         .max_pasid_bits = 16,
156         /* max num of queues for KV.TODO should be a dynamic value */
157         .max_no_of_hqd  = 24,
158         .doorbell_size  = 4,
159         .ih_ring_entry_size = 4 * sizeof(uint32_t),
160         .event_interrupt_class = &event_interrupt_class_cik,
161         .num_of_watch_points = 4,
162         .mqd_size_aligned = MQD_SIZE_ALIGNED,
163         .supports_cwsr = false,
164         .needs_iommu_device = false,
165         .needs_pci_atomics = false,
166         .num_sdma_engines = 2,
167         .num_xgmi_sdma_engines = 0,
168         .num_sdma_queues_per_engine = 2,
169 };
170
171 static const struct kfd_device_info tonga_device_info = {
172         .asic_family = CHIP_TONGA,
173         .asic_name = "tonga",
174         .gfx_target_version = 80002,
175         .max_pasid_bits = 16,
176         .max_no_of_hqd  = 24,
177         .doorbell_size  = 4,
178         .ih_ring_entry_size = 4 * sizeof(uint32_t),
179         .event_interrupt_class = &event_interrupt_class_cik,
180         .num_of_watch_points = 4,
181         .mqd_size_aligned = MQD_SIZE_ALIGNED,
182         .supports_cwsr = false,
183         .needs_iommu_device = false,
184         .needs_pci_atomics = true,
185         .num_sdma_engines = 2,
186         .num_xgmi_sdma_engines = 0,
187         .num_sdma_queues_per_engine = 2,
188 };
189
190 static const struct kfd_device_info fiji_device_info = {
191         .asic_family = CHIP_FIJI,
192         .asic_name = "fiji",
193         .gfx_target_version = 80003,
194         .max_pasid_bits = 16,
195         .max_no_of_hqd  = 24,
196         .doorbell_size  = 4,
197         .ih_ring_entry_size = 4 * sizeof(uint32_t),
198         .event_interrupt_class = &event_interrupt_class_cik,
199         .num_of_watch_points = 4,
200         .mqd_size_aligned = MQD_SIZE_ALIGNED,
201         .supports_cwsr = true,
202         .needs_iommu_device = false,
203         .needs_pci_atomics = true,
204         .num_sdma_engines = 2,
205         .num_xgmi_sdma_engines = 0,
206         .num_sdma_queues_per_engine = 2,
207 };
208
209 static const struct kfd_device_info fiji_vf_device_info = {
210         .asic_family = CHIP_FIJI,
211         .asic_name = "fiji",
212         .gfx_target_version = 80003,
213         .max_pasid_bits = 16,
214         .max_no_of_hqd  = 24,
215         .doorbell_size  = 4,
216         .ih_ring_entry_size = 4 * sizeof(uint32_t),
217         .event_interrupt_class = &event_interrupt_class_cik,
218         .num_of_watch_points = 4,
219         .mqd_size_aligned = MQD_SIZE_ALIGNED,
220         .supports_cwsr = true,
221         .needs_iommu_device = false,
222         .needs_pci_atomics = false,
223         .num_sdma_engines = 2,
224         .num_xgmi_sdma_engines = 0,
225         .num_sdma_queues_per_engine = 2,
226 };
227
228
229 static const struct kfd_device_info polaris10_device_info = {
230         .asic_family = CHIP_POLARIS10,
231         .asic_name = "polaris10",
232         .gfx_target_version = 80003,
233         .max_pasid_bits = 16,
234         .max_no_of_hqd  = 24,
235         .doorbell_size  = 4,
236         .ih_ring_entry_size = 4 * sizeof(uint32_t),
237         .event_interrupt_class = &event_interrupt_class_cik,
238         .num_of_watch_points = 4,
239         .mqd_size_aligned = MQD_SIZE_ALIGNED,
240         .supports_cwsr = true,
241         .needs_iommu_device = false,
242         .needs_pci_atomics = true,
243         .num_sdma_engines = 2,
244         .num_xgmi_sdma_engines = 0,
245         .num_sdma_queues_per_engine = 2,
246 };
247
248 static const struct kfd_device_info polaris10_vf_device_info = {
249         .asic_family = CHIP_POLARIS10,
250         .asic_name = "polaris10",
251         .gfx_target_version = 80003,
252         .max_pasid_bits = 16,
253         .max_no_of_hqd  = 24,
254         .doorbell_size  = 4,
255         .ih_ring_entry_size = 4 * sizeof(uint32_t),
256         .event_interrupt_class = &event_interrupt_class_cik,
257         .num_of_watch_points = 4,
258         .mqd_size_aligned = MQD_SIZE_ALIGNED,
259         .supports_cwsr = true,
260         .needs_iommu_device = false,
261         .needs_pci_atomics = false,
262         .num_sdma_engines = 2,
263         .num_xgmi_sdma_engines = 0,
264         .num_sdma_queues_per_engine = 2,
265 };
266
267 static const struct kfd_device_info polaris11_device_info = {
268         .asic_family = CHIP_POLARIS11,
269         .asic_name = "polaris11",
270         .gfx_target_version = 80003,
271         .max_pasid_bits = 16,
272         .max_no_of_hqd  = 24,
273         .doorbell_size  = 4,
274         .ih_ring_entry_size = 4 * sizeof(uint32_t),
275         .event_interrupt_class = &event_interrupt_class_cik,
276         .num_of_watch_points = 4,
277         .mqd_size_aligned = MQD_SIZE_ALIGNED,
278         .supports_cwsr = true,
279         .needs_iommu_device = false,
280         .needs_pci_atomics = true,
281         .num_sdma_engines = 2,
282         .num_xgmi_sdma_engines = 0,
283         .num_sdma_queues_per_engine = 2,
284 };
285
286 static const struct kfd_device_info polaris12_device_info = {
287         .asic_family = CHIP_POLARIS12,
288         .asic_name = "polaris12",
289         .gfx_target_version = 80003,
290         .max_pasid_bits = 16,
291         .max_no_of_hqd  = 24,
292         .doorbell_size  = 4,
293         .ih_ring_entry_size = 4 * sizeof(uint32_t),
294         .event_interrupt_class = &event_interrupt_class_cik,
295         .num_of_watch_points = 4,
296         .mqd_size_aligned = MQD_SIZE_ALIGNED,
297         .supports_cwsr = true,
298         .needs_iommu_device = false,
299         .needs_pci_atomics = true,
300         .num_sdma_engines = 2,
301         .num_xgmi_sdma_engines = 0,
302         .num_sdma_queues_per_engine = 2,
303 };
304
305 static const struct kfd_device_info vegam_device_info = {
306         .asic_family = CHIP_VEGAM,
307         .asic_name = "vegam",
308         .gfx_target_version = 80003,
309         .max_pasid_bits = 16,
310         .max_no_of_hqd  = 24,
311         .doorbell_size  = 4,
312         .ih_ring_entry_size = 4 * sizeof(uint32_t),
313         .event_interrupt_class = &event_interrupt_class_cik,
314         .num_of_watch_points = 4,
315         .mqd_size_aligned = MQD_SIZE_ALIGNED,
316         .supports_cwsr = true,
317         .needs_iommu_device = false,
318         .needs_pci_atomics = true,
319         .num_sdma_engines = 2,
320         .num_xgmi_sdma_engines = 0,
321         .num_sdma_queues_per_engine = 2,
322 };
323
324 static const struct kfd_device_info vega10_device_info = {
325         .asic_family = CHIP_VEGA10,
326         .asic_name = "vega10",
327         .gfx_target_version = 90000,
328         .max_pasid_bits = 16,
329         .max_no_of_hqd  = 24,
330         .doorbell_size  = 8,
331         .ih_ring_entry_size = 8 * sizeof(uint32_t),
332         .event_interrupt_class = &event_interrupt_class_v9,
333         .num_of_watch_points = 4,
334         .mqd_size_aligned = MQD_SIZE_ALIGNED,
335         .supports_cwsr = true,
336         .needs_iommu_device = false,
337         .needs_pci_atomics = false,
338         .num_sdma_engines = 2,
339         .num_xgmi_sdma_engines = 0,
340         .num_sdma_queues_per_engine = 2,
341 };
342
343 static const struct kfd_device_info vega10_vf_device_info = {
344         .asic_family = CHIP_VEGA10,
345         .asic_name = "vega10",
346         .gfx_target_version = 90000,
347         .max_pasid_bits = 16,
348         .max_no_of_hqd  = 24,
349         .doorbell_size  = 8,
350         .ih_ring_entry_size = 8 * sizeof(uint32_t),
351         .event_interrupt_class = &event_interrupt_class_v9,
352         .num_of_watch_points = 4,
353         .mqd_size_aligned = MQD_SIZE_ALIGNED,
354         .supports_cwsr = true,
355         .needs_iommu_device = false,
356         .needs_pci_atomics = false,
357         .num_sdma_engines = 2,
358         .num_xgmi_sdma_engines = 0,
359         .num_sdma_queues_per_engine = 2,
360 };
361
362 static const struct kfd_device_info vega12_device_info = {
363         .asic_family = CHIP_VEGA12,
364         .asic_name = "vega12",
365         .gfx_target_version = 90004,
366         .max_pasid_bits = 16,
367         .max_no_of_hqd  = 24,
368         .doorbell_size  = 8,
369         .ih_ring_entry_size = 8 * sizeof(uint32_t),
370         .event_interrupt_class = &event_interrupt_class_v9,
371         .num_of_watch_points = 4,
372         .mqd_size_aligned = MQD_SIZE_ALIGNED,
373         .supports_cwsr = true,
374         .needs_iommu_device = false,
375         .needs_pci_atomics = false,
376         .num_sdma_engines = 2,
377         .num_xgmi_sdma_engines = 0,
378         .num_sdma_queues_per_engine = 2,
379 };
380
381 static const struct kfd_device_info vega20_device_info = {
382         .asic_family = CHIP_VEGA20,
383         .asic_name = "vega20",
384         .gfx_target_version = 90006,
385         .max_pasid_bits = 16,
386         .max_no_of_hqd  = 24,
387         .doorbell_size  = 8,
388         .ih_ring_entry_size = 8 * sizeof(uint32_t),
389         .event_interrupt_class = &event_interrupt_class_v9,
390         .num_of_watch_points = 4,
391         .mqd_size_aligned = MQD_SIZE_ALIGNED,
392         .supports_cwsr = true,
393         .needs_iommu_device = false,
394         .needs_pci_atomics = false,
395         .num_sdma_engines = 2,
396         .num_xgmi_sdma_engines = 0,
397         .num_sdma_queues_per_engine = 8,
398 };
399
400 static const struct kfd_device_info arcturus_device_info = {
401         .asic_family = CHIP_ARCTURUS,
402         .asic_name = "arcturus",
403         .gfx_target_version = 90008,
404         .max_pasid_bits = 16,
405         .max_no_of_hqd  = 24,
406         .doorbell_size  = 8,
407         .ih_ring_entry_size = 8 * sizeof(uint32_t),
408         .event_interrupt_class = &event_interrupt_class_v9,
409         .num_of_watch_points = 4,
410         .mqd_size_aligned = MQD_SIZE_ALIGNED,
411         .supports_cwsr = true,
412         .needs_iommu_device = false,
413         .needs_pci_atomics = false,
414         .num_sdma_engines = 2,
415         .num_xgmi_sdma_engines = 6,
416         .num_sdma_queues_per_engine = 8,
417 };
418
419 static const struct kfd_device_info aldebaran_device_info = {
420         .asic_family = CHIP_ALDEBARAN,
421         .asic_name = "aldebaran",
422         .gfx_target_version = 90010,
423         .max_pasid_bits = 16,
424         .max_no_of_hqd  = 24,
425         .doorbell_size  = 8,
426         .ih_ring_entry_size = 8 * sizeof(uint32_t),
427         .event_interrupt_class = &event_interrupt_class_v9,
428         .num_of_watch_points = 4,
429         .mqd_size_aligned = MQD_SIZE_ALIGNED,
430         .supports_cwsr = true,
431         .needs_iommu_device = false,
432         .needs_pci_atomics = false,
433         .num_sdma_engines = 2,
434         .num_xgmi_sdma_engines = 3,
435         .num_sdma_queues_per_engine = 8,
436 };
437
438 static const struct kfd_device_info renoir_device_info = {
439         .asic_family = CHIP_RENOIR,
440         .asic_name = "renoir",
441         .gfx_target_version = 90002,
442         .max_pasid_bits = 16,
443         .max_no_of_hqd  = 24,
444         .doorbell_size  = 8,
445         .ih_ring_entry_size = 8 * sizeof(uint32_t),
446         .event_interrupt_class = &event_interrupt_class_v9,
447         .num_of_watch_points = 4,
448         .mqd_size_aligned = MQD_SIZE_ALIGNED,
449         .supports_cwsr = true,
450         .needs_iommu_device = false,
451         .needs_pci_atomics = false,
452         .num_sdma_engines = 1,
453         .num_xgmi_sdma_engines = 0,
454         .num_sdma_queues_per_engine = 2,
455 };
456
457 static const struct kfd_device_info navi10_device_info = {
458         .asic_family = CHIP_NAVI10,
459         .asic_name = "navi10",
460         .gfx_target_version = 100100,
461         .max_pasid_bits = 16,
462         .max_no_of_hqd  = 24,
463         .doorbell_size  = 8,
464         .ih_ring_entry_size = 8 * sizeof(uint32_t),
465         .event_interrupt_class = &event_interrupt_class_v9,
466         .num_of_watch_points = 4,
467         .mqd_size_aligned = MQD_SIZE_ALIGNED,
468         .needs_iommu_device = false,
469         .supports_cwsr = true,
470         .needs_pci_atomics = true,
471         .no_atomic_fw_version = 145,
472         .num_sdma_engines = 2,
473         .num_xgmi_sdma_engines = 0,
474         .num_sdma_queues_per_engine = 8,
475 };
476
477 static const struct kfd_device_info navi12_device_info = {
478         .asic_family = CHIP_NAVI12,
479         .asic_name = "navi12",
480         .gfx_target_version = 100101,
481         .max_pasid_bits = 16,
482         .max_no_of_hqd  = 24,
483         .doorbell_size  = 8,
484         .ih_ring_entry_size = 8 * sizeof(uint32_t),
485         .event_interrupt_class = &event_interrupt_class_v9,
486         .num_of_watch_points = 4,
487         .mqd_size_aligned = MQD_SIZE_ALIGNED,
488         .needs_iommu_device = false,
489         .supports_cwsr = true,
490         .needs_pci_atomics = true,
491         .no_atomic_fw_version = 145,
492         .num_sdma_engines = 2,
493         .num_xgmi_sdma_engines = 0,
494         .num_sdma_queues_per_engine = 8,
495 };
496
497 static const struct kfd_device_info navi14_device_info = {
498         .asic_family = CHIP_NAVI14,
499         .asic_name = "navi14",
500         .gfx_target_version = 100102,
501         .max_pasid_bits = 16,
502         .max_no_of_hqd  = 24,
503         .doorbell_size  = 8,
504         .ih_ring_entry_size = 8 * sizeof(uint32_t),
505         .event_interrupt_class = &event_interrupt_class_v9,
506         .num_of_watch_points = 4,
507         .mqd_size_aligned = MQD_SIZE_ALIGNED,
508         .needs_iommu_device = false,
509         .supports_cwsr = true,
510         .needs_pci_atomics = true,
511         .no_atomic_fw_version = 145,
512         .num_sdma_engines = 2,
513         .num_xgmi_sdma_engines = 0,
514         .num_sdma_queues_per_engine = 8,
515 };
516
517 static const struct kfd_device_info sienna_cichlid_device_info = {
518         .asic_family = CHIP_SIENNA_CICHLID,
519         .asic_name = "sienna_cichlid",
520         .gfx_target_version = 100300,
521         .max_pasid_bits = 16,
522         .max_no_of_hqd  = 24,
523         .doorbell_size  = 8,
524         .ih_ring_entry_size = 8 * sizeof(uint32_t),
525         .event_interrupt_class = &event_interrupt_class_v9,
526         .num_of_watch_points = 4,
527         .mqd_size_aligned = MQD_SIZE_ALIGNED,
528         .needs_iommu_device = false,
529         .supports_cwsr = true,
530         .needs_pci_atomics = true,
531         .no_atomic_fw_version = 92,
532         .num_sdma_engines = 4,
533         .num_xgmi_sdma_engines = 0,
534         .num_sdma_queues_per_engine = 8,
535 };
536
537 static const struct kfd_device_info navy_flounder_device_info = {
538         .asic_family = CHIP_NAVY_FLOUNDER,
539         .asic_name = "navy_flounder",
540         .gfx_target_version = 100301,
541         .max_pasid_bits = 16,
542         .max_no_of_hqd  = 24,
543         .doorbell_size  = 8,
544         .ih_ring_entry_size = 8 * sizeof(uint32_t),
545         .event_interrupt_class = &event_interrupt_class_v9,
546         .num_of_watch_points = 4,
547         .mqd_size_aligned = MQD_SIZE_ALIGNED,
548         .needs_iommu_device = false,
549         .supports_cwsr = true,
550         .needs_pci_atomics = true,
551         .no_atomic_fw_version = 92,
552         .num_sdma_engines = 2,
553         .num_xgmi_sdma_engines = 0,
554         .num_sdma_queues_per_engine = 8,
555 };
556
557 static const struct kfd_device_info vangogh_device_info = {
558         .asic_family = CHIP_VANGOGH,
559         .asic_name = "vangogh",
560         .gfx_target_version = 100303,
561         .max_pasid_bits = 16,
562         .max_no_of_hqd  = 24,
563         .doorbell_size  = 8,
564         .ih_ring_entry_size = 8 * sizeof(uint32_t),
565         .event_interrupt_class = &event_interrupt_class_v9,
566         .num_of_watch_points = 4,
567         .mqd_size_aligned = MQD_SIZE_ALIGNED,
568         .needs_iommu_device = false,
569         .supports_cwsr = true,
570         .needs_pci_atomics = true,
571         .no_atomic_fw_version = 92,
572         .num_sdma_engines = 1,
573         .num_xgmi_sdma_engines = 0,
574         .num_sdma_queues_per_engine = 2,
575 };
576
577 static const struct kfd_device_info dimgrey_cavefish_device_info = {
578         .asic_family = CHIP_DIMGREY_CAVEFISH,
579         .asic_name = "dimgrey_cavefish",
580         .gfx_target_version = 100302,
581         .max_pasid_bits = 16,
582         .max_no_of_hqd  = 24,
583         .doorbell_size  = 8,
584         .ih_ring_entry_size = 8 * sizeof(uint32_t),
585         .event_interrupt_class = &event_interrupt_class_v9,
586         .num_of_watch_points = 4,
587         .mqd_size_aligned = MQD_SIZE_ALIGNED,
588         .needs_iommu_device = false,
589         .supports_cwsr = true,
590         .needs_pci_atomics = true,
591         .no_atomic_fw_version = 92,
592         .num_sdma_engines = 2,
593         .num_xgmi_sdma_engines = 0,
594         .num_sdma_queues_per_engine = 8,
595 };
596
597 static const struct kfd_device_info beige_goby_device_info = {
598         .asic_family = CHIP_BEIGE_GOBY,
599         .asic_name = "beige_goby",
600         .gfx_target_version = 100304,
601         .max_pasid_bits = 16,
602         .max_no_of_hqd  = 24,
603         .doorbell_size  = 8,
604         .ih_ring_entry_size = 8 * sizeof(uint32_t),
605         .event_interrupt_class = &event_interrupt_class_v9,
606         .num_of_watch_points = 4,
607         .mqd_size_aligned = MQD_SIZE_ALIGNED,
608         .needs_iommu_device = false,
609         .supports_cwsr = true,
610         .needs_pci_atomics = true,
611         .no_atomic_fw_version = 92,
612         .num_sdma_engines = 1,
613         .num_xgmi_sdma_engines = 0,
614         .num_sdma_queues_per_engine = 8,
615 };
616
617 static const struct kfd_device_info yellow_carp_device_info = {
618         .asic_family = CHIP_YELLOW_CARP,
619         .asic_name = "yellow_carp",
620         .gfx_target_version = 100305,
621         .max_pasid_bits = 16,
622         .max_no_of_hqd  = 24,
623         .doorbell_size  = 8,
624         .ih_ring_entry_size = 8 * sizeof(uint32_t),
625         .event_interrupt_class = &event_interrupt_class_v9,
626         .num_of_watch_points = 4,
627         .mqd_size_aligned = MQD_SIZE_ALIGNED,
628         .needs_iommu_device = false,
629         .supports_cwsr = true,
630         .needs_pci_atomics = true,
631         .no_atomic_fw_version = 92,
632         .num_sdma_engines = 1,
633         .num_xgmi_sdma_engines = 0,
634         .num_sdma_queues_per_engine = 2,
635 };
636
637 static const struct kfd_device_info cyan_skillfish_device_info = {
638         .asic_family = CHIP_CYAN_SKILLFISH,
639         .asic_name = "cyan_skillfish",
640         .gfx_target_version = 100103,
641         .max_pasid_bits = 16,
642         .max_no_of_hqd  = 24,
643         .doorbell_size  = 8,
644         .ih_ring_entry_size = 8 * sizeof(uint32_t),
645         .event_interrupt_class = &event_interrupt_class_v9,
646         .num_of_watch_points = 4,
647         .mqd_size_aligned = MQD_SIZE_ALIGNED,
648         .needs_iommu_device = false,
649         .supports_cwsr = true,
650         .needs_pci_atomics = true,
651         .num_sdma_engines = 2,
652         .num_xgmi_sdma_engines = 0,
653         .num_sdma_queues_per_engine = 8,
654 };
655
656 /* For each entry, [0] is regular and [1] is virtualisation device. */
657 static const struct kfd_device_info *kfd_supported_devices[][2] = {
658 #ifdef KFD_SUPPORT_IOMMU_V2
659         [CHIP_KAVERI] = {&kaveri_device_info, NULL},
660         [CHIP_CARRIZO] = {&carrizo_device_info, NULL},
661 #endif
662         [CHIP_RAVEN] = {&raven_device_info, NULL},
663         [CHIP_HAWAII] = {&hawaii_device_info, NULL},
664         [CHIP_TONGA] = {&tonga_device_info, NULL},
665         [CHIP_FIJI] = {&fiji_device_info, &fiji_vf_device_info},
666         [CHIP_POLARIS10] = {&polaris10_device_info, &polaris10_vf_device_info},
667         [CHIP_POLARIS11] = {&polaris11_device_info, NULL},
668         [CHIP_POLARIS12] = {&polaris12_device_info, NULL},
669         [CHIP_VEGAM] = {&vegam_device_info, NULL},
670         [CHIP_VEGA10] = {&vega10_device_info, &vega10_vf_device_info},
671         [CHIP_VEGA12] = {&vega12_device_info, NULL},
672         [CHIP_VEGA20] = {&vega20_device_info, NULL},
673         [CHIP_RENOIR] = {&renoir_device_info, NULL},
674         [CHIP_ARCTURUS] = {&arcturus_device_info, &arcturus_device_info},
675         [CHIP_ALDEBARAN] = {&aldebaran_device_info, &aldebaran_device_info},
676         [CHIP_NAVI10] = {&navi10_device_info, NULL},
677         [CHIP_NAVI12] = {&navi12_device_info, &navi12_device_info},
678         [CHIP_NAVI14] = {&navi14_device_info, NULL},
679         [CHIP_SIENNA_CICHLID] = {&sienna_cichlid_device_info, &sienna_cichlid_device_info},
680         [CHIP_NAVY_FLOUNDER] = {&navy_flounder_device_info, &navy_flounder_device_info},
681         [CHIP_VANGOGH] = {&vangogh_device_info, NULL},
682         [CHIP_DIMGREY_CAVEFISH] = {&dimgrey_cavefish_device_info, &dimgrey_cavefish_device_info},
683         [CHIP_BEIGE_GOBY] = {&beige_goby_device_info, &beige_goby_device_info},
684         [CHIP_YELLOW_CARP] = {&yellow_carp_device_info, NULL},
685         [CHIP_CYAN_SKILLFISH] = {&cyan_skillfish_device_info, NULL},
686 };
687
688 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
689                                 unsigned int chunk_size);
690 static void kfd_gtt_sa_fini(struct kfd_dev *kfd);
691
692 static int kfd_resume(struct kfd_dev *kfd);
693
694 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
695         struct pci_dev *pdev, unsigned int asic_type, bool vf)
696 {
697         struct kfd_dev *kfd;
698         const struct kfd_device_info *device_info;
699         const struct kfd2kgd_calls *f2g;
700
701         if (asic_type >= sizeof(kfd_supported_devices) / (sizeof(void *) * 2)
702                 || asic_type >= sizeof(kfd2kgd_funcs) / sizeof(void *)) {
703                 dev_err(kfd_device, "asic_type %d out of range\n", asic_type);
704                 return NULL; /* asic_type out of range */
705         }
706
707         device_info = kfd_supported_devices[asic_type][vf];
708         f2g = kfd2kgd_funcs[asic_type];
709
710         if (!device_info || !f2g) {
711                 dev_err(kfd_device, "%s %s not supported in kfd\n",
712                         amdgpu_asic_name[asic_type], vf ? "VF" : "");
713                 return NULL;
714         }
715
716         kfd = kzalloc(sizeof(*kfd), GFP_KERNEL);
717         if (!kfd)
718                 return NULL;
719
720         kfd->kgd = kgd;
721         kfd->device_info = device_info;
722         kfd->pdev = pdev;
723         kfd->init_complete = false;
724         kfd->kfd2kgd = f2g;
725         atomic_set(&kfd->compute_profile, 0);
726
727         mutex_init(&kfd->doorbell_mutex);
728         memset(&kfd->doorbell_available_index, 0,
729                 sizeof(kfd->doorbell_available_index));
730
731         atomic_set(&kfd->sram_ecc_flag, 0);
732
733         ida_init(&kfd->doorbell_ida);
734
735         return kfd;
736 }
737
738 static void kfd_cwsr_init(struct kfd_dev *kfd)
739 {
740         if (cwsr_enable && kfd->device_info->supports_cwsr) {
741                 if (kfd->device_info->asic_family < CHIP_VEGA10) {
742                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx8_hex) > PAGE_SIZE);
743                         kfd->cwsr_isa = cwsr_trap_gfx8_hex;
744                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx8_hex);
745                 } else if (kfd->device_info->asic_family == CHIP_ARCTURUS) {
746                         BUILD_BUG_ON(sizeof(cwsr_trap_arcturus_hex) > PAGE_SIZE);
747                         kfd->cwsr_isa = cwsr_trap_arcturus_hex;
748                         kfd->cwsr_isa_size = sizeof(cwsr_trap_arcturus_hex);
749                 } else if (kfd->device_info->asic_family == CHIP_ALDEBARAN) {
750                         BUILD_BUG_ON(sizeof(cwsr_trap_aldebaran_hex) > PAGE_SIZE);
751                         kfd->cwsr_isa = cwsr_trap_aldebaran_hex;
752                         kfd->cwsr_isa_size = sizeof(cwsr_trap_aldebaran_hex);
753                 } else if (kfd->device_info->asic_family < CHIP_NAVI10) {
754                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx9_hex) > PAGE_SIZE);
755                         kfd->cwsr_isa = cwsr_trap_gfx9_hex;
756                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx9_hex);
757                 } else if (kfd->device_info->asic_family < CHIP_SIENNA_CICHLID) {
758                         BUILD_BUG_ON(sizeof(cwsr_trap_nv1x_hex) > PAGE_SIZE);
759                         kfd->cwsr_isa = cwsr_trap_nv1x_hex;
760                         kfd->cwsr_isa_size = sizeof(cwsr_trap_nv1x_hex);
761                 } else {
762                         BUILD_BUG_ON(sizeof(cwsr_trap_gfx10_hex) > PAGE_SIZE);
763                         kfd->cwsr_isa = cwsr_trap_gfx10_hex;
764                         kfd->cwsr_isa_size = sizeof(cwsr_trap_gfx10_hex);
765                 }
766
767                 kfd->cwsr_enabled = true;
768         }
769 }
770
771 static int kfd_gws_init(struct kfd_dev *kfd)
772 {
773         int ret = 0;
774
775         if (kfd->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS)
776                 return 0;
777
778         if (hws_gws_support
779                 || (kfd->device_info->asic_family == CHIP_VEGA10
780                         && kfd->mec2_fw_version >= 0x81b3)
781                 || (kfd->device_info->asic_family >= CHIP_VEGA12
782                         && kfd->device_info->asic_family <= CHIP_RAVEN
783                         && kfd->mec2_fw_version >= 0x1b3)
784                 || (kfd->device_info->asic_family == CHIP_ARCTURUS
785                         && kfd->mec2_fw_version >= 0x30)
786                 || (kfd->device_info->asic_family == CHIP_ALDEBARAN
787                         && kfd->mec2_fw_version >= 0x28))
788                 ret = amdgpu_amdkfd_alloc_gws(kfd->kgd,
789                                 amdgpu_amdkfd_get_num_gws(kfd->kgd), &kfd->gws);
790
791         return ret;
792 }
793
794 static void kfd_smi_init(struct kfd_dev *dev) {
795         INIT_LIST_HEAD(&dev->smi_clients);
796         spin_lock_init(&dev->smi_lock);
797 }
798
799 bool kgd2kfd_device_init(struct kfd_dev *kfd,
800                          struct drm_device *ddev,
801                          const struct kgd2kfd_shared_resources *gpu_resources)
802 {
803         unsigned int size, map_process_packet_size;
804
805         kfd->ddev = ddev;
806         kfd->mec_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
807                         KGD_ENGINE_MEC1);
808         kfd->mec2_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
809                         KGD_ENGINE_MEC2);
810         kfd->sdma_fw_version = amdgpu_amdkfd_get_fw_version(kfd->kgd,
811                         KGD_ENGINE_SDMA1);
812         kfd->shared_resources = *gpu_resources;
813
814         kfd->vm_info.first_vmid_kfd = ffs(gpu_resources->compute_vmid_bitmap)-1;
815         kfd->vm_info.last_vmid_kfd = fls(gpu_resources->compute_vmid_bitmap)-1;
816         kfd->vm_info.vmid_num_kfd = kfd->vm_info.last_vmid_kfd
817                         - kfd->vm_info.first_vmid_kfd + 1;
818
819         /* Allow BIF to recode atomics to PCIe 3.0 AtomicOps.
820          * 32 and 64-bit requests are possible and must be
821          * supported.
822          */
823         kfd->pci_atomic_requested = amdgpu_amdkfd_have_atomics_support(kfd->kgd);
824         if (!kfd->pci_atomic_requested &&
825             kfd->device_info->needs_pci_atomics &&
826             (!kfd->device_info->no_atomic_fw_version ||
827              kfd->mec_fw_version < kfd->device_info->no_atomic_fw_version)) {
828                 dev_info(kfd_device,
829                          "skipped device %x:%x, PCI rejects atomics %d<%d\n",
830                          kfd->pdev->vendor, kfd->pdev->device,
831                          kfd->mec_fw_version,
832                          kfd->device_info->no_atomic_fw_version);
833                 return false;
834         }
835
836         /* Verify module parameters regarding mapped process number*/
837         if ((hws_max_conc_proc < 0)
838                         || (hws_max_conc_proc > kfd->vm_info.vmid_num_kfd)) {
839                 dev_err(kfd_device,
840                         "hws_max_conc_proc %d must be between 0 and %d, use %d instead\n",
841                         hws_max_conc_proc, kfd->vm_info.vmid_num_kfd,
842                         kfd->vm_info.vmid_num_kfd);
843                 kfd->max_proc_per_quantum = kfd->vm_info.vmid_num_kfd;
844         } else
845                 kfd->max_proc_per_quantum = hws_max_conc_proc;
846
847         /* calculate max size of mqds needed for queues */
848         size = max_num_of_queues_per_device *
849                         kfd->device_info->mqd_size_aligned;
850
851         /*
852          * calculate max size of runlist packet.
853          * There can be only 2 packets at once
854          */
855         map_process_packet_size =
856                         kfd->device_info->asic_family == CHIP_ALDEBARAN ?
857                                 sizeof(struct pm4_mes_map_process_aldebaran) :
858                                         sizeof(struct pm4_mes_map_process);
859         size += (KFD_MAX_NUM_OF_PROCESSES * map_process_packet_size +
860                 max_num_of_queues_per_device * sizeof(struct pm4_mes_map_queues)
861                 + sizeof(struct pm4_mes_runlist)) * 2;
862
863         /* Add size of HIQ & DIQ */
864         size += KFD_KERNEL_QUEUE_SIZE * 2;
865
866         /* add another 512KB for all other allocations on gart (HPD, fences) */
867         size += 512 * 1024;
868
869         if (amdgpu_amdkfd_alloc_gtt_mem(
870                         kfd->kgd, size, &kfd->gtt_mem,
871                         &kfd->gtt_start_gpu_addr, &kfd->gtt_start_cpu_ptr,
872                         false)) {
873                 dev_err(kfd_device, "Could not allocate %d bytes\n", size);
874                 goto alloc_gtt_mem_failure;
875         }
876
877         dev_info(kfd_device, "Allocated %d bytes on gart\n", size);
878
879         /* Initialize GTT sa with 512 byte chunk size */
880         if (kfd_gtt_sa_init(kfd, size, 512) != 0) {
881                 dev_err(kfd_device, "Error initializing gtt sub-allocator\n");
882                 goto kfd_gtt_sa_init_error;
883         }
884
885         if (kfd_doorbell_init(kfd)) {
886                 dev_err(kfd_device,
887                         "Error initializing doorbell aperture\n");
888                 goto kfd_doorbell_error;
889         }
890
891         kfd->hive_id = amdgpu_amdkfd_get_hive_id(kfd->kgd);
892
893         kfd->noretry = amdgpu_amdkfd_get_noretry(kfd->kgd);
894
895         if (kfd_interrupt_init(kfd)) {
896                 dev_err(kfd_device, "Error initializing interrupts\n");
897                 goto kfd_interrupt_error;
898         }
899
900         kfd->dqm = device_queue_manager_init(kfd);
901         if (!kfd->dqm) {
902                 dev_err(kfd_device, "Error initializing queue manager\n");
903                 goto device_queue_manager_error;
904         }
905
906         /* If supported on this device, allocate global GWS that is shared
907          * by all KFD processes
908          */
909         if (kfd_gws_init(kfd)) {
910                 dev_err(kfd_device, "Could not allocate %d gws\n",
911                         amdgpu_amdkfd_get_num_gws(kfd->kgd));
912                 goto gws_error;
913         }
914
915         /* If CRAT is broken, won't set iommu enabled */
916         kfd_double_confirm_iommu_support(kfd);
917
918         if (kfd_iommu_device_init(kfd)) {
919                 dev_err(kfd_device, "Error initializing iommuv2\n");
920                 goto device_iommu_error;
921         }
922
923         kfd_cwsr_init(kfd);
924
925         svm_migrate_init((struct amdgpu_device *)kfd->kgd);
926
927         if (kfd_resume(kfd))
928                 goto kfd_resume_error;
929
930         kfd->dbgmgr = NULL;
931
932         if (kfd_topology_add_device(kfd)) {
933                 dev_err(kfd_device, "Error adding device to topology\n");
934                 goto kfd_topology_add_device_error;
935         }
936
937         kfd_smi_init(kfd);
938
939         kfd->init_complete = true;
940         dev_info(kfd_device, "added device %x:%x\n", kfd->pdev->vendor,
941                  kfd->pdev->device);
942
943         pr_debug("Starting kfd with the following scheduling policy %d\n",
944                 kfd->dqm->sched_policy);
945
946         goto out;
947
948 kfd_topology_add_device_error:
949 kfd_resume_error:
950 device_iommu_error:
951 gws_error:
952         device_queue_manager_uninit(kfd->dqm);
953 device_queue_manager_error:
954         kfd_interrupt_exit(kfd);
955 kfd_interrupt_error:
956         kfd_doorbell_fini(kfd);
957 kfd_doorbell_error:
958         kfd_gtt_sa_fini(kfd);
959 kfd_gtt_sa_init_error:
960         amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
961 alloc_gtt_mem_failure:
962         if (kfd->gws)
963                 amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
964         dev_err(kfd_device,
965                 "device %x:%x NOT added due to errors\n",
966                 kfd->pdev->vendor, kfd->pdev->device);
967 out:
968         return kfd->init_complete;
969 }
970
971 void kgd2kfd_device_exit(struct kfd_dev *kfd)
972 {
973         if (kfd->init_complete) {
974                 device_queue_manager_uninit(kfd->dqm);
975                 kfd_interrupt_exit(kfd);
976                 kfd_topology_remove_device(kfd);
977                 kfd_doorbell_fini(kfd);
978                 ida_destroy(&kfd->doorbell_ida);
979                 kfd_gtt_sa_fini(kfd);
980                 amdgpu_amdkfd_free_gtt_mem(kfd->kgd, kfd->gtt_mem);
981                 if (kfd->gws)
982                         amdgpu_amdkfd_free_gws(kfd->kgd, kfd->gws);
983         }
984
985         kfree(kfd);
986 }
987
988 int kgd2kfd_pre_reset(struct kfd_dev *kfd)
989 {
990         if (!kfd->init_complete)
991                 return 0;
992
993         kfd_smi_event_update_gpu_reset(kfd, false);
994
995         kfd->dqm->ops.pre_reset(kfd->dqm);
996
997         kgd2kfd_suspend(kfd, false);
998
999         kfd_signal_reset_event(kfd);
1000         return 0;
1001 }
1002
1003 /*
1004  * Fix me. KFD won't be able to resume existing process for now.
1005  * We will keep all existing process in a evicted state and
1006  * wait the process to be terminated.
1007  */
1008
1009 int kgd2kfd_post_reset(struct kfd_dev *kfd)
1010 {
1011         int ret;
1012
1013         if (!kfd->init_complete)
1014                 return 0;
1015
1016         ret = kfd_resume(kfd);
1017         if (ret)
1018                 return ret;
1019         atomic_dec(&kfd_locked);
1020
1021         atomic_set(&kfd->sram_ecc_flag, 0);
1022
1023         kfd_smi_event_update_gpu_reset(kfd, true);
1024
1025         return 0;
1026 }
1027
1028 bool kfd_is_locked(void)
1029 {
1030         return  (atomic_read(&kfd_locked) > 0);
1031 }
1032
1033 void kgd2kfd_suspend(struct kfd_dev *kfd, bool run_pm)
1034 {
1035         if (!kfd->init_complete)
1036                 return;
1037
1038         /* for runtime suspend, skip locking kfd */
1039         if (!run_pm) {
1040                 /* For first KFD device suspend all the KFD processes */
1041                 if (atomic_inc_return(&kfd_locked) == 1)
1042                         kfd_suspend_all_processes();
1043         }
1044
1045         kfd->dqm->ops.stop(kfd->dqm);
1046         kfd_iommu_suspend(kfd);
1047 }
1048
1049 int kgd2kfd_resume(struct kfd_dev *kfd, bool run_pm)
1050 {
1051         int ret, count;
1052
1053         if (!kfd->init_complete)
1054                 return 0;
1055
1056         ret = kfd_resume(kfd);
1057         if (ret)
1058                 return ret;
1059
1060         /* for runtime resume, skip unlocking kfd */
1061         if (!run_pm) {
1062                 count = atomic_dec_return(&kfd_locked);
1063                 WARN_ONCE(count < 0, "KFD suspend / resume ref. error");
1064                 if (count == 0)
1065                         ret = kfd_resume_all_processes();
1066         }
1067
1068         return ret;
1069 }
1070
1071 int kgd2kfd_resume_iommu(struct kfd_dev *kfd)
1072 {
1073         int err = 0;
1074
1075         err = kfd_iommu_resume(kfd);
1076         if (err)
1077                 dev_err(kfd_device,
1078                         "Failed to resume IOMMU for device %x:%x\n",
1079                         kfd->pdev->vendor, kfd->pdev->device);
1080         return err;
1081 }
1082
1083 static int kfd_resume(struct kfd_dev *kfd)
1084 {
1085         int err = 0;
1086
1087         err = kfd->dqm->ops.start(kfd->dqm);
1088         if (err) {
1089                 dev_err(kfd_device,
1090                         "Error starting queue manager for device %x:%x\n",
1091                         kfd->pdev->vendor, kfd->pdev->device);
1092                 goto dqm_start_error;
1093         }
1094
1095         return err;
1096
1097 dqm_start_error:
1098         kfd_iommu_suspend(kfd);
1099         return err;
1100 }
1101
1102 static inline void kfd_queue_work(struct workqueue_struct *wq,
1103                                   struct work_struct *work)
1104 {
1105         int cpu, new_cpu;
1106
1107         cpu = new_cpu = smp_processor_id();
1108         do {
1109                 new_cpu = cpumask_next(new_cpu, cpu_online_mask) % nr_cpu_ids;
1110                 if (cpu_to_node(new_cpu) == numa_node_id())
1111                         break;
1112         } while (cpu != new_cpu);
1113
1114         queue_work_on(new_cpu, wq, work);
1115 }
1116
1117 /* This is called directly from KGD at ISR. */
1118 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry)
1119 {
1120         uint32_t patched_ihre[KFD_MAX_RING_ENTRY_SIZE];
1121         bool is_patched = false;
1122         unsigned long flags;
1123
1124         if (!kfd->init_complete)
1125                 return;
1126
1127         if (kfd->device_info->ih_ring_entry_size > sizeof(patched_ihre)) {
1128                 dev_err_once(kfd_device, "Ring entry too small\n");
1129                 return;
1130         }
1131
1132         spin_lock_irqsave(&kfd->interrupt_lock, flags);
1133
1134         if (kfd->interrupts_active
1135             && interrupt_is_wanted(kfd, ih_ring_entry,
1136                                    patched_ihre, &is_patched)
1137             && enqueue_ih_ring_entry(kfd,
1138                                      is_patched ? patched_ihre : ih_ring_entry))
1139                 kfd_queue_work(kfd->ih_wq, &kfd->interrupt_work);
1140
1141         spin_unlock_irqrestore(&kfd->interrupt_lock, flags);
1142 }
1143
1144 int kgd2kfd_quiesce_mm(struct mm_struct *mm)
1145 {
1146         struct kfd_process *p;
1147         int r;
1148
1149         /* Because we are called from arbitrary context (workqueue) as opposed
1150          * to process context, kfd_process could attempt to exit while we are
1151          * running so the lookup function increments the process ref count.
1152          */
1153         p = kfd_lookup_process_by_mm(mm);
1154         if (!p)
1155                 return -ESRCH;
1156
1157         WARN(debug_evictions, "Evicting pid %d", p->lead_thread->pid);
1158         r = kfd_process_evict_queues(p);
1159
1160         kfd_unref_process(p);
1161         return r;
1162 }
1163
1164 int kgd2kfd_resume_mm(struct mm_struct *mm)
1165 {
1166         struct kfd_process *p;
1167         int r;
1168
1169         /* Because we are called from arbitrary context (workqueue) as opposed
1170          * to process context, kfd_process could attempt to exit while we are
1171          * running so the lookup function increments the process ref count.
1172          */
1173         p = kfd_lookup_process_by_mm(mm);
1174         if (!p)
1175                 return -ESRCH;
1176
1177         r = kfd_process_restore_queues(p);
1178
1179         kfd_unref_process(p);
1180         return r;
1181 }
1182
1183 /** kgd2kfd_schedule_evict_and_restore_process - Schedules work queue that will
1184  *   prepare for safe eviction of KFD BOs that belong to the specified
1185  *   process.
1186  *
1187  * @mm: mm_struct that identifies the specified KFD process
1188  * @fence: eviction fence attached to KFD process BOs
1189  *
1190  */
1191 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
1192                                                struct dma_fence *fence)
1193 {
1194         struct kfd_process *p;
1195         unsigned long active_time;
1196         unsigned long delay_jiffies = msecs_to_jiffies(PROCESS_ACTIVE_TIME_MS);
1197
1198         if (!fence)
1199                 return -EINVAL;
1200
1201         if (dma_fence_is_signaled(fence))
1202                 return 0;
1203
1204         p = kfd_lookup_process_by_mm(mm);
1205         if (!p)
1206                 return -ENODEV;
1207
1208         if (fence->seqno == p->last_eviction_seqno)
1209                 goto out;
1210
1211         p->last_eviction_seqno = fence->seqno;
1212
1213         /* Avoid KFD process starvation. Wait for at least
1214          * PROCESS_ACTIVE_TIME_MS before evicting the process again
1215          */
1216         active_time = get_jiffies_64() - p->last_restore_timestamp;
1217         if (delay_jiffies > active_time)
1218                 delay_jiffies -= active_time;
1219         else
1220                 delay_jiffies = 0;
1221
1222         /* During process initialization eviction_work.dwork is initialized
1223          * to kfd_evict_bo_worker
1224          */
1225         WARN(debug_evictions, "Scheduling eviction of pid %d in %ld jiffies",
1226              p->lead_thread->pid, delay_jiffies);
1227         schedule_delayed_work(&p->eviction_work, delay_jiffies);
1228 out:
1229         kfd_unref_process(p);
1230         return 0;
1231 }
1232
1233 static int kfd_gtt_sa_init(struct kfd_dev *kfd, unsigned int buf_size,
1234                                 unsigned int chunk_size)
1235 {
1236         unsigned int num_of_longs;
1237
1238         if (WARN_ON(buf_size < chunk_size))
1239                 return -EINVAL;
1240         if (WARN_ON(buf_size == 0))
1241                 return -EINVAL;
1242         if (WARN_ON(chunk_size == 0))
1243                 return -EINVAL;
1244
1245         kfd->gtt_sa_chunk_size = chunk_size;
1246         kfd->gtt_sa_num_of_chunks = buf_size / chunk_size;
1247
1248         num_of_longs = (kfd->gtt_sa_num_of_chunks + BITS_PER_LONG - 1) /
1249                 BITS_PER_LONG;
1250
1251         kfd->gtt_sa_bitmap = kcalloc(num_of_longs, sizeof(long), GFP_KERNEL);
1252
1253         if (!kfd->gtt_sa_bitmap)
1254                 return -ENOMEM;
1255
1256         pr_debug("gtt_sa_num_of_chunks = %d, gtt_sa_bitmap = %p\n",
1257                         kfd->gtt_sa_num_of_chunks, kfd->gtt_sa_bitmap);
1258
1259         mutex_init(&kfd->gtt_sa_lock);
1260
1261         return 0;
1262
1263 }
1264
1265 static void kfd_gtt_sa_fini(struct kfd_dev *kfd)
1266 {
1267         mutex_destroy(&kfd->gtt_sa_lock);
1268         kfree(kfd->gtt_sa_bitmap);
1269 }
1270
1271 static inline uint64_t kfd_gtt_sa_calc_gpu_addr(uint64_t start_addr,
1272                                                 unsigned int bit_num,
1273                                                 unsigned int chunk_size)
1274 {
1275         return start_addr + bit_num * chunk_size;
1276 }
1277
1278 static inline uint32_t *kfd_gtt_sa_calc_cpu_addr(void *start_addr,
1279                                                 unsigned int bit_num,
1280                                                 unsigned int chunk_size)
1281 {
1282         return (uint32_t *) ((uint64_t) start_addr + bit_num * chunk_size);
1283 }
1284
1285 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
1286                         struct kfd_mem_obj **mem_obj)
1287 {
1288         unsigned int found, start_search, cur_size;
1289
1290         if (size == 0)
1291                 return -EINVAL;
1292
1293         if (size > kfd->gtt_sa_num_of_chunks * kfd->gtt_sa_chunk_size)
1294                 return -ENOMEM;
1295
1296         *mem_obj = kzalloc(sizeof(struct kfd_mem_obj), GFP_KERNEL);
1297         if (!(*mem_obj))
1298                 return -ENOMEM;
1299
1300         pr_debug("Allocated mem_obj = %p for size = %d\n", *mem_obj, size);
1301
1302         start_search = 0;
1303
1304         mutex_lock(&kfd->gtt_sa_lock);
1305
1306 kfd_gtt_restart_search:
1307         /* Find the first chunk that is free */
1308         found = find_next_zero_bit(kfd->gtt_sa_bitmap,
1309                                         kfd->gtt_sa_num_of_chunks,
1310                                         start_search);
1311
1312         pr_debug("Found = %d\n", found);
1313
1314         /* If there wasn't any free chunk, bail out */
1315         if (found == kfd->gtt_sa_num_of_chunks)
1316                 goto kfd_gtt_no_free_chunk;
1317
1318         /* Update fields of mem_obj */
1319         (*mem_obj)->range_start = found;
1320         (*mem_obj)->range_end = found;
1321         (*mem_obj)->gpu_addr = kfd_gtt_sa_calc_gpu_addr(
1322                                         kfd->gtt_start_gpu_addr,
1323                                         found,
1324                                         kfd->gtt_sa_chunk_size);
1325         (*mem_obj)->cpu_ptr = kfd_gtt_sa_calc_cpu_addr(
1326                                         kfd->gtt_start_cpu_ptr,
1327                                         found,
1328                                         kfd->gtt_sa_chunk_size);
1329
1330         pr_debug("gpu_addr = %p, cpu_addr = %p\n",
1331                         (uint64_t *) (*mem_obj)->gpu_addr, (*mem_obj)->cpu_ptr);
1332
1333         /* If we need only one chunk, mark it as allocated and get out */
1334         if (size <= kfd->gtt_sa_chunk_size) {
1335                 pr_debug("Single bit\n");
1336                 set_bit(found, kfd->gtt_sa_bitmap);
1337                 goto kfd_gtt_out;
1338         }
1339
1340         /* Otherwise, try to see if we have enough contiguous chunks */
1341         cur_size = size - kfd->gtt_sa_chunk_size;
1342         do {
1343                 (*mem_obj)->range_end =
1344                         find_next_zero_bit(kfd->gtt_sa_bitmap,
1345                                         kfd->gtt_sa_num_of_chunks, ++found);
1346                 /*
1347                  * If next free chunk is not contiguous than we need to
1348                  * restart our search from the last free chunk we found (which
1349                  * wasn't contiguous to the previous ones
1350                  */
1351                 if ((*mem_obj)->range_end != found) {
1352                         start_search = found;
1353                         goto kfd_gtt_restart_search;
1354                 }
1355
1356                 /*
1357                  * If we reached end of buffer, bail out with error
1358                  */
1359                 if (found == kfd->gtt_sa_num_of_chunks)
1360                         goto kfd_gtt_no_free_chunk;
1361
1362                 /* Check if we don't need another chunk */
1363                 if (cur_size <= kfd->gtt_sa_chunk_size)
1364                         cur_size = 0;
1365                 else
1366                         cur_size -= kfd->gtt_sa_chunk_size;
1367
1368         } while (cur_size > 0);
1369
1370         pr_debug("range_start = %d, range_end = %d\n",
1371                 (*mem_obj)->range_start, (*mem_obj)->range_end);
1372
1373         /* Mark the chunks as allocated */
1374         for (found = (*mem_obj)->range_start;
1375                 found <= (*mem_obj)->range_end;
1376                 found++)
1377                 set_bit(found, kfd->gtt_sa_bitmap);
1378
1379 kfd_gtt_out:
1380         mutex_unlock(&kfd->gtt_sa_lock);
1381         return 0;
1382
1383 kfd_gtt_no_free_chunk:
1384         pr_debug("Allocation failed with mem_obj = %p\n", *mem_obj);
1385         mutex_unlock(&kfd->gtt_sa_lock);
1386         kfree(*mem_obj);
1387         return -ENOMEM;
1388 }
1389
1390 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj)
1391 {
1392         unsigned int bit;
1393
1394         /* Act like kfree when trying to free a NULL object */
1395         if (!mem_obj)
1396                 return 0;
1397
1398         pr_debug("Free mem_obj = %p, range_start = %d, range_end = %d\n",
1399                         mem_obj, mem_obj->range_start, mem_obj->range_end);
1400
1401         mutex_lock(&kfd->gtt_sa_lock);
1402
1403         /* Mark the chunks as free */
1404         for (bit = mem_obj->range_start;
1405                 bit <= mem_obj->range_end;
1406                 bit++)
1407                 clear_bit(bit, kfd->gtt_sa_bitmap);
1408
1409         mutex_unlock(&kfd->gtt_sa_lock);
1410
1411         kfree(mem_obj);
1412         return 0;
1413 }
1414
1415 void kgd2kfd_set_sram_ecc_flag(struct kfd_dev *kfd)
1416 {
1417         if (kfd)
1418                 atomic_inc(&kfd->sram_ecc_flag);
1419 }
1420
1421 void kfd_inc_compute_active(struct kfd_dev *kfd)
1422 {
1423         if (atomic_inc_return(&kfd->compute_profile) == 1)
1424                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, false);
1425 }
1426
1427 void kfd_dec_compute_active(struct kfd_dev *kfd)
1428 {
1429         int count = atomic_dec_return(&kfd->compute_profile);
1430
1431         if (count == 0)
1432                 amdgpu_amdkfd_set_compute_idle(kfd->kgd, true);
1433         WARN_ONCE(count < 0, "Compute profile ref. count error");
1434 }
1435
1436 void kgd2kfd_smi_event_throttle(struct kfd_dev *kfd, uint64_t throttle_bitmask)
1437 {
1438         if (kfd && kfd->init_complete)
1439                 kfd_smi_event_update_thermal_throttling(kfd, throttle_bitmask);
1440 }
1441
1442 #if defined(CONFIG_DEBUG_FS)
1443
1444 /* This function will send a package to HIQ to hang the HWS
1445  * which will trigger a GPU reset and bring the HWS back to normal state
1446  */
1447 int kfd_debugfs_hang_hws(struct kfd_dev *dev)
1448 {
1449         if (dev->dqm->sched_policy != KFD_SCHED_POLICY_HWS) {
1450                 pr_err("HWS is not enabled");
1451                 return -EINVAL;
1452         }
1453
1454         return dqm_debugfs_hang_hws(dev->dqm);
1455 }
1456
1457 #endif