Merge tag 'sound-fix-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_vm.c
1 /*
2  * Copyright 2008 Advanced Micro Devices, Inc.
3  * Copyright 2008 Red Hat Inc.
4  * Copyright 2009 Jerome Glisse.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
20  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
21  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
22  * OTHER DEALINGS IN THE SOFTWARE.
23  *
24  * Authors: Dave Airlie
25  *          Alex Deucher
26  *          Jerome Glisse
27  */
28 #include <linux/dma-fence-array.h>
29 #include <linux/interval_tree_generic.h>
30 #include <linux/idr.h>
31 #include <linux/dma-buf.h>
32
33 #include <drm/amdgpu_drm.h>
34 #include "amdgpu.h"
35 #include "amdgpu_trace.h"
36 #include "amdgpu_amdkfd.h"
37 #include "amdgpu_gmc.h"
38 #include "amdgpu_xgmi.h"
39 #include "amdgpu_dma_buf.h"
40
41 /**
42  * DOC: GPUVM
43  *
44  * GPUVM is similar to the legacy gart on older asics, however
45  * rather than there being a single global gart table
46  * for the entire GPU, there are multiple VM page tables active
47  * at any given time.  The VM page tables can contain a mix
48  * vram pages and system memory pages and system memory pages
49  * can be mapped as snooped (cached system pages) or unsnooped
50  * (uncached system pages).
51  * Each VM has an ID associated with it and there is a page table
52  * associated with each VMID.  When execting a command buffer,
53  * the kernel tells the the ring what VMID to use for that command
54  * buffer.  VMIDs are allocated dynamically as commands are submitted.
55  * The userspace drivers maintain their own address space and the kernel
56  * sets up their pages tables accordingly when they submit their
57  * command buffers and a VMID is assigned.
58  * Cayman/Trinity support up to 8 active VMs at any given time;
59  * SI supports 16.
60  */
61
62 #define START(node) ((node)->start)
63 #define LAST(node) ((node)->last)
64
65 INTERVAL_TREE_DEFINE(struct amdgpu_bo_va_mapping, rb, uint64_t, __subtree_last,
66                      START, LAST, static, amdgpu_vm_it)
67
68 #undef START
69 #undef LAST
70
71 /**
72  * struct amdgpu_prt_cb - Helper to disable partial resident texture feature from a fence callback
73  */
74 struct amdgpu_prt_cb {
75
76         /**
77          * @adev: amdgpu device
78          */
79         struct amdgpu_device *adev;
80
81         /**
82          * @cb: callback
83          */
84         struct dma_fence_cb cb;
85 };
86
87 /*
88  * vm eviction_lock can be taken in MMU notifiers. Make sure no reclaim-FS
89  * happens while holding this lock anywhere to prevent deadlocks when
90  * an MMU notifier runs in reclaim-FS context.
91  */
92 static inline void amdgpu_vm_eviction_lock(struct amdgpu_vm *vm)
93 {
94         mutex_lock(&vm->eviction_lock);
95         vm->saved_flags = memalloc_nofs_save();
96 }
97
98 static inline int amdgpu_vm_eviction_trylock(struct amdgpu_vm *vm)
99 {
100         if (mutex_trylock(&vm->eviction_lock)) {
101                 vm->saved_flags = memalloc_nofs_save();
102                 return 1;
103         }
104         return 0;
105 }
106
107 static inline void amdgpu_vm_eviction_unlock(struct amdgpu_vm *vm)
108 {
109         memalloc_nofs_restore(vm->saved_flags);
110         mutex_unlock(&vm->eviction_lock);
111 }
112
113 /**
114  * amdgpu_vm_level_shift - return the addr shift for each level
115  *
116  * @adev: amdgpu_device pointer
117  * @level: VMPT level
118  *
119  * Returns:
120  * The number of bits the pfn needs to be right shifted for a level.
121  */
122 static unsigned amdgpu_vm_level_shift(struct amdgpu_device *adev,
123                                       unsigned level)
124 {
125         switch (level) {
126         case AMDGPU_VM_PDB2:
127         case AMDGPU_VM_PDB1:
128         case AMDGPU_VM_PDB0:
129                 return 9 * (AMDGPU_VM_PDB0 - level) +
130                         adev->vm_manager.block_size;
131         case AMDGPU_VM_PTB:
132                 return 0;
133         default:
134                 return ~0;
135         }
136 }
137
138 /**
139  * amdgpu_vm_num_entries - return the number of entries in a PD/PT
140  *
141  * @adev: amdgpu_device pointer
142  * @level: VMPT level
143  *
144  * Returns:
145  * The number of entries in a page directory or page table.
146  */
147 static unsigned amdgpu_vm_num_entries(struct amdgpu_device *adev,
148                                       unsigned level)
149 {
150         unsigned shift = amdgpu_vm_level_shift(adev,
151                                                adev->vm_manager.root_level);
152
153         if (level == adev->vm_manager.root_level)
154                 /* For the root directory */
155                 return round_up(adev->vm_manager.max_pfn, 1ULL << shift)
156                         >> shift;
157         else if (level != AMDGPU_VM_PTB)
158                 /* Everything in between */
159                 return 512;
160         else
161                 /* For the page tables on the leaves */
162                 return AMDGPU_VM_PTE_COUNT(adev);
163 }
164
165 /**
166  * amdgpu_vm_num_ats_entries - return the number of ATS entries in the root PD
167  *
168  * @adev: amdgpu_device pointer
169  *
170  * Returns:
171  * The number of entries in the root page directory which needs the ATS setting.
172  */
173 static unsigned amdgpu_vm_num_ats_entries(struct amdgpu_device *adev)
174 {
175         unsigned shift;
176
177         shift = amdgpu_vm_level_shift(adev, adev->vm_manager.root_level);
178         return AMDGPU_GMC_HOLE_START >> (shift + AMDGPU_GPU_PAGE_SHIFT);
179 }
180
181 /**
182  * amdgpu_vm_entries_mask - the mask to get the entry number of a PD/PT
183  *
184  * @adev: amdgpu_device pointer
185  * @level: VMPT level
186  *
187  * Returns:
188  * The mask to extract the entry number of a PD/PT from an address.
189  */
190 static uint32_t amdgpu_vm_entries_mask(struct amdgpu_device *adev,
191                                        unsigned int level)
192 {
193         if (level <= adev->vm_manager.root_level)
194                 return 0xffffffff;
195         else if (level != AMDGPU_VM_PTB)
196                 return 0x1ff;
197         else
198                 return AMDGPU_VM_PTE_COUNT(adev) - 1;
199 }
200
201 /**
202  * amdgpu_vm_bo_size - returns the size of the BOs in bytes
203  *
204  * @adev: amdgpu_device pointer
205  * @level: VMPT level
206  *
207  * Returns:
208  * The size of the BO for a page directory or page table in bytes.
209  */
210 static unsigned amdgpu_vm_bo_size(struct amdgpu_device *adev, unsigned level)
211 {
212         return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_entries(adev, level) * 8);
213 }
214
215 /**
216  * amdgpu_vm_bo_evicted - vm_bo is evicted
217  *
218  * @vm_bo: vm_bo which is evicted
219  *
220  * State for PDs/PTs and per VM BOs which are not at the location they should
221  * be.
222  */
223 static void amdgpu_vm_bo_evicted(struct amdgpu_vm_bo_base *vm_bo)
224 {
225         struct amdgpu_vm *vm = vm_bo->vm;
226         struct amdgpu_bo *bo = vm_bo->bo;
227
228         vm_bo->moved = true;
229         if (bo->tbo.type == ttm_bo_type_kernel)
230                 list_move(&vm_bo->vm_status, &vm->evicted);
231         else
232                 list_move_tail(&vm_bo->vm_status, &vm->evicted);
233 }
234 /**
235  * amdgpu_vm_bo_moved - vm_bo is moved
236  *
237  * @vm_bo: vm_bo which is moved
238  *
239  * State for per VM BOs which are moved, but that change is not yet reflected
240  * in the page tables.
241  */
242 static void amdgpu_vm_bo_moved(struct amdgpu_vm_bo_base *vm_bo)
243 {
244         list_move(&vm_bo->vm_status, &vm_bo->vm->moved);
245 }
246
247 /**
248  * amdgpu_vm_bo_idle - vm_bo is idle
249  *
250  * @vm_bo: vm_bo which is now idle
251  *
252  * State for PDs/PTs and per VM BOs which have gone through the state machine
253  * and are now idle.
254  */
255 static void amdgpu_vm_bo_idle(struct amdgpu_vm_bo_base *vm_bo)
256 {
257         list_move(&vm_bo->vm_status, &vm_bo->vm->idle);
258         vm_bo->moved = false;
259 }
260
261 /**
262  * amdgpu_vm_bo_invalidated - vm_bo is invalidated
263  *
264  * @vm_bo: vm_bo which is now invalidated
265  *
266  * State for normal BOs which are invalidated and that change not yet reflected
267  * in the PTs.
268  */
269 static void amdgpu_vm_bo_invalidated(struct amdgpu_vm_bo_base *vm_bo)
270 {
271         spin_lock(&vm_bo->vm->invalidated_lock);
272         list_move(&vm_bo->vm_status, &vm_bo->vm->invalidated);
273         spin_unlock(&vm_bo->vm->invalidated_lock);
274 }
275
276 /**
277  * amdgpu_vm_bo_relocated - vm_bo is reloacted
278  *
279  * @vm_bo: vm_bo which is relocated
280  *
281  * State for PDs/PTs which needs to update their parent PD.
282  * For the root PD, just move to idle state.
283  */
284 static void amdgpu_vm_bo_relocated(struct amdgpu_vm_bo_base *vm_bo)
285 {
286         if (vm_bo->bo->parent)
287                 list_move(&vm_bo->vm_status, &vm_bo->vm->relocated);
288         else
289                 amdgpu_vm_bo_idle(vm_bo);
290 }
291
292 /**
293  * amdgpu_vm_bo_done - vm_bo is done
294  *
295  * @vm_bo: vm_bo which is now done
296  *
297  * State for normal BOs which are invalidated and that change has been updated
298  * in the PTs.
299  */
300 static void amdgpu_vm_bo_done(struct amdgpu_vm_bo_base *vm_bo)
301 {
302         spin_lock(&vm_bo->vm->invalidated_lock);
303         list_del_init(&vm_bo->vm_status);
304         spin_unlock(&vm_bo->vm->invalidated_lock);
305 }
306
307 /**
308  * amdgpu_vm_bo_base_init - Adds bo to the list of bos associated with the vm
309  *
310  * @base: base structure for tracking BO usage in a VM
311  * @vm: vm to which bo is to be added
312  * @bo: amdgpu buffer object
313  *
314  * Initialize a bo_va_base structure and add it to the appropriate lists
315  *
316  */
317 static void amdgpu_vm_bo_base_init(struct amdgpu_vm_bo_base *base,
318                                    struct amdgpu_vm *vm,
319                                    struct amdgpu_bo *bo)
320 {
321         base->vm = vm;
322         base->bo = bo;
323         base->next = NULL;
324         INIT_LIST_HEAD(&base->vm_status);
325
326         if (!bo)
327                 return;
328         base->next = bo->vm_bo;
329         bo->vm_bo = base;
330
331         if (bo->tbo.base.resv != vm->root.base.bo->tbo.base.resv)
332                 return;
333
334         vm->bulk_moveable = false;
335         if (bo->tbo.type == ttm_bo_type_kernel && bo->parent)
336                 amdgpu_vm_bo_relocated(base);
337         else
338                 amdgpu_vm_bo_idle(base);
339
340         if (bo->preferred_domains &
341             amdgpu_mem_type_to_domain(bo->tbo.mem.mem_type))
342                 return;
343
344         /*
345          * we checked all the prerequisites, but it looks like this per vm bo
346          * is currently evicted. add the bo to the evicted list to make sure it
347          * is validated on next vm use to avoid fault.
348          * */
349         amdgpu_vm_bo_evicted(base);
350 }
351
352 /**
353  * amdgpu_vm_pt_parent - get the parent page directory
354  *
355  * @pt: child page table
356  *
357  * Helper to get the parent entry for the child page table. NULL if we are at
358  * the root page directory.
359  */
360 static struct amdgpu_vm_pt *amdgpu_vm_pt_parent(struct amdgpu_vm_pt *pt)
361 {
362         struct amdgpu_bo *parent = pt->base.bo->parent;
363
364         if (!parent)
365                 return NULL;
366
367         return container_of(parent->vm_bo, struct amdgpu_vm_pt, base);
368 }
369
370 /*
371  * amdgpu_vm_pt_cursor - state for for_each_amdgpu_vm_pt
372  */
373 struct amdgpu_vm_pt_cursor {
374         uint64_t pfn;
375         struct amdgpu_vm_pt *parent;
376         struct amdgpu_vm_pt *entry;
377         unsigned level;
378 };
379
380 /**
381  * amdgpu_vm_pt_start - start PD/PT walk
382  *
383  * @adev: amdgpu_device pointer
384  * @vm: amdgpu_vm structure
385  * @start: start address of the walk
386  * @cursor: state to initialize
387  *
388  * Initialize a amdgpu_vm_pt_cursor to start a walk.
389  */
390 static void amdgpu_vm_pt_start(struct amdgpu_device *adev,
391                                struct amdgpu_vm *vm, uint64_t start,
392                                struct amdgpu_vm_pt_cursor *cursor)
393 {
394         cursor->pfn = start;
395         cursor->parent = NULL;
396         cursor->entry = &vm->root;
397         cursor->level = adev->vm_manager.root_level;
398 }
399
400 /**
401  * amdgpu_vm_pt_descendant - go to child node
402  *
403  * @adev: amdgpu_device pointer
404  * @cursor: current state
405  *
406  * Walk to the child node of the current node.
407  * Returns:
408  * True if the walk was possible, false otherwise.
409  */
410 static bool amdgpu_vm_pt_descendant(struct amdgpu_device *adev,
411                                     struct amdgpu_vm_pt_cursor *cursor)
412 {
413         unsigned mask, shift, idx;
414
415         if (!cursor->entry->entries)
416                 return false;
417
418         BUG_ON(!cursor->entry->base.bo);
419         mask = amdgpu_vm_entries_mask(adev, cursor->level);
420         shift = amdgpu_vm_level_shift(adev, cursor->level);
421
422         ++cursor->level;
423         idx = (cursor->pfn >> shift) & mask;
424         cursor->parent = cursor->entry;
425         cursor->entry = &cursor->entry->entries[idx];
426         return true;
427 }
428
429 /**
430  * amdgpu_vm_pt_sibling - go to sibling node
431  *
432  * @adev: amdgpu_device pointer
433  * @cursor: current state
434  *
435  * Walk to the sibling node of the current node.
436  * Returns:
437  * True if the walk was possible, false otherwise.
438  */
439 static bool amdgpu_vm_pt_sibling(struct amdgpu_device *adev,
440                                  struct amdgpu_vm_pt_cursor *cursor)
441 {
442         unsigned shift, num_entries;
443
444         /* Root doesn't have a sibling */
445         if (!cursor->parent)
446                 return false;
447
448         /* Go to our parents and see if we got a sibling */
449         shift = amdgpu_vm_level_shift(adev, cursor->level - 1);
450         num_entries = amdgpu_vm_num_entries(adev, cursor->level - 1);
451
452         if (cursor->entry == &cursor->parent->entries[num_entries - 1])
453                 return false;
454
455         cursor->pfn += 1ULL << shift;
456         cursor->pfn &= ~((1ULL << shift) - 1);
457         ++cursor->entry;
458         return true;
459 }
460
461 /**
462  * amdgpu_vm_pt_ancestor - go to parent node
463  *
464  * @cursor: current state
465  *
466  * Walk to the parent node of the current node.
467  * Returns:
468  * True if the walk was possible, false otherwise.
469  */
470 static bool amdgpu_vm_pt_ancestor(struct amdgpu_vm_pt_cursor *cursor)
471 {
472         if (!cursor->parent)
473                 return false;
474
475         --cursor->level;
476         cursor->entry = cursor->parent;
477         cursor->parent = amdgpu_vm_pt_parent(cursor->parent);
478         return true;
479 }
480
481 /**
482  * amdgpu_vm_pt_next - get next PD/PT in hieratchy
483  *
484  * @adev: amdgpu_device pointer
485  * @cursor: current state
486  *
487  * Walk the PD/PT tree to the next node.
488  */
489 static void amdgpu_vm_pt_next(struct amdgpu_device *adev,
490                               struct amdgpu_vm_pt_cursor *cursor)
491 {
492         /* First try a newborn child */
493         if (amdgpu_vm_pt_descendant(adev, cursor))
494                 return;
495
496         /* If that didn't worked try to find a sibling */
497         while (!amdgpu_vm_pt_sibling(adev, cursor)) {
498                 /* No sibling, go to our parents and grandparents */
499                 if (!amdgpu_vm_pt_ancestor(cursor)) {
500                         cursor->pfn = ~0ll;
501                         return;
502                 }
503         }
504 }
505
506 /**
507  * amdgpu_vm_pt_first_dfs - start a deep first search
508  *
509  * @adev: amdgpu_device structure
510  * @vm: amdgpu_vm structure
511  * @start: optional cursor to start with
512  * @cursor: state to initialize
513  *
514  * Starts a deep first traversal of the PD/PT tree.
515  */
516 static void amdgpu_vm_pt_first_dfs(struct amdgpu_device *adev,
517                                    struct amdgpu_vm *vm,
518                                    struct amdgpu_vm_pt_cursor *start,
519                                    struct amdgpu_vm_pt_cursor *cursor)
520 {
521         if (start)
522                 *cursor = *start;
523         else
524                 amdgpu_vm_pt_start(adev, vm, 0, cursor);
525         while (amdgpu_vm_pt_descendant(adev, cursor));
526 }
527
528 /**
529  * amdgpu_vm_pt_continue_dfs - check if the deep first search should continue
530  *
531  * @start: starting point for the search
532  * @entry: current entry
533  *
534  * Returns:
535  * True when the search should continue, false otherwise.
536  */
537 static bool amdgpu_vm_pt_continue_dfs(struct amdgpu_vm_pt_cursor *start,
538                                       struct amdgpu_vm_pt *entry)
539 {
540         return entry && (!start || entry != start->entry);
541 }
542
543 /**
544  * amdgpu_vm_pt_next_dfs - get the next node for a deep first search
545  *
546  * @adev: amdgpu_device structure
547  * @cursor: current state
548  *
549  * Move the cursor to the next node in a deep first search.
550  */
551 static void amdgpu_vm_pt_next_dfs(struct amdgpu_device *adev,
552                                   struct amdgpu_vm_pt_cursor *cursor)
553 {
554         if (!cursor->entry)
555                 return;
556
557         if (!cursor->parent)
558                 cursor->entry = NULL;
559         else if (amdgpu_vm_pt_sibling(adev, cursor))
560                 while (amdgpu_vm_pt_descendant(adev, cursor));
561         else
562                 amdgpu_vm_pt_ancestor(cursor);
563 }
564
565 /*
566  * for_each_amdgpu_vm_pt_dfs_safe - safe deep first search of all PDs/PTs
567  */
568 #define for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)          \
569         for (amdgpu_vm_pt_first_dfs((adev), (vm), (start), &(cursor)),          \
570              (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor));\
571              amdgpu_vm_pt_continue_dfs((start), (entry));                       \
572              (entry) = (cursor).entry, amdgpu_vm_pt_next_dfs((adev), &(cursor)))
573
574 /**
575  * amdgpu_vm_get_pd_bo - add the VM PD to a validation list
576  *
577  * @vm: vm providing the BOs
578  * @validated: head of validation list
579  * @entry: entry to add
580  *
581  * Add the page directory to the list of BOs to
582  * validate for command submission.
583  */
584 void amdgpu_vm_get_pd_bo(struct amdgpu_vm *vm,
585                          struct list_head *validated,
586                          struct amdgpu_bo_list_entry *entry)
587 {
588         entry->priority = 0;
589         entry->tv.bo = &vm->root.base.bo->tbo;
590         /* Two for VM updates, one for TTM and one for the CS job */
591         entry->tv.num_shared = 4;
592         entry->user_pages = NULL;
593         list_add(&entry->tv.head, validated);
594 }
595
596 /**
597  * amdgpu_vm_del_from_lru_notify - update bulk_moveable flag
598  *
599  * @bo: BO which was removed from the LRU
600  *
601  * Make sure the bulk_moveable flag is updated when a BO is removed from the
602  * LRU.
603  */
604 void amdgpu_vm_del_from_lru_notify(struct ttm_buffer_object *bo)
605 {
606         struct amdgpu_bo *abo;
607         struct amdgpu_vm_bo_base *bo_base;
608
609         if (!amdgpu_bo_is_amdgpu_bo(bo))
610                 return;
611
612         if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT)
613                 return;
614
615         abo = ttm_to_amdgpu_bo(bo);
616         if (!abo->parent)
617                 return;
618         for (bo_base = abo->vm_bo; bo_base; bo_base = bo_base->next) {
619                 struct amdgpu_vm *vm = bo_base->vm;
620
621                 if (abo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
622                         vm->bulk_moveable = false;
623         }
624
625 }
626 /**
627  * amdgpu_vm_move_to_lru_tail - move all BOs to the end of LRU
628  *
629  * @adev: amdgpu device pointer
630  * @vm: vm providing the BOs
631  *
632  * Move all BOs to the end of LRU and remember their positions to put them
633  * together.
634  */
635 void amdgpu_vm_move_to_lru_tail(struct amdgpu_device *adev,
636                                 struct amdgpu_vm *vm)
637 {
638         struct amdgpu_vm_bo_base *bo_base;
639
640         if (vm->bulk_moveable) {
641                 spin_lock(&ttm_bo_glob.lru_lock);
642                 ttm_bo_bulk_move_lru_tail(&vm->lru_bulk_move);
643                 spin_unlock(&ttm_bo_glob.lru_lock);
644                 return;
645         }
646
647         memset(&vm->lru_bulk_move, 0, sizeof(vm->lru_bulk_move));
648
649         spin_lock(&ttm_bo_glob.lru_lock);
650         list_for_each_entry(bo_base, &vm->idle, vm_status) {
651                 struct amdgpu_bo *bo = bo_base->bo;
652
653                 if (!bo->parent)
654                         continue;
655
656                 ttm_bo_move_to_lru_tail(&bo->tbo, &vm->lru_bulk_move);
657                 if (bo->shadow)
658                         ttm_bo_move_to_lru_tail(&bo->shadow->tbo,
659                                                 &vm->lru_bulk_move);
660         }
661         spin_unlock(&ttm_bo_glob.lru_lock);
662
663         vm->bulk_moveable = true;
664 }
665
666 /**
667  * amdgpu_vm_validate_pt_bos - validate the page table BOs
668  *
669  * @adev: amdgpu device pointer
670  * @vm: vm providing the BOs
671  * @validate: callback to do the validation
672  * @param: parameter for the validation callback
673  *
674  * Validate the page table BOs on command submission if neccessary.
675  *
676  * Returns:
677  * Validation result.
678  */
679 int amdgpu_vm_validate_pt_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm,
680                               int (*validate)(void *p, struct amdgpu_bo *bo),
681                               void *param)
682 {
683         struct amdgpu_vm_bo_base *bo_base, *tmp;
684         int r;
685
686         vm->bulk_moveable &= list_empty(&vm->evicted);
687
688         list_for_each_entry_safe(bo_base, tmp, &vm->evicted, vm_status) {
689                 struct amdgpu_bo *bo = bo_base->bo;
690
691                 r = validate(param, bo);
692                 if (r)
693                         return r;
694
695                 if (bo->tbo.type != ttm_bo_type_kernel) {
696                         amdgpu_vm_bo_moved(bo_base);
697                 } else {
698                         vm->update_funcs->map_table(bo);
699                         amdgpu_vm_bo_relocated(bo_base);
700                 }
701         }
702
703         amdgpu_vm_eviction_lock(vm);
704         vm->evicting = false;
705         amdgpu_vm_eviction_unlock(vm);
706
707         return 0;
708 }
709
710 /**
711  * amdgpu_vm_ready - check VM is ready for updates
712  *
713  * @vm: VM to check
714  *
715  * Check if all VM PDs/PTs are ready for updates
716  *
717  * Returns:
718  * True if eviction list is empty.
719  */
720 bool amdgpu_vm_ready(struct amdgpu_vm *vm)
721 {
722         return list_empty(&vm->evicted);
723 }
724
725 /**
726  * amdgpu_vm_clear_bo - initially clear the PDs/PTs
727  *
728  * @adev: amdgpu_device pointer
729  * @vm: VM to clear BO from
730  * @bo: BO to clear
731  * @immediate: use an immediate update
732  *
733  * Root PD needs to be reserved when calling this.
734  *
735  * Returns:
736  * 0 on success, errno otherwise.
737  */
738 static int amdgpu_vm_clear_bo(struct amdgpu_device *adev,
739                               struct amdgpu_vm *vm,
740                               struct amdgpu_bo *bo,
741                               bool immediate)
742 {
743         struct ttm_operation_ctx ctx = { true, false };
744         unsigned level = adev->vm_manager.root_level;
745         struct amdgpu_vm_update_params params;
746         struct amdgpu_bo *ancestor = bo;
747         unsigned entries, ats_entries;
748         uint64_t addr;
749         int r;
750
751         /* Figure out our place in the hierarchy */
752         if (ancestor->parent) {
753                 ++level;
754                 while (ancestor->parent->parent) {
755                         ++level;
756                         ancestor = ancestor->parent;
757                 }
758         }
759
760         entries = amdgpu_bo_size(bo) / 8;
761         if (!vm->pte_support_ats) {
762                 ats_entries = 0;
763
764         } else if (!bo->parent) {
765                 ats_entries = amdgpu_vm_num_ats_entries(adev);
766                 ats_entries = min(ats_entries, entries);
767                 entries -= ats_entries;
768
769         } else {
770                 struct amdgpu_vm_pt *pt;
771
772                 pt = container_of(ancestor->vm_bo, struct amdgpu_vm_pt, base);
773                 ats_entries = amdgpu_vm_num_ats_entries(adev);
774                 if ((pt - vm->root.entries) >= ats_entries) {
775                         ats_entries = 0;
776                 } else {
777                         ats_entries = entries;
778                         entries = 0;
779                 }
780         }
781
782         r = ttm_bo_validate(&bo->tbo, &bo->placement, &ctx);
783         if (r)
784                 return r;
785
786         if (bo->shadow) {
787                 r = ttm_bo_validate(&bo->shadow->tbo, &bo->shadow->placement,
788                                     &ctx);
789                 if (r)
790                         return r;
791         }
792
793         r = vm->update_funcs->map_table(bo);
794         if (r)
795                 return r;
796
797         memset(&params, 0, sizeof(params));
798         params.adev = adev;
799         params.vm = vm;
800         params.immediate = immediate;
801
802         r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
803         if (r)
804                 return r;
805
806         addr = 0;
807         if (ats_entries) {
808                 uint64_t value = 0, flags;
809
810                 flags = AMDGPU_PTE_DEFAULT_ATC;
811                 if (level != AMDGPU_VM_PTB) {
812                         /* Handle leaf PDEs as PTEs */
813                         flags |= AMDGPU_PDE_PTE;
814                         amdgpu_gmc_get_vm_pde(adev, level, &value, &flags);
815                 }
816
817                 r = vm->update_funcs->update(&params, bo, addr, 0, ats_entries,
818                                              value, flags);
819                 if (r)
820                         return r;
821
822                 addr += ats_entries * 8;
823         }
824
825         if (entries) {
826                 uint64_t value = 0, flags = 0;
827
828                 if (adev->asic_type >= CHIP_VEGA10) {
829                         if (level != AMDGPU_VM_PTB) {
830                                 /* Handle leaf PDEs as PTEs */
831                                 flags |= AMDGPU_PDE_PTE;
832                                 amdgpu_gmc_get_vm_pde(adev, level,
833                                                       &value, &flags);
834                         } else {
835                                 /* Workaround for fault priority problem on GMC9 */
836                                 flags = AMDGPU_PTE_EXECUTABLE;
837                         }
838                 }
839
840                 r = vm->update_funcs->update(&params, bo, addr, 0, entries,
841                                              value, flags);
842                 if (r)
843                         return r;
844         }
845
846         return vm->update_funcs->commit(&params, NULL);
847 }
848
849 /**
850  * amdgpu_vm_bo_param - fill in parameters for PD/PT allocation
851  *
852  * @adev: amdgpu_device pointer
853  * @vm: requesting vm
854  * @level: the page table level
855  * @immediate: use a immediate update
856  * @bp: resulting BO allocation parameters
857  */
858 static void amdgpu_vm_bo_param(struct amdgpu_device *adev, struct amdgpu_vm *vm,
859                                int level, bool immediate,
860                                struct amdgpu_bo_param *bp)
861 {
862         memset(bp, 0, sizeof(*bp));
863
864         bp->size = amdgpu_vm_bo_size(adev, level);
865         bp->byte_align = AMDGPU_GPU_PAGE_SIZE;
866         bp->domain = AMDGPU_GEM_DOMAIN_VRAM;
867         bp->domain = amdgpu_bo_get_preferred_pin_domain(adev, bp->domain);
868         bp->flags = AMDGPU_GEM_CREATE_VRAM_CONTIGUOUS |
869                 AMDGPU_GEM_CREATE_CPU_GTT_USWC;
870         if (vm->use_cpu_for_update)
871                 bp->flags |= AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
872         else if (!vm->root.base.bo || vm->root.base.bo->shadow)
873                 bp->flags |= AMDGPU_GEM_CREATE_SHADOW;
874         bp->type = ttm_bo_type_kernel;
875         bp->no_wait_gpu = immediate;
876         if (vm->root.base.bo)
877                 bp->resv = vm->root.base.bo->tbo.base.resv;
878 }
879
880 /**
881  * amdgpu_vm_alloc_pts - Allocate a specific page table
882  *
883  * @adev: amdgpu_device pointer
884  * @vm: VM to allocate page tables for
885  * @cursor: Which page table to allocate
886  * @immediate: use an immediate update
887  *
888  * Make sure a specific page table or directory is allocated.
889  *
890  * Returns:
891  * 1 if page table needed to be allocated, 0 if page table was already
892  * allocated, negative errno if an error occurred.
893  */
894 static int amdgpu_vm_alloc_pts(struct amdgpu_device *adev,
895                                struct amdgpu_vm *vm,
896                                struct amdgpu_vm_pt_cursor *cursor,
897                                bool immediate)
898 {
899         struct amdgpu_vm_pt *entry = cursor->entry;
900         struct amdgpu_bo_param bp;
901         struct amdgpu_bo *pt;
902         int r;
903
904         if (cursor->level < AMDGPU_VM_PTB && !entry->entries) {
905                 unsigned num_entries;
906
907                 num_entries = amdgpu_vm_num_entries(adev, cursor->level);
908                 entry->entries = kvmalloc_array(num_entries,
909                                                 sizeof(*entry->entries),
910                                                 GFP_KERNEL | __GFP_ZERO);
911                 if (!entry->entries)
912                         return -ENOMEM;
913         }
914
915         if (entry->base.bo)
916                 return 0;
917
918         amdgpu_vm_bo_param(adev, vm, cursor->level, immediate, &bp);
919
920         r = amdgpu_bo_create(adev, &bp, &pt);
921         if (r)
922                 return r;
923
924         /* Keep a reference to the root directory to avoid
925          * freeing them up in the wrong order.
926          */
927         pt->parent = amdgpu_bo_ref(cursor->parent->base.bo);
928         amdgpu_vm_bo_base_init(&entry->base, vm, pt);
929
930         r = amdgpu_vm_clear_bo(adev, vm, pt, immediate);
931         if (r)
932                 goto error_free_pt;
933
934         return 0;
935
936 error_free_pt:
937         amdgpu_bo_unref(&pt->shadow);
938         amdgpu_bo_unref(&pt);
939         return r;
940 }
941
942 /**
943  * amdgpu_vm_free_table - fre one PD/PT
944  *
945  * @entry: PDE to free
946  */
947 static void amdgpu_vm_free_table(struct amdgpu_vm_pt *entry)
948 {
949         if (entry->base.bo) {
950                 entry->base.bo->vm_bo = NULL;
951                 list_del(&entry->base.vm_status);
952                 amdgpu_bo_unref(&entry->base.bo->shadow);
953                 amdgpu_bo_unref(&entry->base.bo);
954         }
955         kvfree(entry->entries);
956         entry->entries = NULL;
957 }
958
959 /**
960  * amdgpu_vm_free_pts - free PD/PT levels
961  *
962  * @adev: amdgpu device structure
963  * @vm: amdgpu vm structure
964  * @start: optional cursor where to start freeing PDs/PTs
965  *
966  * Free the page directory or page table level and all sub levels.
967  */
968 static void amdgpu_vm_free_pts(struct amdgpu_device *adev,
969                                struct amdgpu_vm *vm,
970                                struct amdgpu_vm_pt_cursor *start)
971 {
972         struct amdgpu_vm_pt_cursor cursor;
973         struct amdgpu_vm_pt *entry;
974
975         vm->bulk_moveable = false;
976
977         for_each_amdgpu_vm_pt_dfs_safe(adev, vm, start, cursor, entry)
978                 amdgpu_vm_free_table(entry);
979
980         if (start)
981                 amdgpu_vm_free_table(start->entry);
982 }
983
984 /**
985  * amdgpu_vm_check_compute_bug - check whether asic has compute vm bug
986  *
987  * @adev: amdgpu_device pointer
988  */
989 void amdgpu_vm_check_compute_bug(struct amdgpu_device *adev)
990 {
991         const struct amdgpu_ip_block *ip_block;
992         bool has_compute_vm_bug;
993         struct amdgpu_ring *ring;
994         int i;
995
996         has_compute_vm_bug = false;
997
998         ip_block = amdgpu_device_ip_get_ip_block(adev, AMD_IP_BLOCK_TYPE_GFX);
999         if (ip_block) {
1000                 /* Compute has a VM bug for GFX version < 7.
1001                    Compute has a VM bug for GFX 8 MEC firmware version < 673.*/
1002                 if (ip_block->version->major <= 7)
1003                         has_compute_vm_bug = true;
1004                 else if (ip_block->version->major == 8)
1005                         if (adev->gfx.mec_fw_version < 673)
1006                                 has_compute_vm_bug = true;
1007         }
1008
1009         for (i = 0; i < adev->num_rings; i++) {
1010                 ring = adev->rings[i];
1011                 if (ring->funcs->type == AMDGPU_RING_TYPE_COMPUTE)
1012                         /* only compute rings */
1013                         ring->has_compute_vm_bug = has_compute_vm_bug;
1014                 else
1015                         ring->has_compute_vm_bug = false;
1016         }
1017 }
1018
1019 /**
1020  * amdgpu_vm_need_pipeline_sync - Check if pipe sync is needed for job.
1021  *
1022  * @ring: ring on which the job will be submitted
1023  * @job: job to submit
1024  *
1025  * Returns:
1026  * True if sync is needed.
1027  */
1028 bool amdgpu_vm_need_pipeline_sync(struct amdgpu_ring *ring,
1029                                   struct amdgpu_job *job)
1030 {
1031         struct amdgpu_device *adev = ring->adev;
1032         unsigned vmhub = ring->funcs->vmhub;
1033         struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1034         struct amdgpu_vmid *id;
1035         bool gds_switch_needed;
1036         bool vm_flush_needed = job->vm_needs_flush || ring->has_compute_vm_bug;
1037
1038         if (job->vmid == 0)
1039                 return false;
1040         id = &id_mgr->ids[job->vmid];
1041         gds_switch_needed = ring->funcs->emit_gds_switch && (
1042                 id->gds_base != job->gds_base ||
1043                 id->gds_size != job->gds_size ||
1044                 id->gws_base != job->gws_base ||
1045                 id->gws_size != job->gws_size ||
1046                 id->oa_base != job->oa_base ||
1047                 id->oa_size != job->oa_size);
1048
1049         if (amdgpu_vmid_had_gpu_reset(adev, id))
1050                 return true;
1051
1052         return vm_flush_needed || gds_switch_needed;
1053 }
1054
1055 /**
1056  * amdgpu_vm_flush - hardware flush the vm
1057  *
1058  * @ring: ring to use for flush
1059  * @job:  related job
1060  * @need_pipe_sync: is pipe sync needed
1061  *
1062  * Emit a VM flush when it is necessary.
1063  *
1064  * Returns:
1065  * 0 on success, errno otherwise.
1066  */
1067 int amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_job *job,
1068                     bool need_pipe_sync)
1069 {
1070         struct amdgpu_device *adev = ring->adev;
1071         unsigned vmhub = ring->funcs->vmhub;
1072         struct amdgpu_vmid_mgr *id_mgr = &adev->vm_manager.id_mgr[vmhub];
1073         struct amdgpu_vmid *id = &id_mgr->ids[job->vmid];
1074         bool gds_switch_needed = ring->funcs->emit_gds_switch && (
1075                 id->gds_base != job->gds_base ||
1076                 id->gds_size != job->gds_size ||
1077                 id->gws_base != job->gws_base ||
1078                 id->gws_size != job->gws_size ||
1079                 id->oa_base != job->oa_base ||
1080                 id->oa_size != job->oa_size);
1081         bool vm_flush_needed = job->vm_needs_flush;
1082         struct dma_fence *fence = NULL;
1083         bool pasid_mapping_needed = false;
1084         unsigned patch_offset = 0;
1085         bool update_spm_vmid_needed = (job->vm && (job->vm->reserved_vmid[vmhub] != NULL));
1086         int r;
1087
1088         if (update_spm_vmid_needed && adev->gfx.rlc.funcs->update_spm_vmid)
1089                 adev->gfx.rlc.funcs->update_spm_vmid(adev, job->vmid);
1090
1091         if (amdgpu_vmid_had_gpu_reset(adev, id)) {
1092                 gds_switch_needed = true;
1093                 vm_flush_needed = true;
1094                 pasid_mapping_needed = true;
1095         }
1096
1097         mutex_lock(&id_mgr->lock);
1098         if (id->pasid != job->pasid || !id->pasid_mapping ||
1099             !dma_fence_is_signaled(id->pasid_mapping))
1100                 pasid_mapping_needed = true;
1101         mutex_unlock(&id_mgr->lock);
1102
1103         gds_switch_needed &= !!ring->funcs->emit_gds_switch;
1104         vm_flush_needed &= !!ring->funcs->emit_vm_flush  &&
1105                         job->vm_pd_addr != AMDGPU_BO_INVALID_OFFSET;
1106         pasid_mapping_needed &= adev->gmc.gmc_funcs->emit_pasid_mapping &&
1107                 ring->funcs->emit_wreg;
1108
1109         if (!vm_flush_needed && !gds_switch_needed && !need_pipe_sync)
1110                 return 0;
1111
1112         if (ring->funcs->init_cond_exec)
1113                 patch_offset = amdgpu_ring_init_cond_exec(ring);
1114
1115         if (need_pipe_sync)
1116                 amdgpu_ring_emit_pipeline_sync(ring);
1117
1118         if (vm_flush_needed) {
1119                 trace_amdgpu_vm_flush(ring, job->vmid, job->vm_pd_addr);
1120                 amdgpu_ring_emit_vm_flush(ring, job->vmid, job->vm_pd_addr);
1121         }
1122
1123         if (pasid_mapping_needed)
1124                 amdgpu_gmc_emit_pasid_mapping(ring, job->vmid, job->pasid);
1125
1126         if (vm_flush_needed || pasid_mapping_needed) {
1127                 r = amdgpu_fence_emit(ring, &fence, 0);
1128                 if (r)
1129                         return r;
1130         }
1131
1132         if (vm_flush_needed) {
1133                 mutex_lock(&id_mgr->lock);
1134                 dma_fence_put(id->last_flush);
1135                 id->last_flush = dma_fence_get(fence);
1136                 id->current_gpu_reset_count =
1137                         atomic_read(&adev->gpu_reset_counter);
1138                 mutex_unlock(&id_mgr->lock);
1139         }
1140
1141         if (pasid_mapping_needed) {
1142                 mutex_lock(&id_mgr->lock);
1143                 id->pasid = job->pasid;
1144                 dma_fence_put(id->pasid_mapping);
1145                 id->pasid_mapping = dma_fence_get(fence);
1146                 mutex_unlock(&id_mgr->lock);
1147         }
1148         dma_fence_put(fence);
1149
1150         if (ring->funcs->emit_gds_switch && gds_switch_needed) {
1151                 id->gds_base = job->gds_base;
1152                 id->gds_size = job->gds_size;
1153                 id->gws_base = job->gws_base;
1154                 id->gws_size = job->gws_size;
1155                 id->oa_base = job->oa_base;
1156                 id->oa_size = job->oa_size;
1157                 amdgpu_ring_emit_gds_switch(ring, job->vmid, job->gds_base,
1158                                             job->gds_size, job->gws_base,
1159                                             job->gws_size, job->oa_base,
1160                                             job->oa_size);
1161         }
1162
1163         if (ring->funcs->patch_cond_exec)
1164                 amdgpu_ring_patch_cond_exec(ring, patch_offset);
1165
1166         /* the double SWITCH_BUFFER here *cannot* be skipped by COND_EXEC */
1167         if (ring->funcs->emit_switch_buffer) {
1168                 amdgpu_ring_emit_switch_buffer(ring);
1169                 amdgpu_ring_emit_switch_buffer(ring);
1170         }
1171         return 0;
1172 }
1173
1174 /**
1175  * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo
1176  *
1177  * @vm: requested vm
1178  * @bo: requested buffer object
1179  *
1180  * Find @bo inside the requested vm.
1181  * Search inside the @bos vm list for the requested vm
1182  * Returns the found bo_va or NULL if none is found
1183  *
1184  * Object has to be reserved!
1185  *
1186  * Returns:
1187  * Found bo_va or NULL.
1188  */
1189 struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm,
1190                                        struct amdgpu_bo *bo)
1191 {
1192         struct amdgpu_vm_bo_base *base;
1193
1194         for (base = bo->vm_bo; base; base = base->next) {
1195                 if (base->vm != vm)
1196                         continue;
1197
1198                 return container_of(base, struct amdgpu_bo_va, base);
1199         }
1200         return NULL;
1201 }
1202
1203 /**
1204  * amdgpu_vm_map_gart - Resolve gart mapping of addr
1205  *
1206  * @pages_addr: optional DMA address to use for lookup
1207  * @addr: the unmapped addr
1208  *
1209  * Look up the physical address of the page that the pte resolves
1210  * to.
1211  *
1212  * Returns:
1213  * The pointer for the page table entry.
1214  */
1215 uint64_t amdgpu_vm_map_gart(const dma_addr_t *pages_addr, uint64_t addr)
1216 {
1217         uint64_t result;
1218
1219         /* page table offset */
1220         result = pages_addr[addr >> PAGE_SHIFT];
1221
1222         /* in case cpu page size != gpu page size*/
1223         result |= addr & (~PAGE_MASK);
1224
1225         result &= 0xFFFFFFFFFFFFF000ULL;
1226
1227         return result;
1228 }
1229
1230 /**
1231  * amdgpu_vm_update_pde - update a single level in the hierarchy
1232  *
1233  * @params: parameters for the update
1234  * @vm: requested vm
1235  * @entry: entry to update
1236  *
1237  * Makes sure the requested entry in parent is up to date.
1238  */
1239 static int amdgpu_vm_update_pde(struct amdgpu_vm_update_params *params,
1240                                 struct amdgpu_vm *vm,
1241                                 struct amdgpu_vm_pt *entry)
1242 {
1243         struct amdgpu_vm_pt *parent = amdgpu_vm_pt_parent(entry);
1244         struct amdgpu_bo *bo = parent->base.bo, *pbo;
1245         uint64_t pde, pt, flags;
1246         unsigned level;
1247
1248         for (level = 0, pbo = bo->parent; pbo; ++level)
1249                 pbo = pbo->parent;
1250
1251         level += params->adev->vm_manager.root_level;
1252         amdgpu_gmc_get_pde_for_bo(entry->base.bo, level, &pt, &flags);
1253         pde = (entry - parent->entries) * 8;
1254         return vm->update_funcs->update(params, bo, pde, pt, 1, 0, flags);
1255 }
1256
1257 /**
1258  * amdgpu_vm_invalidate_pds - mark all PDs as invalid
1259  *
1260  * @adev: amdgpu_device pointer
1261  * @vm: related vm
1262  *
1263  * Mark all PD level as invalid after an error.
1264  */
1265 static void amdgpu_vm_invalidate_pds(struct amdgpu_device *adev,
1266                                      struct amdgpu_vm *vm)
1267 {
1268         struct amdgpu_vm_pt_cursor cursor;
1269         struct amdgpu_vm_pt *entry;
1270
1271         for_each_amdgpu_vm_pt_dfs_safe(adev, vm, NULL, cursor, entry)
1272                 if (entry->base.bo && !entry->base.moved)
1273                         amdgpu_vm_bo_relocated(&entry->base);
1274 }
1275
1276 /**
1277  * amdgpu_vm_update_pdes - make sure that all directories are valid
1278  *
1279  * @adev: amdgpu_device pointer
1280  * @vm: requested vm
1281  * @immediate: submit immediately to the paging queue
1282  *
1283  * Makes sure all directories are up to date.
1284  *
1285  * Returns:
1286  * 0 for success, error for failure.
1287  */
1288 int amdgpu_vm_update_pdes(struct amdgpu_device *adev,
1289                           struct amdgpu_vm *vm, bool immediate)
1290 {
1291         struct amdgpu_vm_update_params params;
1292         int r;
1293
1294         if (list_empty(&vm->relocated))
1295                 return 0;
1296
1297         memset(&params, 0, sizeof(params));
1298         params.adev = adev;
1299         params.vm = vm;
1300         params.immediate = immediate;
1301
1302         r = vm->update_funcs->prepare(&params, NULL, AMDGPU_SYNC_EXPLICIT);
1303         if (r)
1304                 return r;
1305
1306         while (!list_empty(&vm->relocated)) {
1307                 struct amdgpu_vm_pt *entry;
1308
1309                 entry = list_first_entry(&vm->relocated, struct amdgpu_vm_pt,
1310                                          base.vm_status);
1311                 amdgpu_vm_bo_idle(&entry->base);
1312
1313                 r = amdgpu_vm_update_pde(&params, vm, entry);
1314                 if (r)
1315                         goto error;
1316         }
1317
1318         r = vm->update_funcs->commit(&params, &vm->last_update);
1319         if (r)
1320                 goto error;
1321         return 0;
1322
1323 error:
1324         amdgpu_vm_invalidate_pds(adev, vm);
1325         return r;
1326 }
1327
1328 /*
1329  * amdgpu_vm_update_flags - figure out flags for PTE updates
1330  *
1331  * Make sure to set the right flags for the PTEs at the desired level.
1332  */
1333 static void amdgpu_vm_update_flags(struct amdgpu_vm_update_params *params,
1334                                    struct amdgpu_bo *bo, unsigned level,
1335                                    uint64_t pe, uint64_t addr,
1336                                    unsigned count, uint32_t incr,
1337                                    uint64_t flags)
1338
1339 {
1340         if (level != AMDGPU_VM_PTB) {
1341                 flags |= AMDGPU_PDE_PTE;
1342                 amdgpu_gmc_get_vm_pde(params->adev, level, &addr, &flags);
1343
1344         } else if (params->adev->asic_type >= CHIP_VEGA10 &&
1345                    !(flags & AMDGPU_PTE_VALID) &&
1346                    !(flags & AMDGPU_PTE_PRT)) {
1347
1348                 /* Workaround for fault priority problem on GMC9 */
1349                 flags |= AMDGPU_PTE_EXECUTABLE;
1350         }
1351
1352         params->vm->update_funcs->update(params, bo, pe, addr, count, incr,
1353                                          flags);
1354 }
1355
1356 /**
1357  * amdgpu_vm_fragment - get fragment for PTEs
1358  *
1359  * @params: see amdgpu_vm_update_params definition
1360  * @start: first PTE to handle
1361  * @end: last PTE to handle
1362  * @flags: hw mapping flags
1363  * @frag: resulting fragment size
1364  * @frag_end: end of this fragment
1365  *
1366  * Returns the first possible fragment for the start and end address.
1367  */
1368 static void amdgpu_vm_fragment(struct amdgpu_vm_update_params *params,
1369                                uint64_t start, uint64_t end, uint64_t flags,
1370                                unsigned int *frag, uint64_t *frag_end)
1371 {
1372         /**
1373          * The MC L1 TLB supports variable sized pages, based on a fragment
1374          * field in the PTE. When this field is set to a non-zero value, page
1375          * granularity is increased from 4KB to (1 << (12 + frag)). The PTE
1376          * flags are considered valid for all PTEs within the fragment range
1377          * and corresponding mappings are assumed to be physically contiguous.
1378          *
1379          * The L1 TLB can store a single PTE for the whole fragment,
1380          * significantly increasing the space available for translation
1381          * caching. This leads to large improvements in throughput when the
1382          * TLB is under pressure.
1383          *
1384          * The L2 TLB distributes small and large fragments into two
1385          * asymmetric partitions. The large fragment cache is significantly
1386          * larger. Thus, we try to use large fragments wherever possible.
1387          * Userspace can support this by aligning virtual base address and
1388          * allocation size to the fragment size.
1389          *
1390          * Starting with Vega10 the fragment size only controls the L1. The L2
1391          * is now directly feed with small/huge/giant pages from the walker.
1392          */
1393         unsigned max_frag;
1394
1395         if (params->adev->asic_type < CHIP_VEGA10)
1396                 max_frag = params->adev->vm_manager.fragment_size;
1397         else
1398                 max_frag = 31;
1399
1400         /* system pages are non continuously */
1401         if (params->pages_addr) {
1402                 *frag = 0;
1403                 *frag_end = end;
1404                 return;
1405         }
1406
1407         /* This intentionally wraps around if no bit is set */
1408         *frag = min((unsigned)ffs(start) - 1, (unsigned)fls64(end - start) - 1);
1409         if (*frag >= max_frag) {
1410                 *frag = max_frag;
1411                 *frag_end = end & ~((1ULL << max_frag) - 1);
1412         } else {
1413                 *frag_end = start + (1 << *frag);
1414         }
1415 }
1416
1417 /**
1418  * amdgpu_vm_update_ptes - make sure that page tables are valid
1419  *
1420  * @params: see amdgpu_vm_update_params definition
1421  * @start: start of GPU address range
1422  * @end: end of GPU address range
1423  * @dst: destination address to map to, the next dst inside the function
1424  * @flags: mapping flags
1425  *
1426  * Update the page tables in the range @start - @end.
1427  *
1428  * Returns:
1429  * 0 for success, -EINVAL for failure.
1430  */
1431 static int amdgpu_vm_update_ptes(struct amdgpu_vm_update_params *params,
1432                                  uint64_t start, uint64_t end,
1433                                  uint64_t dst, uint64_t flags)
1434 {
1435         struct amdgpu_device *adev = params->adev;
1436         struct amdgpu_vm_pt_cursor cursor;
1437         uint64_t frag_start = start, frag_end;
1438         unsigned int frag;
1439         int r;
1440
1441         /* figure out the initial fragment */
1442         amdgpu_vm_fragment(params, frag_start, end, flags, &frag, &frag_end);
1443
1444         /* walk over the address space and update the PTs */
1445         amdgpu_vm_pt_start(adev, params->vm, start, &cursor);
1446         while (cursor.pfn < end) {
1447                 unsigned shift, parent_shift, mask;
1448                 uint64_t incr, entry_end, pe_start;
1449                 struct amdgpu_bo *pt;
1450
1451                 if (!params->unlocked) {
1452                         /* make sure that the page tables covering the
1453                          * address range are actually allocated
1454                          */
1455                         r = amdgpu_vm_alloc_pts(params->adev, params->vm,
1456                                                 &cursor, params->immediate);
1457                         if (r)
1458                                 return r;
1459                 }
1460
1461                 shift = amdgpu_vm_level_shift(adev, cursor.level);
1462                 parent_shift = amdgpu_vm_level_shift(adev, cursor.level - 1);
1463                 if (params->unlocked) {
1464                         /* Unlocked updates are only allowed on the leaves */
1465                         if (amdgpu_vm_pt_descendant(adev, &cursor))
1466                                 continue;
1467                 } else if (adev->asic_type < CHIP_VEGA10 &&
1468                            (flags & AMDGPU_PTE_VALID)) {
1469                         /* No huge page support before GMC v9 */
1470                         if (cursor.level != AMDGPU_VM_PTB) {
1471                                 if (!amdgpu_vm_pt_descendant(adev, &cursor))
1472                                         return -ENOENT;
1473                                 continue;
1474                         }
1475                 } else if (frag < shift) {
1476                         /* We can't use this level when the fragment size is
1477                          * smaller than the address shift. Go to the next
1478                          * child entry and try again.
1479                          */
1480                         if (amdgpu_vm_pt_descendant(adev, &cursor))
1481                                 continue;
1482                 } else if (frag >= parent_shift) {
1483                         /* If the fragment size is even larger than the parent
1484                          * shift we should go up one level and check it again.
1485                          */
1486                         if (!amdgpu_vm_pt_ancestor(&cursor))
1487                                 return -EINVAL;
1488                         continue;
1489                 }
1490
1491                 pt = cursor.entry->base.bo;
1492                 if (!pt) {
1493                         /* We need all PDs and PTs for mapping something, */
1494                         if (flags & AMDGPU_PTE_VALID)
1495                                 return -ENOENT;
1496
1497                         /* but unmapping something can happen at a higher
1498                          * level.
1499                          */
1500                         if (!amdgpu_vm_pt_ancestor(&cursor))
1501                                 return -EINVAL;
1502
1503                         pt = cursor.entry->base.bo;
1504                         shift = parent_shift;
1505                         frag_end = max(frag_end, ALIGN(frag_start + 1,
1506                                    1ULL << shift));
1507                 }
1508
1509                 /* Looks good so far, calculate parameters for the update */
1510                 incr = (uint64_t)AMDGPU_GPU_PAGE_SIZE << shift;
1511                 mask = amdgpu_vm_entries_mask(adev, cursor.level);
1512                 pe_start = ((cursor.pfn >> shift) & mask) * 8;
1513                 entry_end = ((uint64_t)mask + 1) << shift;
1514                 entry_end += cursor.pfn & ~(entry_end - 1);
1515                 entry_end = min(entry_end, end);
1516
1517                 do {
1518                         struct amdgpu_vm *vm = params->vm;
1519                         uint64_t upd_end = min(entry_end, frag_end);
1520                         unsigned nptes = (upd_end - frag_start) >> shift;
1521                         uint64_t upd_flags = flags | AMDGPU_PTE_FRAG(frag);
1522
1523                         /* This can happen when we set higher level PDs to
1524                          * silent to stop fault floods.
1525                          */
1526                         nptes = max(nptes, 1u);
1527
1528                         trace_amdgpu_vm_update_ptes(params, frag_start, upd_end,
1529                                                     nptes, dst, incr, upd_flags,
1530                                                     vm->task_info.pid,
1531                                                     vm->immediate.fence_context);
1532                         amdgpu_vm_update_flags(params, pt, cursor.level,
1533                                                pe_start, dst, nptes, incr,
1534                                                upd_flags);
1535
1536                         pe_start += nptes * 8;
1537                         dst += nptes * incr;
1538
1539                         frag_start = upd_end;
1540                         if (frag_start >= frag_end) {
1541                                 /* figure out the next fragment */
1542                                 amdgpu_vm_fragment(params, frag_start, end,
1543                                                    flags, &frag, &frag_end);
1544                                 if (frag < shift)
1545                                         break;
1546                         }
1547                 } while (frag_start < entry_end);
1548
1549                 if (amdgpu_vm_pt_descendant(adev, &cursor)) {
1550                         /* Free all child entries.
1551                          * Update the tables with the flags and addresses and free up subsequent
1552                          * tables in the case of huge pages or freed up areas.
1553                          * This is the maximum you can free, because all other page tables are not
1554                          * completely covered by the range and so potentially still in use.
1555                          */
1556                         while (cursor.pfn < frag_start) {
1557                                 amdgpu_vm_free_pts(adev, params->vm, &cursor);
1558                                 amdgpu_vm_pt_next(adev, &cursor);
1559                         }
1560
1561                 } else if (frag >= shift) {
1562                         /* or just move on to the next on the same level. */
1563                         amdgpu_vm_pt_next(adev, &cursor);
1564                 }
1565         }
1566
1567         return 0;
1568 }
1569
1570 /**
1571  * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table
1572  *
1573  * @adev: amdgpu_device pointer
1574  * @vm: requested vm
1575  * @immediate: immediate submission in a page fault
1576  * @unlocked: unlocked invalidation during MM callback
1577  * @resv: fences we need to sync to
1578  * @start: start of mapped range
1579  * @last: last mapped entry
1580  * @flags: flags for the entries
1581  * @addr: addr to set the area to
1582  * @pages_addr: DMA addresses to use for mapping
1583  * @fence: optional resulting fence
1584  *
1585  * Fill in the page table entries between @start and @last.
1586  *
1587  * Returns:
1588  * 0 for success, -EINVAL for failure.
1589  */
1590 static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev,
1591                                        struct amdgpu_vm *vm, bool immediate,
1592                                        bool unlocked, struct dma_resv *resv,
1593                                        uint64_t start, uint64_t last,
1594                                        uint64_t flags, uint64_t addr,
1595                                        dma_addr_t *pages_addr,
1596                                        struct dma_fence **fence)
1597 {
1598         struct amdgpu_vm_update_params params;
1599         enum amdgpu_sync_mode sync_mode;
1600         int r;
1601
1602         memset(&params, 0, sizeof(params));
1603         params.adev = adev;
1604         params.vm = vm;
1605         params.immediate = immediate;
1606         params.pages_addr = pages_addr;
1607         params.unlocked = unlocked;
1608
1609         /* Implicitly sync to command submissions in the same VM before
1610          * unmapping. Sync to moving fences before mapping.
1611          */
1612         if (!(flags & AMDGPU_PTE_VALID))
1613                 sync_mode = AMDGPU_SYNC_EQ_OWNER;
1614         else
1615                 sync_mode = AMDGPU_SYNC_EXPLICIT;
1616
1617         amdgpu_vm_eviction_lock(vm);
1618         if (vm->evicting) {
1619                 r = -EBUSY;
1620                 goto error_unlock;
1621         }
1622
1623         if (!unlocked && !dma_fence_is_signaled(vm->last_unlocked)) {
1624                 struct dma_fence *tmp = dma_fence_get_stub();
1625
1626                 amdgpu_bo_fence(vm->root.base.bo, vm->last_unlocked, true);
1627                 swap(vm->last_unlocked, tmp);
1628                 dma_fence_put(tmp);
1629         }
1630
1631         r = vm->update_funcs->prepare(&params, resv, sync_mode);
1632         if (r)
1633                 goto error_unlock;
1634
1635         r = amdgpu_vm_update_ptes(&params, start, last + 1, addr, flags);
1636         if (r)
1637                 goto error_unlock;
1638
1639         r = vm->update_funcs->commit(&params, fence);
1640
1641 error_unlock:
1642         amdgpu_vm_eviction_unlock(vm);
1643         return r;
1644 }
1645
1646 /**
1647  * amdgpu_vm_bo_split_mapping - split a mapping into smaller chunks
1648  *
1649  * @adev: amdgpu_device pointer
1650  * @resv: fences we need to sync to
1651  * @pages_addr: DMA addresses to use for mapping
1652  * @vm: requested vm
1653  * @mapping: mapped range and flags to use for the update
1654  * @flags: HW flags for the mapping
1655  * @bo_adev: amdgpu_device pointer that bo actually been allocated
1656  * @nodes: array of drm_mm_nodes with the MC addresses
1657  * @fence: optional resulting fence
1658  *
1659  * Split the mapping into smaller chunks so that each update fits
1660  * into a SDMA IB.
1661  *
1662  * Returns:
1663  * 0 for success, -EINVAL for failure.
1664  */
1665 static int amdgpu_vm_bo_split_mapping(struct amdgpu_device *adev,
1666                                       struct dma_resv *resv,
1667                                       dma_addr_t *pages_addr,
1668                                       struct amdgpu_vm *vm,
1669                                       struct amdgpu_bo_va_mapping *mapping,
1670                                       uint64_t flags,
1671                                       struct amdgpu_device *bo_adev,
1672                                       struct drm_mm_node *nodes,
1673                                       struct dma_fence **fence)
1674 {
1675         unsigned min_linear_pages = 1 << adev->vm_manager.fragment_size;
1676         uint64_t pfn, start = mapping->start;
1677         int r;
1678
1679         /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here
1680          * but in case of something, we filter the flags in first place
1681          */
1682         if (!(mapping->flags & AMDGPU_PTE_READABLE))
1683                 flags &= ~AMDGPU_PTE_READABLE;
1684         if (!(mapping->flags & AMDGPU_PTE_WRITEABLE))
1685                 flags &= ~AMDGPU_PTE_WRITEABLE;
1686
1687         /* Apply ASIC specific mapping flags */
1688         amdgpu_gmc_get_vm_pte(adev, mapping, &flags);
1689
1690         trace_amdgpu_vm_bo_update(mapping);
1691
1692         pfn = mapping->offset >> PAGE_SHIFT;
1693         if (nodes) {
1694                 while (pfn >= nodes->size) {
1695                         pfn -= nodes->size;
1696                         ++nodes;
1697                 }
1698         }
1699
1700         do {
1701                 dma_addr_t *dma_addr = NULL;
1702                 uint64_t max_entries;
1703                 uint64_t addr, last;
1704
1705                 max_entries = mapping->last - start + 1;
1706                 if (nodes) {
1707                         addr = nodes->start << PAGE_SHIFT;
1708                         max_entries = min((nodes->size - pfn) *
1709                                 AMDGPU_GPU_PAGES_IN_CPU_PAGE, max_entries);
1710                 } else {
1711                         addr = 0;
1712                 }
1713
1714                 if (pages_addr) {
1715                         uint64_t count;
1716
1717                         for (count = 1;
1718                              count < max_entries / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1719                              ++count) {
1720                                 uint64_t idx = pfn + count;
1721
1722                                 if (pages_addr[idx] !=
1723                                     (pages_addr[idx - 1] + PAGE_SIZE))
1724                                         break;
1725                         }
1726
1727                         if (count < min_linear_pages) {
1728                                 addr = pfn << PAGE_SHIFT;
1729                                 dma_addr = pages_addr;
1730                         } else {
1731                                 addr = pages_addr[pfn];
1732                                 max_entries = count *
1733                                         AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1734                         }
1735
1736                 } else if (flags & (AMDGPU_PTE_VALID | AMDGPU_PTE_PRT)) {
1737                         addr += bo_adev->vm_manager.vram_base_offset;
1738                         addr += pfn << PAGE_SHIFT;
1739                 }
1740
1741                 last = start + max_entries - 1;
1742                 r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
1743                                                 start, last, flags, addr,
1744                                                 dma_addr, fence);
1745                 if (r)
1746                         return r;
1747
1748                 pfn += (last - start + 1) / AMDGPU_GPU_PAGES_IN_CPU_PAGE;
1749                 if (nodes && nodes->size == pfn) {
1750                         pfn = 0;
1751                         ++nodes;
1752                 }
1753                 start = last + 1;
1754
1755         } while (unlikely(start != mapping->last + 1));
1756
1757         return 0;
1758 }
1759
1760 /**
1761  * amdgpu_vm_bo_update - update all BO mappings in the vm page table
1762  *
1763  * @adev: amdgpu_device pointer
1764  * @bo_va: requested BO and VM object
1765  * @clear: if true clear the entries
1766  *
1767  * Fill in the page table entries for @bo_va.
1768  *
1769  * Returns:
1770  * 0 for success, -EINVAL for failure.
1771  */
1772 int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va,
1773                         bool clear)
1774 {
1775         struct amdgpu_bo *bo = bo_va->base.bo;
1776         struct amdgpu_vm *vm = bo_va->base.vm;
1777         struct amdgpu_bo_va_mapping *mapping;
1778         dma_addr_t *pages_addr = NULL;
1779         struct ttm_resource *mem;
1780         struct drm_mm_node *nodes;
1781         struct dma_fence **last_update;
1782         struct dma_resv *resv;
1783         uint64_t flags;
1784         struct amdgpu_device *bo_adev = adev;
1785         int r;
1786
1787         if (clear || !bo) {
1788                 mem = NULL;
1789                 nodes = NULL;
1790                 resv = vm->root.base.bo->tbo.base.resv;
1791         } else {
1792                 struct drm_gem_object *obj = &bo->tbo.base;
1793                 struct ttm_dma_tt *ttm;
1794
1795                 resv = bo->tbo.base.resv;
1796                 if (obj->import_attach && bo_va->is_xgmi) {
1797                         struct dma_buf *dma_buf = obj->import_attach->dmabuf;
1798                         struct drm_gem_object *gobj = dma_buf->priv;
1799                         struct amdgpu_bo *abo = gem_to_amdgpu_bo(gobj);
1800
1801                         if (abo->tbo.mem.mem_type == TTM_PL_VRAM)
1802                                 bo = gem_to_amdgpu_bo(gobj);
1803                 }
1804                 mem = &bo->tbo.mem;
1805                 nodes = mem->mm_node;
1806                 if (mem->mem_type == TTM_PL_TT) {
1807                         ttm = container_of(bo->tbo.ttm, struct ttm_dma_tt, ttm);
1808                         pages_addr = ttm->dma_address;
1809                 }
1810         }
1811
1812         if (bo) {
1813                 flags = amdgpu_ttm_tt_pte_flags(adev, bo->tbo.ttm, mem);
1814
1815                 if (amdgpu_bo_encrypted(bo))
1816                         flags |= AMDGPU_PTE_TMZ;
1817
1818                 bo_adev = amdgpu_ttm_adev(bo->tbo.bdev);
1819         } else {
1820                 flags = 0x0;
1821         }
1822
1823         if (clear || (bo && bo->tbo.base.resv ==
1824                       vm->root.base.bo->tbo.base.resv))
1825                 last_update = &vm->last_update;
1826         else
1827                 last_update = &bo_va->last_pt_update;
1828
1829         if (!clear && bo_va->base.moved) {
1830                 bo_va->base.moved = false;
1831                 list_splice_init(&bo_va->valids, &bo_va->invalids);
1832
1833         } else if (bo_va->cleared != clear) {
1834                 list_splice_init(&bo_va->valids, &bo_va->invalids);
1835         }
1836
1837         list_for_each_entry(mapping, &bo_va->invalids, list) {
1838                 r = amdgpu_vm_bo_split_mapping(adev, resv, pages_addr, vm,
1839                                                mapping, flags, bo_adev, nodes,
1840                                                last_update);
1841                 if (r)
1842                         return r;
1843         }
1844
1845         /* If the BO is not in its preferred location add it back to
1846          * the evicted list so that it gets validated again on the
1847          * next command submission.
1848          */
1849         if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
1850                 uint32_t mem_type = bo->tbo.mem.mem_type;
1851
1852                 if (!(bo->preferred_domains &
1853                       amdgpu_mem_type_to_domain(mem_type)))
1854                         amdgpu_vm_bo_evicted(&bo_va->base);
1855                 else
1856                         amdgpu_vm_bo_idle(&bo_va->base);
1857         } else {
1858                 amdgpu_vm_bo_done(&bo_va->base);
1859         }
1860
1861         list_splice_init(&bo_va->invalids, &bo_va->valids);
1862         bo_va->cleared = clear;
1863
1864         if (trace_amdgpu_vm_bo_mapping_enabled()) {
1865                 list_for_each_entry(mapping, &bo_va->valids, list)
1866                         trace_amdgpu_vm_bo_mapping(mapping);
1867         }
1868
1869         return 0;
1870 }
1871
1872 /**
1873  * amdgpu_vm_update_prt_state - update the global PRT state
1874  *
1875  * @adev: amdgpu_device pointer
1876  */
1877 static void amdgpu_vm_update_prt_state(struct amdgpu_device *adev)
1878 {
1879         unsigned long flags;
1880         bool enable;
1881
1882         spin_lock_irqsave(&adev->vm_manager.prt_lock, flags);
1883         enable = !!atomic_read(&adev->vm_manager.num_prt_users);
1884         adev->gmc.gmc_funcs->set_prt(adev, enable);
1885         spin_unlock_irqrestore(&adev->vm_manager.prt_lock, flags);
1886 }
1887
1888 /**
1889  * amdgpu_vm_prt_get - add a PRT user
1890  *
1891  * @adev: amdgpu_device pointer
1892  */
1893 static void amdgpu_vm_prt_get(struct amdgpu_device *adev)
1894 {
1895         if (!adev->gmc.gmc_funcs->set_prt)
1896                 return;
1897
1898         if (atomic_inc_return(&adev->vm_manager.num_prt_users) == 1)
1899                 amdgpu_vm_update_prt_state(adev);
1900 }
1901
1902 /**
1903  * amdgpu_vm_prt_put - drop a PRT user
1904  *
1905  * @adev: amdgpu_device pointer
1906  */
1907 static void amdgpu_vm_prt_put(struct amdgpu_device *adev)
1908 {
1909         if (atomic_dec_return(&adev->vm_manager.num_prt_users) == 0)
1910                 amdgpu_vm_update_prt_state(adev);
1911 }
1912
1913 /**
1914  * amdgpu_vm_prt_cb - callback for updating the PRT status
1915  *
1916  * @fence: fence for the callback
1917  * @_cb: the callback function
1918  */
1919 static void amdgpu_vm_prt_cb(struct dma_fence *fence, struct dma_fence_cb *_cb)
1920 {
1921         struct amdgpu_prt_cb *cb = container_of(_cb, struct amdgpu_prt_cb, cb);
1922
1923         amdgpu_vm_prt_put(cb->adev);
1924         kfree(cb);
1925 }
1926
1927 /**
1928  * amdgpu_vm_add_prt_cb - add callback for updating the PRT status
1929  *
1930  * @adev: amdgpu_device pointer
1931  * @fence: fence for the callback
1932  */
1933 static void amdgpu_vm_add_prt_cb(struct amdgpu_device *adev,
1934                                  struct dma_fence *fence)
1935 {
1936         struct amdgpu_prt_cb *cb;
1937
1938         if (!adev->gmc.gmc_funcs->set_prt)
1939                 return;
1940
1941         cb = kmalloc(sizeof(struct amdgpu_prt_cb), GFP_KERNEL);
1942         if (!cb) {
1943                 /* Last resort when we are OOM */
1944                 if (fence)
1945                         dma_fence_wait(fence, false);
1946
1947                 amdgpu_vm_prt_put(adev);
1948         } else {
1949                 cb->adev = adev;
1950                 if (!fence || dma_fence_add_callback(fence, &cb->cb,
1951                                                      amdgpu_vm_prt_cb))
1952                         amdgpu_vm_prt_cb(fence, &cb->cb);
1953         }
1954 }
1955
1956 /**
1957  * amdgpu_vm_free_mapping - free a mapping
1958  *
1959  * @adev: amdgpu_device pointer
1960  * @vm: requested vm
1961  * @mapping: mapping to be freed
1962  * @fence: fence of the unmap operation
1963  *
1964  * Free a mapping and make sure we decrease the PRT usage count if applicable.
1965  */
1966 static void amdgpu_vm_free_mapping(struct amdgpu_device *adev,
1967                                    struct amdgpu_vm *vm,
1968                                    struct amdgpu_bo_va_mapping *mapping,
1969                                    struct dma_fence *fence)
1970 {
1971         if (mapping->flags & AMDGPU_PTE_PRT)
1972                 amdgpu_vm_add_prt_cb(adev, fence);
1973         kfree(mapping);
1974 }
1975
1976 /**
1977  * amdgpu_vm_prt_fini - finish all prt mappings
1978  *
1979  * @adev: amdgpu_device pointer
1980  * @vm: requested vm
1981  *
1982  * Register a cleanup callback to disable PRT support after VM dies.
1983  */
1984 static void amdgpu_vm_prt_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
1985 {
1986         struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
1987         struct dma_fence *excl, **shared;
1988         unsigned i, shared_count;
1989         int r;
1990
1991         r = dma_resv_get_fences_rcu(resv, &excl,
1992                                               &shared_count, &shared);
1993         if (r) {
1994                 /* Not enough memory to grab the fence list, as last resort
1995                  * block for all the fences to complete.
1996                  */
1997                 dma_resv_wait_timeout_rcu(resv, true, false,
1998                                                     MAX_SCHEDULE_TIMEOUT);
1999                 return;
2000         }
2001
2002         /* Add a callback for each fence in the reservation object */
2003         amdgpu_vm_prt_get(adev);
2004         amdgpu_vm_add_prt_cb(adev, excl);
2005
2006         for (i = 0; i < shared_count; ++i) {
2007                 amdgpu_vm_prt_get(adev);
2008                 amdgpu_vm_add_prt_cb(adev, shared[i]);
2009         }
2010
2011         kfree(shared);
2012 }
2013
2014 /**
2015  * amdgpu_vm_clear_freed - clear freed BOs in the PT
2016  *
2017  * @adev: amdgpu_device pointer
2018  * @vm: requested vm
2019  * @fence: optional resulting fence (unchanged if no work needed to be done
2020  * or if an error occurred)
2021  *
2022  * Make sure all freed BOs are cleared in the PT.
2023  * PTs have to be reserved and mutex must be locked!
2024  *
2025  * Returns:
2026  * 0 for success.
2027  *
2028  */
2029 int amdgpu_vm_clear_freed(struct amdgpu_device *adev,
2030                           struct amdgpu_vm *vm,
2031                           struct dma_fence **fence)
2032 {
2033         struct dma_resv *resv = vm->root.base.bo->tbo.base.resv;
2034         struct amdgpu_bo_va_mapping *mapping;
2035         uint64_t init_pte_value = 0;
2036         struct dma_fence *f = NULL;
2037         int r;
2038
2039         while (!list_empty(&vm->freed)) {
2040                 mapping = list_first_entry(&vm->freed,
2041                         struct amdgpu_bo_va_mapping, list);
2042                 list_del(&mapping->list);
2043
2044                 if (vm->pte_support_ats &&
2045                     mapping->start < AMDGPU_GMC_HOLE_START)
2046                         init_pte_value = AMDGPU_PTE_DEFAULT_ATC;
2047
2048                 r = amdgpu_vm_bo_update_mapping(adev, vm, false, false, resv,
2049                                                 mapping->start, mapping->last,
2050                                                 init_pte_value, 0, NULL, &f);
2051                 amdgpu_vm_free_mapping(adev, vm, mapping, f);
2052                 if (r) {
2053                         dma_fence_put(f);
2054                         return r;
2055                 }
2056         }
2057
2058         if (fence && f) {
2059                 dma_fence_put(*fence);
2060                 *fence = f;
2061         } else {
2062                 dma_fence_put(f);
2063         }
2064
2065         return 0;
2066
2067 }
2068
2069 /**
2070  * amdgpu_vm_handle_moved - handle moved BOs in the PT
2071  *
2072  * @adev: amdgpu_device pointer
2073  * @vm: requested vm
2074  *
2075  * Make sure all BOs which are moved are updated in the PTs.
2076  *
2077  * Returns:
2078  * 0 for success.
2079  *
2080  * PTs have to be reserved!
2081  */
2082 int amdgpu_vm_handle_moved(struct amdgpu_device *adev,
2083                            struct amdgpu_vm *vm)
2084 {
2085         struct amdgpu_bo_va *bo_va, *tmp;
2086         struct dma_resv *resv;
2087         bool clear;
2088         int r;
2089
2090         list_for_each_entry_safe(bo_va, tmp, &vm->moved, base.vm_status) {
2091                 /* Per VM BOs never need to bo cleared in the page tables */
2092                 r = amdgpu_vm_bo_update(adev, bo_va, false);
2093                 if (r)
2094                         return r;
2095         }
2096
2097         spin_lock(&vm->invalidated_lock);
2098         while (!list_empty(&vm->invalidated)) {
2099                 bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va,
2100                                          base.vm_status);
2101                 resv = bo_va->base.bo->tbo.base.resv;
2102                 spin_unlock(&vm->invalidated_lock);
2103
2104                 /* Try to reserve the BO to avoid clearing its ptes */
2105                 if (!amdgpu_vm_debug && dma_resv_trylock(resv))
2106                         clear = false;
2107                 /* Somebody else is using the BO right now */
2108                 else
2109                         clear = true;
2110
2111                 r = amdgpu_vm_bo_update(adev, bo_va, clear);
2112                 if (r)
2113                         return r;
2114
2115                 if (!clear)
2116                         dma_resv_unlock(resv);
2117                 spin_lock(&vm->invalidated_lock);
2118         }
2119         spin_unlock(&vm->invalidated_lock);
2120
2121         return 0;
2122 }
2123
2124 /**
2125  * amdgpu_vm_bo_add - add a bo to a specific vm
2126  *
2127  * @adev: amdgpu_device pointer
2128  * @vm: requested vm
2129  * @bo: amdgpu buffer object
2130  *
2131  * Add @bo into the requested vm.
2132  * Add @bo to the list of bos associated with the vm
2133  *
2134  * Returns:
2135  * Newly added bo_va or NULL for failure
2136  *
2137  * Object has to be reserved!
2138  */
2139 struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev,
2140                                       struct amdgpu_vm *vm,
2141                                       struct amdgpu_bo *bo)
2142 {
2143         struct amdgpu_bo_va *bo_va;
2144
2145         bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL);
2146         if (bo_va == NULL) {
2147                 return NULL;
2148         }
2149         amdgpu_vm_bo_base_init(&bo_va->base, vm, bo);
2150
2151         bo_va->ref_count = 1;
2152         INIT_LIST_HEAD(&bo_va->valids);
2153         INIT_LIST_HEAD(&bo_va->invalids);
2154
2155         if (!bo)
2156                 return bo_va;
2157
2158         if (amdgpu_dmabuf_is_xgmi_accessible(adev, bo)) {
2159                 bo_va->is_xgmi = true;
2160                 /* Power up XGMI if it can be potentially used */
2161                 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MAX_VEGA20);
2162         }
2163
2164         return bo_va;
2165 }
2166
2167
2168 /**
2169  * amdgpu_vm_bo_insert_mapping - insert a new mapping
2170  *
2171  * @adev: amdgpu_device pointer
2172  * @bo_va: bo_va to store the address
2173  * @mapping: the mapping to insert
2174  *
2175  * Insert a new mapping into all structures.
2176  */
2177 static void amdgpu_vm_bo_insert_map(struct amdgpu_device *adev,
2178                                     struct amdgpu_bo_va *bo_va,
2179                                     struct amdgpu_bo_va_mapping *mapping)
2180 {
2181         struct amdgpu_vm *vm = bo_va->base.vm;
2182         struct amdgpu_bo *bo = bo_va->base.bo;
2183
2184         mapping->bo_va = bo_va;
2185         list_add(&mapping->list, &bo_va->invalids);
2186         amdgpu_vm_it_insert(mapping, &vm->va);
2187
2188         if (mapping->flags & AMDGPU_PTE_PRT)
2189                 amdgpu_vm_prt_get(adev);
2190
2191         if (bo && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv &&
2192             !bo_va->base.moved) {
2193                 list_move(&bo_va->base.vm_status, &vm->moved);
2194         }
2195         trace_amdgpu_vm_bo_map(bo_va, mapping);
2196 }
2197
2198 /**
2199  * amdgpu_vm_bo_map - map bo inside a vm
2200  *
2201  * @adev: amdgpu_device pointer
2202  * @bo_va: bo_va to store the address
2203  * @saddr: where to map the BO
2204  * @offset: requested offset in the BO
2205  * @size: BO size in bytes
2206  * @flags: attributes of pages (read/write/valid/etc.)
2207  *
2208  * Add a mapping of the BO at the specefied addr into the VM.
2209  *
2210  * Returns:
2211  * 0 for success, error for failure.
2212  *
2213  * Object has to be reserved and unreserved outside!
2214  */
2215 int amdgpu_vm_bo_map(struct amdgpu_device *adev,
2216                      struct amdgpu_bo_va *bo_va,
2217                      uint64_t saddr, uint64_t offset,
2218                      uint64_t size, uint64_t flags)
2219 {
2220         struct amdgpu_bo_va_mapping *mapping, *tmp;
2221         struct amdgpu_bo *bo = bo_va->base.bo;
2222         struct amdgpu_vm *vm = bo_va->base.vm;
2223         uint64_t eaddr;
2224
2225         /* validate the parameters */
2226         if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2227             size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2228                 return -EINVAL;
2229
2230         /* make sure object fit at this offset */
2231         eaddr = saddr + size - 1;
2232         if (saddr >= eaddr ||
2233             (bo && offset + size > amdgpu_bo_size(bo)) ||
2234             (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2235                 return -EINVAL;
2236
2237         saddr /= AMDGPU_GPU_PAGE_SIZE;
2238         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2239
2240         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2241         if (tmp) {
2242                 /* bo and tmp overlap, invalid addr */
2243                 dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with "
2244                         "0x%010Lx-0x%010Lx\n", bo, saddr, eaddr,
2245                         tmp->start, tmp->last + 1);
2246                 return -EINVAL;
2247         }
2248
2249         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2250         if (!mapping)
2251                 return -ENOMEM;
2252
2253         mapping->start = saddr;
2254         mapping->last = eaddr;
2255         mapping->offset = offset;
2256         mapping->flags = flags;
2257
2258         amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2259
2260         return 0;
2261 }
2262
2263 /**
2264  * amdgpu_vm_bo_replace_map - map bo inside a vm, replacing existing mappings
2265  *
2266  * @adev: amdgpu_device pointer
2267  * @bo_va: bo_va to store the address
2268  * @saddr: where to map the BO
2269  * @offset: requested offset in the BO
2270  * @size: BO size in bytes
2271  * @flags: attributes of pages (read/write/valid/etc.)
2272  *
2273  * Add a mapping of the BO at the specefied addr into the VM. Replace existing
2274  * mappings as we do so.
2275  *
2276  * Returns:
2277  * 0 for success, error for failure.
2278  *
2279  * Object has to be reserved and unreserved outside!
2280  */
2281 int amdgpu_vm_bo_replace_map(struct amdgpu_device *adev,
2282                              struct amdgpu_bo_va *bo_va,
2283                              uint64_t saddr, uint64_t offset,
2284                              uint64_t size, uint64_t flags)
2285 {
2286         struct amdgpu_bo_va_mapping *mapping;
2287         struct amdgpu_bo *bo = bo_va->base.bo;
2288         uint64_t eaddr;
2289         int r;
2290
2291         /* validate the parameters */
2292         if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK ||
2293             size == 0 || size & AMDGPU_GPU_PAGE_MASK)
2294                 return -EINVAL;
2295
2296         /* make sure object fit at this offset */
2297         eaddr = saddr + size - 1;
2298         if (saddr >= eaddr ||
2299             (bo && offset + size > amdgpu_bo_size(bo)) ||
2300             (eaddr >= adev->vm_manager.max_pfn << AMDGPU_GPU_PAGE_SHIFT))
2301                 return -EINVAL;
2302
2303         /* Allocate all the needed memory */
2304         mapping = kmalloc(sizeof(*mapping), GFP_KERNEL);
2305         if (!mapping)
2306                 return -ENOMEM;
2307
2308         r = amdgpu_vm_bo_clear_mappings(adev, bo_va->base.vm, saddr, size);
2309         if (r) {
2310                 kfree(mapping);
2311                 return r;
2312         }
2313
2314         saddr /= AMDGPU_GPU_PAGE_SIZE;
2315         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2316
2317         mapping->start = saddr;
2318         mapping->last = eaddr;
2319         mapping->offset = offset;
2320         mapping->flags = flags;
2321
2322         amdgpu_vm_bo_insert_map(adev, bo_va, mapping);
2323
2324         return 0;
2325 }
2326
2327 /**
2328  * amdgpu_vm_bo_unmap - remove bo mapping from vm
2329  *
2330  * @adev: amdgpu_device pointer
2331  * @bo_va: bo_va to remove the address from
2332  * @saddr: where to the BO is mapped
2333  *
2334  * Remove a mapping of the BO at the specefied addr from the VM.
2335  *
2336  * Returns:
2337  * 0 for success, error for failure.
2338  *
2339  * Object has to be reserved and unreserved outside!
2340  */
2341 int amdgpu_vm_bo_unmap(struct amdgpu_device *adev,
2342                        struct amdgpu_bo_va *bo_va,
2343                        uint64_t saddr)
2344 {
2345         struct amdgpu_bo_va_mapping *mapping;
2346         struct amdgpu_vm *vm = bo_va->base.vm;
2347         bool valid = true;
2348
2349         saddr /= AMDGPU_GPU_PAGE_SIZE;
2350
2351         list_for_each_entry(mapping, &bo_va->valids, list) {
2352                 if (mapping->start == saddr)
2353                         break;
2354         }
2355
2356         if (&mapping->list == &bo_va->valids) {
2357                 valid = false;
2358
2359                 list_for_each_entry(mapping, &bo_va->invalids, list) {
2360                         if (mapping->start == saddr)
2361                                 break;
2362                 }
2363
2364                 if (&mapping->list == &bo_va->invalids)
2365                         return -ENOENT;
2366         }
2367
2368         list_del(&mapping->list);
2369         amdgpu_vm_it_remove(mapping, &vm->va);
2370         mapping->bo_va = NULL;
2371         trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2372
2373         if (valid)
2374                 list_add(&mapping->list, &vm->freed);
2375         else
2376                 amdgpu_vm_free_mapping(adev, vm, mapping,
2377                                        bo_va->last_pt_update);
2378
2379         return 0;
2380 }
2381
2382 /**
2383  * amdgpu_vm_bo_clear_mappings - remove all mappings in a specific range
2384  *
2385  * @adev: amdgpu_device pointer
2386  * @vm: VM structure to use
2387  * @saddr: start of the range
2388  * @size: size of the range
2389  *
2390  * Remove all mappings in a range, split them as appropriate.
2391  *
2392  * Returns:
2393  * 0 for success, error for failure.
2394  */
2395 int amdgpu_vm_bo_clear_mappings(struct amdgpu_device *adev,
2396                                 struct amdgpu_vm *vm,
2397                                 uint64_t saddr, uint64_t size)
2398 {
2399         struct amdgpu_bo_va_mapping *before, *after, *tmp, *next;
2400         LIST_HEAD(removed);
2401         uint64_t eaddr;
2402
2403         eaddr = saddr + size - 1;
2404         saddr /= AMDGPU_GPU_PAGE_SIZE;
2405         eaddr /= AMDGPU_GPU_PAGE_SIZE;
2406
2407         /* Allocate all the needed memory */
2408         before = kzalloc(sizeof(*before), GFP_KERNEL);
2409         if (!before)
2410                 return -ENOMEM;
2411         INIT_LIST_HEAD(&before->list);
2412
2413         after = kzalloc(sizeof(*after), GFP_KERNEL);
2414         if (!after) {
2415                 kfree(before);
2416                 return -ENOMEM;
2417         }
2418         INIT_LIST_HEAD(&after->list);
2419
2420         /* Now gather all removed mappings */
2421         tmp = amdgpu_vm_it_iter_first(&vm->va, saddr, eaddr);
2422         while (tmp) {
2423                 /* Remember mapping split at the start */
2424                 if (tmp->start < saddr) {
2425                         before->start = tmp->start;
2426                         before->last = saddr - 1;
2427                         before->offset = tmp->offset;
2428                         before->flags = tmp->flags;
2429                         before->bo_va = tmp->bo_va;
2430                         list_add(&before->list, &tmp->bo_va->invalids);
2431                 }
2432
2433                 /* Remember mapping split at the end */
2434                 if (tmp->last > eaddr) {
2435                         after->start = eaddr + 1;
2436                         after->last = tmp->last;
2437                         after->offset = tmp->offset;
2438                         after->offset += after->start - tmp->start;
2439                         after->flags = tmp->flags;
2440                         after->bo_va = tmp->bo_va;
2441                         list_add(&after->list, &tmp->bo_va->invalids);
2442                 }
2443
2444                 list_del(&tmp->list);
2445                 list_add(&tmp->list, &removed);
2446
2447                 tmp = amdgpu_vm_it_iter_next(tmp, saddr, eaddr);
2448         }
2449
2450         /* And free them up */
2451         list_for_each_entry_safe(tmp, next, &removed, list) {
2452                 amdgpu_vm_it_remove(tmp, &vm->va);
2453                 list_del(&tmp->list);
2454
2455                 if (tmp->start < saddr)
2456                     tmp->start = saddr;
2457                 if (tmp->last > eaddr)
2458                     tmp->last = eaddr;
2459
2460                 tmp->bo_va = NULL;
2461                 list_add(&tmp->list, &vm->freed);
2462                 trace_amdgpu_vm_bo_unmap(NULL, tmp);
2463         }
2464
2465         /* Insert partial mapping before the range */
2466         if (!list_empty(&before->list)) {
2467                 amdgpu_vm_it_insert(before, &vm->va);
2468                 if (before->flags & AMDGPU_PTE_PRT)
2469                         amdgpu_vm_prt_get(adev);
2470         } else {
2471                 kfree(before);
2472         }
2473
2474         /* Insert partial mapping after the range */
2475         if (!list_empty(&after->list)) {
2476                 amdgpu_vm_it_insert(after, &vm->va);
2477                 if (after->flags & AMDGPU_PTE_PRT)
2478                         amdgpu_vm_prt_get(adev);
2479         } else {
2480                 kfree(after);
2481         }
2482
2483         return 0;
2484 }
2485
2486 /**
2487  * amdgpu_vm_bo_lookup_mapping - find mapping by address
2488  *
2489  * @vm: the requested VM
2490  * @addr: the address
2491  *
2492  * Find a mapping by it's address.
2493  *
2494  * Returns:
2495  * The amdgpu_bo_va_mapping matching for addr or NULL
2496  *
2497  */
2498 struct amdgpu_bo_va_mapping *amdgpu_vm_bo_lookup_mapping(struct amdgpu_vm *vm,
2499                                                          uint64_t addr)
2500 {
2501         return amdgpu_vm_it_iter_first(&vm->va, addr, addr);
2502 }
2503
2504 /**
2505  * amdgpu_vm_bo_trace_cs - trace all reserved mappings
2506  *
2507  * @vm: the requested vm
2508  * @ticket: CS ticket
2509  *
2510  * Trace all mappings of BOs reserved during a command submission.
2511  */
2512 void amdgpu_vm_bo_trace_cs(struct amdgpu_vm *vm, struct ww_acquire_ctx *ticket)
2513 {
2514         struct amdgpu_bo_va_mapping *mapping;
2515
2516         if (!trace_amdgpu_vm_bo_cs_enabled())
2517                 return;
2518
2519         for (mapping = amdgpu_vm_it_iter_first(&vm->va, 0, U64_MAX); mapping;
2520              mapping = amdgpu_vm_it_iter_next(mapping, 0, U64_MAX)) {
2521                 if (mapping->bo_va && mapping->bo_va->base.bo) {
2522                         struct amdgpu_bo *bo;
2523
2524                         bo = mapping->bo_va->base.bo;
2525                         if (dma_resv_locking_ctx(bo->tbo.base.resv) !=
2526                             ticket)
2527                                 continue;
2528                 }
2529
2530                 trace_amdgpu_vm_bo_cs(mapping);
2531         }
2532 }
2533
2534 /**
2535  * amdgpu_vm_bo_rmv - remove a bo to a specific vm
2536  *
2537  * @adev: amdgpu_device pointer
2538  * @bo_va: requested bo_va
2539  *
2540  * Remove @bo_va->bo from the requested vm.
2541  *
2542  * Object have to be reserved!
2543  */
2544 void amdgpu_vm_bo_rmv(struct amdgpu_device *adev,
2545                       struct amdgpu_bo_va *bo_va)
2546 {
2547         struct amdgpu_bo_va_mapping *mapping, *next;
2548         struct amdgpu_bo *bo = bo_va->base.bo;
2549         struct amdgpu_vm *vm = bo_va->base.vm;
2550         struct amdgpu_vm_bo_base **base;
2551
2552         if (bo) {
2553                 if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2554                         vm->bulk_moveable = false;
2555
2556                 for (base = &bo_va->base.bo->vm_bo; *base;
2557                      base = &(*base)->next) {
2558                         if (*base != &bo_va->base)
2559                                 continue;
2560
2561                         *base = bo_va->base.next;
2562                         break;
2563                 }
2564         }
2565
2566         spin_lock(&vm->invalidated_lock);
2567         list_del(&bo_va->base.vm_status);
2568         spin_unlock(&vm->invalidated_lock);
2569
2570         list_for_each_entry_safe(mapping, next, &bo_va->valids, list) {
2571                 list_del(&mapping->list);
2572                 amdgpu_vm_it_remove(mapping, &vm->va);
2573                 mapping->bo_va = NULL;
2574                 trace_amdgpu_vm_bo_unmap(bo_va, mapping);
2575                 list_add(&mapping->list, &vm->freed);
2576         }
2577         list_for_each_entry_safe(mapping, next, &bo_va->invalids, list) {
2578                 list_del(&mapping->list);
2579                 amdgpu_vm_it_remove(mapping, &vm->va);
2580                 amdgpu_vm_free_mapping(adev, vm, mapping,
2581                                        bo_va->last_pt_update);
2582         }
2583
2584         dma_fence_put(bo_va->last_pt_update);
2585
2586         if (bo && bo_va->is_xgmi)
2587                 amdgpu_xgmi_set_pstate(adev, AMDGPU_XGMI_PSTATE_MIN);
2588
2589         kfree(bo_va);
2590 }
2591
2592 /**
2593  * amdgpu_vm_evictable - check if we can evict a VM
2594  *
2595  * @bo: A page table of the VM.
2596  *
2597  * Check if it is possible to evict a VM.
2598  */
2599 bool amdgpu_vm_evictable(struct amdgpu_bo *bo)
2600 {
2601         struct amdgpu_vm_bo_base *bo_base = bo->vm_bo;
2602
2603         /* Page tables of a destroyed VM can go away immediately */
2604         if (!bo_base || !bo_base->vm)
2605                 return true;
2606
2607         /* Don't evict VM page tables while they are busy */
2608         if (!dma_resv_test_signaled_rcu(bo->tbo.base.resv, true))
2609                 return false;
2610
2611         /* Try to block ongoing updates */
2612         if (!amdgpu_vm_eviction_trylock(bo_base->vm))
2613                 return false;
2614
2615         /* Don't evict VM page tables while they are updated */
2616         if (!dma_fence_is_signaled(bo_base->vm->last_unlocked)) {
2617                 amdgpu_vm_eviction_unlock(bo_base->vm);
2618                 return false;
2619         }
2620
2621         bo_base->vm->evicting = true;
2622         amdgpu_vm_eviction_unlock(bo_base->vm);
2623         return true;
2624 }
2625
2626 /**
2627  * amdgpu_vm_bo_invalidate - mark the bo as invalid
2628  *
2629  * @adev: amdgpu_device pointer
2630  * @bo: amdgpu buffer object
2631  * @evicted: is the BO evicted
2632  *
2633  * Mark @bo as invalid.
2634  */
2635 void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev,
2636                              struct amdgpu_bo *bo, bool evicted)
2637 {
2638         struct amdgpu_vm_bo_base *bo_base;
2639
2640         /* shadow bo doesn't have bo base, its validation needs its parent */
2641         if (bo->parent && bo->parent->shadow == bo)
2642                 bo = bo->parent;
2643
2644         for (bo_base = bo->vm_bo; bo_base; bo_base = bo_base->next) {
2645                 struct amdgpu_vm *vm = bo_base->vm;
2646
2647                 if (evicted && bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv) {
2648                         amdgpu_vm_bo_evicted(bo_base);
2649                         continue;
2650                 }
2651
2652                 if (bo_base->moved)
2653                         continue;
2654                 bo_base->moved = true;
2655
2656                 if (bo->tbo.type == ttm_bo_type_kernel)
2657                         amdgpu_vm_bo_relocated(bo_base);
2658                 else if (bo->tbo.base.resv == vm->root.base.bo->tbo.base.resv)
2659                         amdgpu_vm_bo_moved(bo_base);
2660                 else
2661                         amdgpu_vm_bo_invalidated(bo_base);
2662         }
2663 }
2664
2665 /**
2666  * amdgpu_vm_get_block_size - calculate VM page table size as power of two
2667  *
2668  * @vm_size: VM size
2669  *
2670  * Returns:
2671  * VM page table as power of two
2672  */
2673 static uint32_t amdgpu_vm_get_block_size(uint64_t vm_size)
2674 {
2675         /* Total bits covered by PD + PTs */
2676         unsigned bits = ilog2(vm_size) + 18;
2677
2678         /* Make sure the PD is 4K in size up to 8GB address space.
2679            Above that split equal between PD and PTs */
2680         if (vm_size <= 8)
2681                 return (bits - 9);
2682         else
2683                 return ((bits + 3) / 2);
2684 }
2685
2686 /**
2687  * amdgpu_vm_adjust_size - adjust vm size, block size and fragment size
2688  *
2689  * @adev: amdgpu_device pointer
2690  * @min_vm_size: the minimum vm size in GB if it's set auto
2691  * @fragment_size_default: Default PTE fragment size
2692  * @max_level: max VMPT level
2693  * @max_bits: max address space size in bits
2694  *
2695  */
2696 void amdgpu_vm_adjust_size(struct amdgpu_device *adev, uint32_t min_vm_size,
2697                            uint32_t fragment_size_default, unsigned max_level,
2698                            unsigned max_bits)
2699 {
2700         unsigned int max_size = 1 << (max_bits - 30);
2701         unsigned int vm_size;
2702         uint64_t tmp;
2703
2704         /* adjust vm size first */
2705         if (amdgpu_vm_size != -1) {
2706                 vm_size = amdgpu_vm_size;
2707                 if (vm_size > max_size) {
2708                         dev_warn(adev->dev, "VM size (%d) too large, max is %u GB\n",
2709                                  amdgpu_vm_size, max_size);
2710                         vm_size = max_size;
2711                 }
2712         } else {
2713                 struct sysinfo si;
2714                 unsigned int phys_ram_gb;
2715
2716                 /* Optimal VM size depends on the amount of physical
2717                  * RAM available. Underlying requirements and
2718                  * assumptions:
2719                  *
2720                  *  - Need to map system memory and VRAM from all GPUs
2721                  *     - VRAM from other GPUs not known here
2722                  *     - Assume VRAM <= system memory
2723                  *  - On GFX8 and older, VM space can be segmented for
2724                  *    different MTYPEs
2725                  *  - Need to allow room for fragmentation, guard pages etc.
2726                  *
2727                  * This adds up to a rough guess of system memory x3.
2728                  * Round up to power of two to maximize the available
2729                  * VM size with the given page table size.
2730                  */
2731                 si_meminfo(&si);
2732                 phys_ram_gb = ((uint64_t)si.totalram * si.mem_unit +
2733                                (1 << 30) - 1) >> 30;
2734                 vm_size = roundup_pow_of_two(
2735                         min(max(phys_ram_gb * 3, min_vm_size), max_size));
2736         }
2737
2738         adev->vm_manager.max_pfn = (uint64_t)vm_size << 18;
2739
2740         tmp = roundup_pow_of_two(adev->vm_manager.max_pfn);
2741         if (amdgpu_vm_block_size != -1)
2742                 tmp >>= amdgpu_vm_block_size - 9;
2743         tmp = DIV_ROUND_UP(fls64(tmp) - 1, 9) - 1;
2744         adev->vm_manager.num_level = min(max_level, (unsigned)tmp);
2745         switch (adev->vm_manager.num_level) {
2746         case 3:
2747                 adev->vm_manager.root_level = AMDGPU_VM_PDB2;
2748                 break;
2749         case 2:
2750                 adev->vm_manager.root_level = AMDGPU_VM_PDB1;
2751                 break;
2752         case 1:
2753                 adev->vm_manager.root_level = AMDGPU_VM_PDB0;
2754                 break;
2755         default:
2756                 dev_err(adev->dev, "VMPT only supports 2~4+1 levels\n");
2757         }
2758         /* block size depends on vm size and hw setup*/
2759         if (amdgpu_vm_block_size != -1)
2760                 adev->vm_manager.block_size =
2761                         min((unsigned)amdgpu_vm_block_size, max_bits
2762                             - AMDGPU_GPU_PAGE_SHIFT
2763                             - 9 * adev->vm_manager.num_level);
2764         else if (adev->vm_manager.num_level > 1)
2765                 adev->vm_manager.block_size = 9;
2766         else
2767                 adev->vm_manager.block_size = amdgpu_vm_get_block_size(tmp);
2768
2769         if (amdgpu_vm_fragment_size == -1)
2770                 adev->vm_manager.fragment_size = fragment_size_default;
2771         else
2772                 adev->vm_manager.fragment_size = amdgpu_vm_fragment_size;
2773
2774         DRM_INFO("vm size is %u GB, %u levels, block size is %u-bit, fragment size is %u-bit\n",
2775                  vm_size, adev->vm_manager.num_level + 1,
2776                  adev->vm_manager.block_size,
2777                  adev->vm_manager.fragment_size);
2778 }
2779
2780 /**
2781  * amdgpu_vm_wait_idle - wait for the VM to become idle
2782  *
2783  * @vm: VM object to wait for
2784  * @timeout: timeout to wait for VM to become idle
2785  */
2786 long amdgpu_vm_wait_idle(struct amdgpu_vm *vm, long timeout)
2787 {
2788         timeout = dma_resv_wait_timeout_rcu(vm->root.base.bo->tbo.base.resv,
2789                                             true, true, timeout);
2790         if (timeout <= 0)
2791                 return timeout;
2792
2793         return dma_fence_wait_timeout(vm->last_unlocked, true, timeout);
2794 }
2795
2796 /**
2797  * amdgpu_vm_init - initialize a vm instance
2798  *
2799  * @adev: amdgpu_device pointer
2800  * @vm: requested vm
2801  * @vm_context: Indicates if it GFX or Compute context
2802  * @pasid: Process address space identifier
2803  *
2804  * Init @vm fields.
2805  *
2806  * Returns:
2807  * 0 for success, error for failure.
2808  */
2809 int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2810                    int vm_context, u32 pasid)
2811 {
2812         struct amdgpu_bo_param bp;
2813         struct amdgpu_bo *root;
2814         int r, i;
2815
2816         vm->va = RB_ROOT_CACHED;
2817         for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
2818                 vm->reserved_vmid[i] = NULL;
2819         INIT_LIST_HEAD(&vm->evicted);
2820         INIT_LIST_HEAD(&vm->relocated);
2821         INIT_LIST_HEAD(&vm->moved);
2822         INIT_LIST_HEAD(&vm->idle);
2823         INIT_LIST_HEAD(&vm->invalidated);
2824         spin_lock_init(&vm->invalidated_lock);
2825         INIT_LIST_HEAD(&vm->freed);
2826
2827
2828         /* create scheduler entities for page table updates */
2829         r = drm_sched_entity_init(&vm->immediate, DRM_SCHED_PRIORITY_NORMAL,
2830                                   adev->vm_manager.vm_pte_scheds,
2831                                   adev->vm_manager.vm_pte_num_scheds, NULL);
2832         if (r)
2833                 return r;
2834
2835         r = drm_sched_entity_init(&vm->delayed, DRM_SCHED_PRIORITY_NORMAL,
2836                                   adev->vm_manager.vm_pte_scheds,
2837                                   adev->vm_manager.vm_pte_num_scheds, NULL);
2838         if (r)
2839                 goto error_free_immediate;
2840
2841         vm->pte_support_ats = false;
2842         vm->is_compute_context = false;
2843
2844         if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE) {
2845                 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2846                                                 AMDGPU_VM_USE_CPU_FOR_COMPUTE);
2847
2848                 if (adev->asic_type == CHIP_RAVEN)
2849                         vm->pte_support_ats = true;
2850         } else {
2851                 vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
2852                                                 AMDGPU_VM_USE_CPU_FOR_GFX);
2853         }
2854         DRM_DEBUG_DRIVER("VM update mode is %s\n",
2855                          vm->use_cpu_for_update ? "CPU" : "SDMA");
2856         WARN_ONCE((vm->use_cpu_for_update &&
2857                    !amdgpu_gmc_vram_full_visible(&adev->gmc)),
2858                   "CPU update of VM recommended only for large BAR system\n");
2859
2860         if (vm->use_cpu_for_update)
2861                 vm->update_funcs = &amdgpu_vm_cpu_funcs;
2862         else
2863                 vm->update_funcs = &amdgpu_vm_sdma_funcs;
2864         vm->last_update = NULL;
2865         vm->last_unlocked = dma_fence_get_stub();
2866
2867         mutex_init(&vm->eviction_lock);
2868         vm->evicting = false;
2869
2870         amdgpu_vm_bo_param(adev, vm, adev->vm_manager.root_level, false, &bp);
2871         if (vm_context == AMDGPU_VM_CONTEXT_COMPUTE)
2872                 bp.flags &= ~AMDGPU_GEM_CREATE_SHADOW;
2873         r = amdgpu_bo_create(adev, &bp, &root);
2874         if (r)
2875                 goto error_free_delayed;
2876
2877         r = amdgpu_bo_reserve(root, true);
2878         if (r)
2879                 goto error_free_root;
2880
2881         r = dma_resv_reserve_shared(root->tbo.base.resv, 1);
2882         if (r)
2883                 goto error_unreserve;
2884
2885         amdgpu_vm_bo_base_init(&vm->root.base, vm, root);
2886
2887         r = amdgpu_vm_clear_bo(adev, vm, root, false);
2888         if (r)
2889                 goto error_unreserve;
2890
2891         amdgpu_bo_unreserve(vm->root.base.bo);
2892
2893         if (pasid) {
2894                 unsigned long flags;
2895
2896                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2897                 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
2898                               GFP_ATOMIC);
2899                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
2900                 if (r < 0)
2901                         goto error_free_root;
2902
2903                 vm->pasid = pasid;
2904         }
2905
2906         INIT_KFIFO(vm->faults);
2907
2908         return 0;
2909
2910 error_unreserve:
2911         amdgpu_bo_unreserve(vm->root.base.bo);
2912
2913 error_free_root:
2914         amdgpu_bo_unref(&vm->root.base.bo->shadow);
2915         amdgpu_bo_unref(&vm->root.base.bo);
2916         vm->root.base.bo = NULL;
2917
2918 error_free_delayed:
2919         dma_fence_put(vm->last_unlocked);
2920         drm_sched_entity_destroy(&vm->delayed);
2921
2922 error_free_immediate:
2923         drm_sched_entity_destroy(&vm->immediate);
2924
2925         return r;
2926 }
2927
2928 /**
2929  * amdgpu_vm_check_clean_reserved - check if a VM is clean
2930  *
2931  * @adev: amdgpu_device pointer
2932  * @vm: the VM to check
2933  *
2934  * check all entries of the root PD, if any subsequent PDs are allocated,
2935  * it means there are page table creating and filling, and is no a clean
2936  * VM
2937  *
2938  * Returns:
2939  *      0 if this VM is clean
2940  */
2941 static int amdgpu_vm_check_clean_reserved(struct amdgpu_device *adev,
2942         struct amdgpu_vm *vm)
2943 {
2944         enum amdgpu_vm_level root = adev->vm_manager.root_level;
2945         unsigned int entries = amdgpu_vm_num_entries(adev, root);
2946         unsigned int i = 0;
2947
2948         if (!(vm->root.entries))
2949                 return 0;
2950
2951         for (i = 0; i < entries; i++) {
2952                 if (vm->root.entries[i].base.bo)
2953                         return -EINVAL;
2954         }
2955
2956         return 0;
2957 }
2958
2959 /**
2960  * amdgpu_vm_make_compute - Turn a GFX VM into a compute VM
2961  *
2962  * @adev: amdgpu_device pointer
2963  * @vm: requested vm
2964  * @pasid: pasid to use
2965  *
2966  * This only works on GFX VMs that don't have any BOs added and no
2967  * page tables allocated yet.
2968  *
2969  * Changes the following VM parameters:
2970  * - use_cpu_for_update
2971  * - pte_supports_ats
2972  * - pasid (old PASID is released, because compute manages its own PASIDs)
2973  *
2974  * Reinitializes the page directory to reflect the changed ATS
2975  * setting.
2976  *
2977  * Returns:
2978  * 0 for success, -errno for errors.
2979  */
2980 int amdgpu_vm_make_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm,
2981                            u32 pasid)
2982 {
2983         bool pte_support_ats = (adev->asic_type == CHIP_RAVEN);
2984         int r;
2985
2986         r = amdgpu_bo_reserve(vm->root.base.bo, true);
2987         if (r)
2988                 return r;
2989
2990         /* Sanity checks */
2991         r = amdgpu_vm_check_clean_reserved(adev, vm);
2992         if (r)
2993                 goto unreserve_bo;
2994
2995         if (pasid) {
2996                 unsigned long flags;
2997
2998                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
2999                 r = idr_alloc(&adev->vm_manager.pasid_idr, vm, pasid, pasid + 1,
3000                               GFP_ATOMIC);
3001                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3002
3003                 if (r == -ENOSPC)
3004                         goto unreserve_bo;
3005                 r = 0;
3006         }
3007
3008         /* Check if PD needs to be reinitialized and do it before
3009          * changing any other state, in case it fails.
3010          */
3011         if (pte_support_ats != vm->pte_support_ats) {
3012                 vm->pte_support_ats = pte_support_ats;
3013                 r = amdgpu_vm_clear_bo(adev, vm, vm->root.base.bo, false);
3014                 if (r)
3015                         goto free_idr;
3016         }
3017
3018         /* Update VM state */
3019         vm->use_cpu_for_update = !!(adev->vm_manager.vm_update_mode &
3020                                     AMDGPU_VM_USE_CPU_FOR_COMPUTE);
3021         DRM_DEBUG_DRIVER("VM update mode is %s\n",
3022                          vm->use_cpu_for_update ? "CPU" : "SDMA");
3023         WARN_ONCE((vm->use_cpu_for_update &&
3024                    !amdgpu_gmc_vram_full_visible(&adev->gmc)),
3025                   "CPU update of VM recommended only for large BAR system\n");
3026
3027         if (vm->use_cpu_for_update) {
3028                 /* Sync with last SDMA update/clear before switching to CPU */
3029                 r = amdgpu_bo_sync_wait(vm->root.base.bo,
3030                                         AMDGPU_FENCE_OWNER_UNDEFINED, true);
3031                 if (r)
3032                         goto free_idr;
3033
3034                 vm->update_funcs = &amdgpu_vm_cpu_funcs;
3035         } else {
3036                 vm->update_funcs = &amdgpu_vm_sdma_funcs;
3037         }
3038         dma_fence_put(vm->last_update);
3039         vm->last_update = NULL;
3040         vm->is_compute_context = true;
3041
3042         if (vm->pasid) {
3043                 unsigned long flags;
3044
3045                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3046                 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3047                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3048
3049                 /* Free the original amdgpu allocated pasid
3050                  * Will be replaced with kfd allocated pasid
3051                  */
3052                 amdgpu_pasid_free(vm->pasid);
3053                 vm->pasid = 0;
3054         }
3055
3056         /* Free the shadow bo for compute VM */
3057         amdgpu_bo_unref(&vm->root.base.bo->shadow);
3058
3059         if (pasid)
3060                 vm->pasid = pasid;
3061
3062         goto unreserve_bo;
3063
3064 free_idr:
3065         if (pasid) {
3066                 unsigned long flags;
3067
3068                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3069                 idr_remove(&adev->vm_manager.pasid_idr, pasid);
3070                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3071         }
3072 unreserve_bo:
3073         amdgpu_bo_unreserve(vm->root.base.bo);
3074         return r;
3075 }
3076
3077 /**
3078  * amdgpu_vm_release_compute - release a compute vm
3079  * @adev: amdgpu_device pointer
3080  * @vm: a vm turned into compute vm by calling amdgpu_vm_make_compute
3081  *
3082  * This is a correspondant of amdgpu_vm_make_compute. It decouples compute
3083  * pasid from vm. Compute should stop use of vm after this call.
3084  */
3085 void amdgpu_vm_release_compute(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3086 {
3087         if (vm->pasid) {
3088                 unsigned long flags;
3089
3090                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3091                 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3092                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3093         }
3094         vm->pasid = 0;
3095         vm->is_compute_context = false;
3096 }
3097
3098 /**
3099  * amdgpu_vm_fini - tear down a vm instance
3100  *
3101  * @adev: amdgpu_device pointer
3102  * @vm: requested vm
3103  *
3104  * Tear down @vm.
3105  * Unbind the VM and remove all bos from the vm bo list
3106  */
3107 void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm)
3108 {
3109         struct amdgpu_bo_va_mapping *mapping, *tmp;
3110         bool prt_fini_needed = !!adev->gmc.gmc_funcs->set_prt;
3111         struct amdgpu_bo *root;
3112         int i;
3113
3114         amdgpu_amdkfd_gpuvm_destroy_cb(adev, vm);
3115
3116         root = amdgpu_bo_ref(vm->root.base.bo);
3117         amdgpu_bo_reserve(root, true);
3118         if (vm->pasid) {
3119                 unsigned long flags;
3120
3121                 spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3122                 idr_remove(&adev->vm_manager.pasid_idr, vm->pasid);
3123                 spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3124                 vm->pasid = 0;
3125         }
3126
3127         dma_fence_wait(vm->last_unlocked, false);
3128         dma_fence_put(vm->last_unlocked);
3129
3130         list_for_each_entry_safe(mapping, tmp, &vm->freed, list) {
3131                 if (mapping->flags & AMDGPU_PTE_PRT && prt_fini_needed) {
3132                         amdgpu_vm_prt_fini(adev, vm);
3133                         prt_fini_needed = false;
3134                 }
3135
3136                 list_del(&mapping->list);
3137                 amdgpu_vm_free_mapping(adev, vm, mapping, NULL);
3138         }
3139
3140         amdgpu_vm_free_pts(adev, vm, NULL);
3141         amdgpu_bo_unreserve(root);
3142         amdgpu_bo_unref(&root);
3143         WARN_ON(vm->root.base.bo);
3144
3145         drm_sched_entity_destroy(&vm->immediate);
3146         drm_sched_entity_destroy(&vm->delayed);
3147
3148         if (!RB_EMPTY_ROOT(&vm->va.rb_root)) {
3149                 dev_err(adev->dev, "still active bo inside vm\n");
3150         }
3151         rbtree_postorder_for_each_entry_safe(mapping, tmp,
3152                                              &vm->va.rb_root, rb) {
3153                 /* Don't remove the mapping here, we don't want to trigger a
3154                  * rebalance and the tree is about to be destroyed anyway.
3155                  */
3156                 list_del(&mapping->list);
3157                 kfree(mapping);
3158         }
3159
3160         dma_fence_put(vm->last_update);
3161         for (i = 0; i < AMDGPU_MAX_VMHUBS; i++)
3162                 amdgpu_vmid_free_reserved(adev, vm, i);
3163 }
3164
3165 /**
3166  * amdgpu_vm_manager_init - init the VM manager
3167  *
3168  * @adev: amdgpu_device pointer
3169  *
3170  * Initialize the VM manager structures
3171  */
3172 void amdgpu_vm_manager_init(struct amdgpu_device *adev)
3173 {
3174         unsigned i;
3175
3176         amdgpu_vmid_mgr_init(adev);
3177
3178         adev->vm_manager.fence_context =
3179                 dma_fence_context_alloc(AMDGPU_MAX_RINGS);
3180         for (i = 0; i < AMDGPU_MAX_RINGS; ++i)
3181                 adev->vm_manager.seqno[i] = 0;
3182
3183         spin_lock_init(&adev->vm_manager.prt_lock);
3184         atomic_set(&adev->vm_manager.num_prt_users, 0);
3185
3186         /* If not overridden by the user, by default, only in large BAR systems
3187          * Compute VM tables will be updated by CPU
3188          */
3189 #ifdef CONFIG_X86_64
3190         if (amdgpu_vm_update_mode == -1) {
3191                 if (amdgpu_gmc_vram_full_visible(&adev->gmc))
3192                         adev->vm_manager.vm_update_mode =
3193                                 AMDGPU_VM_USE_CPU_FOR_COMPUTE;
3194                 else
3195                         adev->vm_manager.vm_update_mode = 0;
3196         } else
3197                 adev->vm_manager.vm_update_mode = amdgpu_vm_update_mode;
3198 #else
3199         adev->vm_manager.vm_update_mode = 0;
3200 #endif
3201
3202         idr_init(&adev->vm_manager.pasid_idr);
3203         spin_lock_init(&adev->vm_manager.pasid_lock);
3204 }
3205
3206 /**
3207  * amdgpu_vm_manager_fini - cleanup VM manager
3208  *
3209  * @adev: amdgpu_device pointer
3210  *
3211  * Cleanup the VM manager and free resources.
3212  */
3213 void amdgpu_vm_manager_fini(struct amdgpu_device *adev)
3214 {
3215         WARN_ON(!idr_is_empty(&adev->vm_manager.pasid_idr));
3216         idr_destroy(&adev->vm_manager.pasid_idr);
3217
3218         amdgpu_vmid_mgr_fini(adev);
3219 }
3220
3221 /**
3222  * amdgpu_vm_ioctl - Manages VMID reservation for vm hubs.
3223  *
3224  * @dev: drm device pointer
3225  * @data: drm_amdgpu_vm
3226  * @filp: drm file pointer
3227  *
3228  * Returns:
3229  * 0 for success, -errno for errors.
3230  */
3231 int amdgpu_vm_ioctl(struct drm_device *dev, void *data, struct drm_file *filp)
3232 {
3233         union drm_amdgpu_vm *args = data;
3234         struct amdgpu_device *adev = drm_to_adev(dev);
3235         struct amdgpu_fpriv *fpriv = filp->driver_priv;
3236         long timeout = msecs_to_jiffies(2000);
3237         int r;
3238
3239         switch (args->in.op) {
3240         case AMDGPU_VM_OP_RESERVE_VMID:
3241                 /* We only have requirement to reserve vmid from gfxhub */
3242                 r = amdgpu_vmid_alloc_reserved(adev, &fpriv->vm,
3243                                                AMDGPU_GFXHUB_0);
3244                 if (r)
3245                         return r;
3246                 break;
3247         case AMDGPU_VM_OP_UNRESERVE_VMID:
3248                 if (amdgpu_sriov_runtime(adev))
3249                         timeout = 8 * timeout;
3250
3251                 /* Wait vm idle to make sure the vmid set in SPM_VMID is
3252                  * not referenced anymore.
3253                  */
3254                 r = amdgpu_bo_reserve(fpriv->vm.root.base.bo, true);
3255                 if (r)
3256                         return r;
3257
3258                 r = amdgpu_vm_wait_idle(&fpriv->vm, timeout);
3259                 if (r < 0)
3260                         return r;
3261
3262                 amdgpu_bo_unreserve(fpriv->vm.root.base.bo);
3263                 amdgpu_vmid_free_reserved(adev, &fpriv->vm, AMDGPU_GFXHUB_0);
3264                 break;
3265         default:
3266                 return -EINVAL;
3267         }
3268
3269         return 0;
3270 }
3271
3272 /**
3273  * amdgpu_vm_get_task_info - Extracts task info for a PASID.
3274  *
3275  * @adev: drm device pointer
3276  * @pasid: PASID identifier for VM
3277  * @task_info: task_info to fill.
3278  */
3279 void amdgpu_vm_get_task_info(struct amdgpu_device *adev, u32 pasid,
3280                          struct amdgpu_task_info *task_info)
3281 {
3282         struct amdgpu_vm *vm;
3283         unsigned long flags;
3284
3285         spin_lock_irqsave(&adev->vm_manager.pasid_lock, flags);
3286
3287         vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3288         if (vm)
3289                 *task_info = vm->task_info;
3290
3291         spin_unlock_irqrestore(&adev->vm_manager.pasid_lock, flags);
3292 }
3293
3294 /**
3295  * amdgpu_vm_set_task_info - Sets VMs task info.
3296  *
3297  * @vm: vm for which to set the info
3298  */
3299 void amdgpu_vm_set_task_info(struct amdgpu_vm *vm)
3300 {
3301         if (vm->task_info.pid)
3302                 return;
3303
3304         vm->task_info.pid = current->pid;
3305         get_task_comm(vm->task_info.task_name, current);
3306
3307         if (current->group_leader->mm != current->mm)
3308                 return;
3309
3310         vm->task_info.tgid = current->group_leader->pid;
3311         get_task_comm(vm->task_info.process_name, current->group_leader);
3312 }
3313
3314 /**
3315  * amdgpu_vm_handle_fault - graceful handling of VM faults.
3316  * @adev: amdgpu device pointer
3317  * @pasid: PASID of the VM
3318  * @addr: Address of the fault
3319  *
3320  * Try to gracefully handle a VM fault. Return true if the fault was handled and
3321  * shouldn't be reported any more.
3322  */
3323 bool amdgpu_vm_handle_fault(struct amdgpu_device *adev, u32 pasid,
3324                             uint64_t addr)
3325 {
3326         struct amdgpu_bo *root;
3327         uint64_t value, flags;
3328         struct amdgpu_vm *vm;
3329         long r;
3330
3331         spin_lock(&adev->vm_manager.pasid_lock);
3332         vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3333         if (vm)
3334                 root = amdgpu_bo_ref(vm->root.base.bo);
3335         else
3336                 root = NULL;
3337         spin_unlock(&adev->vm_manager.pasid_lock);
3338
3339         if (!root)
3340                 return false;
3341
3342         r = amdgpu_bo_reserve(root, true);
3343         if (r)
3344                 goto error_unref;
3345
3346         /* Double check that the VM still exists */
3347         spin_lock(&adev->vm_manager.pasid_lock);
3348         vm = idr_find(&adev->vm_manager.pasid_idr, pasid);
3349         if (vm && vm->root.base.bo != root)
3350                 vm = NULL;
3351         spin_unlock(&adev->vm_manager.pasid_lock);
3352         if (!vm)
3353                 goto error_unlock;
3354
3355         addr /= AMDGPU_GPU_PAGE_SIZE;
3356         flags = AMDGPU_PTE_VALID | AMDGPU_PTE_SNOOPED |
3357                 AMDGPU_PTE_SYSTEM;
3358
3359         if (vm->is_compute_context) {
3360                 /* Intentionally setting invalid PTE flag
3361                  * combination to force a no-retry-fault
3362                  */
3363                 flags = AMDGPU_PTE_EXECUTABLE | AMDGPU_PDE_PTE |
3364                         AMDGPU_PTE_TF;
3365                 value = 0;
3366
3367         } else if (amdgpu_vm_fault_stop == AMDGPU_VM_FAULT_STOP_NEVER) {
3368                 /* Redirect the access to the dummy page */
3369                 value = adev->dummy_page_addr;
3370                 flags |= AMDGPU_PTE_EXECUTABLE | AMDGPU_PTE_READABLE |
3371                         AMDGPU_PTE_WRITEABLE;
3372
3373         } else {
3374                 /* Let the hw retry silently on the PTE */
3375                 value = 0;
3376         }
3377
3378         r = amdgpu_vm_bo_update_mapping(adev, vm, true, false, NULL, addr,
3379                                         addr + 1, flags, value, NULL, NULL);
3380         if (r)
3381                 goto error_unlock;
3382
3383         r = amdgpu_vm_update_pdes(adev, vm, true);
3384
3385 error_unlock:
3386         amdgpu_bo_unreserve(root);
3387         if (r < 0)
3388                 DRM_ERROR("Can't handle page fault (%ld)\n", r);
3389
3390 error_unref:
3391         amdgpu_bo_unref(&root);
3392
3393         return false;
3394 }