Merge tag 'amd-drm-next-6.5-2023-06-09' of https://gitlab.freedesktop.org/agd5f/linux...
[sfrench/cifs-2.6.git] / drivers / gpu / drm / amd / amdgpu / amdgpu_ttm.c
1 /*
2  * Copyright 2009 Jerome Glisse.
3  * All Rights Reserved.
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the
7  * "Software"), to deal in the Software without restriction, including
8  * without limitation the rights to use, copy, modify, merge, publish,
9  * distribute, sub license, and/or sell copies of the Software, and to
10  * permit persons to whom the Software is furnished to do so, subject to
11  * the following conditions:
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
16  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
17  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
18  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
19  * USE OR OTHER DEALINGS IN THE SOFTWARE.
20  *
21  * The above copyright notice and this permission notice (including the
22  * next paragraph) shall be included in all copies or substantial portions
23  * of the Software.
24  *
25  */
26 /*
27  * Authors:
28  *    Jerome Glisse <glisse@freedesktop.org>
29  *    Thomas Hellstrom <thomas-at-tungstengraphics-dot-com>
30  *    Dave Airlie
31  */
32
33 #include <linux/dma-mapping.h>
34 #include <linux/iommu.h>
35 #include <linux/pagemap.h>
36 #include <linux/sched/task.h>
37 #include <linux/sched/mm.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/dma-buf.h>
42 #include <linux/sizes.h>
43 #include <linux/module.h>
44
45 #include <drm/drm_drv.h>
46 #include <drm/ttm/ttm_bo.h>
47 #include <drm/ttm/ttm_placement.h>
48 #include <drm/ttm/ttm_range_manager.h>
49 #include <drm/ttm/ttm_tt.h>
50
51 #include <drm/amdgpu_drm.h>
52 #include <drm/drm_drv.h>
53
54 #include "amdgpu.h"
55 #include "amdgpu_object.h"
56 #include "amdgpu_trace.h"
57 #include "amdgpu_amdkfd.h"
58 #include "amdgpu_sdma.h"
59 #include "amdgpu_ras.h"
60 #include "amdgpu_hmm.h"
61 #include "amdgpu_atomfirmware.h"
62 #include "amdgpu_res_cursor.h"
63 #include "bif/bif_4_1_d.h"
64
65 MODULE_IMPORT_NS(DMA_BUF);
66
67 #define AMDGPU_TTM_VRAM_MAX_DW_READ     ((size_t)128)
68
69 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
70                                    struct ttm_tt *ttm,
71                                    struct ttm_resource *bo_mem);
72 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
73                                       struct ttm_tt *ttm);
74
75 static int amdgpu_ttm_init_on_chip(struct amdgpu_device *adev,
76                                     unsigned int type,
77                                     uint64_t size_in_page)
78 {
79         return ttm_range_man_init(&adev->mman.bdev, type,
80                                   false, size_in_page);
81 }
82
83 /**
84  * amdgpu_evict_flags - Compute placement flags
85  *
86  * @bo: The buffer object to evict
87  * @placement: Possible destination(s) for evicted BO
88  *
89  * Fill in placement data when ttm_bo_evict() is called
90  */
91 static void amdgpu_evict_flags(struct ttm_buffer_object *bo,
92                                 struct ttm_placement *placement)
93 {
94         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
95         struct amdgpu_bo *abo;
96         static const struct ttm_place placements = {
97                 .fpfn = 0,
98                 .lpfn = 0,
99                 .mem_type = TTM_PL_SYSTEM,
100                 .flags = 0
101         };
102
103         /* Don't handle scatter gather BOs */
104         if (bo->type == ttm_bo_type_sg) {
105                 placement->num_placement = 0;
106                 placement->num_busy_placement = 0;
107                 return;
108         }
109
110         /* Object isn't an AMDGPU object so ignore */
111         if (!amdgpu_bo_is_amdgpu_bo(bo)) {
112                 placement->placement = &placements;
113                 placement->busy_placement = &placements;
114                 placement->num_placement = 1;
115                 placement->num_busy_placement = 1;
116                 return;
117         }
118
119         abo = ttm_to_amdgpu_bo(bo);
120         if (abo->flags & AMDGPU_GEM_CREATE_DISCARDABLE) {
121                 placement->num_placement = 0;
122                 placement->num_busy_placement = 0;
123                 return;
124         }
125
126         switch (bo->resource->mem_type) {
127         case AMDGPU_PL_GDS:
128         case AMDGPU_PL_GWS:
129         case AMDGPU_PL_OA:
130                 placement->num_placement = 0;
131                 placement->num_busy_placement = 0;
132                 return;
133
134         case TTM_PL_VRAM:
135                 if (!adev->mman.buffer_funcs_enabled) {
136                         /* Move to system memory */
137                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
138                 } else if (!amdgpu_gmc_vram_full_visible(&adev->gmc) &&
139                            !(abo->flags & AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED) &&
140                            amdgpu_bo_in_cpu_visible_vram(abo)) {
141
142                         /* Try evicting to the CPU inaccessible part of VRAM
143                          * first, but only set GTT as busy placement, so this
144                          * BO will be evicted to GTT rather than causing other
145                          * BOs to be evicted from VRAM
146                          */
147                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_VRAM |
148                                                         AMDGPU_GEM_DOMAIN_GTT |
149                                                         AMDGPU_GEM_DOMAIN_CPU);
150                         abo->placements[0].fpfn = adev->gmc.visible_vram_size >> PAGE_SHIFT;
151                         abo->placements[0].lpfn = 0;
152                         abo->placement.busy_placement = &abo->placements[1];
153                         abo->placement.num_busy_placement = 1;
154                 } else {
155                         /* Move to GTT memory */
156                         amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_GTT |
157                                                         AMDGPU_GEM_DOMAIN_CPU);
158                 }
159                 break;
160         case TTM_PL_TT:
161         case AMDGPU_PL_PREEMPT:
162         default:
163                 amdgpu_bo_placement_from_domain(abo, AMDGPU_GEM_DOMAIN_CPU);
164                 break;
165         }
166         *placement = abo->placement;
167 }
168
169 /**
170  * amdgpu_ttm_map_buffer - Map memory into the GART windows
171  * @bo: buffer object to map
172  * @mem: memory object to map
173  * @mm_cur: range to map
174  * @window: which GART window to use
175  * @ring: DMA ring to use for the copy
176  * @tmz: if we should setup a TMZ enabled mapping
177  * @size: in number of bytes to map, out number of bytes mapped
178  * @addr: resulting address inside the MC address space
179  *
180  * Setup one of the GART windows to access a specific piece of memory or return
181  * the physical address for local memory.
182  */
183 static int amdgpu_ttm_map_buffer(struct ttm_buffer_object *bo,
184                                  struct ttm_resource *mem,
185                                  struct amdgpu_res_cursor *mm_cur,
186                                  unsigned int window, struct amdgpu_ring *ring,
187                                  bool tmz, uint64_t *size, uint64_t *addr)
188 {
189         struct amdgpu_device *adev = ring->adev;
190         unsigned int offset, num_pages, num_dw, num_bytes;
191         uint64_t src_addr, dst_addr;
192         struct amdgpu_job *job;
193         void *cpu_addr;
194         uint64_t flags;
195         unsigned int i;
196         int r;
197
198         BUG_ON(adev->mman.buffer_funcs->copy_max_bytes <
199                AMDGPU_GTT_MAX_TRANSFER_SIZE * 8);
200
201         if (WARN_ON(mem->mem_type == AMDGPU_PL_PREEMPT))
202                 return -EINVAL;
203
204         /* Map only what can't be accessed directly */
205         if (!tmz && mem->start != AMDGPU_BO_INVALID_OFFSET) {
206                 *addr = amdgpu_ttm_domain_start(adev, mem->mem_type) +
207                         mm_cur->start;
208                 return 0;
209         }
210
211
212         /*
213          * If start begins at an offset inside the page, then adjust the size
214          * and addr accordingly
215          */
216         offset = mm_cur->start & ~PAGE_MASK;
217
218         num_pages = PFN_UP(*size + offset);
219         num_pages = min_t(uint32_t, num_pages, AMDGPU_GTT_MAX_TRANSFER_SIZE);
220
221         *size = min(*size, (uint64_t)num_pages * PAGE_SIZE - offset);
222
223         *addr = adev->gmc.gart_start;
224         *addr += (u64)window * AMDGPU_GTT_MAX_TRANSFER_SIZE *
225                 AMDGPU_GPU_PAGE_SIZE;
226         *addr += offset;
227
228         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
229         num_bytes = num_pages * 8 * AMDGPU_GPU_PAGES_IN_CPU_PAGE;
230
231         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
232                                      AMDGPU_FENCE_OWNER_UNDEFINED,
233                                      num_dw * 4 + num_bytes,
234                                      AMDGPU_IB_POOL_DELAYED, &job);
235         if (r)
236                 return r;
237
238         src_addr = num_dw * 4;
239         src_addr += job->ibs[0].gpu_addr;
240
241         dst_addr = amdgpu_bo_gpu_offset(adev->gart.bo);
242         dst_addr += window * AMDGPU_GTT_MAX_TRANSFER_SIZE * 8;
243         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr,
244                                 dst_addr, num_bytes, false);
245
246         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
247         WARN_ON(job->ibs[0].length_dw > num_dw);
248
249         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, mem);
250         if (tmz)
251                 flags |= AMDGPU_PTE_TMZ;
252
253         cpu_addr = &job->ibs[0].ptr[num_dw];
254
255         if (mem->mem_type == TTM_PL_TT) {
256                 dma_addr_t *dma_addr;
257
258                 dma_addr = &bo->ttm->dma_address[mm_cur->start >> PAGE_SHIFT];
259                 amdgpu_gart_map(adev, 0, num_pages, dma_addr, flags, cpu_addr);
260         } else {
261                 dma_addr_t dma_address;
262
263                 dma_address = mm_cur->start;
264                 dma_address += adev->vm_manager.vram_base_offset;
265
266                 for (i = 0; i < num_pages; ++i) {
267                         amdgpu_gart_map(adev, i << PAGE_SHIFT, 1, &dma_address,
268                                         flags, cpu_addr);
269                         dma_address += PAGE_SIZE;
270                 }
271         }
272
273         dma_fence_put(amdgpu_job_submit(job));
274         return 0;
275 }
276
277 /**
278  * amdgpu_ttm_copy_mem_to_mem - Helper function for copy
279  * @adev: amdgpu device
280  * @src: buffer/address where to read from
281  * @dst: buffer/address where to write to
282  * @size: number of bytes to copy
283  * @tmz: if a secure copy should be used
284  * @resv: resv object to sync to
285  * @f: Returns the last fence if multiple jobs are submitted.
286  *
287  * The function copies @size bytes from {src->mem + src->offset} to
288  * {dst->mem + dst->offset}. src->bo and dst->bo could be same BO for a
289  * move and different for a BO to BO copy.
290  *
291  */
292 int amdgpu_ttm_copy_mem_to_mem(struct amdgpu_device *adev,
293                                const struct amdgpu_copy_mem *src,
294                                const struct amdgpu_copy_mem *dst,
295                                uint64_t size, bool tmz,
296                                struct dma_resv *resv,
297                                struct dma_fence **f)
298 {
299         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
300         struct amdgpu_res_cursor src_mm, dst_mm;
301         struct dma_fence *fence = NULL;
302         int r = 0;
303
304         if (!adev->mman.buffer_funcs_enabled) {
305                 DRM_ERROR("Trying to move memory with ring turned off.\n");
306                 return -EINVAL;
307         }
308
309         amdgpu_res_first(src->mem, src->offset, size, &src_mm);
310         amdgpu_res_first(dst->mem, dst->offset, size, &dst_mm);
311
312         mutex_lock(&adev->mman.gtt_window_lock);
313         while (src_mm.remaining) {
314                 uint64_t from, to, cur_size;
315                 struct dma_fence *next;
316
317                 /* Never copy more than 256MiB at once to avoid a timeout */
318                 cur_size = min3(src_mm.size, dst_mm.size, 256ULL << 20);
319
320                 /* Map src to window 0 and dst to window 1. */
321                 r = amdgpu_ttm_map_buffer(src->bo, src->mem, &src_mm,
322                                           0, ring, tmz, &cur_size, &from);
323                 if (r)
324                         goto error;
325
326                 r = amdgpu_ttm_map_buffer(dst->bo, dst->mem, &dst_mm,
327                                           1, ring, tmz, &cur_size, &to);
328                 if (r)
329                         goto error;
330
331                 r = amdgpu_copy_buffer(ring, from, to, cur_size,
332                                        resv, &next, false, true, tmz);
333                 if (r)
334                         goto error;
335
336                 dma_fence_put(fence);
337                 fence = next;
338
339                 amdgpu_res_next(&src_mm, cur_size);
340                 amdgpu_res_next(&dst_mm, cur_size);
341         }
342 error:
343         mutex_unlock(&adev->mman.gtt_window_lock);
344         if (f)
345                 *f = dma_fence_get(fence);
346         dma_fence_put(fence);
347         return r;
348 }
349
350 /*
351  * amdgpu_move_blit - Copy an entire buffer to another buffer
352  *
353  * This is a helper called by amdgpu_bo_move() and amdgpu_move_vram_ram() to
354  * help move buffers to and from VRAM.
355  */
356 static int amdgpu_move_blit(struct ttm_buffer_object *bo,
357                             bool evict,
358                             struct ttm_resource *new_mem,
359                             struct ttm_resource *old_mem)
360 {
361         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
362         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
363         struct amdgpu_copy_mem src, dst;
364         struct dma_fence *fence = NULL;
365         int r;
366
367         src.bo = bo;
368         dst.bo = bo;
369         src.mem = old_mem;
370         dst.mem = new_mem;
371         src.offset = 0;
372         dst.offset = 0;
373
374         r = amdgpu_ttm_copy_mem_to_mem(adev, &src, &dst,
375                                        new_mem->size,
376                                        amdgpu_bo_encrypted(abo),
377                                        bo->base.resv, &fence);
378         if (r)
379                 goto error;
380
381         /* clear the space being freed */
382         if (old_mem->mem_type == TTM_PL_VRAM &&
383             (abo->flags & AMDGPU_GEM_CREATE_VRAM_WIPE_ON_RELEASE)) {
384                 struct dma_fence *wipe_fence = NULL;
385
386                 r = amdgpu_fill_buffer(abo, AMDGPU_POISON, NULL, &wipe_fence,
387                                         false);
388                 if (r) {
389                         goto error;
390                 } else if (wipe_fence) {
391                         dma_fence_put(fence);
392                         fence = wipe_fence;
393                 }
394         }
395
396         /* Always block for VM page tables before committing the new location */
397         if (bo->type == ttm_bo_type_kernel)
398                 r = ttm_bo_move_accel_cleanup(bo, fence, true, false, new_mem);
399         else
400                 r = ttm_bo_move_accel_cleanup(bo, fence, evict, true, new_mem);
401         dma_fence_put(fence);
402         return r;
403
404 error:
405         if (fence)
406                 dma_fence_wait(fence, false);
407         dma_fence_put(fence);
408         return r;
409 }
410
411 /*
412  * amdgpu_mem_visible - Check that memory can be accessed by ttm_bo_move_memcpy
413  *
414  * Called by amdgpu_bo_move()
415  */
416 static bool amdgpu_mem_visible(struct amdgpu_device *adev,
417                                struct ttm_resource *mem)
418 {
419         u64 mem_size = (u64)mem->size;
420         struct amdgpu_res_cursor cursor;
421         u64 end;
422
423         if (mem->mem_type == TTM_PL_SYSTEM ||
424             mem->mem_type == TTM_PL_TT)
425                 return true;
426         if (mem->mem_type != TTM_PL_VRAM)
427                 return false;
428
429         amdgpu_res_first(mem, 0, mem_size, &cursor);
430         end = cursor.start + cursor.size;
431         while (cursor.remaining) {
432                 amdgpu_res_next(&cursor, cursor.size);
433
434                 if (!cursor.remaining)
435                         break;
436
437                 /* ttm_resource_ioremap only supports contiguous memory */
438                 if (end != cursor.start)
439                         return false;
440
441                 end = cursor.start + cursor.size;
442         }
443
444         return end <= adev->gmc.visible_vram_size;
445 }
446
447 /*
448  * amdgpu_bo_move - Move a buffer object to a new memory location
449  *
450  * Called by ttm_bo_handle_move_mem()
451  */
452 static int amdgpu_bo_move(struct ttm_buffer_object *bo, bool evict,
453                           struct ttm_operation_ctx *ctx,
454                           struct ttm_resource *new_mem,
455                           struct ttm_place *hop)
456 {
457         struct amdgpu_device *adev;
458         struct amdgpu_bo *abo;
459         struct ttm_resource *old_mem = bo->resource;
460         int r;
461
462         if (new_mem->mem_type == TTM_PL_TT ||
463             new_mem->mem_type == AMDGPU_PL_PREEMPT) {
464                 r = amdgpu_ttm_backend_bind(bo->bdev, bo->ttm, new_mem);
465                 if (r)
466                         return r;
467         }
468
469         abo = ttm_to_amdgpu_bo(bo);
470         adev = amdgpu_ttm_adev(bo->bdev);
471
472         if (!old_mem || (old_mem->mem_type == TTM_PL_SYSTEM &&
473                          bo->ttm == NULL)) {
474                 ttm_bo_move_null(bo, new_mem);
475                 goto out;
476         }
477         if (old_mem->mem_type == TTM_PL_SYSTEM &&
478             (new_mem->mem_type == TTM_PL_TT ||
479              new_mem->mem_type == AMDGPU_PL_PREEMPT)) {
480                 ttm_bo_move_null(bo, new_mem);
481                 goto out;
482         }
483         if ((old_mem->mem_type == TTM_PL_TT ||
484              old_mem->mem_type == AMDGPU_PL_PREEMPT) &&
485             new_mem->mem_type == TTM_PL_SYSTEM) {
486                 r = ttm_bo_wait_ctx(bo, ctx);
487                 if (r)
488                         return r;
489
490                 amdgpu_ttm_backend_unbind(bo->bdev, bo->ttm);
491                 ttm_resource_free(bo, &bo->resource);
492                 ttm_bo_assign_mem(bo, new_mem);
493                 goto out;
494         }
495
496         if (old_mem->mem_type == AMDGPU_PL_GDS ||
497             old_mem->mem_type == AMDGPU_PL_GWS ||
498             old_mem->mem_type == AMDGPU_PL_OA ||
499             new_mem->mem_type == AMDGPU_PL_GDS ||
500             new_mem->mem_type == AMDGPU_PL_GWS ||
501             new_mem->mem_type == AMDGPU_PL_OA) {
502                 /* Nothing to save here */
503                 ttm_bo_move_null(bo, new_mem);
504                 goto out;
505         }
506
507         if (bo->type == ttm_bo_type_device &&
508             new_mem->mem_type == TTM_PL_VRAM &&
509             old_mem->mem_type != TTM_PL_VRAM) {
510                 /* amdgpu_bo_fault_reserve_notify will re-set this if the CPU
511                  * accesses the BO after it's moved.
512                  */
513                 abo->flags &= ~AMDGPU_GEM_CREATE_CPU_ACCESS_REQUIRED;
514         }
515
516         if (adev->mman.buffer_funcs_enabled) {
517                 if (((old_mem->mem_type == TTM_PL_SYSTEM &&
518                       new_mem->mem_type == TTM_PL_VRAM) ||
519                      (old_mem->mem_type == TTM_PL_VRAM &&
520                       new_mem->mem_type == TTM_PL_SYSTEM))) {
521                         hop->fpfn = 0;
522                         hop->lpfn = 0;
523                         hop->mem_type = TTM_PL_TT;
524                         hop->flags = TTM_PL_FLAG_TEMPORARY;
525                         return -EMULTIHOP;
526                 }
527
528                 r = amdgpu_move_blit(bo, evict, new_mem, old_mem);
529         } else {
530                 r = -ENODEV;
531         }
532
533         if (r) {
534                 /* Check that all memory is CPU accessible */
535                 if (!amdgpu_mem_visible(adev, old_mem) ||
536                     !amdgpu_mem_visible(adev, new_mem)) {
537                         pr_err("Move buffer fallback to memcpy unavailable\n");
538                         return r;
539                 }
540
541                 r = ttm_bo_move_memcpy(bo, ctx, new_mem);
542                 if (r)
543                         return r;
544         }
545
546 out:
547         /* update statistics */
548         atomic64_add(bo->base.size, &adev->num_bytes_moved);
549         amdgpu_bo_move_notify(bo, evict, new_mem);
550         return 0;
551 }
552
553 /*
554  * amdgpu_ttm_io_mem_reserve - Reserve a block of memory during a fault
555  *
556  * Called by ttm_mem_io_reserve() ultimately via ttm_bo_vm_fault()
557  */
558 static int amdgpu_ttm_io_mem_reserve(struct ttm_device *bdev,
559                                      struct ttm_resource *mem)
560 {
561         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
562         size_t bus_size = (size_t)mem->size;
563
564         switch (mem->mem_type) {
565         case TTM_PL_SYSTEM:
566                 /* system memory */
567                 return 0;
568         case TTM_PL_TT:
569         case AMDGPU_PL_PREEMPT:
570                 break;
571         case TTM_PL_VRAM:
572                 mem->bus.offset = mem->start << PAGE_SHIFT;
573                 /* check if it's visible */
574                 if ((mem->bus.offset + bus_size) > adev->gmc.visible_vram_size)
575                         return -EINVAL;
576
577                 if (adev->mman.aper_base_kaddr &&
578                     mem->placement & TTM_PL_FLAG_CONTIGUOUS)
579                         mem->bus.addr = (u8 *)adev->mman.aper_base_kaddr +
580                                         mem->bus.offset;
581
582                 mem->bus.offset += adev->gmc.aper_base;
583                 mem->bus.is_iomem = true;
584                 break;
585         default:
586                 return -EINVAL;
587         }
588         return 0;
589 }
590
591 static unsigned long amdgpu_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
592                                            unsigned long page_offset)
593 {
594         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
595         struct amdgpu_res_cursor cursor;
596
597         amdgpu_res_first(bo->resource, (u64)page_offset << PAGE_SHIFT, 0,
598                          &cursor);
599         return (adev->gmc.aper_base + cursor.start) >> PAGE_SHIFT;
600 }
601
602 /**
603  * amdgpu_ttm_domain_start - Returns GPU start address
604  * @adev: amdgpu device object
605  * @type: type of the memory
606  *
607  * Returns:
608  * GPU start address of a memory domain
609  */
610
611 uint64_t amdgpu_ttm_domain_start(struct amdgpu_device *adev, uint32_t type)
612 {
613         switch (type) {
614         case TTM_PL_TT:
615                 return adev->gmc.gart_start;
616         case TTM_PL_VRAM:
617                 return adev->gmc.vram_start;
618         }
619
620         return 0;
621 }
622
623 /*
624  * TTM backend functions.
625  */
626 struct amdgpu_ttm_tt {
627         struct ttm_tt   ttm;
628         struct drm_gem_object   *gobj;
629         u64                     offset;
630         uint64_t                userptr;
631         struct task_struct      *usertask;
632         uint32_t                userflags;
633         bool                    bound;
634         int32_t                 pool_id;
635 };
636
637 #define ttm_to_amdgpu_ttm_tt(ptr)       container_of(ptr, struct amdgpu_ttm_tt, ttm)
638
639 #ifdef CONFIG_DRM_AMDGPU_USERPTR
640 /*
641  * amdgpu_ttm_tt_get_user_pages - get device accessible pages that back user
642  * memory and start HMM tracking CPU page table update
643  *
644  * Calling function must call amdgpu_ttm_tt_userptr_range_done() once and only
645  * once afterwards to stop HMM tracking
646  */
647 int amdgpu_ttm_tt_get_user_pages(struct amdgpu_bo *bo, struct page **pages,
648                                  struct hmm_range **range)
649 {
650         struct ttm_tt *ttm = bo->tbo.ttm;
651         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
652         unsigned long start = gtt->userptr;
653         struct vm_area_struct *vma;
654         struct mm_struct *mm;
655         bool readonly;
656         int r = 0;
657
658         /* Make sure get_user_pages_done() can cleanup gracefully */
659         *range = NULL;
660
661         mm = bo->notifier.mm;
662         if (unlikely(!mm)) {
663                 DRM_DEBUG_DRIVER("BO is not registered?\n");
664                 return -EFAULT;
665         }
666
667         if (!mmget_not_zero(mm)) /* Happens during process shutdown */
668                 return -ESRCH;
669
670         mmap_read_lock(mm);
671         vma = vma_lookup(mm, start);
672         if (unlikely(!vma)) {
673                 r = -EFAULT;
674                 goto out_unlock;
675         }
676         if (unlikely((gtt->userflags & AMDGPU_GEM_USERPTR_ANONONLY) &&
677                 vma->vm_file)) {
678                 r = -EPERM;
679                 goto out_unlock;
680         }
681
682         readonly = amdgpu_ttm_tt_is_readonly(ttm);
683         r = amdgpu_hmm_range_get_pages(&bo->notifier, start, ttm->num_pages,
684                                        readonly, NULL, pages, range);
685 out_unlock:
686         mmap_read_unlock(mm);
687         if (r)
688                 pr_debug("failed %d to get user pages 0x%lx\n", r, start);
689
690         mmput(mm);
691
692         return r;
693 }
694
695 /* amdgpu_ttm_tt_discard_user_pages - Discard range and pfn array allocations
696  */
697 void amdgpu_ttm_tt_discard_user_pages(struct ttm_tt *ttm,
698                                       struct hmm_range *range)
699 {
700         struct amdgpu_ttm_tt *gtt = (void *)ttm;
701
702         if (gtt && gtt->userptr && range)
703                 amdgpu_hmm_range_get_pages_done(range);
704 }
705
706 /*
707  * amdgpu_ttm_tt_get_user_pages_done - stop HMM track the CPU page table change
708  * Check if the pages backing this ttm range have been invalidated
709  *
710  * Returns: true if pages are still valid
711  */
712 bool amdgpu_ttm_tt_get_user_pages_done(struct ttm_tt *ttm,
713                                        struct hmm_range *range)
714 {
715         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
716
717         if (!gtt || !gtt->userptr || !range)
718                 return false;
719
720         DRM_DEBUG_DRIVER("user_pages_done 0x%llx pages 0x%x\n",
721                 gtt->userptr, ttm->num_pages);
722
723         WARN_ONCE(!range->hmm_pfns, "No user pages to check\n");
724
725         return !amdgpu_hmm_range_get_pages_done(range);
726 }
727 #endif
728
729 /*
730  * amdgpu_ttm_tt_set_user_pages - Copy pages in, putting old pages as necessary.
731  *
732  * Called by amdgpu_cs_list_validate(). This creates the page list
733  * that backs user memory and will ultimately be mapped into the device
734  * address space.
735  */
736 void amdgpu_ttm_tt_set_user_pages(struct ttm_tt *ttm, struct page **pages)
737 {
738         unsigned long i;
739
740         for (i = 0; i < ttm->num_pages; ++i)
741                 ttm->pages[i] = pages ? pages[i] : NULL;
742 }
743
744 /*
745  * amdgpu_ttm_tt_pin_userptr - prepare the sg table with the user pages
746  *
747  * Called by amdgpu_ttm_backend_bind()
748  **/
749 static int amdgpu_ttm_tt_pin_userptr(struct ttm_device *bdev,
750                                      struct ttm_tt *ttm)
751 {
752         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
753         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
754         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
755         enum dma_data_direction direction = write ?
756                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
757         int r;
758
759         /* Allocate an SG array and squash pages into it */
760         r = sg_alloc_table_from_pages(ttm->sg, ttm->pages, ttm->num_pages, 0,
761                                       (u64)ttm->num_pages << PAGE_SHIFT,
762                                       GFP_KERNEL);
763         if (r)
764                 goto release_sg;
765
766         /* Map SG to device */
767         r = dma_map_sgtable(adev->dev, ttm->sg, direction, 0);
768         if (r)
769                 goto release_sg;
770
771         /* convert SG to linear array of pages and dma addresses */
772         drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
773                                        ttm->num_pages);
774
775         return 0;
776
777 release_sg:
778         kfree(ttm->sg);
779         ttm->sg = NULL;
780         return r;
781 }
782
783 /*
784  * amdgpu_ttm_tt_unpin_userptr - Unpin and unmap userptr pages
785  */
786 static void amdgpu_ttm_tt_unpin_userptr(struct ttm_device *bdev,
787                                         struct ttm_tt *ttm)
788 {
789         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
790         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
791         int write = !(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
792         enum dma_data_direction direction = write ?
793                 DMA_BIDIRECTIONAL : DMA_TO_DEVICE;
794
795         /* double check that we don't free the table twice */
796         if (!ttm->sg || !ttm->sg->sgl)
797                 return;
798
799         /* unmap the pages mapped to the device */
800         dma_unmap_sgtable(adev->dev, ttm->sg, direction, 0);
801         sg_free_table(ttm->sg);
802 }
803
804 /*
805  * total_pages is constructed as MQD0+CtrlStack0 + MQD1+CtrlStack1 + ...
806  * MQDn+CtrlStackn where n is the number of XCCs per partition.
807  * pages_per_xcc is the size of one MQD+CtrlStack. The first page is MQD
808  * and uses memory type default, UC. The rest of pages_per_xcc are
809  * Ctrl stack and modify their memory type to NC.
810  */
811 static void amdgpu_ttm_gart_bind_gfx9_mqd(struct amdgpu_device *adev,
812                                 struct ttm_tt *ttm, uint64_t flags)
813 {
814         struct amdgpu_ttm_tt *gtt = (void *)ttm;
815         uint64_t total_pages = ttm->num_pages;
816         int num_xcc = max(1U, adev->gfx.num_xcc_per_xcp);
817         uint64_t page_idx, pages_per_xcc;
818         int i;
819         uint64_t ctrl_flags = (flags & ~AMDGPU_PTE_MTYPE_VG10_MASK) |
820                         AMDGPU_PTE_MTYPE_VG10(AMDGPU_MTYPE_NC);
821
822         pages_per_xcc = total_pages;
823         do_div(pages_per_xcc, num_xcc);
824
825         for (i = 0, page_idx = 0; i < num_xcc; i++, page_idx += pages_per_xcc) {
826                 /* MQD page: use default flags */
827                 amdgpu_gart_bind(adev,
828                                 gtt->offset + (page_idx << PAGE_SHIFT),
829                                 1, &gtt->ttm.dma_address[page_idx], flags);
830                 /*
831                  * Ctrl pages - modify the memory type to NC (ctrl_flags) from
832                  * the second page of the BO onward.
833                  */
834                 amdgpu_gart_bind(adev,
835                                 gtt->offset + ((page_idx + 1) << PAGE_SHIFT),
836                                 pages_per_xcc - 1,
837                                 &gtt->ttm.dma_address[page_idx + 1],
838                                 ctrl_flags);
839         }
840 }
841
842 static void amdgpu_ttm_gart_bind(struct amdgpu_device *adev,
843                                  struct ttm_buffer_object *tbo,
844                                  uint64_t flags)
845 {
846         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(tbo);
847         struct ttm_tt *ttm = tbo->ttm;
848         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
849
850         if (amdgpu_bo_encrypted(abo))
851                 flags |= AMDGPU_PTE_TMZ;
852
853         if (abo->flags & AMDGPU_GEM_CREATE_CP_MQD_GFX9) {
854                 amdgpu_ttm_gart_bind_gfx9_mqd(adev, ttm, flags);
855         } else {
856                 amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
857                                  gtt->ttm.dma_address, flags);
858         }
859 }
860
861 /*
862  * amdgpu_ttm_backend_bind - Bind GTT memory
863  *
864  * Called by ttm_tt_bind() on behalf of ttm_bo_handle_move_mem().
865  * This handles binding GTT memory to the device address space.
866  */
867 static int amdgpu_ttm_backend_bind(struct ttm_device *bdev,
868                                    struct ttm_tt *ttm,
869                                    struct ttm_resource *bo_mem)
870 {
871         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
872         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
873         uint64_t flags;
874         int r;
875
876         if (!bo_mem)
877                 return -EINVAL;
878
879         if (gtt->bound)
880                 return 0;
881
882         if (gtt->userptr) {
883                 r = amdgpu_ttm_tt_pin_userptr(bdev, ttm);
884                 if (r) {
885                         DRM_ERROR("failed to pin userptr\n");
886                         return r;
887                 }
888         } else if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL) {
889                 if (!ttm->sg) {
890                         struct dma_buf_attachment *attach;
891                         struct sg_table *sgt;
892
893                         attach = gtt->gobj->import_attach;
894                         sgt = dma_buf_map_attachment(attach, DMA_BIDIRECTIONAL);
895                         if (IS_ERR(sgt))
896                                 return PTR_ERR(sgt);
897
898                         ttm->sg = sgt;
899                 }
900
901                 drm_prime_sg_to_dma_addr_array(ttm->sg, gtt->ttm.dma_address,
902                                                ttm->num_pages);
903         }
904
905         if (!ttm->num_pages) {
906                 WARN(1, "nothing to bind %u pages for mreg %p back %p!\n",
907                      ttm->num_pages, bo_mem, ttm);
908         }
909
910         if (bo_mem->mem_type != TTM_PL_TT ||
911             !amdgpu_gtt_mgr_has_gart_addr(bo_mem)) {
912                 gtt->offset = AMDGPU_BO_INVALID_OFFSET;
913                 return 0;
914         }
915
916         /* compute PTE flags relevant to this BO memory */
917         flags = amdgpu_ttm_tt_pte_flags(adev, ttm, bo_mem);
918
919         /* bind pages into GART page tables */
920         gtt->offset = (u64)bo_mem->start << PAGE_SHIFT;
921         amdgpu_gart_bind(adev, gtt->offset, ttm->num_pages,
922                          gtt->ttm.dma_address, flags);
923         gtt->bound = true;
924         return 0;
925 }
926
927 /*
928  * amdgpu_ttm_alloc_gart - Make sure buffer object is accessible either
929  * through AGP or GART aperture.
930  *
931  * If bo is accessible through AGP aperture, then use AGP aperture
932  * to access bo; otherwise allocate logical space in GART aperture
933  * and map bo to GART aperture.
934  */
935 int amdgpu_ttm_alloc_gart(struct ttm_buffer_object *bo)
936 {
937         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
938         struct ttm_operation_ctx ctx = { false, false };
939         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
940         struct ttm_placement placement;
941         struct ttm_place placements;
942         struct ttm_resource *tmp;
943         uint64_t addr, flags;
944         int r;
945
946         if (bo->resource->start != AMDGPU_BO_INVALID_OFFSET)
947                 return 0;
948
949         addr = amdgpu_gmc_agp_addr(bo);
950         if (addr != AMDGPU_BO_INVALID_OFFSET) {
951                 bo->resource->start = addr >> PAGE_SHIFT;
952                 return 0;
953         }
954
955         /* allocate GART space */
956         placement.num_placement = 1;
957         placement.placement = &placements;
958         placement.num_busy_placement = 1;
959         placement.busy_placement = &placements;
960         placements.fpfn = 0;
961         placements.lpfn = adev->gmc.gart_size >> PAGE_SHIFT;
962         placements.mem_type = TTM_PL_TT;
963         placements.flags = bo->resource->placement;
964
965         r = ttm_bo_mem_space(bo, &placement, &tmp, &ctx);
966         if (unlikely(r))
967                 return r;
968
969         /* compute PTE flags for this buffer object */
970         flags = amdgpu_ttm_tt_pte_flags(adev, bo->ttm, tmp);
971
972         /* Bind pages */
973         gtt->offset = (u64)tmp->start << PAGE_SHIFT;
974         amdgpu_ttm_gart_bind(adev, bo, flags);
975         amdgpu_gart_invalidate_tlb(adev);
976         ttm_resource_free(bo, &bo->resource);
977         ttm_bo_assign_mem(bo, tmp);
978
979         return 0;
980 }
981
982 /*
983  * amdgpu_ttm_recover_gart - Rebind GTT pages
984  *
985  * Called by amdgpu_gtt_mgr_recover() from amdgpu_device_reset() to
986  * rebind GTT pages during a GPU reset.
987  */
988 void amdgpu_ttm_recover_gart(struct ttm_buffer_object *tbo)
989 {
990         struct amdgpu_device *adev = amdgpu_ttm_adev(tbo->bdev);
991         uint64_t flags;
992
993         if (!tbo->ttm)
994                 return;
995
996         flags = amdgpu_ttm_tt_pte_flags(adev, tbo->ttm, tbo->resource);
997         amdgpu_ttm_gart_bind(adev, tbo, flags);
998 }
999
1000 /*
1001  * amdgpu_ttm_backend_unbind - Unbind GTT mapped pages
1002  *
1003  * Called by ttm_tt_unbind() on behalf of ttm_bo_move_ttm() and
1004  * ttm_tt_destroy().
1005  */
1006 static void amdgpu_ttm_backend_unbind(struct ttm_device *bdev,
1007                                       struct ttm_tt *ttm)
1008 {
1009         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1010         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1011
1012         /* if the pages have userptr pinning then clear that first */
1013         if (gtt->userptr) {
1014                 amdgpu_ttm_tt_unpin_userptr(bdev, ttm);
1015         } else if (ttm->sg && gtt->gobj->import_attach) {
1016                 struct dma_buf_attachment *attach;
1017
1018                 attach = gtt->gobj->import_attach;
1019                 dma_buf_unmap_attachment(attach, ttm->sg, DMA_BIDIRECTIONAL);
1020                 ttm->sg = NULL;
1021         }
1022
1023         if (!gtt->bound)
1024                 return;
1025
1026         if (gtt->offset == AMDGPU_BO_INVALID_OFFSET)
1027                 return;
1028
1029         /* unbind shouldn't be done for GDS/GWS/OA in ttm_bo_clean_mm */
1030         amdgpu_gart_unbind(adev, gtt->offset, ttm->num_pages);
1031         gtt->bound = false;
1032 }
1033
1034 static void amdgpu_ttm_backend_destroy(struct ttm_device *bdev,
1035                                        struct ttm_tt *ttm)
1036 {
1037         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1038
1039         if (gtt->usertask)
1040                 put_task_struct(gtt->usertask);
1041
1042         ttm_tt_fini(&gtt->ttm);
1043         kfree(gtt);
1044 }
1045
1046 /**
1047  * amdgpu_ttm_tt_create - Create a ttm_tt object for a given BO
1048  *
1049  * @bo: The buffer object to create a GTT ttm_tt object around
1050  * @page_flags: Page flags to be added to the ttm_tt object
1051  *
1052  * Called by ttm_tt_create().
1053  */
1054 static struct ttm_tt *amdgpu_ttm_tt_create(struct ttm_buffer_object *bo,
1055                                            uint32_t page_flags)
1056 {
1057         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->bdev);
1058         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1059         struct amdgpu_ttm_tt *gtt;
1060         enum ttm_caching caching;
1061
1062         gtt = kzalloc(sizeof(struct amdgpu_ttm_tt), GFP_KERNEL);
1063         if (!gtt)
1064                 return NULL;
1065
1066         gtt->gobj = &bo->base;
1067         if (adev->gmc.mem_partitions && abo->xcp_id >= 0)
1068                 gtt->pool_id = KFD_XCP_MEM_ID(adev, abo->xcp_id);
1069         else
1070                 gtt->pool_id = abo->xcp_id;
1071
1072         if (abo->flags & AMDGPU_GEM_CREATE_CPU_GTT_USWC)
1073                 caching = ttm_write_combined;
1074         else
1075                 caching = ttm_cached;
1076
1077         /* allocate space for the uninitialized page entries */
1078         if (ttm_sg_tt_init(&gtt->ttm, bo, page_flags, caching)) {
1079                 kfree(gtt);
1080                 return NULL;
1081         }
1082         return &gtt->ttm;
1083 }
1084
1085 /*
1086  * amdgpu_ttm_tt_populate - Map GTT pages visible to the device
1087  *
1088  * Map the pages of a ttm_tt object to an address space visible
1089  * to the underlying device.
1090  */
1091 static int amdgpu_ttm_tt_populate(struct ttm_device *bdev,
1092                                   struct ttm_tt *ttm,
1093                                   struct ttm_operation_ctx *ctx)
1094 {
1095         struct amdgpu_device *adev = amdgpu_ttm_adev(bdev);
1096         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1097         struct ttm_pool *pool;
1098         pgoff_t i;
1099         int ret;
1100
1101         /* user pages are bound by amdgpu_ttm_tt_pin_userptr() */
1102         if (gtt->userptr) {
1103                 ttm->sg = kzalloc(sizeof(struct sg_table), GFP_KERNEL);
1104                 if (!ttm->sg)
1105                         return -ENOMEM;
1106                 return 0;
1107         }
1108
1109         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1110                 return 0;
1111
1112         if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1113                 pool = &adev->mman.ttm_pools[gtt->pool_id];
1114         else
1115                 pool = &adev->mman.bdev.pool;
1116         ret = ttm_pool_alloc(pool, ttm, ctx);
1117         if (ret)
1118                 return ret;
1119
1120         for (i = 0; i < ttm->num_pages; ++i)
1121                 ttm->pages[i]->mapping = bdev->dev_mapping;
1122
1123         return 0;
1124 }
1125
1126 /*
1127  * amdgpu_ttm_tt_unpopulate - unmap GTT pages and unpopulate page arrays
1128  *
1129  * Unmaps pages of a ttm_tt object from the device address space and
1130  * unpopulates the page array backing it.
1131  */
1132 static void amdgpu_ttm_tt_unpopulate(struct ttm_device *bdev,
1133                                      struct ttm_tt *ttm)
1134 {
1135         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1136         struct amdgpu_device *adev;
1137         struct ttm_pool *pool;
1138         pgoff_t i;
1139
1140         amdgpu_ttm_backend_unbind(bdev, ttm);
1141
1142         if (gtt->userptr) {
1143                 amdgpu_ttm_tt_set_user_pages(ttm, NULL);
1144                 kfree(ttm->sg);
1145                 ttm->sg = NULL;
1146                 return;
1147         }
1148
1149         if (ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
1150                 return;
1151
1152         for (i = 0; i < ttm->num_pages; ++i)
1153                 ttm->pages[i]->mapping = NULL;
1154
1155         adev = amdgpu_ttm_adev(bdev);
1156
1157         if (adev->mman.ttm_pools && gtt->pool_id >= 0)
1158                 pool = &adev->mman.ttm_pools[gtt->pool_id];
1159         else
1160                 pool = &adev->mman.bdev.pool;
1161
1162         return ttm_pool_free(pool, ttm);
1163 }
1164
1165 /**
1166  * amdgpu_ttm_tt_get_userptr - Return the userptr GTT ttm_tt for the current
1167  * task
1168  *
1169  * @tbo: The ttm_buffer_object that contains the userptr
1170  * @user_addr:  The returned value
1171  */
1172 int amdgpu_ttm_tt_get_userptr(const struct ttm_buffer_object *tbo,
1173                               uint64_t *user_addr)
1174 {
1175         struct amdgpu_ttm_tt *gtt;
1176
1177         if (!tbo->ttm)
1178                 return -EINVAL;
1179
1180         gtt = (void *)tbo->ttm;
1181         *user_addr = gtt->userptr;
1182         return 0;
1183 }
1184
1185 /**
1186  * amdgpu_ttm_tt_set_userptr - Initialize userptr GTT ttm_tt for the current
1187  * task
1188  *
1189  * @bo: The ttm_buffer_object to bind this userptr to
1190  * @addr:  The address in the current tasks VM space to use
1191  * @flags: Requirements of userptr object.
1192  *
1193  * Called by amdgpu_gem_userptr_ioctl() and kfd_ioctl_alloc_memory_of_gpu() to
1194  * bind userptr pages to current task and by kfd_ioctl_acquire_vm() to
1195  * initialize GPU VM for a KFD process.
1196  */
1197 int amdgpu_ttm_tt_set_userptr(struct ttm_buffer_object *bo,
1198                               uint64_t addr, uint32_t flags)
1199 {
1200         struct amdgpu_ttm_tt *gtt;
1201
1202         if (!bo->ttm) {
1203                 /* TODO: We want a separate TTM object type for userptrs */
1204                 bo->ttm = amdgpu_ttm_tt_create(bo, 0);
1205                 if (bo->ttm == NULL)
1206                         return -ENOMEM;
1207         }
1208
1209         /* Set TTM_TT_FLAG_EXTERNAL before populate but after create. */
1210         bo->ttm->page_flags |= TTM_TT_FLAG_EXTERNAL;
1211
1212         gtt = ttm_to_amdgpu_ttm_tt(bo->ttm);
1213         gtt->userptr = addr;
1214         gtt->userflags = flags;
1215
1216         if (gtt->usertask)
1217                 put_task_struct(gtt->usertask);
1218         gtt->usertask = current->group_leader;
1219         get_task_struct(gtt->usertask);
1220
1221         return 0;
1222 }
1223
1224 /*
1225  * amdgpu_ttm_tt_get_usermm - Return memory manager for ttm_tt object
1226  */
1227 struct mm_struct *amdgpu_ttm_tt_get_usermm(struct ttm_tt *ttm)
1228 {
1229         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1230
1231         if (gtt == NULL)
1232                 return NULL;
1233
1234         if (gtt->usertask == NULL)
1235                 return NULL;
1236
1237         return gtt->usertask->mm;
1238 }
1239
1240 /*
1241  * amdgpu_ttm_tt_affect_userptr - Determine if a ttm_tt object lays inside an
1242  * address range for the current task.
1243  *
1244  */
1245 bool amdgpu_ttm_tt_affect_userptr(struct ttm_tt *ttm, unsigned long start,
1246                                   unsigned long end, unsigned long *userptr)
1247 {
1248         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1249         unsigned long size;
1250
1251         if (gtt == NULL || !gtt->userptr)
1252                 return false;
1253
1254         /* Return false if no part of the ttm_tt object lies within
1255          * the range
1256          */
1257         size = (unsigned long)gtt->ttm.num_pages * PAGE_SIZE;
1258         if (gtt->userptr > end || gtt->userptr + size <= start)
1259                 return false;
1260
1261         if (userptr)
1262                 *userptr = gtt->userptr;
1263         return true;
1264 }
1265
1266 /*
1267  * amdgpu_ttm_tt_is_userptr - Have the pages backing by userptr?
1268  */
1269 bool amdgpu_ttm_tt_is_userptr(struct ttm_tt *ttm)
1270 {
1271         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1272
1273         if (gtt == NULL || !gtt->userptr)
1274                 return false;
1275
1276         return true;
1277 }
1278
1279 /*
1280  * amdgpu_ttm_tt_is_readonly - Is the ttm_tt object read only?
1281  */
1282 bool amdgpu_ttm_tt_is_readonly(struct ttm_tt *ttm)
1283 {
1284         struct amdgpu_ttm_tt *gtt = ttm_to_amdgpu_ttm_tt(ttm);
1285
1286         if (gtt == NULL)
1287                 return false;
1288
1289         return !!(gtt->userflags & AMDGPU_GEM_USERPTR_READONLY);
1290 }
1291
1292 /**
1293  * amdgpu_ttm_tt_pde_flags - Compute PDE flags for ttm_tt object
1294  *
1295  * @ttm: The ttm_tt object to compute the flags for
1296  * @mem: The memory registry backing this ttm_tt object
1297  *
1298  * Figure out the flags to use for a VM PDE (Page Directory Entry).
1299  */
1300 uint64_t amdgpu_ttm_tt_pde_flags(struct ttm_tt *ttm, struct ttm_resource *mem)
1301 {
1302         uint64_t flags = 0;
1303
1304         if (mem && mem->mem_type != TTM_PL_SYSTEM)
1305                 flags |= AMDGPU_PTE_VALID;
1306
1307         if (mem && (mem->mem_type == TTM_PL_TT ||
1308                     mem->mem_type == AMDGPU_PL_PREEMPT)) {
1309                 flags |= AMDGPU_PTE_SYSTEM;
1310
1311                 if (ttm->caching == ttm_cached)
1312                         flags |= AMDGPU_PTE_SNOOPED;
1313         }
1314
1315         if (mem && mem->mem_type == TTM_PL_VRAM &&
1316                         mem->bus.caching == ttm_cached)
1317                 flags |= AMDGPU_PTE_SNOOPED;
1318
1319         return flags;
1320 }
1321
1322 /**
1323  * amdgpu_ttm_tt_pte_flags - Compute PTE flags for ttm_tt object
1324  *
1325  * @adev: amdgpu_device pointer
1326  * @ttm: The ttm_tt object to compute the flags for
1327  * @mem: The memory registry backing this ttm_tt object
1328  *
1329  * Figure out the flags to use for a VM PTE (Page Table Entry).
1330  */
1331 uint64_t amdgpu_ttm_tt_pte_flags(struct amdgpu_device *adev, struct ttm_tt *ttm,
1332                                  struct ttm_resource *mem)
1333 {
1334         uint64_t flags = amdgpu_ttm_tt_pde_flags(ttm, mem);
1335
1336         flags |= adev->gart.gart_pte_flags;
1337         flags |= AMDGPU_PTE_READABLE;
1338
1339         if (!amdgpu_ttm_tt_is_readonly(ttm))
1340                 flags |= AMDGPU_PTE_WRITEABLE;
1341
1342         return flags;
1343 }
1344
1345 /*
1346  * amdgpu_ttm_bo_eviction_valuable - Check to see if we can evict a buffer
1347  * object.
1348  *
1349  * Return true if eviction is sensible. Called by ttm_mem_evict_first() on
1350  * behalf of ttm_bo_mem_force_space() which tries to evict buffer objects until
1351  * it can find space for a new object and by ttm_bo_force_list_clean() which is
1352  * used to clean out a memory space.
1353  */
1354 static bool amdgpu_ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
1355                                             const struct ttm_place *place)
1356 {
1357         struct dma_resv_iter resv_cursor;
1358         struct dma_fence *f;
1359
1360         if (!amdgpu_bo_is_amdgpu_bo(bo))
1361                 return ttm_bo_eviction_valuable(bo, place);
1362
1363         /* Swapout? */
1364         if (bo->resource->mem_type == TTM_PL_SYSTEM)
1365                 return true;
1366
1367         if (bo->type == ttm_bo_type_kernel &&
1368             !amdgpu_vm_evictable(ttm_to_amdgpu_bo(bo)))
1369                 return false;
1370
1371         /* If bo is a KFD BO, check if the bo belongs to the current process.
1372          * If true, then return false as any KFD process needs all its BOs to
1373          * be resident to run successfully
1374          */
1375         dma_resv_for_each_fence(&resv_cursor, bo->base.resv,
1376                                 DMA_RESV_USAGE_BOOKKEEP, f) {
1377                 if (amdkfd_fence_check_mm(f, current->mm))
1378                         return false;
1379         }
1380
1381         /* Preemptible BOs don't own system resources managed by the
1382          * driver (pages, VRAM, GART space). They point to resources
1383          * owned by someone else (e.g. pageable memory in user mode
1384          * or a DMABuf). They are used in a preemptible context so we
1385          * can guarantee no deadlocks and good QoS in case of MMU
1386          * notifiers or DMABuf move notifiers from the resource owner.
1387          */
1388         if (bo->resource->mem_type == AMDGPU_PL_PREEMPT)
1389                 return false;
1390
1391         if (bo->resource->mem_type == TTM_PL_TT &&
1392             amdgpu_bo_encrypted(ttm_to_amdgpu_bo(bo)))
1393                 return false;
1394
1395         return ttm_bo_eviction_valuable(bo, place);
1396 }
1397
1398 static void amdgpu_ttm_vram_mm_access(struct amdgpu_device *adev, loff_t pos,
1399                                       void *buf, size_t size, bool write)
1400 {
1401         while (size) {
1402                 uint64_t aligned_pos = ALIGN_DOWN(pos, 4);
1403                 uint64_t bytes = 4 - (pos & 0x3);
1404                 uint32_t shift = (pos & 0x3) * 8;
1405                 uint32_t mask = 0xffffffff << shift;
1406                 uint32_t value = 0;
1407
1408                 if (size < bytes) {
1409                         mask &= 0xffffffff >> (bytes - size) * 8;
1410                         bytes = size;
1411                 }
1412
1413                 if (mask != 0xffffffff) {
1414                         amdgpu_device_mm_access(adev, aligned_pos, &value, 4, false);
1415                         if (write) {
1416                                 value &= ~mask;
1417                                 value |= (*(uint32_t *)buf << shift) & mask;
1418                                 amdgpu_device_mm_access(adev, aligned_pos, &value, 4, true);
1419                         } else {
1420                                 value = (value & mask) >> shift;
1421                                 memcpy(buf, &value, bytes);
1422                         }
1423                 } else {
1424                         amdgpu_device_mm_access(adev, aligned_pos, buf, 4, write);
1425                 }
1426
1427                 pos += bytes;
1428                 buf += bytes;
1429                 size -= bytes;
1430         }
1431 }
1432
1433 static int amdgpu_ttm_access_memory_sdma(struct ttm_buffer_object *bo,
1434                                         unsigned long offset, void *buf,
1435                                         int len, int write)
1436 {
1437         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1438         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1439         struct amdgpu_res_cursor src_mm;
1440         struct amdgpu_job *job;
1441         struct dma_fence *fence;
1442         uint64_t src_addr, dst_addr;
1443         unsigned int num_dw;
1444         int r, idx;
1445
1446         if (len != PAGE_SIZE)
1447                 return -EINVAL;
1448
1449         if (!adev->mman.sdma_access_ptr)
1450                 return -EACCES;
1451
1452         if (!drm_dev_enter(adev_to_drm(adev), &idx))
1453                 return -ENODEV;
1454
1455         if (write)
1456                 memcpy(adev->mman.sdma_access_ptr, buf, len);
1457
1458         num_dw = ALIGN(adev->mman.buffer_funcs->copy_num_dw, 8);
1459         r = amdgpu_job_alloc_with_ib(adev, &adev->mman.entity,
1460                                      AMDGPU_FENCE_OWNER_UNDEFINED,
1461                                      num_dw * 4, AMDGPU_IB_POOL_DELAYED,
1462                                      &job);
1463         if (r)
1464                 goto out;
1465
1466         amdgpu_res_first(abo->tbo.resource, offset, len, &src_mm);
1467         src_addr = amdgpu_ttm_domain_start(adev, bo->resource->mem_type) +
1468                 src_mm.start;
1469         dst_addr = amdgpu_bo_gpu_offset(adev->mman.sdma_access_bo);
1470         if (write)
1471                 swap(src_addr, dst_addr);
1472
1473         amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_addr, dst_addr,
1474                                 PAGE_SIZE, false);
1475
1476         amdgpu_ring_pad_ib(adev->mman.buffer_funcs_ring, &job->ibs[0]);
1477         WARN_ON(job->ibs[0].length_dw > num_dw);
1478
1479         fence = amdgpu_job_submit(job);
1480
1481         if (!dma_fence_wait_timeout(fence, false, adev->sdma_timeout))
1482                 r = -ETIMEDOUT;
1483         dma_fence_put(fence);
1484
1485         if (!(r || write))
1486                 memcpy(buf, adev->mman.sdma_access_ptr, len);
1487 out:
1488         drm_dev_exit(idx);
1489         return r;
1490 }
1491
1492 /**
1493  * amdgpu_ttm_access_memory - Read or Write memory that backs a buffer object.
1494  *
1495  * @bo:  The buffer object to read/write
1496  * @offset:  Offset into buffer object
1497  * @buf:  Secondary buffer to write/read from
1498  * @len: Length in bytes of access
1499  * @write:  true if writing
1500  *
1501  * This is used to access VRAM that backs a buffer object via MMIO
1502  * access for debugging purposes.
1503  */
1504 static int amdgpu_ttm_access_memory(struct ttm_buffer_object *bo,
1505                                     unsigned long offset, void *buf, int len,
1506                                     int write)
1507 {
1508         struct amdgpu_bo *abo = ttm_to_amdgpu_bo(bo);
1509         struct amdgpu_device *adev = amdgpu_ttm_adev(abo->tbo.bdev);
1510         struct amdgpu_res_cursor cursor;
1511         int ret = 0;
1512
1513         if (bo->resource->mem_type != TTM_PL_VRAM)
1514                 return -EIO;
1515
1516         if (amdgpu_device_has_timeouts_enabled(adev) &&
1517                         !amdgpu_ttm_access_memory_sdma(bo, offset, buf, len, write))
1518                 return len;
1519
1520         amdgpu_res_first(bo->resource, offset, len, &cursor);
1521         while (cursor.remaining) {
1522                 size_t count, size = cursor.size;
1523                 loff_t pos = cursor.start;
1524
1525                 count = amdgpu_device_aper_access(adev, pos, buf, size, write);
1526                 size -= count;
1527                 if (size) {
1528                         /* using MM to access rest vram and handle un-aligned address */
1529                         pos += count;
1530                         buf += count;
1531                         amdgpu_ttm_vram_mm_access(adev, pos, buf, size, write);
1532                 }
1533
1534                 ret += cursor.size;
1535                 buf += cursor.size;
1536                 amdgpu_res_next(&cursor, cursor.size);
1537         }
1538
1539         return ret;
1540 }
1541
1542 static void
1543 amdgpu_bo_delete_mem_notify(struct ttm_buffer_object *bo)
1544 {
1545         amdgpu_bo_move_notify(bo, false, NULL);
1546 }
1547
1548 static struct ttm_device_funcs amdgpu_bo_driver = {
1549         .ttm_tt_create = &amdgpu_ttm_tt_create,
1550         .ttm_tt_populate = &amdgpu_ttm_tt_populate,
1551         .ttm_tt_unpopulate = &amdgpu_ttm_tt_unpopulate,
1552         .ttm_tt_destroy = &amdgpu_ttm_backend_destroy,
1553         .eviction_valuable = amdgpu_ttm_bo_eviction_valuable,
1554         .evict_flags = &amdgpu_evict_flags,
1555         .move = &amdgpu_bo_move,
1556         .delete_mem_notify = &amdgpu_bo_delete_mem_notify,
1557         .release_notify = &amdgpu_bo_release_notify,
1558         .io_mem_reserve = &amdgpu_ttm_io_mem_reserve,
1559         .io_mem_pfn = amdgpu_ttm_io_mem_pfn,
1560         .access_memory = &amdgpu_ttm_access_memory,
1561 };
1562
1563 /*
1564  * Firmware Reservation functions
1565  */
1566 /**
1567  * amdgpu_ttm_fw_reserve_vram_fini - free fw reserved vram
1568  *
1569  * @adev: amdgpu_device pointer
1570  *
1571  * free fw reserved vram if it has been reserved.
1572  */
1573 static void amdgpu_ttm_fw_reserve_vram_fini(struct amdgpu_device *adev)
1574 {
1575         amdgpu_bo_free_kernel(&adev->mman.fw_vram_usage_reserved_bo,
1576                 NULL, &adev->mman.fw_vram_usage_va);
1577 }
1578
1579 /*
1580  * Driver Reservation functions
1581  */
1582 /**
1583  * amdgpu_ttm_drv_reserve_vram_fini - free drv reserved vram
1584  *
1585  * @adev: amdgpu_device pointer
1586  *
1587  * free drv reserved vram if it has been reserved.
1588  */
1589 static void amdgpu_ttm_drv_reserve_vram_fini(struct amdgpu_device *adev)
1590 {
1591         amdgpu_bo_free_kernel(&adev->mman.drv_vram_usage_reserved_bo,
1592                                                   NULL,
1593                                                   &adev->mman.drv_vram_usage_va);
1594 }
1595
1596 /**
1597  * amdgpu_ttm_fw_reserve_vram_init - create bo vram reservation from fw
1598  *
1599  * @adev: amdgpu_device pointer
1600  *
1601  * create bo vram reservation from fw.
1602  */
1603 static int amdgpu_ttm_fw_reserve_vram_init(struct amdgpu_device *adev)
1604 {
1605         uint64_t vram_size = adev->gmc.visible_vram_size;
1606
1607         adev->mman.fw_vram_usage_va = NULL;
1608         adev->mman.fw_vram_usage_reserved_bo = NULL;
1609
1610         if (adev->mman.fw_vram_usage_size == 0 ||
1611             adev->mman.fw_vram_usage_size > vram_size)
1612                 return 0;
1613
1614         return amdgpu_bo_create_kernel_at(adev,
1615                                           adev->mman.fw_vram_usage_start_offset,
1616                                           adev->mman.fw_vram_usage_size,
1617                                           &adev->mman.fw_vram_usage_reserved_bo,
1618                                           &adev->mman.fw_vram_usage_va);
1619 }
1620
1621 /**
1622  * amdgpu_ttm_drv_reserve_vram_init - create bo vram reservation from driver
1623  *
1624  * @adev: amdgpu_device pointer
1625  *
1626  * create bo vram reservation from drv.
1627  */
1628 static int amdgpu_ttm_drv_reserve_vram_init(struct amdgpu_device *adev)
1629 {
1630         u64 vram_size = adev->gmc.visible_vram_size;
1631
1632         adev->mman.drv_vram_usage_va = NULL;
1633         adev->mman.drv_vram_usage_reserved_bo = NULL;
1634
1635         if (adev->mman.drv_vram_usage_size == 0 ||
1636             adev->mman.drv_vram_usage_size > vram_size)
1637                 return 0;
1638
1639         return amdgpu_bo_create_kernel_at(adev,
1640                                           adev->mman.drv_vram_usage_start_offset,
1641                                           adev->mman.drv_vram_usage_size,
1642                                           &adev->mman.drv_vram_usage_reserved_bo,
1643                                           &adev->mman.drv_vram_usage_va);
1644 }
1645
1646 /*
1647  * Memoy training reservation functions
1648  */
1649
1650 /**
1651  * amdgpu_ttm_training_reserve_vram_fini - free memory training reserved vram
1652  *
1653  * @adev: amdgpu_device pointer
1654  *
1655  * free memory training reserved vram if it has been reserved.
1656  */
1657 static int amdgpu_ttm_training_reserve_vram_fini(struct amdgpu_device *adev)
1658 {
1659         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1660
1661         ctx->init = PSP_MEM_TRAIN_NOT_SUPPORT;
1662         amdgpu_bo_free_kernel(&ctx->c2p_bo, NULL, NULL);
1663         ctx->c2p_bo = NULL;
1664
1665         return 0;
1666 }
1667
1668 static void amdgpu_ttm_training_data_block_init(struct amdgpu_device *adev,
1669                                                 uint32_t reserve_size)
1670 {
1671         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1672
1673         memset(ctx, 0, sizeof(*ctx));
1674
1675         ctx->c2p_train_data_offset =
1676                 ALIGN((adev->gmc.mc_vram_size - reserve_size - SZ_1M), SZ_1M);
1677         ctx->p2c_train_data_offset =
1678                 (adev->gmc.mc_vram_size - GDDR6_MEM_TRAINING_OFFSET);
1679         ctx->train_data_size =
1680                 GDDR6_MEM_TRAINING_DATA_SIZE_IN_BYTES;
1681
1682         DRM_DEBUG("train_data_size:%llx,p2c_train_data_offset:%llx,c2p_train_data_offset:%llx.\n",
1683                         ctx->train_data_size,
1684                         ctx->p2c_train_data_offset,
1685                         ctx->c2p_train_data_offset);
1686 }
1687
1688 /*
1689  * reserve TMR memory at the top of VRAM which holds
1690  * IP Discovery data and is protected by PSP.
1691  */
1692 static int amdgpu_ttm_reserve_tmr(struct amdgpu_device *adev)
1693 {
1694         struct psp_memory_training_context *ctx = &adev->psp.mem_train_ctx;
1695         bool mem_train_support = false;
1696         uint32_t reserve_size = 0;
1697         int ret;
1698
1699         if (adev->bios && !amdgpu_sriov_vf(adev)) {
1700                 if (amdgpu_atomfirmware_mem_training_supported(adev))
1701                         mem_train_support = true;
1702                 else
1703                         DRM_DEBUG("memory training does not support!\n");
1704         }
1705
1706         /*
1707          * Query reserved tmr size through atom firmwareinfo for Sienna_Cichlid and onwards for all
1708          * the use cases (IP discovery/G6 memory training/profiling/diagnostic data.etc)
1709          *
1710          * Otherwise, fallback to legacy approach to check and reserve tmr block for ip
1711          * discovery data and G6 memory training data respectively
1712          */
1713         if (adev->bios)
1714                 reserve_size =
1715                         amdgpu_atomfirmware_get_fw_reserved_fb_size(adev);
1716
1717         if (!adev->bios && adev->ip_versions[GC_HWIP][0] == IP_VERSION(9, 4, 3))
1718                 reserve_size = max(reserve_size, (uint32_t)280 << 20);
1719         else if (!reserve_size)
1720                 reserve_size = DISCOVERY_TMR_OFFSET;
1721
1722         if (mem_train_support) {
1723                 /* reserve vram for mem train according to TMR location */
1724                 amdgpu_ttm_training_data_block_init(adev, reserve_size);
1725                 ret = amdgpu_bo_create_kernel_at(adev,
1726                                                  ctx->c2p_train_data_offset,
1727                                                  ctx->train_data_size,
1728                                                  &ctx->c2p_bo,
1729                                                  NULL);
1730                 if (ret) {
1731                         DRM_ERROR("alloc c2p_bo failed(%d)!\n", ret);
1732                         amdgpu_ttm_training_reserve_vram_fini(adev);
1733                         return ret;
1734                 }
1735                 ctx->init = PSP_MEM_TRAIN_RESERVE_SUCCESS;
1736         }
1737
1738         if (!adev->gmc.is_app_apu) {
1739                 ret = amdgpu_bo_create_kernel_at(
1740                         adev, adev->gmc.real_vram_size - reserve_size,
1741                         reserve_size, &adev->mman.fw_reserved_memory, NULL);
1742                 if (ret) {
1743                         DRM_ERROR("alloc tmr failed(%d)!\n", ret);
1744                         amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory,
1745                                               NULL, NULL);
1746                         return ret;
1747                 }
1748         } else {
1749                 DRM_DEBUG_DRIVER("backdoor fw loading path for PSP TMR, no reservation needed\n");
1750         }
1751
1752         return 0;
1753 }
1754
1755 static int amdgpu_ttm_pools_init(struct amdgpu_device *adev)
1756 {
1757         int i;
1758
1759         if (!adev->gmc.is_app_apu || !adev->gmc.num_mem_partitions)
1760                 return 0;
1761
1762         adev->mman.ttm_pools = kcalloc(adev->gmc.num_mem_partitions,
1763                                        sizeof(*adev->mman.ttm_pools),
1764                                        GFP_KERNEL);
1765         if (!adev->mman.ttm_pools)
1766                 return -ENOMEM;
1767
1768         for (i = 0; i < adev->gmc.num_mem_partitions; i++) {
1769                 ttm_pool_init(&adev->mman.ttm_pools[i], adev->dev,
1770                               adev->gmc.mem_partitions[i].numa.node,
1771                               false, false);
1772         }
1773         return 0;
1774 }
1775
1776 static void amdgpu_ttm_pools_fini(struct amdgpu_device *adev)
1777 {
1778         int i;
1779
1780         if (!adev->gmc.is_app_apu || !adev->mman.ttm_pools)
1781                 return;
1782
1783         for (i = 0; i < adev->gmc.num_mem_partitions; i++)
1784                 ttm_pool_fini(&adev->mman.ttm_pools[i]);
1785
1786         kfree(adev->mman.ttm_pools);
1787         adev->mman.ttm_pools = NULL;
1788 }
1789
1790 /*
1791  * amdgpu_ttm_init - Init the memory management (ttm) as well as various
1792  * gtt/vram related fields.
1793  *
1794  * This initializes all of the memory space pools that the TTM layer
1795  * will need such as the GTT space (system memory mapped to the device),
1796  * VRAM (on-board memory), and on-chip memories (GDS, GWS, OA) which
1797  * can be mapped per VMID.
1798  */
1799 int amdgpu_ttm_init(struct amdgpu_device *adev)
1800 {
1801         uint64_t gtt_size;
1802         int r;
1803
1804         mutex_init(&adev->mman.gtt_window_lock);
1805
1806         /* No others user of address space so set it to 0 */
1807         r = ttm_device_init(&adev->mman.bdev, &amdgpu_bo_driver, adev->dev,
1808                                adev_to_drm(adev)->anon_inode->i_mapping,
1809                                adev_to_drm(adev)->vma_offset_manager,
1810                                adev->need_swiotlb,
1811                                dma_addressing_limited(adev->dev));
1812         if (r) {
1813                 DRM_ERROR("failed initializing buffer object driver(%d).\n", r);
1814                 return r;
1815         }
1816
1817         r = amdgpu_ttm_pools_init(adev);
1818         if (r) {
1819                 DRM_ERROR("failed to init ttm pools(%d).\n", r);
1820                 return r;
1821         }
1822         adev->mman.initialized = true;
1823
1824         /* Initialize VRAM pool with all of VRAM divided into pages */
1825         r = amdgpu_vram_mgr_init(adev);
1826         if (r) {
1827                 DRM_ERROR("Failed initializing VRAM heap.\n");
1828                 return r;
1829         }
1830
1831         /* Change the size here instead of the init above so only lpfn is affected */
1832         amdgpu_ttm_set_buffer_funcs_status(adev, false);
1833 #ifdef CONFIG_64BIT
1834 #ifdef CONFIG_X86
1835         if (adev->gmc.xgmi.connected_to_cpu)
1836                 adev->mman.aper_base_kaddr = ioremap_cache(adev->gmc.aper_base,
1837                                 adev->gmc.visible_vram_size);
1838
1839         else if (adev->gmc.is_app_apu)
1840                 DRM_DEBUG_DRIVER(
1841                         "No need to ioremap when real vram size is 0\n");
1842         else
1843 #endif
1844                 adev->mman.aper_base_kaddr = ioremap_wc(adev->gmc.aper_base,
1845                                 adev->gmc.visible_vram_size);
1846 #endif
1847
1848         /*
1849          *The reserved vram for firmware must be pinned to the specified
1850          *place on the VRAM, so reserve it early.
1851          */
1852         r = amdgpu_ttm_fw_reserve_vram_init(adev);
1853         if (r)
1854                 return r;
1855
1856         /*
1857          *The reserved vram for driver must be pinned to the specified
1858          *place on the VRAM, so reserve it early.
1859          */
1860         r = amdgpu_ttm_drv_reserve_vram_init(adev);
1861         if (r)
1862                 return r;
1863
1864         /*
1865          * only NAVI10 and onwards ASIC support for IP discovery.
1866          * If IP discovery enabled, a block of memory should be
1867          * reserved for IP discovey.
1868          */
1869         if (adev->mman.discovery_bin) {
1870                 r = amdgpu_ttm_reserve_tmr(adev);
1871                 if (r)
1872                         return r;
1873         }
1874
1875         /* allocate memory as required for VGA
1876          * This is used for VGA emulation and pre-OS scanout buffers to
1877          * avoid display artifacts while transitioning between pre-OS
1878          * and driver.
1879          */
1880         if (!adev->gmc.is_app_apu) {
1881                 r = amdgpu_bo_create_kernel_at(adev, 0,
1882                                                adev->mman.stolen_vga_size,
1883                                                &adev->mman.stolen_vga_memory,
1884                                                NULL);
1885                 if (r)
1886                         return r;
1887
1888                 r = amdgpu_bo_create_kernel_at(adev, adev->mman.stolen_vga_size,
1889                                                adev->mman.stolen_extended_size,
1890                                                &adev->mman.stolen_extended_memory,
1891                                                NULL);
1892
1893                 if (r)
1894                         return r;
1895
1896                 r = amdgpu_bo_create_kernel_at(adev,
1897                                                adev->mman.stolen_reserved_offset,
1898                                                adev->mman.stolen_reserved_size,
1899                                                &adev->mman.stolen_reserved_memory,
1900                                                NULL);
1901                 if (r)
1902                         return r;
1903         } else {
1904                 DRM_DEBUG_DRIVER("Skipped stolen memory reservation\n");
1905         }
1906
1907         DRM_INFO("amdgpu: %uM of VRAM memory ready\n",
1908                  (unsigned int)(adev->gmc.real_vram_size / (1024 * 1024)));
1909
1910         /* Compute GTT size, either based on TTM limit
1911          * or whatever the user passed on module init.
1912          */
1913         if (amdgpu_gtt_size == -1)
1914                 gtt_size = ttm_tt_pages_limit() << PAGE_SHIFT;
1915         else
1916                 gtt_size = (uint64_t)amdgpu_gtt_size << 20;
1917
1918         /* Initialize GTT memory pool */
1919         r = amdgpu_gtt_mgr_init(adev, gtt_size);
1920         if (r) {
1921                 DRM_ERROR("Failed initializing GTT heap.\n");
1922                 return r;
1923         }
1924         DRM_INFO("amdgpu: %uM of GTT memory ready.\n",
1925                  (unsigned int)(gtt_size / (1024 * 1024)));
1926
1927         /* Initialize preemptible memory pool */
1928         r = amdgpu_preempt_mgr_init(adev);
1929         if (r) {
1930                 DRM_ERROR("Failed initializing PREEMPT heap.\n");
1931                 return r;
1932         }
1933
1934         /* Initialize various on-chip memory pools */
1935         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GDS, adev->gds.gds_size);
1936         if (r) {
1937                 DRM_ERROR("Failed initializing GDS heap.\n");
1938                 return r;
1939         }
1940
1941         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_GWS, adev->gds.gws_size);
1942         if (r) {
1943                 DRM_ERROR("Failed initializing gws heap.\n");
1944                 return r;
1945         }
1946
1947         r = amdgpu_ttm_init_on_chip(adev, AMDGPU_PL_OA, adev->gds.oa_size);
1948         if (r) {
1949                 DRM_ERROR("Failed initializing oa heap.\n");
1950                 return r;
1951         }
1952         if (amdgpu_bo_create_kernel(adev, PAGE_SIZE, PAGE_SIZE,
1953                                 AMDGPU_GEM_DOMAIN_GTT,
1954                                 &adev->mman.sdma_access_bo, NULL,
1955                                 &adev->mman.sdma_access_ptr))
1956                 DRM_WARN("Debug VRAM access will use slowpath MM access\n");
1957
1958         return 0;
1959 }
1960
1961 /*
1962  * amdgpu_ttm_fini - De-initialize the TTM memory pools
1963  */
1964 void amdgpu_ttm_fini(struct amdgpu_device *adev)
1965 {
1966         int idx;
1967
1968         if (!adev->mman.initialized)
1969                 return;
1970
1971         amdgpu_ttm_pools_fini(adev);
1972
1973         amdgpu_ttm_training_reserve_vram_fini(adev);
1974         /* return the stolen vga memory back to VRAM */
1975         if (!adev->gmc.is_app_apu) {
1976                 amdgpu_bo_free_kernel(&adev->mman.stolen_vga_memory, NULL, NULL);
1977                 amdgpu_bo_free_kernel(&adev->mman.stolen_extended_memory, NULL, NULL);
1978                 /* return the FW reserved memory back to VRAM */
1979                 amdgpu_bo_free_kernel(&adev->mman.fw_reserved_memory, NULL,
1980                                       NULL);
1981                 if (adev->mman.stolen_reserved_size)
1982                         amdgpu_bo_free_kernel(&adev->mman.stolen_reserved_memory,
1983                                               NULL, NULL);
1984         }
1985         amdgpu_bo_free_kernel(&adev->mman.sdma_access_bo, NULL,
1986                                         &adev->mman.sdma_access_ptr);
1987         amdgpu_ttm_fw_reserve_vram_fini(adev);
1988         amdgpu_ttm_drv_reserve_vram_fini(adev);
1989
1990         if (drm_dev_enter(adev_to_drm(adev), &idx)) {
1991
1992                 if (adev->mman.aper_base_kaddr)
1993                         iounmap(adev->mman.aper_base_kaddr);
1994                 adev->mman.aper_base_kaddr = NULL;
1995
1996                 drm_dev_exit(idx);
1997         }
1998
1999         amdgpu_vram_mgr_fini(adev);
2000         amdgpu_gtt_mgr_fini(adev);
2001         amdgpu_preempt_mgr_fini(adev);
2002         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GDS);
2003         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_GWS);
2004         ttm_range_man_fini(&adev->mman.bdev, AMDGPU_PL_OA);
2005         ttm_device_fini(&adev->mman.bdev);
2006         adev->mman.initialized = false;
2007         DRM_INFO("amdgpu: ttm finalized\n");
2008 }
2009
2010 /**
2011  * amdgpu_ttm_set_buffer_funcs_status - enable/disable use of buffer functions
2012  *
2013  * @adev: amdgpu_device pointer
2014  * @enable: true when we can use buffer functions.
2015  *
2016  * Enable/disable use of buffer functions during suspend/resume. This should
2017  * only be called at bootup or when userspace isn't running.
2018  */
2019 void amdgpu_ttm_set_buffer_funcs_status(struct amdgpu_device *adev, bool enable)
2020 {
2021         struct ttm_resource_manager *man = ttm_manager_type(&adev->mman.bdev, TTM_PL_VRAM);
2022         uint64_t size;
2023         int r;
2024
2025         if (!adev->mman.initialized || amdgpu_in_reset(adev) ||
2026             adev->mman.buffer_funcs_enabled == enable || adev->gmc.is_app_apu)
2027                 return;
2028
2029         if (enable) {
2030                 struct amdgpu_ring *ring;
2031                 struct drm_gpu_scheduler *sched;
2032
2033                 ring = adev->mman.buffer_funcs_ring;
2034                 sched = &ring->sched;
2035                 r = drm_sched_entity_init(&adev->mman.entity,
2036                                           DRM_SCHED_PRIORITY_KERNEL, &sched,
2037                                           1, NULL);
2038                 if (r) {
2039                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2040                                   r);
2041                         return;
2042                 }
2043
2044                 r = drm_sched_entity_init(&adev->mman.delayed,
2045                                           DRM_SCHED_PRIORITY_NORMAL, &sched,
2046                                           1, NULL);
2047                 if (r) {
2048                         DRM_ERROR("Failed setting up TTM BO move entity (%d)\n",
2049                                   r);
2050                         goto error_free_entity;
2051                 }
2052         } else {
2053                 drm_sched_entity_destroy(&adev->mman.entity);
2054                 drm_sched_entity_destroy(&adev->mman.delayed);
2055                 dma_fence_put(man->move);
2056                 man->move = NULL;
2057         }
2058
2059         /* this just adjusts TTM size idea, which sets lpfn to the correct value */
2060         if (enable)
2061                 size = adev->gmc.real_vram_size;
2062         else
2063                 size = adev->gmc.visible_vram_size;
2064         man->size = size;
2065         adev->mman.buffer_funcs_enabled = enable;
2066
2067         return;
2068
2069 error_free_entity:
2070         drm_sched_entity_destroy(&adev->mman.entity);
2071 }
2072
2073 static int amdgpu_ttm_prepare_job(struct amdgpu_device *adev,
2074                                   bool direct_submit,
2075                                   unsigned int num_dw,
2076                                   struct dma_resv *resv,
2077                                   bool vm_needs_flush,
2078                                   struct amdgpu_job **job,
2079                                   bool delayed)
2080 {
2081         enum amdgpu_ib_pool_type pool = direct_submit ?
2082                 AMDGPU_IB_POOL_DIRECT :
2083                 AMDGPU_IB_POOL_DELAYED;
2084         int r;
2085         struct drm_sched_entity *entity = delayed ? &adev->mman.delayed :
2086                                                     &adev->mman.entity;
2087         r = amdgpu_job_alloc_with_ib(adev, entity,
2088                                      AMDGPU_FENCE_OWNER_UNDEFINED,
2089                                      num_dw * 4, pool, job);
2090         if (r)
2091                 return r;
2092
2093         if (vm_needs_flush) {
2094                 (*job)->vm_pd_addr = amdgpu_gmc_pd_addr(adev->gmc.pdb0_bo ?
2095                                                         adev->gmc.pdb0_bo :
2096                                                         adev->gart.bo);
2097                 (*job)->vm_needs_flush = true;
2098         }
2099         if (!resv)
2100                 return 0;
2101
2102         return drm_sched_job_add_resv_dependencies(&(*job)->base, resv,
2103                                                    DMA_RESV_USAGE_BOOKKEEP);
2104 }
2105
2106 int amdgpu_copy_buffer(struct amdgpu_ring *ring, uint64_t src_offset,
2107                        uint64_t dst_offset, uint32_t byte_count,
2108                        struct dma_resv *resv,
2109                        struct dma_fence **fence, bool direct_submit,
2110                        bool vm_needs_flush, bool tmz)
2111 {
2112         struct amdgpu_device *adev = ring->adev;
2113         unsigned int num_loops, num_dw;
2114         struct amdgpu_job *job;
2115         uint32_t max_bytes;
2116         unsigned int i;
2117         int r;
2118
2119         if (!direct_submit && !ring->sched.ready) {
2120                 DRM_ERROR("Trying to move memory with ring turned off.\n");
2121                 return -EINVAL;
2122         }
2123
2124         max_bytes = adev->mman.buffer_funcs->copy_max_bytes;
2125         num_loops = DIV_ROUND_UP(byte_count, max_bytes);
2126         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->copy_num_dw, 8);
2127         r = amdgpu_ttm_prepare_job(adev, direct_submit, num_dw,
2128                                    resv, vm_needs_flush, &job, false);
2129         if (r)
2130                 return r;
2131
2132         for (i = 0; i < num_loops; i++) {
2133                 uint32_t cur_size_in_bytes = min(byte_count, max_bytes);
2134
2135                 amdgpu_emit_copy_buffer(adev, &job->ibs[0], src_offset,
2136                                         dst_offset, cur_size_in_bytes, tmz);
2137
2138                 src_offset += cur_size_in_bytes;
2139                 dst_offset += cur_size_in_bytes;
2140                 byte_count -= cur_size_in_bytes;
2141         }
2142
2143         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2144         WARN_ON(job->ibs[0].length_dw > num_dw);
2145         if (direct_submit)
2146                 r = amdgpu_job_submit_direct(job, ring, fence);
2147         else
2148                 *fence = amdgpu_job_submit(job);
2149         if (r)
2150                 goto error_free;
2151
2152         return r;
2153
2154 error_free:
2155         amdgpu_job_free(job);
2156         DRM_ERROR("Error scheduling IBs (%d)\n", r);
2157         return r;
2158 }
2159
2160 static int amdgpu_ttm_fill_mem(struct amdgpu_ring *ring, uint32_t src_data,
2161                                uint64_t dst_addr, uint32_t byte_count,
2162                                struct dma_resv *resv,
2163                                struct dma_fence **fence,
2164                                bool vm_needs_flush, bool delayed)
2165 {
2166         struct amdgpu_device *adev = ring->adev;
2167         unsigned int num_loops, num_dw;
2168         struct amdgpu_job *job;
2169         uint32_t max_bytes;
2170         unsigned int i;
2171         int r;
2172
2173         max_bytes = adev->mman.buffer_funcs->fill_max_bytes;
2174         num_loops = DIV_ROUND_UP_ULL(byte_count, max_bytes);
2175         num_dw = ALIGN(num_loops * adev->mman.buffer_funcs->fill_num_dw, 8);
2176         r = amdgpu_ttm_prepare_job(adev, false, num_dw, resv, vm_needs_flush,
2177                                    &job, delayed);
2178         if (r)
2179                 return r;
2180
2181         for (i = 0; i < num_loops; i++) {
2182                 uint32_t cur_size = min(byte_count, max_bytes);
2183
2184                 amdgpu_emit_fill_buffer(adev, &job->ibs[0], src_data, dst_addr,
2185                                         cur_size);
2186
2187                 dst_addr += cur_size;
2188                 byte_count -= cur_size;
2189         }
2190
2191         amdgpu_ring_pad_ib(ring, &job->ibs[0]);
2192         WARN_ON(job->ibs[0].length_dw > num_dw);
2193         *fence = amdgpu_job_submit(job);
2194         return 0;
2195 }
2196
2197 int amdgpu_fill_buffer(struct amdgpu_bo *bo,
2198                         uint32_t src_data,
2199                         struct dma_resv *resv,
2200                         struct dma_fence **f,
2201                         bool delayed)
2202 {
2203         struct amdgpu_device *adev = amdgpu_ttm_adev(bo->tbo.bdev);
2204         struct amdgpu_ring *ring = adev->mman.buffer_funcs_ring;
2205         struct dma_fence *fence = NULL;
2206         struct amdgpu_res_cursor dst;
2207         int r;
2208
2209         if (!adev->mman.buffer_funcs_enabled) {
2210                 DRM_ERROR("Trying to clear memory with ring turned off.\n");
2211                 return -EINVAL;
2212         }
2213
2214         amdgpu_res_first(bo->tbo.resource, 0, amdgpu_bo_size(bo), &dst);
2215
2216         mutex_lock(&adev->mman.gtt_window_lock);
2217         while (dst.remaining) {
2218                 struct dma_fence *next;
2219                 uint64_t cur_size, to;
2220
2221                 /* Never fill more than 256MiB at once to avoid timeouts */
2222                 cur_size = min(dst.size, 256ULL << 20);
2223
2224                 r = amdgpu_ttm_map_buffer(&bo->tbo, bo->tbo.resource, &dst,
2225                                           1, ring, false, &cur_size, &to);
2226                 if (r)
2227                         goto error;
2228
2229                 r = amdgpu_ttm_fill_mem(ring, src_data, to, cur_size, resv,
2230                                         &next, true, delayed);
2231                 if (r)
2232                         goto error;
2233
2234                 dma_fence_put(fence);
2235                 fence = next;
2236
2237                 amdgpu_res_next(&dst, cur_size);
2238         }
2239 error:
2240         mutex_unlock(&adev->mman.gtt_window_lock);
2241         if (f)
2242                 *f = dma_fence_get(fence);
2243         dma_fence_put(fence);
2244         return r;
2245 }
2246
2247 /**
2248  * amdgpu_ttm_evict_resources - evict memory buffers
2249  * @adev: amdgpu device object
2250  * @mem_type: evicted BO's memory type
2251  *
2252  * Evicts all @mem_type buffers on the lru list of the memory type.
2253  *
2254  * Returns:
2255  * 0 for success or a negative error code on failure.
2256  */
2257 int amdgpu_ttm_evict_resources(struct amdgpu_device *adev, int mem_type)
2258 {
2259         struct ttm_resource_manager *man;
2260
2261         switch (mem_type) {
2262         case TTM_PL_VRAM:
2263         case TTM_PL_TT:
2264         case AMDGPU_PL_GWS:
2265         case AMDGPU_PL_GDS:
2266         case AMDGPU_PL_OA:
2267                 man = ttm_manager_type(&adev->mman.bdev, mem_type);
2268                 break;
2269         default:
2270                 DRM_ERROR("Trying to evict invalid memory type\n");
2271                 return -EINVAL;
2272         }
2273
2274         return ttm_resource_manager_evict_all(&adev->mman.bdev, man);
2275 }
2276
2277 #if defined(CONFIG_DEBUG_FS)
2278
2279 static int amdgpu_ttm_page_pool_show(struct seq_file *m, void *unused)
2280 {
2281         struct amdgpu_device *adev = m->private;
2282
2283         return ttm_pool_debugfs(&adev->mman.bdev.pool, m);
2284 }
2285
2286 DEFINE_SHOW_ATTRIBUTE(amdgpu_ttm_page_pool);
2287
2288 /*
2289  * amdgpu_ttm_vram_read - Linear read access to VRAM
2290  *
2291  * Accesses VRAM via MMIO for debugging purposes.
2292  */
2293 static ssize_t amdgpu_ttm_vram_read(struct file *f, char __user *buf,
2294                                     size_t size, loff_t *pos)
2295 {
2296         struct amdgpu_device *adev = file_inode(f)->i_private;
2297         ssize_t result = 0;
2298
2299         if (size & 0x3 || *pos & 0x3)
2300                 return -EINVAL;
2301
2302         if (*pos >= adev->gmc.mc_vram_size)
2303                 return -ENXIO;
2304
2305         size = min(size, (size_t)(adev->gmc.mc_vram_size - *pos));
2306         while (size) {
2307                 size_t bytes = min(size, AMDGPU_TTM_VRAM_MAX_DW_READ * 4);
2308                 uint32_t value[AMDGPU_TTM_VRAM_MAX_DW_READ];
2309
2310                 amdgpu_device_vram_access(adev, *pos, value, bytes, false);
2311                 if (copy_to_user(buf, value, bytes))
2312                         return -EFAULT;
2313
2314                 result += bytes;
2315                 buf += bytes;
2316                 *pos += bytes;
2317                 size -= bytes;
2318         }
2319
2320         return result;
2321 }
2322
2323 /*
2324  * amdgpu_ttm_vram_write - Linear write access to VRAM
2325  *
2326  * Accesses VRAM via MMIO for debugging purposes.
2327  */
2328 static ssize_t amdgpu_ttm_vram_write(struct file *f, const char __user *buf,
2329                                     size_t size, loff_t *pos)
2330 {
2331         struct amdgpu_device *adev = file_inode(f)->i_private;
2332         ssize_t result = 0;
2333         int r;
2334
2335         if (size & 0x3 || *pos & 0x3)
2336                 return -EINVAL;
2337
2338         if (*pos >= adev->gmc.mc_vram_size)
2339                 return -ENXIO;
2340
2341         while (size) {
2342                 uint32_t value;
2343
2344                 if (*pos >= adev->gmc.mc_vram_size)
2345                         return result;
2346
2347                 r = get_user(value, (uint32_t *)buf);
2348                 if (r)
2349                         return r;
2350
2351                 amdgpu_device_mm_access(adev, *pos, &value, 4, true);
2352
2353                 result += 4;
2354                 buf += 4;
2355                 *pos += 4;
2356                 size -= 4;
2357         }
2358
2359         return result;
2360 }
2361
2362 static const struct file_operations amdgpu_ttm_vram_fops = {
2363         .owner = THIS_MODULE,
2364         .read = amdgpu_ttm_vram_read,
2365         .write = amdgpu_ttm_vram_write,
2366         .llseek = default_llseek,
2367 };
2368
2369 /*
2370  * amdgpu_iomem_read - Virtual read access to GPU mapped memory
2371  *
2372  * This function is used to read memory that has been mapped to the
2373  * GPU and the known addresses are not physical addresses but instead
2374  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2375  */
2376 static ssize_t amdgpu_iomem_read(struct file *f, char __user *buf,
2377                                  size_t size, loff_t *pos)
2378 {
2379         struct amdgpu_device *adev = file_inode(f)->i_private;
2380         struct iommu_domain *dom;
2381         ssize_t result = 0;
2382         int r;
2383
2384         /* retrieve the IOMMU domain if any for this device */
2385         dom = iommu_get_domain_for_dev(adev->dev);
2386
2387         while (size) {
2388                 phys_addr_t addr = *pos & PAGE_MASK;
2389                 loff_t off = *pos & ~PAGE_MASK;
2390                 size_t bytes = PAGE_SIZE - off;
2391                 unsigned long pfn;
2392                 struct page *p;
2393                 void *ptr;
2394
2395                 bytes = bytes < size ? bytes : size;
2396
2397                 /* Translate the bus address to a physical address.  If
2398                  * the domain is NULL it means there is no IOMMU active
2399                  * and the address translation is the identity
2400                  */
2401                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2402
2403                 pfn = addr >> PAGE_SHIFT;
2404                 if (!pfn_valid(pfn))
2405                         return -EPERM;
2406
2407                 p = pfn_to_page(pfn);
2408                 if (p->mapping != adev->mman.bdev.dev_mapping)
2409                         return -EPERM;
2410
2411                 ptr = kmap_local_page(p);
2412                 r = copy_to_user(buf, ptr + off, bytes);
2413                 kunmap_local(ptr);
2414                 if (r)
2415                         return -EFAULT;
2416
2417                 size -= bytes;
2418                 *pos += bytes;
2419                 result += bytes;
2420         }
2421
2422         return result;
2423 }
2424
2425 /*
2426  * amdgpu_iomem_write - Virtual write access to GPU mapped memory
2427  *
2428  * This function is used to write memory that has been mapped to the
2429  * GPU and the known addresses are not physical addresses but instead
2430  * bus addresses (e.g., what you'd put in an IB or ring buffer).
2431  */
2432 static ssize_t amdgpu_iomem_write(struct file *f, const char __user *buf,
2433                                  size_t size, loff_t *pos)
2434 {
2435         struct amdgpu_device *adev = file_inode(f)->i_private;
2436         struct iommu_domain *dom;
2437         ssize_t result = 0;
2438         int r;
2439
2440         dom = iommu_get_domain_for_dev(adev->dev);
2441
2442         while (size) {
2443                 phys_addr_t addr = *pos & PAGE_MASK;
2444                 loff_t off = *pos & ~PAGE_MASK;
2445                 size_t bytes = PAGE_SIZE - off;
2446                 unsigned long pfn;
2447                 struct page *p;
2448                 void *ptr;
2449
2450                 bytes = bytes < size ? bytes : size;
2451
2452                 addr = dom ? iommu_iova_to_phys(dom, addr) : addr;
2453
2454                 pfn = addr >> PAGE_SHIFT;
2455                 if (!pfn_valid(pfn))
2456                         return -EPERM;
2457
2458                 p = pfn_to_page(pfn);
2459                 if (p->mapping != adev->mman.bdev.dev_mapping)
2460                         return -EPERM;
2461
2462                 ptr = kmap_local_page(p);
2463                 r = copy_from_user(ptr + off, buf, bytes);
2464                 kunmap_local(ptr);
2465                 if (r)
2466                         return -EFAULT;
2467
2468                 size -= bytes;
2469                 *pos += bytes;
2470                 result += bytes;
2471         }
2472
2473         return result;
2474 }
2475
2476 static const struct file_operations amdgpu_ttm_iomem_fops = {
2477         .owner = THIS_MODULE,
2478         .read = amdgpu_iomem_read,
2479         .write = amdgpu_iomem_write,
2480         .llseek = default_llseek
2481 };
2482
2483 #endif
2484
2485 void amdgpu_ttm_debugfs_init(struct amdgpu_device *adev)
2486 {
2487 #if defined(CONFIG_DEBUG_FS)
2488         struct drm_minor *minor = adev_to_drm(adev)->primary;
2489         struct dentry *root = minor->debugfs_root;
2490
2491         debugfs_create_file_size("amdgpu_vram", 0444, root, adev,
2492                                  &amdgpu_ttm_vram_fops, adev->gmc.mc_vram_size);
2493         debugfs_create_file("amdgpu_iomem", 0444, root, adev,
2494                             &amdgpu_ttm_iomem_fops);
2495         debugfs_create_file("ttm_page_pool", 0444, root, adev,
2496                             &amdgpu_ttm_page_pool_fops);
2497         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2498                                                              TTM_PL_VRAM),
2499                                             root, "amdgpu_vram_mm");
2500         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2501                                                              TTM_PL_TT),
2502                                             root, "amdgpu_gtt_mm");
2503         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2504                                                              AMDGPU_PL_GDS),
2505                                             root, "amdgpu_gds_mm");
2506         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2507                                                              AMDGPU_PL_GWS),
2508                                             root, "amdgpu_gws_mm");
2509         ttm_resource_manager_create_debugfs(ttm_manager_type(&adev->mman.bdev,
2510                                                              AMDGPU_PL_OA),
2511                                             root, "amdgpu_oa_mm");
2512
2513 #endif
2514 }