xsk: Fix possible crash when multiple sockets are created
[sfrench/cifs-2.6.git] / drivers / firmware / arm_scmi / clock.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * System Control and Management Interface (SCMI) Clock Protocol
4  *
5  * Copyright (C) 2018-2021 ARM Ltd.
6  */
7
8 #include <linux/module.h>
9 #include <linux/sort.h>
10
11 #include "common.h"
12
13 enum scmi_clock_protocol_cmd {
14         CLOCK_ATTRIBUTES = 0x3,
15         CLOCK_DESCRIBE_RATES = 0x4,
16         CLOCK_RATE_SET = 0x5,
17         CLOCK_RATE_GET = 0x6,
18         CLOCK_CONFIG_SET = 0x7,
19 };
20
21 struct scmi_msg_resp_clock_protocol_attributes {
22         __le16 num_clocks;
23         u8 max_async_req;
24         u8 reserved;
25 };
26
27 struct scmi_msg_resp_clock_attributes {
28         __le32 attributes;
29 #define CLOCK_ENABLE    BIT(0)
30         u8 name[SCMI_MAX_STR_SIZE];
31         __le32 clock_enable_latency;
32 };
33
34 struct scmi_clock_set_config {
35         __le32 id;
36         __le32 attributes;
37 };
38
39 struct scmi_msg_clock_describe_rates {
40         __le32 id;
41         __le32 rate_index;
42 };
43
44 struct scmi_msg_resp_clock_describe_rates {
45         __le32 num_rates_flags;
46 #define NUM_RETURNED(x)         ((x) & 0xfff)
47 #define RATE_DISCRETE(x)        !((x) & BIT(12))
48 #define NUM_REMAINING(x)        ((x) >> 16)
49         struct {
50                 __le32 value_low;
51                 __le32 value_high;
52         } rate[0];
53 #define RATE_TO_U64(X)          \
54 ({                              \
55         typeof(X) x = (X);      \
56         le32_to_cpu((x).value_low) | (u64)le32_to_cpu((x).value_high) << 32; \
57 })
58 };
59
60 struct scmi_clock_set_rate {
61         __le32 flags;
62 #define CLOCK_SET_ASYNC         BIT(0)
63 #define CLOCK_SET_IGNORE_RESP   BIT(1)
64 #define CLOCK_SET_ROUND_UP      BIT(2)
65 #define CLOCK_SET_ROUND_AUTO    BIT(3)
66         __le32 id;
67         __le32 value_low;
68         __le32 value_high;
69 };
70
71 struct clock_info {
72         u32 version;
73         int num_clocks;
74         int max_async_req;
75         atomic_t cur_async_req;
76         struct scmi_clock_info *clk;
77 };
78
79 static int
80 scmi_clock_protocol_attributes_get(const struct scmi_protocol_handle *ph,
81                                    struct clock_info *ci)
82 {
83         int ret;
84         struct scmi_xfer *t;
85         struct scmi_msg_resp_clock_protocol_attributes *attr;
86
87         ret = ph->xops->xfer_get_init(ph, PROTOCOL_ATTRIBUTES,
88                                       0, sizeof(*attr), &t);
89         if (ret)
90                 return ret;
91
92         attr = t->rx.buf;
93
94         ret = ph->xops->do_xfer(ph, t);
95         if (!ret) {
96                 ci->num_clocks = le16_to_cpu(attr->num_clocks);
97                 ci->max_async_req = attr->max_async_req;
98         }
99
100         ph->xops->xfer_put(ph, t);
101         return ret;
102 }
103
104 static int scmi_clock_attributes_get(const struct scmi_protocol_handle *ph,
105                                      u32 clk_id, struct scmi_clock_info *clk)
106 {
107         int ret;
108         struct scmi_xfer *t;
109         struct scmi_msg_resp_clock_attributes *attr;
110
111         ret = ph->xops->xfer_get_init(ph, CLOCK_ATTRIBUTES,
112                                       sizeof(clk_id), sizeof(*attr), &t);
113         if (ret)
114                 return ret;
115
116         put_unaligned_le32(clk_id, t->tx.buf);
117         attr = t->rx.buf;
118
119         ret = ph->xops->do_xfer(ph, t);
120         if (!ret) {
121                 strlcpy(clk->name, attr->name, SCMI_MAX_STR_SIZE);
122                 /* Is optional field clock_enable_latency provided ? */
123                 if (t->rx.len == sizeof(*attr))
124                         clk->enable_latency =
125                                 le32_to_cpu(attr->clock_enable_latency);
126         } else {
127                 clk->name[0] = '\0';
128         }
129
130         ph->xops->xfer_put(ph, t);
131         return ret;
132 }
133
134 static int rate_cmp_func(const void *_r1, const void *_r2)
135 {
136         const u64 *r1 = _r1, *r2 = _r2;
137
138         if (*r1 < *r2)
139                 return -1;
140         else if (*r1 == *r2)
141                 return 0;
142         else
143                 return 1;
144 }
145
146 static int
147 scmi_clock_describe_rates_get(const struct scmi_protocol_handle *ph, u32 clk_id,
148                               struct scmi_clock_info *clk)
149 {
150         u64 *rate = NULL;
151         int ret, cnt;
152         bool rate_discrete = false;
153         u32 tot_rate_cnt = 0, rates_flag;
154         u16 num_returned, num_remaining;
155         struct scmi_xfer *t;
156         struct scmi_msg_clock_describe_rates *clk_desc;
157         struct scmi_msg_resp_clock_describe_rates *rlist;
158
159         ret = ph->xops->xfer_get_init(ph, CLOCK_DESCRIBE_RATES,
160                                       sizeof(*clk_desc), 0, &t);
161         if (ret)
162                 return ret;
163
164         clk_desc = t->tx.buf;
165         rlist = t->rx.buf;
166
167         do {
168                 clk_desc->id = cpu_to_le32(clk_id);
169                 /* Set the number of rates to be skipped/already read */
170                 clk_desc->rate_index = cpu_to_le32(tot_rate_cnt);
171
172                 ret = ph->xops->do_xfer(ph, t);
173                 if (ret)
174                         goto err;
175
176                 rates_flag = le32_to_cpu(rlist->num_rates_flags);
177                 num_remaining = NUM_REMAINING(rates_flag);
178                 rate_discrete = RATE_DISCRETE(rates_flag);
179                 num_returned = NUM_RETURNED(rates_flag);
180
181                 if (tot_rate_cnt + num_returned > SCMI_MAX_NUM_RATES) {
182                         dev_err(ph->dev, "No. of rates > MAX_NUM_RATES");
183                         break;
184                 }
185
186                 if (!rate_discrete) {
187                         clk->range.min_rate = RATE_TO_U64(rlist->rate[0]);
188                         clk->range.max_rate = RATE_TO_U64(rlist->rate[1]);
189                         clk->range.step_size = RATE_TO_U64(rlist->rate[2]);
190                         dev_dbg(ph->dev, "Min %llu Max %llu Step %llu Hz\n",
191                                 clk->range.min_rate, clk->range.max_rate,
192                                 clk->range.step_size);
193                         break;
194                 }
195
196                 rate = &clk->list.rates[tot_rate_cnt];
197                 for (cnt = 0; cnt < num_returned; cnt++, rate++) {
198                         *rate = RATE_TO_U64(rlist->rate[cnt]);
199                         dev_dbg(ph->dev, "Rate %llu Hz\n", *rate);
200                 }
201
202                 tot_rate_cnt += num_returned;
203
204                 ph->xops->reset_rx_to_maxsz(ph, t);
205                 /*
206                  * check for both returned and remaining to avoid infinite
207                  * loop due to buggy firmware
208                  */
209         } while (num_returned && num_remaining);
210
211         if (rate_discrete && rate) {
212                 clk->list.num_rates = tot_rate_cnt;
213                 sort(rate, tot_rate_cnt, sizeof(*rate), rate_cmp_func, NULL);
214         }
215
216         clk->rate_discrete = rate_discrete;
217
218 err:
219         ph->xops->xfer_put(ph, t);
220         return ret;
221 }
222
223 static int
224 scmi_clock_rate_get(const struct scmi_protocol_handle *ph,
225                     u32 clk_id, u64 *value)
226 {
227         int ret;
228         struct scmi_xfer *t;
229
230         ret = ph->xops->xfer_get_init(ph, CLOCK_RATE_GET,
231                                       sizeof(__le32), sizeof(u64), &t);
232         if (ret)
233                 return ret;
234
235         put_unaligned_le32(clk_id, t->tx.buf);
236
237         ret = ph->xops->do_xfer(ph, t);
238         if (!ret)
239                 *value = get_unaligned_le64(t->rx.buf);
240
241         ph->xops->xfer_put(ph, t);
242         return ret;
243 }
244
245 static int scmi_clock_rate_set(const struct scmi_protocol_handle *ph,
246                                u32 clk_id, u64 rate)
247 {
248         int ret;
249         u32 flags = 0;
250         struct scmi_xfer *t;
251         struct scmi_clock_set_rate *cfg;
252         struct clock_info *ci = ph->get_priv(ph);
253
254         ret = ph->xops->xfer_get_init(ph, CLOCK_RATE_SET, sizeof(*cfg), 0, &t);
255         if (ret)
256                 return ret;
257
258         if (ci->max_async_req &&
259             atomic_inc_return(&ci->cur_async_req) < ci->max_async_req)
260                 flags |= CLOCK_SET_ASYNC;
261
262         cfg = t->tx.buf;
263         cfg->flags = cpu_to_le32(flags);
264         cfg->id = cpu_to_le32(clk_id);
265         cfg->value_low = cpu_to_le32(rate & 0xffffffff);
266         cfg->value_high = cpu_to_le32(rate >> 32);
267
268         if (flags & CLOCK_SET_ASYNC)
269                 ret = ph->xops->do_xfer_with_response(ph, t);
270         else
271                 ret = ph->xops->do_xfer(ph, t);
272
273         if (ci->max_async_req)
274                 atomic_dec(&ci->cur_async_req);
275
276         ph->xops->xfer_put(ph, t);
277         return ret;
278 }
279
280 static int
281 scmi_clock_config_set(const struct scmi_protocol_handle *ph, u32 clk_id,
282                       u32 config, bool atomic)
283 {
284         int ret;
285         struct scmi_xfer *t;
286         struct scmi_clock_set_config *cfg;
287
288         ret = ph->xops->xfer_get_init(ph, CLOCK_CONFIG_SET,
289                                       sizeof(*cfg), 0, &t);
290         if (ret)
291                 return ret;
292
293         t->hdr.poll_completion = atomic;
294
295         cfg = t->tx.buf;
296         cfg->id = cpu_to_le32(clk_id);
297         cfg->attributes = cpu_to_le32(config);
298
299         ret = ph->xops->do_xfer(ph, t);
300
301         ph->xops->xfer_put(ph, t);
302         return ret;
303 }
304
305 static int scmi_clock_enable(const struct scmi_protocol_handle *ph, u32 clk_id)
306 {
307         return scmi_clock_config_set(ph, clk_id, CLOCK_ENABLE, false);
308 }
309
310 static int scmi_clock_disable(const struct scmi_protocol_handle *ph, u32 clk_id)
311 {
312         return scmi_clock_config_set(ph, clk_id, 0, false);
313 }
314
315 static int scmi_clock_enable_atomic(const struct scmi_protocol_handle *ph,
316                                     u32 clk_id)
317 {
318         return scmi_clock_config_set(ph, clk_id, CLOCK_ENABLE, true);
319 }
320
321 static int scmi_clock_disable_atomic(const struct scmi_protocol_handle *ph,
322                                      u32 clk_id)
323 {
324         return scmi_clock_config_set(ph, clk_id, 0, true);
325 }
326
327 static int scmi_clock_count_get(const struct scmi_protocol_handle *ph)
328 {
329         struct clock_info *ci = ph->get_priv(ph);
330
331         return ci->num_clocks;
332 }
333
334 static const struct scmi_clock_info *
335 scmi_clock_info_get(const struct scmi_protocol_handle *ph, u32 clk_id)
336 {
337         struct clock_info *ci = ph->get_priv(ph);
338         struct scmi_clock_info *clk = ci->clk + clk_id;
339
340         if (!clk->name[0])
341                 return NULL;
342
343         return clk;
344 }
345
346 static const struct scmi_clk_proto_ops clk_proto_ops = {
347         .count_get = scmi_clock_count_get,
348         .info_get = scmi_clock_info_get,
349         .rate_get = scmi_clock_rate_get,
350         .rate_set = scmi_clock_rate_set,
351         .enable = scmi_clock_enable,
352         .disable = scmi_clock_disable,
353         .enable_atomic = scmi_clock_enable_atomic,
354         .disable_atomic = scmi_clock_disable_atomic,
355 };
356
357 static int scmi_clock_protocol_init(const struct scmi_protocol_handle *ph)
358 {
359         u32 version;
360         int clkid, ret;
361         struct clock_info *cinfo;
362
363         ph->xops->version_get(ph, &version);
364
365         dev_dbg(ph->dev, "Clock Version %d.%d\n",
366                 PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
367
368         cinfo = devm_kzalloc(ph->dev, sizeof(*cinfo), GFP_KERNEL);
369         if (!cinfo)
370                 return -ENOMEM;
371
372         scmi_clock_protocol_attributes_get(ph, cinfo);
373
374         cinfo->clk = devm_kcalloc(ph->dev, cinfo->num_clocks,
375                                   sizeof(*cinfo->clk), GFP_KERNEL);
376         if (!cinfo->clk)
377                 return -ENOMEM;
378
379         for (clkid = 0; clkid < cinfo->num_clocks; clkid++) {
380                 struct scmi_clock_info *clk = cinfo->clk + clkid;
381
382                 ret = scmi_clock_attributes_get(ph, clkid, clk);
383                 if (!ret)
384                         scmi_clock_describe_rates_get(ph, clkid, clk);
385         }
386
387         cinfo->version = version;
388         return ph->set_priv(ph, cinfo);
389 }
390
391 static const struct scmi_protocol scmi_clock = {
392         .id = SCMI_PROTOCOL_CLOCK,
393         .owner = THIS_MODULE,
394         .instance_init = &scmi_clock_protocol_init,
395         .ops = &clk_proto_ops,
396 };
397
398 DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(clock, scmi_clock)