spnego: add missing OID to oid registry
[sfrench/cifs-2.6.git] / drivers / dma / ti / edma.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * TI EDMA DMA engine driver
4  *
5  * Copyright 2012 Texas Instruments
6  */
7
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/bitmap.h>
11 #include <linux/err.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/list.h>
15 #include <linux/module.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/of_device.h>
24 #include <linux/pm_runtime.h>
25
26 #include <linux/platform_data/edma.h>
27
28 #include "../dmaengine.h"
29 #include "../virt-dma.h"
30
31 /* Offsets matching "struct edmacc_param" */
32 #define PARM_OPT                0x00
33 #define PARM_SRC                0x04
34 #define PARM_A_B_CNT            0x08
35 #define PARM_DST                0x0c
36 #define PARM_SRC_DST_BIDX       0x10
37 #define PARM_LINK_BCNTRLD       0x14
38 #define PARM_SRC_DST_CIDX       0x18
39 #define PARM_CCNT               0x1c
40
41 #define PARM_SIZE               0x20
42
43 /* Offsets for EDMA CC global channel registers and their shadows */
44 #define SH_ER                   0x00    /* 64 bits */
45 #define SH_ECR                  0x08    /* 64 bits */
46 #define SH_ESR                  0x10    /* 64 bits */
47 #define SH_CER                  0x18    /* 64 bits */
48 #define SH_EER                  0x20    /* 64 bits */
49 #define SH_EECR                 0x28    /* 64 bits */
50 #define SH_EESR                 0x30    /* 64 bits */
51 #define SH_SER                  0x38    /* 64 bits */
52 #define SH_SECR                 0x40    /* 64 bits */
53 #define SH_IER                  0x50    /* 64 bits */
54 #define SH_IECR                 0x58    /* 64 bits */
55 #define SH_IESR                 0x60    /* 64 bits */
56 #define SH_IPR                  0x68    /* 64 bits */
57 #define SH_ICR                  0x70    /* 64 bits */
58 #define SH_IEVAL                0x78
59 #define SH_QER                  0x80
60 #define SH_QEER                 0x84
61 #define SH_QEECR                0x88
62 #define SH_QEESR                0x8c
63 #define SH_QSER                 0x90
64 #define SH_QSECR                0x94
65 #define SH_SIZE                 0x200
66
67 /* Offsets for EDMA CC global registers */
68 #define EDMA_REV                0x0000
69 #define EDMA_CCCFG              0x0004
70 #define EDMA_QCHMAP             0x0200  /* 8 registers */
71 #define EDMA_DMAQNUM            0x0240  /* 8 registers (4 on OMAP-L1xx) */
72 #define EDMA_QDMAQNUM           0x0260
73 #define EDMA_QUETCMAP           0x0280
74 #define EDMA_QUEPRI             0x0284
75 #define EDMA_EMR                0x0300  /* 64 bits */
76 #define EDMA_EMCR               0x0308  /* 64 bits */
77 #define EDMA_QEMR               0x0310
78 #define EDMA_QEMCR              0x0314
79 #define EDMA_CCERR              0x0318
80 #define EDMA_CCERRCLR           0x031c
81 #define EDMA_EEVAL              0x0320
82 #define EDMA_DRAE               0x0340  /* 4 x 64 bits*/
83 #define EDMA_QRAE               0x0380  /* 4 registers */
84 #define EDMA_QUEEVTENTRY        0x0400  /* 2 x 16 registers */
85 #define EDMA_QSTAT              0x0600  /* 2 registers */
86 #define EDMA_QWMTHRA            0x0620
87 #define EDMA_QWMTHRB            0x0624
88 #define EDMA_CCSTAT             0x0640
89
90 #define EDMA_M                  0x1000  /* global channel registers */
91 #define EDMA_ECR                0x1008
92 #define EDMA_ECRH               0x100C
93 #define EDMA_SHADOW0            0x2000  /* 4 shadow regions */
94 #define EDMA_PARM               0x4000  /* PaRAM entries */
95
96 #define PARM_OFFSET(param_no)   (EDMA_PARM + ((param_no) << 5))
97
98 #define EDMA_DCHMAP             0x0100  /* 64 registers */
99
100 /* CCCFG register */
101 #define GET_NUM_DMACH(x)        (x & 0x7) /* bits 0-2 */
102 #define GET_NUM_QDMACH(x)       ((x & 0x70) >> 4) /* bits 4-6 */
103 #define GET_NUM_PAENTRY(x)      ((x & 0x7000) >> 12) /* bits 12-14 */
104 #define GET_NUM_EVQUE(x)        ((x & 0x70000) >> 16) /* bits 16-18 */
105 #define GET_NUM_REGN(x)         ((x & 0x300000) >> 20) /* bits 20-21 */
106 #define CHMAP_EXIST             BIT(24)
107
108 /* CCSTAT register */
109 #define EDMA_CCSTAT_ACTV        BIT(4)
110
111 /*
112  * Max of 20 segments per channel to conserve PaRAM slots
113  * Also note that MAX_NR_SG should be at least the no.of periods
114  * that are required for ASoC, otherwise DMA prep calls will
115  * fail. Today davinci-pcm is the only user of this driver and
116  * requires at least 17 slots, so we setup the default to 20.
117  */
118 #define MAX_NR_SG               20
119 #define EDMA_MAX_SLOTS          MAX_NR_SG
120 #define EDMA_DESCRIPTORS        16
121
122 #define EDMA_CHANNEL_ANY                -1      /* for edma_alloc_channel() */
123 #define EDMA_SLOT_ANY                   -1      /* for edma_alloc_slot() */
124 #define EDMA_CONT_PARAMS_ANY             1001
125 #define EDMA_CONT_PARAMS_FIXED_EXACT     1002
126 #define EDMA_CONT_PARAMS_FIXED_NOT_EXACT 1003
127
128 /*
129  * 64bit array registers are split into two 32bit registers:
130  * reg0: channel/event 0-31
131  * reg1: channel/event 32-63
132  *
133  * bit 5 in the channel number tells the array index (0/1)
134  * bit 0-4 (0x1f) is the bit offset within the register
135  */
136 #define EDMA_REG_ARRAY_INDEX(channel)   ((channel) >> 5)
137 #define EDMA_CHANNEL_BIT(channel)       (BIT((channel) & 0x1f))
138
139 /* PaRAM slots are laid out like this */
140 struct edmacc_param {
141         u32 opt;
142         u32 src;
143         u32 a_b_cnt;
144         u32 dst;
145         u32 src_dst_bidx;
146         u32 link_bcntrld;
147         u32 src_dst_cidx;
148         u32 ccnt;
149 } __packed;
150
151 /* fields in edmacc_param.opt */
152 #define SAM             BIT(0)
153 #define DAM             BIT(1)
154 #define SYNCDIM         BIT(2)
155 #define STATIC          BIT(3)
156 #define EDMA_FWID       (0x07 << 8)
157 #define TCCMODE         BIT(11)
158 #define EDMA_TCC(t)     ((t) << 12)
159 #define TCINTEN         BIT(20)
160 #define ITCINTEN        BIT(21)
161 #define TCCHEN          BIT(22)
162 #define ITCCHEN         BIT(23)
163
164 struct edma_pset {
165         u32                             len;
166         dma_addr_t                      addr;
167         struct edmacc_param             param;
168 };
169
170 struct edma_desc {
171         struct virt_dma_desc            vdesc;
172         struct list_head                node;
173         enum dma_transfer_direction     direction;
174         int                             cyclic;
175         bool                            polled;
176         int                             absync;
177         int                             pset_nr;
178         struct edma_chan                *echan;
179         int                             processed;
180
181         /*
182          * The following 4 elements are used for residue accounting.
183          *
184          * - processed_stat: the number of SG elements we have traversed
185          * so far to cover accounting. This is updated directly to processed
186          * during edma_callback and is always <= processed, because processed
187          * refers to the number of pending transfer (programmed to EDMA
188          * controller), where as processed_stat tracks number of transfers
189          * accounted for so far.
190          *
191          * - residue: The amount of bytes we have left to transfer for this desc
192          *
193          * - residue_stat: The residue in bytes of data we have covered
194          * so far for accounting. This is updated directly to residue
195          * during callbacks to keep it current.
196          *
197          * - sg_len: Tracks the length of the current intermediate transfer,
198          * this is required to update the residue during intermediate transfer
199          * completion callback.
200          */
201         int                             processed_stat;
202         u32                             sg_len;
203         u32                             residue;
204         u32                             residue_stat;
205
206         struct edma_pset                pset[];
207 };
208
209 struct edma_cc;
210
211 struct edma_tc {
212         struct device_node              *node;
213         u16                             id;
214 };
215
216 struct edma_chan {
217         struct virt_dma_chan            vchan;
218         struct list_head                node;
219         struct edma_desc                *edesc;
220         struct edma_cc                  *ecc;
221         struct edma_tc                  *tc;
222         int                             ch_num;
223         bool                            alloced;
224         bool                            hw_triggered;
225         int                             slot[EDMA_MAX_SLOTS];
226         int                             missed;
227         struct dma_slave_config         cfg;
228 };
229
230 struct edma_cc {
231         struct device                   *dev;
232         struct edma_soc_info            *info;
233         void __iomem                    *base;
234         int                             id;
235         bool                            legacy_mode;
236
237         /* eDMA3 resource information */
238         unsigned                        num_channels;
239         unsigned                        num_qchannels;
240         unsigned                        num_region;
241         unsigned                        num_slots;
242         unsigned                        num_tc;
243         bool                            chmap_exist;
244         enum dma_event_q                default_queue;
245
246         unsigned int                    ccint;
247         unsigned int                    ccerrint;
248
249         /*
250          * The slot_inuse bit for each PaRAM slot is clear unless the slot is
251          * in use by Linux or if it is allocated to be used by DSP.
252          */
253         unsigned long *slot_inuse;
254
255         /*
256          * For tracking reserved channels used by DSP.
257          * If the bit is cleared, the channel is allocated to be used by DSP
258          * and Linux must not touch it.
259          */
260         unsigned long *channels_mask;
261
262         struct dma_device               dma_slave;
263         struct dma_device               *dma_memcpy;
264         struct edma_chan                *slave_chans;
265         struct edma_tc                  *tc_list;
266         int                             dummy_slot;
267 };
268
269 /* dummy param set used to (re)initialize parameter RAM slots */
270 static const struct edmacc_param dummy_paramset = {
271         .link_bcntrld = 0xffff,
272         .ccnt = 1,
273 };
274
275 #define EDMA_BINDING_LEGACY     0
276 #define EDMA_BINDING_TPCC       1
277 static const u32 edma_binding_type[] = {
278         [EDMA_BINDING_LEGACY] = EDMA_BINDING_LEGACY,
279         [EDMA_BINDING_TPCC] = EDMA_BINDING_TPCC,
280 };
281
282 static const struct of_device_id edma_of_ids[] = {
283         {
284                 .compatible = "ti,edma3",
285                 .data = &edma_binding_type[EDMA_BINDING_LEGACY],
286         },
287         {
288                 .compatible = "ti,edma3-tpcc",
289                 .data = &edma_binding_type[EDMA_BINDING_TPCC],
290         },
291         {}
292 };
293 MODULE_DEVICE_TABLE(of, edma_of_ids);
294
295 static const struct of_device_id edma_tptc_of_ids[] = {
296         { .compatible = "ti,edma3-tptc", },
297         {}
298 };
299 MODULE_DEVICE_TABLE(of, edma_tptc_of_ids);
300
301 static inline unsigned int edma_read(struct edma_cc *ecc, int offset)
302 {
303         return (unsigned int)__raw_readl(ecc->base + offset);
304 }
305
306 static inline void edma_write(struct edma_cc *ecc, int offset, int val)
307 {
308         __raw_writel(val, ecc->base + offset);
309 }
310
311 static inline void edma_modify(struct edma_cc *ecc, int offset, unsigned and,
312                                unsigned or)
313 {
314         unsigned val = edma_read(ecc, offset);
315
316         val &= and;
317         val |= or;
318         edma_write(ecc, offset, val);
319 }
320
321 static inline void edma_or(struct edma_cc *ecc, int offset, unsigned or)
322 {
323         unsigned val = edma_read(ecc, offset);
324
325         val |= or;
326         edma_write(ecc, offset, val);
327 }
328
329 static inline unsigned int edma_read_array(struct edma_cc *ecc, int offset,
330                                            int i)
331 {
332         return edma_read(ecc, offset + (i << 2));
333 }
334
335 static inline void edma_write_array(struct edma_cc *ecc, int offset, int i,
336                                     unsigned val)
337 {
338         edma_write(ecc, offset + (i << 2), val);
339 }
340
341 static inline void edma_modify_array(struct edma_cc *ecc, int offset, int i,
342                                      unsigned and, unsigned or)
343 {
344         edma_modify(ecc, offset + (i << 2), and, or);
345 }
346
347 static inline void edma_or_array2(struct edma_cc *ecc, int offset, int i, int j,
348                                   unsigned or)
349 {
350         edma_or(ecc, offset + ((i * 2 + j) << 2), or);
351 }
352
353 static inline void edma_write_array2(struct edma_cc *ecc, int offset, int i,
354                                      int j, unsigned val)
355 {
356         edma_write(ecc, offset + ((i * 2 + j) << 2), val);
357 }
358
359 static inline unsigned int edma_shadow0_read_array(struct edma_cc *ecc,
360                                                    int offset, int i)
361 {
362         return edma_read(ecc, EDMA_SHADOW0 + offset + (i << 2));
363 }
364
365 static inline void edma_shadow0_write(struct edma_cc *ecc, int offset,
366                                       unsigned val)
367 {
368         edma_write(ecc, EDMA_SHADOW0 + offset, val);
369 }
370
371 static inline void edma_shadow0_write_array(struct edma_cc *ecc, int offset,
372                                             int i, unsigned val)
373 {
374         edma_write(ecc, EDMA_SHADOW0 + offset + (i << 2), val);
375 }
376
377 static inline void edma_param_modify(struct edma_cc *ecc, int offset,
378                                      int param_no, unsigned and, unsigned or)
379 {
380         edma_modify(ecc, EDMA_PARM + offset + (param_no << 5), and, or);
381 }
382
383 static void edma_assign_priority_to_queue(struct edma_cc *ecc, int queue_no,
384                                           int priority)
385 {
386         int bit = queue_no * 4;
387
388         edma_modify(ecc, EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit));
389 }
390
391 static void edma_set_chmap(struct edma_chan *echan, int slot)
392 {
393         struct edma_cc *ecc = echan->ecc;
394         int channel = EDMA_CHAN_SLOT(echan->ch_num);
395
396         if (ecc->chmap_exist) {
397                 slot = EDMA_CHAN_SLOT(slot);
398                 edma_write_array(ecc, EDMA_DCHMAP, channel, (slot << 5));
399         }
400 }
401
402 static void edma_setup_interrupt(struct edma_chan *echan, bool enable)
403 {
404         struct edma_cc *ecc = echan->ecc;
405         int channel = EDMA_CHAN_SLOT(echan->ch_num);
406         int idx = EDMA_REG_ARRAY_INDEX(channel);
407         int ch_bit = EDMA_CHANNEL_BIT(channel);
408
409         if (enable) {
410                 edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
411                 edma_shadow0_write_array(ecc, SH_IESR, idx, ch_bit);
412         } else {
413                 edma_shadow0_write_array(ecc, SH_IECR, idx, ch_bit);
414         }
415 }
416
417 /*
418  * paRAM slot management functions
419  */
420 static void edma_write_slot(struct edma_cc *ecc, unsigned slot,
421                             const struct edmacc_param *param)
422 {
423         slot = EDMA_CHAN_SLOT(slot);
424         if (slot >= ecc->num_slots)
425                 return;
426         memcpy_toio(ecc->base + PARM_OFFSET(slot), param, PARM_SIZE);
427 }
428
429 static int edma_read_slot(struct edma_cc *ecc, unsigned slot,
430                            struct edmacc_param *param)
431 {
432         slot = EDMA_CHAN_SLOT(slot);
433         if (slot >= ecc->num_slots)
434                 return -EINVAL;
435         memcpy_fromio(param, ecc->base + PARM_OFFSET(slot), PARM_SIZE);
436
437         return 0;
438 }
439
440 /**
441  * edma_alloc_slot - allocate DMA parameter RAM
442  * @ecc: pointer to edma_cc struct
443  * @slot: specific slot to allocate; negative for "any unused slot"
444  *
445  * This allocates a parameter RAM slot, initializing it to hold a
446  * dummy transfer.  Slots allocated using this routine have not been
447  * mapped to a hardware DMA channel, and will normally be used by
448  * linking to them from a slot associated with a DMA channel.
449  *
450  * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific
451  * slots may be allocated on behalf of DSP firmware.
452  *
453  * Returns the number of the slot, else negative errno.
454  */
455 static int edma_alloc_slot(struct edma_cc *ecc, int slot)
456 {
457         if (slot >= 0) {
458                 slot = EDMA_CHAN_SLOT(slot);
459                 /* Requesting entry paRAM slot for a HW triggered channel. */
460                 if (ecc->chmap_exist && slot < ecc->num_channels)
461                         slot = EDMA_SLOT_ANY;
462         }
463
464         if (slot < 0) {
465                 if (ecc->chmap_exist)
466                         slot = 0;
467                 else
468                         slot = ecc->num_channels;
469                 for (;;) {
470                         slot = find_next_zero_bit(ecc->slot_inuse,
471                                                   ecc->num_slots,
472                                                   slot);
473                         if (slot == ecc->num_slots)
474                                 return -ENOMEM;
475                         if (!test_and_set_bit(slot, ecc->slot_inuse))
476                                 break;
477                 }
478         } else if (slot >= ecc->num_slots) {
479                 return -EINVAL;
480         } else if (test_and_set_bit(slot, ecc->slot_inuse)) {
481                 return -EBUSY;
482         }
483
484         edma_write_slot(ecc, slot, &dummy_paramset);
485
486         return EDMA_CTLR_CHAN(ecc->id, slot);
487 }
488
489 static void edma_free_slot(struct edma_cc *ecc, unsigned slot)
490 {
491         slot = EDMA_CHAN_SLOT(slot);
492         if (slot >= ecc->num_slots)
493                 return;
494
495         edma_write_slot(ecc, slot, &dummy_paramset);
496         clear_bit(slot, ecc->slot_inuse);
497 }
498
499 /**
500  * edma_link - link one parameter RAM slot to another
501  * @ecc: pointer to edma_cc struct
502  * @from: parameter RAM slot originating the link
503  * @to: parameter RAM slot which is the link target
504  *
505  * The originating slot should not be part of any active DMA transfer.
506  */
507 static void edma_link(struct edma_cc *ecc, unsigned from, unsigned to)
508 {
509         if (unlikely(EDMA_CTLR(from) != EDMA_CTLR(to)))
510                 dev_warn(ecc->dev, "Ignoring eDMA instance for linking\n");
511
512         from = EDMA_CHAN_SLOT(from);
513         to = EDMA_CHAN_SLOT(to);
514         if (from >= ecc->num_slots || to >= ecc->num_slots)
515                 return;
516
517         edma_param_modify(ecc, PARM_LINK_BCNTRLD, from, 0xffff0000,
518                           PARM_OFFSET(to));
519 }
520
521 /**
522  * edma_get_position - returns the current transfer point
523  * @ecc: pointer to edma_cc struct
524  * @slot: parameter RAM slot being examined
525  * @dst:  true selects the dest position, false the source
526  *
527  * Returns the position of the current active slot
528  */
529 static dma_addr_t edma_get_position(struct edma_cc *ecc, unsigned slot,
530                                     bool dst)
531 {
532         u32 offs;
533
534         slot = EDMA_CHAN_SLOT(slot);
535         offs = PARM_OFFSET(slot);
536         offs += dst ? PARM_DST : PARM_SRC;
537
538         return edma_read(ecc, offs);
539 }
540
541 /*
542  * Channels with event associations will be triggered by their hardware
543  * events, and channels without such associations will be triggered by
544  * software.  (At this writing there is no interface for using software
545  * triggers except with channels that don't support hardware triggers.)
546  */
547 static void edma_start(struct edma_chan *echan)
548 {
549         struct edma_cc *ecc = echan->ecc;
550         int channel = EDMA_CHAN_SLOT(echan->ch_num);
551         int idx = EDMA_REG_ARRAY_INDEX(channel);
552         int ch_bit = EDMA_CHANNEL_BIT(channel);
553
554         if (!echan->hw_triggered) {
555                 /* EDMA channels without event association */
556                 dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
557                         edma_shadow0_read_array(ecc, SH_ESR, idx));
558                 edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
559         } else {
560                 /* EDMA channel with event association */
561                 dev_dbg(ecc->dev, "ER%d %08x\n", idx,
562                         edma_shadow0_read_array(ecc, SH_ER, idx));
563                 /* Clear any pending event or error */
564                 edma_write_array(ecc, EDMA_ECR, idx, ch_bit);
565                 edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
566                 /* Clear any SER */
567                 edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
568                 edma_shadow0_write_array(ecc, SH_EESR, idx, ch_bit);
569                 dev_dbg(ecc->dev, "EER%d %08x\n", idx,
570                         edma_shadow0_read_array(ecc, SH_EER, idx));
571         }
572 }
573
574 static void edma_stop(struct edma_chan *echan)
575 {
576         struct edma_cc *ecc = echan->ecc;
577         int channel = EDMA_CHAN_SLOT(echan->ch_num);
578         int idx = EDMA_REG_ARRAY_INDEX(channel);
579         int ch_bit = EDMA_CHANNEL_BIT(channel);
580
581         edma_shadow0_write_array(ecc, SH_EECR, idx, ch_bit);
582         edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
583         edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
584         edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
585
586         /* clear possibly pending completion interrupt */
587         edma_shadow0_write_array(ecc, SH_ICR, idx, ch_bit);
588
589         dev_dbg(ecc->dev, "EER%d %08x\n", idx,
590                 edma_shadow0_read_array(ecc, SH_EER, idx));
591
592         /* REVISIT:  consider guarding against inappropriate event
593          * chaining by overwriting with dummy_paramset.
594          */
595 }
596
597 /*
598  * Temporarily disable EDMA hardware events on the specified channel,
599  * preventing them from triggering new transfers
600  */
601 static void edma_pause(struct edma_chan *echan)
602 {
603         int channel = EDMA_CHAN_SLOT(echan->ch_num);
604
605         edma_shadow0_write_array(echan->ecc, SH_EECR,
606                                  EDMA_REG_ARRAY_INDEX(channel),
607                                  EDMA_CHANNEL_BIT(channel));
608 }
609
610 /* Re-enable EDMA hardware events on the specified channel.  */
611 static void edma_resume(struct edma_chan *echan)
612 {
613         int channel = EDMA_CHAN_SLOT(echan->ch_num);
614
615         edma_shadow0_write_array(echan->ecc, SH_EESR,
616                                  EDMA_REG_ARRAY_INDEX(channel),
617                                  EDMA_CHANNEL_BIT(channel));
618 }
619
620 static void edma_trigger_channel(struct edma_chan *echan)
621 {
622         struct edma_cc *ecc = echan->ecc;
623         int channel = EDMA_CHAN_SLOT(echan->ch_num);
624         int idx = EDMA_REG_ARRAY_INDEX(channel);
625         int ch_bit = EDMA_CHANNEL_BIT(channel);
626
627         edma_shadow0_write_array(ecc, SH_ESR, idx, ch_bit);
628
629         dev_dbg(ecc->dev, "ESR%d %08x\n", idx,
630                 edma_shadow0_read_array(ecc, SH_ESR, idx));
631 }
632
633 static void edma_clean_channel(struct edma_chan *echan)
634 {
635         struct edma_cc *ecc = echan->ecc;
636         int channel = EDMA_CHAN_SLOT(echan->ch_num);
637         int idx = EDMA_REG_ARRAY_INDEX(channel);
638         int ch_bit = EDMA_CHANNEL_BIT(channel);
639
640         dev_dbg(ecc->dev, "EMR%d %08x\n", idx,
641                 edma_read_array(ecc, EDMA_EMR, idx));
642         edma_shadow0_write_array(ecc, SH_ECR, idx, ch_bit);
643         /* Clear the corresponding EMR bits */
644         edma_write_array(ecc, EDMA_EMCR, idx, ch_bit);
645         /* Clear any SER */
646         edma_shadow0_write_array(ecc, SH_SECR, idx, ch_bit);
647         edma_write(ecc, EDMA_CCERRCLR, BIT(16) | BIT(1) | BIT(0));
648 }
649
650 /* Move channel to a specific event queue */
651 static void edma_assign_channel_eventq(struct edma_chan *echan,
652                                        enum dma_event_q eventq_no)
653 {
654         struct edma_cc *ecc = echan->ecc;
655         int channel = EDMA_CHAN_SLOT(echan->ch_num);
656         int bit = (channel & 0x7) * 4;
657
658         /* default to low priority queue */
659         if (eventq_no == EVENTQ_DEFAULT)
660                 eventq_no = ecc->default_queue;
661         if (eventq_no >= ecc->num_tc)
662                 return;
663
664         eventq_no &= 7;
665         edma_modify_array(ecc, EDMA_DMAQNUM, (channel >> 3), ~(0x7 << bit),
666                           eventq_no << bit);
667 }
668
669 static int edma_alloc_channel(struct edma_chan *echan,
670                               enum dma_event_q eventq_no)
671 {
672         struct edma_cc *ecc = echan->ecc;
673         int channel = EDMA_CHAN_SLOT(echan->ch_num);
674
675         if (!test_bit(echan->ch_num, ecc->channels_mask)) {
676                 dev_err(ecc->dev, "Channel%d is reserved, can not be used!\n",
677                         echan->ch_num);
678                 return -EINVAL;
679         }
680
681         /* ensure access through shadow region 0 */
682         edma_or_array2(ecc, EDMA_DRAE, 0, EDMA_REG_ARRAY_INDEX(channel),
683                        EDMA_CHANNEL_BIT(channel));
684
685         /* ensure no events are pending */
686         edma_stop(echan);
687
688         edma_setup_interrupt(echan, true);
689
690         edma_assign_channel_eventq(echan, eventq_no);
691
692         return 0;
693 }
694
695 static void edma_free_channel(struct edma_chan *echan)
696 {
697         /* ensure no events are pending */
698         edma_stop(echan);
699         /* REVISIT should probably take out of shadow region 0 */
700         edma_setup_interrupt(echan, false);
701 }
702
703 static inline struct edma_chan *to_edma_chan(struct dma_chan *c)
704 {
705         return container_of(c, struct edma_chan, vchan.chan);
706 }
707
708 static inline struct edma_desc *to_edma_desc(struct dma_async_tx_descriptor *tx)
709 {
710         return container_of(tx, struct edma_desc, vdesc.tx);
711 }
712
713 static void edma_desc_free(struct virt_dma_desc *vdesc)
714 {
715         kfree(container_of(vdesc, struct edma_desc, vdesc));
716 }
717
718 /* Dispatch a queued descriptor to the controller (caller holds lock) */
719 static void edma_execute(struct edma_chan *echan)
720 {
721         struct edma_cc *ecc = echan->ecc;
722         struct virt_dma_desc *vdesc;
723         struct edma_desc *edesc;
724         struct device *dev = echan->vchan.chan.device->dev;
725         int i, j, left, nslots;
726
727         if (!echan->edesc) {
728                 /* Setup is needed for the first transfer */
729                 vdesc = vchan_next_desc(&echan->vchan);
730                 if (!vdesc)
731                         return;
732                 list_del(&vdesc->node);
733                 echan->edesc = to_edma_desc(&vdesc->tx);
734         }
735
736         edesc = echan->edesc;
737
738         /* Find out how many left */
739         left = edesc->pset_nr - edesc->processed;
740         nslots = min(MAX_NR_SG, left);
741         edesc->sg_len = 0;
742
743         /* Write descriptor PaRAM set(s) */
744         for (i = 0; i < nslots; i++) {
745                 j = i + edesc->processed;
746                 edma_write_slot(ecc, echan->slot[i], &edesc->pset[j].param);
747                 edesc->sg_len += edesc->pset[j].len;
748                 dev_vdbg(dev,
749                          "\n pset[%d]:\n"
750                          "  chnum\t%d\n"
751                          "  slot\t%d\n"
752                          "  opt\t%08x\n"
753                          "  src\t%08x\n"
754                          "  dst\t%08x\n"
755                          "  abcnt\t%08x\n"
756                          "  ccnt\t%08x\n"
757                          "  bidx\t%08x\n"
758                          "  cidx\t%08x\n"
759                          "  lkrld\t%08x\n",
760                          j, echan->ch_num, echan->slot[i],
761                          edesc->pset[j].param.opt,
762                          edesc->pset[j].param.src,
763                          edesc->pset[j].param.dst,
764                          edesc->pset[j].param.a_b_cnt,
765                          edesc->pset[j].param.ccnt,
766                          edesc->pset[j].param.src_dst_bidx,
767                          edesc->pset[j].param.src_dst_cidx,
768                          edesc->pset[j].param.link_bcntrld);
769                 /* Link to the previous slot if not the last set */
770                 if (i != (nslots - 1))
771                         edma_link(ecc, echan->slot[i], echan->slot[i + 1]);
772         }
773
774         edesc->processed += nslots;
775
776         /*
777          * If this is either the last set in a set of SG-list transactions
778          * then setup a link to the dummy slot, this results in all future
779          * events being absorbed and that's OK because we're done
780          */
781         if (edesc->processed == edesc->pset_nr) {
782                 if (edesc->cyclic)
783                         edma_link(ecc, echan->slot[nslots - 1], echan->slot[1]);
784                 else
785                         edma_link(ecc, echan->slot[nslots - 1],
786                                   echan->ecc->dummy_slot);
787         }
788
789         if (echan->missed) {
790                 /*
791                  * This happens due to setup times between intermediate
792                  * transfers in long SG lists which have to be broken up into
793                  * transfers of MAX_NR_SG
794                  */
795                 dev_dbg(dev, "missed event on channel %d\n", echan->ch_num);
796                 edma_clean_channel(echan);
797                 edma_stop(echan);
798                 edma_start(echan);
799                 edma_trigger_channel(echan);
800                 echan->missed = 0;
801         } else if (edesc->processed <= MAX_NR_SG) {
802                 dev_dbg(dev, "first transfer starting on channel %d\n",
803                         echan->ch_num);
804                 edma_start(echan);
805         } else {
806                 dev_dbg(dev, "chan: %d: completed %d elements, resuming\n",
807                         echan->ch_num, edesc->processed);
808                 edma_resume(echan);
809         }
810 }
811
812 static int edma_terminate_all(struct dma_chan *chan)
813 {
814         struct edma_chan *echan = to_edma_chan(chan);
815         unsigned long flags;
816         LIST_HEAD(head);
817
818         spin_lock_irqsave(&echan->vchan.lock, flags);
819
820         /*
821          * Stop DMA activity: we assume the callback will not be called
822          * after edma_dma() returns (even if it does, it will see
823          * echan->edesc is NULL and exit.)
824          */
825         if (echan->edesc) {
826                 edma_stop(echan);
827                 /* Move the cyclic channel back to default queue */
828                 if (!echan->tc && echan->edesc->cyclic)
829                         edma_assign_channel_eventq(echan, EVENTQ_DEFAULT);
830
831                 vchan_terminate_vdesc(&echan->edesc->vdesc);
832                 echan->edesc = NULL;
833         }
834
835         vchan_get_all_descriptors(&echan->vchan, &head);
836         spin_unlock_irqrestore(&echan->vchan.lock, flags);
837         vchan_dma_desc_free_list(&echan->vchan, &head);
838
839         return 0;
840 }
841
842 static void edma_synchronize(struct dma_chan *chan)
843 {
844         struct edma_chan *echan = to_edma_chan(chan);
845
846         vchan_synchronize(&echan->vchan);
847 }
848
849 static int edma_slave_config(struct dma_chan *chan,
850         struct dma_slave_config *cfg)
851 {
852         struct edma_chan *echan = to_edma_chan(chan);
853
854         if (cfg->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
855             cfg->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
856                 return -EINVAL;
857
858         if (cfg->src_maxburst > chan->device->max_burst ||
859             cfg->dst_maxburst > chan->device->max_burst)
860                 return -EINVAL;
861
862         memcpy(&echan->cfg, cfg, sizeof(echan->cfg));
863
864         return 0;
865 }
866
867 static int edma_dma_pause(struct dma_chan *chan)
868 {
869         struct edma_chan *echan = to_edma_chan(chan);
870
871         if (!echan->edesc)
872                 return -EINVAL;
873
874         edma_pause(echan);
875         return 0;
876 }
877
878 static int edma_dma_resume(struct dma_chan *chan)
879 {
880         struct edma_chan *echan = to_edma_chan(chan);
881
882         edma_resume(echan);
883         return 0;
884 }
885
886 /*
887  * A PaRAM set configuration abstraction used by other modes
888  * @chan: Channel who's PaRAM set we're configuring
889  * @pset: PaRAM set to initialize and setup.
890  * @src_addr: Source address of the DMA
891  * @dst_addr: Destination address of the DMA
892  * @burst: In units of dev_width, how much to send
893  * @dev_width: How much is the dev_width
894  * @dma_length: Total length of the DMA transfer
895  * @direction: Direction of the transfer
896  */
897 static int edma_config_pset(struct dma_chan *chan, struct edma_pset *epset,
898                             dma_addr_t src_addr, dma_addr_t dst_addr, u32 burst,
899                             unsigned int acnt, unsigned int dma_length,
900                             enum dma_transfer_direction direction)
901 {
902         struct edma_chan *echan = to_edma_chan(chan);
903         struct device *dev = chan->device->dev;
904         struct edmacc_param *param = &epset->param;
905         int bcnt, ccnt, cidx;
906         int src_bidx, dst_bidx, src_cidx, dst_cidx;
907         int absync;
908
909         /* src/dst_maxburst == 0 is the same case as src/dst_maxburst == 1 */
910         if (!burst)
911                 burst = 1;
912         /*
913          * If the maxburst is equal to the fifo width, use
914          * A-synced transfers. This allows for large contiguous
915          * buffer transfers using only one PaRAM set.
916          */
917         if (burst == 1) {
918                 /*
919                  * For the A-sync case, bcnt and ccnt are the remainder
920                  * and quotient respectively of the division of:
921                  * (dma_length / acnt) by (SZ_64K -1). This is so
922                  * that in case bcnt over flows, we have ccnt to use.
923                  * Note: In A-sync transfer only, bcntrld is used, but it
924                  * only applies for sg_dma_len(sg) >= SZ_64K.
925                  * In this case, the best way adopted is- bccnt for the
926                  * first frame will be the remainder below. Then for
927                  * every successive frame, bcnt will be SZ_64K-1. This
928                  * is assured as bcntrld = 0xffff in end of function.
929                  */
930                 absync = false;
931                 ccnt = dma_length / acnt / (SZ_64K - 1);
932                 bcnt = dma_length / acnt - ccnt * (SZ_64K - 1);
933                 /*
934                  * If bcnt is non-zero, we have a remainder and hence an
935                  * extra frame to transfer, so increment ccnt.
936                  */
937                 if (bcnt)
938                         ccnt++;
939                 else
940                         bcnt = SZ_64K - 1;
941                 cidx = acnt;
942         } else {
943                 /*
944                  * If maxburst is greater than the fifo address_width,
945                  * use AB-synced transfers where A count is the fifo
946                  * address_width and B count is the maxburst. In this
947                  * case, we are limited to transfers of C count frames
948                  * of (address_width * maxburst) where C count is limited
949                  * to SZ_64K-1. This places an upper bound on the length
950                  * of an SG segment that can be handled.
951                  */
952                 absync = true;
953                 bcnt = burst;
954                 ccnt = dma_length / (acnt * bcnt);
955                 if (ccnt > (SZ_64K - 1)) {
956                         dev_err(dev, "Exceeded max SG segment size\n");
957                         return -EINVAL;
958                 }
959                 cidx = acnt * bcnt;
960         }
961
962         epset->len = dma_length;
963
964         if (direction == DMA_MEM_TO_DEV) {
965                 src_bidx = acnt;
966                 src_cidx = cidx;
967                 dst_bidx = 0;
968                 dst_cidx = 0;
969                 epset->addr = src_addr;
970         } else if (direction == DMA_DEV_TO_MEM)  {
971                 src_bidx = 0;
972                 src_cidx = 0;
973                 dst_bidx = acnt;
974                 dst_cidx = cidx;
975                 epset->addr = dst_addr;
976         } else if (direction == DMA_MEM_TO_MEM)  {
977                 src_bidx = acnt;
978                 src_cidx = cidx;
979                 dst_bidx = acnt;
980                 dst_cidx = cidx;
981                 epset->addr = src_addr;
982         } else {
983                 dev_err(dev, "%s: direction not implemented yet\n", __func__);
984                 return -EINVAL;
985         }
986
987         param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
988         /* Configure A or AB synchronized transfers */
989         if (absync)
990                 param->opt |= SYNCDIM;
991
992         param->src = src_addr;
993         param->dst = dst_addr;
994
995         param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
996         param->src_dst_cidx = (dst_cidx << 16) | src_cidx;
997
998         param->a_b_cnt = bcnt << 16 | acnt;
999         param->ccnt = ccnt;
1000         /*
1001          * Only time when (bcntrld) auto reload is required is for
1002          * A-sync case, and in this case, a requirement of reload value
1003          * of SZ_64K-1 only is assured. 'link' is initially set to NULL
1004          * and then later will be populated by edma_execute.
1005          */
1006         param->link_bcntrld = 0xffffffff;
1007         return absync;
1008 }
1009
1010 static struct dma_async_tx_descriptor *edma_prep_slave_sg(
1011         struct dma_chan *chan, struct scatterlist *sgl,
1012         unsigned int sg_len, enum dma_transfer_direction direction,
1013         unsigned long tx_flags, void *context)
1014 {
1015         struct edma_chan *echan = to_edma_chan(chan);
1016         struct device *dev = chan->device->dev;
1017         struct edma_desc *edesc;
1018         dma_addr_t src_addr = 0, dst_addr = 0;
1019         enum dma_slave_buswidth dev_width;
1020         u32 burst;
1021         struct scatterlist *sg;
1022         int i, nslots, ret;
1023
1024         if (unlikely(!echan || !sgl || !sg_len))
1025                 return NULL;
1026
1027         if (direction == DMA_DEV_TO_MEM) {
1028                 src_addr = echan->cfg.src_addr;
1029                 dev_width = echan->cfg.src_addr_width;
1030                 burst = echan->cfg.src_maxburst;
1031         } else if (direction == DMA_MEM_TO_DEV) {
1032                 dst_addr = echan->cfg.dst_addr;
1033                 dev_width = echan->cfg.dst_addr_width;
1034                 burst = echan->cfg.dst_maxburst;
1035         } else {
1036                 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1037                 return NULL;
1038         }
1039
1040         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1041                 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1042                 return NULL;
1043         }
1044
1045         edesc = kzalloc(struct_size(edesc, pset, sg_len), GFP_ATOMIC);
1046         if (!edesc)
1047                 return NULL;
1048
1049         edesc->pset_nr = sg_len;
1050         edesc->residue = 0;
1051         edesc->direction = direction;
1052         edesc->echan = echan;
1053
1054         /* Allocate a PaRAM slot, if needed */
1055         nslots = min_t(unsigned, MAX_NR_SG, sg_len);
1056
1057         for (i = 0; i < nslots; i++) {
1058                 if (echan->slot[i] < 0) {
1059                         echan->slot[i] =
1060                                 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1061                         if (echan->slot[i] < 0) {
1062                                 kfree(edesc);
1063                                 dev_err(dev, "%s: Failed to allocate slot\n",
1064                                         __func__);
1065                                 return NULL;
1066                         }
1067                 }
1068         }
1069
1070         /* Configure PaRAM sets for each SG */
1071         for_each_sg(sgl, sg, sg_len, i) {
1072                 /* Get address for each SG */
1073                 if (direction == DMA_DEV_TO_MEM)
1074                         dst_addr = sg_dma_address(sg);
1075                 else
1076                         src_addr = sg_dma_address(sg);
1077
1078                 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1079                                        dst_addr, burst, dev_width,
1080                                        sg_dma_len(sg), direction);
1081                 if (ret < 0) {
1082                         kfree(edesc);
1083                         return NULL;
1084                 }
1085
1086                 edesc->absync = ret;
1087                 edesc->residue += sg_dma_len(sg);
1088
1089                 if (i == sg_len - 1)
1090                         /* Enable completion interrupt */
1091                         edesc->pset[i].param.opt |= TCINTEN;
1092                 else if (!((i+1) % MAX_NR_SG))
1093                         /*
1094                          * Enable early completion interrupt for the
1095                          * intermediateset. In this case the driver will be
1096                          * notified when the paRAM set is submitted to TC. This
1097                          * will allow more time to set up the next set of slots.
1098                          */
1099                         edesc->pset[i].param.opt |= (TCINTEN | TCCMODE);
1100         }
1101         edesc->residue_stat = edesc->residue;
1102
1103         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1104 }
1105
1106 static struct dma_async_tx_descriptor *edma_prep_dma_memcpy(
1107         struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1108         size_t len, unsigned long tx_flags)
1109 {
1110         int ret, nslots;
1111         struct edma_desc *edesc;
1112         struct device *dev = chan->device->dev;
1113         struct edma_chan *echan = to_edma_chan(chan);
1114         unsigned int width, pset_len, array_size;
1115
1116         if (unlikely(!echan || !len))
1117                 return NULL;
1118
1119         /* Align the array size (acnt block) with the transfer properties */
1120         switch (__ffs((src | dest | len))) {
1121         case 0:
1122                 array_size = SZ_32K - 1;
1123                 break;
1124         case 1:
1125                 array_size = SZ_32K - 2;
1126                 break;
1127         default:
1128                 array_size = SZ_32K - 4;
1129                 break;
1130         }
1131
1132         if (len < SZ_64K) {
1133                 /*
1134                  * Transfer size less than 64K can be handled with one paRAM
1135                  * slot and with one burst.
1136                  * ACNT = length
1137                  */
1138                 width = len;
1139                 pset_len = len;
1140                 nslots = 1;
1141         } else {
1142                 /*
1143                  * Transfer size bigger than 64K will be handled with maximum of
1144                  * two paRAM slots.
1145                  * slot1: (full_length / 32767) times 32767 bytes bursts.
1146                  *        ACNT = 32767, length1: (full_length / 32767) * 32767
1147                  * slot2: the remaining amount of data after slot1.
1148                  *        ACNT = full_length - length1, length2 = ACNT
1149                  *
1150                  * When the full_length is a multiple of 32767 one slot can be
1151                  * used to complete the transfer.
1152                  */
1153                 width = array_size;
1154                 pset_len = rounddown(len, width);
1155                 /* One slot is enough for lengths multiple of (SZ_32K -1) */
1156                 if (unlikely(pset_len == len))
1157                         nslots = 1;
1158                 else
1159                         nslots = 2;
1160         }
1161
1162         edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1163         if (!edesc)
1164                 return NULL;
1165
1166         edesc->pset_nr = nslots;
1167         edesc->residue = edesc->residue_stat = len;
1168         edesc->direction = DMA_MEM_TO_MEM;
1169         edesc->echan = echan;
1170
1171         ret = edma_config_pset(chan, &edesc->pset[0], src, dest, 1,
1172                                width, pset_len, DMA_MEM_TO_MEM);
1173         if (ret < 0) {
1174                 kfree(edesc);
1175                 return NULL;
1176         }
1177
1178         edesc->absync = ret;
1179
1180         edesc->pset[0].param.opt |= ITCCHEN;
1181         if (nslots == 1) {
1182                 /* Enable transfer complete interrupt if requested */
1183                 if (tx_flags & DMA_PREP_INTERRUPT)
1184                         edesc->pset[0].param.opt |= TCINTEN;
1185         } else {
1186                 /* Enable transfer complete chaining for the first slot */
1187                 edesc->pset[0].param.opt |= TCCHEN;
1188
1189                 if (echan->slot[1] < 0) {
1190                         echan->slot[1] = edma_alloc_slot(echan->ecc,
1191                                                          EDMA_SLOT_ANY);
1192                         if (echan->slot[1] < 0) {
1193                                 kfree(edesc);
1194                                 dev_err(dev, "%s: Failed to allocate slot\n",
1195                                         __func__);
1196                                 return NULL;
1197                         }
1198                 }
1199                 dest += pset_len;
1200                 src += pset_len;
1201                 pset_len = width = len % array_size;
1202
1203                 ret = edma_config_pset(chan, &edesc->pset[1], src, dest, 1,
1204                                        width, pset_len, DMA_MEM_TO_MEM);
1205                 if (ret < 0) {
1206                         kfree(edesc);
1207                         return NULL;
1208                 }
1209
1210                 edesc->pset[1].param.opt |= ITCCHEN;
1211                 /* Enable transfer complete interrupt if requested */
1212                 if (tx_flags & DMA_PREP_INTERRUPT)
1213                         edesc->pset[1].param.opt |= TCINTEN;
1214         }
1215
1216         if (!(tx_flags & DMA_PREP_INTERRUPT))
1217                 edesc->polled = true;
1218
1219         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1220 }
1221
1222 static struct dma_async_tx_descriptor *
1223 edma_prep_dma_interleaved(struct dma_chan *chan,
1224                           struct dma_interleaved_template *xt,
1225                           unsigned long tx_flags)
1226 {
1227         struct device *dev = chan->device->dev;
1228         struct edma_chan *echan = to_edma_chan(chan);
1229         struct edmacc_param *param;
1230         struct edma_desc *edesc;
1231         size_t src_icg, dst_icg;
1232         int src_bidx, dst_bidx;
1233
1234         /* Slave mode is not supported */
1235         if (is_slave_direction(xt->dir))
1236                 return NULL;
1237
1238         if (xt->frame_size != 1 || xt->numf == 0)
1239                 return NULL;
1240
1241         if (xt->sgl[0].size > SZ_64K || xt->numf > SZ_64K)
1242                 return NULL;
1243
1244         src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
1245         if (src_icg) {
1246                 src_bidx = src_icg + xt->sgl[0].size;
1247         } else if (xt->src_inc) {
1248                 src_bidx = xt->sgl[0].size;
1249         } else {
1250                 dev_err(dev, "%s: SRC constant addressing is not supported\n",
1251                         __func__);
1252                 return NULL;
1253         }
1254
1255         dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
1256         if (dst_icg) {
1257                 dst_bidx = dst_icg + xt->sgl[0].size;
1258         } else if (xt->dst_inc) {
1259                 dst_bidx = xt->sgl[0].size;
1260         } else {
1261                 dev_err(dev, "%s: DST constant addressing is not supported\n",
1262                         __func__);
1263                 return NULL;
1264         }
1265
1266         if (src_bidx > SZ_64K || dst_bidx > SZ_64K)
1267                 return NULL;
1268
1269         edesc = kzalloc(struct_size(edesc, pset, 1), GFP_ATOMIC);
1270         if (!edesc)
1271                 return NULL;
1272
1273         edesc->direction = DMA_MEM_TO_MEM;
1274         edesc->echan = echan;
1275         edesc->pset_nr = 1;
1276
1277         param = &edesc->pset[0].param;
1278
1279         param->src = xt->src_start;
1280         param->dst = xt->dst_start;
1281         param->a_b_cnt = xt->numf << 16 | xt->sgl[0].size;
1282         param->ccnt = 1;
1283         param->src_dst_bidx = (dst_bidx << 16) | src_bidx;
1284         param->src_dst_cidx = 0;
1285
1286         param->opt = EDMA_TCC(EDMA_CHAN_SLOT(echan->ch_num));
1287         param->opt |= ITCCHEN;
1288         /* Enable transfer complete interrupt if requested */
1289         if (tx_flags & DMA_PREP_INTERRUPT)
1290                 param->opt |= TCINTEN;
1291         else
1292                 edesc->polled = true;
1293
1294         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1295 }
1296
1297 static struct dma_async_tx_descriptor *edma_prep_dma_cyclic(
1298         struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1299         size_t period_len, enum dma_transfer_direction direction,
1300         unsigned long tx_flags)
1301 {
1302         struct edma_chan *echan = to_edma_chan(chan);
1303         struct device *dev = chan->device->dev;
1304         struct edma_desc *edesc;
1305         dma_addr_t src_addr, dst_addr;
1306         enum dma_slave_buswidth dev_width;
1307         bool use_intermediate = false;
1308         u32 burst;
1309         int i, ret, nslots;
1310
1311         if (unlikely(!echan || !buf_len || !period_len))
1312                 return NULL;
1313
1314         if (direction == DMA_DEV_TO_MEM) {
1315                 src_addr = echan->cfg.src_addr;
1316                 dst_addr = buf_addr;
1317                 dev_width = echan->cfg.src_addr_width;
1318                 burst = echan->cfg.src_maxburst;
1319         } else if (direction == DMA_MEM_TO_DEV) {
1320                 src_addr = buf_addr;
1321                 dst_addr = echan->cfg.dst_addr;
1322                 dev_width = echan->cfg.dst_addr_width;
1323                 burst = echan->cfg.dst_maxburst;
1324         } else {
1325                 dev_err(dev, "%s: bad direction: %d\n", __func__, direction);
1326                 return NULL;
1327         }
1328
1329         if (dev_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) {
1330                 dev_err(dev, "%s: Undefined slave buswidth\n", __func__);
1331                 return NULL;
1332         }
1333
1334         if (unlikely(buf_len % period_len)) {
1335                 dev_err(dev, "Period should be multiple of Buffer length\n");
1336                 return NULL;
1337         }
1338
1339         nslots = (buf_len / period_len) + 1;
1340
1341         /*
1342          * Cyclic DMA users such as audio cannot tolerate delays introduced
1343          * by cases where the number of periods is more than the maximum
1344          * number of SGs the EDMA driver can handle at a time. For DMA types
1345          * such as Slave SGs, such delays are tolerable and synchronized,
1346          * but the synchronization is difficult to achieve with Cyclic and
1347          * cannot be guaranteed, so we error out early.
1348          */
1349         if (nslots > MAX_NR_SG) {
1350                 /*
1351                  * If the burst and period sizes are the same, we can put
1352                  * the full buffer into a single period and activate
1353                  * intermediate interrupts. This will produce interrupts
1354                  * after each burst, which is also after each desired period.
1355                  */
1356                 if (burst == period_len) {
1357                         period_len = buf_len;
1358                         nslots = 2;
1359                         use_intermediate = true;
1360                 } else {
1361                         return NULL;
1362                 }
1363         }
1364
1365         edesc = kzalloc(struct_size(edesc, pset, nslots), GFP_ATOMIC);
1366         if (!edesc)
1367                 return NULL;
1368
1369         edesc->cyclic = 1;
1370         edesc->pset_nr = nslots;
1371         edesc->residue = edesc->residue_stat = buf_len;
1372         edesc->direction = direction;
1373         edesc->echan = echan;
1374
1375         dev_dbg(dev, "%s: channel=%d nslots=%d period_len=%zu buf_len=%zu\n",
1376                 __func__, echan->ch_num, nslots, period_len, buf_len);
1377
1378         for (i = 0; i < nslots; i++) {
1379                 /* Allocate a PaRAM slot, if needed */
1380                 if (echan->slot[i] < 0) {
1381                         echan->slot[i] =
1382                                 edma_alloc_slot(echan->ecc, EDMA_SLOT_ANY);
1383                         if (echan->slot[i] < 0) {
1384                                 kfree(edesc);
1385                                 dev_err(dev, "%s: Failed to allocate slot\n",
1386                                         __func__);
1387                                 return NULL;
1388                         }
1389                 }
1390
1391                 if (i == nslots - 1) {
1392                         memcpy(&edesc->pset[i], &edesc->pset[0],
1393                                sizeof(edesc->pset[0]));
1394                         break;
1395                 }
1396
1397                 ret = edma_config_pset(chan, &edesc->pset[i], src_addr,
1398                                        dst_addr, burst, dev_width, period_len,
1399                                        direction);
1400                 if (ret < 0) {
1401                         kfree(edesc);
1402                         return NULL;
1403                 }
1404
1405                 if (direction == DMA_DEV_TO_MEM)
1406                         dst_addr += period_len;
1407                 else
1408                         src_addr += period_len;
1409
1410                 dev_vdbg(dev, "%s: Configure period %d of buf:\n", __func__, i);
1411                 dev_vdbg(dev,
1412                         "\n pset[%d]:\n"
1413                         "  chnum\t%d\n"
1414                         "  slot\t%d\n"
1415                         "  opt\t%08x\n"
1416                         "  src\t%08x\n"
1417                         "  dst\t%08x\n"
1418                         "  abcnt\t%08x\n"
1419                         "  ccnt\t%08x\n"
1420                         "  bidx\t%08x\n"
1421                         "  cidx\t%08x\n"
1422                         "  lkrld\t%08x\n",
1423                         i, echan->ch_num, echan->slot[i],
1424                         edesc->pset[i].param.opt,
1425                         edesc->pset[i].param.src,
1426                         edesc->pset[i].param.dst,
1427                         edesc->pset[i].param.a_b_cnt,
1428                         edesc->pset[i].param.ccnt,
1429                         edesc->pset[i].param.src_dst_bidx,
1430                         edesc->pset[i].param.src_dst_cidx,
1431                         edesc->pset[i].param.link_bcntrld);
1432
1433                 edesc->absync = ret;
1434
1435                 /*
1436                  * Enable period interrupt only if it is requested
1437                  */
1438                 if (tx_flags & DMA_PREP_INTERRUPT) {
1439                         edesc->pset[i].param.opt |= TCINTEN;
1440
1441                         /* Also enable intermediate interrupts if necessary */
1442                         if (use_intermediate)
1443                                 edesc->pset[i].param.opt |= ITCINTEN;
1444                 }
1445         }
1446
1447         /* Place the cyclic channel to highest priority queue */
1448         if (!echan->tc)
1449                 edma_assign_channel_eventq(echan, EVENTQ_0);
1450
1451         return vchan_tx_prep(&echan->vchan, &edesc->vdesc, tx_flags);
1452 }
1453
1454 static void edma_completion_handler(struct edma_chan *echan)
1455 {
1456         struct device *dev = echan->vchan.chan.device->dev;
1457         struct edma_desc *edesc;
1458
1459         spin_lock(&echan->vchan.lock);
1460         edesc = echan->edesc;
1461         if (edesc) {
1462                 if (edesc->cyclic) {
1463                         vchan_cyclic_callback(&edesc->vdesc);
1464                         spin_unlock(&echan->vchan.lock);
1465                         return;
1466                 } else if (edesc->processed == edesc->pset_nr) {
1467                         edesc->residue = 0;
1468                         edma_stop(echan);
1469                         vchan_cookie_complete(&edesc->vdesc);
1470                         echan->edesc = NULL;
1471
1472                         dev_dbg(dev, "Transfer completed on channel %d\n",
1473                                 echan->ch_num);
1474                 } else {
1475                         dev_dbg(dev, "Sub transfer completed on channel %d\n",
1476                                 echan->ch_num);
1477
1478                         edma_pause(echan);
1479
1480                         /* Update statistics for tx_status */
1481                         edesc->residue -= edesc->sg_len;
1482                         edesc->residue_stat = edesc->residue;
1483                         edesc->processed_stat = edesc->processed;
1484                 }
1485                 edma_execute(echan);
1486         }
1487
1488         spin_unlock(&echan->vchan.lock);
1489 }
1490
1491 /* eDMA interrupt handler */
1492 static irqreturn_t dma_irq_handler(int irq, void *data)
1493 {
1494         struct edma_cc *ecc = data;
1495         int ctlr;
1496         u32 sh_ier;
1497         u32 sh_ipr;
1498         u32 bank;
1499
1500         ctlr = ecc->id;
1501         if (ctlr < 0)
1502                 return IRQ_NONE;
1503
1504         dev_vdbg(ecc->dev, "dma_irq_handler\n");
1505
1506         sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 0);
1507         if (!sh_ipr) {
1508                 sh_ipr = edma_shadow0_read_array(ecc, SH_IPR, 1);
1509                 if (!sh_ipr)
1510                         return IRQ_NONE;
1511                 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 1);
1512                 bank = 1;
1513         } else {
1514                 sh_ier = edma_shadow0_read_array(ecc, SH_IER, 0);
1515                 bank = 0;
1516         }
1517
1518         do {
1519                 u32 slot;
1520                 u32 channel;
1521
1522                 slot = __ffs(sh_ipr);
1523                 sh_ipr &= ~(BIT(slot));
1524
1525                 if (sh_ier & BIT(slot)) {
1526                         channel = (bank << 5) | slot;
1527                         /* Clear the corresponding IPR bits */
1528                         edma_shadow0_write_array(ecc, SH_ICR, bank, BIT(slot));
1529                         edma_completion_handler(&ecc->slave_chans[channel]);
1530                 }
1531         } while (sh_ipr);
1532
1533         edma_shadow0_write(ecc, SH_IEVAL, 1);
1534         return IRQ_HANDLED;
1535 }
1536
1537 static void edma_error_handler(struct edma_chan *echan)
1538 {
1539         struct edma_cc *ecc = echan->ecc;
1540         struct device *dev = echan->vchan.chan.device->dev;
1541         struct edmacc_param p;
1542         int err;
1543
1544         if (!echan->edesc)
1545                 return;
1546
1547         spin_lock(&echan->vchan.lock);
1548
1549         err = edma_read_slot(ecc, echan->slot[0], &p);
1550
1551         /*
1552          * Issue later based on missed flag which will be sure
1553          * to happen as:
1554          * (1) we finished transmitting an intermediate slot and
1555          *     edma_execute is coming up.
1556          * (2) or we finished current transfer and issue will
1557          *     call edma_execute.
1558          *
1559          * Important note: issuing can be dangerous here and
1560          * lead to some nasty recursion when we are in a NULL
1561          * slot. So we avoid doing so and set the missed flag.
1562          */
1563         if (err || (p.a_b_cnt == 0 && p.ccnt == 0)) {
1564                 dev_dbg(dev, "Error on null slot, setting miss\n");
1565                 echan->missed = 1;
1566         } else {
1567                 /*
1568                  * The slot is already programmed but the event got
1569                  * missed, so its safe to issue it here.
1570                  */
1571                 dev_dbg(dev, "Missed event, TRIGGERING\n");
1572                 edma_clean_channel(echan);
1573                 edma_stop(echan);
1574                 edma_start(echan);
1575                 edma_trigger_channel(echan);
1576         }
1577         spin_unlock(&echan->vchan.lock);
1578 }
1579
1580 static inline bool edma_error_pending(struct edma_cc *ecc)
1581 {
1582         if (edma_read_array(ecc, EDMA_EMR, 0) ||
1583             edma_read_array(ecc, EDMA_EMR, 1) ||
1584             edma_read(ecc, EDMA_QEMR) || edma_read(ecc, EDMA_CCERR))
1585                 return true;
1586
1587         return false;
1588 }
1589
1590 /* eDMA error interrupt handler */
1591 static irqreturn_t dma_ccerr_handler(int irq, void *data)
1592 {
1593         struct edma_cc *ecc = data;
1594         int i, j;
1595         int ctlr;
1596         unsigned int cnt = 0;
1597         unsigned int val;
1598
1599         ctlr = ecc->id;
1600         if (ctlr < 0)
1601                 return IRQ_NONE;
1602
1603         dev_vdbg(ecc->dev, "dma_ccerr_handler\n");
1604
1605         if (!edma_error_pending(ecc)) {
1606                 /*
1607                  * The registers indicate no pending error event but the irq
1608                  * handler has been called.
1609                  * Ask eDMA to re-evaluate the error registers.
1610                  */
1611                 dev_err(ecc->dev, "%s: Error interrupt without error event!\n",
1612                         __func__);
1613                 edma_write(ecc, EDMA_EEVAL, 1);
1614                 return IRQ_NONE;
1615         }
1616
1617         while (1) {
1618                 /* Event missed register(s) */
1619                 for (j = 0; j < 2; j++) {
1620                         unsigned long emr;
1621
1622                         val = edma_read_array(ecc, EDMA_EMR, j);
1623                         if (!val)
1624                                 continue;
1625
1626                         dev_dbg(ecc->dev, "EMR%d 0x%08x\n", j, val);
1627                         emr = val;
1628                         for_each_set_bit(i, &emr, 32) {
1629                                 int k = (j << 5) + i;
1630
1631                                 /* Clear the corresponding EMR bits */
1632                                 edma_write_array(ecc, EDMA_EMCR, j, BIT(i));
1633                                 /* Clear any SER */
1634                                 edma_shadow0_write_array(ecc, SH_SECR, j,
1635                                                          BIT(i));
1636                                 edma_error_handler(&ecc->slave_chans[k]);
1637                         }
1638                 }
1639
1640                 val = edma_read(ecc, EDMA_QEMR);
1641                 if (val) {
1642                         dev_dbg(ecc->dev, "QEMR 0x%02x\n", val);
1643                         /* Not reported, just clear the interrupt reason. */
1644                         edma_write(ecc, EDMA_QEMCR, val);
1645                         edma_shadow0_write(ecc, SH_QSECR, val);
1646                 }
1647
1648                 val = edma_read(ecc, EDMA_CCERR);
1649                 if (val) {
1650                         dev_warn(ecc->dev, "CCERR 0x%08x\n", val);
1651                         /* Not reported, just clear the interrupt reason. */
1652                         edma_write(ecc, EDMA_CCERRCLR, val);
1653                 }
1654
1655                 if (!edma_error_pending(ecc))
1656                         break;
1657                 cnt++;
1658                 if (cnt > 10)
1659                         break;
1660         }
1661         edma_write(ecc, EDMA_EEVAL, 1);
1662         return IRQ_HANDLED;
1663 }
1664
1665 /* Alloc channel resources */
1666 static int edma_alloc_chan_resources(struct dma_chan *chan)
1667 {
1668         struct edma_chan *echan = to_edma_chan(chan);
1669         struct edma_cc *ecc = echan->ecc;
1670         struct device *dev = ecc->dev;
1671         enum dma_event_q eventq_no = EVENTQ_DEFAULT;
1672         int ret;
1673
1674         if (echan->tc) {
1675                 eventq_no = echan->tc->id;
1676         } else if (ecc->tc_list) {
1677                 /* memcpy channel */
1678                 echan->tc = &ecc->tc_list[ecc->info->default_queue];
1679                 eventq_no = echan->tc->id;
1680         }
1681
1682         ret = edma_alloc_channel(echan, eventq_no);
1683         if (ret)
1684                 return ret;
1685
1686         echan->slot[0] = edma_alloc_slot(ecc, echan->ch_num);
1687         if (echan->slot[0] < 0) {
1688                 dev_err(dev, "Entry slot allocation failed for channel %u\n",
1689                         EDMA_CHAN_SLOT(echan->ch_num));
1690                 ret = echan->slot[0];
1691                 goto err_slot;
1692         }
1693
1694         /* Set up channel -> slot mapping for the entry slot */
1695         edma_set_chmap(echan, echan->slot[0]);
1696         echan->alloced = true;
1697
1698         dev_dbg(dev, "Got eDMA channel %d for virt channel %d (%s trigger)\n",
1699                 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id,
1700                 echan->hw_triggered ? "HW" : "SW");
1701
1702         return 0;
1703
1704 err_slot:
1705         edma_free_channel(echan);
1706         return ret;
1707 }
1708
1709 /* Free channel resources */
1710 static void edma_free_chan_resources(struct dma_chan *chan)
1711 {
1712         struct edma_chan *echan = to_edma_chan(chan);
1713         struct device *dev = echan->ecc->dev;
1714         int i;
1715
1716         /* Terminate transfers */
1717         edma_stop(echan);
1718
1719         vchan_free_chan_resources(&echan->vchan);
1720
1721         /* Free EDMA PaRAM slots */
1722         for (i = 0; i < EDMA_MAX_SLOTS; i++) {
1723                 if (echan->slot[i] >= 0) {
1724                         edma_free_slot(echan->ecc, echan->slot[i]);
1725                         echan->slot[i] = -1;
1726                 }
1727         }
1728
1729         /* Set entry slot to the dummy slot */
1730         edma_set_chmap(echan, echan->ecc->dummy_slot);
1731
1732         /* Free EDMA channel */
1733         if (echan->alloced) {
1734                 edma_free_channel(echan);
1735                 echan->alloced = false;
1736         }
1737
1738         echan->tc = NULL;
1739         echan->hw_triggered = false;
1740
1741         dev_dbg(dev, "Free eDMA channel %d for virt channel %d\n",
1742                 EDMA_CHAN_SLOT(echan->ch_num), chan->chan_id);
1743 }
1744
1745 /* Send pending descriptor to hardware */
1746 static void edma_issue_pending(struct dma_chan *chan)
1747 {
1748         struct edma_chan *echan = to_edma_chan(chan);
1749         unsigned long flags;
1750
1751         spin_lock_irqsave(&echan->vchan.lock, flags);
1752         if (vchan_issue_pending(&echan->vchan) && !echan->edesc)
1753                 edma_execute(echan);
1754         spin_unlock_irqrestore(&echan->vchan.lock, flags);
1755 }
1756
1757 /*
1758  * This limit exists to avoid a possible infinite loop when waiting for proof
1759  * that a particular transfer is completed. This limit can be hit if there
1760  * are large bursts to/from slow devices or the CPU is never able to catch
1761  * the DMA hardware idle. On an AM335x transferring 48 bytes from the UART
1762  * RX-FIFO, as many as 55 loops have been seen.
1763  */
1764 #define EDMA_MAX_TR_WAIT_LOOPS 1000
1765
1766 static u32 edma_residue(struct edma_desc *edesc)
1767 {
1768         bool dst = edesc->direction == DMA_DEV_TO_MEM;
1769         int loop_count = EDMA_MAX_TR_WAIT_LOOPS;
1770         struct edma_chan *echan = edesc->echan;
1771         struct edma_pset *pset = edesc->pset;
1772         dma_addr_t done, pos, pos_old;
1773         int channel = EDMA_CHAN_SLOT(echan->ch_num);
1774         int idx = EDMA_REG_ARRAY_INDEX(channel);
1775         int ch_bit = EDMA_CHANNEL_BIT(channel);
1776         int event_reg;
1777         int i;
1778
1779         /*
1780          * We always read the dst/src position from the first RamPar
1781          * pset. That's the one which is active now.
1782          */
1783         pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1784
1785         /*
1786          * "pos" may represent a transfer request that is still being
1787          * processed by the EDMACC or EDMATC. We will busy wait until
1788          * any one of the situations occurs:
1789          *   1. while and event is pending for the channel
1790          *   2. a position updated
1791          *   3. we hit the loop limit
1792          */
1793         if (is_slave_direction(edesc->direction))
1794                 event_reg = SH_ER;
1795         else
1796                 event_reg = SH_ESR;
1797
1798         pos_old = pos;
1799         while (edma_shadow0_read_array(echan->ecc, event_reg, idx) & ch_bit) {
1800                 pos = edma_get_position(echan->ecc, echan->slot[0], dst);
1801                 if (pos != pos_old)
1802                         break;
1803
1804                 if (!--loop_count) {
1805                         dev_dbg_ratelimited(echan->vchan.chan.device->dev,
1806                                 "%s: timeout waiting for PaRAM update\n",
1807                                 __func__);
1808                         break;
1809                 }
1810
1811                 cpu_relax();
1812         }
1813
1814         /*
1815          * Cyclic is simple. Just subtract pset[0].addr from pos.
1816          *
1817          * We never update edesc->residue in the cyclic case, so we
1818          * can tell the remaining room to the end of the circular
1819          * buffer.
1820          */
1821         if (edesc->cyclic) {
1822                 done = pos - pset->addr;
1823                 edesc->residue_stat = edesc->residue - done;
1824                 return edesc->residue_stat;
1825         }
1826
1827         /*
1828          * If the position is 0, then EDMA loaded the closing dummy slot, the
1829          * transfer is completed
1830          */
1831         if (!pos)
1832                 return 0;
1833         /*
1834          * For SG operation we catch up with the last processed
1835          * status.
1836          */
1837         pset += edesc->processed_stat;
1838
1839         for (i = edesc->processed_stat; i < edesc->processed; i++, pset++) {
1840                 /*
1841                  * If we are inside this pset address range, we know
1842                  * this is the active one. Get the current delta and
1843                  * stop walking the psets.
1844                  */
1845                 if (pos >= pset->addr && pos < pset->addr + pset->len)
1846                         return edesc->residue_stat - (pos - pset->addr);
1847
1848                 /* Otherwise mark it done and update residue_stat. */
1849                 edesc->processed_stat++;
1850                 edesc->residue_stat -= pset->len;
1851         }
1852         return edesc->residue_stat;
1853 }
1854
1855 /* Check request completion status */
1856 static enum dma_status edma_tx_status(struct dma_chan *chan,
1857                                       dma_cookie_t cookie,
1858                                       struct dma_tx_state *txstate)
1859 {
1860         struct edma_chan *echan = to_edma_chan(chan);
1861         struct dma_tx_state txstate_tmp;
1862         enum dma_status ret;
1863         unsigned long flags;
1864
1865         ret = dma_cookie_status(chan, cookie, txstate);
1866
1867         if (ret == DMA_COMPLETE)
1868                 return ret;
1869
1870         /* Provide a dummy dma_tx_state for completion checking */
1871         if (!txstate)
1872                 txstate = &txstate_tmp;
1873
1874         spin_lock_irqsave(&echan->vchan.lock, flags);
1875         if (echan->edesc && echan->edesc->vdesc.tx.cookie == cookie) {
1876                 txstate->residue = edma_residue(echan->edesc);
1877         } else {
1878                 struct virt_dma_desc *vdesc = vchan_find_desc(&echan->vchan,
1879                                                               cookie);
1880
1881                 if (vdesc)
1882                         txstate->residue = to_edma_desc(&vdesc->tx)->residue;
1883                 else
1884                         txstate->residue = 0;
1885         }
1886
1887         /*
1888          * Mark the cookie completed if the residue is 0 for non cyclic
1889          * transfers
1890          */
1891         if (ret != DMA_COMPLETE && !txstate->residue &&
1892             echan->edesc && echan->edesc->polled &&
1893             echan->edesc->vdesc.tx.cookie == cookie) {
1894                 edma_stop(echan);
1895                 vchan_cookie_complete(&echan->edesc->vdesc);
1896                 echan->edesc = NULL;
1897                 edma_execute(echan);
1898                 ret = DMA_COMPLETE;
1899         }
1900
1901         spin_unlock_irqrestore(&echan->vchan.lock, flags);
1902
1903         return ret;
1904 }
1905
1906 static bool edma_is_memcpy_channel(int ch_num, s32 *memcpy_channels)
1907 {
1908         if (!memcpy_channels)
1909                 return false;
1910         while (*memcpy_channels != -1) {
1911                 if (*memcpy_channels == ch_num)
1912                         return true;
1913                 memcpy_channels++;
1914         }
1915         return false;
1916 }
1917
1918 #define EDMA_DMA_BUSWIDTHS      (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
1919                                  BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1920                                  BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1921                                  BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1922
1923 static void edma_dma_init(struct edma_cc *ecc, bool legacy_mode)
1924 {
1925         struct dma_device *s_ddev = &ecc->dma_slave;
1926         struct dma_device *m_ddev = NULL;
1927         s32 *memcpy_channels = ecc->info->memcpy_channels;
1928         int i, j;
1929
1930         dma_cap_zero(s_ddev->cap_mask);
1931         dma_cap_set(DMA_SLAVE, s_ddev->cap_mask);
1932         dma_cap_set(DMA_CYCLIC, s_ddev->cap_mask);
1933         if (ecc->legacy_mode && !memcpy_channels) {
1934                 dev_warn(ecc->dev,
1935                          "Legacy memcpy is enabled, things might not work\n");
1936
1937                 dma_cap_set(DMA_MEMCPY, s_ddev->cap_mask);
1938                 dma_cap_set(DMA_INTERLEAVE, s_ddev->cap_mask);
1939                 s_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1940                 s_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1941                 s_ddev->directions = BIT(DMA_MEM_TO_MEM);
1942         }
1943
1944         s_ddev->device_prep_slave_sg = edma_prep_slave_sg;
1945         s_ddev->device_prep_dma_cyclic = edma_prep_dma_cyclic;
1946         s_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1947         s_ddev->device_free_chan_resources = edma_free_chan_resources;
1948         s_ddev->device_issue_pending = edma_issue_pending;
1949         s_ddev->device_tx_status = edma_tx_status;
1950         s_ddev->device_config = edma_slave_config;
1951         s_ddev->device_pause = edma_dma_pause;
1952         s_ddev->device_resume = edma_dma_resume;
1953         s_ddev->device_terminate_all = edma_terminate_all;
1954         s_ddev->device_synchronize = edma_synchronize;
1955
1956         s_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1957         s_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1958         s_ddev->directions |= (BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV));
1959         s_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1960         s_ddev->max_burst = SZ_32K - 1; /* CIDX: 16bit signed */
1961
1962         s_ddev->dev = ecc->dev;
1963         INIT_LIST_HEAD(&s_ddev->channels);
1964
1965         if (memcpy_channels) {
1966                 m_ddev = devm_kzalloc(ecc->dev, sizeof(*m_ddev), GFP_KERNEL);
1967                 if (!m_ddev) {
1968                         dev_warn(ecc->dev, "memcpy is disabled due to OoM\n");
1969                         memcpy_channels = NULL;
1970                         goto ch_setup;
1971                 }
1972                 ecc->dma_memcpy = m_ddev;
1973
1974                 dma_cap_zero(m_ddev->cap_mask);
1975                 dma_cap_set(DMA_MEMCPY, m_ddev->cap_mask);
1976                 dma_cap_set(DMA_INTERLEAVE, m_ddev->cap_mask);
1977
1978                 m_ddev->device_prep_dma_memcpy = edma_prep_dma_memcpy;
1979                 m_ddev->device_prep_interleaved_dma = edma_prep_dma_interleaved;
1980                 m_ddev->device_alloc_chan_resources = edma_alloc_chan_resources;
1981                 m_ddev->device_free_chan_resources = edma_free_chan_resources;
1982                 m_ddev->device_issue_pending = edma_issue_pending;
1983                 m_ddev->device_tx_status = edma_tx_status;
1984                 m_ddev->device_config = edma_slave_config;
1985                 m_ddev->device_pause = edma_dma_pause;
1986                 m_ddev->device_resume = edma_dma_resume;
1987                 m_ddev->device_terminate_all = edma_terminate_all;
1988                 m_ddev->device_synchronize = edma_synchronize;
1989
1990                 m_ddev->src_addr_widths = EDMA_DMA_BUSWIDTHS;
1991                 m_ddev->dst_addr_widths = EDMA_DMA_BUSWIDTHS;
1992                 m_ddev->directions = BIT(DMA_MEM_TO_MEM);
1993                 m_ddev->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1994
1995                 m_ddev->dev = ecc->dev;
1996                 INIT_LIST_HEAD(&m_ddev->channels);
1997         } else if (!ecc->legacy_mode) {
1998                 dev_info(ecc->dev, "memcpy is disabled\n");
1999         }
2000
2001 ch_setup:
2002         for (i = 0; i < ecc->num_channels; i++) {
2003                 struct edma_chan *echan = &ecc->slave_chans[i];
2004                 echan->ch_num = EDMA_CTLR_CHAN(ecc->id, i);
2005                 echan->ecc = ecc;
2006                 echan->vchan.desc_free = edma_desc_free;
2007
2008                 if (m_ddev && edma_is_memcpy_channel(i, memcpy_channels))
2009                         vchan_init(&echan->vchan, m_ddev);
2010                 else
2011                         vchan_init(&echan->vchan, s_ddev);
2012
2013                 INIT_LIST_HEAD(&echan->node);
2014                 for (j = 0; j < EDMA_MAX_SLOTS; j++)
2015                         echan->slot[j] = -1;
2016         }
2017 }
2018
2019 static int edma_setup_from_hw(struct device *dev, struct edma_soc_info *pdata,
2020                               struct edma_cc *ecc)
2021 {
2022         int i;
2023         u32 value, cccfg;
2024         s8 (*queue_priority_map)[2];
2025
2026         /* Decode the eDMA3 configuration from CCCFG register */
2027         cccfg = edma_read(ecc, EDMA_CCCFG);
2028
2029         value = GET_NUM_REGN(cccfg);
2030         ecc->num_region = BIT(value);
2031
2032         value = GET_NUM_DMACH(cccfg);
2033         ecc->num_channels = BIT(value + 1);
2034
2035         value = GET_NUM_QDMACH(cccfg);
2036         ecc->num_qchannels = value * 2;
2037
2038         value = GET_NUM_PAENTRY(cccfg);
2039         ecc->num_slots = BIT(value + 4);
2040
2041         value = GET_NUM_EVQUE(cccfg);
2042         ecc->num_tc = value + 1;
2043
2044         ecc->chmap_exist = (cccfg & CHMAP_EXIST) ? true : false;
2045
2046         dev_dbg(dev, "eDMA3 CC HW configuration (cccfg: 0x%08x):\n", cccfg);
2047         dev_dbg(dev, "num_region: %u\n", ecc->num_region);
2048         dev_dbg(dev, "num_channels: %u\n", ecc->num_channels);
2049         dev_dbg(dev, "num_qchannels: %u\n", ecc->num_qchannels);
2050         dev_dbg(dev, "num_slots: %u\n", ecc->num_slots);
2051         dev_dbg(dev, "num_tc: %u\n", ecc->num_tc);
2052         dev_dbg(dev, "chmap_exist: %s\n", ecc->chmap_exist ? "yes" : "no");
2053
2054         /* Nothing need to be done if queue priority is provided */
2055         if (pdata->queue_priority_mapping)
2056                 return 0;
2057
2058         /*
2059          * Configure TC/queue priority as follows:
2060          * Q0 - priority 0
2061          * Q1 - priority 1
2062          * Q2 - priority 2
2063          * ...
2064          * The meaning of priority numbers: 0 highest priority, 7 lowest
2065          * priority. So Q0 is the highest priority queue and the last queue has
2066          * the lowest priority.
2067          */
2068         queue_priority_map = devm_kcalloc(dev, ecc->num_tc + 1, sizeof(s8),
2069                                           GFP_KERNEL);
2070         if (!queue_priority_map)
2071                 return -ENOMEM;
2072
2073         for (i = 0; i < ecc->num_tc; i++) {
2074                 queue_priority_map[i][0] = i;
2075                 queue_priority_map[i][1] = i;
2076         }
2077         queue_priority_map[i][0] = -1;
2078         queue_priority_map[i][1] = -1;
2079
2080         pdata->queue_priority_mapping = queue_priority_map;
2081         /* Default queue has the lowest priority */
2082         pdata->default_queue = i - 1;
2083
2084         return 0;
2085 }
2086
2087 #if IS_ENABLED(CONFIG_OF)
2088 static int edma_xbar_event_map(struct device *dev, struct edma_soc_info *pdata,
2089                                size_t sz)
2090 {
2091         const char pname[] = "ti,edma-xbar-event-map";
2092         struct resource res;
2093         void __iomem *xbar;
2094         s16 (*xbar_chans)[2];
2095         size_t nelm = sz / sizeof(s16);
2096         u32 shift, offset, mux;
2097         int ret, i;
2098
2099         xbar_chans = devm_kcalloc(dev, nelm + 2, sizeof(s16), GFP_KERNEL);
2100         if (!xbar_chans)
2101                 return -ENOMEM;
2102
2103         ret = of_address_to_resource(dev->of_node, 1, &res);
2104         if (ret)
2105                 return -ENOMEM;
2106
2107         xbar = devm_ioremap(dev, res.start, resource_size(&res));
2108         if (!xbar)
2109                 return -ENOMEM;
2110
2111         ret = of_property_read_u16_array(dev->of_node, pname, (u16 *)xbar_chans,
2112                                          nelm);
2113         if (ret)
2114                 return -EIO;
2115
2116         /* Invalidate last entry for the other user of this mess */
2117         nelm >>= 1;
2118         xbar_chans[nelm][0] = -1;
2119         xbar_chans[nelm][1] = -1;
2120
2121         for (i = 0; i < nelm; i++) {
2122                 shift = (xbar_chans[i][1] & 0x03) << 3;
2123                 offset = xbar_chans[i][1] & 0xfffffffc;
2124                 mux = readl(xbar + offset);
2125                 mux &= ~(0xff << shift);
2126                 mux |= xbar_chans[i][0] << shift;
2127                 writel(mux, (xbar + offset));
2128         }
2129
2130         pdata->xbar_chans = (const s16 (*)[2]) xbar_chans;
2131         return 0;
2132 }
2133
2134 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2135                                                      bool legacy_mode)
2136 {
2137         struct edma_soc_info *info;
2138         struct property *prop;
2139         int sz, ret;
2140
2141         info = devm_kzalloc(dev, sizeof(struct edma_soc_info), GFP_KERNEL);
2142         if (!info)
2143                 return ERR_PTR(-ENOMEM);
2144
2145         if (legacy_mode) {
2146                 prop = of_find_property(dev->of_node, "ti,edma-xbar-event-map",
2147                                         &sz);
2148                 if (prop) {
2149                         ret = edma_xbar_event_map(dev, info, sz);
2150                         if (ret)
2151                                 return ERR_PTR(ret);
2152                 }
2153                 return info;
2154         }
2155
2156         /* Get the list of channels allocated to be used for memcpy */
2157         prop = of_find_property(dev->of_node, "ti,edma-memcpy-channels", &sz);
2158         if (prop) {
2159                 const char pname[] = "ti,edma-memcpy-channels";
2160                 size_t nelm = sz / sizeof(s32);
2161                 s32 *memcpy_ch;
2162
2163                 memcpy_ch = devm_kcalloc(dev, nelm + 1, sizeof(s32),
2164                                          GFP_KERNEL);
2165                 if (!memcpy_ch)
2166                         return ERR_PTR(-ENOMEM);
2167
2168                 ret = of_property_read_u32_array(dev->of_node, pname,
2169                                                  (u32 *)memcpy_ch, nelm);
2170                 if (ret)
2171                         return ERR_PTR(ret);
2172
2173                 memcpy_ch[nelm] = -1;
2174                 info->memcpy_channels = memcpy_ch;
2175         }
2176
2177         prop = of_find_property(dev->of_node, "ti,edma-reserved-slot-ranges",
2178                                 &sz);
2179         if (prop) {
2180                 const char pname[] = "ti,edma-reserved-slot-ranges";
2181                 u32 (*tmp)[2];
2182                 s16 (*rsv_slots)[2];
2183                 size_t nelm = sz / sizeof(*tmp);
2184                 struct edma_rsv_info *rsv_info;
2185                 int i;
2186
2187                 if (!nelm)
2188                         return info;
2189
2190                 tmp = kcalloc(nelm, sizeof(*tmp), GFP_KERNEL);
2191                 if (!tmp)
2192                         return ERR_PTR(-ENOMEM);
2193
2194                 rsv_info = devm_kzalloc(dev, sizeof(*rsv_info), GFP_KERNEL);
2195                 if (!rsv_info) {
2196                         kfree(tmp);
2197                         return ERR_PTR(-ENOMEM);
2198                 }
2199
2200                 rsv_slots = devm_kcalloc(dev, nelm + 1, sizeof(*rsv_slots),
2201                                          GFP_KERNEL);
2202                 if (!rsv_slots) {
2203                         kfree(tmp);
2204                         return ERR_PTR(-ENOMEM);
2205                 }
2206
2207                 ret = of_property_read_u32_array(dev->of_node, pname,
2208                                                  (u32 *)tmp, nelm * 2);
2209                 if (ret) {
2210                         kfree(tmp);
2211                         return ERR_PTR(ret);
2212                 }
2213
2214                 for (i = 0; i < nelm; i++) {
2215                         rsv_slots[i][0] = tmp[i][0];
2216                         rsv_slots[i][1] = tmp[i][1];
2217                 }
2218                 rsv_slots[nelm][0] = -1;
2219                 rsv_slots[nelm][1] = -1;
2220
2221                 info->rsv = rsv_info;
2222                 info->rsv->rsv_slots = (const s16 (*)[2])rsv_slots;
2223
2224                 kfree(tmp);
2225         }
2226
2227         return info;
2228 }
2229
2230 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2231                                       struct of_dma *ofdma)
2232 {
2233         struct edma_cc *ecc = ofdma->of_dma_data;
2234         struct dma_chan *chan = NULL;
2235         struct edma_chan *echan;
2236         int i;
2237
2238         if (!ecc || dma_spec->args_count < 1)
2239                 return NULL;
2240
2241         for (i = 0; i < ecc->num_channels; i++) {
2242                 echan = &ecc->slave_chans[i];
2243                 if (echan->ch_num == dma_spec->args[0]) {
2244                         chan = &echan->vchan.chan;
2245                         break;
2246                 }
2247         }
2248
2249         if (!chan)
2250                 return NULL;
2251
2252         if (echan->ecc->legacy_mode && dma_spec->args_count == 1)
2253                 goto out;
2254
2255         if (!echan->ecc->legacy_mode && dma_spec->args_count == 2 &&
2256             dma_spec->args[1] < echan->ecc->num_tc) {
2257                 echan->tc = &echan->ecc->tc_list[dma_spec->args[1]];
2258                 goto out;
2259         }
2260
2261         return NULL;
2262 out:
2263         /* The channel is going to be used as HW synchronized */
2264         echan->hw_triggered = true;
2265         return dma_get_slave_channel(chan);
2266 }
2267 #else
2268 static struct edma_soc_info *edma_setup_info_from_dt(struct device *dev,
2269                                                      bool legacy_mode)
2270 {
2271         return ERR_PTR(-EINVAL);
2272 }
2273
2274 static struct dma_chan *of_edma_xlate(struct of_phandle_args *dma_spec,
2275                                       struct of_dma *ofdma)
2276 {
2277         return NULL;
2278 }
2279 #endif
2280
2281 static bool edma_filter_fn(struct dma_chan *chan, void *param);
2282
2283 static int edma_probe(struct platform_device *pdev)
2284 {
2285         struct edma_soc_info    *info = pdev->dev.platform_data;
2286         s8                      (*queue_priority_mapping)[2];
2287         const s16               (*reserved)[2];
2288         int                     i, irq;
2289         char                    *irq_name;
2290         struct resource         *mem;
2291         struct device_node      *node = pdev->dev.of_node;
2292         struct device           *dev = &pdev->dev;
2293         struct edma_cc          *ecc;
2294         bool                    legacy_mode = true;
2295         int ret;
2296
2297         if (node) {
2298                 const struct of_device_id *match;
2299
2300                 match = of_match_node(edma_of_ids, node);
2301                 if (match && (*(u32 *)match->data) == EDMA_BINDING_TPCC)
2302                         legacy_mode = false;
2303
2304                 info = edma_setup_info_from_dt(dev, legacy_mode);
2305                 if (IS_ERR(info)) {
2306                         dev_err(dev, "failed to get DT data\n");
2307                         return PTR_ERR(info);
2308                 }
2309         }
2310
2311         if (!info)
2312                 return -ENODEV;
2313
2314         ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
2315         if (ret)
2316                 return ret;
2317
2318         ecc = devm_kzalloc(dev, sizeof(*ecc), GFP_KERNEL);
2319         if (!ecc)
2320                 return -ENOMEM;
2321
2322         ecc->dev = dev;
2323         ecc->id = pdev->id;
2324         ecc->legacy_mode = legacy_mode;
2325         /* When booting with DT the pdev->id is -1 */
2326         if (ecc->id < 0)
2327                 ecc->id = 0;
2328
2329         mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma3_cc");
2330         if (!mem) {
2331                 dev_dbg(dev, "mem resource not found, using index 0\n");
2332                 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2333                 if (!mem) {
2334                         dev_err(dev, "no mem resource?\n");
2335                         return -ENODEV;
2336                 }
2337         }
2338         ecc->base = devm_ioremap_resource(dev, mem);
2339         if (IS_ERR(ecc->base))
2340                 return PTR_ERR(ecc->base);
2341
2342         platform_set_drvdata(pdev, ecc);
2343
2344         pm_runtime_enable(dev);
2345         ret = pm_runtime_get_sync(dev);
2346         if (ret < 0) {
2347                 dev_err(dev, "pm_runtime_get_sync() failed\n");
2348                 pm_runtime_disable(dev);
2349                 return ret;
2350         }
2351
2352         /* Get eDMA3 configuration from IP */
2353         ret = edma_setup_from_hw(dev, info, ecc);
2354         if (ret)
2355                 goto err_disable_pm;
2356
2357         /* Allocate memory based on the information we got from the IP */
2358         ecc->slave_chans = devm_kcalloc(dev, ecc->num_channels,
2359                                         sizeof(*ecc->slave_chans), GFP_KERNEL);
2360
2361         ecc->slot_inuse = devm_kcalloc(dev, BITS_TO_LONGS(ecc->num_slots),
2362                                        sizeof(unsigned long), GFP_KERNEL);
2363
2364         ecc->channels_mask = devm_kcalloc(dev,
2365                                            BITS_TO_LONGS(ecc->num_channels),
2366                                            sizeof(unsigned long), GFP_KERNEL);
2367         if (!ecc->slave_chans || !ecc->slot_inuse || !ecc->channels_mask) {
2368                 ret = -ENOMEM;
2369                 goto err_disable_pm;
2370         }
2371
2372         /* Mark all channels available initially */
2373         bitmap_fill(ecc->channels_mask, ecc->num_channels);
2374
2375         ecc->default_queue = info->default_queue;
2376
2377         if (info->rsv) {
2378                 /* Set the reserved slots in inuse list */
2379                 reserved = info->rsv->rsv_slots;
2380                 if (reserved) {
2381                         for (i = 0; reserved[i][0] != -1; i++)
2382                                 bitmap_set(ecc->slot_inuse, reserved[i][0],
2383                                            reserved[i][1]);
2384                 }
2385
2386                 /* Clear channels not usable for Linux */
2387                 reserved = info->rsv->rsv_chans;
2388                 if (reserved) {
2389                         for (i = 0; reserved[i][0] != -1; i++)
2390                                 bitmap_clear(ecc->channels_mask, reserved[i][0],
2391                                              reserved[i][1]);
2392                 }
2393         }
2394
2395         for (i = 0; i < ecc->num_slots; i++) {
2396                 /* Reset only unused - not reserved - paRAM slots */
2397                 if (!test_bit(i, ecc->slot_inuse))
2398                         edma_write_slot(ecc, i, &dummy_paramset);
2399         }
2400
2401         irq = platform_get_irq_byname(pdev, "edma3_ccint");
2402         if (irq < 0 && node)
2403                 irq = irq_of_parse_and_map(node, 0);
2404
2405         if (irq >= 0) {
2406                 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccint",
2407                                           dev_name(dev));
2408                 ret = devm_request_irq(dev, irq, dma_irq_handler, 0, irq_name,
2409                                        ecc);
2410                 if (ret) {
2411                         dev_err(dev, "CCINT (%d) failed --> %d\n", irq, ret);
2412                         goto err_disable_pm;
2413                 }
2414                 ecc->ccint = irq;
2415         }
2416
2417         irq = platform_get_irq_byname(pdev, "edma3_ccerrint");
2418         if (irq < 0 && node)
2419                 irq = irq_of_parse_and_map(node, 2);
2420
2421         if (irq >= 0) {
2422                 irq_name = devm_kasprintf(dev, GFP_KERNEL, "%s_ccerrint",
2423                                           dev_name(dev));
2424                 ret = devm_request_irq(dev, irq, dma_ccerr_handler, 0, irq_name,
2425                                        ecc);
2426                 if (ret) {
2427                         dev_err(dev, "CCERRINT (%d) failed --> %d\n", irq, ret);
2428                         goto err_disable_pm;
2429                 }
2430                 ecc->ccerrint = irq;
2431         }
2432
2433         ecc->dummy_slot = edma_alloc_slot(ecc, EDMA_SLOT_ANY);
2434         if (ecc->dummy_slot < 0) {
2435                 dev_err(dev, "Can't allocate PaRAM dummy slot\n");
2436                 ret = ecc->dummy_slot;
2437                 goto err_disable_pm;
2438         }
2439
2440         queue_priority_mapping = info->queue_priority_mapping;
2441
2442         if (!ecc->legacy_mode) {
2443                 int lowest_priority = 0;
2444                 unsigned int array_max;
2445                 struct of_phandle_args tc_args;
2446
2447                 ecc->tc_list = devm_kcalloc(dev, ecc->num_tc,
2448                                             sizeof(*ecc->tc_list), GFP_KERNEL);
2449                 if (!ecc->tc_list) {
2450                         ret = -ENOMEM;
2451                         goto err_reg1;
2452                 }
2453
2454                 for (i = 0;; i++) {
2455                         ret = of_parse_phandle_with_fixed_args(node, "ti,tptcs",
2456                                                                1, i, &tc_args);
2457                         if (ret || i == ecc->num_tc)
2458                                 break;
2459
2460                         ecc->tc_list[i].node = tc_args.np;
2461                         ecc->tc_list[i].id = i;
2462                         queue_priority_mapping[i][1] = tc_args.args[0];
2463                         if (queue_priority_mapping[i][1] > lowest_priority) {
2464                                 lowest_priority = queue_priority_mapping[i][1];
2465                                 info->default_queue = i;
2466                         }
2467                 }
2468
2469                 /* See if we have optional dma-channel-mask array */
2470                 array_max = DIV_ROUND_UP(ecc->num_channels, BITS_PER_TYPE(u32));
2471                 ret = of_property_read_variable_u32_array(node,
2472                                                 "dma-channel-mask",
2473                                                 (u32 *)ecc->channels_mask,
2474                                                 1, array_max);
2475                 if (ret > 0 && ret != array_max)
2476                         dev_warn(dev, "dma-channel-mask is not complete.\n");
2477                 else if (ret == -EOVERFLOW || ret == -ENODATA)
2478                         dev_warn(dev,
2479                                  "dma-channel-mask is out of range or empty\n");
2480         }
2481
2482         /* Event queue priority mapping */
2483         for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2484                 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2485                                               queue_priority_mapping[i][1]);
2486
2487         edma_write_array2(ecc, EDMA_DRAE, 0, 0, 0x0);
2488         edma_write_array2(ecc, EDMA_DRAE, 0, 1, 0x0);
2489         edma_write_array(ecc, EDMA_QRAE, 0, 0x0);
2490
2491         ecc->info = info;
2492
2493         /* Init the dma device and channels */
2494         edma_dma_init(ecc, legacy_mode);
2495
2496         for (i = 0; i < ecc->num_channels; i++) {
2497                 /* Do not touch reserved channels */
2498                 if (!test_bit(i, ecc->channels_mask))
2499                         continue;
2500
2501                 /* Assign all channels to the default queue */
2502                 edma_assign_channel_eventq(&ecc->slave_chans[i],
2503                                            info->default_queue);
2504                 /* Set entry slot to the dummy slot */
2505                 edma_set_chmap(&ecc->slave_chans[i], ecc->dummy_slot);
2506         }
2507
2508         ecc->dma_slave.filter.map = info->slave_map;
2509         ecc->dma_slave.filter.mapcnt = info->slavecnt;
2510         ecc->dma_slave.filter.fn = edma_filter_fn;
2511
2512         ret = dma_async_device_register(&ecc->dma_slave);
2513         if (ret) {
2514                 dev_err(dev, "slave ddev registration failed (%d)\n", ret);
2515                 goto err_reg1;
2516         }
2517
2518         if (ecc->dma_memcpy) {
2519                 ret = dma_async_device_register(ecc->dma_memcpy);
2520                 if (ret) {
2521                         dev_err(dev, "memcpy ddev registration failed (%d)\n",
2522                                 ret);
2523                         dma_async_device_unregister(&ecc->dma_slave);
2524                         goto err_reg1;
2525                 }
2526         }
2527
2528         if (node)
2529                 of_dma_controller_register(node, of_edma_xlate, ecc);
2530
2531         dev_info(dev, "TI EDMA DMA engine driver\n");
2532
2533         return 0;
2534
2535 err_reg1:
2536         edma_free_slot(ecc, ecc->dummy_slot);
2537 err_disable_pm:
2538         pm_runtime_put_sync(dev);
2539         pm_runtime_disable(dev);
2540         return ret;
2541 }
2542
2543 static void edma_cleanupp_vchan(struct dma_device *dmadev)
2544 {
2545         struct edma_chan *echan, *_echan;
2546
2547         list_for_each_entry_safe(echan, _echan,
2548                         &dmadev->channels, vchan.chan.device_node) {
2549                 list_del(&echan->vchan.chan.device_node);
2550                 tasklet_kill(&echan->vchan.task);
2551         }
2552 }
2553
2554 static int edma_remove(struct platform_device *pdev)
2555 {
2556         struct device *dev = &pdev->dev;
2557         struct edma_cc *ecc = dev_get_drvdata(dev);
2558
2559         devm_free_irq(dev, ecc->ccint, ecc);
2560         devm_free_irq(dev, ecc->ccerrint, ecc);
2561
2562         edma_cleanupp_vchan(&ecc->dma_slave);
2563
2564         if (dev->of_node)
2565                 of_dma_controller_free(dev->of_node);
2566         dma_async_device_unregister(&ecc->dma_slave);
2567         if (ecc->dma_memcpy)
2568                 dma_async_device_unregister(ecc->dma_memcpy);
2569         edma_free_slot(ecc, ecc->dummy_slot);
2570         pm_runtime_put_sync(dev);
2571         pm_runtime_disable(dev);
2572
2573         return 0;
2574 }
2575
2576 #ifdef CONFIG_PM_SLEEP
2577 static int edma_pm_suspend(struct device *dev)
2578 {
2579         struct edma_cc *ecc = dev_get_drvdata(dev);
2580         struct edma_chan *echan = ecc->slave_chans;
2581         int i;
2582
2583         for (i = 0; i < ecc->num_channels; i++) {
2584                 if (echan[i].alloced)
2585                         edma_setup_interrupt(&echan[i], false);
2586         }
2587
2588         return 0;
2589 }
2590
2591 static int edma_pm_resume(struct device *dev)
2592 {
2593         struct edma_cc *ecc = dev_get_drvdata(dev);
2594         struct edma_chan *echan = ecc->slave_chans;
2595         int i;
2596         s8 (*queue_priority_mapping)[2];
2597
2598         /* re initialize dummy slot to dummy param set */
2599         edma_write_slot(ecc, ecc->dummy_slot, &dummy_paramset);
2600
2601         queue_priority_mapping = ecc->info->queue_priority_mapping;
2602
2603         /* Event queue priority mapping */
2604         for (i = 0; queue_priority_mapping[i][0] != -1; i++)
2605                 edma_assign_priority_to_queue(ecc, queue_priority_mapping[i][0],
2606                                               queue_priority_mapping[i][1]);
2607
2608         for (i = 0; i < ecc->num_channels; i++) {
2609                 if (echan[i].alloced) {
2610                         /* ensure access through shadow region 0 */
2611                         edma_or_array2(ecc, EDMA_DRAE, 0,
2612                                        EDMA_REG_ARRAY_INDEX(i),
2613                                        EDMA_CHANNEL_BIT(i));
2614
2615                         edma_setup_interrupt(&echan[i], true);
2616
2617                         /* Set up channel -> slot mapping for the entry slot */
2618                         edma_set_chmap(&echan[i], echan[i].slot[0]);
2619                 }
2620         }
2621
2622         return 0;
2623 }
2624 #endif
2625
2626 static const struct dev_pm_ops edma_pm_ops = {
2627         SET_LATE_SYSTEM_SLEEP_PM_OPS(edma_pm_suspend, edma_pm_resume)
2628 };
2629
2630 static struct platform_driver edma_driver = {
2631         .probe          = edma_probe,
2632         .remove         = edma_remove,
2633         .driver = {
2634                 .name   = "edma",
2635                 .pm     = &edma_pm_ops,
2636                 .of_match_table = edma_of_ids,
2637         },
2638 };
2639
2640 static int edma_tptc_probe(struct platform_device *pdev)
2641 {
2642         pm_runtime_enable(&pdev->dev);
2643         return pm_runtime_get_sync(&pdev->dev);
2644 }
2645
2646 static struct platform_driver edma_tptc_driver = {
2647         .probe          = edma_tptc_probe,
2648         .driver = {
2649                 .name   = "edma3-tptc",
2650                 .of_match_table = edma_tptc_of_ids,
2651         },
2652 };
2653
2654 static bool edma_filter_fn(struct dma_chan *chan, void *param)
2655 {
2656         bool match = false;
2657
2658         if (chan->device->dev->driver == &edma_driver.driver) {
2659                 struct edma_chan *echan = to_edma_chan(chan);
2660                 unsigned ch_req = *(unsigned *)param;
2661                 if (ch_req == echan->ch_num) {
2662                         /* The channel is going to be used as HW synchronized */
2663                         echan->hw_triggered = true;
2664                         match = true;
2665                 }
2666         }
2667         return match;
2668 }
2669
2670 static int edma_init(void)
2671 {
2672         int ret;
2673
2674         ret = platform_driver_register(&edma_tptc_driver);
2675         if (ret)
2676                 return ret;
2677
2678         return platform_driver_register(&edma_driver);
2679 }
2680 subsys_initcall(edma_init);
2681
2682 static void __exit edma_exit(void)
2683 {
2684         platform_driver_unregister(&edma_driver);
2685         platform_driver_unregister(&edma_tptc_driver);
2686 }
2687 module_exit(edma_exit);
2688
2689 MODULE_AUTHOR("Matt Porter <matt.porter@linaro.org>");
2690 MODULE_DESCRIPTION("TI EDMA DMA engine driver");
2691 MODULE_LICENSE("GPL v2");