Merge tag 'fsnotify_for_v6.5-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / dma / dma-axi-dmac.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for the Analog Devices AXI-DMAC core
4  *
5  * Copyright 2013-2019 Analog Devices Inc.
6  *  Author: Lars-Peter Clausen <lars@metafoo.de>
7  */
8
9 #include <linux/bitfield.h>
10 #include <linux/clk.h>
11 #include <linux/device.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/interrupt.h>
16 #include <linux/io.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_dma.h>
21 #include <linux/of_address.h>
22 #include <linux/platform_device.h>
23 #include <linux/regmap.h>
24 #include <linux/slab.h>
25 #include <linux/fpga/adi-axi-common.h>
26
27 #include <dt-bindings/dma/axi-dmac.h>
28
29 #include "dmaengine.h"
30 #include "virt-dma.h"
31
32 /*
33  * The AXI-DMAC is a soft IP core that is used in FPGA designs. The core has
34  * various instantiation parameters which decided the exact feature set support
35  * by the core.
36  *
37  * Each channel of the core has a source interface and a destination interface.
38  * The number of channels and the type of the channel interfaces is selected at
39  * configuration time. A interface can either be a connected to a central memory
40  * interconnect, which allows access to system memory, or it can be connected to
41  * a dedicated bus which is directly connected to a data port on a peripheral.
42  * Given that those are configuration options of the core that are selected when
43  * it is instantiated this means that they can not be changed by software at
44  * runtime. By extension this means that each channel is uni-directional. It can
45  * either be device to memory or memory to device, but not both. Also since the
46  * device side is a dedicated data bus only connected to a single peripheral
47  * there is no address than can or needs to be configured for the device side.
48  */
49
50 #define AXI_DMAC_REG_INTERFACE_DESC     0x10
51 #define   AXI_DMAC_DMA_SRC_TYPE_MSK     GENMASK(13, 12)
52 #define   AXI_DMAC_DMA_SRC_TYPE_GET(x)  FIELD_GET(AXI_DMAC_DMA_SRC_TYPE_MSK, x)
53 #define   AXI_DMAC_DMA_SRC_WIDTH_MSK    GENMASK(11, 8)
54 #define   AXI_DMAC_DMA_SRC_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_SRC_WIDTH_MSK, x)
55 #define   AXI_DMAC_DMA_DST_TYPE_MSK     GENMASK(5, 4)
56 #define   AXI_DMAC_DMA_DST_TYPE_GET(x)  FIELD_GET(AXI_DMAC_DMA_DST_TYPE_MSK, x)
57 #define   AXI_DMAC_DMA_DST_WIDTH_MSK    GENMASK(3, 0)
58 #define   AXI_DMAC_DMA_DST_WIDTH_GET(x) FIELD_GET(AXI_DMAC_DMA_DST_WIDTH_MSK, x)
59 #define AXI_DMAC_REG_COHERENCY_DESC     0x14
60 #define   AXI_DMAC_DST_COHERENT_MSK     BIT(0)
61 #define   AXI_DMAC_DST_COHERENT_GET(x)  FIELD_GET(AXI_DMAC_DST_COHERENT_MSK, x)
62
63 #define AXI_DMAC_REG_IRQ_MASK           0x80
64 #define AXI_DMAC_REG_IRQ_PENDING        0x84
65 #define AXI_DMAC_REG_IRQ_SOURCE         0x88
66
67 #define AXI_DMAC_REG_CTRL               0x400
68 #define AXI_DMAC_REG_TRANSFER_ID        0x404
69 #define AXI_DMAC_REG_START_TRANSFER     0x408
70 #define AXI_DMAC_REG_FLAGS              0x40c
71 #define AXI_DMAC_REG_DEST_ADDRESS       0x410
72 #define AXI_DMAC_REG_SRC_ADDRESS        0x414
73 #define AXI_DMAC_REG_X_LENGTH           0x418
74 #define AXI_DMAC_REG_Y_LENGTH           0x41c
75 #define AXI_DMAC_REG_DEST_STRIDE        0x420
76 #define AXI_DMAC_REG_SRC_STRIDE         0x424
77 #define AXI_DMAC_REG_TRANSFER_DONE      0x428
78 #define AXI_DMAC_REG_ACTIVE_TRANSFER_ID 0x42c
79 #define AXI_DMAC_REG_STATUS             0x430
80 #define AXI_DMAC_REG_CURRENT_SRC_ADDR   0x434
81 #define AXI_DMAC_REG_CURRENT_DEST_ADDR  0x438
82 #define AXI_DMAC_REG_PARTIAL_XFER_LEN   0x44c
83 #define AXI_DMAC_REG_PARTIAL_XFER_ID    0x450
84
85 #define AXI_DMAC_CTRL_ENABLE            BIT(0)
86 #define AXI_DMAC_CTRL_PAUSE             BIT(1)
87
88 #define AXI_DMAC_IRQ_SOT                BIT(0)
89 #define AXI_DMAC_IRQ_EOT                BIT(1)
90
91 #define AXI_DMAC_FLAG_CYCLIC            BIT(0)
92 #define AXI_DMAC_FLAG_LAST              BIT(1)
93 #define AXI_DMAC_FLAG_PARTIAL_REPORT    BIT(2)
94
95 #define AXI_DMAC_FLAG_PARTIAL_XFER_DONE BIT(31)
96
97 /* The maximum ID allocated by the hardware is 31 */
98 #define AXI_DMAC_SG_UNUSED 32U
99
100 struct axi_dmac_sg {
101         dma_addr_t src_addr;
102         dma_addr_t dest_addr;
103         unsigned int x_len;
104         unsigned int y_len;
105         unsigned int dest_stride;
106         unsigned int src_stride;
107         unsigned int id;
108         unsigned int partial_len;
109         bool schedule_when_free;
110 };
111
112 struct axi_dmac_desc {
113         struct virt_dma_desc vdesc;
114         bool cyclic;
115         bool have_partial_xfer;
116
117         unsigned int num_submitted;
118         unsigned int num_completed;
119         unsigned int num_sgs;
120         struct axi_dmac_sg sg[];
121 };
122
123 struct axi_dmac_chan {
124         struct virt_dma_chan vchan;
125
126         struct axi_dmac_desc *next_desc;
127         struct list_head active_descs;
128         enum dma_transfer_direction direction;
129
130         unsigned int src_width;
131         unsigned int dest_width;
132         unsigned int src_type;
133         unsigned int dest_type;
134
135         unsigned int max_length;
136         unsigned int address_align_mask;
137         unsigned int length_align_mask;
138
139         bool hw_partial_xfer;
140         bool hw_cyclic;
141         bool hw_2d;
142 };
143
144 struct axi_dmac {
145         void __iomem *base;
146         int irq;
147
148         struct clk *clk;
149
150         struct dma_device dma_dev;
151         struct axi_dmac_chan chan;
152 };
153
154 static struct axi_dmac *chan_to_axi_dmac(struct axi_dmac_chan *chan)
155 {
156         return container_of(chan->vchan.chan.device, struct axi_dmac,
157                 dma_dev);
158 }
159
160 static struct axi_dmac_chan *to_axi_dmac_chan(struct dma_chan *c)
161 {
162         return container_of(c, struct axi_dmac_chan, vchan.chan);
163 }
164
165 static struct axi_dmac_desc *to_axi_dmac_desc(struct virt_dma_desc *vdesc)
166 {
167         return container_of(vdesc, struct axi_dmac_desc, vdesc);
168 }
169
170 static void axi_dmac_write(struct axi_dmac *axi_dmac, unsigned int reg,
171         unsigned int val)
172 {
173         writel(val, axi_dmac->base + reg);
174 }
175
176 static int axi_dmac_read(struct axi_dmac *axi_dmac, unsigned int reg)
177 {
178         return readl(axi_dmac->base + reg);
179 }
180
181 static int axi_dmac_src_is_mem(struct axi_dmac_chan *chan)
182 {
183         return chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM;
184 }
185
186 static int axi_dmac_dest_is_mem(struct axi_dmac_chan *chan)
187 {
188         return chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM;
189 }
190
191 static bool axi_dmac_check_len(struct axi_dmac_chan *chan, unsigned int len)
192 {
193         if (len == 0)
194                 return false;
195         if ((len & chan->length_align_mask) != 0) /* Not aligned */
196                 return false;
197         return true;
198 }
199
200 static bool axi_dmac_check_addr(struct axi_dmac_chan *chan, dma_addr_t addr)
201 {
202         if ((addr & chan->address_align_mask) != 0) /* Not aligned */
203                 return false;
204         return true;
205 }
206
207 static void axi_dmac_start_transfer(struct axi_dmac_chan *chan)
208 {
209         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
210         struct virt_dma_desc *vdesc;
211         struct axi_dmac_desc *desc;
212         struct axi_dmac_sg *sg;
213         unsigned int flags = 0;
214         unsigned int val;
215
216         val = axi_dmac_read(dmac, AXI_DMAC_REG_START_TRANSFER);
217         if (val) /* Queue is full, wait for the next SOT IRQ */
218                 return;
219
220         desc = chan->next_desc;
221
222         if (!desc) {
223                 vdesc = vchan_next_desc(&chan->vchan);
224                 if (!vdesc)
225                         return;
226                 list_move_tail(&vdesc->node, &chan->active_descs);
227                 desc = to_axi_dmac_desc(vdesc);
228         }
229         sg = &desc->sg[desc->num_submitted];
230
231         /* Already queued in cyclic mode. Wait for it to finish */
232         if (sg->id != AXI_DMAC_SG_UNUSED) {
233                 sg->schedule_when_free = true;
234                 return;
235         }
236
237         desc->num_submitted++;
238         if (desc->num_submitted == desc->num_sgs ||
239             desc->have_partial_xfer) {
240                 if (desc->cyclic)
241                         desc->num_submitted = 0; /* Start again */
242                 else
243                         chan->next_desc = NULL;
244                 flags |= AXI_DMAC_FLAG_LAST;
245         } else {
246                 chan->next_desc = desc;
247         }
248
249         sg->id = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_ID);
250
251         if (axi_dmac_dest_is_mem(chan)) {
252                 axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, sg->dest_addr);
253                 axi_dmac_write(dmac, AXI_DMAC_REG_DEST_STRIDE, sg->dest_stride);
254         }
255
256         if (axi_dmac_src_is_mem(chan)) {
257                 axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, sg->src_addr);
258                 axi_dmac_write(dmac, AXI_DMAC_REG_SRC_STRIDE, sg->src_stride);
259         }
260
261         /*
262          * If the hardware supports cyclic transfers and there is no callback to
263          * call and only a single segment, enable hw cyclic mode to avoid
264          * unnecessary interrupts.
265          */
266         if (chan->hw_cyclic && desc->cyclic && !desc->vdesc.tx.callback &&
267                 desc->num_sgs == 1)
268                 flags |= AXI_DMAC_FLAG_CYCLIC;
269
270         if (chan->hw_partial_xfer)
271                 flags |= AXI_DMAC_FLAG_PARTIAL_REPORT;
272
273         axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, sg->x_len - 1);
274         axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, sg->y_len - 1);
275         axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, flags);
276         axi_dmac_write(dmac, AXI_DMAC_REG_START_TRANSFER, 1);
277 }
278
279 static struct axi_dmac_desc *axi_dmac_active_desc(struct axi_dmac_chan *chan)
280 {
281         return list_first_entry_or_null(&chan->active_descs,
282                 struct axi_dmac_desc, vdesc.node);
283 }
284
285 static inline unsigned int axi_dmac_total_sg_bytes(struct axi_dmac_chan *chan,
286         struct axi_dmac_sg *sg)
287 {
288         if (chan->hw_2d)
289                 return sg->x_len * sg->y_len;
290         else
291                 return sg->x_len;
292 }
293
294 static void axi_dmac_dequeue_partial_xfers(struct axi_dmac_chan *chan)
295 {
296         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
297         struct axi_dmac_desc *desc;
298         struct axi_dmac_sg *sg;
299         u32 xfer_done, len, id, i;
300         bool found_sg;
301
302         do {
303                 len = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_LEN);
304                 id  = axi_dmac_read(dmac, AXI_DMAC_REG_PARTIAL_XFER_ID);
305
306                 found_sg = false;
307                 list_for_each_entry(desc, &chan->active_descs, vdesc.node) {
308                         for (i = 0; i < desc->num_sgs; i++) {
309                                 sg = &desc->sg[i];
310                                 if (sg->id == AXI_DMAC_SG_UNUSED)
311                                         continue;
312                                 if (sg->id == id) {
313                                         desc->have_partial_xfer = true;
314                                         sg->partial_len = len;
315                                         found_sg = true;
316                                         break;
317                                 }
318                         }
319                         if (found_sg)
320                                 break;
321                 }
322
323                 if (found_sg) {
324                         dev_dbg(dmac->dma_dev.dev,
325                                 "Found partial segment id=%u, len=%u\n",
326                                 id, len);
327                 } else {
328                         dev_warn(dmac->dma_dev.dev,
329                                  "Not found partial segment id=%u, len=%u\n",
330                                  id, len);
331                 }
332
333                 /* Check if we have any more partial transfers */
334                 xfer_done = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
335                 xfer_done = !(xfer_done & AXI_DMAC_FLAG_PARTIAL_XFER_DONE);
336
337         } while (!xfer_done);
338 }
339
340 static void axi_dmac_compute_residue(struct axi_dmac_chan *chan,
341         struct axi_dmac_desc *active)
342 {
343         struct dmaengine_result *rslt = &active->vdesc.tx_result;
344         unsigned int start = active->num_completed - 1;
345         struct axi_dmac_sg *sg;
346         unsigned int i, total;
347
348         rslt->result = DMA_TRANS_NOERROR;
349         rslt->residue = 0;
350
351         /*
352          * We get here if the last completed segment is partial, which
353          * means we can compute the residue from that segment onwards
354          */
355         for (i = start; i < active->num_sgs; i++) {
356                 sg = &active->sg[i];
357                 total = axi_dmac_total_sg_bytes(chan, sg);
358                 rslt->residue += (total - sg->partial_len);
359         }
360 }
361
362 static bool axi_dmac_transfer_done(struct axi_dmac_chan *chan,
363         unsigned int completed_transfers)
364 {
365         struct axi_dmac_desc *active;
366         struct axi_dmac_sg *sg;
367         bool start_next = false;
368
369         active = axi_dmac_active_desc(chan);
370         if (!active)
371                 return false;
372
373         if (chan->hw_partial_xfer &&
374             (completed_transfers & AXI_DMAC_FLAG_PARTIAL_XFER_DONE))
375                 axi_dmac_dequeue_partial_xfers(chan);
376
377         do {
378                 sg = &active->sg[active->num_completed];
379                 if (sg->id == AXI_DMAC_SG_UNUSED) /* Not yet submitted */
380                         break;
381                 if (!(BIT(sg->id) & completed_transfers))
382                         break;
383                 active->num_completed++;
384                 sg->id = AXI_DMAC_SG_UNUSED;
385                 if (sg->schedule_when_free) {
386                         sg->schedule_when_free = false;
387                         start_next = true;
388                 }
389
390                 if (sg->partial_len)
391                         axi_dmac_compute_residue(chan, active);
392
393                 if (active->cyclic)
394                         vchan_cyclic_callback(&active->vdesc);
395
396                 if (active->num_completed == active->num_sgs ||
397                     sg->partial_len) {
398                         if (active->cyclic) {
399                                 active->num_completed = 0; /* wrap around */
400                         } else {
401                                 list_del(&active->vdesc.node);
402                                 vchan_cookie_complete(&active->vdesc);
403                                 active = axi_dmac_active_desc(chan);
404                         }
405                 }
406         } while (active);
407
408         return start_next;
409 }
410
411 static irqreturn_t axi_dmac_interrupt_handler(int irq, void *devid)
412 {
413         struct axi_dmac *dmac = devid;
414         unsigned int pending;
415         bool start_next = false;
416
417         pending = axi_dmac_read(dmac, AXI_DMAC_REG_IRQ_PENDING);
418         if (!pending)
419                 return IRQ_NONE;
420
421         axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_PENDING, pending);
422
423         spin_lock(&dmac->chan.vchan.lock);
424         /* One or more transfers have finished */
425         if (pending & AXI_DMAC_IRQ_EOT) {
426                 unsigned int completed;
427
428                 completed = axi_dmac_read(dmac, AXI_DMAC_REG_TRANSFER_DONE);
429                 start_next = axi_dmac_transfer_done(&dmac->chan, completed);
430         }
431         /* Space has become available in the descriptor queue */
432         if ((pending & AXI_DMAC_IRQ_SOT) || start_next)
433                 axi_dmac_start_transfer(&dmac->chan);
434         spin_unlock(&dmac->chan.vchan.lock);
435
436         return IRQ_HANDLED;
437 }
438
439 static int axi_dmac_terminate_all(struct dma_chan *c)
440 {
441         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
442         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
443         unsigned long flags;
444         LIST_HEAD(head);
445
446         spin_lock_irqsave(&chan->vchan.lock, flags);
447         axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, 0);
448         chan->next_desc = NULL;
449         vchan_get_all_descriptors(&chan->vchan, &head);
450         list_splice_tail_init(&chan->active_descs, &head);
451         spin_unlock_irqrestore(&chan->vchan.lock, flags);
452
453         vchan_dma_desc_free_list(&chan->vchan, &head);
454
455         return 0;
456 }
457
458 static void axi_dmac_synchronize(struct dma_chan *c)
459 {
460         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
461
462         vchan_synchronize(&chan->vchan);
463 }
464
465 static void axi_dmac_issue_pending(struct dma_chan *c)
466 {
467         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
468         struct axi_dmac *dmac = chan_to_axi_dmac(chan);
469         unsigned long flags;
470
471         axi_dmac_write(dmac, AXI_DMAC_REG_CTRL, AXI_DMAC_CTRL_ENABLE);
472
473         spin_lock_irqsave(&chan->vchan.lock, flags);
474         if (vchan_issue_pending(&chan->vchan))
475                 axi_dmac_start_transfer(chan);
476         spin_unlock_irqrestore(&chan->vchan.lock, flags);
477 }
478
479 static struct axi_dmac_desc *axi_dmac_alloc_desc(unsigned int num_sgs)
480 {
481         struct axi_dmac_desc *desc;
482         unsigned int i;
483
484         desc = kzalloc(struct_size(desc, sg, num_sgs), GFP_NOWAIT);
485         if (!desc)
486                 return NULL;
487
488         for (i = 0; i < num_sgs; i++)
489                 desc->sg[i].id = AXI_DMAC_SG_UNUSED;
490
491         desc->num_sgs = num_sgs;
492
493         return desc;
494 }
495
496 static struct axi_dmac_sg *axi_dmac_fill_linear_sg(struct axi_dmac_chan *chan,
497         enum dma_transfer_direction direction, dma_addr_t addr,
498         unsigned int num_periods, unsigned int period_len,
499         struct axi_dmac_sg *sg)
500 {
501         unsigned int num_segments, i;
502         unsigned int segment_size;
503         unsigned int len;
504
505         /* Split into multiple equally sized segments if necessary */
506         num_segments = DIV_ROUND_UP(period_len, chan->max_length);
507         segment_size = DIV_ROUND_UP(period_len, num_segments);
508         /* Take care of alignment */
509         segment_size = ((segment_size - 1) | chan->length_align_mask) + 1;
510
511         for (i = 0; i < num_periods; i++) {
512                 len = period_len;
513
514                 while (len > segment_size) {
515                         if (direction == DMA_DEV_TO_MEM)
516                                 sg->dest_addr = addr;
517                         else
518                                 sg->src_addr = addr;
519                         sg->x_len = segment_size;
520                         sg->y_len = 1;
521                         sg++;
522                         addr += segment_size;
523                         len -= segment_size;
524                 }
525
526                 if (direction == DMA_DEV_TO_MEM)
527                         sg->dest_addr = addr;
528                 else
529                         sg->src_addr = addr;
530                 sg->x_len = len;
531                 sg->y_len = 1;
532                 sg++;
533                 addr += len;
534         }
535
536         return sg;
537 }
538
539 static struct dma_async_tx_descriptor *axi_dmac_prep_slave_sg(
540         struct dma_chan *c, struct scatterlist *sgl,
541         unsigned int sg_len, enum dma_transfer_direction direction,
542         unsigned long flags, void *context)
543 {
544         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
545         struct axi_dmac_desc *desc;
546         struct axi_dmac_sg *dsg;
547         struct scatterlist *sg;
548         unsigned int num_sgs;
549         unsigned int i;
550
551         if (direction != chan->direction)
552                 return NULL;
553
554         num_sgs = 0;
555         for_each_sg(sgl, sg, sg_len, i)
556                 num_sgs += DIV_ROUND_UP(sg_dma_len(sg), chan->max_length);
557
558         desc = axi_dmac_alloc_desc(num_sgs);
559         if (!desc)
560                 return NULL;
561
562         dsg = desc->sg;
563
564         for_each_sg(sgl, sg, sg_len, i) {
565                 if (!axi_dmac_check_addr(chan, sg_dma_address(sg)) ||
566                     !axi_dmac_check_len(chan, sg_dma_len(sg))) {
567                         kfree(desc);
568                         return NULL;
569                 }
570
571                 dsg = axi_dmac_fill_linear_sg(chan, direction, sg_dma_address(sg), 1,
572                         sg_dma_len(sg), dsg);
573         }
574
575         desc->cyclic = false;
576
577         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
578 }
579
580 static struct dma_async_tx_descriptor *axi_dmac_prep_dma_cyclic(
581         struct dma_chan *c, dma_addr_t buf_addr, size_t buf_len,
582         size_t period_len, enum dma_transfer_direction direction,
583         unsigned long flags)
584 {
585         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
586         struct axi_dmac_desc *desc;
587         unsigned int num_periods, num_segments;
588
589         if (direction != chan->direction)
590                 return NULL;
591
592         if (!axi_dmac_check_len(chan, buf_len) ||
593             !axi_dmac_check_addr(chan, buf_addr))
594                 return NULL;
595
596         if (period_len == 0 || buf_len % period_len)
597                 return NULL;
598
599         num_periods = buf_len / period_len;
600         num_segments = DIV_ROUND_UP(period_len, chan->max_length);
601
602         desc = axi_dmac_alloc_desc(num_periods * num_segments);
603         if (!desc)
604                 return NULL;
605
606         axi_dmac_fill_linear_sg(chan, direction, buf_addr, num_periods,
607                 period_len, desc->sg);
608
609         desc->cyclic = true;
610
611         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
612 }
613
614 static struct dma_async_tx_descriptor *axi_dmac_prep_interleaved(
615         struct dma_chan *c, struct dma_interleaved_template *xt,
616         unsigned long flags)
617 {
618         struct axi_dmac_chan *chan = to_axi_dmac_chan(c);
619         struct axi_dmac_desc *desc;
620         size_t dst_icg, src_icg;
621
622         if (xt->frame_size != 1)
623                 return NULL;
624
625         if (xt->dir != chan->direction)
626                 return NULL;
627
628         if (axi_dmac_src_is_mem(chan)) {
629                 if (!xt->src_inc || !axi_dmac_check_addr(chan, xt->src_start))
630                         return NULL;
631         }
632
633         if (axi_dmac_dest_is_mem(chan)) {
634                 if (!xt->dst_inc || !axi_dmac_check_addr(chan, xt->dst_start))
635                         return NULL;
636         }
637
638         dst_icg = dmaengine_get_dst_icg(xt, &xt->sgl[0]);
639         src_icg = dmaengine_get_src_icg(xt, &xt->sgl[0]);
640
641         if (chan->hw_2d) {
642                 if (!axi_dmac_check_len(chan, xt->sgl[0].size) ||
643                     xt->numf == 0)
644                         return NULL;
645                 if (xt->sgl[0].size + dst_icg > chan->max_length ||
646                     xt->sgl[0].size + src_icg > chan->max_length)
647                         return NULL;
648         } else {
649                 if (dst_icg != 0 || src_icg != 0)
650                         return NULL;
651                 if (chan->max_length / xt->sgl[0].size < xt->numf)
652                         return NULL;
653                 if (!axi_dmac_check_len(chan, xt->sgl[0].size * xt->numf))
654                         return NULL;
655         }
656
657         desc = axi_dmac_alloc_desc(1);
658         if (!desc)
659                 return NULL;
660
661         if (axi_dmac_src_is_mem(chan)) {
662                 desc->sg[0].src_addr = xt->src_start;
663                 desc->sg[0].src_stride = xt->sgl[0].size + src_icg;
664         }
665
666         if (axi_dmac_dest_is_mem(chan)) {
667                 desc->sg[0].dest_addr = xt->dst_start;
668                 desc->sg[0].dest_stride = xt->sgl[0].size + dst_icg;
669         }
670
671         if (chan->hw_2d) {
672                 desc->sg[0].x_len = xt->sgl[0].size;
673                 desc->sg[0].y_len = xt->numf;
674         } else {
675                 desc->sg[0].x_len = xt->sgl[0].size * xt->numf;
676                 desc->sg[0].y_len = 1;
677         }
678
679         if (flags & DMA_CYCLIC)
680                 desc->cyclic = true;
681
682         return vchan_tx_prep(&chan->vchan, &desc->vdesc, flags);
683 }
684
685 static void axi_dmac_free_chan_resources(struct dma_chan *c)
686 {
687         vchan_free_chan_resources(to_virt_chan(c));
688 }
689
690 static void axi_dmac_desc_free(struct virt_dma_desc *vdesc)
691 {
692         kfree(container_of(vdesc, struct axi_dmac_desc, vdesc));
693 }
694
695 static bool axi_dmac_regmap_rdwr(struct device *dev, unsigned int reg)
696 {
697         switch (reg) {
698         case AXI_DMAC_REG_IRQ_MASK:
699         case AXI_DMAC_REG_IRQ_SOURCE:
700         case AXI_DMAC_REG_IRQ_PENDING:
701         case AXI_DMAC_REG_CTRL:
702         case AXI_DMAC_REG_TRANSFER_ID:
703         case AXI_DMAC_REG_START_TRANSFER:
704         case AXI_DMAC_REG_FLAGS:
705         case AXI_DMAC_REG_DEST_ADDRESS:
706         case AXI_DMAC_REG_SRC_ADDRESS:
707         case AXI_DMAC_REG_X_LENGTH:
708         case AXI_DMAC_REG_Y_LENGTH:
709         case AXI_DMAC_REG_DEST_STRIDE:
710         case AXI_DMAC_REG_SRC_STRIDE:
711         case AXI_DMAC_REG_TRANSFER_DONE:
712         case AXI_DMAC_REG_ACTIVE_TRANSFER_ID:
713         case AXI_DMAC_REG_STATUS:
714         case AXI_DMAC_REG_CURRENT_SRC_ADDR:
715         case AXI_DMAC_REG_CURRENT_DEST_ADDR:
716         case AXI_DMAC_REG_PARTIAL_XFER_LEN:
717         case AXI_DMAC_REG_PARTIAL_XFER_ID:
718                 return true;
719         default:
720                 return false;
721         }
722 }
723
724 static const struct regmap_config axi_dmac_regmap_config = {
725         .reg_bits = 32,
726         .val_bits = 32,
727         .reg_stride = 4,
728         .max_register = AXI_DMAC_REG_PARTIAL_XFER_ID,
729         .readable_reg = axi_dmac_regmap_rdwr,
730         .writeable_reg = axi_dmac_regmap_rdwr,
731 };
732
733 static void axi_dmac_adjust_chan_params(struct axi_dmac_chan *chan)
734 {
735         chan->address_align_mask = max(chan->dest_width, chan->src_width) - 1;
736
737         if (axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
738                 chan->direction = DMA_MEM_TO_MEM;
739         else if (!axi_dmac_dest_is_mem(chan) && axi_dmac_src_is_mem(chan))
740                 chan->direction = DMA_MEM_TO_DEV;
741         else if (axi_dmac_dest_is_mem(chan) && !axi_dmac_src_is_mem(chan))
742                 chan->direction = DMA_DEV_TO_MEM;
743         else
744                 chan->direction = DMA_DEV_TO_DEV;
745 }
746
747 /*
748  * The configuration stored in the devicetree matches the configuration
749  * parameters of the peripheral instance and allows the driver to know which
750  * features are implemented and how it should behave.
751  */
752 static int axi_dmac_parse_chan_dt(struct device_node *of_chan,
753         struct axi_dmac_chan *chan)
754 {
755         u32 val;
756         int ret;
757
758         ret = of_property_read_u32(of_chan, "reg", &val);
759         if (ret)
760                 return ret;
761
762         /* We only support 1 channel for now */
763         if (val != 0)
764                 return -EINVAL;
765
766         ret = of_property_read_u32(of_chan, "adi,source-bus-type", &val);
767         if (ret)
768                 return ret;
769         if (val > AXI_DMAC_BUS_TYPE_FIFO)
770                 return -EINVAL;
771         chan->src_type = val;
772
773         ret = of_property_read_u32(of_chan, "adi,destination-bus-type", &val);
774         if (ret)
775                 return ret;
776         if (val > AXI_DMAC_BUS_TYPE_FIFO)
777                 return -EINVAL;
778         chan->dest_type = val;
779
780         ret = of_property_read_u32(of_chan, "adi,source-bus-width", &val);
781         if (ret)
782                 return ret;
783         chan->src_width = val / 8;
784
785         ret = of_property_read_u32(of_chan, "adi,destination-bus-width", &val);
786         if (ret)
787                 return ret;
788         chan->dest_width = val / 8;
789
790         axi_dmac_adjust_chan_params(chan);
791
792         return 0;
793 }
794
795 static int axi_dmac_parse_dt(struct device *dev, struct axi_dmac *dmac)
796 {
797         struct device_node *of_channels, *of_chan;
798         int ret;
799
800         of_channels = of_get_child_by_name(dev->of_node, "adi,channels");
801         if (of_channels == NULL)
802                 return -ENODEV;
803
804         for_each_child_of_node(of_channels, of_chan) {
805                 ret = axi_dmac_parse_chan_dt(of_chan, &dmac->chan);
806                 if (ret) {
807                         of_node_put(of_chan);
808                         of_node_put(of_channels);
809                         return -EINVAL;
810                 }
811         }
812         of_node_put(of_channels);
813
814         return 0;
815 }
816
817 static int axi_dmac_read_chan_config(struct device *dev, struct axi_dmac *dmac)
818 {
819         struct axi_dmac_chan *chan = &dmac->chan;
820         unsigned int val, desc;
821
822         desc = axi_dmac_read(dmac, AXI_DMAC_REG_INTERFACE_DESC);
823         if (desc == 0) {
824                 dev_err(dev, "DMA interface register reads zero\n");
825                 return -EFAULT;
826         }
827
828         val = AXI_DMAC_DMA_SRC_TYPE_GET(desc);
829         if (val > AXI_DMAC_BUS_TYPE_FIFO) {
830                 dev_err(dev, "Invalid source bus type read: %d\n", val);
831                 return -EINVAL;
832         }
833         chan->src_type = val;
834
835         val = AXI_DMAC_DMA_DST_TYPE_GET(desc);
836         if (val > AXI_DMAC_BUS_TYPE_FIFO) {
837                 dev_err(dev, "Invalid destination bus type read: %d\n", val);
838                 return -EINVAL;
839         }
840         chan->dest_type = val;
841
842         val = AXI_DMAC_DMA_SRC_WIDTH_GET(desc);
843         if (val == 0) {
844                 dev_err(dev, "Source bus width is zero\n");
845                 return -EINVAL;
846         }
847         /* widths are stored in log2 */
848         chan->src_width = 1 << val;
849
850         val = AXI_DMAC_DMA_DST_WIDTH_GET(desc);
851         if (val == 0) {
852                 dev_err(dev, "Destination bus width is zero\n");
853                 return -EINVAL;
854         }
855         chan->dest_width = 1 << val;
856
857         axi_dmac_adjust_chan_params(chan);
858
859         return 0;
860 }
861
862 static int axi_dmac_detect_caps(struct axi_dmac *dmac, unsigned int version)
863 {
864         struct axi_dmac_chan *chan = &dmac->chan;
865
866         axi_dmac_write(dmac, AXI_DMAC_REG_FLAGS, AXI_DMAC_FLAG_CYCLIC);
867         if (axi_dmac_read(dmac, AXI_DMAC_REG_FLAGS) == AXI_DMAC_FLAG_CYCLIC)
868                 chan->hw_cyclic = true;
869
870         axi_dmac_write(dmac, AXI_DMAC_REG_Y_LENGTH, 1);
871         if (axi_dmac_read(dmac, AXI_DMAC_REG_Y_LENGTH) == 1)
872                 chan->hw_2d = true;
873
874         axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0xffffffff);
875         chan->max_length = axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
876         if (chan->max_length != UINT_MAX)
877                 chan->max_length++;
878
879         axi_dmac_write(dmac, AXI_DMAC_REG_DEST_ADDRESS, 0xffffffff);
880         if (axi_dmac_read(dmac, AXI_DMAC_REG_DEST_ADDRESS) == 0 &&
881             chan->dest_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
882                 dev_err(dmac->dma_dev.dev,
883                         "Destination memory-mapped interface not supported.");
884                 return -ENODEV;
885         }
886
887         axi_dmac_write(dmac, AXI_DMAC_REG_SRC_ADDRESS, 0xffffffff);
888         if (axi_dmac_read(dmac, AXI_DMAC_REG_SRC_ADDRESS) == 0 &&
889             chan->src_type == AXI_DMAC_BUS_TYPE_AXI_MM) {
890                 dev_err(dmac->dma_dev.dev,
891                         "Source memory-mapped interface not supported.");
892                 return -ENODEV;
893         }
894
895         if (version >= ADI_AXI_PCORE_VER(4, 2, 'a'))
896                 chan->hw_partial_xfer = true;
897
898         if (version >= ADI_AXI_PCORE_VER(4, 1, 'a')) {
899                 axi_dmac_write(dmac, AXI_DMAC_REG_X_LENGTH, 0x00);
900                 chan->length_align_mask =
901                         axi_dmac_read(dmac, AXI_DMAC_REG_X_LENGTH);
902         } else {
903                 chan->length_align_mask = chan->address_align_mask;
904         }
905
906         return 0;
907 }
908
909 static int axi_dmac_probe(struct platform_device *pdev)
910 {
911         struct dma_device *dma_dev;
912         struct axi_dmac *dmac;
913         struct regmap *regmap;
914         unsigned int version;
915         int ret;
916
917         dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
918         if (!dmac)
919                 return -ENOMEM;
920
921         dmac->irq = platform_get_irq(pdev, 0);
922         if (dmac->irq < 0)
923                 return dmac->irq;
924         if (dmac->irq == 0)
925                 return -EINVAL;
926
927         dmac->base = devm_platform_ioremap_resource(pdev, 0);
928         if (IS_ERR(dmac->base))
929                 return PTR_ERR(dmac->base);
930
931         dmac->clk = devm_clk_get(&pdev->dev, NULL);
932         if (IS_ERR(dmac->clk))
933                 return PTR_ERR(dmac->clk);
934
935         ret = clk_prepare_enable(dmac->clk);
936         if (ret < 0)
937                 return ret;
938
939         version = axi_dmac_read(dmac, ADI_AXI_REG_VERSION);
940
941         if (version >= ADI_AXI_PCORE_VER(4, 3, 'a'))
942                 ret = axi_dmac_read_chan_config(&pdev->dev, dmac);
943         else
944                 ret = axi_dmac_parse_dt(&pdev->dev, dmac);
945
946         if (ret < 0)
947                 goto err_clk_disable;
948
949         INIT_LIST_HEAD(&dmac->chan.active_descs);
950
951         dma_set_max_seg_size(&pdev->dev, UINT_MAX);
952
953         dma_dev = &dmac->dma_dev;
954         dma_cap_set(DMA_SLAVE, dma_dev->cap_mask);
955         dma_cap_set(DMA_CYCLIC, dma_dev->cap_mask);
956         dma_cap_set(DMA_INTERLEAVE, dma_dev->cap_mask);
957         dma_dev->device_free_chan_resources = axi_dmac_free_chan_resources;
958         dma_dev->device_tx_status = dma_cookie_status;
959         dma_dev->device_issue_pending = axi_dmac_issue_pending;
960         dma_dev->device_prep_slave_sg = axi_dmac_prep_slave_sg;
961         dma_dev->device_prep_dma_cyclic = axi_dmac_prep_dma_cyclic;
962         dma_dev->device_prep_interleaved_dma = axi_dmac_prep_interleaved;
963         dma_dev->device_terminate_all = axi_dmac_terminate_all;
964         dma_dev->device_synchronize = axi_dmac_synchronize;
965         dma_dev->dev = &pdev->dev;
966         dma_dev->src_addr_widths = BIT(dmac->chan.src_width);
967         dma_dev->dst_addr_widths = BIT(dmac->chan.dest_width);
968         dma_dev->directions = BIT(dmac->chan.direction);
969         dma_dev->residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
970         INIT_LIST_HEAD(&dma_dev->channels);
971
972         dmac->chan.vchan.desc_free = axi_dmac_desc_free;
973         vchan_init(&dmac->chan.vchan, dma_dev);
974
975         ret = axi_dmac_detect_caps(dmac, version);
976         if (ret)
977                 goto err_clk_disable;
978
979         dma_dev->copy_align = (dmac->chan.address_align_mask + 1);
980
981         axi_dmac_write(dmac, AXI_DMAC_REG_IRQ_MASK, 0x00);
982
983         if (of_dma_is_coherent(pdev->dev.of_node)) {
984                 ret = axi_dmac_read(dmac, AXI_DMAC_REG_COHERENCY_DESC);
985
986                 if (version < ADI_AXI_PCORE_VER(4, 4, 'a') ||
987                     !AXI_DMAC_DST_COHERENT_GET(ret)) {
988                         dev_err(dmac->dma_dev.dev,
989                                 "Coherent DMA not supported in hardware");
990                         ret = -EINVAL;
991                         goto err_clk_disable;
992                 }
993         }
994
995         ret = dma_async_device_register(dma_dev);
996         if (ret)
997                 goto err_clk_disable;
998
999         ret = of_dma_controller_register(pdev->dev.of_node,
1000                 of_dma_xlate_by_chan_id, dma_dev);
1001         if (ret)
1002                 goto err_unregister_device;
1003
1004         ret = request_irq(dmac->irq, axi_dmac_interrupt_handler, IRQF_SHARED,
1005                 dev_name(&pdev->dev), dmac);
1006         if (ret)
1007                 goto err_unregister_of;
1008
1009         platform_set_drvdata(pdev, dmac);
1010
1011         regmap = devm_regmap_init_mmio(&pdev->dev, dmac->base,
1012                  &axi_dmac_regmap_config);
1013         if (IS_ERR(regmap)) {
1014                 ret = PTR_ERR(regmap);
1015                 goto err_free_irq;
1016         }
1017
1018         return 0;
1019
1020 err_free_irq:
1021         free_irq(dmac->irq, dmac);
1022 err_unregister_of:
1023         of_dma_controller_free(pdev->dev.of_node);
1024 err_unregister_device:
1025         dma_async_device_unregister(&dmac->dma_dev);
1026 err_clk_disable:
1027         clk_disable_unprepare(dmac->clk);
1028
1029         return ret;
1030 }
1031
1032 static int axi_dmac_remove(struct platform_device *pdev)
1033 {
1034         struct axi_dmac *dmac = platform_get_drvdata(pdev);
1035
1036         of_dma_controller_free(pdev->dev.of_node);
1037         free_irq(dmac->irq, dmac);
1038         tasklet_kill(&dmac->chan.vchan.task);
1039         dma_async_device_unregister(&dmac->dma_dev);
1040         clk_disable_unprepare(dmac->clk);
1041
1042         return 0;
1043 }
1044
1045 static const struct of_device_id axi_dmac_of_match_table[] = {
1046         { .compatible = "adi,axi-dmac-1.00.a" },
1047         { },
1048 };
1049 MODULE_DEVICE_TABLE(of, axi_dmac_of_match_table);
1050
1051 static struct platform_driver axi_dmac_driver = {
1052         .driver = {
1053                 .name = "dma-axi-dmac",
1054                 .of_match_table = axi_dmac_of_match_table,
1055         },
1056         .probe = axi_dmac_probe,
1057         .remove = axi_dmac_remove,
1058 };
1059 module_platform_driver(axi_dmac_driver);
1060
1061 MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
1062 MODULE_DESCRIPTION("DMA controller driver for the AXI-DMAC controller");
1063 MODULE_LICENSE("GPL v2");