Merge tag 'pull-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[sfrench/cifs-2.6.git] / drivers / crypto / ux500 / hash / hash_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cryptographic API.
4  * Support for Nomadik hardware crypto engine.
5
6  * Copyright (C) ST-Ericsson SA 2010
7  * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
8  * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
9  * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
10  * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
11  * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
12  */
13
14 #define pr_fmt(fmt) "hashX hashX: " fmt
15
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/dma-mapping.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/io.h>
22 #include <linux/klist.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/mod_devicetable.h>
26 #include <linux/platform_device.h>
27 #include <linux/crypto.h>
28
29 #include <linux/regulator/consumer.h>
30 #include <linux/dmaengine.h>
31 #include <linux/bitops.h>
32
33 #include <crypto/internal/hash.h>
34 #include <crypto/sha1.h>
35 #include <crypto/sha2.h>
36 #include <crypto/scatterwalk.h>
37 #include <crypto/algapi.h>
38
39 #include <linux/platform_data/crypto-ux500.h>
40
41 #include "hash_alg.h"
42
43 static int hash_mode;
44 module_param(hash_mode, int, 0);
45 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
46
47 /* HMAC-SHA1, no key */
48 static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
49         0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
50         0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
51         0x70, 0x69, 0x0e, 0x1d
52 };
53
54 /* HMAC-SHA256, no key */
55 static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
56         0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
57         0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
58         0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
59         0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
60 };
61
62 /**
63  * struct hash_driver_data - data specific to the driver.
64  *
65  * @device_list:        A list of registered devices to choose from.
66  * @device_allocation:  A semaphore initialized with number of devices.
67  */
68 struct hash_driver_data {
69         struct klist            device_list;
70         struct semaphore        device_allocation;
71 };
72
73 static struct hash_driver_data  driver_data;
74
75 /* Declaration of functions */
76 /**
77  * hash_messagepad - Pads a message and write the nblw bits.
78  * @device_data:        Structure for the hash device.
79  * @message:            Last word of a message
80  * @index_bytes:        The number of bytes in the last message
81  *
82  * This function manages the final part of the digest calculation, when less
83  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
84  *
85  */
86 static void hash_messagepad(struct hash_device_data *device_data,
87                             const u32 *message, u8 index_bytes);
88
89 /**
90  * release_hash_device - Releases a previously allocated hash device.
91  * @device_data:        Structure for the hash device.
92  *
93  */
94 static void release_hash_device(struct hash_device_data *device_data)
95 {
96         spin_lock(&device_data->ctx_lock);
97         device_data->current_ctx->device = NULL;
98         device_data->current_ctx = NULL;
99         spin_unlock(&device_data->ctx_lock);
100
101         /*
102          * The down_interruptible part for this semaphore is called in
103          * cryp_get_device_data.
104          */
105         up(&driver_data.device_allocation);
106 }
107
108 static void hash_dma_setup_channel(struct hash_device_data *device_data,
109                                    struct device *dev)
110 {
111         struct hash_platform_data *platform_data = dev->platform_data;
112         struct dma_slave_config conf = {
113                 .direction = DMA_MEM_TO_DEV,
114                 .dst_addr = device_data->phybase + HASH_DMA_FIFO,
115                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
116                 .dst_maxburst = 16,
117         };
118
119         dma_cap_zero(device_data->dma.mask);
120         dma_cap_set(DMA_SLAVE, device_data->dma.mask);
121
122         device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
123         device_data->dma.chan_mem2hash =
124                 dma_request_channel(device_data->dma.mask,
125                                     platform_data->dma_filter,
126                                     device_data->dma.cfg_mem2hash);
127
128         dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
129
130         init_completion(&device_data->dma.complete);
131 }
132
133 static void hash_dma_callback(void *data)
134 {
135         struct hash_ctx *ctx = data;
136
137         complete(&ctx->device->dma.complete);
138 }
139
140 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
141                                  int len, enum dma_data_direction direction)
142 {
143         struct dma_async_tx_descriptor *desc = NULL;
144         struct dma_chan *channel = NULL;
145
146         if (direction != DMA_TO_DEVICE) {
147                 dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
148                         __func__);
149                 return -EFAULT;
150         }
151
152         sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
153
154         channel = ctx->device->dma.chan_mem2hash;
155         ctx->device->dma.sg = sg;
156         ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
157                         ctx->device->dma.sg, ctx->device->dma.nents,
158                         direction);
159
160         if (!ctx->device->dma.sg_len) {
161                 dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
162                         __func__);
163                 return -EFAULT;
164         }
165
166         dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
167                 __func__);
168         desc = dmaengine_prep_slave_sg(channel,
169                         ctx->device->dma.sg, ctx->device->dma.sg_len,
170                         DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
171         if (!desc) {
172                 dev_err(ctx->device->dev,
173                         "%s: dmaengine_prep_slave_sg() failed!\n", __func__);
174                 return -EFAULT;
175         }
176
177         desc->callback = hash_dma_callback;
178         desc->callback_param = ctx;
179
180         dmaengine_submit(desc);
181         dma_async_issue_pending(channel);
182
183         return 0;
184 }
185
186 static void hash_dma_done(struct hash_ctx *ctx)
187 {
188         struct dma_chan *chan;
189
190         chan = ctx->device->dma.chan_mem2hash;
191         dmaengine_terminate_all(chan);
192         dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
193                      ctx->device->dma.nents, DMA_TO_DEVICE);
194 }
195
196 static int hash_dma_write(struct hash_ctx *ctx,
197                           struct scatterlist *sg, int len)
198 {
199         int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
200         if (error) {
201                 dev_dbg(ctx->device->dev,
202                         "%s: hash_set_dma_transfer() failed\n", __func__);
203                 return error;
204         }
205
206         return len;
207 }
208
209 /**
210  * get_empty_message_digest - Returns a pre-calculated digest for
211  * the empty message.
212  * @device_data:        Structure for the hash device.
213  * @zero_hash:          Buffer to return the empty message digest.
214  * @zero_hash_size:     Hash size of the empty message digest.
215  * @zero_digest:        True if zero_digest returned.
216  */
217 static int get_empty_message_digest(
218                 struct hash_device_data *device_data,
219                 u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
220 {
221         int ret = 0;
222         struct hash_ctx *ctx = device_data->current_ctx;
223         *zero_digest = false;
224
225         /**
226          * Caller responsible for ctx != NULL.
227          */
228
229         if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
230                 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
231                         memcpy(zero_hash, &sha1_zero_message_hash[0],
232                                SHA1_DIGEST_SIZE);
233                         *zero_hash_size = SHA1_DIGEST_SIZE;
234                         *zero_digest = true;
235                 } else if (HASH_ALGO_SHA256 ==
236                                 ctx->config.algorithm) {
237                         memcpy(zero_hash, &sha256_zero_message_hash[0],
238                                SHA256_DIGEST_SIZE);
239                         *zero_hash_size = SHA256_DIGEST_SIZE;
240                         *zero_digest = true;
241                 } else {
242                         dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
243                                 __func__);
244                         ret = -EINVAL;
245                         goto out;
246                 }
247         } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
248                 if (!ctx->keylen) {
249                         if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
250                                 memcpy(zero_hash, &zero_message_hmac_sha1[0],
251                                        SHA1_DIGEST_SIZE);
252                                 *zero_hash_size = SHA1_DIGEST_SIZE;
253                                 *zero_digest = true;
254                         } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
255                                 memcpy(zero_hash, &zero_message_hmac_sha256[0],
256                                        SHA256_DIGEST_SIZE);
257                                 *zero_hash_size = SHA256_DIGEST_SIZE;
258                                 *zero_digest = true;
259                         } else {
260                                 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
261                                         __func__);
262                                 ret = -EINVAL;
263                                 goto out;
264                         }
265                 } else {
266                         dev_dbg(device_data->dev,
267                                 "%s: Continue hash calculation, since hmac key available\n",
268                                 __func__);
269                 }
270         }
271 out:
272
273         return ret;
274 }
275
276 /**
277  * hash_disable_power - Request to disable power and clock.
278  * @device_data:        Structure for the hash device.
279  * @save_device_state:  If true, saves the current hw state.
280  *
281  * This function request for disabling power (regulator) and clock,
282  * and could also save current hw state.
283  */
284 static int hash_disable_power(struct hash_device_data *device_data,
285                               bool save_device_state)
286 {
287         int ret = 0;
288         struct device *dev = device_data->dev;
289
290         spin_lock(&device_data->power_state_lock);
291         if (!device_data->power_state)
292                 goto out;
293
294         if (save_device_state) {
295                 hash_save_state(device_data,
296                                 &device_data->state);
297                 device_data->restore_dev_state = true;
298         }
299
300         clk_disable(device_data->clk);
301         ret = regulator_disable(device_data->regulator);
302         if (ret)
303                 dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
304
305         device_data->power_state = false;
306
307 out:
308         spin_unlock(&device_data->power_state_lock);
309
310         return ret;
311 }
312
313 /**
314  * hash_enable_power - Request to enable power and clock.
315  * @device_data:                Structure for the hash device.
316  * @restore_device_state:       If true, restores a previous saved hw state.
317  *
318  * This function request for enabling power (regulator) and clock,
319  * and could also restore a previously saved hw state.
320  */
321 static int hash_enable_power(struct hash_device_data *device_data,
322                              bool restore_device_state)
323 {
324         int ret = 0;
325         struct device *dev = device_data->dev;
326
327         spin_lock(&device_data->power_state_lock);
328         if (!device_data->power_state) {
329                 ret = regulator_enable(device_data->regulator);
330                 if (ret) {
331                         dev_err(dev, "%s: regulator_enable() failed!\n",
332                                 __func__);
333                         goto out;
334                 }
335                 ret = clk_enable(device_data->clk);
336                 if (ret) {
337                         dev_err(dev, "%s: clk_enable() failed!\n", __func__);
338                         ret = regulator_disable(
339                                         device_data->regulator);
340                         goto out;
341                 }
342                 device_data->power_state = true;
343         }
344
345         if (device_data->restore_dev_state) {
346                 if (restore_device_state) {
347                         device_data->restore_dev_state = false;
348                         hash_resume_state(device_data, &device_data->state);
349                 }
350         }
351 out:
352         spin_unlock(&device_data->power_state_lock);
353
354         return ret;
355 }
356
357 /**
358  * hash_get_device_data - Checks for an available hash device and return it.
359  * @ctx:                Structure for the hash context.
360  * @device_data:        Structure for the hash device.
361  *
362  * This function check for an available hash device and return it to
363  * the caller.
364  * Note! Caller need to release the device, calling up().
365  */
366 static int hash_get_device_data(struct hash_ctx *ctx,
367                                 struct hash_device_data **device_data)
368 {
369         int                     ret;
370         struct klist_iter       device_iterator;
371         struct klist_node       *device_node;
372         struct hash_device_data *local_device_data = NULL;
373
374         /* Wait until a device is available */
375         ret = down_interruptible(&driver_data.device_allocation);
376         if (ret)
377                 return ret;  /* Interrupted */
378
379         /* Select a device */
380         klist_iter_init(&driver_data.device_list, &device_iterator);
381         device_node = klist_next(&device_iterator);
382         while (device_node) {
383                 local_device_data = container_of(device_node,
384                                            struct hash_device_data, list_node);
385                 spin_lock(&local_device_data->ctx_lock);
386                 /* current_ctx allocates a device, NULL = unallocated */
387                 if (local_device_data->current_ctx) {
388                         device_node = klist_next(&device_iterator);
389                 } else {
390                         local_device_data->current_ctx = ctx;
391                         ctx->device = local_device_data;
392                         spin_unlock(&local_device_data->ctx_lock);
393                         break;
394                 }
395                 spin_unlock(&local_device_data->ctx_lock);
396         }
397         klist_iter_exit(&device_iterator);
398
399         if (!device_node) {
400                 /**
401                  * No free device found.
402                  * Since we allocated a device with down_interruptible, this
403                  * should not be able to happen.
404                  * Number of available devices, which are contained in
405                  * device_allocation, is therefore decremented by not doing
406                  * an up(device_allocation).
407                  */
408                 return -EBUSY;
409         }
410
411         *device_data = local_device_data;
412
413         return 0;
414 }
415
416 /**
417  * hash_hw_write_key - Writes the key to the hardware registries.
418  *
419  * @device_data:        Structure for the hash device.
420  * @key:                Key to be written.
421  * @keylen:             The lengt of the key.
422  *
423  * Note! This function DOES NOT write to the NBLW registry, even though
424  * specified in the hw design spec. Either due to incorrect info in the
425  * spec or due to a bug in the hw.
426  */
427 static void hash_hw_write_key(struct hash_device_data *device_data,
428                               const u8 *key, unsigned int keylen)
429 {
430         u32 word = 0;
431         int nwords = 1;
432
433         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
434
435         while (keylen >= 4) {
436                 u32 *key_word = (u32 *)key;
437
438                 HASH_SET_DIN(key_word, nwords);
439                 keylen -= 4;
440                 key += 4;
441         }
442
443         /* Take care of the remaining bytes in the last word */
444         if (keylen) {
445                 word = 0;
446                 while (keylen) {
447                         word |= (key[keylen - 1] << (8 * (keylen - 1)));
448                         keylen--;
449                 }
450
451                 HASH_SET_DIN(&word, nwords);
452         }
453
454         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
455                 cpu_relax();
456
457         HASH_SET_DCAL;
458
459         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
460                 cpu_relax();
461 }
462
463 /**
464  * init_hash_hw - Initialise the hash hardware for a new calculation.
465  * @device_data:        Structure for the hash device.
466  * @ctx:                The hash context.
467  *
468  * This function will enable the bits needed to clear and start a new
469  * calculation.
470  */
471 static int init_hash_hw(struct hash_device_data *device_data,
472                         struct hash_ctx *ctx)
473 {
474         int ret = 0;
475
476         ret = hash_setconfiguration(device_data, &ctx->config);
477         if (ret) {
478                 dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
479                         __func__);
480                 return ret;
481         }
482
483         hash_begin(device_data, ctx);
484
485         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
486                 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
487
488         return ret;
489 }
490
491 /**
492  * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
493  *
494  * @sg:         Scatterlist.
495  * @size:       Size in bytes.
496  * @aligned:    True if sg data aligned to work in DMA mode.
497  *
498  */
499 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
500 {
501         int nents = 0;
502         bool aligned_data = true;
503
504         while (size > 0 && sg) {
505                 nents++;
506                 size -= sg->length;
507
508                 /* hash_set_dma_transfer will align last nent */
509                 if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
510                     (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
511                         aligned_data = false;
512
513                 sg = sg_next(sg);
514         }
515
516         if (aligned)
517                 *aligned = aligned_data;
518
519         if (size != 0)
520                 return -EFAULT;
521
522         return nents;
523 }
524
525 /**
526  * hash_dma_valid_data - checks for dma valid sg data.
527  * @sg:         Scatterlist.
528  * @datasize:   Datasize in bytes.
529  *
530  * NOTE! This function checks for dma valid sg data, since dma
531  * only accept datasizes of even wordsize.
532  */
533 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
534 {
535         bool aligned;
536
537         /* Need to include at least one nent, else error */
538         if (hash_get_nents(sg, datasize, &aligned) < 1)
539                 return false;
540
541         return aligned;
542 }
543
544 /**
545  * ux500_hash_init - Common hash init function for SHA1/SHA2 (SHA256).
546  * @req: The hash request for the job.
547  *
548  * Initialize structures.
549  */
550 static int ux500_hash_init(struct ahash_request *req)
551 {
552         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
553         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
554         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
555
556         if (!ctx->key)
557                 ctx->keylen = 0;
558
559         memset(&req_ctx->state, 0, sizeof(struct hash_state));
560         req_ctx->updated = 0;
561         if (hash_mode == HASH_MODE_DMA) {
562                 if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
563                         req_ctx->dma_mode = false; /* Don't use DMA */
564
565                         pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
566                                  __func__, HASH_DMA_ALIGN_SIZE);
567                 } else {
568                         if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
569                             hash_dma_valid_data(req->src, req->nbytes)) {
570                                 req_ctx->dma_mode = true;
571                         } else {
572                                 req_ctx->dma_mode = false;
573                                 pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
574                                          __func__,
575                                          HASH_DMA_PERFORMANCE_MIN_SIZE);
576                         }
577                 }
578         }
579         return 0;
580 }
581
582 /**
583  * hash_processblock - This function processes a single block of 512 bits (64
584  *                     bytes), word aligned, starting at message.
585  * @device_data:        Structure for the hash device.
586  * @message:            Block (512 bits) of message to be written to
587  *                      the HASH hardware.
588  * @length:             Message length
589  *
590  */
591 static void hash_processblock(struct hash_device_data *device_data,
592                               const u32 *message, int length)
593 {
594         int len = length / HASH_BYTES_PER_WORD;
595         /*
596          * NBLW bits. Reset the number of bits in last word (NBLW).
597          */
598         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
599
600         /*
601          * Write message data to the HASH_DIN register.
602          */
603         HASH_SET_DIN(message, len);
604 }
605
606 /**
607  * hash_messagepad - Pads a message and write the nblw bits.
608  * @device_data:        Structure for the hash device.
609  * @message:            Last word of a message.
610  * @index_bytes:        The number of bytes in the last message.
611  *
612  * This function manages the final part of the digest calculation, when less
613  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
614  *
615  */
616 static void hash_messagepad(struct hash_device_data *device_data,
617                             const u32 *message, u8 index_bytes)
618 {
619         int nwords = 1;
620
621         /*
622          * Clear hash str register, only clear NBLW
623          * since DCAL will be reset by hardware.
624          */
625         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
626
627         /* Main loop */
628         while (index_bytes >= 4) {
629                 HASH_SET_DIN(message, nwords);
630                 index_bytes -= 4;
631                 message++;
632         }
633
634         if (index_bytes)
635                 HASH_SET_DIN(message, nwords);
636
637         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
638                 cpu_relax();
639
640         /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
641         HASH_SET_NBLW(index_bytes * 8);
642         dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
643                 __func__, readl_relaxed(&device_data->base->din),
644                 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
645         HASH_SET_DCAL;
646         dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
647                 __func__, readl_relaxed(&device_data->base->din),
648                 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
649
650         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
651                 cpu_relax();
652 }
653
654 /**
655  * hash_incrementlength - Increments the length of the current message.
656  * @ctx: Hash context
657  * @incr: Length of message processed already
658  *
659  * Overflow cannot occur, because conditions for overflow are checked in
660  * hash_hw_update.
661  */
662 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
663 {
664         ctx->state.length.low_word += incr;
665
666         /* Check for wrap-around */
667         if (ctx->state.length.low_word < incr)
668                 ctx->state.length.high_word++;
669 }
670
671 /**
672  * hash_setconfiguration - Sets the required configuration for the hash
673  *                         hardware.
674  * @device_data:        Structure for the hash device.
675  * @config:             Pointer to a configuration structure.
676  */
677 int hash_setconfiguration(struct hash_device_data *device_data,
678                           struct hash_config *config)
679 {
680         int ret = 0;
681
682         if (config->algorithm != HASH_ALGO_SHA1 &&
683             config->algorithm != HASH_ALGO_SHA256)
684                 return -EPERM;
685
686         /*
687          * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
688          * to be written to HASH_DIN is considered as 32 bits.
689          */
690         HASH_SET_DATA_FORMAT(config->data_format);
691
692         /*
693          * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
694          */
695         switch (config->algorithm) {
696         case HASH_ALGO_SHA1:
697                 HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
698                 break;
699
700         case HASH_ALGO_SHA256:
701                 HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
702                 break;
703
704         default:
705                 dev_err(device_data->dev, "%s: Incorrect algorithm\n",
706                         __func__);
707                 return -EPERM;
708         }
709
710         /*
711          * MODE bit. This bit selects between HASH or HMAC mode for the
712          * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
713          */
714         if (HASH_OPER_MODE_HASH == config->oper_mode)
715                 HASH_CLEAR_BITS(&device_data->base->cr,
716                                 HASH_CR_MODE_MASK);
717         else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
718                 HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
719                 if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
720                         /* Truncate key to blocksize */
721                         dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
722                         HASH_SET_BITS(&device_data->base->cr,
723                                       HASH_CR_LKEY_MASK);
724                 } else {
725                         dev_dbg(device_data->dev, "%s: LKEY cleared\n",
726                                 __func__);
727                         HASH_CLEAR_BITS(&device_data->base->cr,
728                                         HASH_CR_LKEY_MASK);
729                 }
730         } else {        /* Wrong hash mode */
731                 ret = -EPERM;
732                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
733                         __func__);
734         }
735         return ret;
736 }
737
738 /**
739  * hash_begin - This routine resets some globals and initializes the hash
740  *              hardware.
741  * @device_data:        Structure for the hash device.
742  * @ctx:                Hash context.
743  */
744 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
745 {
746         /* HW and SW initializations */
747         /* Note: there is no need to initialize buffer and digest members */
748
749         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
750                 cpu_relax();
751
752         /*
753          * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
754          * prepare the initialize the HASH accelerator to compute the message
755          * digest of a new message.
756          */
757         HASH_INITIALIZE;
758
759         /*
760          * NBLW bits. Reset the number of bits in last word (NBLW).
761          */
762         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
763 }
764
765 static int hash_process_data(struct hash_device_data *device_data,
766                              struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
767                              int msg_length, u8 *data_buffer, u8 *buffer,
768                              u8 *index)
769 {
770         int ret = 0;
771         u32 count;
772
773         do {
774                 if ((*index + msg_length) < HASH_BLOCK_SIZE) {
775                         for (count = 0; count < msg_length; count++) {
776                                 buffer[*index + count] =
777                                         *(data_buffer + count);
778                         }
779                         *index += msg_length;
780                         msg_length = 0;
781                 } else {
782                         if (req_ctx->updated) {
783                                 ret = hash_resume_state(device_data,
784                                                 &device_data->state);
785                                 memmove(req_ctx->state.buffer,
786                                         device_data->state.buffer,
787                                         HASH_BLOCK_SIZE);
788                                 if (ret) {
789                                         dev_err(device_data->dev,
790                                                 "%s: hash_resume_state() failed!\n",
791                                                 __func__);
792                                         goto out;
793                                 }
794                         } else {
795                                 ret = init_hash_hw(device_data, ctx);
796                                 if (ret) {
797                                         dev_err(device_data->dev,
798                                                 "%s: init_hash_hw() failed!\n",
799                                                 __func__);
800                                         goto out;
801                                 }
802                                 req_ctx->updated = 1;
803                         }
804                         /*
805                          * If 'data_buffer' is four byte aligned and
806                          * local buffer does not have any data, we can
807                          * write data directly from 'data_buffer' to
808                          * HW peripheral, otherwise we first copy data
809                          * to a local buffer
810                          */
811                         if (IS_ALIGNED((unsigned long)data_buffer, 4) &&
812                             (0 == *index))
813                                 hash_processblock(device_data,
814                                                   (const u32 *)data_buffer,
815                                                   HASH_BLOCK_SIZE);
816                         else {
817                                 for (count = 0;
818                                      count < (u32)(HASH_BLOCK_SIZE - *index);
819                                      count++) {
820                                         buffer[*index + count] =
821                                                 *(data_buffer + count);
822                                 }
823                                 hash_processblock(device_data,
824                                                   (const u32 *)buffer,
825                                                   HASH_BLOCK_SIZE);
826                         }
827                         hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
828                         data_buffer += (HASH_BLOCK_SIZE - *index);
829
830                         msg_length -= (HASH_BLOCK_SIZE - *index);
831                         *index = 0;
832
833                         ret = hash_save_state(device_data,
834                                         &device_data->state);
835
836                         memmove(device_data->state.buffer,
837                                 req_ctx->state.buffer,
838                                 HASH_BLOCK_SIZE);
839                         if (ret) {
840                                 dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
841                                         __func__);
842                                 goto out;
843                         }
844                 }
845         } while (msg_length != 0);
846 out:
847
848         return ret;
849 }
850
851 /**
852  * hash_dma_final - The hash dma final function for SHA1/SHA256.
853  * @req:        The hash request for the job.
854  */
855 static int hash_dma_final(struct ahash_request *req)
856 {
857         int ret = 0;
858         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
859         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
860         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
861         struct hash_device_data *device_data;
862         u8 digest[SHA256_DIGEST_SIZE];
863         int bytes_written = 0;
864
865         ret = hash_get_device_data(ctx, &device_data);
866         if (ret)
867                 return ret;
868
869         dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
870                 (unsigned long)ctx);
871
872         if (req_ctx->updated) {
873                 ret = hash_resume_state(device_data, &device_data->state);
874
875                 if (ret) {
876                         dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
877                                 __func__);
878                         goto out;
879                 }
880         } else {
881                 ret = hash_setconfiguration(device_data, &ctx->config);
882                 if (ret) {
883                         dev_err(device_data->dev,
884                                 "%s: hash_setconfiguration() failed!\n",
885                                 __func__);
886                         goto out;
887                 }
888
889                 /* Enable DMA input */
890                 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
891                         HASH_CLEAR_BITS(&device_data->base->cr,
892                                         HASH_CR_DMAE_MASK);
893                 } else {
894                         HASH_SET_BITS(&device_data->base->cr,
895                                       HASH_CR_DMAE_MASK);
896                         HASH_SET_BITS(&device_data->base->cr,
897                                       HASH_CR_PRIVN_MASK);
898                 }
899
900                 HASH_INITIALIZE;
901
902                 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
903                         hash_hw_write_key(device_data, ctx->key, ctx->keylen);
904
905                 /* Number of bits in last word = (nbytes * 8) % 32 */
906                 HASH_SET_NBLW((req->nbytes * 8) % 32);
907                 req_ctx->updated = 1;
908         }
909
910         /* Store the nents in the dma struct. */
911         ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
912         if (!ctx->device->dma.nents) {
913                 dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
914                         __func__);
915                 ret = ctx->device->dma.nents;
916                 goto out;
917         }
918
919         bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
920         if (bytes_written != req->nbytes) {
921                 dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
922                         __func__);
923                 ret = bytes_written;
924                 goto out;
925         }
926
927         wait_for_completion(&ctx->device->dma.complete);
928         hash_dma_done(ctx);
929
930         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
931                 cpu_relax();
932
933         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
934                 unsigned int keylen = ctx->keylen;
935                 u8 *key = ctx->key;
936
937                 dev_dbg(device_data->dev, "%s: keylen: %d\n",
938                         __func__, ctx->keylen);
939                 hash_hw_write_key(device_data, key, keylen);
940         }
941
942         hash_get_digest(device_data, digest, ctx->config.algorithm);
943         memcpy(req->result, digest, ctx->digestsize);
944
945 out:
946         release_hash_device(device_data);
947
948         /**
949          * Allocated in setkey, and only used in HMAC.
950          */
951         kfree(ctx->key);
952
953         return ret;
954 }
955
956 /**
957  * hash_hw_final - The final hash calculation function
958  * @req:        The hash request for the job.
959  */
960 static int hash_hw_final(struct ahash_request *req)
961 {
962         int ret = 0;
963         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
964         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
965         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
966         struct hash_device_data *device_data;
967         u8 digest[SHA256_DIGEST_SIZE];
968
969         ret = hash_get_device_data(ctx, &device_data);
970         if (ret)
971                 return ret;
972
973         dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
974                 (unsigned long)ctx);
975
976         if (req_ctx->updated) {
977                 ret = hash_resume_state(device_data, &device_data->state);
978
979                 if (ret) {
980                         dev_err(device_data->dev,
981                                 "%s: hash_resume_state() failed!\n", __func__);
982                         goto out;
983                 }
984         } else if (req->nbytes == 0 && ctx->keylen == 0) {
985                 u8 zero_hash[SHA256_DIGEST_SIZE];
986                 u32 zero_hash_size = 0;
987                 bool zero_digest = false;
988                 /**
989                  * Use a pre-calculated empty message digest
990                  * (workaround since hw return zeroes, hw bug!?)
991                  */
992                 ret = get_empty_message_digest(device_data, &zero_hash[0],
993                                 &zero_hash_size, &zero_digest);
994                 if (!ret && likely(zero_hash_size == ctx->digestsize) &&
995                     zero_digest) {
996                         memcpy(req->result, &zero_hash[0], ctx->digestsize);
997                         goto out;
998                 } else if (!ret && !zero_digest) {
999                         dev_dbg(device_data->dev,
1000                                 "%s: HMAC zero msg with key, continue...\n",
1001                                 __func__);
1002                 } else {
1003                         dev_err(device_data->dev,
1004                                 "%s: ret=%d, or wrong digest size? %s\n",
1005                                 __func__, ret,
1006                                 zero_hash_size == ctx->digestsize ?
1007                                 "true" : "false");
1008                         /* Return error */
1009                         goto out;
1010                 }
1011         } else if (req->nbytes == 0 && ctx->keylen > 0) {
1012                 ret = -EPERM;
1013                 dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1014                         __func__);
1015                 goto out;
1016         }
1017
1018         if (!req_ctx->updated) {
1019                 ret = init_hash_hw(device_data, ctx);
1020                 if (ret) {
1021                         dev_err(device_data->dev,
1022                                 "%s: init_hash_hw() failed!\n", __func__);
1023                         goto out;
1024                 }
1025         }
1026
1027         if (req_ctx->state.index) {
1028                 hash_messagepad(device_data, req_ctx->state.buffer,
1029                                 req_ctx->state.index);
1030         } else {
1031                 HASH_SET_DCAL;
1032                 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1033                         cpu_relax();
1034         }
1035
1036         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1037                 unsigned int keylen = ctx->keylen;
1038                 u8 *key = ctx->key;
1039
1040                 dev_dbg(device_data->dev, "%s: keylen: %d\n",
1041                         __func__, ctx->keylen);
1042                 hash_hw_write_key(device_data, key, keylen);
1043         }
1044
1045         hash_get_digest(device_data, digest, ctx->config.algorithm);
1046         memcpy(req->result, digest, ctx->digestsize);
1047
1048 out:
1049         release_hash_device(device_data);
1050
1051         /**
1052          * Allocated in setkey, and only used in HMAC.
1053          */
1054         kfree(ctx->key);
1055
1056         return ret;
1057 }
1058
1059 /**
1060  * hash_hw_update - Updates current HASH computation hashing another part of
1061  *                  the message.
1062  * @req:        Byte array containing the message to be hashed (caller
1063  *              allocated).
1064  */
1065 int hash_hw_update(struct ahash_request *req)
1066 {
1067         int ret = 0;
1068         u8 index = 0;
1069         u8 *buffer;
1070         struct hash_device_data *device_data;
1071         u8 *data_buffer;
1072         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1073         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1074         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1075         struct crypto_hash_walk walk;
1076         int msg_length;
1077
1078         index = req_ctx->state.index;
1079         buffer = (u8 *)req_ctx->state.buffer;
1080
1081         ret = hash_get_device_data(ctx, &device_data);
1082         if (ret)
1083                 return ret;
1084
1085         msg_length = crypto_hash_walk_first(req, &walk);
1086
1087         /* Empty message ("") is correct indata */
1088         if (msg_length == 0) {
1089                 ret = 0;
1090                 goto release_dev;
1091         }
1092
1093         /* Check if ctx->state.length + msg_length
1094            overflows */
1095         if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1096             HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1097                 pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1098                 ret = crypto_hash_walk_done(&walk, -EPERM);
1099                 goto release_dev;
1100         }
1101
1102         /* Main loop */
1103         while (0 != msg_length) {
1104                 data_buffer = walk.data;
1105                 ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1106                                 data_buffer, buffer, &index);
1107
1108                 if (ret) {
1109                         dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1110                                 __func__);
1111                         crypto_hash_walk_done(&walk, ret);
1112                         goto release_dev;
1113                 }
1114
1115                 msg_length = crypto_hash_walk_done(&walk, 0);
1116         }
1117
1118         req_ctx->state.index = index;
1119         dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1120                 __func__, req_ctx->state.index, req_ctx->state.bit_index);
1121
1122 release_dev:
1123         release_hash_device(device_data);
1124
1125         return ret;
1126 }
1127
1128 /**
1129  * hash_resume_state - Function that resumes the state of an calculation.
1130  * @device_data:        Pointer to the device structure.
1131  * @device_state:       The state to be restored in the hash hardware
1132  */
1133 int hash_resume_state(struct hash_device_data *device_data,
1134                       const struct hash_state *device_state)
1135 {
1136         u32 temp_cr;
1137         s32 count;
1138         int hash_mode = HASH_OPER_MODE_HASH;
1139
1140         if (NULL == device_state) {
1141                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1142                         __func__);
1143                 return -EPERM;
1144         }
1145
1146         /* Check correctness of index and length members */
1147         if (device_state->index > HASH_BLOCK_SIZE ||
1148             (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1149                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1150                         __func__);
1151                 return -EPERM;
1152         }
1153
1154         /*
1155          * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1156          * prepare the initialize the HASH accelerator to compute the message
1157          * digest of a new message.
1158          */
1159         HASH_INITIALIZE;
1160
1161         temp_cr = device_state->temp_cr;
1162         writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1163
1164         if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1165                 hash_mode = HASH_OPER_MODE_HMAC;
1166         else
1167                 hash_mode = HASH_OPER_MODE_HASH;
1168
1169         for (count = 0; count < HASH_CSR_COUNT; count++) {
1170                 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1171                         break;
1172
1173                 writel_relaxed(device_state->csr[count],
1174                                &device_data->base->csrx[count]);
1175         }
1176
1177         writel_relaxed(device_state->csfull, &device_data->base->csfull);
1178         writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1179
1180         writel_relaxed(device_state->str_reg, &device_data->base->str);
1181         writel_relaxed(temp_cr, &device_data->base->cr);
1182
1183         return 0;
1184 }
1185
1186 /**
1187  * hash_save_state - Function that saves the state of hardware.
1188  * @device_data:        Pointer to the device structure.
1189  * @device_state:       The strucure where the hardware state should be saved.
1190  */
1191 int hash_save_state(struct hash_device_data *device_data,
1192                     struct hash_state *device_state)
1193 {
1194         u32 temp_cr;
1195         u32 count;
1196         int hash_mode = HASH_OPER_MODE_HASH;
1197
1198         if (NULL == device_state) {
1199                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1200                         __func__);
1201                 return -ENOTSUPP;
1202         }
1203
1204         /* Write dummy value to force digest intermediate calculation. This
1205          * actually makes sure that there isn't any ongoing calculation in the
1206          * hardware.
1207          */
1208         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1209                 cpu_relax();
1210
1211         temp_cr = readl_relaxed(&device_data->base->cr);
1212
1213         device_state->str_reg = readl_relaxed(&device_data->base->str);
1214
1215         device_state->din_reg = readl_relaxed(&device_data->base->din);
1216
1217         if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1218                 hash_mode = HASH_OPER_MODE_HMAC;
1219         else
1220                 hash_mode = HASH_OPER_MODE_HASH;
1221
1222         for (count = 0; count < HASH_CSR_COUNT; count++) {
1223                 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1224                         break;
1225
1226                 device_state->csr[count] =
1227                         readl_relaxed(&device_data->base->csrx[count]);
1228         }
1229
1230         device_state->csfull = readl_relaxed(&device_data->base->csfull);
1231         device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1232
1233         device_state->temp_cr = temp_cr;
1234
1235         return 0;
1236 }
1237
1238 /**
1239  * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1240  * @device_data:
1241  *
1242  */
1243 int hash_check_hw(struct hash_device_data *device_data)
1244 {
1245         /* Checking Peripheral Ids  */
1246         if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1247             HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1248             HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1249             HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1250             HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1251             HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1252             HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1253             HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1254                 return 0;
1255         }
1256
1257         dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1258         return -ENOTSUPP;
1259 }
1260
1261 /**
1262  * hash_get_digest - Gets the digest.
1263  * @device_data:        Pointer to the device structure.
1264  * @digest:             User allocated byte array for the calculated digest.
1265  * @algorithm:          The algorithm in use.
1266  */
1267 void hash_get_digest(struct hash_device_data *device_data,
1268                      u8 *digest, int algorithm)
1269 {
1270         u32 temp_hx_val, count;
1271         int loop_ctr;
1272
1273         if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1274                 dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1275                         __func__, algorithm);
1276                 return;
1277         }
1278
1279         if (algorithm == HASH_ALGO_SHA1)
1280                 loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1281         else
1282                 loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1283
1284         dev_dbg(device_data->dev, "%s: digest array:(0x%lx)\n",
1285                 __func__, (unsigned long)digest);
1286
1287         /* Copy result into digest array */
1288         for (count = 0; count < loop_ctr; count++) {
1289                 temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1290                 digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1291                 digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1292                 digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1293                 digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1294         }
1295 }
1296
1297 /**
1298  * ahash_update - The hash update function for SHA1/SHA2 (SHA256).
1299  * @req: The hash request for the job.
1300  */
1301 static int ahash_update(struct ahash_request *req)
1302 {
1303         int ret = 0;
1304         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1305
1306         if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1307                 ret = hash_hw_update(req);
1308         /* Skip update for DMA, all data will be passed to DMA in final */
1309
1310         if (ret) {
1311                 pr_err("%s: hash_hw_update() failed!\n", __func__);
1312         }
1313
1314         return ret;
1315 }
1316
1317 /**
1318  * ahash_final - The hash final function for SHA1/SHA2 (SHA256).
1319  * @req:        The hash request for the job.
1320  */
1321 static int ahash_final(struct ahash_request *req)
1322 {
1323         int ret = 0;
1324         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1325
1326         pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1327
1328         if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1329                 ret = hash_dma_final(req);
1330         else
1331                 ret = hash_hw_final(req);
1332
1333         if (ret) {
1334                 pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1335         }
1336
1337         return ret;
1338 }
1339
1340 static int hash_setkey(struct crypto_ahash *tfm,
1341                        const u8 *key, unsigned int keylen, int alg)
1342 {
1343         int ret = 0;
1344         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1345
1346         /**
1347          * Freed in final.
1348          */
1349         ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1350         if (!ctx->key) {
1351                 pr_err("%s: Failed to allocate ctx->key for %d\n",
1352                        __func__, alg);
1353                 return -ENOMEM;
1354         }
1355         ctx->keylen = keylen;
1356
1357         return ret;
1358 }
1359
1360 static int ahash_sha1_init(struct ahash_request *req)
1361 {
1362         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1363         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1364
1365         ctx->config.data_format = HASH_DATA_8_BITS;
1366         ctx->config.algorithm = HASH_ALGO_SHA1;
1367         ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1368         ctx->digestsize = SHA1_DIGEST_SIZE;
1369
1370         return ux500_hash_init(req);
1371 }
1372
1373 static int ahash_sha256_init(struct ahash_request *req)
1374 {
1375         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1376         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1377
1378         ctx->config.data_format = HASH_DATA_8_BITS;
1379         ctx->config.algorithm = HASH_ALGO_SHA256;
1380         ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1381         ctx->digestsize = SHA256_DIGEST_SIZE;
1382
1383         return ux500_hash_init(req);
1384 }
1385
1386 static int ahash_sha1_digest(struct ahash_request *req)
1387 {
1388         int ret2, ret1;
1389
1390         ret1 = ahash_sha1_init(req);
1391         if (ret1)
1392                 goto out;
1393
1394         ret1 = ahash_update(req);
1395         ret2 = ahash_final(req);
1396
1397 out:
1398         return ret1 ? ret1 : ret2;
1399 }
1400
1401 static int ahash_sha256_digest(struct ahash_request *req)
1402 {
1403         int ret2, ret1;
1404
1405         ret1 = ahash_sha256_init(req);
1406         if (ret1)
1407                 goto out;
1408
1409         ret1 = ahash_update(req);
1410         ret2 = ahash_final(req);
1411
1412 out:
1413         return ret1 ? ret1 : ret2;
1414 }
1415
1416 static int ahash_noimport(struct ahash_request *req, const void *in)
1417 {
1418         return -ENOSYS;
1419 }
1420
1421 static int ahash_noexport(struct ahash_request *req, void *out)
1422 {
1423         return -ENOSYS;
1424 }
1425
1426 static int hmac_sha1_init(struct ahash_request *req)
1427 {
1428         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1429         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1430
1431         ctx->config.data_format = HASH_DATA_8_BITS;
1432         ctx->config.algorithm   = HASH_ALGO_SHA1;
1433         ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1434         ctx->digestsize         = SHA1_DIGEST_SIZE;
1435
1436         return ux500_hash_init(req);
1437 }
1438
1439 static int hmac_sha256_init(struct ahash_request *req)
1440 {
1441         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1442         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1443
1444         ctx->config.data_format = HASH_DATA_8_BITS;
1445         ctx->config.algorithm   = HASH_ALGO_SHA256;
1446         ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1447         ctx->digestsize         = SHA256_DIGEST_SIZE;
1448
1449         return ux500_hash_init(req);
1450 }
1451
1452 static int hmac_sha1_digest(struct ahash_request *req)
1453 {
1454         int ret2, ret1;
1455
1456         ret1 = hmac_sha1_init(req);
1457         if (ret1)
1458                 goto out;
1459
1460         ret1 = ahash_update(req);
1461         ret2 = ahash_final(req);
1462
1463 out:
1464         return ret1 ? ret1 : ret2;
1465 }
1466
1467 static int hmac_sha256_digest(struct ahash_request *req)
1468 {
1469         int ret2, ret1;
1470
1471         ret1 = hmac_sha256_init(req);
1472         if (ret1)
1473                 goto out;
1474
1475         ret1 = ahash_update(req);
1476         ret2 = ahash_final(req);
1477
1478 out:
1479         return ret1 ? ret1 : ret2;
1480 }
1481
1482 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1483                             const u8 *key, unsigned int keylen)
1484 {
1485         return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1486 }
1487
1488 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1489                               const u8 *key, unsigned int keylen)
1490 {
1491         return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1492 }
1493
1494 struct hash_algo_template {
1495         struct hash_config conf;
1496         struct ahash_alg hash;
1497 };
1498
1499 static int hash_cra_init(struct crypto_tfm *tfm)
1500 {
1501         struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1502         struct crypto_alg *alg = tfm->__crt_alg;
1503         struct hash_algo_template *hash_alg;
1504
1505         hash_alg = container_of(__crypto_ahash_alg(alg),
1506                         struct hash_algo_template,
1507                         hash);
1508
1509         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1510                                  sizeof(struct hash_req_ctx));
1511
1512         ctx->config.data_format = HASH_DATA_8_BITS;
1513         ctx->config.algorithm = hash_alg->conf.algorithm;
1514         ctx->config.oper_mode = hash_alg->conf.oper_mode;
1515
1516         ctx->digestsize = hash_alg->hash.halg.digestsize;
1517
1518         return 0;
1519 }
1520
1521 static struct hash_algo_template hash_algs[] = {
1522         {
1523                 .conf.algorithm = HASH_ALGO_SHA1,
1524                 .conf.oper_mode = HASH_OPER_MODE_HASH,
1525                 .hash = {
1526                         .init = ux500_hash_init,
1527                         .update = ahash_update,
1528                         .final = ahash_final,
1529                         .digest = ahash_sha1_digest,
1530                         .export = ahash_noexport,
1531                         .import = ahash_noimport,
1532                         .halg.digestsize = SHA1_DIGEST_SIZE,
1533                         .halg.statesize = sizeof(struct hash_ctx),
1534                         .halg.base = {
1535                                 .cra_name = "sha1",
1536                                 .cra_driver_name = "sha1-ux500",
1537                                 .cra_flags = CRYPTO_ALG_ASYNC,
1538                                 .cra_blocksize = SHA1_BLOCK_SIZE,
1539                                 .cra_ctxsize = sizeof(struct hash_ctx),
1540                                 .cra_init = hash_cra_init,
1541                                 .cra_module = THIS_MODULE,
1542                         }
1543                 }
1544         },
1545         {
1546                 .conf.algorithm = HASH_ALGO_SHA256,
1547                 .conf.oper_mode = HASH_OPER_MODE_HASH,
1548                 .hash = {
1549                         .init = ux500_hash_init,
1550                         .update = ahash_update,
1551                         .final = ahash_final,
1552                         .digest = ahash_sha256_digest,
1553                         .export = ahash_noexport,
1554                         .import = ahash_noimport,
1555                         .halg.digestsize = SHA256_DIGEST_SIZE,
1556                         .halg.statesize = sizeof(struct hash_ctx),
1557                         .halg.base = {
1558                                 .cra_name = "sha256",
1559                                 .cra_driver_name = "sha256-ux500",
1560                                 .cra_flags = CRYPTO_ALG_ASYNC,
1561                                 .cra_blocksize = SHA256_BLOCK_SIZE,
1562                                 .cra_ctxsize = sizeof(struct hash_ctx),
1563                                 .cra_init = hash_cra_init,
1564                                 .cra_module = THIS_MODULE,
1565                         }
1566                 }
1567         },
1568         {
1569                 .conf.algorithm = HASH_ALGO_SHA1,
1570                 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1571                         .hash = {
1572                         .init = ux500_hash_init,
1573                         .update = ahash_update,
1574                         .final = ahash_final,
1575                         .digest = hmac_sha1_digest,
1576                         .setkey = hmac_sha1_setkey,
1577                         .export = ahash_noexport,
1578                         .import = ahash_noimport,
1579                         .halg.digestsize = SHA1_DIGEST_SIZE,
1580                         .halg.statesize = sizeof(struct hash_ctx),
1581                         .halg.base = {
1582                                 .cra_name = "hmac(sha1)",
1583                                 .cra_driver_name = "hmac-sha1-ux500",
1584                                 .cra_flags = CRYPTO_ALG_ASYNC,
1585                                 .cra_blocksize = SHA1_BLOCK_SIZE,
1586                                 .cra_ctxsize = sizeof(struct hash_ctx),
1587                                 .cra_init = hash_cra_init,
1588                                 .cra_module = THIS_MODULE,
1589                         }
1590                 }
1591         },
1592         {
1593                 .conf.algorithm = HASH_ALGO_SHA256,
1594                 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1595                 .hash = {
1596                         .init = ux500_hash_init,
1597                         .update = ahash_update,
1598                         .final = ahash_final,
1599                         .digest = hmac_sha256_digest,
1600                         .setkey = hmac_sha256_setkey,
1601                         .export = ahash_noexport,
1602                         .import = ahash_noimport,
1603                         .halg.digestsize = SHA256_DIGEST_SIZE,
1604                         .halg.statesize = sizeof(struct hash_ctx),
1605                         .halg.base = {
1606                                 .cra_name = "hmac(sha256)",
1607                                 .cra_driver_name = "hmac-sha256-ux500",
1608                                 .cra_flags = CRYPTO_ALG_ASYNC,
1609                                 .cra_blocksize = SHA256_BLOCK_SIZE,
1610                                 .cra_ctxsize = sizeof(struct hash_ctx),
1611                                 .cra_init = hash_cra_init,
1612                                 .cra_module = THIS_MODULE,
1613                         }
1614                 }
1615         }
1616 };
1617
1618 static int ahash_algs_register_all(struct hash_device_data *device_data)
1619 {
1620         int ret;
1621         int i;
1622         int count;
1623
1624         for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1625                 ret = crypto_register_ahash(&hash_algs[i].hash);
1626                 if (ret) {
1627                         count = i;
1628                         dev_err(device_data->dev, "%s: alg registration failed\n",
1629                                 hash_algs[i].hash.halg.base.cra_driver_name);
1630                         goto unreg;
1631                 }
1632         }
1633         return 0;
1634 unreg:
1635         for (i = 0; i < count; i++)
1636                 crypto_unregister_ahash(&hash_algs[i].hash);
1637         return ret;
1638 }
1639
1640 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1641 {
1642         int i;
1643
1644         for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1645                 crypto_unregister_ahash(&hash_algs[i].hash);
1646 }
1647
1648 /**
1649  * ux500_hash_probe - Function that probes the hash hardware.
1650  * @pdev: The platform device.
1651  */
1652 static int ux500_hash_probe(struct platform_device *pdev)
1653 {
1654         int                     ret = 0;
1655         struct resource         *res = NULL;
1656         struct hash_device_data *device_data;
1657         struct device           *dev = &pdev->dev;
1658
1659         device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_KERNEL);
1660         if (!device_data) {
1661                 ret = -ENOMEM;
1662                 goto out;
1663         }
1664
1665         device_data->dev = dev;
1666         device_data->current_ctx = NULL;
1667
1668         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1669         if (!res) {
1670                 dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1671                 ret = -ENODEV;
1672                 goto out;
1673         }
1674
1675         device_data->phybase = res->start;
1676         device_data->base = devm_ioremap_resource(dev, res);
1677         if (IS_ERR(device_data->base)) {
1678                 ret = PTR_ERR(device_data->base);
1679                 goto out;
1680         }
1681         spin_lock_init(&device_data->ctx_lock);
1682         spin_lock_init(&device_data->power_state_lock);
1683
1684         /* Enable power for HASH1 hardware block */
1685         device_data->regulator = regulator_get(dev, "v-ape");
1686         if (IS_ERR(device_data->regulator)) {
1687                 dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1688                 ret = PTR_ERR(device_data->regulator);
1689                 device_data->regulator = NULL;
1690                 goto out;
1691         }
1692
1693         /* Enable the clock for HASH1 hardware block */
1694         device_data->clk = devm_clk_get(dev, NULL);
1695         if (IS_ERR(device_data->clk)) {
1696                 dev_err(dev, "%s: clk_get() failed!\n", __func__);
1697                 ret = PTR_ERR(device_data->clk);
1698                 goto out_regulator;
1699         }
1700
1701         ret = clk_prepare(device_data->clk);
1702         if (ret) {
1703                 dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1704                 goto out_regulator;
1705         }
1706
1707         /* Enable device power (and clock) */
1708         ret = hash_enable_power(device_data, false);
1709         if (ret) {
1710                 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1711                 goto out_clk_unprepare;
1712         }
1713
1714         ret = hash_check_hw(device_data);
1715         if (ret) {
1716                 dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1717                 goto out_power;
1718         }
1719
1720         if (hash_mode == HASH_MODE_DMA)
1721                 hash_dma_setup_channel(device_data, dev);
1722
1723         platform_set_drvdata(pdev, device_data);
1724
1725         /* Put the new device into the device list... */
1726         klist_add_tail(&device_data->list_node, &driver_data.device_list);
1727         /* ... and signal that a new device is available. */
1728         up(&driver_data.device_allocation);
1729
1730         ret = ahash_algs_register_all(device_data);
1731         if (ret) {
1732                 dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1733                         __func__);
1734                 goto out_power;
1735         }
1736
1737         dev_info(dev, "successfully registered\n");
1738         return 0;
1739
1740 out_power:
1741         hash_disable_power(device_data, false);
1742
1743 out_clk_unprepare:
1744         clk_unprepare(device_data->clk);
1745
1746 out_regulator:
1747         regulator_put(device_data->regulator);
1748
1749 out:
1750         return ret;
1751 }
1752
1753 /**
1754  * ux500_hash_remove - Function that removes the hash device from the platform.
1755  * @pdev: The platform device.
1756  */
1757 static int ux500_hash_remove(struct platform_device *pdev)
1758 {
1759         struct hash_device_data *device_data;
1760         struct device           *dev = &pdev->dev;
1761
1762         device_data = platform_get_drvdata(pdev);
1763         if (!device_data) {
1764                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1765                 return -ENOMEM;
1766         }
1767
1768         /* Try to decrease the number of available devices. */
1769         if (down_trylock(&driver_data.device_allocation))
1770                 return -EBUSY;
1771
1772         /* Check that the device is free */
1773         spin_lock(&device_data->ctx_lock);
1774         /* current_ctx allocates a device, NULL = unallocated */
1775         if (device_data->current_ctx) {
1776                 /* The device is busy */
1777                 spin_unlock(&device_data->ctx_lock);
1778                 /* Return the device to the pool. */
1779                 up(&driver_data.device_allocation);
1780                 return -EBUSY;
1781         }
1782
1783         spin_unlock(&device_data->ctx_lock);
1784
1785         /* Remove the device from the list */
1786         if (klist_node_attached(&device_data->list_node))
1787                 klist_remove(&device_data->list_node);
1788
1789         /* If this was the last device, remove the services */
1790         if (list_empty(&driver_data.device_list.k_list))
1791                 ahash_algs_unregister_all(device_data);
1792
1793         if (hash_disable_power(device_data, false))
1794                 dev_err(dev, "%s: hash_disable_power() failed\n",
1795                         __func__);
1796
1797         clk_unprepare(device_data->clk);
1798         regulator_put(device_data->regulator);
1799
1800         return 0;
1801 }
1802
1803 /**
1804  * ux500_hash_shutdown - Function that shutdown the hash device.
1805  * @pdev: The platform device
1806  */
1807 static void ux500_hash_shutdown(struct platform_device *pdev)
1808 {
1809         struct hash_device_data *device_data;
1810
1811         device_data = platform_get_drvdata(pdev);
1812         if (!device_data) {
1813                 dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1814                         __func__);
1815                 return;
1816         }
1817
1818         /* Check that the device is free */
1819         spin_lock(&device_data->ctx_lock);
1820         /* current_ctx allocates a device, NULL = unallocated */
1821         if (!device_data->current_ctx) {
1822                 if (down_trylock(&driver_data.device_allocation))
1823                         dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1824                                 __func__);
1825                 /**
1826                  * (Allocate the device)
1827                  * Need to set this to non-null (dummy) value,
1828                  * to avoid usage if context switching.
1829                  */
1830                 device_data->current_ctx++;
1831         }
1832         spin_unlock(&device_data->ctx_lock);
1833
1834         /* Remove the device from the list */
1835         if (klist_node_attached(&device_data->list_node))
1836                 klist_remove(&device_data->list_node);
1837
1838         /* If this was the last device, remove the services */
1839         if (list_empty(&driver_data.device_list.k_list))
1840                 ahash_algs_unregister_all(device_data);
1841
1842         if (hash_disable_power(device_data, false))
1843                 dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1844                         __func__);
1845 }
1846
1847 #ifdef CONFIG_PM_SLEEP
1848 /**
1849  * ux500_hash_suspend - Function that suspends the hash device.
1850  * @dev:        Device to suspend.
1851  */
1852 static int ux500_hash_suspend(struct device *dev)
1853 {
1854         int ret;
1855         struct hash_device_data *device_data;
1856         struct hash_ctx *temp_ctx = NULL;
1857
1858         device_data = dev_get_drvdata(dev);
1859         if (!device_data) {
1860                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1861                 return -ENOMEM;
1862         }
1863
1864         spin_lock(&device_data->ctx_lock);
1865         if (!device_data->current_ctx)
1866                 device_data->current_ctx++;
1867         spin_unlock(&device_data->ctx_lock);
1868
1869         if (device_data->current_ctx == ++temp_ctx) {
1870                 if (down_interruptible(&driver_data.device_allocation))
1871                         dev_dbg(dev, "%s: down_interruptible() failed\n",
1872                                 __func__);
1873                 ret = hash_disable_power(device_data, false);
1874
1875         } else {
1876                 ret = hash_disable_power(device_data, true);
1877         }
1878
1879         if (ret)
1880                 dev_err(dev, "%s: hash_disable_power()\n", __func__);
1881
1882         return ret;
1883 }
1884
1885 /**
1886  * ux500_hash_resume - Function that resume the hash device.
1887  * @dev:        Device to resume.
1888  */
1889 static int ux500_hash_resume(struct device *dev)
1890 {
1891         int ret = 0;
1892         struct hash_device_data *device_data;
1893         struct hash_ctx *temp_ctx = NULL;
1894
1895         device_data = dev_get_drvdata(dev);
1896         if (!device_data) {
1897                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1898                 return -ENOMEM;
1899         }
1900
1901         spin_lock(&device_data->ctx_lock);
1902         if (device_data->current_ctx == ++temp_ctx)
1903                 device_data->current_ctx = NULL;
1904         spin_unlock(&device_data->ctx_lock);
1905
1906         if (!device_data->current_ctx)
1907                 up(&driver_data.device_allocation);
1908         else
1909                 ret = hash_enable_power(device_data, true);
1910
1911         if (ret)
1912                 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1913
1914         return ret;
1915 }
1916 #endif
1917
1918 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1919
1920 static const struct of_device_id ux500_hash_match[] = {
1921         { .compatible = "stericsson,ux500-hash" },
1922         { },
1923 };
1924 MODULE_DEVICE_TABLE(of, ux500_hash_match);
1925
1926 static struct platform_driver hash_driver = {
1927         .probe  = ux500_hash_probe,
1928         .remove = ux500_hash_remove,
1929         .shutdown = ux500_hash_shutdown,
1930         .driver = {
1931                 .name  = "hash1",
1932                 .of_match_table = ux500_hash_match,
1933                 .pm    = &ux500_hash_pm,
1934         }
1935 };
1936
1937 /**
1938  * ux500_hash_mod_init - The kernel module init function.
1939  */
1940 static int __init ux500_hash_mod_init(void)
1941 {
1942         klist_init(&driver_data.device_list, NULL, NULL);
1943         /* Initialize the semaphore to 0 devices (locked state) */
1944         sema_init(&driver_data.device_allocation, 0);
1945
1946         return platform_driver_register(&hash_driver);
1947 }
1948
1949 /**
1950  * ux500_hash_mod_fini - The kernel module exit function.
1951  */
1952 static void __exit ux500_hash_mod_fini(void)
1953 {
1954         platform_driver_unregister(&hash_driver);
1955 }
1956
1957 module_init(ux500_hash_mod_init);
1958 module_exit(ux500_hash_mod_fini);
1959
1960 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1961 MODULE_LICENSE("GPL");
1962
1963 MODULE_ALIAS_CRYPTO("sha1-all");
1964 MODULE_ALIAS_CRYPTO("sha256-all");
1965 MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1966 MODULE_ALIAS_CRYPTO("hmac-sha256-all");