]> git.samba.org - sfrench/cifs-2.6.git/blob - drivers/cpufreq/intel_pstate.c
zonefs: convert zonefs to use the new mount api
[sfrench/cifs-2.6.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/cpu.h>
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34 #include <asm/cpufeature.h>
35 #include <asm/intel-family.h>
36 #include "../drivers/thermal/intel/thermal_interrupt.h"
37
38 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
39
40 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
41 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP      5000
42 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #include <acpi/cppc_acpi.h>
47 #endif
48
49 #define FRAC_BITS 8
50 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
51 #define fp_toint(X) ((X) >> FRAC_BITS)
52
53 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
54
55 #define EXT_BITS 6
56 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
57 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
58 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
59
60 static inline int32_t mul_fp(int32_t x, int32_t y)
61 {
62         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
63 }
64
65 static inline int32_t div_fp(s64 x, s64 y)
66 {
67         return div64_s64((int64_t)x << FRAC_BITS, y);
68 }
69
70 static inline int ceiling_fp(int32_t x)
71 {
72         int mask, ret;
73
74         ret = fp_toint(x);
75         mask = (1 << FRAC_BITS) - 1;
76         if (x & mask)
77                 ret += 1;
78         return ret;
79 }
80
81 static inline u64 mul_ext_fp(u64 x, u64 y)
82 {
83         return (x * y) >> EXT_FRAC_BITS;
84 }
85
86 static inline u64 div_ext_fp(u64 x, u64 y)
87 {
88         return div64_u64(x << EXT_FRAC_BITS, y);
89 }
90
91 /**
92  * struct sample -      Store performance sample
93  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
94  *                      performance during last sample period
95  * @busy_scaled:        Scaled busy value which is used to calculate next
96  *                      P state. This can be different than core_avg_perf
97  *                      to account for cpu idle period
98  * @aperf:              Difference of actual performance frequency clock count
99  *                      read from APERF MSR between last and current sample
100  * @mperf:              Difference of maximum performance frequency clock count
101  *                      read from MPERF MSR between last and current sample
102  * @tsc:                Difference of time stamp counter between last and
103  *                      current sample
104  * @time:               Current time from scheduler
105  *
106  * This structure is used in the cpudata structure to store performance sample
107  * data for choosing next P State.
108  */
109 struct sample {
110         int32_t core_avg_perf;
111         int32_t busy_scaled;
112         u64 aperf;
113         u64 mperf;
114         u64 tsc;
115         u64 time;
116 };
117
118 /**
119  * struct pstate_data - Store P state data
120  * @current_pstate:     Current requested P state
121  * @min_pstate:         Min P state possible for this platform
122  * @max_pstate:         Max P state possible for this platform
123  * @max_pstate_physical:This is physical Max P state for a processor
124  *                      This can be higher than the max_pstate which can
125  *                      be limited by platform thermal design power limits
126  * @perf_ctl_scaling:   PERF_CTL P-state to frequency scaling factor
127  * @scaling:            Scaling factor between performance and frequency
128  * @turbo_pstate:       Max Turbo P state possible for this platform
129  * @min_freq:           @min_pstate frequency in cpufreq units
130  * @max_freq:           @max_pstate frequency in cpufreq units
131  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
132  *
133  * Stores the per cpu model P state limits and current P state.
134  */
135 struct pstate_data {
136         int     current_pstate;
137         int     min_pstate;
138         int     max_pstate;
139         int     max_pstate_physical;
140         int     perf_ctl_scaling;
141         int     scaling;
142         int     turbo_pstate;
143         unsigned int min_freq;
144         unsigned int max_freq;
145         unsigned int turbo_freq;
146 };
147
148 /**
149  * struct vid_data -    Stores voltage information data
150  * @min:                VID data for this platform corresponding to
151  *                      the lowest P state
152  * @max:                VID data corresponding to the highest P State.
153  * @turbo:              VID data for turbo P state
154  * @ratio:              Ratio of (vid max - vid min) /
155  *                      (max P state - Min P State)
156  *
157  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
158  * This data is used in Atom platforms, where in addition to target P state,
159  * the voltage data needs to be specified to select next P State.
160  */
161 struct vid_data {
162         int min;
163         int max;
164         int turbo;
165         int32_t ratio;
166 };
167
168 /**
169  * struct global_params - Global parameters, mostly tunable via sysfs.
170  * @no_turbo:           Whether or not to use turbo P-states.
171  * @turbo_disabled:     Whether or not turbo P-states are available at all,
172  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
173  *                      not the maximum reported turbo P-state is different from
174  *                      the maximum reported non-turbo one.
175  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
176  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
177  *                      P-state capacity.
178  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
179  *                      P-state capacity.
180  */
181 struct global_params {
182         bool no_turbo;
183         bool turbo_disabled;
184         bool turbo_disabled_mf;
185         int max_perf_pct;
186         int min_perf_pct;
187 };
188
189 /**
190  * struct cpudata -     Per CPU instance data storage
191  * @cpu:                CPU number for this instance data
192  * @policy:             CPUFreq policy value
193  * @update_util:        CPUFreq utility callback information
194  * @update_util_set:    CPUFreq utility callback is set
195  * @iowait_boost:       iowait-related boost fraction
196  * @last_update:        Time of the last update.
197  * @pstate:             Stores P state limits for this CPU
198  * @vid:                Stores VID limits for this CPU
199  * @last_sample_time:   Last Sample time
200  * @aperf_mperf_shift:  APERF vs MPERF counting frequency difference
201  * @prev_aperf:         Last APERF value read from APERF MSR
202  * @prev_mperf:         Last MPERF value read from MPERF MSR
203  * @prev_tsc:           Last timestamp counter (TSC) value
204  * @prev_cummulative_iowait: IO Wait time difference from last and
205  *                      current sample
206  * @sample:             Storage for storing last Sample data
207  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
208  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
209  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
210  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
211  * @epp_powersave:      Last saved HWP energy performance preference
212  *                      (EPP) or energy performance bias (EPB),
213  *                      when policy switched to performance
214  * @epp_policy:         Last saved policy used to set EPP/EPB
215  * @epp_default:        Power on default HWP energy performance
216  *                      preference/bias
217  * @epp_cached          Cached HWP energy-performance preference value
218  * @hwp_req_cached:     Cached value of the last HWP Request MSR
219  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
220  * @last_io_update:     Last time when IO wake flag was set
221  * @sched_flags:        Store scheduler flags for possible cross CPU update
222  * @hwp_boost_min:      Last HWP boosted min performance
223  * @suspended:          Whether or not the driver has been suspended.
224  * @hwp_notify_work:    workqueue for HWP notifications.
225  *
226  * This structure stores per CPU instance data for all CPUs.
227  */
228 struct cpudata {
229         int cpu;
230
231         unsigned int policy;
232         struct update_util_data update_util;
233         bool   update_util_set;
234
235         struct pstate_data pstate;
236         struct vid_data vid;
237
238         u64     last_update;
239         u64     last_sample_time;
240         u64     aperf_mperf_shift;
241         u64     prev_aperf;
242         u64     prev_mperf;
243         u64     prev_tsc;
244         u64     prev_cummulative_iowait;
245         struct sample sample;
246         int32_t min_perf_ratio;
247         int32_t max_perf_ratio;
248 #ifdef CONFIG_ACPI
249         struct acpi_processor_performance acpi_perf_data;
250         bool valid_pss_table;
251 #endif
252         unsigned int iowait_boost;
253         s16 epp_powersave;
254         s16 epp_policy;
255         s16 epp_default;
256         s16 epp_cached;
257         u64 hwp_req_cached;
258         u64 hwp_cap_cached;
259         u64 last_io_update;
260         unsigned int sched_flags;
261         u32 hwp_boost_min;
262         bool suspended;
263         struct delayed_work hwp_notify_work;
264 };
265
266 static struct cpudata **all_cpu_data;
267
268 /**
269  * struct pstate_funcs - Per CPU model specific callbacks
270  * @get_max:            Callback to get maximum non turbo effective P state
271  * @get_max_physical:   Callback to get maximum non turbo physical P state
272  * @get_min:            Callback to get minimum P state
273  * @get_turbo:          Callback to get turbo P state
274  * @get_scaling:        Callback to get frequency scaling factor
275  * @get_cpu_scaling:    Get frequency scaling factor for a given cpu
276  * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277  * @get_val:            Callback to convert P state to actual MSR write value
278  * @get_vid:            Callback to get VID data for Atom platforms
279  *
280  * Core and Atom CPU models have different way to get P State limits. This
281  * structure is used to store those callbacks.
282  */
283 struct pstate_funcs {
284         int (*get_max)(int cpu);
285         int (*get_max_physical)(int cpu);
286         int (*get_min)(int cpu);
287         int (*get_turbo)(int cpu);
288         int (*get_scaling)(void);
289         int (*get_cpu_scaling)(int cpu);
290         int (*get_aperf_mperf_shift)(void);
291         u64 (*get_val)(struct cpudata*, int pstate);
292         void (*get_vid)(struct cpudata *);
293 };
294
295 static struct pstate_funcs pstate_funcs __read_mostly;
296
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_forced __read_mostly;
302
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
304
305 #define HYBRID_SCALING_FACTOR           78741
306 #define HYBRID_SCALING_FACTOR_MTL       80000
307
308 static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR;
309
310 static inline int core_get_scaling(void)
311 {
312         return 100000;
313 }
314
315 #ifdef CONFIG_ACPI
316 static bool acpi_ppc;
317 #endif
318
319 static struct global_params global;
320
321 static DEFINE_MUTEX(intel_pstate_driver_lock);
322 static DEFINE_MUTEX(intel_pstate_limits_lock);
323
324 #ifdef CONFIG_ACPI
325
326 static bool intel_pstate_acpi_pm_profile_server(void)
327 {
328         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
329             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
330                 return true;
331
332         return false;
333 }
334
335 static bool intel_pstate_get_ppc_enable_status(void)
336 {
337         if (intel_pstate_acpi_pm_profile_server())
338                 return true;
339
340         return acpi_ppc;
341 }
342
343 #ifdef CONFIG_ACPI_CPPC_LIB
344
345 /* The work item is needed to avoid CPU hotplug locking issues */
346 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
347 {
348         sched_set_itmt_support();
349 }
350
351 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
352
353 #define CPPC_MAX_PERF   U8_MAX
354
355 static void intel_pstate_set_itmt_prio(int cpu)
356 {
357         struct cppc_perf_caps cppc_perf;
358         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
359         int ret;
360
361         ret = cppc_get_perf_caps(cpu, &cppc_perf);
362         if (ret)
363                 return;
364
365         /*
366          * On some systems with overclocking enabled, CPPC.highest_perf is hardcoded to 0xff.
367          * In this case we can't use CPPC.highest_perf to enable ITMT.
368          * In this case we can look at MSR_HWP_CAPABILITIES bits [8:0] to decide.
369          */
370         if (cppc_perf.highest_perf == CPPC_MAX_PERF)
371                 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
372
373         /*
374          * The priorities can be set regardless of whether or not
375          * sched_set_itmt_support(true) has been called and it is valid to
376          * update them at any time after it has been called.
377          */
378         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
379
380         if (max_highest_perf <= min_highest_perf) {
381                 if (cppc_perf.highest_perf > max_highest_perf)
382                         max_highest_perf = cppc_perf.highest_perf;
383
384                 if (cppc_perf.highest_perf < min_highest_perf)
385                         min_highest_perf = cppc_perf.highest_perf;
386
387                 if (max_highest_perf > min_highest_perf) {
388                         /*
389                          * This code can be run during CPU online under the
390                          * CPU hotplug locks, so sched_set_itmt_support()
391                          * cannot be called from here.  Queue up a work item
392                          * to invoke it.
393                          */
394                         schedule_work(&sched_itmt_work);
395                 }
396         }
397 }
398
399 static int intel_pstate_get_cppc_guaranteed(int cpu)
400 {
401         struct cppc_perf_caps cppc_perf;
402         int ret;
403
404         ret = cppc_get_perf_caps(cpu, &cppc_perf);
405         if (ret)
406                 return ret;
407
408         if (cppc_perf.guaranteed_perf)
409                 return cppc_perf.guaranteed_perf;
410
411         return cppc_perf.nominal_perf;
412 }
413
414 static int intel_pstate_cppc_get_scaling(int cpu)
415 {
416         struct cppc_perf_caps cppc_perf;
417         int ret;
418
419         ret = cppc_get_perf_caps(cpu, &cppc_perf);
420
421         /*
422          * If the nominal frequency and the nominal performance are not
423          * zero and the ratio between them is not 100, return the hybrid
424          * scaling factor.
425          */
426         if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
427             cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
428                 return hybrid_scaling_factor;
429
430         return core_get_scaling();
431 }
432
433 #else /* CONFIG_ACPI_CPPC_LIB */
434 static inline void intel_pstate_set_itmt_prio(int cpu)
435 {
436 }
437 #endif /* CONFIG_ACPI_CPPC_LIB */
438
439 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
440 {
441         struct cpudata *cpu;
442         int ret;
443         int i;
444
445         if (hwp_active) {
446                 intel_pstate_set_itmt_prio(policy->cpu);
447                 return;
448         }
449
450         if (!intel_pstate_get_ppc_enable_status())
451                 return;
452
453         cpu = all_cpu_data[policy->cpu];
454
455         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
456                                                   policy->cpu);
457         if (ret)
458                 return;
459
460         /*
461          * Check if the control value in _PSS is for PERF_CTL MSR, which should
462          * guarantee that the states returned by it map to the states in our
463          * list directly.
464          */
465         if (cpu->acpi_perf_data.control_register.space_id !=
466                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
467                 goto err;
468
469         /*
470          * If there is only one entry _PSS, simply ignore _PSS and continue as
471          * usual without taking _PSS into account
472          */
473         if (cpu->acpi_perf_data.state_count < 2)
474                 goto err;
475
476         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
477         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
478                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
479                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
480                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
481                          (u32) cpu->acpi_perf_data.states[i].power,
482                          (u32) cpu->acpi_perf_data.states[i].control);
483         }
484
485         cpu->valid_pss_table = true;
486         pr_debug("_PPC limits will be enforced\n");
487
488         return;
489
490  err:
491         cpu->valid_pss_table = false;
492         acpi_processor_unregister_performance(policy->cpu);
493 }
494
495 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
496 {
497         struct cpudata *cpu;
498
499         cpu = all_cpu_data[policy->cpu];
500         if (!cpu->valid_pss_table)
501                 return;
502
503         acpi_processor_unregister_performance(policy->cpu);
504 }
505 #else /* CONFIG_ACPI */
506 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
507 {
508 }
509
510 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
511 {
512 }
513
514 static inline bool intel_pstate_acpi_pm_profile_server(void)
515 {
516         return false;
517 }
518 #endif /* CONFIG_ACPI */
519
520 #ifndef CONFIG_ACPI_CPPC_LIB
521 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
522 {
523         return -ENOTSUPP;
524 }
525
526 static int intel_pstate_cppc_get_scaling(int cpu)
527 {
528         return core_get_scaling();
529 }
530 #endif /* CONFIG_ACPI_CPPC_LIB */
531
532 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
533                                         unsigned int relation)
534 {
535         if (freq == cpu->pstate.turbo_freq)
536                 return cpu->pstate.turbo_pstate;
537
538         if (freq == cpu->pstate.max_freq)
539                 return cpu->pstate.max_pstate;
540
541         switch (relation) {
542         case CPUFREQ_RELATION_H:
543                 return freq / cpu->pstate.scaling;
544         case CPUFREQ_RELATION_C:
545                 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
546         }
547
548         return DIV_ROUND_UP(freq, cpu->pstate.scaling);
549 }
550
551 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
552 {
553         return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
554 }
555
556 /**
557  * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
558  * @cpu: Target CPU.
559  *
560  * On hybrid processors, HWP may expose more performance levels than there are
561  * P-states accessible through the PERF_CTL interface.  If that happens, the
562  * scaling factor between HWP performance levels and CPU frequency will be less
563  * than the scaling factor between P-state values and CPU frequency.
564  *
565  * In that case, adjust the CPU parameters used in computations accordingly.
566  */
567 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
568 {
569         int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
570         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
571         int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
572         int scaling = cpu->pstate.scaling;
573         int freq;
574
575         pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
576         pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
577         pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
578         pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
579         pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
580         pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
581
582         cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
583                                            perf_ctl_scaling);
584         cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
585                                          perf_ctl_scaling);
586
587         freq = perf_ctl_max_phys * perf_ctl_scaling;
588         cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
589
590         freq = cpu->pstate.min_pstate * perf_ctl_scaling;
591         cpu->pstate.min_freq = freq;
592         /*
593          * Cast the min P-state value retrieved via pstate_funcs.get_min() to
594          * the effective range of HWP performance levels.
595          */
596         cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
597 }
598
599 static inline void update_turbo_state(void)
600 {
601         u64 misc_en;
602
603         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
604         global.turbo_disabled = misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE;
605 }
606
607 static int min_perf_pct_min(void)
608 {
609         struct cpudata *cpu = all_cpu_data[0];
610         int turbo_pstate = cpu->pstate.turbo_pstate;
611
612         return turbo_pstate ?
613                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
614 }
615
616 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
617 {
618         u64 epb;
619         int ret;
620
621         if (!boot_cpu_has(X86_FEATURE_EPB))
622                 return -ENXIO;
623
624         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
625         if (ret)
626                 return (s16)ret;
627
628         return (s16)(epb & 0x0f);
629 }
630
631 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
632 {
633         s16 epp;
634
635         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
636                 /*
637                  * When hwp_req_data is 0, means that caller didn't read
638                  * MSR_HWP_REQUEST, so need to read and get EPP.
639                  */
640                 if (!hwp_req_data) {
641                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
642                                             &hwp_req_data);
643                         if (epp)
644                                 return epp;
645                 }
646                 epp = (hwp_req_data >> 24) & 0xff;
647         } else {
648                 /* When there is no EPP present, HWP uses EPB settings */
649                 epp = intel_pstate_get_epb(cpu_data);
650         }
651
652         return epp;
653 }
654
655 static int intel_pstate_set_epb(int cpu, s16 pref)
656 {
657         u64 epb;
658         int ret;
659
660         if (!boot_cpu_has(X86_FEATURE_EPB))
661                 return -ENXIO;
662
663         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
664         if (ret)
665                 return ret;
666
667         epb = (epb & ~0x0f) | pref;
668         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
669
670         return 0;
671 }
672
673 /*
674  * EPP/EPB display strings corresponding to EPP index in the
675  * energy_perf_strings[]
676  *      index           String
677  *-------------------------------------
678  *      0               default
679  *      1               performance
680  *      2               balance_performance
681  *      3               balance_power
682  *      4               power
683  */
684
685 enum energy_perf_value_index {
686         EPP_INDEX_DEFAULT = 0,
687         EPP_INDEX_PERFORMANCE,
688         EPP_INDEX_BALANCE_PERFORMANCE,
689         EPP_INDEX_BALANCE_POWERSAVE,
690         EPP_INDEX_POWERSAVE,
691 };
692
693 static const char * const energy_perf_strings[] = {
694         [EPP_INDEX_DEFAULT] = "default",
695         [EPP_INDEX_PERFORMANCE] = "performance",
696         [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
697         [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
698         [EPP_INDEX_POWERSAVE] = "power",
699         NULL
700 };
701 static unsigned int epp_values[] = {
702         [EPP_INDEX_DEFAULT] = 0, /* Unused index */
703         [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
704         [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
705         [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
706         [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
707 };
708
709 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
710 {
711         s16 epp;
712         int index = -EINVAL;
713
714         *raw_epp = 0;
715         epp = intel_pstate_get_epp(cpu_data, 0);
716         if (epp < 0)
717                 return epp;
718
719         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
720                 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
721                         return EPP_INDEX_PERFORMANCE;
722                 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
723                         return EPP_INDEX_BALANCE_PERFORMANCE;
724                 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
725                         return EPP_INDEX_BALANCE_POWERSAVE;
726                 if (epp == epp_values[EPP_INDEX_POWERSAVE])
727                         return EPP_INDEX_POWERSAVE;
728                 *raw_epp = epp;
729                 return 0;
730         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
731                 /*
732                  * Range:
733                  *      0x00-0x03       :       Performance
734                  *      0x04-0x07       :       Balance performance
735                  *      0x08-0x0B       :       Balance power
736                  *      0x0C-0x0F       :       Power
737                  * The EPB is a 4 bit value, but our ranges restrict the
738                  * value which can be set. Here only using top two bits
739                  * effectively.
740                  */
741                 index = (epp >> 2) + 1;
742         }
743
744         return index;
745 }
746
747 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
748 {
749         int ret;
750
751         /*
752          * Use the cached HWP Request MSR value, because in the active mode the
753          * register itself may be updated by intel_pstate_hwp_boost_up() or
754          * intel_pstate_hwp_boost_down() at any time.
755          */
756         u64 value = READ_ONCE(cpu->hwp_req_cached);
757
758         value &= ~GENMASK_ULL(31, 24);
759         value |= (u64)epp << 24;
760         /*
761          * The only other updater of hwp_req_cached in the active mode,
762          * intel_pstate_hwp_set(), is called under the same lock as this
763          * function, so it cannot run in parallel with the update below.
764          */
765         WRITE_ONCE(cpu->hwp_req_cached, value);
766         ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
767         if (!ret)
768                 cpu->epp_cached = epp;
769
770         return ret;
771 }
772
773 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
774                                               int pref_index, bool use_raw,
775                                               u32 raw_epp)
776 {
777         int epp = -EINVAL;
778         int ret;
779
780         if (!pref_index)
781                 epp = cpu_data->epp_default;
782
783         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
784                 if (use_raw)
785                         epp = raw_epp;
786                 else if (epp == -EINVAL)
787                         epp = epp_values[pref_index];
788
789                 /*
790                  * To avoid confusion, refuse to set EPP to any values different
791                  * from 0 (performance) if the current policy is "performance",
792                  * because those values would be overridden.
793                  */
794                 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
795                         return -EBUSY;
796
797                 ret = intel_pstate_set_epp(cpu_data, epp);
798         } else {
799                 if (epp == -EINVAL)
800                         epp = (pref_index - 1) << 2;
801                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
802         }
803
804         return ret;
805 }
806
807 static ssize_t show_energy_performance_available_preferences(
808                                 struct cpufreq_policy *policy, char *buf)
809 {
810         int i = 0;
811         int ret = 0;
812
813         while (energy_perf_strings[i] != NULL)
814                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
815
816         ret += sprintf(&buf[ret], "\n");
817
818         return ret;
819 }
820
821 cpufreq_freq_attr_ro(energy_performance_available_preferences);
822
823 static struct cpufreq_driver intel_pstate;
824
825 static ssize_t store_energy_performance_preference(
826                 struct cpufreq_policy *policy, const char *buf, size_t count)
827 {
828         struct cpudata *cpu = all_cpu_data[policy->cpu];
829         char str_preference[21];
830         bool raw = false;
831         ssize_t ret;
832         u32 epp = 0;
833
834         ret = sscanf(buf, "%20s", str_preference);
835         if (ret != 1)
836                 return -EINVAL;
837
838         ret = match_string(energy_perf_strings, -1, str_preference);
839         if (ret < 0) {
840                 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
841                         return ret;
842
843                 ret = kstrtouint(buf, 10, &epp);
844                 if (ret)
845                         return ret;
846
847                 if (epp > 255)
848                         return -EINVAL;
849
850                 raw = true;
851         }
852
853         /*
854          * This function runs with the policy R/W semaphore held, which
855          * guarantees that the driver pointer will not change while it is
856          * running.
857          */
858         if (!intel_pstate_driver)
859                 return -EAGAIN;
860
861         mutex_lock(&intel_pstate_limits_lock);
862
863         if (intel_pstate_driver == &intel_pstate) {
864                 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
865         } else {
866                 /*
867                  * In the passive mode the governor needs to be stopped on the
868                  * target CPU before the EPP update and restarted after it,
869                  * which is super-heavy-weight, so make sure it is worth doing
870                  * upfront.
871                  */
872                 if (!raw)
873                         epp = ret ? epp_values[ret] : cpu->epp_default;
874
875                 if (cpu->epp_cached != epp) {
876                         int err;
877
878                         cpufreq_stop_governor(policy);
879                         ret = intel_pstate_set_epp(cpu, epp);
880                         err = cpufreq_start_governor(policy);
881                         if (!ret)
882                                 ret = err;
883                 } else {
884                         ret = 0;
885                 }
886         }
887
888         mutex_unlock(&intel_pstate_limits_lock);
889
890         return ret ?: count;
891 }
892
893 static ssize_t show_energy_performance_preference(
894                                 struct cpufreq_policy *policy, char *buf)
895 {
896         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
897         int preference, raw_epp;
898
899         preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
900         if (preference < 0)
901                 return preference;
902
903         if (raw_epp)
904                 return  sprintf(buf, "%d\n", raw_epp);
905         else
906                 return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
907 }
908
909 cpufreq_freq_attr_rw(energy_performance_preference);
910
911 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
912 {
913         struct cpudata *cpu = all_cpu_data[policy->cpu];
914         int ratio, freq;
915
916         ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
917         if (ratio <= 0) {
918                 u64 cap;
919
920                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
921                 ratio = HWP_GUARANTEED_PERF(cap);
922         }
923
924         freq = ratio * cpu->pstate.scaling;
925         if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
926                 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
927
928         return sprintf(buf, "%d\n", freq);
929 }
930
931 cpufreq_freq_attr_ro(base_frequency);
932
933 static struct freq_attr *hwp_cpufreq_attrs[] = {
934         &energy_performance_preference,
935         &energy_performance_available_preferences,
936         &base_frequency,
937         NULL,
938 };
939
940 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
941 {
942         u64 cap;
943
944         rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
945         WRITE_ONCE(cpu->hwp_cap_cached, cap);
946         cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
947         cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
948 }
949
950 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
951 {
952         int scaling = cpu->pstate.scaling;
953
954         __intel_pstate_get_hwp_cap(cpu);
955
956         cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
957         cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
958         if (scaling != cpu->pstate.perf_ctl_scaling) {
959                 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
960
961                 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
962                                                  perf_ctl_scaling);
963                 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
964                                                    perf_ctl_scaling);
965         }
966 }
967
968 static void intel_pstate_hwp_set(unsigned int cpu)
969 {
970         struct cpudata *cpu_data = all_cpu_data[cpu];
971         int max, min;
972         u64 value;
973         s16 epp;
974
975         max = cpu_data->max_perf_ratio;
976         min = cpu_data->min_perf_ratio;
977
978         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
979                 min = max;
980
981         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
982
983         value &= ~HWP_MIN_PERF(~0L);
984         value |= HWP_MIN_PERF(min);
985
986         value &= ~HWP_MAX_PERF(~0L);
987         value |= HWP_MAX_PERF(max);
988
989         if (cpu_data->epp_policy == cpu_data->policy)
990                 goto skip_epp;
991
992         cpu_data->epp_policy = cpu_data->policy;
993
994         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
995                 epp = intel_pstate_get_epp(cpu_data, value);
996                 cpu_data->epp_powersave = epp;
997                 /* If EPP read was failed, then don't try to write */
998                 if (epp < 0)
999                         goto skip_epp;
1000
1001                 epp = 0;
1002         } else {
1003                 /* skip setting EPP, when saved value is invalid */
1004                 if (cpu_data->epp_powersave < 0)
1005                         goto skip_epp;
1006
1007                 /*
1008                  * No need to restore EPP when it is not zero. This
1009                  * means:
1010                  *  - Policy is not changed
1011                  *  - user has manually changed
1012                  *  - Error reading EPB
1013                  */
1014                 epp = intel_pstate_get_epp(cpu_data, value);
1015                 if (epp)
1016                         goto skip_epp;
1017
1018                 epp = cpu_data->epp_powersave;
1019         }
1020         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1021                 value &= ~GENMASK_ULL(31, 24);
1022                 value |= (u64)epp << 24;
1023         } else {
1024                 intel_pstate_set_epb(cpu, epp);
1025         }
1026 skip_epp:
1027         WRITE_ONCE(cpu_data->hwp_req_cached, value);
1028         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1029 }
1030
1031 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1032
1033 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1034 {
1035         u64 value = READ_ONCE(cpu->hwp_req_cached);
1036         int min_perf;
1037
1038         intel_pstate_disable_hwp_interrupt(cpu);
1039
1040         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1041                 /*
1042                  * In case the EPP has been set to "performance" by the
1043                  * active mode "performance" scaling algorithm, replace that
1044                  * temporary value with the cached EPP one.
1045                  */
1046                 value &= ~GENMASK_ULL(31, 24);
1047                 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1048                 /*
1049                  * However, make sure that EPP will be set to "performance" when
1050                  * the CPU is brought back online again and the "performance"
1051                  * scaling algorithm is still in effect.
1052                  */
1053                 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1054         }
1055
1056         /*
1057          * Clear the desired perf field in the cached HWP request value to
1058          * prevent nonzero desired values from being leaked into the active
1059          * mode.
1060          */
1061         value &= ~HWP_DESIRED_PERF(~0L);
1062         WRITE_ONCE(cpu->hwp_req_cached, value);
1063
1064         value &= ~GENMASK_ULL(31, 0);
1065         min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1066
1067         /* Set hwp_max = hwp_min */
1068         value |= HWP_MAX_PERF(min_perf);
1069         value |= HWP_MIN_PERF(min_perf);
1070
1071         /* Set EPP to min */
1072         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1073                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1074
1075         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1076 }
1077
1078 #define POWER_CTL_EE_ENABLE     1
1079 #define POWER_CTL_EE_DISABLE    2
1080
1081 static int power_ctl_ee_state;
1082
1083 static void set_power_ctl_ee_state(bool input)
1084 {
1085         u64 power_ctl;
1086
1087         mutex_lock(&intel_pstate_driver_lock);
1088         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1089         if (input) {
1090                 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1091                 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1092         } else {
1093                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1094                 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1095         }
1096         wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1097         mutex_unlock(&intel_pstate_driver_lock);
1098 }
1099
1100 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1101
1102 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1103 {
1104         intel_pstate_hwp_enable(cpu);
1105         wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1106 }
1107
1108 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1109 {
1110         struct cpudata *cpu = all_cpu_data[policy->cpu];
1111
1112         pr_debug("CPU %d suspending\n", cpu->cpu);
1113
1114         cpu->suspended = true;
1115
1116         /* disable HWP interrupt and cancel any pending work */
1117         intel_pstate_disable_hwp_interrupt(cpu);
1118
1119         return 0;
1120 }
1121
1122 static int intel_pstate_resume(struct cpufreq_policy *policy)
1123 {
1124         struct cpudata *cpu = all_cpu_data[policy->cpu];
1125
1126         pr_debug("CPU %d resuming\n", cpu->cpu);
1127
1128         /* Only restore if the system default is changed */
1129         if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1130                 set_power_ctl_ee_state(true);
1131         else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1132                 set_power_ctl_ee_state(false);
1133
1134         if (cpu->suspended && hwp_active) {
1135                 mutex_lock(&intel_pstate_limits_lock);
1136
1137                 /* Re-enable HWP, because "online" has not done that. */
1138                 intel_pstate_hwp_reenable(cpu);
1139
1140                 mutex_unlock(&intel_pstate_limits_lock);
1141         }
1142
1143         cpu->suspended = false;
1144
1145         return 0;
1146 }
1147
1148 static void intel_pstate_update_policies(void)
1149 {
1150         int cpu;
1151
1152         for_each_possible_cpu(cpu)
1153                 cpufreq_update_policy(cpu);
1154 }
1155
1156 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1157                                            struct cpufreq_policy *policy)
1158 {
1159         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
1160                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1161         refresh_frequency_limits(policy);
1162 }
1163
1164 static void intel_pstate_update_max_freq(unsigned int cpu)
1165 {
1166         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1167
1168         if (!policy)
1169                 return;
1170
1171         __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1172
1173         cpufreq_cpu_release(policy);
1174 }
1175
1176 static void intel_pstate_update_limits(unsigned int cpu)
1177 {
1178         mutex_lock(&intel_pstate_driver_lock);
1179
1180         update_turbo_state();
1181         /*
1182          * If turbo has been turned on or off globally, policy limits for
1183          * all CPUs need to be updated to reflect that.
1184          */
1185         if (global.turbo_disabled_mf != global.turbo_disabled) {
1186                 global.turbo_disabled_mf = global.turbo_disabled;
1187                 arch_set_max_freq_ratio(global.turbo_disabled);
1188                 for_each_possible_cpu(cpu)
1189                         intel_pstate_update_max_freq(cpu);
1190         } else {
1191                 cpufreq_update_policy(cpu);
1192         }
1193
1194         mutex_unlock(&intel_pstate_driver_lock);
1195 }
1196
1197 /************************** sysfs begin ************************/
1198 #define show_one(file_name, object)                                     \
1199         static ssize_t show_##file_name                                 \
1200         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
1201         {                                                               \
1202                 return sprintf(buf, "%u\n", global.object);             \
1203         }
1204
1205 static ssize_t intel_pstate_show_status(char *buf);
1206 static int intel_pstate_update_status(const char *buf, size_t size);
1207
1208 static ssize_t show_status(struct kobject *kobj,
1209                            struct kobj_attribute *attr, char *buf)
1210 {
1211         ssize_t ret;
1212
1213         mutex_lock(&intel_pstate_driver_lock);
1214         ret = intel_pstate_show_status(buf);
1215         mutex_unlock(&intel_pstate_driver_lock);
1216
1217         return ret;
1218 }
1219
1220 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1221                             const char *buf, size_t count)
1222 {
1223         char *p = memchr(buf, '\n', count);
1224         int ret;
1225
1226         mutex_lock(&intel_pstate_driver_lock);
1227         ret = intel_pstate_update_status(buf, p ? p - buf : count);
1228         mutex_unlock(&intel_pstate_driver_lock);
1229
1230         return ret < 0 ? ret : count;
1231 }
1232
1233 static ssize_t show_turbo_pct(struct kobject *kobj,
1234                                 struct kobj_attribute *attr, char *buf)
1235 {
1236         struct cpudata *cpu;
1237         int total, no_turbo, turbo_pct;
1238         uint32_t turbo_fp;
1239
1240         mutex_lock(&intel_pstate_driver_lock);
1241
1242         if (!intel_pstate_driver) {
1243                 mutex_unlock(&intel_pstate_driver_lock);
1244                 return -EAGAIN;
1245         }
1246
1247         cpu = all_cpu_data[0];
1248
1249         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1250         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1251         turbo_fp = div_fp(no_turbo, total);
1252         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1253
1254         mutex_unlock(&intel_pstate_driver_lock);
1255
1256         return sprintf(buf, "%u\n", turbo_pct);
1257 }
1258
1259 static ssize_t show_num_pstates(struct kobject *kobj,
1260                                 struct kobj_attribute *attr, char *buf)
1261 {
1262         struct cpudata *cpu;
1263         int total;
1264
1265         mutex_lock(&intel_pstate_driver_lock);
1266
1267         if (!intel_pstate_driver) {
1268                 mutex_unlock(&intel_pstate_driver_lock);
1269                 return -EAGAIN;
1270         }
1271
1272         cpu = all_cpu_data[0];
1273         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1274
1275         mutex_unlock(&intel_pstate_driver_lock);
1276
1277         return sprintf(buf, "%u\n", total);
1278 }
1279
1280 static ssize_t show_no_turbo(struct kobject *kobj,
1281                              struct kobj_attribute *attr, char *buf)
1282 {
1283         ssize_t ret;
1284
1285         mutex_lock(&intel_pstate_driver_lock);
1286
1287         if (!intel_pstate_driver) {
1288                 mutex_unlock(&intel_pstate_driver_lock);
1289                 return -EAGAIN;
1290         }
1291
1292         update_turbo_state();
1293         if (global.turbo_disabled)
1294                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1295         else
1296                 ret = sprintf(buf, "%u\n", global.no_turbo);
1297
1298         mutex_unlock(&intel_pstate_driver_lock);
1299
1300         return ret;
1301 }
1302
1303 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1304                               const char *buf, size_t count)
1305 {
1306         unsigned int input;
1307         int ret;
1308
1309         ret = sscanf(buf, "%u", &input);
1310         if (ret != 1)
1311                 return -EINVAL;
1312
1313         mutex_lock(&intel_pstate_driver_lock);
1314
1315         if (!intel_pstate_driver) {
1316                 mutex_unlock(&intel_pstate_driver_lock);
1317                 return -EAGAIN;
1318         }
1319
1320         mutex_lock(&intel_pstate_limits_lock);
1321
1322         update_turbo_state();
1323         if (global.turbo_disabled) {
1324                 pr_notice_once("Turbo disabled by BIOS or unavailable on processor\n");
1325                 mutex_unlock(&intel_pstate_limits_lock);
1326                 mutex_unlock(&intel_pstate_driver_lock);
1327                 return -EPERM;
1328         }
1329
1330         global.no_turbo = clamp_t(int, input, 0, 1);
1331
1332         if (global.no_turbo) {
1333                 struct cpudata *cpu = all_cpu_data[0];
1334                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1335
1336                 /* Squash the global minimum into the permitted range. */
1337                 if (global.min_perf_pct > pct)
1338                         global.min_perf_pct = pct;
1339         }
1340
1341         mutex_unlock(&intel_pstate_limits_lock);
1342
1343         intel_pstate_update_policies();
1344         arch_set_max_freq_ratio(global.no_turbo);
1345
1346         mutex_unlock(&intel_pstate_driver_lock);
1347
1348         return count;
1349 }
1350
1351 static void update_qos_request(enum freq_qos_req_type type)
1352 {
1353         struct freq_qos_request *req;
1354         struct cpufreq_policy *policy;
1355         int i;
1356
1357         for_each_possible_cpu(i) {
1358                 struct cpudata *cpu = all_cpu_data[i];
1359                 unsigned int freq, perf_pct;
1360
1361                 policy = cpufreq_cpu_get(i);
1362                 if (!policy)
1363                         continue;
1364
1365                 req = policy->driver_data;
1366                 cpufreq_cpu_put(policy);
1367
1368                 if (!req)
1369                         continue;
1370
1371                 if (hwp_active)
1372                         intel_pstate_get_hwp_cap(cpu);
1373
1374                 if (type == FREQ_QOS_MIN) {
1375                         perf_pct = global.min_perf_pct;
1376                 } else {
1377                         req++;
1378                         perf_pct = global.max_perf_pct;
1379                 }
1380
1381                 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1382
1383                 if (freq_qos_update_request(req, freq) < 0)
1384                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1385         }
1386 }
1387
1388 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1389                                   const char *buf, size_t count)
1390 {
1391         unsigned int input;
1392         int ret;
1393
1394         ret = sscanf(buf, "%u", &input);
1395         if (ret != 1)
1396                 return -EINVAL;
1397
1398         mutex_lock(&intel_pstate_driver_lock);
1399
1400         if (!intel_pstate_driver) {
1401                 mutex_unlock(&intel_pstate_driver_lock);
1402                 return -EAGAIN;
1403         }
1404
1405         mutex_lock(&intel_pstate_limits_lock);
1406
1407         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1408
1409         mutex_unlock(&intel_pstate_limits_lock);
1410
1411         if (intel_pstate_driver == &intel_pstate)
1412                 intel_pstate_update_policies();
1413         else
1414                 update_qos_request(FREQ_QOS_MAX);
1415
1416         mutex_unlock(&intel_pstate_driver_lock);
1417
1418         return count;
1419 }
1420
1421 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1422                                   const char *buf, size_t count)
1423 {
1424         unsigned int input;
1425         int ret;
1426
1427         ret = sscanf(buf, "%u", &input);
1428         if (ret != 1)
1429                 return -EINVAL;
1430
1431         mutex_lock(&intel_pstate_driver_lock);
1432
1433         if (!intel_pstate_driver) {
1434                 mutex_unlock(&intel_pstate_driver_lock);
1435                 return -EAGAIN;
1436         }
1437
1438         mutex_lock(&intel_pstate_limits_lock);
1439
1440         global.min_perf_pct = clamp_t(int, input,
1441                                       min_perf_pct_min(), global.max_perf_pct);
1442
1443         mutex_unlock(&intel_pstate_limits_lock);
1444
1445         if (intel_pstate_driver == &intel_pstate)
1446                 intel_pstate_update_policies();
1447         else
1448                 update_qos_request(FREQ_QOS_MIN);
1449
1450         mutex_unlock(&intel_pstate_driver_lock);
1451
1452         return count;
1453 }
1454
1455 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1456                                 struct kobj_attribute *attr, char *buf)
1457 {
1458         return sprintf(buf, "%u\n", hwp_boost);
1459 }
1460
1461 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1462                                        struct kobj_attribute *b,
1463                                        const char *buf, size_t count)
1464 {
1465         unsigned int input;
1466         int ret;
1467
1468         ret = kstrtouint(buf, 10, &input);
1469         if (ret)
1470                 return ret;
1471
1472         mutex_lock(&intel_pstate_driver_lock);
1473         hwp_boost = !!input;
1474         intel_pstate_update_policies();
1475         mutex_unlock(&intel_pstate_driver_lock);
1476
1477         return count;
1478 }
1479
1480 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1481                                       char *buf)
1482 {
1483         u64 power_ctl;
1484         int enable;
1485
1486         rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1487         enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1488         return sprintf(buf, "%d\n", !enable);
1489 }
1490
1491 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1492                                        const char *buf, size_t count)
1493 {
1494         bool input;
1495         int ret;
1496
1497         ret = kstrtobool(buf, &input);
1498         if (ret)
1499                 return ret;
1500
1501         set_power_ctl_ee_state(input);
1502
1503         return count;
1504 }
1505
1506 show_one(max_perf_pct, max_perf_pct);
1507 show_one(min_perf_pct, min_perf_pct);
1508
1509 define_one_global_rw(status);
1510 define_one_global_rw(no_turbo);
1511 define_one_global_rw(max_perf_pct);
1512 define_one_global_rw(min_perf_pct);
1513 define_one_global_ro(turbo_pct);
1514 define_one_global_ro(num_pstates);
1515 define_one_global_rw(hwp_dynamic_boost);
1516 define_one_global_rw(energy_efficiency);
1517
1518 static struct attribute *intel_pstate_attributes[] = {
1519         &status.attr,
1520         &no_turbo.attr,
1521         NULL
1522 };
1523
1524 static const struct attribute_group intel_pstate_attr_group = {
1525         .attrs = intel_pstate_attributes,
1526 };
1527
1528 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1529
1530 static struct kobject *intel_pstate_kobject;
1531
1532 static void __init intel_pstate_sysfs_expose_params(void)
1533 {
1534         struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1535         int rc;
1536
1537         if (dev_root) {
1538                 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1539                 put_device(dev_root);
1540         }
1541         if (WARN_ON(!intel_pstate_kobject))
1542                 return;
1543
1544         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1545         if (WARN_ON(rc))
1546                 return;
1547
1548         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1549                 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1550                 WARN_ON(rc);
1551
1552                 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1553                 WARN_ON(rc);
1554         }
1555
1556         /*
1557          * If per cpu limits are enforced there are no global limits, so
1558          * return without creating max/min_perf_pct attributes
1559          */
1560         if (per_cpu_limits)
1561                 return;
1562
1563         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1564         WARN_ON(rc);
1565
1566         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1567         WARN_ON(rc);
1568
1569         if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1570                 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1571                 WARN_ON(rc);
1572         }
1573 }
1574
1575 static void __init intel_pstate_sysfs_remove(void)
1576 {
1577         if (!intel_pstate_kobject)
1578                 return;
1579
1580         sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1581
1582         if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1583                 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1584                 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1585         }
1586
1587         if (!per_cpu_limits) {
1588                 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1589                 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1590
1591                 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1592                         sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1593         }
1594
1595         kobject_put(intel_pstate_kobject);
1596 }
1597
1598 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1599 {
1600         int rc;
1601
1602         if (!hwp_active)
1603                 return;
1604
1605         rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1606         WARN_ON_ONCE(rc);
1607 }
1608
1609 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1610 {
1611         if (!hwp_active)
1612                 return;
1613
1614         sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1615 }
1616
1617 /************************** sysfs end ************************/
1618
1619 static void intel_pstate_notify_work(struct work_struct *work)
1620 {
1621         struct cpudata *cpudata =
1622                 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1623         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1624
1625         if (policy) {
1626                 intel_pstate_get_hwp_cap(cpudata);
1627                 __intel_pstate_update_max_freq(cpudata, policy);
1628
1629                 cpufreq_cpu_release(policy);
1630         }
1631
1632         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1633 }
1634
1635 static DEFINE_SPINLOCK(hwp_notify_lock);
1636 static cpumask_t hwp_intr_enable_mask;
1637
1638 void notify_hwp_interrupt(void)
1639 {
1640         unsigned int this_cpu = smp_processor_id();
1641         struct cpudata *cpudata;
1642         unsigned long flags;
1643         u64 value;
1644
1645         if (!READ_ONCE(hwp_active) || !boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1646                 return;
1647
1648         rdmsrl_safe(MSR_HWP_STATUS, &value);
1649         if (!(value & 0x01))
1650                 return;
1651
1652         spin_lock_irqsave(&hwp_notify_lock, flags);
1653
1654         if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1655                 goto ack_intr;
1656
1657         /*
1658          * Currently we never free all_cpu_data. And we can't reach here
1659          * without this allocated. But for safety for future changes, added
1660          * check.
1661          */
1662         if (unlikely(!READ_ONCE(all_cpu_data)))
1663                 goto ack_intr;
1664
1665         /*
1666          * The free is done during cleanup, when cpufreq registry is failed.
1667          * We wouldn't be here if it fails on init or switch status. But for
1668          * future changes, added check.
1669          */
1670         cpudata = READ_ONCE(all_cpu_data[this_cpu]);
1671         if (unlikely(!cpudata))
1672                 goto ack_intr;
1673
1674         schedule_delayed_work(&cpudata->hwp_notify_work, msecs_to_jiffies(10));
1675
1676         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1677
1678         return;
1679
1680 ack_intr:
1681         wrmsrl_safe(MSR_HWP_STATUS, 0);
1682         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1683 }
1684
1685 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1686 {
1687         unsigned long flags;
1688
1689         if (!boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1690                 return;
1691
1692         /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1693         wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1694
1695         spin_lock_irqsave(&hwp_notify_lock, flags);
1696         if (cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask))
1697                 cancel_delayed_work(&cpudata->hwp_notify_work);
1698         spin_unlock_irqrestore(&hwp_notify_lock, flags);
1699 }
1700
1701 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1702 {
1703         /* Enable HWP notification interrupt for guaranteed performance change */
1704         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1705                 unsigned long flags;
1706
1707                 spin_lock_irqsave(&hwp_notify_lock, flags);
1708                 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1709                 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1710                 spin_unlock_irqrestore(&hwp_notify_lock, flags);
1711
1712                 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1713                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x01);
1714                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1715         }
1716 }
1717
1718 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1719 {
1720         cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1721
1722         /*
1723          * If the EPP is set by firmware, which means that firmware enabled HWP
1724          * - Is equal or less than 0x80 (default balance_perf EPP)
1725          * - But less performance oriented than performance EPP
1726          *   then use this as new balance_perf EPP.
1727          */
1728         if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1729             cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1730                 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1731                 return;
1732         }
1733
1734         /*
1735          * If this CPU gen doesn't call for change in balance_perf
1736          * EPP return.
1737          */
1738         if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1739                 return;
1740
1741         /*
1742          * Use hard coded value per gen to update the balance_perf
1743          * and default EPP.
1744          */
1745         cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1746         intel_pstate_set_epp(cpudata, cpudata->epp_default);
1747 }
1748
1749 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1750 {
1751         /* First disable HWP notification interrupt till we activate again */
1752         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1753                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1754
1755         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1756
1757         intel_pstate_enable_hwp_interrupt(cpudata);
1758
1759         if (cpudata->epp_default >= 0)
1760                 return;
1761
1762         intel_pstate_update_epp_defaults(cpudata);
1763 }
1764
1765 static int atom_get_min_pstate(int not_used)
1766 {
1767         u64 value;
1768
1769         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1770         return (value >> 8) & 0x7F;
1771 }
1772
1773 static int atom_get_max_pstate(int not_used)
1774 {
1775         u64 value;
1776
1777         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1778         return (value >> 16) & 0x7F;
1779 }
1780
1781 static int atom_get_turbo_pstate(int not_used)
1782 {
1783         u64 value;
1784
1785         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1786         return value & 0x7F;
1787 }
1788
1789 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1790 {
1791         u64 val;
1792         int32_t vid_fp;
1793         u32 vid;
1794
1795         val = (u64)pstate << 8;
1796         if (global.no_turbo && !global.turbo_disabled)
1797                 val |= (u64)1 << 32;
1798
1799         vid_fp = cpudata->vid.min + mul_fp(
1800                 int_tofp(pstate - cpudata->pstate.min_pstate),
1801                 cpudata->vid.ratio);
1802
1803         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1804         vid = ceiling_fp(vid_fp);
1805
1806         if (pstate > cpudata->pstate.max_pstate)
1807                 vid = cpudata->vid.turbo;
1808
1809         return val | vid;
1810 }
1811
1812 static int silvermont_get_scaling(void)
1813 {
1814         u64 value;
1815         int i;
1816         /* Defined in Table 35-6 from SDM (Sept 2015) */
1817         static int silvermont_freq_table[] = {
1818                 83300, 100000, 133300, 116700, 80000};
1819
1820         rdmsrl(MSR_FSB_FREQ, value);
1821         i = value & 0x7;
1822         WARN_ON(i > 4);
1823
1824         return silvermont_freq_table[i];
1825 }
1826
1827 static int airmont_get_scaling(void)
1828 {
1829         u64 value;
1830         int i;
1831         /* Defined in Table 35-10 from SDM (Sept 2015) */
1832         static int airmont_freq_table[] = {
1833                 83300, 100000, 133300, 116700, 80000,
1834                 93300, 90000, 88900, 87500};
1835
1836         rdmsrl(MSR_FSB_FREQ, value);
1837         i = value & 0xF;
1838         WARN_ON(i > 8);
1839
1840         return airmont_freq_table[i];
1841 }
1842
1843 static void atom_get_vid(struct cpudata *cpudata)
1844 {
1845         u64 value;
1846
1847         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1848         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1849         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1850         cpudata->vid.ratio = div_fp(
1851                 cpudata->vid.max - cpudata->vid.min,
1852                 int_tofp(cpudata->pstate.max_pstate -
1853                         cpudata->pstate.min_pstate));
1854
1855         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1856         cpudata->vid.turbo = value & 0x7f;
1857 }
1858
1859 static int core_get_min_pstate(int cpu)
1860 {
1861         u64 value;
1862
1863         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1864         return (value >> 40) & 0xFF;
1865 }
1866
1867 static int core_get_max_pstate_physical(int cpu)
1868 {
1869         u64 value;
1870
1871         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
1872         return (value >> 8) & 0xFF;
1873 }
1874
1875 static int core_get_tdp_ratio(int cpu, u64 plat_info)
1876 {
1877         /* Check how many TDP levels present */
1878         if (plat_info & 0x600000000) {
1879                 u64 tdp_ctrl;
1880                 u64 tdp_ratio;
1881                 int tdp_msr;
1882                 int err;
1883
1884                 /* Get the TDP level (0, 1, 2) to get ratios */
1885                 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1886                 if (err)
1887                         return err;
1888
1889                 /* TDP MSR are continuous starting at 0x648 */
1890                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1891                 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
1892                 if (err)
1893                         return err;
1894
1895                 /* For level 1 and 2, bits[23:16] contain the ratio */
1896                 if (tdp_ctrl & 0x03)
1897                         tdp_ratio >>= 16;
1898
1899                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1900                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1901
1902                 return (int)tdp_ratio;
1903         }
1904
1905         return -ENXIO;
1906 }
1907
1908 static int core_get_max_pstate(int cpu)
1909 {
1910         u64 tar;
1911         u64 plat_info;
1912         int max_pstate;
1913         int tdp_ratio;
1914         int err;
1915
1916         rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
1917         max_pstate = (plat_info >> 8) & 0xFF;
1918
1919         tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
1920         if (tdp_ratio <= 0)
1921                 return max_pstate;
1922
1923         if (hwp_active) {
1924                 /* Turbo activation ratio is not used on HWP platforms */
1925                 return tdp_ratio;
1926         }
1927
1928         err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
1929         if (!err) {
1930                 int tar_levels;
1931
1932                 /* Do some sanity checking for safety */
1933                 tar_levels = tar & 0xff;
1934                 if (tdp_ratio - 1 == tar_levels) {
1935                         max_pstate = tar_levels;
1936                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1937                 }
1938         }
1939
1940         return max_pstate;
1941 }
1942
1943 static int core_get_turbo_pstate(int cpu)
1944 {
1945         u64 value;
1946         int nont, ret;
1947
1948         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1949         nont = core_get_max_pstate(cpu);
1950         ret = (value) & 255;
1951         if (ret <= nont)
1952                 ret = nont;
1953         return ret;
1954 }
1955
1956 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1957 {
1958         u64 val;
1959
1960         val = (u64)pstate << 8;
1961         if (global.no_turbo && !global.turbo_disabled)
1962                 val |= (u64)1 << 32;
1963
1964         return val;
1965 }
1966
1967 static int knl_get_aperf_mperf_shift(void)
1968 {
1969         return 10;
1970 }
1971
1972 static int knl_get_turbo_pstate(int cpu)
1973 {
1974         u64 value;
1975         int nont, ret;
1976
1977         rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
1978         nont = core_get_max_pstate(cpu);
1979         ret = (((value) >> 8) & 0xFF);
1980         if (ret <= nont)
1981                 ret = nont;
1982         return ret;
1983 }
1984
1985 static void hybrid_get_type(void *data)
1986 {
1987         u8 *cpu_type = data;
1988
1989         *cpu_type = get_this_hybrid_cpu_type();
1990 }
1991
1992 static int hwp_get_cpu_scaling(int cpu)
1993 {
1994         u8 cpu_type = 0;
1995
1996         smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
1997         /* P-cores have a smaller perf level-to-freqency scaling factor. */
1998         if (cpu_type == 0x40)
1999                 return hybrid_scaling_factor;
2000
2001         /* Use default core scaling for E-cores */
2002         if (cpu_type == 0x20)
2003                 return core_get_scaling();
2004
2005         /*
2006          * If reached here, this system is either non-hybrid (like Tiger
2007          * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
2008          * no E cores (in which case CPUID for hybrid support is 0).
2009          *
2010          * The CPPC nominal_frequency field is 0 for non-hybrid systems,
2011          * so the default core scaling will be used for them.
2012          */
2013         return intel_pstate_cppc_get_scaling(cpu);
2014 }
2015
2016 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2017 {
2018         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2019         cpu->pstate.current_pstate = pstate;
2020         /*
2021          * Generally, there is no guarantee that this code will always run on
2022          * the CPU being updated, so force the register update to run on the
2023          * right CPU.
2024          */
2025         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2026                       pstate_funcs.get_val(cpu, pstate));
2027 }
2028
2029 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2030 {
2031         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2032 }
2033
2034 static void intel_pstate_max_within_limits(struct cpudata *cpu)
2035 {
2036         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2037
2038         update_turbo_state();
2039         intel_pstate_set_pstate(cpu, pstate);
2040 }
2041
2042 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2043 {
2044         int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2045         int perf_ctl_scaling = pstate_funcs.get_scaling();
2046
2047         cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2048         cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2049         cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2050
2051         if (hwp_active && !hwp_mode_bdw) {
2052                 __intel_pstate_get_hwp_cap(cpu);
2053
2054                 if (pstate_funcs.get_cpu_scaling) {
2055                         cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2056                         if (cpu->pstate.scaling != perf_ctl_scaling)
2057                                 intel_pstate_hybrid_hwp_adjust(cpu);
2058                 } else {
2059                         cpu->pstate.scaling = perf_ctl_scaling;
2060                 }
2061         } else {
2062                 cpu->pstate.scaling = perf_ctl_scaling;
2063                 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2064                 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2065         }
2066
2067         if (cpu->pstate.scaling == perf_ctl_scaling) {
2068                 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2069                 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2070                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2071         }
2072
2073         if (pstate_funcs.get_aperf_mperf_shift)
2074                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2075
2076         if (pstate_funcs.get_vid)
2077                 pstate_funcs.get_vid(cpu);
2078
2079         intel_pstate_set_min_pstate(cpu);
2080 }
2081
2082 /*
2083  * Long hold time will keep high perf limits for long time,
2084  * which negatively impacts perf/watt for some workloads,
2085  * like specpower. 3ms is based on experiements on some
2086  * workoads.
2087  */
2088 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2089
2090 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2091 {
2092         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2093         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2094         u32 max_limit = (hwp_req & 0xff00) >> 8;
2095         u32 min_limit = (hwp_req & 0xff);
2096         u32 boost_level1;
2097
2098         /*
2099          * Cases to consider (User changes via sysfs or boot time):
2100          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2101          *      No boost, return.
2102          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2103          *     Should result in one level boost only for P0.
2104          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2105          *     Should result in two level boost:
2106          *         (min + p1)/2 and P1.
2107          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2108          *     Should result in three level boost:
2109          *        (min + p1)/2, P1 and P0.
2110          */
2111
2112         /* If max and min are equal or already at max, nothing to boost */
2113         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2114                 return;
2115
2116         if (!cpu->hwp_boost_min)
2117                 cpu->hwp_boost_min = min_limit;
2118
2119         /* level at half way mark between min and guranteed */
2120         boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2121
2122         if (cpu->hwp_boost_min < boost_level1)
2123                 cpu->hwp_boost_min = boost_level1;
2124         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2125                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2126         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2127                  max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2128                 cpu->hwp_boost_min = max_limit;
2129         else
2130                 return;
2131
2132         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2133         wrmsrl(MSR_HWP_REQUEST, hwp_req);
2134         cpu->last_update = cpu->sample.time;
2135 }
2136
2137 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2138 {
2139         if (cpu->hwp_boost_min) {
2140                 bool expired;
2141
2142                 /* Check if we are idle for hold time to boost down */
2143                 expired = time_after64(cpu->sample.time, cpu->last_update +
2144                                        hwp_boost_hold_time_ns);
2145                 if (expired) {
2146                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2147                         cpu->hwp_boost_min = 0;
2148                 }
2149         }
2150         cpu->last_update = cpu->sample.time;
2151 }
2152
2153 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2154                                                       u64 time)
2155 {
2156         cpu->sample.time = time;
2157
2158         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2159                 bool do_io = false;
2160
2161                 cpu->sched_flags = 0;
2162                 /*
2163                  * Set iowait_boost flag and update time. Since IO WAIT flag
2164                  * is set all the time, we can't just conclude that there is
2165                  * some IO bound activity is scheduled on this CPU with just
2166                  * one occurrence. If we receive at least two in two
2167                  * consecutive ticks, then we treat as boost candidate.
2168                  */
2169                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2170                         do_io = true;
2171
2172                 cpu->last_io_update = time;
2173
2174                 if (do_io)
2175                         intel_pstate_hwp_boost_up(cpu);
2176
2177         } else {
2178                 intel_pstate_hwp_boost_down(cpu);
2179         }
2180 }
2181
2182 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2183                                                 u64 time, unsigned int flags)
2184 {
2185         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2186
2187         cpu->sched_flags |= flags;
2188
2189         if (smp_processor_id() == cpu->cpu)
2190                 intel_pstate_update_util_hwp_local(cpu, time);
2191 }
2192
2193 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2194 {
2195         struct sample *sample = &cpu->sample;
2196
2197         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2198 }
2199
2200 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2201 {
2202         u64 aperf, mperf;
2203         unsigned long flags;
2204         u64 tsc;
2205
2206         local_irq_save(flags);
2207         rdmsrl(MSR_IA32_APERF, aperf);
2208         rdmsrl(MSR_IA32_MPERF, mperf);
2209         tsc = rdtsc();
2210         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2211                 local_irq_restore(flags);
2212                 return false;
2213         }
2214         local_irq_restore(flags);
2215
2216         cpu->last_sample_time = cpu->sample.time;
2217         cpu->sample.time = time;
2218         cpu->sample.aperf = aperf;
2219         cpu->sample.mperf = mperf;
2220         cpu->sample.tsc =  tsc;
2221         cpu->sample.aperf -= cpu->prev_aperf;
2222         cpu->sample.mperf -= cpu->prev_mperf;
2223         cpu->sample.tsc -= cpu->prev_tsc;
2224
2225         cpu->prev_aperf = aperf;
2226         cpu->prev_mperf = mperf;
2227         cpu->prev_tsc = tsc;
2228         /*
2229          * First time this function is invoked in a given cycle, all of the
2230          * previous sample data fields are equal to zero or stale and they must
2231          * be populated with meaningful numbers for things to work, so assume
2232          * that sample.time will always be reset before setting the utilization
2233          * update hook and make the caller skip the sample then.
2234          */
2235         if (cpu->last_sample_time) {
2236                 intel_pstate_calc_avg_perf(cpu);
2237                 return true;
2238         }
2239         return false;
2240 }
2241
2242 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2243 {
2244         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2245 }
2246
2247 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2248 {
2249         return mul_ext_fp(cpu->pstate.max_pstate_physical,
2250                           cpu->sample.core_avg_perf);
2251 }
2252
2253 static inline int32_t get_target_pstate(struct cpudata *cpu)
2254 {
2255         struct sample *sample = &cpu->sample;
2256         int32_t busy_frac;
2257         int target, avg_pstate;
2258
2259         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2260                            sample->tsc);
2261
2262         if (busy_frac < cpu->iowait_boost)
2263                 busy_frac = cpu->iowait_boost;
2264
2265         sample->busy_scaled = busy_frac * 100;
2266
2267         target = global.no_turbo || global.turbo_disabled ?
2268                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2269         target += target >> 2;
2270         target = mul_fp(target, busy_frac);
2271         if (target < cpu->pstate.min_pstate)
2272                 target = cpu->pstate.min_pstate;
2273
2274         /*
2275          * If the average P-state during the previous cycle was higher than the
2276          * current target, add 50% of the difference to the target to reduce
2277          * possible performance oscillations and offset possible performance
2278          * loss related to moving the workload from one CPU to another within
2279          * a package/module.
2280          */
2281         avg_pstate = get_avg_pstate(cpu);
2282         if (avg_pstate > target)
2283                 target += (avg_pstate - target) >> 1;
2284
2285         return target;
2286 }
2287
2288 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2289 {
2290         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2291         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2292
2293         return clamp_t(int, pstate, min_pstate, max_pstate);
2294 }
2295
2296 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2297 {
2298         if (pstate == cpu->pstate.current_pstate)
2299                 return;
2300
2301         cpu->pstate.current_pstate = pstate;
2302         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2303 }
2304
2305 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2306 {
2307         int from = cpu->pstate.current_pstate;
2308         struct sample *sample;
2309         int target_pstate;
2310
2311         update_turbo_state();
2312
2313         target_pstate = get_target_pstate(cpu);
2314         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2315         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2316         intel_pstate_update_pstate(cpu, target_pstate);
2317
2318         sample = &cpu->sample;
2319         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2320                 fp_toint(sample->busy_scaled),
2321                 from,
2322                 cpu->pstate.current_pstate,
2323                 sample->mperf,
2324                 sample->aperf,
2325                 sample->tsc,
2326                 get_avg_frequency(cpu),
2327                 fp_toint(cpu->iowait_boost * 100));
2328 }
2329
2330 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2331                                      unsigned int flags)
2332 {
2333         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2334         u64 delta_ns;
2335
2336         /* Don't allow remote callbacks */
2337         if (smp_processor_id() != cpu->cpu)
2338                 return;
2339
2340         delta_ns = time - cpu->last_update;
2341         if (flags & SCHED_CPUFREQ_IOWAIT) {
2342                 /* Start over if the CPU may have been idle. */
2343                 if (delta_ns > TICK_NSEC) {
2344                         cpu->iowait_boost = ONE_EIGHTH_FP;
2345                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2346                         cpu->iowait_boost <<= 1;
2347                         if (cpu->iowait_boost > int_tofp(1))
2348                                 cpu->iowait_boost = int_tofp(1);
2349                 } else {
2350                         cpu->iowait_boost = ONE_EIGHTH_FP;
2351                 }
2352         } else if (cpu->iowait_boost) {
2353                 /* Clear iowait_boost if the CPU may have been idle. */
2354                 if (delta_ns > TICK_NSEC)
2355                         cpu->iowait_boost = 0;
2356                 else
2357                         cpu->iowait_boost >>= 1;
2358         }
2359         cpu->last_update = time;
2360         delta_ns = time - cpu->sample.time;
2361         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2362                 return;
2363
2364         if (intel_pstate_sample(cpu, time))
2365                 intel_pstate_adjust_pstate(cpu);
2366 }
2367
2368 static struct pstate_funcs core_funcs = {
2369         .get_max = core_get_max_pstate,
2370         .get_max_physical = core_get_max_pstate_physical,
2371         .get_min = core_get_min_pstate,
2372         .get_turbo = core_get_turbo_pstate,
2373         .get_scaling = core_get_scaling,
2374         .get_val = core_get_val,
2375 };
2376
2377 static const struct pstate_funcs silvermont_funcs = {
2378         .get_max = atom_get_max_pstate,
2379         .get_max_physical = atom_get_max_pstate,
2380         .get_min = atom_get_min_pstate,
2381         .get_turbo = atom_get_turbo_pstate,
2382         .get_val = atom_get_val,
2383         .get_scaling = silvermont_get_scaling,
2384         .get_vid = atom_get_vid,
2385 };
2386
2387 static const struct pstate_funcs airmont_funcs = {
2388         .get_max = atom_get_max_pstate,
2389         .get_max_physical = atom_get_max_pstate,
2390         .get_min = atom_get_min_pstate,
2391         .get_turbo = atom_get_turbo_pstate,
2392         .get_val = atom_get_val,
2393         .get_scaling = airmont_get_scaling,
2394         .get_vid = atom_get_vid,
2395 };
2396
2397 static const struct pstate_funcs knl_funcs = {
2398         .get_max = core_get_max_pstate,
2399         .get_max_physical = core_get_max_pstate_physical,
2400         .get_min = core_get_min_pstate,
2401         .get_turbo = knl_get_turbo_pstate,
2402         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2403         .get_scaling = core_get_scaling,
2404         .get_val = core_get_val,
2405 };
2406
2407 #define X86_MATCH(model, policy)                                         \
2408         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
2409                                            X86_FEATURE_APERFMPERF, &policy)
2410
2411 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2412         X86_MATCH(SANDYBRIDGE,          core_funcs),
2413         X86_MATCH(SANDYBRIDGE_X,        core_funcs),
2414         X86_MATCH(ATOM_SILVERMONT,      silvermont_funcs),
2415         X86_MATCH(IVYBRIDGE,            core_funcs),
2416         X86_MATCH(HASWELL,              core_funcs),
2417         X86_MATCH(BROADWELL,            core_funcs),
2418         X86_MATCH(IVYBRIDGE_X,          core_funcs),
2419         X86_MATCH(HASWELL_X,            core_funcs),
2420         X86_MATCH(HASWELL_L,            core_funcs),
2421         X86_MATCH(HASWELL_G,            core_funcs),
2422         X86_MATCH(BROADWELL_G,          core_funcs),
2423         X86_MATCH(ATOM_AIRMONT,         airmont_funcs),
2424         X86_MATCH(SKYLAKE_L,            core_funcs),
2425         X86_MATCH(BROADWELL_X,          core_funcs),
2426         X86_MATCH(SKYLAKE,              core_funcs),
2427         X86_MATCH(BROADWELL_D,          core_funcs),
2428         X86_MATCH(XEON_PHI_KNL,         knl_funcs),
2429         X86_MATCH(XEON_PHI_KNM,         knl_funcs),
2430         X86_MATCH(ATOM_GOLDMONT,        core_funcs),
2431         X86_MATCH(ATOM_GOLDMONT_PLUS,   core_funcs),
2432         X86_MATCH(SKYLAKE_X,            core_funcs),
2433         X86_MATCH(COMETLAKE,            core_funcs),
2434         X86_MATCH(ICELAKE_X,            core_funcs),
2435         X86_MATCH(TIGERLAKE,            core_funcs),
2436         X86_MATCH(SAPPHIRERAPIDS_X,     core_funcs),
2437         X86_MATCH(EMERALDRAPIDS_X,      core_funcs),
2438         {}
2439 };
2440 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2441
2442 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2443         X86_MATCH(BROADWELL_D,          core_funcs),
2444         X86_MATCH(BROADWELL_X,          core_funcs),
2445         X86_MATCH(SKYLAKE_X,            core_funcs),
2446         X86_MATCH(ICELAKE_X,            core_funcs),
2447         X86_MATCH(SAPPHIRERAPIDS_X,     core_funcs),
2448         {}
2449 };
2450
2451 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2452         X86_MATCH(KABYLAKE,             core_funcs),
2453         {}
2454 };
2455
2456 static int intel_pstate_init_cpu(unsigned int cpunum)
2457 {
2458         struct cpudata *cpu;
2459
2460         cpu = all_cpu_data[cpunum];
2461
2462         if (!cpu) {
2463                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2464                 if (!cpu)
2465                         return -ENOMEM;
2466
2467                 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2468
2469                 cpu->cpu = cpunum;
2470
2471                 cpu->epp_default = -EINVAL;
2472
2473                 if (hwp_active) {
2474                         intel_pstate_hwp_enable(cpu);
2475
2476                         if (intel_pstate_acpi_pm_profile_server())
2477                                 hwp_boost = true;
2478                 }
2479         } else if (hwp_active) {
2480                 /*
2481                  * Re-enable HWP in case this happens after a resume from ACPI
2482                  * S3 if the CPU was offline during the whole system/resume
2483                  * cycle.
2484                  */
2485                 intel_pstate_hwp_reenable(cpu);
2486         }
2487
2488         cpu->epp_powersave = -EINVAL;
2489         cpu->epp_policy = 0;
2490
2491         intel_pstate_get_cpu_pstates(cpu);
2492
2493         pr_debug("controlling: cpu %d\n", cpunum);
2494
2495         return 0;
2496 }
2497
2498 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2499 {
2500         struct cpudata *cpu = all_cpu_data[cpu_num];
2501
2502         if (hwp_active && !hwp_boost)
2503                 return;
2504
2505         if (cpu->update_util_set)
2506                 return;
2507
2508         /* Prevent intel_pstate_update_util() from using stale data. */
2509         cpu->sample.time = 0;
2510         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2511                                      (hwp_active ?
2512                                       intel_pstate_update_util_hwp :
2513                                       intel_pstate_update_util));
2514         cpu->update_util_set = true;
2515 }
2516
2517 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2518 {
2519         struct cpudata *cpu_data = all_cpu_data[cpu];
2520
2521         if (!cpu_data->update_util_set)
2522                 return;
2523
2524         cpufreq_remove_update_util_hook(cpu);
2525         cpu_data->update_util_set = false;
2526         synchronize_rcu();
2527 }
2528
2529 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2530 {
2531         return global.turbo_disabled || global.no_turbo ?
2532                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2533 }
2534
2535 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2536                                             unsigned int policy_min,
2537                                             unsigned int policy_max)
2538 {
2539         int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2540         int32_t max_policy_perf, min_policy_perf;
2541
2542         max_policy_perf = policy_max / perf_ctl_scaling;
2543         if (policy_max == policy_min) {
2544                 min_policy_perf = max_policy_perf;
2545         } else {
2546                 min_policy_perf = policy_min / perf_ctl_scaling;
2547                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2548                                           0, max_policy_perf);
2549         }
2550
2551         /*
2552          * HWP needs some special consideration, because HWP_REQUEST uses
2553          * abstract values to represent performance rather than pure ratios.
2554          */
2555         if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2556                 int freq;
2557
2558                 freq = max_policy_perf * perf_ctl_scaling;
2559                 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2560                 freq = min_policy_perf * perf_ctl_scaling;
2561                 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2562         }
2563
2564         pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2565                  cpu->cpu, min_policy_perf, max_policy_perf);
2566
2567         /* Normalize user input to [min_perf, max_perf] */
2568         if (per_cpu_limits) {
2569                 cpu->min_perf_ratio = min_policy_perf;
2570                 cpu->max_perf_ratio = max_policy_perf;
2571         } else {
2572                 int turbo_max = cpu->pstate.turbo_pstate;
2573                 int32_t global_min, global_max;
2574
2575                 /* Global limits are in percent of the maximum turbo P-state. */
2576                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2577                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2578                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2579
2580                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2581                          global_min, global_max);
2582
2583                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2584                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2585                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2586                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2587
2588                 /* Make sure min_perf <= max_perf */
2589                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2590                                           cpu->max_perf_ratio);
2591
2592         }
2593         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2594                  cpu->max_perf_ratio,
2595                  cpu->min_perf_ratio);
2596 }
2597
2598 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2599 {
2600         struct cpudata *cpu;
2601
2602         if (!policy->cpuinfo.max_freq)
2603                 return -ENODEV;
2604
2605         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2606                  policy->cpuinfo.max_freq, policy->max);
2607
2608         cpu = all_cpu_data[policy->cpu];
2609         cpu->policy = policy->policy;
2610
2611         mutex_lock(&intel_pstate_limits_lock);
2612
2613         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2614
2615         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2616                 /*
2617                  * NOHZ_FULL CPUs need this as the governor callback may not
2618                  * be invoked on them.
2619                  */
2620                 intel_pstate_clear_update_util_hook(policy->cpu);
2621                 intel_pstate_max_within_limits(cpu);
2622         } else {
2623                 intel_pstate_set_update_util_hook(policy->cpu);
2624         }
2625
2626         if (hwp_active) {
2627                 /*
2628                  * When hwp_boost was active before and dynamically it
2629                  * was turned off, in that case we need to clear the
2630                  * update util hook.
2631                  */
2632                 if (!hwp_boost)
2633                         intel_pstate_clear_update_util_hook(policy->cpu);
2634                 intel_pstate_hwp_set(policy->cpu);
2635         }
2636         /*
2637          * policy->cur is never updated with the intel_pstate driver, but it
2638          * is used as a stale frequency value. So, keep it within limits.
2639          */
2640         policy->cur = policy->min;
2641
2642         mutex_unlock(&intel_pstate_limits_lock);
2643
2644         return 0;
2645 }
2646
2647 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2648                                            struct cpufreq_policy_data *policy)
2649 {
2650         if (!hwp_active &&
2651             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2652             policy->max < policy->cpuinfo.max_freq &&
2653             policy->max > cpu->pstate.max_freq) {
2654                 pr_debug("policy->max > max non turbo frequency\n");
2655                 policy->max = policy->cpuinfo.max_freq;
2656         }
2657 }
2658
2659 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2660                                            struct cpufreq_policy_data *policy)
2661 {
2662         int max_freq;
2663
2664         update_turbo_state();
2665         if (hwp_active) {
2666                 intel_pstate_get_hwp_cap(cpu);
2667                 max_freq = global.no_turbo || global.turbo_disabled ?
2668                                 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2669         } else {
2670                 max_freq = intel_pstate_get_max_freq(cpu);
2671         }
2672         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2673
2674         intel_pstate_adjust_policy_max(cpu, policy);
2675 }
2676
2677 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2678 {
2679         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2680
2681         return 0;
2682 }
2683
2684 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2685 {
2686         struct cpudata *cpu = all_cpu_data[policy->cpu];
2687
2688         pr_debug("CPU %d going offline\n", cpu->cpu);
2689
2690         if (cpu->suspended)
2691                 return 0;
2692
2693         /*
2694          * If the CPU is an SMT thread and it goes offline with the performance
2695          * settings different from the minimum, it will prevent its sibling
2696          * from getting to lower performance levels, so force the minimum
2697          * performance on CPU offline to prevent that from happening.
2698          */
2699         if (hwp_active)
2700                 intel_pstate_hwp_offline(cpu);
2701         else
2702                 intel_pstate_set_min_pstate(cpu);
2703
2704         intel_pstate_exit_perf_limits(policy);
2705
2706         return 0;
2707 }
2708
2709 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2710 {
2711         struct cpudata *cpu = all_cpu_data[policy->cpu];
2712
2713         pr_debug("CPU %d going online\n", cpu->cpu);
2714
2715         intel_pstate_init_acpi_perf_limits(policy);
2716
2717         if (hwp_active) {
2718                 /*
2719                  * Re-enable HWP and clear the "suspended" flag to let "resume"
2720                  * know that it need not do that.
2721                  */
2722                 intel_pstate_hwp_reenable(cpu);
2723                 cpu->suspended = false;
2724         }
2725
2726         return 0;
2727 }
2728
2729 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2730 {
2731         intel_pstate_clear_update_util_hook(policy->cpu);
2732
2733         return intel_cpufreq_cpu_offline(policy);
2734 }
2735
2736 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2737 {
2738         pr_debug("CPU %d exiting\n", policy->cpu);
2739
2740         policy->fast_switch_possible = false;
2741
2742         return 0;
2743 }
2744
2745 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2746 {
2747         struct cpudata *cpu;
2748         int rc;
2749
2750         rc = intel_pstate_init_cpu(policy->cpu);
2751         if (rc)
2752                 return rc;
2753
2754         cpu = all_cpu_data[policy->cpu];
2755
2756         cpu->max_perf_ratio = 0xFF;
2757         cpu->min_perf_ratio = 0;
2758
2759         /* cpuinfo and default policy values */
2760         policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2761         update_turbo_state();
2762         global.turbo_disabled_mf = global.turbo_disabled;
2763         policy->cpuinfo.max_freq = global.turbo_disabled ?
2764                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2765
2766         policy->min = policy->cpuinfo.min_freq;
2767         policy->max = policy->cpuinfo.max_freq;
2768
2769         intel_pstate_init_acpi_perf_limits(policy);
2770
2771         policy->fast_switch_possible = true;
2772
2773         return 0;
2774 }
2775
2776 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2777 {
2778         int ret = __intel_pstate_cpu_init(policy);
2779
2780         if (ret)
2781                 return ret;
2782
2783         /*
2784          * Set the policy to powersave to provide a valid fallback value in case
2785          * the default cpufreq governor is neither powersave nor performance.
2786          */
2787         policy->policy = CPUFREQ_POLICY_POWERSAVE;
2788
2789         if (hwp_active) {
2790                 struct cpudata *cpu = all_cpu_data[policy->cpu];
2791
2792                 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
2793         }
2794
2795         return 0;
2796 }
2797
2798 static struct cpufreq_driver intel_pstate = {
2799         .flags          = CPUFREQ_CONST_LOOPS,
2800         .verify         = intel_pstate_verify_policy,
2801         .setpolicy      = intel_pstate_set_policy,
2802         .suspend        = intel_pstate_suspend,
2803         .resume         = intel_pstate_resume,
2804         .init           = intel_pstate_cpu_init,
2805         .exit           = intel_pstate_cpu_exit,
2806         .offline        = intel_pstate_cpu_offline,
2807         .online         = intel_pstate_cpu_online,
2808         .update_limits  = intel_pstate_update_limits,
2809         .name           = "intel_pstate",
2810 };
2811
2812 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2813 {
2814         struct cpudata *cpu = all_cpu_data[policy->cpu];
2815
2816         intel_pstate_verify_cpu_policy(cpu, policy);
2817         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2818
2819         return 0;
2820 }
2821
2822 /* Use of trace in passive mode:
2823  *
2824  * In passive mode the trace core_busy field (also known as the
2825  * performance field, and lablelled as such on the graphs; also known as
2826  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2827  * driver call was via the normal or fast switch path. Various graphs
2828  * output from the intel_pstate_tracer.py utility that include core_busy
2829  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2830  * so we use 10 to indicate the normal path through the driver, and
2831  * 90 to indicate the fast switch path through the driver.
2832  * The scaled_busy field is not used, and is set to 0.
2833  */
2834
2835 #define INTEL_PSTATE_TRACE_TARGET 10
2836 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2837
2838 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2839 {
2840         struct sample *sample;
2841
2842         if (!trace_pstate_sample_enabled())
2843                 return;
2844
2845         if (!intel_pstate_sample(cpu, ktime_get()))
2846                 return;
2847
2848         sample = &cpu->sample;
2849         trace_pstate_sample(trace_type,
2850                 0,
2851                 old_pstate,
2852                 cpu->pstate.current_pstate,
2853                 sample->mperf,
2854                 sample->aperf,
2855                 sample->tsc,
2856                 get_avg_frequency(cpu),
2857                 fp_toint(cpu->iowait_boost * 100));
2858 }
2859
2860 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
2861                                      u32 desired, bool fast_switch)
2862 {
2863         u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
2864
2865         value &= ~HWP_MIN_PERF(~0L);
2866         value |= HWP_MIN_PERF(min);
2867
2868         value &= ~HWP_MAX_PERF(~0L);
2869         value |= HWP_MAX_PERF(max);
2870
2871         value &= ~HWP_DESIRED_PERF(~0L);
2872         value |= HWP_DESIRED_PERF(desired);
2873
2874         if (value == prev)
2875                 return;
2876
2877         WRITE_ONCE(cpu->hwp_req_cached, value);
2878         if (fast_switch)
2879                 wrmsrl(MSR_HWP_REQUEST, value);
2880         else
2881                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
2882 }
2883
2884 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
2885                                           u32 target_pstate, bool fast_switch)
2886 {
2887         if (fast_switch)
2888                 wrmsrl(MSR_IA32_PERF_CTL,
2889                        pstate_funcs.get_val(cpu, target_pstate));
2890         else
2891                 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2892                               pstate_funcs.get_val(cpu, target_pstate));
2893 }
2894
2895 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
2896                                        int target_pstate, bool fast_switch)
2897 {
2898         struct cpudata *cpu = all_cpu_data[policy->cpu];
2899         int old_pstate = cpu->pstate.current_pstate;
2900
2901         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2902         if (hwp_active) {
2903                 int max_pstate = policy->strict_target ?
2904                                         target_pstate : cpu->max_perf_ratio;
2905
2906                 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
2907                                          fast_switch);
2908         } else if (target_pstate != old_pstate) {
2909                 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
2910         }
2911
2912         cpu->pstate.current_pstate = target_pstate;
2913
2914         intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
2915                             INTEL_PSTATE_TRACE_TARGET, old_pstate);
2916
2917         return target_pstate;
2918 }
2919
2920 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2921                                 unsigned int target_freq,
2922                                 unsigned int relation)
2923 {
2924         struct cpudata *cpu = all_cpu_data[policy->cpu];
2925         struct cpufreq_freqs freqs;
2926         int target_pstate;
2927
2928         update_turbo_state();
2929
2930         freqs.old = policy->cur;
2931         freqs.new = target_freq;
2932
2933         cpufreq_freq_transition_begin(policy, &freqs);
2934
2935         target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
2936         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
2937
2938         freqs.new = target_pstate * cpu->pstate.scaling;
2939
2940         cpufreq_freq_transition_end(policy, &freqs, false);
2941
2942         return 0;
2943 }
2944
2945 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2946                                               unsigned int target_freq)
2947 {
2948         struct cpudata *cpu = all_cpu_data[policy->cpu];
2949         int target_pstate;
2950
2951         update_turbo_state();
2952
2953         target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
2954
2955         target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
2956
2957         return target_pstate * cpu->pstate.scaling;
2958 }
2959
2960 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
2961                                       unsigned long min_perf,
2962                                       unsigned long target_perf,
2963                                       unsigned long capacity)
2964 {
2965         struct cpudata *cpu = all_cpu_data[cpunum];
2966         u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2967         int old_pstate = cpu->pstate.current_pstate;
2968         int cap_pstate, min_pstate, max_pstate, target_pstate;
2969
2970         update_turbo_state();
2971         cap_pstate = global.turbo_disabled ? HWP_GUARANTEED_PERF(hwp_cap) :
2972                                              HWP_HIGHEST_PERF(hwp_cap);
2973
2974         /* Optimization: Avoid unnecessary divisions. */
2975
2976         target_pstate = cap_pstate;
2977         if (target_perf < capacity)
2978                 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
2979
2980         min_pstate = cap_pstate;
2981         if (min_perf < capacity)
2982                 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
2983
2984         if (min_pstate < cpu->pstate.min_pstate)
2985                 min_pstate = cpu->pstate.min_pstate;
2986
2987         if (min_pstate < cpu->min_perf_ratio)
2988                 min_pstate = cpu->min_perf_ratio;
2989
2990         max_pstate = min(cap_pstate, cpu->max_perf_ratio);
2991         if (max_pstate < min_pstate)
2992                 max_pstate = min_pstate;
2993
2994         target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
2995
2996         intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
2997
2998         cpu->pstate.current_pstate = target_pstate;
2999         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
3000 }
3001
3002 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3003 {
3004         struct freq_qos_request *req;
3005         struct cpudata *cpu;
3006         struct device *dev;
3007         int ret, freq;
3008
3009         dev = get_cpu_device(policy->cpu);
3010         if (!dev)
3011                 return -ENODEV;
3012
3013         ret = __intel_pstate_cpu_init(policy);
3014         if (ret)
3015                 return ret;
3016
3017         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3018         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
3019         policy->cur = policy->cpuinfo.min_freq;
3020
3021         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3022         if (!req) {
3023                 ret = -ENOMEM;
3024                 goto pstate_exit;
3025         }
3026
3027         cpu = all_cpu_data[policy->cpu];
3028
3029         if (hwp_active) {
3030                 u64 value;
3031
3032                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3033
3034                 intel_pstate_get_hwp_cap(cpu);
3035
3036                 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3037                 WRITE_ONCE(cpu->hwp_req_cached, value);
3038
3039                 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3040         } else {
3041                 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3042         }
3043
3044         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3045
3046         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3047                                    freq);
3048         if (ret < 0) {
3049                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3050                 goto free_req;
3051         }
3052
3053         freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3054
3055         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3056                                    freq);
3057         if (ret < 0) {
3058                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3059                 goto remove_min_req;
3060         }
3061
3062         policy->driver_data = req;
3063
3064         return 0;
3065
3066 remove_min_req:
3067         freq_qos_remove_request(req);
3068 free_req:
3069         kfree(req);
3070 pstate_exit:
3071         intel_pstate_exit_perf_limits(policy);
3072
3073         return ret;
3074 }
3075
3076 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3077 {
3078         struct freq_qos_request *req;
3079
3080         req = policy->driver_data;
3081
3082         freq_qos_remove_request(req + 1);
3083         freq_qos_remove_request(req);
3084         kfree(req);
3085
3086         return intel_pstate_cpu_exit(policy);
3087 }
3088
3089 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3090 {
3091         intel_pstate_suspend(policy);
3092
3093         if (hwp_active) {
3094                 struct cpudata *cpu = all_cpu_data[policy->cpu];
3095                 u64 value = READ_ONCE(cpu->hwp_req_cached);
3096
3097                 /*
3098                  * Clear the desired perf field in MSR_HWP_REQUEST in case
3099                  * intel_cpufreq_adjust_perf() is in use and the last value
3100                  * written by it may not be suitable.
3101                  */
3102                 value &= ~HWP_DESIRED_PERF(~0L);
3103                 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3104                 WRITE_ONCE(cpu->hwp_req_cached, value);
3105         }
3106
3107         return 0;
3108 }
3109
3110 static struct cpufreq_driver intel_cpufreq = {
3111         .flags          = CPUFREQ_CONST_LOOPS,
3112         .verify         = intel_cpufreq_verify_policy,
3113         .target         = intel_cpufreq_target,
3114         .fast_switch    = intel_cpufreq_fast_switch,
3115         .init           = intel_cpufreq_cpu_init,
3116         .exit           = intel_cpufreq_cpu_exit,
3117         .offline        = intel_cpufreq_cpu_offline,
3118         .online         = intel_pstate_cpu_online,
3119         .suspend        = intel_cpufreq_suspend,
3120         .resume         = intel_pstate_resume,
3121         .update_limits  = intel_pstate_update_limits,
3122         .name           = "intel_cpufreq",
3123 };
3124
3125 static struct cpufreq_driver *default_driver;
3126
3127 static void intel_pstate_driver_cleanup(void)
3128 {
3129         unsigned int cpu;
3130
3131         cpus_read_lock();
3132         for_each_online_cpu(cpu) {
3133                 if (all_cpu_data[cpu]) {
3134                         if (intel_pstate_driver == &intel_pstate)
3135                                 intel_pstate_clear_update_util_hook(cpu);
3136
3137                         spin_lock(&hwp_notify_lock);
3138                         kfree(all_cpu_data[cpu]);
3139                         WRITE_ONCE(all_cpu_data[cpu], NULL);
3140                         spin_unlock(&hwp_notify_lock);
3141                 }
3142         }
3143         cpus_read_unlock();
3144
3145         intel_pstate_driver = NULL;
3146 }
3147
3148 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3149 {
3150         int ret;
3151
3152         if (driver == &intel_pstate)
3153                 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3154
3155         memset(&global, 0, sizeof(global));
3156         global.max_perf_pct = 100;
3157
3158         intel_pstate_driver = driver;
3159         ret = cpufreq_register_driver(intel_pstate_driver);
3160         if (ret) {
3161                 intel_pstate_driver_cleanup();
3162                 return ret;
3163         }
3164
3165         global.min_perf_pct = min_perf_pct_min();
3166
3167         return 0;
3168 }
3169
3170 static ssize_t intel_pstate_show_status(char *buf)
3171 {
3172         if (!intel_pstate_driver)
3173                 return sprintf(buf, "off\n");
3174
3175         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3176                                         "active" : "passive");
3177 }
3178
3179 static int intel_pstate_update_status(const char *buf, size_t size)
3180 {
3181         if (size == 3 && !strncmp(buf, "off", size)) {
3182                 if (!intel_pstate_driver)
3183                         return -EINVAL;
3184
3185                 if (hwp_active)
3186                         return -EBUSY;
3187
3188                 cpufreq_unregister_driver(intel_pstate_driver);
3189                 intel_pstate_driver_cleanup();
3190                 return 0;
3191         }
3192
3193         if (size == 6 && !strncmp(buf, "active", size)) {
3194                 if (intel_pstate_driver) {
3195                         if (intel_pstate_driver == &intel_pstate)
3196                                 return 0;
3197
3198                         cpufreq_unregister_driver(intel_pstate_driver);
3199                 }
3200
3201                 return intel_pstate_register_driver(&intel_pstate);
3202         }
3203
3204         if (size == 7 && !strncmp(buf, "passive", size)) {
3205                 if (intel_pstate_driver) {
3206                         if (intel_pstate_driver == &intel_cpufreq)
3207                                 return 0;
3208
3209                         cpufreq_unregister_driver(intel_pstate_driver);
3210                         intel_pstate_sysfs_hide_hwp_dynamic_boost();
3211                 }
3212
3213                 return intel_pstate_register_driver(&intel_cpufreq);
3214         }
3215
3216         return -EINVAL;
3217 }
3218
3219 static int no_load __initdata;
3220 static int no_hwp __initdata;
3221 static int hwp_only __initdata;
3222 static unsigned int force_load __initdata;
3223
3224 static int __init intel_pstate_msrs_not_valid(void)
3225 {
3226         if (!pstate_funcs.get_max(0) ||
3227             !pstate_funcs.get_min(0) ||
3228             !pstate_funcs.get_turbo(0))
3229                 return -ENODEV;
3230
3231         return 0;
3232 }
3233
3234 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3235 {
3236         pstate_funcs.get_max   = funcs->get_max;
3237         pstate_funcs.get_max_physical = funcs->get_max_physical;
3238         pstate_funcs.get_min   = funcs->get_min;
3239         pstate_funcs.get_turbo = funcs->get_turbo;
3240         pstate_funcs.get_scaling = funcs->get_scaling;
3241         pstate_funcs.get_val   = funcs->get_val;
3242         pstate_funcs.get_vid   = funcs->get_vid;
3243         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3244 }
3245
3246 #ifdef CONFIG_ACPI
3247
3248 static bool __init intel_pstate_no_acpi_pss(void)
3249 {
3250         int i;
3251
3252         for_each_possible_cpu(i) {
3253                 acpi_status status;
3254                 union acpi_object *pss;
3255                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3256                 struct acpi_processor *pr = per_cpu(processors, i);
3257
3258                 if (!pr)
3259                         continue;
3260
3261                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3262                 if (ACPI_FAILURE(status))
3263                         continue;
3264
3265                 pss = buffer.pointer;
3266                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3267                         kfree(pss);
3268                         return false;
3269                 }
3270
3271                 kfree(pss);
3272         }
3273
3274         pr_debug("ACPI _PSS not found\n");
3275         return true;
3276 }
3277
3278 static bool __init intel_pstate_no_acpi_pcch(void)
3279 {
3280         acpi_status status;
3281         acpi_handle handle;
3282
3283         status = acpi_get_handle(NULL, "\\_SB", &handle);
3284         if (ACPI_FAILURE(status))
3285                 goto not_found;
3286
3287         if (acpi_has_method(handle, "PCCH"))
3288                 return false;
3289
3290 not_found:
3291         pr_debug("ACPI PCCH not found\n");
3292         return true;
3293 }
3294
3295 static bool __init intel_pstate_has_acpi_ppc(void)
3296 {
3297         int i;
3298
3299         for_each_possible_cpu(i) {
3300                 struct acpi_processor *pr = per_cpu(processors, i);
3301
3302                 if (!pr)
3303                         continue;
3304                 if (acpi_has_method(pr->handle, "_PPC"))
3305                         return true;
3306         }
3307         pr_debug("ACPI _PPC not found\n");
3308         return false;
3309 }
3310
3311 enum {
3312         PSS,
3313         PPC,
3314 };
3315
3316 /* Hardware vendor-specific info that has its own power management modes */
3317 static struct acpi_platform_list plat_info[] __initdata = {
3318         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3319         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3320         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3321         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3322         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3323         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3324         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3325         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3326         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3327         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3328         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3329         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3330         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3331         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3332         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3333         { } /* End */
3334 };
3335
3336 #define BITMASK_OOB     (BIT(8) | BIT(18))
3337
3338 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3339 {
3340         const struct x86_cpu_id *id;
3341         u64 misc_pwr;
3342         int idx;
3343
3344         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3345         if (id) {
3346                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3347                 if (misc_pwr & BITMASK_OOB) {
3348                         pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3349                         pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3350                         return true;
3351                 }
3352         }
3353
3354         idx = acpi_match_platform_list(plat_info);
3355         if (idx < 0)
3356                 return false;
3357
3358         switch (plat_info[idx].data) {
3359         case PSS:
3360                 if (!intel_pstate_no_acpi_pss())
3361                         return false;
3362
3363                 return intel_pstate_no_acpi_pcch();
3364         case PPC:
3365                 return intel_pstate_has_acpi_ppc() && !force_load;
3366         }
3367
3368         return false;
3369 }
3370
3371 static void intel_pstate_request_control_from_smm(void)
3372 {
3373         /*
3374          * It may be unsafe to request P-states control from SMM if _PPC support
3375          * has not been enabled.
3376          */
3377         if (acpi_ppc)
3378                 acpi_processor_pstate_control();
3379 }
3380 #else /* CONFIG_ACPI not enabled */
3381 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3382 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3383 static inline void intel_pstate_request_control_from_smm(void) {}
3384 #endif /* CONFIG_ACPI */
3385
3386 #define INTEL_PSTATE_HWP_BROADWELL      0x01
3387
3388 #define X86_MATCH_HWP(model, hwp_mode)                                  \
3389         X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, INTEL_FAM6_##model, \
3390                                            X86_FEATURE_HWP, hwp_mode)
3391
3392 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3393         X86_MATCH_HWP(BROADWELL_X,      INTEL_PSTATE_HWP_BROADWELL),
3394         X86_MATCH_HWP(BROADWELL_D,      INTEL_PSTATE_HWP_BROADWELL),
3395         X86_MATCH_HWP(ANY,              0),
3396         {}
3397 };
3398
3399 static bool intel_pstate_hwp_is_enabled(void)
3400 {
3401         u64 value;
3402
3403         rdmsrl(MSR_PM_ENABLE, value);
3404         return !!(value & 0x1);
3405 }
3406
3407 static const struct x86_cpu_id intel_epp_balance_perf[] = {
3408         /*
3409          * Set EPP value as 102, this is the max suggested EPP
3410          * which can result in one core turbo frequency for
3411          * AlderLake Mobile CPUs.
3412          */
3413         X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, 102),
3414         X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, 32),
3415         {}
3416 };
3417
3418 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3419         X86_MATCH_INTEL_FAM6_MODEL(METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3420         {}
3421 };
3422
3423 static int __init intel_pstate_init(void)
3424 {
3425         static struct cpudata **_all_cpu_data;
3426         const struct x86_cpu_id *id;
3427         int rc;
3428
3429         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3430                 return -ENODEV;
3431
3432         id = x86_match_cpu(hwp_support_ids);
3433         if (id) {
3434                 hwp_forced = intel_pstate_hwp_is_enabled();
3435
3436                 if (hwp_forced)
3437                         pr_info("HWP enabled by BIOS\n");
3438                 else if (no_load)
3439                         return -ENODEV;
3440
3441                 copy_cpu_funcs(&core_funcs);
3442                 /*
3443                  * Avoid enabling HWP for processors without EPP support,
3444                  * because that means incomplete HWP implementation which is a
3445                  * corner case and supporting it is generally problematic.
3446                  *
3447                  * If HWP is enabled already, though, there is no choice but to
3448                  * deal with it.
3449                  */
3450                 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3451                         WRITE_ONCE(hwp_active, 1);
3452                         hwp_mode_bdw = id->driver_data;
3453                         intel_pstate.attr = hwp_cpufreq_attrs;
3454                         intel_cpufreq.attr = hwp_cpufreq_attrs;
3455                         intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3456                         intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3457                         if (!default_driver)
3458                                 default_driver = &intel_pstate;
3459
3460                         pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3461
3462                         goto hwp_cpu_matched;
3463                 }
3464                 pr_info("HWP not enabled\n");
3465         } else {
3466                 if (no_load)
3467                         return -ENODEV;
3468
3469                 id = x86_match_cpu(intel_pstate_cpu_ids);
3470                 if (!id) {
3471                         pr_info("CPU model not supported\n");
3472                         return -ENODEV;
3473                 }
3474
3475                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3476         }
3477
3478         if (intel_pstate_msrs_not_valid()) {
3479                 pr_info("Invalid MSRs\n");
3480                 return -ENODEV;
3481         }
3482         /* Without HWP start in the passive mode. */
3483         if (!default_driver)
3484                 default_driver = &intel_cpufreq;
3485
3486 hwp_cpu_matched:
3487         /*
3488          * The Intel pstate driver will be ignored if the platform
3489          * firmware has its own power management modes.
3490          */
3491         if (intel_pstate_platform_pwr_mgmt_exists()) {
3492                 pr_info("P-states controlled by the platform\n");
3493                 return -ENODEV;
3494         }
3495
3496         if (!hwp_active && hwp_only)
3497                 return -ENOTSUPP;
3498
3499         pr_info("Intel P-state driver initializing\n");
3500
3501         _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3502         if (!_all_cpu_data)
3503                 return -ENOMEM;
3504
3505         WRITE_ONCE(all_cpu_data, _all_cpu_data);
3506
3507         intel_pstate_request_control_from_smm();
3508
3509         intel_pstate_sysfs_expose_params();
3510
3511         if (hwp_active) {
3512                 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_balance_perf);
3513                 const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3514
3515                 if (id)
3516                         epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = id->driver_data;
3517
3518                 if (hybrid_id) {
3519                         hybrid_scaling_factor = hybrid_id->driver_data;
3520                         pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3521                 }
3522
3523         }
3524
3525         mutex_lock(&intel_pstate_driver_lock);
3526         rc = intel_pstate_register_driver(default_driver);
3527         mutex_unlock(&intel_pstate_driver_lock);
3528         if (rc) {
3529                 intel_pstate_sysfs_remove();
3530                 return rc;
3531         }
3532
3533         if (hwp_active) {
3534                 const struct x86_cpu_id *id;
3535
3536                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3537                 if (id) {
3538                         set_power_ctl_ee_state(false);
3539                         pr_info("Disabling energy efficiency optimization\n");
3540                 }
3541
3542                 pr_info("HWP enabled\n");
3543         } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3544                 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3545         }
3546
3547         return 0;
3548 }
3549 device_initcall(intel_pstate_init);
3550
3551 static int __init intel_pstate_setup(char *str)
3552 {
3553         if (!str)
3554                 return -EINVAL;
3555
3556         if (!strcmp(str, "disable"))
3557                 no_load = 1;
3558         else if (!strcmp(str, "active"))
3559                 default_driver = &intel_pstate;
3560         else if (!strcmp(str, "passive"))
3561                 default_driver = &intel_cpufreq;
3562
3563         if (!strcmp(str, "no_hwp"))
3564                 no_hwp = 1;
3565
3566         if (!strcmp(str, "force"))
3567                 force_load = 1;
3568         if (!strcmp(str, "hwp_only"))
3569                 hwp_only = 1;
3570         if (!strcmp(str, "per_cpu_perf_limits"))
3571                 per_cpu_limits = true;
3572
3573 #ifdef CONFIG_ACPI
3574         if (!strcmp(str, "support_acpi_ppc"))
3575                 acpi_ppc = true;
3576 #endif
3577
3578         return 0;
3579 }
3580 early_param("intel_pstate", intel_pstate_setup);
3581
3582 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3583 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");