404982d655e24e4f16cfcf1de1239c20cae0a785
[sfrench/cifs-2.6.git] / drivers / cpufreq / intel_pstate.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pstate.c: Native P state management for Intel processors
4  *
5  * (C) Copyright 2012 Intel Corporation
6  * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/sysfs.h>
23 #include <linux/types.h>
24 #include <linux/fs.h>
25 #include <linux/acpi.h>
26 #include <linux/vmalloc.h>
27 #include <linux/pm_qos.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33 #include <asm/cpufeature.h>
34 #include <asm/intel-family.h>
35
36 #define INTEL_PSTATE_SAMPLING_INTERVAL  (10 * NSEC_PER_MSEC)
37
38 #define INTEL_CPUFREQ_TRANSITION_LATENCY        20000
39 #define INTEL_CPUFREQ_TRANSITION_DELAY          500
40
41 #ifdef CONFIG_ACPI
42 #include <acpi/processor.h>
43 #include <acpi/cppc_acpi.h>
44 #endif
45
46 #define FRAC_BITS 8
47 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
48 #define fp_toint(X) ((X) >> FRAC_BITS)
49
50 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
51
52 #define EXT_BITS 6
53 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
54 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
55 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
56
57 static inline int32_t mul_fp(int32_t x, int32_t y)
58 {
59         return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
60 }
61
62 static inline int32_t div_fp(s64 x, s64 y)
63 {
64         return div64_s64((int64_t)x << FRAC_BITS, y);
65 }
66
67 static inline int ceiling_fp(int32_t x)
68 {
69         int mask, ret;
70
71         ret = fp_toint(x);
72         mask = (1 << FRAC_BITS) - 1;
73         if (x & mask)
74                 ret += 1;
75         return ret;
76 }
77
78 static inline int32_t percent_fp(int percent)
79 {
80         return div_fp(percent, 100);
81 }
82
83 static inline u64 mul_ext_fp(u64 x, u64 y)
84 {
85         return (x * y) >> EXT_FRAC_BITS;
86 }
87
88 static inline u64 div_ext_fp(u64 x, u64 y)
89 {
90         return div64_u64(x << EXT_FRAC_BITS, y);
91 }
92
93 static inline int32_t percent_ext_fp(int percent)
94 {
95         return div_ext_fp(percent, 100);
96 }
97
98 /**
99  * struct sample -      Store performance sample
100  * @core_avg_perf:      Ratio of APERF/MPERF which is the actual average
101  *                      performance during last sample period
102  * @busy_scaled:        Scaled busy value which is used to calculate next
103  *                      P state. This can be different than core_avg_perf
104  *                      to account for cpu idle period
105  * @aperf:              Difference of actual performance frequency clock count
106  *                      read from APERF MSR between last and current sample
107  * @mperf:              Difference of maximum performance frequency clock count
108  *                      read from MPERF MSR between last and current sample
109  * @tsc:                Difference of time stamp counter between last and
110  *                      current sample
111  * @time:               Current time from scheduler
112  *
113  * This structure is used in the cpudata structure to store performance sample
114  * data for choosing next P State.
115  */
116 struct sample {
117         int32_t core_avg_perf;
118         int32_t busy_scaled;
119         u64 aperf;
120         u64 mperf;
121         u64 tsc;
122         u64 time;
123 };
124
125 /**
126  * struct pstate_data - Store P state data
127  * @current_pstate:     Current requested P state
128  * @min_pstate:         Min P state possible for this platform
129  * @max_pstate:         Max P state possible for this platform
130  * @max_pstate_physical:This is physical Max P state for a processor
131  *                      This can be higher than the max_pstate which can
132  *                      be limited by platform thermal design power limits
133  * @scaling:            Scaling factor to  convert frequency to cpufreq
134  *                      frequency units
135  * @turbo_pstate:       Max Turbo P state possible for this platform
136  * @max_freq:           @max_pstate frequency in cpufreq units
137  * @turbo_freq:         @turbo_pstate frequency in cpufreq units
138  *
139  * Stores the per cpu model P state limits and current P state.
140  */
141 struct pstate_data {
142         int     current_pstate;
143         int     min_pstate;
144         int     max_pstate;
145         int     max_pstate_physical;
146         int     scaling;
147         int     turbo_pstate;
148         unsigned int max_freq;
149         unsigned int turbo_freq;
150 };
151
152 /**
153  * struct vid_data -    Stores voltage information data
154  * @min:                VID data for this platform corresponding to
155  *                      the lowest P state
156  * @max:                VID data corresponding to the highest P State.
157  * @turbo:              VID data for turbo P state
158  * @ratio:              Ratio of (vid max - vid min) /
159  *                      (max P state - Min P State)
160  *
161  * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
162  * This data is used in Atom platforms, where in addition to target P state,
163  * the voltage data needs to be specified to select next P State.
164  */
165 struct vid_data {
166         int min;
167         int max;
168         int turbo;
169         int32_t ratio;
170 };
171
172 /**
173  * struct global_params - Global parameters, mostly tunable via sysfs.
174  * @no_turbo:           Whether or not to use turbo P-states.
175  * @turbo_disabled:     Whether or not turbo P-states are available at all,
176  *                      based on the MSR_IA32_MISC_ENABLE value and whether or
177  *                      not the maximum reported turbo P-state is different from
178  *                      the maximum reported non-turbo one.
179  * @turbo_disabled_mf:  The @turbo_disabled value reflected by cpuinfo.max_freq.
180  * @min_perf_pct:       Minimum capacity limit in percent of the maximum turbo
181  *                      P-state capacity.
182  * @max_perf_pct:       Maximum capacity limit in percent of the maximum turbo
183  *                      P-state capacity.
184  */
185 struct global_params {
186         bool no_turbo;
187         bool turbo_disabled;
188         bool turbo_disabled_mf;
189         int max_perf_pct;
190         int min_perf_pct;
191 };
192
193 /**
194  * struct cpudata -     Per CPU instance data storage
195  * @cpu:                CPU number for this instance data
196  * @policy:             CPUFreq policy value
197  * @update_util:        CPUFreq utility callback information
198  * @update_util_set:    CPUFreq utility callback is set
199  * @iowait_boost:       iowait-related boost fraction
200  * @last_update:        Time of the last update.
201  * @pstate:             Stores P state limits for this CPU
202  * @vid:                Stores VID limits for this CPU
203  * @last_sample_time:   Last Sample time
204  * @aperf_mperf_shift:  Number of clock cycles after aperf, merf is incremented
205  *                      This shift is a multiplier to mperf delta to
206  *                      calculate CPU busy.
207  * @prev_aperf:         Last APERF value read from APERF MSR
208  * @prev_mperf:         Last MPERF value read from MPERF MSR
209  * @prev_tsc:           Last timestamp counter (TSC) value
210  * @prev_cummulative_iowait: IO Wait time difference from last and
211  *                      current sample
212  * @sample:             Storage for storing last Sample data
213  * @min_perf_ratio:     Minimum capacity in terms of PERF or HWP ratios
214  * @max_perf_ratio:     Maximum capacity in terms of PERF or HWP ratios
215  * @acpi_perf_data:     Stores ACPI perf information read from _PSS
216  * @valid_pss_table:    Set to true for valid ACPI _PSS entries found
217  * @epp_powersave:      Last saved HWP energy performance preference
218  *                      (EPP) or energy performance bias (EPB),
219  *                      when policy switched to performance
220  * @epp_policy:         Last saved policy used to set EPP/EPB
221  * @epp_default:        Power on default HWP energy performance
222  *                      preference/bias
223  * @epp_saved:          Saved EPP/EPB during system suspend or CPU offline
224  *                      operation
225  * @hwp_req_cached:     Cached value of the last HWP Request MSR
226  * @hwp_cap_cached:     Cached value of the last HWP Capabilities MSR
227  * @last_io_update:     Last time when IO wake flag was set
228  * @sched_flags:        Store scheduler flags for possible cross CPU update
229  * @hwp_boost_min:      Last HWP boosted min performance
230  *
231  * This structure stores per CPU instance data for all CPUs.
232  */
233 struct cpudata {
234         int cpu;
235
236         unsigned int policy;
237         struct update_util_data update_util;
238         bool   update_util_set;
239
240         struct pstate_data pstate;
241         struct vid_data vid;
242
243         u64     last_update;
244         u64     last_sample_time;
245         u64     aperf_mperf_shift;
246         u64     prev_aperf;
247         u64     prev_mperf;
248         u64     prev_tsc;
249         u64     prev_cummulative_iowait;
250         struct sample sample;
251         int32_t min_perf_ratio;
252         int32_t max_perf_ratio;
253 #ifdef CONFIG_ACPI
254         struct acpi_processor_performance acpi_perf_data;
255         bool valid_pss_table;
256 #endif
257         unsigned int iowait_boost;
258         s16 epp_powersave;
259         s16 epp_policy;
260         s16 epp_default;
261         s16 epp_saved;
262         u64 hwp_req_cached;
263         u64 hwp_cap_cached;
264         u64 last_io_update;
265         unsigned int sched_flags;
266         u32 hwp_boost_min;
267 };
268
269 static struct cpudata **all_cpu_data;
270
271 /**
272  * struct pstate_funcs - Per CPU model specific callbacks
273  * @get_max:            Callback to get maximum non turbo effective P state
274  * @get_max_physical:   Callback to get maximum non turbo physical P state
275  * @get_min:            Callback to get minimum P state
276  * @get_turbo:          Callback to get turbo P state
277  * @get_scaling:        Callback to get frequency scaling factor
278  * @get_val:            Callback to convert P state to actual MSR write value
279  * @get_vid:            Callback to get VID data for Atom platforms
280  *
281  * Core and Atom CPU models have different way to get P State limits. This
282  * structure is used to store those callbacks.
283  */
284 struct pstate_funcs {
285         int (*get_max)(void);
286         int (*get_max_physical)(void);
287         int (*get_min)(void);
288         int (*get_turbo)(void);
289         int (*get_scaling)(void);
290         int (*get_aperf_mperf_shift)(void);
291         u64 (*get_val)(struct cpudata*, int pstate);
292         void (*get_vid)(struct cpudata *);
293 };
294
295 static struct pstate_funcs pstate_funcs __read_mostly;
296
297 static int hwp_active __read_mostly;
298 static int hwp_mode_bdw __read_mostly;
299 static bool per_cpu_limits __read_mostly;
300 static bool hwp_boost __read_mostly;
301
302 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
303
304 #ifdef CONFIG_ACPI
305 static bool acpi_ppc;
306 #endif
307
308 static struct global_params global;
309
310 static DEFINE_MUTEX(intel_pstate_driver_lock);
311 static DEFINE_MUTEX(intel_pstate_limits_lock);
312
313 #ifdef CONFIG_ACPI
314
315 static bool intel_pstate_acpi_pm_profile_server(void)
316 {
317         if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
318             acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
319                 return true;
320
321         return false;
322 }
323
324 static bool intel_pstate_get_ppc_enable_status(void)
325 {
326         if (intel_pstate_acpi_pm_profile_server())
327                 return true;
328
329         return acpi_ppc;
330 }
331
332 #ifdef CONFIG_ACPI_CPPC_LIB
333
334 /* The work item is needed to avoid CPU hotplug locking issues */
335 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
336 {
337         sched_set_itmt_support();
338 }
339
340 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
341
342 static void intel_pstate_set_itmt_prio(int cpu)
343 {
344         struct cppc_perf_caps cppc_perf;
345         static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
346         int ret;
347
348         ret = cppc_get_perf_caps(cpu, &cppc_perf);
349         if (ret)
350                 return;
351
352         /*
353          * The priorities can be set regardless of whether or not
354          * sched_set_itmt_support(true) has been called and it is valid to
355          * update them at any time after it has been called.
356          */
357         sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
358
359         if (max_highest_perf <= min_highest_perf) {
360                 if (cppc_perf.highest_perf > max_highest_perf)
361                         max_highest_perf = cppc_perf.highest_perf;
362
363                 if (cppc_perf.highest_perf < min_highest_perf)
364                         min_highest_perf = cppc_perf.highest_perf;
365
366                 if (max_highest_perf > min_highest_perf) {
367                         /*
368                          * This code can be run during CPU online under the
369                          * CPU hotplug locks, so sched_set_itmt_support()
370                          * cannot be called from here.  Queue up a work item
371                          * to invoke it.
372                          */
373                         schedule_work(&sched_itmt_work);
374                 }
375         }
376 }
377
378 static int intel_pstate_get_cppc_guranteed(int cpu)
379 {
380         struct cppc_perf_caps cppc_perf;
381         int ret;
382
383         ret = cppc_get_perf_caps(cpu, &cppc_perf);
384         if (ret)
385                 return ret;
386
387         if (cppc_perf.guaranteed_perf)
388                 return cppc_perf.guaranteed_perf;
389
390         return cppc_perf.nominal_perf;
391 }
392
393 #else /* CONFIG_ACPI_CPPC_LIB */
394 static void intel_pstate_set_itmt_prio(int cpu)
395 {
396 }
397 #endif /* CONFIG_ACPI_CPPC_LIB */
398
399 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
400 {
401         struct cpudata *cpu;
402         int ret;
403         int i;
404
405         if (hwp_active) {
406                 intel_pstate_set_itmt_prio(policy->cpu);
407                 return;
408         }
409
410         if (!intel_pstate_get_ppc_enable_status())
411                 return;
412
413         cpu = all_cpu_data[policy->cpu];
414
415         ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
416                                                   policy->cpu);
417         if (ret)
418                 return;
419
420         /*
421          * Check if the control value in _PSS is for PERF_CTL MSR, which should
422          * guarantee that the states returned by it map to the states in our
423          * list directly.
424          */
425         if (cpu->acpi_perf_data.control_register.space_id !=
426                                                 ACPI_ADR_SPACE_FIXED_HARDWARE)
427                 goto err;
428
429         /*
430          * If there is only one entry _PSS, simply ignore _PSS and continue as
431          * usual without taking _PSS into account
432          */
433         if (cpu->acpi_perf_data.state_count < 2)
434                 goto err;
435
436         pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
437         for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
438                 pr_debug("     %cP%d: %u MHz, %u mW, 0x%x\n",
439                          (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
440                          (u32) cpu->acpi_perf_data.states[i].core_frequency,
441                          (u32) cpu->acpi_perf_data.states[i].power,
442                          (u32) cpu->acpi_perf_data.states[i].control);
443         }
444
445         /*
446          * The _PSS table doesn't contain whole turbo frequency range.
447          * This just contains +1 MHZ above the max non turbo frequency,
448          * with control value corresponding to max turbo ratio. But
449          * when cpufreq set policy is called, it will call with this
450          * max frequency, which will cause a reduced performance as
451          * this driver uses real max turbo frequency as the max
452          * frequency. So correct this frequency in _PSS table to
453          * correct max turbo frequency based on the turbo state.
454          * Also need to convert to MHz as _PSS freq is in MHz.
455          */
456         if (!global.turbo_disabled)
457                 cpu->acpi_perf_data.states[0].core_frequency =
458                                         policy->cpuinfo.max_freq / 1000;
459         cpu->valid_pss_table = true;
460         pr_debug("_PPC limits will be enforced\n");
461
462         return;
463
464  err:
465         cpu->valid_pss_table = false;
466         acpi_processor_unregister_performance(policy->cpu);
467 }
468
469 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
470 {
471         struct cpudata *cpu;
472
473         cpu = all_cpu_data[policy->cpu];
474         if (!cpu->valid_pss_table)
475                 return;
476
477         acpi_processor_unregister_performance(policy->cpu);
478 }
479 #else /* CONFIG_ACPI */
480 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
481 {
482 }
483
484 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
485 {
486 }
487
488 static inline bool intel_pstate_acpi_pm_profile_server(void)
489 {
490         return false;
491 }
492 #endif /* CONFIG_ACPI */
493
494 #ifndef CONFIG_ACPI_CPPC_LIB
495 static int intel_pstate_get_cppc_guranteed(int cpu)
496 {
497         return -ENOTSUPP;
498 }
499 #endif /* CONFIG_ACPI_CPPC_LIB */
500
501 static inline void update_turbo_state(void)
502 {
503         u64 misc_en;
504         struct cpudata *cpu;
505
506         cpu = all_cpu_data[0];
507         rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
508         global.turbo_disabled =
509                 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
510                  cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
511 }
512
513 static int min_perf_pct_min(void)
514 {
515         struct cpudata *cpu = all_cpu_data[0];
516         int turbo_pstate = cpu->pstate.turbo_pstate;
517
518         return turbo_pstate ?
519                 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
520 }
521
522 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
523 {
524         u64 epb;
525         int ret;
526
527         if (!boot_cpu_has(X86_FEATURE_EPB))
528                 return -ENXIO;
529
530         ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
531         if (ret)
532                 return (s16)ret;
533
534         return (s16)(epb & 0x0f);
535 }
536
537 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
538 {
539         s16 epp;
540
541         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
542                 /*
543                  * When hwp_req_data is 0, means that caller didn't read
544                  * MSR_HWP_REQUEST, so need to read and get EPP.
545                  */
546                 if (!hwp_req_data) {
547                         epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
548                                             &hwp_req_data);
549                         if (epp)
550                                 return epp;
551                 }
552                 epp = (hwp_req_data >> 24) & 0xff;
553         } else {
554                 /* When there is no EPP present, HWP uses EPB settings */
555                 epp = intel_pstate_get_epb(cpu_data);
556         }
557
558         return epp;
559 }
560
561 static int intel_pstate_set_epb(int cpu, s16 pref)
562 {
563         u64 epb;
564         int ret;
565
566         if (!boot_cpu_has(X86_FEATURE_EPB))
567                 return -ENXIO;
568
569         ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
570         if (ret)
571                 return ret;
572
573         epb = (epb & ~0x0f) | pref;
574         wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
575
576         return 0;
577 }
578
579 /*
580  * EPP/EPB display strings corresponding to EPP index in the
581  * energy_perf_strings[]
582  *      index           String
583  *-------------------------------------
584  *      0               default
585  *      1               performance
586  *      2               balance_performance
587  *      3               balance_power
588  *      4               power
589  */
590 static const char * const energy_perf_strings[] = {
591         "default",
592         "performance",
593         "balance_performance",
594         "balance_power",
595         "power",
596         NULL
597 };
598 static const unsigned int epp_values[] = {
599         HWP_EPP_PERFORMANCE,
600         HWP_EPP_BALANCE_PERFORMANCE,
601         HWP_EPP_BALANCE_POWERSAVE,
602         HWP_EPP_POWERSAVE
603 };
604
605 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data)
606 {
607         s16 epp;
608         int index = -EINVAL;
609
610         epp = intel_pstate_get_epp(cpu_data, 0);
611         if (epp < 0)
612                 return epp;
613
614         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
615                 if (epp == HWP_EPP_PERFORMANCE)
616                         return 1;
617                 if (epp <= HWP_EPP_BALANCE_PERFORMANCE)
618                         return 2;
619                 if (epp <= HWP_EPP_BALANCE_POWERSAVE)
620                         return 3;
621                 else
622                         return 4;
623         } else if (boot_cpu_has(X86_FEATURE_EPB)) {
624                 /*
625                  * Range:
626                  *      0x00-0x03       :       Performance
627                  *      0x04-0x07       :       Balance performance
628                  *      0x08-0x0B       :       Balance power
629                  *      0x0C-0x0F       :       Power
630                  * The EPB is a 4 bit value, but our ranges restrict the
631                  * value which can be set. Here only using top two bits
632                  * effectively.
633                  */
634                 index = (epp >> 2) + 1;
635         }
636
637         return index;
638 }
639
640 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
641                                               int pref_index)
642 {
643         int epp = -EINVAL;
644         int ret;
645
646         if (!pref_index)
647                 epp = cpu_data->epp_default;
648
649         mutex_lock(&intel_pstate_limits_lock);
650
651         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
652                 u64 value;
653
654                 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, &value);
655                 if (ret)
656                         goto return_pref;
657
658                 value &= ~GENMASK_ULL(31, 24);
659
660                 if (epp == -EINVAL)
661                         epp = epp_values[pref_index - 1];
662
663                 value |= (u64)epp << 24;
664                 ret = wrmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST, value);
665         } else {
666                 if (epp == -EINVAL)
667                         epp = (pref_index - 1) << 2;
668                 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
669         }
670 return_pref:
671         mutex_unlock(&intel_pstate_limits_lock);
672
673         return ret;
674 }
675
676 static ssize_t show_energy_performance_available_preferences(
677                                 struct cpufreq_policy *policy, char *buf)
678 {
679         int i = 0;
680         int ret = 0;
681
682         while (energy_perf_strings[i] != NULL)
683                 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
684
685         ret += sprintf(&buf[ret], "\n");
686
687         return ret;
688 }
689
690 cpufreq_freq_attr_ro(energy_performance_available_preferences);
691
692 static ssize_t store_energy_performance_preference(
693                 struct cpufreq_policy *policy, const char *buf, size_t count)
694 {
695         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
696         char str_preference[21];
697         int ret;
698
699         ret = sscanf(buf, "%20s", str_preference);
700         if (ret != 1)
701                 return -EINVAL;
702
703         ret = match_string(energy_perf_strings, -1, str_preference);
704         if (ret < 0)
705                 return ret;
706
707         intel_pstate_set_energy_pref_index(cpu_data, ret);
708         return count;
709 }
710
711 static ssize_t show_energy_performance_preference(
712                                 struct cpufreq_policy *policy, char *buf)
713 {
714         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
715         int preference;
716
717         preference = intel_pstate_get_energy_pref_index(cpu_data);
718         if (preference < 0)
719                 return preference;
720
721         return  sprintf(buf, "%s\n", energy_perf_strings[preference]);
722 }
723
724 cpufreq_freq_attr_rw(energy_performance_preference);
725
726 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
727 {
728         struct cpudata *cpu;
729         u64 cap;
730         int ratio;
731
732         ratio = intel_pstate_get_cppc_guranteed(policy->cpu);
733         if (ratio <= 0) {
734                 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
735                 ratio = HWP_GUARANTEED_PERF(cap);
736         }
737
738         cpu = all_cpu_data[policy->cpu];
739
740         return sprintf(buf, "%d\n", ratio * cpu->pstate.scaling);
741 }
742
743 cpufreq_freq_attr_ro(base_frequency);
744
745 static struct freq_attr *hwp_cpufreq_attrs[] = {
746         &energy_performance_preference,
747         &energy_performance_available_preferences,
748         &base_frequency,
749         NULL,
750 };
751
752 static void intel_pstate_get_hwp_max(unsigned int cpu, int *phy_max,
753                                      int *current_max)
754 {
755         u64 cap;
756
757         rdmsrl_on_cpu(cpu, MSR_HWP_CAPABILITIES, &cap);
758         WRITE_ONCE(all_cpu_data[cpu]->hwp_cap_cached, cap);
759         if (global.no_turbo)
760                 *current_max = HWP_GUARANTEED_PERF(cap);
761         else
762                 *current_max = HWP_HIGHEST_PERF(cap);
763
764         *phy_max = HWP_HIGHEST_PERF(cap);
765 }
766
767 static void intel_pstate_hwp_set(unsigned int cpu)
768 {
769         struct cpudata *cpu_data = all_cpu_data[cpu];
770         int max, min;
771         u64 value;
772         s16 epp;
773
774         max = cpu_data->max_perf_ratio;
775         min = cpu_data->min_perf_ratio;
776
777         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
778                 min = max;
779
780         rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
781
782         value &= ~HWP_MIN_PERF(~0L);
783         value |= HWP_MIN_PERF(min);
784
785         value &= ~HWP_MAX_PERF(~0L);
786         value |= HWP_MAX_PERF(max);
787
788         if (cpu_data->epp_policy == cpu_data->policy)
789                 goto skip_epp;
790
791         cpu_data->epp_policy = cpu_data->policy;
792
793         if (cpu_data->epp_saved >= 0) {
794                 epp = cpu_data->epp_saved;
795                 cpu_data->epp_saved = -EINVAL;
796                 goto update_epp;
797         }
798
799         if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
800                 epp = intel_pstate_get_epp(cpu_data, value);
801                 cpu_data->epp_powersave = epp;
802                 /* If EPP read was failed, then don't try to write */
803                 if (epp < 0)
804                         goto skip_epp;
805
806                 epp = 0;
807         } else {
808                 /* skip setting EPP, when saved value is invalid */
809                 if (cpu_data->epp_powersave < 0)
810                         goto skip_epp;
811
812                 /*
813                  * No need to restore EPP when it is not zero. This
814                  * means:
815                  *  - Policy is not changed
816                  *  - user has manually changed
817                  *  - Error reading EPB
818                  */
819                 epp = intel_pstate_get_epp(cpu_data, value);
820                 if (epp)
821                         goto skip_epp;
822
823                 epp = cpu_data->epp_powersave;
824         }
825 update_epp:
826         if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
827                 value &= ~GENMASK_ULL(31, 24);
828                 value |= (u64)epp << 24;
829         } else {
830                 intel_pstate_set_epb(cpu, epp);
831         }
832 skip_epp:
833         WRITE_ONCE(cpu_data->hwp_req_cached, value);
834         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
835 }
836
837 static void intel_pstate_hwp_force_min_perf(int cpu)
838 {
839         u64 value;
840         int min_perf;
841
842         value = all_cpu_data[cpu]->hwp_req_cached;
843         value &= ~GENMASK_ULL(31, 0);
844         min_perf = HWP_LOWEST_PERF(all_cpu_data[cpu]->hwp_cap_cached);
845
846         /* Set hwp_max = hwp_min */
847         value |= HWP_MAX_PERF(min_perf);
848         value |= HWP_MIN_PERF(min_perf);
849
850         /* Set EPP to min */
851         if (boot_cpu_has(X86_FEATURE_HWP_EPP))
852                 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
853
854         wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
855 }
856
857 static int intel_pstate_hwp_save_state(struct cpufreq_policy *policy)
858 {
859         struct cpudata *cpu_data = all_cpu_data[policy->cpu];
860
861         if (!hwp_active)
862                 return 0;
863
864         cpu_data->epp_saved = intel_pstate_get_epp(cpu_data, 0);
865
866         return 0;
867 }
868
869 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
870
871 static int intel_pstate_resume(struct cpufreq_policy *policy)
872 {
873         if (!hwp_active)
874                 return 0;
875
876         mutex_lock(&intel_pstate_limits_lock);
877
878         if (policy->cpu == 0)
879                 intel_pstate_hwp_enable(all_cpu_data[policy->cpu]);
880
881         all_cpu_data[policy->cpu]->epp_policy = 0;
882         intel_pstate_hwp_set(policy->cpu);
883
884         mutex_unlock(&intel_pstate_limits_lock);
885
886         return 0;
887 }
888
889 static void intel_pstate_update_policies(void)
890 {
891         int cpu;
892
893         for_each_possible_cpu(cpu)
894                 cpufreq_update_policy(cpu);
895 }
896
897 static void intel_pstate_update_max_freq(unsigned int cpu)
898 {
899         struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
900         struct cpudata *cpudata;
901
902         if (!policy)
903                 return;
904
905         cpudata = all_cpu_data[cpu];
906         policy->cpuinfo.max_freq = global.turbo_disabled_mf ?
907                         cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
908
909         refresh_frequency_limits(policy);
910
911         cpufreq_cpu_release(policy);
912 }
913
914 static void intel_pstate_update_limits(unsigned int cpu)
915 {
916         mutex_lock(&intel_pstate_driver_lock);
917
918         update_turbo_state();
919         /*
920          * If turbo has been turned on or off globally, policy limits for
921          * all CPUs need to be updated to reflect that.
922          */
923         if (global.turbo_disabled_mf != global.turbo_disabled) {
924                 global.turbo_disabled_mf = global.turbo_disabled;
925                 for_each_possible_cpu(cpu)
926                         intel_pstate_update_max_freq(cpu);
927         } else {
928                 cpufreq_update_policy(cpu);
929         }
930
931         mutex_unlock(&intel_pstate_driver_lock);
932 }
933
934 /************************** sysfs begin ************************/
935 #define show_one(file_name, object)                                     \
936         static ssize_t show_##file_name                                 \
937         (struct kobject *kobj, struct kobj_attribute *attr, char *buf)  \
938         {                                                               \
939                 return sprintf(buf, "%u\n", global.object);             \
940         }
941
942 static ssize_t intel_pstate_show_status(char *buf);
943 static int intel_pstate_update_status(const char *buf, size_t size);
944
945 static ssize_t show_status(struct kobject *kobj,
946                            struct kobj_attribute *attr, char *buf)
947 {
948         ssize_t ret;
949
950         mutex_lock(&intel_pstate_driver_lock);
951         ret = intel_pstate_show_status(buf);
952         mutex_unlock(&intel_pstate_driver_lock);
953
954         return ret;
955 }
956
957 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
958                             const char *buf, size_t count)
959 {
960         char *p = memchr(buf, '\n', count);
961         int ret;
962
963         mutex_lock(&intel_pstate_driver_lock);
964         ret = intel_pstate_update_status(buf, p ? p - buf : count);
965         mutex_unlock(&intel_pstate_driver_lock);
966
967         return ret < 0 ? ret : count;
968 }
969
970 static ssize_t show_turbo_pct(struct kobject *kobj,
971                                 struct kobj_attribute *attr, char *buf)
972 {
973         struct cpudata *cpu;
974         int total, no_turbo, turbo_pct;
975         uint32_t turbo_fp;
976
977         mutex_lock(&intel_pstate_driver_lock);
978
979         if (!intel_pstate_driver) {
980                 mutex_unlock(&intel_pstate_driver_lock);
981                 return -EAGAIN;
982         }
983
984         cpu = all_cpu_data[0];
985
986         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
987         no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
988         turbo_fp = div_fp(no_turbo, total);
989         turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
990
991         mutex_unlock(&intel_pstate_driver_lock);
992
993         return sprintf(buf, "%u\n", turbo_pct);
994 }
995
996 static ssize_t show_num_pstates(struct kobject *kobj,
997                                 struct kobj_attribute *attr, char *buf)
998 {
999         struct cpudata *cpu;
1000         int total;
1001
1002         mutex_lock(&intel_pstate_driver_lock);
1003
1004         if (!intel_pstate_driver) {
1005                 mutex_unlock(&intel_pstate_driver_lock);
1006                 return -EAGAIN;
1007         }
1008
1009         cpu = all_cpu_data[0];
1010         total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1011
1012         mutex_unlock(&intel_pstate_driver_lock);
1013
1014         return sprintf(buf, "%u\n", total);
1015 }
1016
1017 static ssize_t show_no_turbo(struct kobject *kobj,
1018                              struct kobj_attribute *attr, char *buf)
1019 {
1020         ssize_t ret;
1021
1022         mutex_lock(&intel_pstate_driver_lock);
1023
1024         if (!intel_pstate_driver) {
1025                 mutex_unlock(&intel_pstate_driver_lock);
1026                 return -EAGAIN;
1027         }
1028
1029         update_turbo_state();
1030         if (global.turbo_disabled)
1031                 ret = sprintf(buf, "%u\n", global.turbo_disabled);
1032         else
1033                 ret = sprintf(buf, "%u\n", global.no_turbo);
1034
1035         mutex_unlock(&intel_pstate_driver_lock);
1036
1037         return ret;
1038 }
1039
1040 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1041                               const char *buf, size_t count)
1042 {
1043         unsigned int input;
1044         int ret;
1045
1046         ret = sscanf(buf, "%u", &input);
1047         if (ret != 1)
1048                 return -EINVAL;
1049
1050         mutex_lock(&intel_pstate_driver_lock);
1051
1052         if (!intel_pstate_driver) {
1053                 mutex_unlock(&intel_pstate_driver_lock);
1054                 return -EAGAIN;
1055         }
1056
1057         mutex_lock(&intel_pstate_limits_lock);
1058
1059         update_turbo_state();
1060         if (global.turbo_disabled) {
1061                 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
1062                 mutex_unlock(&intel_pstate_limits_lock);
1063                 mutex_unlock(&intel_pstate_driver_lock);
1064                 return -EPERM;
1065         }
1066
1067         global.no_turbo = clamp_t(int, input, 0, 1);
1068
1069         if (global.no_turbo) {
1070                 struct cpudata *cpu = all_cpu_data[0];
1071                 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1072
1073                 /* Squash the global minimum into the permitted range. */
1074                 if (global.min_perf_pct > pct)
1075                         global.min_perf_pct = pct;
1076         }
1077
1078         mutex_unlock(&intel_pstate_limits_lock);
1079
1080         intel_pstate_update_policies();
1081
1082         mutex_unlock(&intel_pstate_driver_lock);
1083
1084         return count;
1085 }
1086
1087 static struct cpufreq_driver intel_pstate;
1088
1089 static void update_qos_request(enum freq_qos_req_type type)
1090 {
1091         int max_state, turbo_max, freq, i, perf_pct;
1092         struct freq_qos_request *req;
1093         struct cpufreq_policy *policy;
1094
1095         for_each_possible_cpu(i) {
1096                 struct cpudata *cpu = all_cpu_data[i];
1097
1098                 policy = cpufreq_cpu_get(i);
1099                 if (!policy)
1100                         continue;
1101
1102                 req = policy->driver_data;
1103                 cpufreq_cpu_put(policy);
1104
1105                 if (!req)
1106                         continue;
1107
1108                 if (hwp_active)
1109                         intel_pstate_get_hwp_max(i, &turbo_max, &max_state);
1110                 else
1111                         turbo_max = cpu->pstate.turbo_pstate;
1112
1113                 if (type == FREQ_QOS_MIN) {
1114                         perf_pct = global.min_perf_pct;
1115                 } else {
1116                         req++;
1117                         perf_pct = global.max_perf_pct;
1118                 }
1119
1120                 freq = DIV_ROUND_UP(turbo_max * perf_pct, 100);
1121                 freq *= cpu->pstate.scaling;
1122
1123                 if (freq_qos_update_request(req, freq) < 0)
1124                         pr_warn("Failed to update freq constraint: CPU%d\n", i);
1125         }
1126 }
1127
1128 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1129                                   const char *buf, size_t count)
1130 {
1131         unsigned int input;
1132         int ret;
1133
1134         ret = sscanf(buf, "%u", &input);
1135         if (ret != 1)
1136                 return -EINVAL;
1137
1138         mutex_lock(&intel_pstate_driver_lock);
1139
1140         if (!intel_pstate_driver) {
1141                 mutex_unlock(&intel_pstate_driver_lock);
1142                 return -EAGAIN;
1143         }
1144
1145         mutex_lock(&intel_pstate_limits_lock);
1146
1147         global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1148
1149         mutex_unlock(&intel_pstate_limits_lock);
1150
1151         if (intel_pstate_driver == &intel_pstate)
1152                 intel_pstate_update_policies();
1153         else
1154                 update_qos_request(FREQ_QOS_MAX);
1155
1156         mutex_unlock(&intel_pstate_driver_lock);
1157
1158         return count;
1159 }
1160
1161 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1162                                   const char *buf, size_t count)
1163 {
1164         unsigned int input;
1165         int ret;
1166
1167         ret = sscanf(buf, "%u", &input);
1168         if (ret != 1)
1169                 return -EINVAL;
1170
1171         mutex_lock(&intel_pstate_driver_lock);
1172
1173         if (!intel_pstate_driver) {
1174                 mutex_unlock(&intel_pstate_driver_lock);
1175                 return -EAGAIN;
1176         }
1177
1178         mutex_lock(&intel_pstate_limits_lock);
1179
1180         global.min_perf_pct = clamp_t(int, input,
1181                                       min_perf_pct_min(), global.max_perf_pct);
1182
1183         mutex_unlock(&intel_pstate_limits_lock);
1184
1185         if (intel_pstate_driver == &intel_pstate)
1186                 intel_pstate_update_policies();
1187         else
1188                 update_qos_request(FREQ_QOS_MIN);
1189
1190         mutex_unlock(&intel_pstate_driver_lock);
1191
1192         return count;
1193 }
1194
1195 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1196                                 struct kobj_attribute *attr, char *buf)
1197 {
1198         return sprintf(buf, "%u\n", hwp_boost);
1199 }
1200
1201 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1202                                        struct kobj_attribute *b,
1203                                        const char *buf, size_t count)
1204 {
1205         unsigned int input;
1206         int ret;
1207
1208         ret = kstrtouint(buf, 10, &input);
1209         if (ret)
1210                 return ret;
1211
1212         mutex_lock(&intel_pstate_driver_lock);
1213         hwp_boost = !!input;
1214         intel_pstate_update_policies();
1215         mutex_unlock(&intel_pstate_driver_lock);
1216
1217         return count;
1218 }
1219
1220 show_one(max_perf_pct, max_perf_pct);
1221 show_one(min_perf_pct, min_perf_pct);
1222
1223 define_one_global_rw(status);
1224 define_one_global_rw(no_turbo);
1225 define_one_global_rw(max_perf_pct);
1226 define_one_global_rw(min_perf_pct);
1227 define_one_global_ro(turbo_pct);
1228 define_one_global_ro(num_pstates);
1229 define_one_global_rw(hwp_dynamic_boost);
1230
1231 static struct attribute *intel_pstate_attributes[] = {
1232         &status.attr,
1233         &no_turbo.attr,
1234         &turbo_pct.attr,
1235         &num_pstates.attr,
1236         NULL
1237 };
1238
1239 static const struct attribute_group intel_pstate_attr_group = {
1240         .attrs = intel_pstate_attributes,
1241 };
1242
1243 static void __init intel_pstate_sysfs_expose_params(void)
1244 {
1245         struct kobject *intel_pstate_kobject;
1246         int rc;
1247
1248         intel_pstate_kobject = kobject_create_and_add("intel_pstate",
1249                                                 &cpu_subsys.dev_root->kobj);
1250         if (WARN_ON(!intel_pstate_kobject))
1251                 return;
1252
1253         rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1254         if (WARN_ON(rc))
1255                 return;
1256
1257         /*
1258          * If per cpu limits are enforced there are no global limits, so
1259          * return without creating max/min_perf_pct attributes
1260          */
1261         if (per_cpu_limits)
1262                 return;
1263
1264         rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1265         WARN_ON(rc);
1266
1267         rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1268         WARN_ON(rc);
1269
1270         if (hwp_active) {
1271                 rc = sysfs_create_file(intel_pstate_kobject,
1272                                        &hwp_dynamic_boost.attr);
1273                 WARN_ON(rc);
1274         }
1275 }
1276 /************************** sysfs end ************************/
1277
1278 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1279 {
1280         /* First disable HWP notification interrupt as we don't process them */
1281         if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1282                 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1283
1284         wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1285         cpudata->epp_policy = 0;
1286         if (cpudata->epp_default == -EINVAL)
1287                 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1288 }
1289
1290 #define MSR_IA32_POWER_CTL_BIT_EE       19
1291
1292 /* Disable energy efficiency optimization */
1293 static void intel_pstate_disable_ee(int cpu)
1294 {
1295         u64 power_ctl;
1296         int ret;
1297
1298         ret = rdmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, &power_ctl);
1299         if (ret)
1300                 return;
1301
1302         if (!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE))) {
1303                 pr_info("Disabling energy efficiency optimization\n");
1304                 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1305                 wrmsrl_on_cpu(cpu, MSR_IA32_POWER_CTL, power_ctl);
1306         }
1307 }
1308
1309 static int atom_get_min_pstate(void)
1310 {
1311         u64 value;
1312
1313         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1314         return (value >> 8) & 0x7F;
1315 }
1316
1317 static int atom_get_max_pstate(void)
1318 {
1319         u64 value;
1320
1321         rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1322         return (value >> 16) & 0x7F;
1323 }
1324
1325 static int atom_get_turbo_pstate(void)
1326 {
1327         u64 value;
1328
1329         rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1330         return value & 0x7F;
1331 }
1332
1333 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
1334 {
1335         u64 val;
1336         int32_t vid_fp;
1337         u32 vid;
1338
1339         val = (u64)pstate << 8;
1340         if (global.no_turbo && !global.turbo_disabled)
1341                 val |= (u64)1 << 32;
1342
1343         vid_fp = cpudata->vid.min + mul_fp(
1344                 int_tofp(pstate - cpudata->pstate.min_pstate),
1345                 cpudata->vid.ratio);
1346
1347         vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
1348         vid = ceiling_fp(vid_fp);
1349
1350         if (pstate > cpudata->pstate.max_pstate)
1351                 vid = cpudata->vid.turbo;
1352
1353         return val | vid;
1354 }
1355
1356 static int silvermont_get_scaling(void)
1357 {
1358         u64 value;
1359         int i;
1360         /* Defined in Table 35-6 from SDM (Sept 2015) */
1361         static int silvermont_freq_table[] = {
1362                 83300, 100000, 133300, 116700, 80000};
1363
1364         rdmsrl(MSR_FSB_FREQ, value);
1365         i = value & 0x7;
1366         WARN_ON(i > 4);
1367
1368         return silvermont_freq_table[i];
1369 }
1370
1371 static int airmont_get_scaling(void)
1372 {
1373         u64 value;
1374         int i;
1375         /* Defined in Table 35-10 from SDM (Sept 2015) */
1376         static int airmont_freq_table[] = {
1377                 83300, 100000, 133300, 116700, 80000,
1378                 93300, 90000, 88900, 87500};
1379
1380         rdmsrl(MSR_FSB_FREQ, value);
1381         i = value & 0xF;
1382         WARN_ON(i > 8);
1383
1384         return airmont_freq_table[i];
1385 }
1386
1387 static void atom_get_vid(struct cpudata *cpudata)
1388 {
1389         u64 value;
1390
1391         rdmsrl(MSR_ATOM_CORE_VIDS, value);
1392         cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
1393         cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
1394         cpudata->vid.ratio = div_fp(
1395                 cpudata->vid.max - cpudata->vid.min,
1396                 int_tofp(cpudata->pstate.max_pstate -
1397                         cpudata->pstate.min_pstate));
1398
1399         rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
1400         cpudata->vid.turbo = value & 0x7f;
1401 }
1402
1403 static int core_get_min_pstate(void)
1404 {
1405         u64 value;
1406
1407         rdmsrl(MSR_PLATFORM_INFO, value);
1408         return (value >> 40) & 0xFF;
1409 }
1410
1411 static int core_get_max_pstate_physical(void)
1412 {
1413         u64 value;
1414
1415         rdmsrl(MSR_PLATFORM_INFO, value);
1416         return (value >> 8) & 0xFF;
1417 }
1418
1419 static int core_get_tdp_ratio(u64 plat_info)
1420 {
1421         /* Check how many TDP levels present */
1422         if (plat_info & 0x600000000) {
1423                 u64 tdp_ctrl;
1424                 u64 tdp_ratio;
1425                 int tdp_msr;
1426                 int err;
1427
1428                 /* Get the TDP level (0, 1, 2) to get ratios */
1429                 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
1430                 if (err)
1431                         return err;
1432
1433                 /* TDP MSR are continuous starting at 0x648 */
1434                 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
1435                 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
1436                 if (err)
1437                         return err;
1438
1439                 /* For level 1 and 2, bits[23:16] contain the ratio */
1440                 if (tdp_ctrl & 0x03)
1441                         tdp_ratio >>= 16;
1442
1443                 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
1444                 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
1445
1446                 return (int)tdp_ratio;
1447         }
1448
1449         return -ENXIO;
1450 }
1451
1452 static int core_get_max_pstate(void)
1453 {
1454         u64 tar;
1455         u64 plat_info;
1456         int max_pstate;
1457         int tdp_ratio;
1458         int err;
1459
1460         rdmsrl(MSR_PLATFORM_INFO, plat_info);
1461         max_pstate = (plat_info >> 8) & 0xFF;
1462
1463         tdp_ratio = core_get_tdp_ratio(plat_info);
1464         if (tdp_ratio <= 0)
1465                 return max_pstate;
1466
1467         if (hwp_active) {
1468                 /* Turbo activation ratio is not used on HWP platforms */
1469                 return tdp_ratio;
1470         }
1471
1472         err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
1473         if (!err) {
1474                 int tar_levels;
1475
1476                 /* Do some sanity checking for safety */
1477                 tar_levels = tar & 0xff;
1478                 if (tdp_ratio - 1 == tar_levels) {
1479                         max_pstate = tar_levels;
1480                         pr_debug("max_pstate=TAC %x\n", max_pstate);
1481                 }
1482         }
1483
1484         return max_pstate;
1485 }
1486
1487 static int core_get_turbo_pstate(void)
1488 {
1489         u64 value;
1490         int nont, ret;
1491
1492         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1493         nont = core_get_max_pstate();
1494         ret = (value) & 255;
1495         if (ret <= nont)
1496                 ret = nont;
1497         return ret;
1498 }
1499
1500 static inline int core_get_scaling(void)
1501 {
1502         return 100000;
1503 }
1504
1505 static u64 core_get_val(struct cpudata *cpudata, int pstate)
1506 {
1507         u64 val;
1508
1509         val = (u64)pstate << 8;
1510         if (global.no_turbo && !global.turbo_disabled)
1511                 val |= (u64)1 << 32;
1512
1513         return val;
1514 }
1515
1516 static int knl_get_aperf_mperf_shift(void)
1517 {
1518         return 10;
1519 }
1520
1521 static int knl_get_turbo_pstate(void)
1522 {
1523         u64 value;
1524         int nont, ret;
1525
1526         rdmsrl(MSR_TURBO_RATIO_LIMIT, value);
1527         nont = core_get_max_pstate();
1528         ret = (((value) >> 8) & 0xFF);
1529         if (ret <= nont)
1530                 ret = nont;
1531         return ret;
1532 }
1533
1534 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
1535 {
1536         trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1537         cpu->pstate.current_pstate = pstate;
1538         /*
1539          * Generally, there is no guarantee that this code will always run on
1540          * the CPU being updated, so force the register update to run on the
1541          * right CPU.
1542          */
1543         wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1544                       pstate_funcs.get_val(cpu, pstate));
1545 }
1546
1547 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1548 {
1549         intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1550 }
1551
1552 static void intel_pstate_max_within_limits(struct cpudata *cpu)
1553 {
1554         int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
1555
1556         update_turbo_state();
1557         intel_pstate_set_pstate(cpu, pstate);
1558 }
1559
1560 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1561 {
1562         cpu->pstate.min_pstate = pstate_funcs.get_min();
1563         cpu->pstate.max_pstate = pstate_funcs.get_max();
1564         cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1565         cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1566         cpu->pstate.scaling = pstate_funcs.get_scaling();
1567         cpu->pstate.max_freq = cpu->pstate.max_pstate * cpu->pstate.scaling;
1568
1569         if (hwp_active && !hwp_mode_bdw) {
1570                 unsigned int phy_max, current_max;
1571
1572                 intel_pstate_get_hwp_max(cpu->cpu, &phy_max, &current_max);
1573                 cpu->pstate.turbo_freq = phy_max * cpu->pstate.scaling;
1574         } else {
1575                 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1576         }
1577
1578         if (pstate_funcs.get_aperf_mperf_shift)
1579                 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
1580
1581         if (pstate_funcs.get_vid)
1582                 pstate_funcs.get_vid(cpu);
1583
1584         intel_pstate_set_min_pstate(cpu);
1585 }
1586
1587 /*
1588  * Long hold time will keep high perf limits for long time,
1589  * which negatively impacts perf/watt for some workloads,
1590  * like specpower. 3ms is based on experiements on some
1591  * workoads.
1592  */
1593 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
1594
1595 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
1596 {
1597         u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
1598         u32 max_limit = (hwp_req & 0xff00) >> 8;
1599         u32 min_limit = (hwp_req & 0xff);
1600         u32 boost_level1;
1601
1602         /*
1603          * Cases to consider (User changes via sysfs or boot time):
1604          * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
1605          *      No boost, return.
1606          * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
1607          *     Should result in one level boost only for P0.
1608          * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
1609          *     Should result in two level boost:
1610          *         (min + p1)/2 and P1.
1611          * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
1612          *     Should result in three level boost:
1613          *        (min + p1)/2, P1 and P0.
1614          */
1615
1616         /* If max and min are equal or already at max, nothing to boost */
1617         if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
1618                 return;
1619
1620         if (!cpu->hwp_boost_min)
1621                 cpu->hwp_boost_min = min_limit;
1622
1623         /* level at half way mark between min and guranteed */
1624         boost_level1 = (HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) + min_limit) >> 1;
1625
1626         if (cpu->hwp_boost_min < boost_level1)
1627                 cpu->hwp_boost_min = boost_level1;
1628         else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1629                 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(cpu->hwp_cap_cached);
1630         else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(cpu->hwp_cap_cached) &&
1631                  max_limit != HWP_GUARANTEED_PERF(cpu->hwp_cap_cached))
1632                 cpu->hwp_boost_min = max_limit;
1633         else
1634                 return;
1635
1636         hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
1637         wrmsrl(MSR_HWP_REQUEST, hwp_req);
1638         cpu->last_update = cpu->sample.time;
1639 }
1640
1641 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
1642 {
1643         if (cpu->hwp_boost_min) {
1644                 bool expired;
1645
1646                 /* Check if we are idle for hold time to boost down */
1647                 expired = time_after64(cpu->sample.time, cpu->last_update +
1648                                        hwp_boost_hold_time_ns);
1649                 if (expired) {
1650                         wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
1651                         cpu->hwp_boost_min = 0;
1652                 }
1653         }
1654         cpu->last_update = cpu->sample.time;
1655 }
1656
1657 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
1658                                                       u64 time)
1659 {
1660         cpu->sample.time = time;
1661
1662         if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
1663                 bool do_io = false;
1664
1665                 cpu->sched_flags = 0;
1666                 /*
1667                  * Set iowait_boost flag and update time. Since IO WAIT flag
1668                  * is set all the time, we can't just conclude that there is
1669                  * some IO bound activity is scheduled on this CPU with just
1670                  * one occurrence. If we receive at least two in two
1671                  * consecutive ticks, then we treat as boost candidate.
1672                  */
1673                 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
1674                         do_io = true;
1675
1676                 cpu->last_io_update = time;
1677
1678                 if (do_io)
1679                         intel_pstate_hwp_boost_up(cpu);
1680
1681         } else {
1682                 intel_pstate_hwp_boost_down(cpu);
1683         }
1684 }
1685
1686 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
1687                                                 u64 time, unsigned int flags)
1688 {
1689         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1690
1691         cpu->sched_flags |= flags;
1692
1693         if (smp_processor_id() == cpu->cpu)
1694                 intel_pstate_update_util_hwp_local(cpu, time);
1695 }
1696
1697 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
1698 {
1699         struct sample *sample = &cpu->sample;
1700
1701         sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
1702 }
1703
1704 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1705 {
1706         u64 aperf, mperf;
1707         unsigned long flags;
1708         u64 tsc;
1709
1710         local_irq_save(flags);
1711         rdmsrl(MSR_IA32_APERF, aperf);
1712         rdmsrl(MSR_IA32_MPERF, mperf);
1713         tsc = rdtsc();
1714         if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1715                 local_irq_restore(flags);
1716                 return false;
1717         }
1718         local_irq_restore(flags);
1719
1720         cpu->last_sample_time = cpu->sample.time;
1721         cpu->sample.time = time;
1722         cpu->sample.aperf = aperf;
1723         cpu->sample.mperf = mperf;
1724         cpu->sample.tsc =  tsc;
1725         cpu->sample.aperf -= cpu->prev_aperf;
1726         cpu->sample.mperf -= cpu->prev_mperf;
1727         cpu->sample.tsc -= cpu->prev_tsc;
1728
1729         cpu->prev_aperf = aperf;
1730         cpu->prev_mperf = mperf;
1731         cpu->prev_tsc = tsc;
1732         /*
1733          * First time this function is invoked in a given cycle, all of the
1734          * previous sample data fields are equal to zero or stale and they must
1735          * be populated with meaningful numbers for things to work, so assume
1736          * that sample.time will always be reset before setting the utilization
1737          * update hook and make the caller skip the sample then.
1738          */
1739         if (cpu->last_sample_time) {
1740                 intel_pstate_calc_avg_perf(cpu);
1741                 return true;
1742         }
1743         return false;
1744 }
1745
1746 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1747 {
1748         return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
1749 }
1750
1751 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1752 {
1753         return mul_ext_fp(cpu->pstate.max_pstate_physical,
1754                           cpu->sample.core_avg_perf);
1755 }
1756
1757 static inline int32_t get_target_pstate(struct cpudata *cpu)
1758 {
1759         struct sample *sample = &cpu->sample;
1760         int32_t busy_frac;
1761         int target, avg_pstate;
1762
1763         busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
1764                            sample->tsc);
1765
1766         if (busy_frac < cpu->iowait_boost)
1767                 busy_frac = cpu->iowait_boost;
1768
1769         sample->busy_scaled = busy_frac * 100;
1770
1771         target = global.no_turbo || global.turbo_disabled ?
1772                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
1773         target += target >> 2;
1774         target = mul_fp(target, busy_frac);
1775         if (target < cpu->pstate.min_pstate)
1776                 target = cpu->pstate.min_pstate;
1777
1778         /*
1779          * If the average P-state during the previous cycle was higher than the
1780          * current target, add 50% of the difference to the target to reduce
1781          * possible performance oscillations and offset possible performance
1782          * loss related to moving the workload from one CPU to another within
1783          * a package/module.
1784          */
1785         avg_pstate = get_avg_pstate(cpu);
1786         if (avg_pstate > target)
1787                 target += (avg_pstate - target) >> 1;
1788
1789         return target;
1790 }
1791
1792 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
1793 {
1794         int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
1795         int max_pstate = max(min_pstate, cpu->max_perf_ratio);
1796
1797         return clamp_t(int, pstate, min_pstate, max_pstate);
1798 }
1799
1800 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1801 {
1802         if (pstate == cpu->pstate.current_pstate)
1803                 return;
1804
1805         cpu->pstate.current_pstate = pstate;
1806         wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1807 }
1808
1809 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
1810 {
1811         int from = cpu->pstate.current_pstate;
1812         struct sample *sample;
1813         int target_pstate;
1814
1815         update_turbo_state();
1816
1817         target_pstate = get_target_pstate(cpu);
1818         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
1819         trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
1820         intel_pstate_update_pstate(cpu, target_pstate);
1821
1822         sample = &cpu->sample;
1823         trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
1824                 fp_toint(sample->busy_scaled),
1825                 from,
1826                 cpu->pstate.current_pstate,
1827                 sample->mperf,
1828                 sample->aperf,
1829                 sample->tsc,
1830                 get_avg_frequency(cpu),
1831                 fp_toint(cpu->iowait_boost * 100));
1832 }
1833
1834 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1835                                      unsigned int flags)
1836 {
1837         struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1838         u64 delta_ns;
1839
1840         /* Don't allow remote callbacks */
1841         if (smp_processor_id() != cpu->cpu)
1842                 return;
1843
1844         delta_ns = time - cpu->last_update;
1845         if (flags & SCHED_CPUFREQ_IOWAIT) {
1846                 /* Start over if the CPU may have been idle. */
1847                 if (delta_ns > TICK_NSEC) {
1848                         cpu->iowait_boost = ONE_EIGHTH_FP;
1849                 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
1850                         cpu->iowait_boost <<= 1;
1851                         if (cpu->iowait_boost > int_tofp(1))
1852                                 cpu->iowait_boost = int_tofp(1);
1853                 } else {
1854                         cpu->iowait_boost = ONE_EIGHTH_FP;
1855                 }
1856         } else if (cpu->iowait_boost) {
1857                 /* Clear iowait_boost if the CPU may have been idle. */
1858                 if (delta_ns > TICK_NSEC)
1859                         cpu->iowait_boost = 0;
1860                 else
1861                         cpu->iowait_boost >>= 1;
1862         }
1863         cpu->last_update = time;
1864         delta_ns = time - cpu->sample.time;
1865         if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
1866                 return;
1867
1868         if (intel_pstate_sample(cpu, time))
1869                 intel_pstate_adjust_pstate(cpu);
1870 }
1871
1872 static struct pstate_funcs core_funcs = {
1873         .get_max = core_get_max_pstate,
1874         .get_max_physical = core_get_max_pstate_physical,
1875         .get_min = core_get_min_pstate,
1876         .get_turbo = core_get_turbo_pstate,
1877         .get_scaling = core_get_scaling,
1878         .get_val = core_get_val,
1879 };
1880
1881 static const struct pstate_funcs silvermont_funcs = {
1882         .get_max = atom_get_max_pstate,
1883         .get_max_physical = atom_get_max_pstate,
1884         .get_min = atom_get_min_pstate,
1885         .get_turbo = atom_get_turbo_pstate,
1886         .get_val = atom_get_val,
1887         .get_scaling = silvermont_get_scaling,
1888         .get_vid = atom_get_vid,
1889 };
1890
1891 static const struct pstate_funcs airmont_funcs = {
1892         .get_max = atom_get_max_pstate,
1893         .get_max_physical = atom_get_max_pstate,
1894         .get_min = atom_get_min_pstate,
1895         .get_turbo = atom_get_turbo_pstate,
1896         .get_val = atom_get_val,
1897         .get_scaling = airmont_get_scaling,
1898         .get_vid = atom_get_vid,
1899 };
1900
1901 static const struct pstate_funcs knl_funcs = {
1902         .get_max = core_get_max_pstate,
1903         .get_max_physical = core_get_max_pstate_physical,
1904         .get_min = core_get_min_pstate,
1905         .get_turbo = knl_get_turbo_pstate,
1906         .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
1907         .get_scaling = core_get_scaling,
1908         .get_val = core_get_val,
1909 };
1910
1911 #define ICPU(model, policy) \
1912         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1913                         (unsigned long)&policy }
1914
1915 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1916         ICPU(INTEL_FAM6_SANDYBRIDGE,            core_funcs),
1917         ICPU(INTEL_FAM6_SANDYBRIDGE_X,          core_funcs),
1918         ICPU(INTEL_FAM6_ATOM_SILVERMONT,        silvermont_funcs),
1919         ICPU(INTEL_FAM6_IVYBRIDGE,              core_funcs),
1920         ICPU(INTEL_FAM6_HASWELL,                core_funcs),
1921         ICPU(INTEL_FAM6_BROADWELL,              core_funcs),
1922         ICPU(INTEL_FAM6_IVYBRIDGE_X,            core_funcs),
1923         ICPU(INTEL_FAM6_HASWELL_X,              core_funcs),
1924         ICPU(INTEL_FAM6_HASWELL_L,              core_funcs),
1925         ICPU(INTEL_FAM6_HASWELL_G,              core_funcs),
1926         ICPU(INTEL_FAM6_BROADWELL_G,            core_funcs),
1927         ICPU(INTEL_FAM6_ATOM_AIRMONT,           airmont_funcs),
1928         ICPU(INTEL_FAM6_SKYLAKE_L,              core_funcs),
1929         ICPU(INTEL_FAM6_BROADWELL_X,            core_funcs),
1930         ICPU(INTEL_FAM6_SKYLAKE,                core_funcs),
1931         ICPU(INTEL_FAM6_BROADWELL_D,            core_funcs),
1932         ICPU(INTEL_FAM6_XEON_PHI_KNL,           knl_funcs),
1933         ICPU(INTEL_FAM6_XEON_PHI_KNM,           knl_funcs),
1934         ICPU(INTEL_FAM6_ATOM_GOLDMONT,          core_funcs),
1935         ICPU(INTEL_FAM6_ATOM_GOLDMONT_PLUS,     core_funcs),
1936         ICPU(INTEL_FAM6_SKYLAKE_X,              core_funcs),
1937         {}
1938 };
1939 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1940
1941 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
1942         ICPU(INTEL_FAM6_BROADWELL_D, core_funcs),
1943         ICPU(INTEL_FAM6_BROADWELL_X, core_funcs),
1944         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1945         {}
1946 };
1947
1948 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
1949         ICPU(INTEL_FAM6_KABYLAKE, core_funcs),
1950         {}
1951 };
1952
1953 static const struct x86_cpu_id intel_pstate_hwp_boost_ids[] = {
1954         ICPU(INTEL_FAM6_SKYLAKE_X, core_funcs),
1955         ICPU(INTEL_FAM6_SKYLAKE, core_funcs),
1956         {}
1957 };
1958
1959 static int intel_pstate_init_cpu(unsigned int cpunum)
1960 {
1961         struct cpudata *cpu;
1962
1963         cpu = all_cpu_data[cpunum];
1964
1965         if (!cpu) {
1966                 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
1967                 if (!cpu)
1968                         return -ENOMEM;
1969
1970                 all_cpu_data[cpunum] = cpu;
1971
1972                 cpu->epp_default = -EINVAL;
1973                 cpu->epp_powersave = -EINVAL;
1974                 cpu->epp_saved = -EINVAL;
1975         }
1976
1977         cpu = all_cpu_data[cpunum];
1978
1979         cpu->cpu = cpunum;
1980
1981         if (hwp_active) {
1982                 const struct x86_cpu_id *id;
1983
1984                 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
1985                 if (id)
1986                         intel_pstate_disable_ee(cpunum);
1987
1988                 intel_pstate_hwp_enable(cpu);
1989
1990                 id = x86_match_cpu(intel_pstate_hwp_boost_ids);
1991                 if (id && intel_pstate_acpi_pm_profile_server())
1992                         hwp_boost = true;
1993         }
1994
1995         intel_pstate_get_cpu_pstates(cpu);
1996
1997         pr_debug("controlling: cpu %d\n", cpunum);
1998
1999         return 0;
2000 }
2001
2002 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2003 {
2004         struct cpudata *cpu = all_cpu_data[cpu_num];
2005
2006         if (hwp_active && !hwp_boost)
2007                 return;
2008
2009         if (cpu->update_util_set)
2010                 return;
2011
2012         /* Prevent intel_pstate_update_util() from using stale data. */
2013         cpu->sample.time = 0;
2014         cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2015                                      (hwp_active ?
2016                                       intel_pstate_update_util_hwp :
2017                                       intel_pstate_update_util));
2018         cpu->update_util_set = true;
2019 }
2020
2021 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2022 {
2023         struct cpudata *cpu_data = all_cpu_data[cpu];
2024
2025         if (!cpu_data->update_util_set)
2026                 return;
2027
2028         cpufreq_remove_update_util_hook(cpu);
2029         cpu_data->update_util_set = false;
2030         synchronize_rcu();
2031 }
2032
2033 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2034 {
2035         return global.turbo_disabled || global.no_turbo ?
2036                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2037 }
2038
2039 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2040                                             unsigned int policy_min,
2041                                             unsigned int policy_max)
2042 {
2043         int max_freq = intel_pstate_get_max_freq(cpu);
2044         int32_t max_policy_perf, min_policy_perf;
2045         int max_state, turbo_max;
2046
2047         /*
2048          * HWP needs some special consideration, because on BDX the
2049          * HWP_REQUEST uses abstract value to represent performance
2050          * rather than pure ratios.
2051          */
2052         if (hwp_active) {
2053                 intel_pstate_get_hwp_max(cpu->cpu, &turbo_max, &max_state);
2054         } else {
2055                 max_state = global.no_turbo || global.turbo_disabled ?
2056                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2057                 turbo_max = cpu->pstate.turbo_pstate;
2058         }
2059
2060         max_policy_perf = max_state * policy_max / max_freq;
2061         if (policy_max == policy_min) {
2062                 min_policy_perf = max_policy_perf;
2063         } else {
2064                 min_policy_perf = max_state * policy_min / max_freq;
2065                 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2066                                           0, max_policy_perf);
2067         }
2068
2069         pr_debug("cpu:%d max_state %d min_policy_perf:%d max_policy_perf:%d\n",
2070                  cpu->cpu, max_state, min_policy_perf, max_policy_perf);
2071
2072         /* Normalize user input to [min_perf, max_perf] */
2073         if (per_cpu_limits) {
2074                 cpu->min_perf_ratio = min_policy_perf;
2075                 cpu->max_perf_ratio = max_policy_perf;
2076         } else {
2077                 int32_t global_min, global_max;
2078
2079                 /* Global limits are in percent of the maximum turbo P-state. */
2080                 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2081                 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2082                 global_min = clamp_t(int32_t, global_min, 0, global_max);
2083
2084                 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2085                          global_min, global_max);
2086
2087                 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2088                 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2089                 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2090                 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2091
2092                 /* Make sure min_perf <= max_perf */
2093                 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2094                                           cpu->max_perf_ratio);
2095
2096         }
2097         pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2098                  cpu->max_perf_ratio,
2099                  cpu->min_perf_ratio);
2100 }
2101
2102 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2103 {
2104         struct cpudata *cpu;
2105
2106         if (!policy->cpuinfo.max_freq)
2107                 return -ENODEV;
2108
2109         pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2110                  policy->cpuinfo.max_freq, policy->max);
2111
2112         cpu = all_cpu_data[policy->cpu];
2113         cpu->policy = policy->policy;
2114
2115         mutex_lock(&intel_pstate_limits_lock);
2116
2117         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2118
2119         if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2120                 /*
2121                  * NOHZ_FULL CPUs need this as the governor callback may not
2122                  * be invoked on them.
2123                  */
2124                 intel_pstate_clear_update_util_hook(policy->cpu);
2125                 intel_pstate_max_within_limits(cpu);
2126         } else {
2127                 intel_pstate_set_update_util_hook(policy->cpu);
2128         }
2129
2130         if (hwp_active) {
2131                 /*
2132                  * When hwp_boost was active before and dynamically it
2133                  * was turned off, in that case we need to clear the
2134                  * update util hook.
2135                  */
2136                 if (!hwp_boost)
2137                         intel_pstate_clear_update_util_hook(policy->cpu);
2138                 intel_pstate_hwp_set(policy->cpu);
2139         }
2140
2141         mutex_unlock(&intel_pstate_limits_lock);
2142
2143         return 0;
2144 }
2145
2146 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2147                                            struct cpufreq_policy_data *policy)
2148 {
2149         if (!hwp_active &&
2150             cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2151             policy->max < policy->cpuinfo.max_freq &&
2152             policy->max > cpu->pstate.max_freq) {
2153                 pr_debug("policy->max > max non turbo frequency\n");
2154                 policy->max = policy->cpuinfo.max_freq;
2155         }
2156 }
2157
2158 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2159                                            struct cpufreq_policy_data *policy)
2160 {
2161         update_turbo_state();
2162         cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq,
2163                                      intel_pstate_get_max_freq(cpu));
2164
2165         intel_pstate_adjust_policy_max(cpu, policy);
2166 }
2167
2168 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2169 {
2170         intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2171
2172         return 0;
2173 }
2174
2175 static void intel_cpufreq_stop_cpu(struct cpufreq_policy *policy)
2176 {
2177         intel_pstate_set_min_pstate(all_cpu_data[policy->cpu]);
2178 }
2179
2180 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
2181 {
2182         pr_debug("CPU %d exiting\n", policy->cpu);
2183
2184         intel_pstate_clear_update_util_hook(policy->cpu);
2185         if (hwp_active) {
2186                 intel_pstate_hwp_save_state(policy);
2187                 intel_pstate_hwp_force_min_perf(policy->cpu);
2188         } else {
2189                 intel_cpufreq_stop_cpu(policy);
2190         }
2191 }
2192
2193 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2194 {
2195         intel_pstate_exit_perf_limits(policy);
2196
2197         policy->fast_switch_possible = false;
2198
2199         return 0;
2200 }
2201
2202 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2203 {
2204         struct cpudata *cpu;
2205         int rc;
2206
2207         rc = intel_pstate_init_cpu(policy->cpu);
2208         if (rc)
2209                 return rc;
2210
2211         cpu = all_cpu_data[policy->cpu];
2212
2213         cpu->max_perf_ratio = 0xFF;
2214         cpu->min_perf_ratio = 0;
2215
2216         policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
2217         policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
2218
2219         /* cpuinfo and default policy values */
2220         policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
2221         update_turbo_state();
2222         global.turbo_disabled_mf = global.turbo_disabled;
2223         policy->cpuinfo.max_freq = global.turbo_disabled ?
2224                         cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2225         policy->cpuinfo.max_freq *= cpu->pstate.scaling;
2226
2227         if (hwp_active) {
2228                 unsigned int max_freq;
2229
2230                 max_freq = global.turbo_disabled ?
2231                         cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2232                 if (max_freq < policy->cpuinfo.max_freq)
2233                         policy->cpuinfo.max_freq = max_freq;
2234         }
2235
2236         intel_pstate_init_acpi_perf_limits(policy);
2237
2238         policy->fast_switch_possible = true;
2239
2240         return 0;
2241 }
2242
2243 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2244 {
2245         int ret = __intel_pstate_cpu_init(policy);
2246
2247         if (ret)
2248                 return ret;
2249
2250         if (IS_ENABLED(CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE))
2251                 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
2252         else
2253                 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2254
2255         return 0;
2256 }
2257
2258 static struct cpufreq_driver intel_pstate = {
2259         .flags          = CPUFREQ_CONST_LOOPS,
2260         .verify         = intel_pstate_verify_policy,
2261         .setpolicy      = intel_pstate_set_policy,
2262         .suspend        = intel_pstate_hwp_save_state,
2263         .resume         = intel_pstate_resume,
2264         .init           = intel_pstate_cpu_init,
2265         .exit           = intel_pstate_cpu_exit,
2266         .stop_cpu       = intel_pstate_stop_cpu,
2267         .update_limits  = intel_pstate_update_limits,
2268         .name           = "intel_pstate",
2269 };
2270
2271 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
2272 {
2273         struct cpudata *cpu = all_cpu_data[policy->cpu];
2274
2275         intel_pstate_verify_cpu_policy(cpu, policy);
2276         intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2277
2278         return 0;
2279 }
2280
2281 /* Use of trace in passive mode:
2282  *
2283  * In passive mode the trace core_busy field (also known as the
2284  * performance field, and lablelled as such on the graphs; also known as
2285  * core_avg_perf) is not needed and so is re-assigned to indicate if the
2286  * driver call was via the normal or fast switch path. Various graphs
2287  * output from the intel_pstate_tracer.py utility that include core_busy
2288  * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
2289  * so we use 10 to indicate the the normal path through the driver, and
2290  * 90 to indicate the fast switch path through the driver.
2291  * The scaled_busy field is not used, and is set to 0.
2292  */
2293
2294 #define INTEL_PSTATE_TRACE_TARGET 10
2295 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
2296
2297 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
2298 {
2299         struct sample *sample;
2300
2301         if (!trace_pstate_sample_enabled())
2302                 return;
2303
2304         if (!intel_pstate_sample(cpu, ktime_get()))
2305                 return;
2306
2307         sample = &cpu->sample;
2308         trace_pstate_sample(trace_type,
2309                 0,
2310                 old_pstate,
2311                 cpu->pstate.current_pstate,
2312                 sample->mperf,
2313                 sample->aperf,
2314                 sample->tsc,
2315                 get_avg_frequency(cpu),
2316                 fp_toint(cpu->iowait_boost * 100));
2317 }
2318
2319 static int intel_cpufreq_target(struct cpufreq_policy *policy,
2320                                 unsigned int target_freq,
2321                                 unsigned int relation)
2322 {
2323         struct cpudata *cpu = all_cpu_data[policy->cpu];
2324         struct cpufreq_freqs freqs;
2325         int target_pstate, old_pstate;
2326
2327         update_turbo_state();
2328
2329         freqs.old = policy->cur;
2330         freqs.new = target_freq;
2331
2332         cpufreq_freq_transition_begin(policy, &freqs);
2333         switch (relation) {
2334         case CPUFREQ_RELATION_L:
2335                 target_pstate = DIV_ROUND_UP(freqs.new, cpu->pstate.scaling);
2336                 break;
2337         case CPUFREQ_RELATION_H:
2338                 target_pstate = freqs.new / cpu->pstate.scaling;
2339                 break;
2340         default:
2341                 target_pstate = DIV_ROUND_CLOSEST(freqs.new, cpu->pstate.scaling);
2342                 break;
2343         }
2344         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2345         old_pstate = cpu->pstate.current_pstate;
2346         if (target_pstate != cpu->pstate.current_pstate) {
2347                 cpu->pstate.current_pstate = target_pstate;
2348                 wrmsrl_on_cpu(policy->cpu, MSR_IA32_PERF_CTL,
2349                               pstate_funcs.get_val(cpu, target_pstate));
2350         }
2351         freqs.new = target_pstate * cpu->pstate.scaling;
2352         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_TARGET, old_pstate);
2353         cpufreq_freq_transition_end(policy, &freqs, false);
2354
2355         return 0;
2356 }
2357
2358 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
2359                                               unsigned int target_freq)
2360 {
2361         struct cpudata *cpu = all_cpu_data[policy->cpu];
2362         int target_pstate, old_pstate;
2363
2364         update_turbo_state();
2365
2366         target_pstate = DIV_ROUND_UP(target_freq, cpu->pstate.scaling);
2367         target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2368         old_pstate = cpu->pstate.current_pstate;
2369         intel_pstate_update_pstate(cpu, target_pstate);
2370         intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
2371         return target_pstate * cpu->pstate.scaling;
2372 }
2373
2374 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
2375 {
2376         int max_state, turbo_max, min_freq, max_freq, ret;
2377         struct freq_qos_request *req;
2378         struct cpudata *cpu;
2379         struct device *dev;
2380
2381         dev = get_cpu_device(policy->cpu);
2382         if (!dev)
2383                 return -ENODEV;
2384
2385         ret = __intel_pstate_cpu_init(policy);
2386         if (ret)
2387                 return ret;
2388
2389         policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
2390         policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
2391         /* This reflects the intel_pstate_get_cpu_pstates() setting. */
2392         policy->cur = policy->cpuinfo.min_freq;
2393
2394         req = kcalloc(2, sizeof(*req), GFP_KERNEL);
2395         if (!req) {
2396                 ret = -ENOMEM;
2397                 goto pstate_exit;
2398         }
2399
2400         cpu = all_cpu_data[policy->cpu];
2401
2402         if (hwp_active)
2403                 intel_pstate_get_hwp_max(policy->cpu, &turbo_max, &max_state);
2404         else
2405                 turbo_max = cpu->pstate.turbo_pstate;
2406
2407         min_freq = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2408         min_freq *= cpu->pstate.scaling;
2409         max_freq = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2410         max_freq *= cpu->pstate.scaling;
2411
2412         ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
2413                                    min_freq);
2414         if (ret < 0) {
2415                 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
2416                 goto free_req;
2417         }
2418
2419         ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
2420                                    max_freq);
2421         if (ret < 0) {
2422                 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
2423                 goto remove_min_req;
2424         }
2425
2426         policy->driver_data = req;
2427
2428         return 0;
2429
2430 remove_min_req:
2431         freq_qos_remove_request(req);
2432 free_req:
2433         kfree(req);
2434 pstate_exit:
2435         intel_pstate_exit_perf_limits(policy);
2436
2437         return ret;
2438 }
2439
2440 static int intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
2441 {
2442         struct freq_qos_request *req;
2443
2444         req = policy->driver_data;
2445
2446         freq_qos_remove_request(req + 1);
2447         freq_qos_remove_request(req);
2448         kfree(req);
2449
2450         return intel_pstate_cpu_exit(policy);
2451 }
2452
2453 static struct cpufreq_driver intel_cpufreq = {
2454         .flags          = CPUFREQ_CONST_LOOPS,
2455         .verify         = intel_cpufreq_verify_policy,
2456         .target         = intel_cpufreq_target,
2457         .fast_switch    = intel_cpufreq_fast_switch,
2458         .init           = intel_cpufreq_cpu_init,
2459         .exit           = intel_cpufreq_cpu_exit,
2460         .stop_cpu       = intel_cpufreq_stop_cpu,
2461         .update_limits  = intel_pstate_update_limits,
2462         .name           = "intel_cpufreq",
2463 };
2464
2465 static struct cpufreq_driver *default_driver = &intel_pstate;
2466
2467 static void intel_pstate_driver_cleanup(void)
2468 {
2469         unsigned int cpu;
2470
2471         get_online_cpus();
2472         for_each_online_cpu(cpu) {
2473                 if (all_cpu_data[cpu]) {
2474                         if (intel_pstate_driver == &intel_pstate)
2475                                 intel_pstate_clear_update_util_hook(cpu);
2476
2477                         kfree(all_cpu_data[cpu]);
2478                         all_cpu_data[cpu] = NULL;
2479                 }
2480         }
2481         put_online_cpus();
2482         intel_pstate_driver = NULL;
2483 }
2484
2485 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
2486 {
2487         int ret;
2488
2489         memset(&global, 0, sizeof(global));
2490         global.max_perf_pct = 100;
2491
2492         intel_pstate_driver = driver;
2493         ret = cpufreq_register_driver(intel_pstate_driver);
2494         if (ret) {
2495                 intel_pstate_driver_cleanup();
2496                 return ret;
2497         }
2498
2499         global.min_perf_pct = min_perf_pct_min();
2500
2501         return 0;
2502 }
2503
2504 static int intel_pstate_unregister_driver(void)
2505 {
2506         if (hwp_active)
2507                 return -EBUSY;
2508
2509         cpufreq_unregister_driver(intel_pstate_driver);
2510         intel_pstate_driver_cleanup();
2511
2512         return 0;
2513 }
2514
2515 static ssize_t intel_pstate_show_status(char *buf)
2516 {
2517         if (!intel_pstate_driver)
2518                 return sprintf(buf, "off\n");
2519
2520         return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
2521                                         "active" : "passive");
2522 }
2523
2524 static int intel_pstate_update_status(const char *buf, size_t size)
2525 {
2526         int ret;
2527
2528         if (size == 3 && !strncmp(buf, "off", size))
2529                 return intel_pstate_driver ?
2530                         intel_pstate_unregister_driver() : -EINVAL;
2531
2532         if (size == 6 && !strncmp(buf, "active", size)) {
2533                 if (intel_pstate_driver) {
2534                         if (intel_pstate_driver == &intel_pstate)
2535                                 return 0;
2536
2537                         ret = intel_pstate_unregister_driver();
2538                         if (ret)
2539                                 return ret;
2540                 }
2541
2542                 return intel_pstate_register_driver(&intel_pstate);
2543         }
2544
2545         if (size == 7 && !strncmp(buf, "passive", size)) {
2546                 if (intel_pstate_driver) {
2547                         if (intel_pstate_driver == &intel_cpufreq)
2548                                 return 0;
2549
2550                         ret = intel_pstate_unregister_driver();
2551                         if (ret)
2552                                 return ret;
2553                 }
2554
2555                 return intel_pstate_register_driver(&intel_cpufreq);
2556         }
2557
2558         return -EINVAL;
2559 }
2560
2561 static int no_load __initdata;
2562 static int no_hwp __initdata;
2563 static int hwp_only __initdata;
2564 static unsigned int force_load __initdata;
2565
2566 static int __init intel_pstate_msrs_not_valid(void)
2567 {
2568         if (!pstate_funcs.get_max() ||
2569             !pstate_funcs.get_min() ||
2570             !pstate_funcs.get_turbo())
2571                 return -ENODEV;
2572
2573         return 0;
2574 }
2575
2576 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
2577 {
2578         pstate_funcs.get_max   = funcs->get_max;
2579         pstate_funcs.get_max_physical = funcs->get_max_physical;
2580         pstate_funcs.get_min   = funcs->get_min;
2581         pstate_funcs.get_turbo = funcs->get_turbo;
2582         pstate_funcs.get_scaling = funcs->get_scaling;
2583         pstate_funcs.get_val   = funcs->get_val;
2584         pstate_funcs.get_vid   = funcs->get_vid;
2585         pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
2586 }
2587
2588 #ifdef CONFIG_ACPI
2589
2590 static bool __init intel_pstate_no_acpi_pss(void)
2591 {
2592         int i;
2593
2594         for_each_possible_cpu(i) {
2595                 acpi_status status;
2596                 union acpi_object *pss;
2597                 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
2598                 struct acpi_processor *pr = per_cpu(processors, i);
2599
2600                 if (!pr)
2601                         continue;
2602
2603                 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
2604                 if (ACPI_FAILURE(status))
2605                         continue;
2606
2607                 pss = buffer.pointer;
2608                 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
2609                         kfree(pss);
2610                         return false;
2611                 }
2612
2613                 kfree(pss);
2614         }
2615
2616         pr_debug("ACPI _PSS not found\n");
2617         return true;
2618 }
2619
2620 static bool __init intel_pstate_no_acpi_pcch(void)
2621 {
2622         acpi_status status;
2623         acpi_handle handle;
2624
2625         status = acpi_get_handle(NULL, "\\_SB", &handle);
2626         if (ACPI_FAILURE(status))
2627                 goto not_found;
2628
2629         if (acpi_has_method(handle, "PCCH"))
2630                 return false;
2631
2632 not_found:
2633         pr_debug("ACPI PCCH not found\n");
2634         return true;
2635 }
2636
2637 static bool __init intel_pstate_has_acpi_ppc(void)
2638 {
2639         int i;
2640
2641         for_each_possible_cpu(i) {
2642                 struct acpi_processor *pr = per_cpu(processors, i);
2643
2644                 if (!pr)
2645                         continue;
2646                 if (acpi_has_method(pr->handle, "_PPC"))
2647                         return true;
2648         }
2649         pr_debug("ACPI _PPC not found\n");
2650         return false;
2651 }
2652
2653 enum {
2654         PSS,
2655         PPC,
2656 };
2657
2658 /* Hardware vendor-specific info that has its own power management modes */
2659 static struct acpi_platform_list plat_info[] __initdata = {
2660         {"HP    ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
2661         {"ORACLE", "X4-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2662         {"ORACLE", "X4-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2663         {"ORACLE", "X4-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2664         {"ORACLE", "X3-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2665         {"ORACLE", "X3-2L   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2666         {"ORACLE", "X3-2B   ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2667         {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2668         {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2669         {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2670         {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2671         {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2672         {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2673         {"ORACLE", "X6-2    ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2674         {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
2675         { } /* End */
2676 };
2677
2678 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
2679 {
2680         const struct x86_cpu_id *id;
2681         u64 misc_pwr;
2682         int idx;
2683
2684         id = x86_match_cpu(intel_pstate_cpu_oob_ids);
2685         if (id) {
2686                 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
2687                 if (misc_pwr & (1 << 8)) {
2688                         pr_debug("Bit 8 in the MISC_PWR_MGMT MSR set\n");
2689                         return true;
2690                 }
2691         }
2692
2693         idx = acpi_match_platform_list(plat_info);
2694         if (idx < 0)
2695                 return false;
2696
2697         switch (plat_info[idx].data) {
2698         case PSS:
2699                 if (!intel_pstate_no_acpi_pss())
2700                         return false;
2701
2702                 return intel_pstate_no_acpi_pcch();
2703         case PPC:
2704                 return intel_pstate_has_acpi_ppc() && !force_load;
2705         }
2706
2707         return false;
2708 }
2709
2710 static void intel_pstate_request_control_from_smm(void)
2711 {
2712         /*
2713          * It may be unsafe to request P-states control from SMM if _PPC support
2714          * has not been enabled.
2715          */
2716         if (acpi_ppc)
2717                 acpi_processor_pstate_control();
2718 }
2719 #else /* CONFIG_ACPI not enabled */
2720 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
2721 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
2722 static inline void intel_pstate_request_control_from_smm(void) {}
2723 #endif /* CONFIG_ACPI */
2724
2725 #define INTEL_PSTATE_HWP_BROADWELL      0x01
2726
2727 #define ICPU_HWP(model, hwp_mode) \
2728         { X86_VENDOR_INTEL, 6, model, X86_FEATURE_HWP, hwp_mode }
2729
2730 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
2731         ICPU_HWP(INTEL_FAM6_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
2732         ICPU_HWP(INTEL_FAM6_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
2733         ICPU_HWP(X86_MODEL_ANY, 0),
2734         {}
2735 };
2736
2737 static int __init intel_pstate_init(void)
2738 {
2739         const struct x86_cpu_id *id;
2740         int rc;
2741
2742         if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2743                 return -ENODEV;
2744
2745         if (no_load)
2746                 return -ENODEV;
2747
2748         id = x86_match_cpu(hwp_support_ids);
2749         if (id) {
2750                 copy_cpu_funcs(&core_funcs);
2751                 if (!no_hwp) {
2752                         hwp_active++;
2753                         hwp_mode_bdw = id->driver_data;
2754                         intel_pstate.attr = hwp_cpufreq_attrs;
2755                         goto hwp_cpu_matched;
2756                 }
2757         } else {
2758                 id = x86_match_cpu(intel_pstate_cpu_ids);
2759                 if (!id) {
2760                         pr_info("CPU model not supported\n");
2761                         return -ENODEV;
2762                 }
2763
2764                 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
2765         }
2766
2767         if (intel_pstate_msrs_not_valid()) {
2768                 pr_info("Invalid MSRs\n");
2769                 return -ENODEV;
2770         }
2771
2772 hwp_cpu_matched:
2773         /*
2774          * The Intel pstate driver will be ignored if the platform
2775          * firmware has its own power management modes.
2776          */
2777         if (intel_pstate_platform_pwr_mgmt_exists()) {
2778                 pr_info("P-states controlled by the platform\n");
2779                 return -ENODEV;
2780         }
2781
2782         if (!hwp_active && hwp_only)
2783                 return -ENOTSUPP;
2784
2785         pr_info("Intel P-state driver initializing\n");
2786
2787         all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
2788         if (!all_cpu_data)
2789                 return -ENOMEM;
2790
2791         intel_pstate_request_control_from_smm();
2792
2793         intel_pstate_sysfs_expose_params();
2794
2795         mutex_lock(&intel_pstate_driver_lock);
2796         rc = intel_pstate_register_driver(default_driver);
2797         mutex_unlock(&intel_pstate_driver_lock);
2798         if (rc)
2799                 return rc;
2800
2801         if (hwp_active)
2802                 pr_info("HWP enabled\n");
2803
2804         return 0;
2805 }
2806 device_initcall(intel_pstate_init);
2807
2808 static int __init intel_pstate_setup(char *str)
2809 {
2810         if (!str)
2811                 return -EINVAL;
2812
2813         if (!strcmp(str, "disable")) {
2814                 no_load = 1;
2815         } else if (!strcmp(str, "passive")) {
2816                 pr_info("Passive mode enabled\n");
2817                 default_driver = &intel_cpufreq;
2818                 no_hwp = 1;
2819         }
2820         if (!strcmp(str, "no_hwp")) {
2821                 pr_info("HWP disabled\n");
2822                 no_hwp = 1;
2823         }
2824         if (!strcmp(str, "force"))
2825                 force_load = 1;
2826         if (!strcmp(str, "hwp_only"))
2827                 hwp_only = 1;
2828         if (!strcmp(str, "per_cpu_perf_limits"))
2829                 per_cpu_limits = true;
2830
2831 #ifdef CONFIG_ACPI
2832         if (!strcmp(str, "support_acpi_ppc"))
2833                 acpi_ppc = true;
2834 #endif
2835
2836         return 0;
2837 }
2838 early_param("intel_pstate", intel_pstate_setup);
2839
2840 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
2841 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
2842 MODULE_LICENSE("GPL");