regmap: fix page selection for noinc writes
[sfrench/cifs-2.6.git] / drivers / base / regmap / regmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Register map access API
4 //
5 // Copyright 2011 Wolfson Microelectronics plc
6 //
7 // Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/export.h>
12 #include <linux/mutex.h>
13 #include <linux/err.h>
14 #include <linux/property.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/delay.h>
18 #include <linux/log2.h>
19 #include <linux/hwspinlock.h>
20 #include <asm/unaligned.h>
21
22 #define CREATE_TRACE_POINTS
23 #include "trace.h"
24
25 #include "internal.h"
26
27 /*
28  * Sometimes for failures during very early init the trace
29  * infrastructure isn't available early enough to be used.  For this
30  * sort of problem defining LOG_DEVICE will add printks for basic
31  * register I/O on a specific device.
32  */
33 #undef LOG_DEVICE
34
35 #ifdef LOG_DEVICE
36 static inline bool regmap_should_log(struct regmap *map)
37 {
38         return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39 }
40 #else
41 static inline bool regmap_should_log(struct regmap *map) { return false; }
42 #endif
43
44
45 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46                                unsigned int mask, unsigned int val,
47                                bool *change, bool force_write);
48
49 static int _regmap_bus_reg_read(void *context, unsigned int reg,
50                                 unsigned int *val);
51 static int _regmap_bus_read(void *context, unsigned int reg,
52                             unsigned int *val);
53 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54                                        unsigned int val);
55 static int _regmap_bus_reg_write(void *context, unsigned int reg,
56                                  unsigned int val);
57 static int _regmap_bus_raw_write(void *context, unsigned int reg,
58                                  unsigned int val);
59
60 bool regmap_reg_in_ranges(unsigned int reg,
61                           const struct regmap_range *ranges,
62                           unsigned int nranges)
63 {
64         const struct regmap_range *r;
65         int i;
66
67         for (i = 0, r = ranges; i < nranges; i++, r++)
68                 if (regmap_reg_in_range(reg, r))
69                         return true;
70         return false;
71 }
72 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74 bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75                               const struct regmap_access_table *table)
76 {
77         /* Check "no ranges" first */
78         if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79                 return false;
80
81         /* In case zero "yes ranges" are supplied, any reg is OK */
82         if (!table->n_yes_ranges)
83                 return true;
84
85         return regmap_reg_in_ranges(reg, table->yes_ranges,
86                                     table->n_yes_ranges);
87 }
88 EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90 bool regmap_writeable(struct regmap *map, unsigned int reg)
91 {
92         if (map->max_register && reg > map->max_register)
93                 return false;
94
95         if (map->writeable_reg)
96                 return map->writeable_reg(map->dev, reg);
97
98         if (map->wr_table)
99                 return regmap_check_range_table(map, reg, map->wr_table);
100
101         return true;
102 }
103
104 bool regmap_cached(struct regmap *map, unsigned int reg)
105 {
106         int ret;
107         unsigned int val;
108
109         if (map->cache_type == REGCACHE_NONE)
110                 return false;
111
112         if (!map->cache_ops)
113                 return false;
114
115         if (map->max_register && reg > map->max_register)
116                 return false;
117
118         map->lock(map->lock_arg);
119         ret = regcache_read(map, reg, &val);
120         map->unlock(map->lock_arg);
121         if (ret)
122                 return false;
123
124         return true;
125 }
126
127 bool regmap_readable(struct regmap *map, unsigned int reg)
128 {
129         if (!map->reg_read)
130                 return false;
131
132         if (map->max_register && reg > map->max_register)
133                 return false;
134
135         if (map->format.format_write)
136                 return false;
137
138         if (map->readable_reg)
139                 return map->readable_reg(map->dev, reg);
140
141         if (map->rd_table)
142                 return regmap_check_range_table(map, reg, map->rd_table);
143
144         return true;
145 }
146
147 bool regmap_volatile(struct regmap *map, unsigned int reg)
148 {
149         if (!map->format.format_write && !regmap_readable(map, reg))
150                 return false;
151
152         if (map->volatile_reg)
153                 return map->volatile_reg(map->dev, reg);
154
155         if (map->volatile_table)
156                 return regmap_check_range_table(map, reg, map->volatile_table);
157
158         if (map->cache_ops)
159                 return false;
160         else
161                 return true;
162 }
163
164 bool regmap_precious(struct regmap *map, unsigned int reg)
165 {
166         if (!regmap_readable(map, reg))
167                 return false;
168
169         if (map->precious_reg)
170                 return map->precious_reg(map->dev, reg);
171
172         if (map->precious_table)
173                 return regmap_check_range_table(map, reg, map->precious_table);
174
175         return false;
176 }
177
178 bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179 {
180         if (map->writeable_noinc_reg)
181                 return map->writeable_noinc_reg(map->dev, reg);
182
183         if (map->wr_noinc_table)
184                 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186         return true;
187 }
188
189 bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190 {
191         if (map->readable_noinc_reg)
192                 return map->readable_noinc_reg(map->dev, reg);
193
194         if (map->rd_noinc_table)
195                 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197         return true;
198 }
199
200 static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201         size_t num)
202 {
203         unsigned int i;
204
205         for (i = 0; i < num; i++)
206                 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207                         return false;
208
209         return true;
210 }
211
212 static void regmap_format_2_6_write(struct regmap *map,
213                                      unsigned int reg, unsigned int val)
214 {
215         u8 *out = map->work_buf;
216
217         *out = (reg << 6) | val;
218 }
219
220 static void regmap_format_4_12_write(struct regmap *map,
221                                      unsigned int reg, unsigned int val)
222 {
223         __be16 *out = map->work_buf;
224         *out = cpu_to_be16((reg << 12) | val);
225 }
226
227 static void regmap_format_7_9_write(struct regmap *map,
228                                     unsigned int reg, unsigned int val)
229 {
230         __be16 *out = map->work_buf;
231         *out = cpu_to_be16((reg << 9) | val);
232 }
233
234 static void regmap_format_10_14_write(struct regmap *map,
235                                     unsigned int reg, unsigned int val)
236 {
237         u8 *out = map->work_buf;
238
239         out[2] = val;
240         out[1] = (val >> 8) | (reg << 6);
241         out[0] = reg >> 2;
242 }
243
244 static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
245 {
246         u8 *b = buf;
247
248         b[0] = val << shift;
249 }
250
251 static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
252 {
253         put_unaligned_be16(val << shift, buf);
254 }
255
256 static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
257 {
258         put_unaligned_le16(val << shift, buf);
259 }
260
261 static void regmap_format_16_native(void *buf, unsigned int val,
262                                     unsigned int shift)
263 {
264         u16 v = val << shift;
265
266         memcpy(buf, &v, sizeof(v));
267 }
268
269 static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
270 {
271         u8 *b = buf;
272
273         val <<= shift;
274
275         b[0] = val >> 16;
276         b[1] = val >> 8;
277         b[2] = val;
278 }
279
280 static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
281 {
282         put_unaligned_be32(val << shift, buf);
283 }
284
285 static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
286 {
287         put_unaligned_le32(val << shift, buf);
288 }
289
290 static void regmap_format_32_native(void *buf, unsigned int val,
291                                     unsigned int shift)
292 {
293         u32 v = val << shift;
294
295         memcpy(buf, &v, sizeof(v));
296 }
297
298 #ifdef CONFIG_64BIT
299 static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
300 {
301         put_unaligned_be64((u64) val << shift, buf);
302 }
303
304 static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
305 {
306         put_unaligned_le64((u64) val << shift, buf);
307 }
308
309 static void regmap_format_64_native(void *buf, unsigned int val,
310                                     unsigned int shift)
311 {
312         u64 v = (u64) val << shift;
313
314         memcpy(buf, &v, sizeof(v));
315 }
316 #endif
317
318 static void regmap_parse_inplace_noop(void *buf)
319 {
320 }
321
322 static unsigned int regmap_parse_8(const void *buf)
323 {
324         const u8 *b = buf;
325
326         return b[0];
327 }
328
329 static unsigned int regmap_parse_16_be(const void *buf)
330 {
331         return get_unaligned_be16(buf);
332 }
333
334 static unsigned int regmap_parse_16_le(const void *buf)
335 {
336         return get_unaligned_le16(buf);
337 }
338
339 static void regmap_parse_16_be_inplace(void *buf)
340 {
341         u16 v = get_unaligned_be16(buf);
342
343         memcpy(buf, &v, sizeof(v));
344 }
345
346 static void regmap_parse_16_le_inplace(void *buf)
347 {
348         u16 v = get_unaligned_le16(buf);
349
350         memcpy(buf, &v, sizeof(v));
351 }
352
353 static unsigned int regmap_parse_16_native(const void *buf)
354 {
355         u16 v;
356
357         memcpy(&v, buf, sizeof(v));
358         return v;
359 }
360
361 static unsigned int regmap_parse_24(const void *buf)
362 {
363         const u8 *b = buf;
364         unsigned int ret = b[2];
365         ret |= ((unsigned int)b[1]) << 8;
366         ret |= ((unsigned int)b[0]) << 16;
367
368         return ret;
369 }
370
371 static unsigned int regmap_parse_32_be(const void *buf)
372 {
373         return get_unaligned_be32(buf);
374 }
375
376 static unsigned int regmap_parse_32_le(const void *buf)
377 {
378         return get_unaligned_le32(buf);
379 }
380
381 static void regmap_parse_32_be_inplace(void *buf)
382 {
383         u32 v = get_unaligned_be32(buf);
384
385         memcpy(buf, &v, sizeof(v));
386 }
387
388 static void regmap_parse_32_le_inplace(void *buf)
389 {
390         u32 v = get_unaligned_le32(buf);
391
392         memcpy(buf, &v, sizeof(v));
393 }
394
395 static unsigned int regmap_parse_32_native(const void *buf)
396 {
397         u32 v;
398
399         memcpy(&v, buf, sizeof(v));
400         return v;
401 }
402
403 #ifdef CONFIG_64BIT
404 static unsigned int regmap_parse_64_be(const void *buf)
405 {
406         return get_unaligned_be64(buf);
407 }
408
409 static unsigned int regmap_parse_64_le(const void *buf)
410 {
411         return get_unaligned_le64(buf);
412 }
413
414 static void regmap_parse_64_be_inplace(void *buf)
415 {
416         u64 v =  get_unaligned_be64(buf);
417
418         memcpy(buf, &v, sizeof(v));
419 }
420
421 static void regmap_parse_64_le_inplace(void *buf)
422 {
423         u64 v = get_unaligned_le64(buf);
424
425         memcpy(buf, &v, sizeof(v));
426 }
427
428 static unsigned int regmap_parse_64_native(const void *buf)
429 {
430         u64 v;
431
432         memcpy(&v, buf, sizeof(v));
433         return v;
434 }
435 #endif
436
437 static void regmap_lock_hwlock(void *__map)
438 {
439         struct regmap *map = __map;
440
441         hwspin_lock_timeout(map->hwlock, UINT_MAX);
442 }
443
444 static void regmap_lock_hwlock_irq(void *__map)
445 {
446         struct regmap *map = __map;
447
448         hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
449 }
450
451 static void regmap_lock_hwlock_irqsave(void *__map)
452 {
453         struct regmap *map = __map;
454
455         hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
456                                     &map->spinlock_flags);
457 }
458
459 static void regmap_unlock_hwlock(void *__map)
460 {
461         struct regmap *map = __map;
462
463         hwspin_unlock(map->hwlock);
464 }
465
466 static void regmap_unlock_hwlock_irq(void *__map)
467 {
468         struct regmap *map = __map;
469
470         hwspin_unlock_irq(map->hwlock);
471 }
472
473 static void regmap_unlock_hwlock_irqrestore(void *__map)
474 {
475         struct regmap *map = __map;
476
477         hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
478 }
479
480 static void regmap_lock_unlock_none(void *__map)
481 {
482
483 }
484
485 static void regmap_lock_mutex(void *__map)
486 {
487         struct regmap *map = __map;
488         mutex_lock(&map->mutex);
489 }
490
491 static void regmap_unlock_mutex(void *__map)
492 {
493         struct regmap *map = __map;
494         mutex_unlock(&map->mutex);
495 }
496
497 static void regmap_lock_spinlock(void *__map)
498 __acquires(&map->spinlock)
499 {
500         struct regmap *map = __map;
501         unsigned long flags;
502
503         spin_lock_irqsave(&map->spinlock, flags);
504         map->spinlock_flags = flags;
505 }
506
507 static void regmap_unlock_spinlock(void *__map)
508 __releases(&map->spinlock)
509 {
510         struct regmap *map = __map;
511         spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
512 }
513
514 static void dev_get_regmap_release(struct device *dev, void *res)
515 {
516         /*
517          * We don't actually have anything to do here; the goal here
518          * is not to manage the regmap but to provide a simple way to
519          * get the regmap back given a struct device.
520          */
521 }
522
523 static bool _regmap_range_add(struct regmap *map,
524                               struct regmap_range_node *data)
525 {
526         struct rb_root *root = &map->range_tree;
527         struct rb_node **new = &(root->rb_node), *parent = NULL;
528
529         while (*new) {
530                 struct regmap_range_node *this =
531                         rb_entry(*new, struct regmap_range_node, node);
532
533                 parent = *new;
534                 if (data->range_max < this->range_min)
535                         new = &((*new)->rb_left);
536                 else if (data->range_min > this->range_max)
537                         new = &((*new)->rb_right);
538                 else
539                         return false;
540         }
541
542         rb_link_node(&data->node, parent, new);
543         rb_insert_color(&data->node, root);
544
545         return true;
546 }
547
548 static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
549                                                       unsigned int reg)
550 {
551         struct rb_node *node = map->range_tree.rb_node;
552
553         while (node) {
554                 struct regmap_range_node *this =
555                         rb_entry(node, struct regmap_range_node, node);
556
557                 if (reg < this->range_min)
558                         node = node->rb_left;
559                 else if (reg > this->range_max)
560                         node = node->rb_right;
561                 else
562                         return this;
563         }
564
565         return NULL;
566 }
567
568 static void regmap_range_exit(struct regmap *map)
569 {
570         struct rb_node *next;
571         struct regmap_range_node *range_node;
572
573         next = rb_first(&map->range_tree);
574         while (next) {
575                 range_node = rb_entry(next, struct regmap_range_node, node);
576                 next = rb_next(&range_node->node);
577                 rb_erase(&range_node->node, &map->range_tree);
578                 kfree(range_node);
579         }
580
581         kfree(map->selector_work_buf);
582 }
583
584 static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
585 {
586         if (config->name) {
587                 const char *name = kstrdup_const(config->name, GFP_KERNEL);
588
589                 if (!name)
590                         return -ENOMEM;
591
592                 kfree_const(map->name);
593                 map->name = name;
594         }
595
596         return 0;
597 }
598
599 int regmap_attach_dev(struct device *dev, struct regmap *map,
600                       const struct regmap_config *config)
601 {
602         struct regmap **m;
603         int ret;
604
605         map->dev = dev;
606
607         ret = regmap_set_name(map, config);
608         if (ret)
609                 return ret;
610
611         regmap_debugfs_init(map);
612
613         /* Add a devres resource for dev_get_regmap() */
614         m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
615         if (!m) {
616                 regmap_debugfs_exit(map);
617                 return -ENOMEM;
618         }
619         *m = map;
620         devres_add(dev, m);
621
622         return 0;
623 }
624 EXPORT_SYMBOL_GPL(regmap_attach_dev);
625
626 static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
627                                         const struct regmap_config *config)
628 {
629         enum regmap_endian endian;
630
631         /* Retrieve the endianness specification from the regmap config */
632         endian = config->reg_format_endian;
633
634         /* If the regmap config specified a non-default value, use that */
635         if (endian != REGMAP_ENDIAN_DEFAULT)
636                 return endian;
637
638         /* Retrieve the endianness specification from the bus config */
639         if (bus && bus->reg_format_endian_default)
640                 endian = bus->reg_format_endian_default;
641
642         /* If the bus specified a non-default value, use that */
643         if (endian != REGMAP_ENDIAN_DEFAULT)
644                 return endian;
645
646         /* Use this if no other value was found */
647         return REGMAP_ENDIAN_BIG;
648 }
649
650 enum regmap_endian regmap_get_val_endian(struct device *dev,
651                                          const struct regmap_bus *bus,
652                                          const struct regmap_config *config)
653 {
654         struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
655         enum regmap_endian endian;
656
657         /* Retrieve the endianness specification from the regmap config */
658         endian = config->val_format_endian;
659
660         /* If the regmap config specified a non-default value, use that */
661         if (endian != REGMAP_ENDIAN_DEFAULT)
662                 return endian;
663
664         /* If the firmware node exist try to get endianness from it */
665         if (fwnode_property_read_bool(fwnode, "big-endian"))
666                 endian = REGMAP_ENDIAN_BIG;
667         else if (fwnode_property_read_bool(fwnode, "little-endian"))
668                 endian = REGMAP_ENDIAN_LITTLE;
669         else if (fwnode_property_read_bool(fwnode, "native-endian"))
670                 endian = REGMAP_ENDIAN_NATIVE;
671
672         /* If the endianness was specified in fwnode, use that */
673         if (endian != REGMAP_ENDIAN_DEFAULT)
674                 return endian;
675
676         /* Retrieve the endianness specification from the bus config */
677         if (bus && bus->val_format_endian_default)
678                 endian = bus->val_format_endian_default;
679
680         /* If the bus specified a non-default value, use that */
681         if (endian != REGMAP_ENDIAN_DEFAULT)
682                 return endian;
683
684         /* Use this if no other value was found */
685         return REGMAP_ENDIAN_BIG;
686 }
687 EXPORT_SYMBOL_GPL(regmap_get_val_endian);
688
689 struct regmap *__regmap_init(struct device *dev,
690                              const struct regmap_bus *bus,
691                              void *bus_context,
692                              const struct regmap_config *config,
693                              struct lock_class_key *lock_key,
694                              const char *lock_name)
695 {
696         struct regmap *map;
697         int ret = -EINVAL;
698         enum regmap_endian reg_endian, val_endian;
699         int i, j;
700
701         if (!config)
702                 goto err;
703
704         map = kzalloc(sizeof(*map), GFP_KERNEL);
705         if (map == NULL) {
706                 ret = -ENOMEM;
707                 goto err;
708         }
709
710         ret = regmap_set_name(map, config);
711         if (ret)
712                 goto err_map;
713
714         if (config->disable_locking) {
715                 map->lock = map->unlock = regmap_lock_unlock_none;
716                 regmap_debugfs_disable(map);
717         } else if (config->lock && config->unlock) {
718                 map->lock = config->lock;
719                 map->unlock = config->unlock;
720                 map->lock_arg = config->lock_arg;
721         } else if (config->use_hwlock) {
722                 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
723                 if (!map->hwlock) {
724                         ret = -ENXIO;
725                         goto err_name;
726                 }
727
728                 switch (config->hwlock_mode) {
729                 case HWLOCK_IRQSTATE:
730                         map->lock = regmap_lock_hwlock_irqsave;
731                         map->unlock = regmap_unlock_hwlock_irqrestore;
732                         break;
733                 case HWLOCK_IRQ:
734                         map->lock = regmap_lock_hwlock_irq;
735                         map->unlock = regmap_unlock_hwlock_irq;
736                         break;
737                 default:
738                         map->lock = regmap_lock_hwlock;
739                         map->unlock = regmap_unlock_hwlock;
740                         break;
741                 }
742
743                 map->lock_arg = map;
744         } else {
745                 if ((bus && bus->fast_io) ||
746                     config->fast_io) {
747                         spin_lock_init(&map->spinlock);
748                         map->lock = regmap_lock_spinlock;
749                         map->unlock = regmap_unlock_spinlock;
750                         lockdep_set_class_and_name(&map->spinlock,
751                                                    lock_key, lock_name);
752                 } else {
753                         mutex_init(&map->mutex);
754                         map->lock = regmap_lock_mutex;
755                         map->unlock = regmap_unlock_mutex;
756                         lockdep_set_class_and_name(&map->mutex,
757                                                    lock_key, lock_name);
758                 }
759                 map->lock_arg = map;
760         }
761
762         /*
763          * When we write in fast-paths with regmap_bulk_write() don't allocate
764          * scratch buffers with sleeping allocations.
765          */
766         if ((bus && bus->fast_io) || config->fast_io)
767                 map->alloc_flags = GFP_ATOMIC;
768         else
769                 map->alloc_flags = GFP_KERNEL;
770
771         map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
772         map->format.pad_bytes = config->pad_bits / 8;
773         map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
774         map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
775                         config->val_bits + config->pad_bits, 8);
776         map->reg_shift = config->pad_bits % 8;
777         if (config->reg_stride)
778                 map->reg_stride = config->reg_stride;
779         else
780                 map->reg_stride = 1;
781         if (is_power_of_2(map->reg_stride))
782                 map->reg_stride_order = ilog2(map->reg_stride);
783         else
784                 map->reg_stride_order = -1;
785         map->use_single_read = config->use_single_read || !bus || !bus->read;
786         map->use_single_write = config->use_single_write || !bus || !bus->write;
787         map->can_multi_write = config->can_multi_write && bus && bus->write;
788         if (bus) {
789                 map->max_raw_read = bus->max_raw_read;
790                 map->max_raw_write = bus->max_raw_write;
791         }
792         map->dev = dev;
793         map->bus = bus;
794         map->bus_context = bus_context;
795         map->max_register = config->max_register;
796         map->wr_table = config->wr_table;
797         map->rd_table = config->rd_table;
798         map->volatile_table = config->volatile_table;
799         map->precious_table = config->precious_table;
800         map->wr_noinc_table = config->wr_noinc_table;
801         map->rd_noinc_table = config->rd_noinc_table;
802         map->writeable_reg = config->writeable_reg;
803         map->readable_reg = config->readable_reg;
804         map->volatile_reg = config->volatile_reg;
805         map->precious_reg = config->precious_reg;
806         map->writeable_noinc_reg = config->writeable_noinc_reg;
807         map->readable_noinc_reg = config->readable_noinc_reg;
808         map->cache_type = config->cache_type;
809
810         spin_lock_init(&map->async_lock);
811         INIT_LIST_HEAD(&map->async_list);
812         INIT_LIST_HEAD(&map->async_free);
813         init_waitqueue_head(&map->async_waitq);
814
815         if (config->read_flag_mask ||
816             config->write_flag_mask ||
817             config->zero_flag_mask) {
818                 map->read_flag_mask = config->read_flag_mask;
819                 map->write_flag_mask = config->write_flag_mask;
820         } else if (bus) {
821                 map->read_flag_mask = bus->read_flag_mask;
822         }
823
824         if (!bus) {
825                 map->reg_read  = config->reg_read;
826                 map->reg_write = config->reg_write;
827
828                 map->defer_caching = false;
829                 goto skip_format_initialization;
830         } else if (!bus->read || !bus->write) {
831                 map->reg_read = _regmap_bus_reg_read;
832                 map->reg_write = _regmap_bus_reg_write;
833                 map->reg_update_bits = bus->reg_update_bits;
834
835                 map->defer_caching = false;
836                 goto skip_format_initialization;
837         } else {
838                 map->reg_read  = _regmap_bus_read;
839                 map->reg_update_bits = bus->reg_update_bits;
840         }
841
842         reg_endian = regmap_get_reg_endian(bus, config);
843         val_endian = regmap_get_val_endian(dev, bus, config);
844
845         switch (config->reg_bits + map->reg_shift) {
846         case 2:
847                 switch (config->val_bits) {
848                 case 6:
849                         map->format.format_write = regmap_format_2_6_write;
850                         break;
851                 default:
852                         goto err_hwlock;
853                 }
854                 break;
855
856         case 4:
857                 switch (config->val_bits) {
858                 case 12:
859                         map->format.format_write = regmap_format_4_12_write;
860                         break;
861                 default:
862                         goto err_hwlock;
863                 }
864                 break;
865
866         case 7:
867                 switch (config->val_bits) {
868                 case 9:
869                         map->format.format_write = regmap_format_7_9_write;
870                         break;
871                 default:
872                         goto err_hwlock;
873                 }
874                 break;
875
876         case 10:
877                 switch (config->val_bits) {
878                 case 14:
879                         map->format.format_write = regmap_format_10_14_write;
880                         break;
881                 default:
882                         goto err_hwlock;
883                 }
884                 break;
885
886         case 8:
887                 map->format.format_reg = regmap_format_8;
888                 break;
889
890         case 16:
891                 switch (reg_endian) {
892                 case REGMAP_ENDIAN_BIG:
893                         map->format.format_reg = regmap_format_16_be;
894                         break;
895                 case REGMAP_ENDIAN_LITTLE:
896                         map->format.format_reg = regmap_format_16_le;
897                         break;
898                 case REGMAP_ENDIAN_NATIVE:
899                         map->format.format_reg = regmap_format_16_native;
900                         break;
901                 default:
902                         goto err_hwlock;
903                 }
904                 break;
905
906         case 24:
907                 if (reg_endian != REGMAP_ENDIAN_BIG)
908                         goto err_hwlock;
909                 map->format.format_reg = regmap_format_24;
910                 break;
911
912         case 32:
913                 switch (reg_endian) {
914                 case REGMAP_ENDIAN_BIG:
915                         map->format.format_reg = regmap_format_32_be;
916                         break;
917                 case REGMAP_ENDIAN_LITTLE:
918                         map->format.format_reg = regmap_format_32_le;
919                         break;
920                 case REGMAP_ENDIAN_NATIVE:
921                         map->format.format_reg = regmap_format_32_native;
922                         break;
923                 default:
924                         goto err_hwlock;
925                 }
926                 break;
927
928 #ifdef CONFIG_64BIT
929         case 64:
930                 switch (reg_endian) {
931                 case REGMAP_ENDIAN_BIG:
932                         map->format.format_reg = regmap_format_64_be;
933                         break;
934                 case REGMAP_ENDIAN_LITTLE:
935                         map->format.format_reg = regmap_format_64_le;
936                         break;
937                 case REGMAP_ENDIAN_NATIVE:
938                         map->format.format_reg = regmap_format_64_native;
939                         break;
940                 default:
941                         goto err_hwlock;
942                 }
943                 break;
944 #endif
945
946         default:
947                 goto err_hwlock;
948         }
949
950         if (val_endian == REGMAP_ENDIAN_NATIVE)
951                 map->format.parse_inplace = regmap_parse_inplace_noop;
952
953         switch (config->val_bits) {
954         case 8:
955                 map->format.format_val = regmap_format_8;
956                 map->format.parse_val = regmap_parse_8;
957                 map->format.parse_inplace = regmap_parse_inplace_noop;
958                 break;
959         case 16:
960                 switch (val_endian) {
961                 case REGMAP_ENDIAN_BIG:
962                         map->format.format_val = regmap_format_16_be;
963                         map->format.parse_val = regmap_parse_16_be;
964                         map->format.parse_inplace = regmap_parse_16_be_inplace;
965                         break;
966                 case REGMAP_ENDIAN_LITTLE:
967                         map->format.format_val = regmap_format_16_le;
968                         map->format.parse_val = regmap_parse_16_le;
969                         map->format.parse_inplace = regmap_parse_16_le_inplace;
970                         break;
971                 case REGMAP_ENDIAN_NATIVE:
972                         map->format.format_val = regmap_format_16_native;
973                         map->format.parse_val = regmap_parse_16_native;
974                         break;
975                 default:
976                         goto err_hwlock;
977                 }
978                 break;
979         case 24:
980                 if (val_endian != REGMAP_ENDIAN_BIG)
981                         goto err_hwlock;
982                 map->format.format_val = regmap_format_24;
983                 map->format.parse_val = regmap_parse_24;
984                 break;
985         case 32:
986                 switch (val_endian) {
987                 case REGMAP_ENDIAN_BIG:
988                         map->format.format_val = regmap_format_32_be;
989                         map->format.parse_val = regmap_parse_32_be;
990                         map->format.parse_inplace = regmap_parse_32_be_inplace;
991                         break;
992                 case REGMAP_ENDIAN_LITTLE:
993                         map->format.format_val = regmap_format_32_le;
994                         map->format.parse_val = regmap_parse_32_le;
995                         map->format.parse_inplace = regmap_parse_32_le_inplace;
996                         break;
997                 case REGMAP_ENDIAN_NATIVE:
998                         map->format.format_val = regmap_format_32_native;
999                         map->format.parse_val = regmap_parse_32_native;
1000                         break;
1001                 default:
1002                         goto err_hwlock;
1003                 }
1004                 break;
1005 #ifdef CONFIG_64BIT
1006         case 64:
1007                 switch (val_endian) {
1008                 case REGMAP_ENDIAN_BIG:
1009                         map->format.format_val = regmap_format_64_be;
1010                         map->format.parse_val = regmap_parse_64_be;
1011                         map->format.parse_inplace = regmap_parse_64_be_inplace;
1012                         break;
1013                 case REGMAP_ENDIAN_LITTLE:
1014                         map->format.format_val = regmap_format_64_le;
1015                         map->format.parse_val = regmap_parse_64_le;
1016                         map->format.parse_inplace = regmap_parse_64_le_inplace;
1017                         break;
1018                 case REGMAP_ENDIAN_NATIVE:
1019                         map->format.format_val = regmap_format_64_native;
1020                         map->format.parse_val = regmap_parse_64_native;
1021                         break;
1022                 default:
1023                         goto err_hwlock;
1024                 }
1025                 break;
1026 #endif
1027         }
1028
1029         if (map->format.format_write) {
1030                 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1031                     (val_endian != REGMAP_ENDIAN_BIG))
1032                         goto err_hwlock;
1033                 map->use_single_write = true;
1034         }
1035
1036         if (!map->format.format_write &&
1037             !(map->format.format_reg && map->format.format_val))
1038                 goto err_hwlock;
1039
1040         map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1041         if (map->work_buf == NULL) {
1042                 ret = -ENOMEM;
1043                 goto err_hwlock;
1044         }
1045
1046         if (map->format.format_write) {
1047                 map->defer_caching = false;
1048                 map->reg_write = _regmap_bus_formatted_write;
1049         } else if (map->format.format_val) {
1050                 map->defer_caching = true;
1051                 map->reg_write = _regmap_bus_raw_write;
1052         }
1053
1054 skip_format_initialization:
1055
1056         map->range_tree = RB_ROOT;
1057         for (i = 0; i < config->num_ranges; i++) {
1058                 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1059                 struct regmap_range_node *new;
1060
1061                 /* Sanity check */
1062                 if (range_cfg->range_max < range_cfg->range_min) {
1063                         dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1064                                 range_cfg->range_max, range_cfg->range_min);
1065                         goto err_range;
1066                 }
1067
1068                 if (range_cfg->range_max > map->max_register) {
1069                         dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1070                                 range_cfg->range_max, map->max_register);
1071                         goto err_range;
1072                 }
1073
1074                 if (range_cfg->selector_reg > map->max_register) {
1075                         dev_err(map->dev,
1076                                 "Invalid range %d: selector out of map\n", i);
1077                         goto err_range;
1078                 }
1079
1080                 if (range_cfg->window_len == 0) {
1081                         dev_err(map->dev, "Invalid range %d: window_len 0\n",
1082                                 i);
1083                         goto err_range;
1084                 }
1085
1086                 /* Make sure, that this register range has no selector
1087                    or data window within its boundary */
1088                 for (j = 0; j < config->num_ranges; j++) {
1089                         unsigned sel_reg = config->ranges[j].selector_reg;
1090                         unsigned win_min = config->ranges[j].window_start;
1091                         unsigned win_max = win_min +
1092                                            config->ranges[j].window_len - 1;
1093
1094                         /* Allow data window inside its own virtual range */
1095                         if (j == i)
1096                                 continue;
1097
1098                         if (range_cfg->range_min <= sel_reg &&
1099                             sel_reg <= range_cfg->range_max) {
1100                                 dev_err(map->dev,
1101                                         "Range %d: selector for %d in window\n",
1102                                         i, j);
1103                                 goto err_range;
1104                         }
1105
1106                         if (!(win_max < range_cfg->range_min ||
1107                               win_min > range_cfg->range_max)) {
1108                                 dev_err(map->dev,
1109                                         "Range %d: window for %d in window\n",
1110                                         i, j);
1111                                 goto err_range;
1112                         }
1113                 }
1114
1115                 new = kzalloc(sizeof(*new), GFP_KERNEL);
1116                 if (new == NULL) {
1117                         ret = -ENOMEM;
1118                         goto err_range;
1119                 }
1120
1121                 new->map = map;
1122                 new->name = range_cfg->name;
1123                 new->range_min = range_cfg->range_min;
1124                 new->range_max = range_cfg->range_max;
1125                 new->selector_reg = range_cfg->selector_reg;
1126                 new->selector_mask = range_cfg->selector_mask;
1127                 new->selector_shift = range_cfg->selector_shift;
1128                 new->window_start = range_cfg->window_start;
1129                 new->window_len = range_cfg->window_len;
1130
1131                 if (!_regmap_range_add(map, new)) {
1132                         dev_err(map->dev, "Failed to add range %d\n", i);
1133                         kfree(new);
1134                         goto err_range;
1135                 }
1136
1137                 if (map->selector_work_buf == NULL) {
1138                         map->selector_work_buf =
1139                                 kzalloc(map->format.buf_size, GFP_KERNEL);
1140                         if (map->selector_work_buf == NULL) {
1141                                 ret = -ENOMEM;
1142                                 goto err_range;
1143                         }
1144                 }
1145         }
1146
1147         ret = regcache_init(map, config);
1148         if (ret != 0)
1149                 goto err_range;
1150
1151         if (dev) {
1152                 ret = regmap_attach_dev(dev, map, config);
1153                 if (ret != 0)
1154                         goto err_regcache;
1155         } else {
1156                 regmap_debugfs_init(map);
1157         }
1158
1159         return map;
1160
1161 err_regcache:
1162         regcache_exit(map);
1163 err_range:
1164         regmap_range_exit(map);
1165         kfree(map->work_buf);
1166 err_hwlock:
1167         if (map->hwlock)
1168                 hwspin_lock_free(map->hwlock);
1169 err_name:
1170         kfree_const(map->name);
1171 err_map:
1172         kfree(map);
1173 err:
1174         return ERR_PTR(ret);
1175 }
1176 EXPORT_SYMBOL_GPL(__regmap_init);
1177
1178 static void devm_regmap_release(struct device *dev, void *res)
1179 {
1180         regmap_exit(*(struct regmap **)res);
1181 }
1182
1183 struct regmap *__devm_regmap_init(struct device *dev,
1184                                   const struct regmap_bus *bus,
1185                                   void *bus_context,
1186                                   const struct regmap_config *config,
1187                                   struct lock_class_key *lock_key,
1188                                   const char *lock_name)
1189 {
1190         struct regmap **ptr, *regmap;
1191
1192         ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1193         if (!ptr)
1194                 return ERR_PTR(-ENOMEM);
1195
1196         regmap = __regmap_init(dev, bus, bus_context, config,
1197                                lock_key, lock_name);
1198         if (!IS_ERR(regmap)) {
1199                 *ptr = regmap;
1200                 devres_add(dev, ptr);
1201         } else {
1202                 devres_free(ptr);
1203         }
1204
1205         return regmap;
1206 }
1207 EXPORT_SYMBOL_GPL(__devm_regmap_init);
1208
1209 static void regmap_field_init(struct regmap_field *rm_field,
1210         struct regmap *regmap, struct reg_field reg_field)
1211 {
1212         rm_field->regmap = regmap;
1213         rm_field->reg = reg_field.reg;
1214         rm_field->shift = reg_field.lsb;
1215         rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1216         rm_field->id_size = reg_field.id_size;
1217         rm_field->id_offset = reg_field.id_offset;
1218 }
1219
1220 /**
1221  * devm_regmap_field_alloc() - Allocate and initialise a register field.
1222  *
1223  * @dev: Device that will be interacted with
1224  * @regmap: regmap bank in which this register field is located.
1225  * @reg_field: Register field with in the bank.
1226  *
1227  * The return value will be an ERR_PTR() on error or a valid pointer
1228  * to a struct regmap_field. The regmap_field will be automatically freed
1229  * by the device management code.
1230  */
1231 struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1232                 struct regmap *regmap, struct reg_field reg_field)
1233 {
1234         struct regmap_field *rm_field = devm_kzalloc(dev,
1235                                         sizeof(*rm_field), GFP_KERNEL);
1236         if (!rm_field)
1237                 return ERR_PTR(-ENOMEM);
1238
1239         regmap_field_init(rm_field, regmap, reg_field);
1240
1241         return rm_field;
1242
1243 }
1244 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1245
1246 /**
1247  * devm_regmap_field_free() - Free a register field allocated using
1248  *                            devm_regmap_field_alloc.
1249  *
1250  * @dev: Device that will be interacted with
1251  * @field: regmap field which should be freed.
1252  *
1253  * Free register field allocated using devm_regmap_field_alloc(). Usually
1254  * drivers need not call this function, as the memory allocated via devm
1255  * will be freed as per device-driver life-cyle.
1256  */
1257 void devm_regmap_field_free(struct device *dev,
1258         struct regmap_field *field)
1259 {
1260         devm_kfree(dev, field);
1261 }
1262 EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1263
1264 /**
1265  * regmap_field_alloc() - Allocate and initialise a register field.
1266  *
1267  * @regmap: regmap bank in which this register field is located.
1268  * @reg_field: Register field with in the bank.
1269  *
1270  * The return value will be an ERR_PTR() on error or a valid pointer
1271  * to a struct regmap_field. The regmap_field should be freed by the
1272  * user once its finished working with it using regmap_field_free().
1273  */
1274 struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1275                 struct reg_field reg_field)
1276 {
1277         struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1278
1279         if (!rm_field)
1280                 return ERR_PTR(-ENOMEM);
1281
1282         regmap_field_init(rm_field, regmap, reg_field);
1283
1284         return rm_field;
1285 }
1286 EXPORT_SYMBOL_GPL(regmap_field_alloc);
1287
1288 /**
1289  * regmap_field_free() - Free register field allocated using
1290  *                       regmap_field_alloc.
1291  *
1292  * @field: regmap field which should be freed.
1293  */
1294 void regmap_field_free(struct regmap_field *field)
1295 {
1296         kfree(field);
1297 }
1298 EXPORT_SYMBOL_GPL(regmap_field_free);
1299
1300 /**
1301  * regmap_reinit_cache() - Reinitialise the current register cache
1302  *
1303  * @map: Register map to operate on.
1304  * @config: New configuration.  Only the cache data will be used.
1305  *
1306  * Discard any existing register cache for the map and initialize a
1307  * new cache.  This can be used to restore the cache to defaults or to
1308  * update the cache configuration to reflect runtime discovery of the
1309  * hardware.
1310  *
1311  * No explicit locking is done here, the user needs to ensure that
1312  * this function will not race with other calls to regmap.
1313  */
1314 int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1315 {
1316         int ret;
1317
1318         regcache_exit(map);
1319         regmap_debugfs_exit(map);
1320
1321         map->max_register = config->max_register;
1322         map->writeable_reg = config->writeable_reg;
1323         map->readable_reg = config->readable_reg;
1324         map->volatile_reg = config->volatile_reg;
1325         map->precious_reg = config->precious_reg;
1326         map->writeable_noinc_reg = config->writeable_noinc_reg;
1327         map->readable_noinc_reg = config->readable_noinc_reg;
1328         map->cache_type = config->cache_type;
1329
1330         ret = regmap_set_name(map, config);
1331         if (ret)
1332                 return ret;
1333
1334         regmap_debugfs_init(map);
1335
1336         map->cache_bypass = false;
1337         map->cache_only = false;
1338
1339         return regcache_init(map, config);
1340 }
1341 EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1342
1343 /**
1344  * regmap_exit() - Free a previously allocated register map
1345  *
1346  * @map: Register map to operate on.
1347  */
1348 void regmap_exit(struct regmap *map)
1349 {
1350         struct regmap_async *async;
1351
1352         regcache_exit(map);
1353         regmap_debugfs_exit(map);
1354         regmap_range_exit(map);
1355         if (map->bus && map->bus->free_context)
1356                 map->bus->free_context(map->bus_context);
1357         kfree(map->work_buf);
1358         while (!list_empty(&map->async_free)) {
1359                 async = list_first_entry_or_null(&map->async_free,
1360                                                  struct regmap_async,
1361                                                  list);
1362                 list_del(&async->list);
1363                 kfree(async->work_buf);
1364                 kfree(async);
1365         }
1366         if (map->hwlock)
1367                 hwspin_lock_free(map->hwlock);
1368         kfree_const(map->name);
1369         kfree(map->patch);
1370         kfree(map);
1371 }
1372 EXPORT_SYMBOL_GPL(regmap_exit);
1373
1374 static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1375 {
1376         struct regmap **r = res;
1377         if (!r || !*r) {
1378                 WARN_ON(!r || !*r);
1379                 return 0;
1380         }
1381
1382         /* If the user didn't specify a name match any */
1383         if (data)
1384                 return !strcmp((*r)->name, data);
1385         else
1386                 return 1;
1387 }
1388
1389 /**
1390  * dev_get_regmap() - Obtain the regmap (if any) for a device
1391  *
1392  * @dev: Device to retrieve the map for
1393  * @name: Optional name for the register map, usually NULL.
1394  *
1395  * Returns the regmap for the device if one is present, or NULL.  If
1396  * name is specified then it must match the name specified when
1397  * registering the device, if it is NULL then the first regmap found
1398  * will be used.  Devices with multiple register maps are very rare,
1399  * generic code should normally not need to specify a name.
1400  */
1401 struct regmap *dev_get_regmap(struct device *dev, const char *name)
1402 {
1403         struct regmap **r = devres_find(dev, dev_get_regmap_release,
1404                                         dev_get_regmap_match, (void *)name);
1405
1406         if (!r)
1407                 return NULL;
1408         return *r;
1409 }
1410 EXPORT_SYMBOL_GPL(dev_get_regmap);
1411
1412 /**
1413  * regmap_get_device() - Obtain the device from a regmap
1414  *
1415  * @map: Register map to operate on.
1416  *
1417  * Returns the underlying device that the regmap has been created for.
1418  */
1419 struct device *regmap_get_device(struct regmap *map)
1420 {
1421         return map->dev;
1422 }
1423 EXPORT_SYMBOL_GPL(regmap_get_device);
1424
1425 static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1426                                struct regmap_range_node *range,
1427                                unsigned int val_num)
1428 {
1429         void *orig_work_buf;
1430         unsigned int win_offset;
1431         unsigned int win_page;
1432         bool page_chg;
1433         int ret;
1434
1435         win_offset = (*reg - range->range_min) % range->window_len;
1436         win_page = (*reg - range->range_min) / range->window_len;
1437
1438         if (val_num > 1) {
1439                 /* Bulk write shouldn't cross range boundary */
1440                 if (*reg + val_num - 1 > range->range_max)
1441                         return -EINVAL;
1442
1443                 /* ... or single page boundary */
1444                 if (val_num > range->window_len - win_offset)
1445                         return -EINVAL;
1446         }
1447
1448         /* It is possible to have selector register inside data window.
1449            In that case, selector register is located on every page and
1450            it needs no page switching, when accessed alone. */
1451         if (val_num > 1 ||
1452             range->window_start + win_offset != range->selector_reg) {
1453                 /* Use separate work_buf during page switching */
1454                 orig_work_buf = map->work_buf;
1455                 map->work_buf = map->selector_work_buf;
1456
1457                 ret = _regmap_update_bits(map, range->selector_reg,
1458                                           range->selector_mask,
1459                                           win_page << range->selector_shift,
1460                                           &page_chg, false);
1461
1462                 map->work_buf = orig_work_buf;
1463
1464                 if (ret != 0)
1465                         return ret;
1466         }
1467
1468         *reg = range->window_start + win_offset;
1469
1470         return 0;
1471 }
1472
1473 static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1474                                           unsigned long mask)
1475 {
1476         u8 *buf;
1477         int i;
1478
1479         if (!mask || !map->work_buf)
1480                 return;
1481
1482         buf = map->work_buf;
1483
1484         for (i = 0; i < max_bytes; i++)
1485                 buf[i] |= (mask >> (8 * i)) & 0xff;
1486 }
1487
1488 static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1489                                   const void *val, size_t val_len, bool noinc)
1490 {
1491         struct regmap_range_node *range;
1492         unsigned long flags;
1493         void *work_val = map->work_buf + map->format.reg_bytes +
1494                 map->format.pad_bytes;
1495         void *buf;
1496         int ret = -ENOTSUPP;
1497         size_t len;
1498         int i;
1499
1500         WARN_ON(!map->bus);
1501
1502         /* Check for unwritable or noinc registers in range
1503          * before we start
1504          */
1505         if (!regmap_writeable_noinc(map, reg)) {
1506                 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1507                         unsigned int element =
1508                                 reg + regmap_get_offset(map, i);
1509                         if (!regmap_writeable(map, element) ||
1510                                 regmap_writeable_noinc(map, element))
1511                                 return -EINVAL;
1512                 }
1513         }
1514
1515         if (!map->cache_bypass && map->format.parse_val) {
1516                 unsigned int ival;
1517                 int val_bytes = map->format.val_bytes;
1518                 for (i = 0; i < val_len / val_bytes; i++) {
1519                         ival = map->format.parse_val(val + (i * val_bytes));
1520                         ret = regcache_write(map,
1521                                              reg + regmap_get_offset(map, i),
1522                                              ival);
1523                         if (ret) {
1524                                 dev_err(map->dev,
1525                                         "Error in caching of register: %x ret: %d\n",
1526                                         reg + i, ret);
1527                                 return ret;
1528                         }
1529                 }
1530                 if (map->cache_only) {
1531                         map->cache_dirty = true;
1532                         return 0;
1533                 }
1534         }
1535
1536         range = _regmap_range_lookup(map, reg);
1537         if (range) {
1538                 int val_num = val_len / map->format.val_bytes;
1539                 int win_offset = (reg - range->range_min) % range->window_len;
1540                 int win_residue = range->window_len - win_offset;
1541
1542                 /* If the write goes beyond the end of the window split it */
1543                 while (val_num > win_residue) {
1544                         dev_dbg(map->dev, "Writing window %d/%zu\n",
1545                                 win_residue, val_len / map->format.val_bytes);
1546                         ret = _regmap_raw_write_impl(map, reg, val,
1547                                                      win_residue *
1548                                                      map->format.val_bytes, noinc);
1549                         if (ret != 0)
1550                                 return ret;
1551
1552                         reg += win_residue;
1553                         val_num -= win_residue;
1554                         val += win_residue * map->format.val_bytes;
1555                         val_len -= win_residue * map->format.val_bytes;
1556
1557                         win_offset = (reg - range->range_min) %
1558                                 range->window_len;
1559                         win_residue = range->window_len - win_offset;
1560                 }
1561
1562                 ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1563                 if (ret != 0)
1564                         return ret;
1565         }
1566
1567         map->format.format_reg(map->work_buf, reg, map->reg_shift);
1568         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1569                                       map->write_flag_mask);
1570
1571         /*
1572          * Essentially all I/O mechanisms will be faster with a single
1573          * buffer to write.  Since register syncs often generate raw
1574          * writes of single registers optimise that case.
1575          */
1576         if (val != work_val && val_len == map->format.val_bytes) {
1577                 memcpy(work_val, val, map->format.val_bytes);
1578                 val = work_val;
1579         }
1580
1581         if (map->async && map->bus->async_write) {
1582                 struct regmap_async *async;
1583
1584                 trace_regmap_async_write_start(map, reg, val_len);
1585
1586                 spin_lock_irqsave(&map->async_lock, flags);
1587                 async = list_first_entry_or_null(&map->async_free,
1588                                                  struct regmap_async,
1589                                                  list);
1590                 if (async)
1591                         list_del(&async->list);
1592                 spin_unlock_irqrestore(&map->async_lock, flags);
1593
1594                 if (!async) {
1595                         async = map->bus->async_alloc();
1596                         if (!async)
1597                                 return -ENOMEM;
1598
1599                         async->work_buf = kzalloc(map->format.buf_size,
1600                                                   GFP_KERNEL | GFP_DMA);
1601                         if (!async->work_buf) {
1602                                 kfree(async);
1603                                 return -ENOMEM;
1604                         }
1605                 }
1606
1607                 async->map = map;
1608
1609                 /* If the caller supplied the value we can use it safely. */
1610                 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1611                        map->format.reg_bytes + map->format.val_bytes);
1612
1613                 spin_lock_irqsave(&map->async_lock, flags);
1614                 list_add_tail(&async->list, &map->async_list);
1615                 spin_unlock_irqrestore(&map->async_lock, flags);
1616
1617                 if (val != work_val)
1618                         ret = map->bus->async_write(map->bus_context,
1619                                                     async->work_buf,
1620                                                     map->format.reg_bytes +
1621                                                     map->format.pad_bytes,
1622                                                     val, val_len, async);
1623                 else
1624                         ret = map->bus->async_write(map->bus_context,
1625                                                     async->work_buf,
1626                                                     map->format.reg_bytes +
1627                                                     map->format.pad_bytes +
1628                                                     val_len, NULL, 0, async);
1629
1630                 if (ret != 0) {
1631                         dev_err(map->dev, "Failed to schedule write: %d\n",
1632                                 ret);
1633
1634                         spin_lock_irqsave(&map->async_lock, flags);
1635                         list_move(&async->list, &map->async_free);
1636                         spin_unlock_irqrestore(&map->async_lock, flags);
1637                 }
1638
1639                 return ret;
1640         }
1641
1642         trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1643
1644         /* If we're doing a single register write we can probably just
1645          * send the work_buf directly, otherwise try to do a gather
1646          * write.
1647          */
1648         if (val == work_val)
1649                 ret = map->bus->write(map->bus_context, map->work_buf,
1650                                       map->format.reg_bytes +
1651                                       map->format.pad_bytes +
1652                                       val_len);
1653         else if (map->bus->gather_write)
1654                 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1655                                              map->format.reg_bytes +
1656                                              map->format.pad_bytes,
1657                                              val, val_len);
1658         else
1659                 ret = -ENOTSUPP;
1660
1661         /* If that didn't work fall back on linearising by hand. */
1662         if (ret == -ENOTSUPP) {
1663                 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1664                 buf = kzalloc(len, GFP_KERNEL);
1665                 if (!buf)
1666                         return -ENOMEM;
1667
1668                 memcpy(buf, map->work_buf, map->format.reg_bytes);
1669                 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1670                        val, val_len);
1671                 ret = map->bus->write(map->bus_context, buf, len);
1672
1673                 kfree(buf);
1674         } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1675                 /* regcache_drop_region() takes lock that we already have,
1676                  * thus call map->cache_ops->drop() directly
1677                  */
1678                 if (map->cache_ops && map->cache_ops->drop)
1679                         map->cache_ops->drop(map, reg, reg + 1);
1680         }
1681
1682         trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1683
1684         return ret;
1685 }
1686
1687 /**
1688  * regmap_can_raw_write - Test if regmap_raw_write() is supported
1689  *
1690  * @map: Map to check.
1691  */
1692 bool regmap_can_raw_write(struct regmap *map)
1693 {
1694         return map->bus && map->bus->write && map->format.format_val &&
1695                 map->format.format_reg;
1696 }
1697 EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1698
1699 /**
1700  * regmap_get_raw_read_max - Get the maximum size we can read
1701  *
1702  * @map: Map to check.
1703  */
1704 size_t regmap_get_raw_read_max(struct regmap *map)
1705 {
1706         return map->max_raw_read;
1707 }
1708 EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1709
1710 /**
1711  * regmap_get_raw_write_max - Get the maximum size we can read
1712  *
1713  * @map: Map to check.
1714  */
1715 size_t regmap_get_raw_write_max(struct regmap *map)
1716 {
1717         return map->max_raw_write;
1718 }
1719 EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1720
1721 static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1722                                        unsigned int val)
1723 {
1724         int ret;
1725         struct regmap_range_node *range;
1726         struct regmap *map = context;
1727
1728         WARN_ON(!map->bus || !map->format.format_write);
1729
1730         range = _regmap_range_lookup(map, reg);
1731         if (range) {
1732                 ret = _regmap_select_page(map, &reg, range, 1);
1733                 if (ret != 0)
1734                         return ret;
1735         }
1736
1737         map->format.format_write(map, reg, val);
1738
1739         trace_regmap_hw_write_start(map, reg, 1);
1740
1741         ret = map->bus->write(map->bus_context, map->work_buf,
1742                               map->format.buf_size);
1743
1744         trace_regmap_hw_write_done(map, reg, 1);
1745
1746         return ret;
1747 }
1748
1749 static int _regmap_bus_reg_write(void *context, unsigned int reg,
1750                                  unsigned int val)
1751 {
1752         struct regmap *map = context;
1753
1754         return map->bus->reg_write(map->bus_context, reg, val);
1755 }
1756
1757 static int _regmap_bus_raw_write(void *context, unsigned int reg,
1758                                  unsigned int val)
1759 {
1760         struct regmap *map = context;
1761
1762         WARN_ON(!map->bus || !map->format.format_val);
1763
1764         map->format.format_val(map->work_buf + map->format.reg_bytes
1765                                + map->format.pad_bytes, val, 0);
1766         return _regmap_raw_write_impl(map, reg,
1767                                       map->work_buf +
1768                                       map->format.reg_bytes +
1769                                       map->format.pad_bytes,
1770                                       map->format.val_bytes,
1771                                       false);
1772 }
1773
1774 static inline void *_regmap_map_get_context(struct regmap *map)
1775 {
1776         return (map->bus) ? map : map->bus_context;
1777 }
1778
1779 int _regmap_write(struct regmap *map, unsigned int reg,
1780                   unsigned int val)
1781 {
1782         int ret;
1783         void *context = _regmap_map_get_context(map);
1784
1785         if (!regmap_writeable(map, reg))
1786                 return -EIO;
1787
1788         if (!map->cache_bypass && !map->defer_caching) {
1789                 ret = regcache_write(map, reg, val);
1790                 if (ret != 0)
1791                         return ret;
1792                 if (map->cache_only) {
1793                         map->cache_dirty = true;
1794                         return 0;
1795                 }
1796         }
1797
1798         if (regmap_should_log(map))
1799                 dev_info(map->dev, "%x <= %x\n", reg, val);
1800
1801         trace_regmap_reg_write(map, reg, val);
1802
1803         return map->reg_write(context, reg, val);
1804 }
1805
1806 /**
1807  * regmap_write() - Write a value to a single register
1808  *
1809  * @map: Register map to write to
1810  * @reg: Register to write to
1811  * @val: Value to be written
1812  *
1813  * A value of zero will be returned on success, a negative errno will
1814  * be returned in error cases.
1815  */
1816 int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1817 {
1818         int ret;
1819
1820         if (!IS_ALIGNED(reg, map->reg_stride))
1821                 return -EINVAL;
1822
1823         map->lock(map->lock_arg);
1824
1825         ret = _regmap_write(map, reg, val);
1826
1827         map->unlock(map->lock_arg);
1828
1829         return ret;
1830 }
1831 EXPORT_SYMBOL_GPL(regmap_write);
1832
1833 /**
1834  * regmap_write_async() - Write a value to a single register asynchronously
1835  *
1836  * @map: Register map to write to
1837  * @reg: Register to write to
1838  * @val: Value to be written
1839  *
1840  * A value of zero will be returned on success, a negative errno will
1841  * be returned in error cases.
1842  */
1843 int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1844 {
1845         int ret;
1846
1847         if (!IS_ALIGNED(reg, map->reg_stride))
1848                 return -EINVAL;
1849
1850         map->lock(map->lock_arg);
1851
1852         map->async = true;
1853
1854         ret = _regmap_write(map, reg, val);
1855
1856         map->async = false;
1857
1858         map->unlock(map->lock_arg);
1859
1860         return ret;
1861 }
1862 EXPORT_SYMBOL_GPL(regmap_write_async);
1863
1864 int _regmap_raw_write(struct regmap *map, unsigned int reg,
1865                       const void *val, size_t val_len, bool noinc)
1866 {
1867         size_t val_bytes = map->format.val_bytes;
1868         size_t val_count = val_len / val_bytes;
1869         size_t chunk_count, chunk_bytes;
1870         size_t chunk_regs = val_count;
1871         int ret, i;
1872
1873         if (!val_count)
1874                 return -EINVAL;
1875
1876         if (map->use_single_write)
1877                 chunk_regs = 1;
1878         else if (map->max_raw_write && val_len > map->max_raw_write)
1879                 chunk_regs = map->max_raw_write / val_bytes;
1880
1881         chunk_count = val_count / chunk_regs;
1882         chunk_bytes = chunk_regs * val_bytes;
1883
1884         /* Write as many bytes as possible with chunk_size */
1885         for (i = 0; i < chunk_count; i++) {
1886                 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
1887                 if (ret)
1888                         return ret;
1889
1890                 reg += regmap_get_offset(map, chunk_regs);
1891                 val += chunk_bytes;
1892                 val_len -= chunk_bytes;
1893         }
1894
1895         /* Write remaining bytes */
1896         if (val_len)
1897                 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
1898
1899         return ret;
1900 }
1901
1902 /**
1903  * regmap_raw_write() - Write raw values to one or more registers
1904  *
1905  * @map: Register map to write to
1906  * @reg: Initial register to write to
1907  * @val: Block of data to be written, laid out for direct transmission to the
1908  *       device
1909  * @val_len: Length of data pointed to by val.
1910  *
1911  * This function is intended to be used for things like firmware
1912  * download where a large block of data needs to be transferred to the
1913  * device.  No formatting will be done on the data provided.
1914  *
1915  * A value of zero will be returned on success, a negative errno will
1916  * be returned in error cases.
1917  */
1918 int regmap_raw_write(struct regmap *map, unsigned int reg,
1919                      const void *val, size_t val_len)
1920 {
1921         int ret;
1922
1923         if (!regmap_can_raw_write(map))
1924                 return -EINVAL;
1925         if (val_len % map->format.val_bytes)
1926                 return -EINVAL;
1927
1928         map->lock(map->lock_arg);
1929
1930         ret = _regmap_raw_write(map, reg, val, val_len, false);
1931
1932         map->unlock(map->lock_arg);
1933
1934         return ret;
1935 }
1936 EXPORT_SYMBOL_GPL(regmap_raw_write);
1937
1938 /**
1939  * regmap_noinc_write(): Write data from a register without incrementing the
1940  *                      register number
1941  *
1942  * @map: Register map to write to
1943  * @reg: Register to write to
1944  * @val: Pointer to data buffer
1945  * @val_len: Length of output buffer in bytes.
1946  *
1947  * The regmap API usually assumes that bulk bus write operations will write a
1948  * range of registers. Some devices have certain registers for which a write
1949  * operation can write to an internal FIFO.
1950  *
1951  * The target register must be volatile but registers after it can be
1952  * completely unrelated cacheable registers.
1953  *
1954  * This will attempt multiple writes as required to write val_len bytes.
1955  *
1956  * A value of zero will be returned on success, a negative errno will be
1957  * returned in error cases.
1958  */
1959 int regmap_noinc_write(struct regmap *map, unsigned int reg,
1960                       const void *val, size_t val_len)
1961 {
1962         size_t write_len;
1963         int ret;
1964
1965         if (!map->bus)
1966                 return -EINVAL;
1967         if (!map->bus->write)
1968                 return -ENOTSUPP;
1969         if (val_len % map->format.val_bytes)
1970                 return -EINVAL;
1971         if (!IS_ALIGNED(reg, map->reg_stride))
1972                 return -EINVAL;
1973         if (val_len == 0)
1974                 return -EINVAL;
1975
1976         map->lock(map->lock_arg);
1977
1978         if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1979                 ret = -EINVAL;
1980                 goto out_unlock;
1981         }
1982
1983         while (val_len) {
1984                 if (map->max_raw_write && map->max_raw_write < val_len)
1985                         write_len = map->max_raw_write;
1986                 else
1987                         write_len = val_len;
1988                 ret = _regmap_raw_write(map, reg, val, write_len, true);
1989                 if (ret)
1990                         goto out_unlock;
1991                 val = ((u8 *)val) + write_len;
1992                 val_len -= write_len;
1993         }
1994
1995 out_unlock:
1996         map->unlock(map->lock_arg);
1997         return ret;
1998 }
1999 EXPORT_SYMBOL_GPL(regmap_noinc_write);
2000
2001 /**
2002  * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2003  *                                   register field.
2004  *
2005  * @field: Register field to write to
2006  * @mask: Bitmask to change
2007  * @val: Value to be written
2008  * @change: Boolean indicating if a write was done
2009  * @async: Boolean indicating asynchronously
2010  * @force: Boolean indicating use force update
2011  *
2012  * Perform a read/modify/write cycle on the register field with change,
2013  * async, force option.
2014  *
2015  * A value of zero will be returned on success, a negative errno will
2016  * be returned in error cases.
2017  */
2018 int regmap_field_update_bits_base(struct regmap_field *field,
2019                                   unsigned int mask, unsigned int val,
2020                                   bool *change, bool async, bool force)
2021 {
2022         mask = (mask << field->shift) & field->mask;
2023
2024         return regmap_update_bits_base(field->regmap, field->reg,
2025                                        mask, val << field->shift,
2026                                        change, async, force);
2027 }
2028 EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2029
2030 /**
2031  * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2032  *                                    register field with port ID
2033  *
2034  * @field: Register field to write to
2035  * @id: port ID
2036  * @mask: Bitmask to change
2037  * @val: Value to be written
2038  * @change: Boolean indicating if a write was done
2039  * @async: Boolean indicating asynchronously
2040  * @force: Boolean indicating use force update
2041  *
2042  * A value of zero will be returned on success, a negative errno will
2043  * be returned in error cases.
2044  */
2045 int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2046                                    unsigned int mask, unsigned int val,
2047                                    bool *change, bool async, bool force)
2048 {
2049         if (id >= field->id_size)
2050                 return -EINVAL;
2051
2052         mask = (mask << field->shift) & field->mask;
2053
2054         return regmap_update_bits_base(field->regmap,
2055                                        field->reg + (field->id_offset * id),
2056                                        mask, val << field->shift,
2057                                        change, async, force);
2058 }
2059 EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2060
2061 /**
2062  * regmap_bulk_write() - Write multiple registers to the device
2063  *
2064  * @map: Register map to write to
2065  * @reg: First register to be write from
2066  * @val: Block of data to be written, in native register size for device
2067  * @val_count: Number of registers to write
2068  *
2069  * This function is intended to be used for writing a large block of
2070  * data to the device either in single transfer or multiple transfer.
2071  *
2072  * A value of zero will be returned on success, a negative errno will
2073  * be returned in error cases.
2074  */
2075 int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2076                      size_t val_count)
2077 {
2078         int ret = 0, i;
2079         size_t val_bytes = map->format.val_bytes;
2080
2081         if (!IS_ALIGNED(reg, map->reg_stride))
2082                 return -EINVAL;
2083
2084         /*
2085          * Some devices don't support bulk write, for them we have a series of
2086          * single write operations.
2087          */
2088         if (!map->bus || !map->format.parse_inplace) {
2089                 map->lock(map->lock_arg);
2090                 for (i = 0; i < val_count; i++) {
2091                         unsigned int ival;
2092
2093                         switch (val_bytes) {
2094                         case 1:
2095                                 ival = *(u8 *)(val + (i * val_bytes));
2096                                 break;
2097                         case 2:
2098                                 ival = *(u16 *)(val + (i * val_bytes));
2099                                 break;
2100                         case 4:
2101                                 ival = *(u32 *)(val + (i * val_bytes));
2102                                 break;
2103 #ifdef CONFIG_64BIT
2104                         case 8:
2105                                 ival = *(u64 *)(val + (i * val_bytes));
2106                                 break;
2107 #endif
2108                         default:
2109                                 ret = -EINVAL;
2110                                 goto out;
2111                         }
2112
2113                         ret = _regmap_write(map,
2114                                             reg + regmap_get_offset(map, i),
2115                                             ival);
2116                         if (ret != 0)
2117                                 goto out;
2118                 }
2119 out:
2120                 map->unlock(map->lock_arg);
2121         } else {
2122                 void *wval;
2123
2124                 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2125                 if (!wval)
2126                         return -ENOMEM;
2127
2128                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2129                         map->format.parse_inplace(wval + i);
2130
2131                 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2132
2133                 kfree(wval);
2134         }
2135         return ret;
2136 }
2137 EXPORT_SYMBOL_GPL(regmap_bulk_write);
2138
2139 /*
2140  * _regmap_raw_multi_reg_write()
2141  *
2142  * the (register,newvalue) pairs in regs have not been formatted, but
2143  * they are all in the same page and have been changed to being page
2144  * relative. The page register has been written if that was necessary.
2145  */
2146 static int _regmap_raw_multi_reg_write(struct regmap *map,
2147                                        const struct reg_sequence *regs,
2148                                        size_t num_regs)
2149 {
2150         int ret;
2151         void *buf;
2152         int i;
2153         u8 *u8;
2154         size_t val_bytes = map->format.val_bytes;
2155         size_t reg_bytes = map->format.reg_bytes;
2156         size_t pad_bytes = map->format.pad_bytes;
2157         size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2158         size_t len = pair_size * num_regs;
2159
2160         if (!len)
2161                 return -EINVAL;
2162
2163         buf = kzalloc(len, GFP_KERNEL);
2164         if (!buf)
2165                 return -ENOMEM;
2166
2167         /* We have to linearise by hand. */
2168
2169         u8 = buf;
2170
2171         for (i = 0; i < num_regs; i++) {
2172                 unsigned int reg = regs[i].reg;
2173                 unsigned int val = regs[i].def;
2174                 trace_regmap_hw_write_start(map, reg, 1);
2175                 map->format.format_reg(u8, reg, map->reg_shift);
2176                 u8 += reg_bytes + pad_bytes;
2177                 map->format.format_val(u8, val, 0);
2178                 u8 += val_bytes;
2179         }
2180         u8 = buf;
2181         *u8 |= map->write_flag_mask;
2182
2183         ret = map->bus->write(map->bus_context, buf, len);
2184
2185         kfree(buf);
2186
2187         for (i = 0; i < num_regs; i++) {
2188                 int reg = regs[i].reg;
2189                 trace_regmap_hw_write_done(map, reg, 1);
2190         }
2191         return ret;
2192 }
2193
2194 static unsigned int _regmap_register_page(struct regmap *map,
2195                                           unsigned int reg,
2196                                           struct regmap_range_node *range)
2197 {
2198         unsigned int win_page = (reg - range->range_min) / range->window_len;
2199
2200         return win_page;
2201 }
2202
2203 static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2204                                                struct reg_sequence *regs,
2205                                                size_t num_regs)
2206 {
2207         int ret;
2208         int i, n;
2209         struct reg_sequence *base;
2210         unsigned int this_page = 0;
2211         unsigned int page_change = 0;
2212         /*
2213          * the set of registers are not neccessarily in order, but
2214          * since the order of write must be preserved this algorithm
2215          * chops the set each time the page changes. This also applies
2216          * if there is a delay required at any point in the sequence.
2217          */
2218         base = regs;
2219         for (i = 0, n = 0; i < num_regs; i++, n++) {
2220                 unsigned int reg = regs[i].reg;
2221                 struct regmap_range_node *range;
2222
2223                 range = _regmap_range_lookup(map, reg);
2224                 if (range) {
2225                         unsigned int win_page = _regmap_register_page(map, reg,
2226                                                                       range);
2227
2228                         if (i == 0)
2229                                 this_page = win_page;
2230                         if (win_page != this_page) {
2231                                 this_page = win_page;
2232                                 page_change = 1;
2233                         }
2234                 }
2235
2236                 /* If we have both a page change and a delay make sure to
2237                  * write the regs and apply the delay before we change the
2238                  * page.
2239                  */
2240
2241                 if (page_change || regs[i].delay_us) {
2242
2243                                 /* For situations where the first write requires
2244                                  * a delay we need to make sure we don't call
2245                                  * raw_multi_reg_write with n=0
2246                                  * This can't occur with page breaks as we
2247                                  * never write on the first iteration
2248                                  */
2249                                 if (regs[i].delay_us && i == 0)
2250                                         n = 1;
2251
2252                                 ret = _regmap_raw_multi_reg_write(map, base, n);
2253                                 if (ret != 0)
2254                                         return ret;
2255
2256                                 if (regs[i].delay_us)
2257                                         udelay(regs[i].delay_us);
2258
2259                                 base += n;
2260                                 n = 0;
2261
2262                                 if (page_change) {
2263                                         ret = _regmap_select_page(map,
2264                                                                   &base[n].reg,
2265                                                                   range, 1);
2266                                         if (ret != 0)
2267                                                 return ret;
2268
2269                                         page_change = 0;
2270                                 }
2271
2272                 }
2273
2274         }
2275         if (n > 0)
2276                 return _regmap_raw_multi_reg_write(map, base, n);
2277         return 0;
2278 }
2279
2280 static int _regmap_multi_reg_write(struct regmap *map,
2281                                    const struct reg_sequence *regs,
2282                                    size_t num_regs)
2283 {
2284         int i;
2285         int ret;
2286
2287         if (!map->can_multi_write) {
2288                 for (i = 0; i < num_regs; i++) {
2289                         ret = _regmap_write(map, regs[i].reg, regs[i].def);
2290                         if (ret != 0)
2291                                 return ret;
2292
2293                         if (regs[i].delay_us)
2294                                 udelay(regs[i].delay_us);
2295                 }
2296                 return 0;
2297         }
2298
2299         if (!map->format.parse_inplace)
2300                 return -EINVAL;
2301
2302         if (map->writeable_reg)
2303                 for (i = 0; i < num_regs; i++) {
2304                         int reg = regs[i].reg;
2305                         if (!map->writeable_reg(map->dev, reg))
2306                                 return -EINVAL;
2307                         if (!IS_ALIGNED(reg, map->reg_stride))
2308                                 return -EINVAL;
2309                 }
2310
2311         if (!map->cache_bypass) {
2312                 for (i = 0; i < num_regs; i++) {
2313                         unsigned int val = regs[i].def;
2314                         unsigned int reg = regs[i].reg;
2315                         ret = regcache_write(map, reg, val);
2316                         if (ret) {
2317                                 dev_err(map->dev,
2318                                 "Error in caching of register: %x ret: %d\n",
2319                                                                 reg, ret);
2320                                 return ret;
2321                         }
2322                 }
2323                 if (map->cache_only) {
2324                         map->cache_dirty = true;
2325                         return 0;
2326                 }
2327         }
2328
2329         WARN_ON(!map->bus);
2330
2331         for (i = 0; i < num_regs; i++) {
2332                 unsigned int reg = regs[i].reg;
2333                 struct regmap_range_node *range;
2334
2335                 /* Coalesce all the writes between a page break or a delay
2336                  * in a sequence
2337                  */
2338                 range = _regmap_range_lookup(map, reg);
2339                 if (range || regs[i].delay_us) {
2340                         size_t len = sizeof(struct reg_sequence)*num_regs;
2341                         struct reg_sequence *base = kmemdup(regs, len,
2342                                                            GFP_KERNEL);
2343                         if (!base)
2344                                 return -ENOMEM;
2345                         ret = _regmap_range_multi_paged_reg_write(map, base,
2346                                                                   num_regs);
2347                         kfree(base);
2348
2349                         return ret;
2350                 }
2351         }
2352         return _regmap_raw_multi_reg_write(map, regs, num_regs);
2353 }
2354
2355 /**
2356  * regmap_multi_reg_write() - Write multiple registers to the device
2357  *
2358  * @map: Register map to write to
2359  * @regs: Array of structures containing register,value to be written
2360  * @num_regs: Number of registers to write
2361  *
2362  * Write multiple registers to the device where the set of register, value
2363  * pairs are supplied in any order, possibly not all in a single range.
2364  *
2365  * The 'normal' block write mode will send ultimately send data on the
2366  * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2367  * addressed. However, this alternative block multi write mode will send
2368  * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2369  * must of course support the mode.
2370  *
2371  * A value of zero will be returned on success, a negative errno will be
2372  * returned in error cases.
2373  */
2374 int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2375                            int num_regs)
2376 {
2377         int ret;
2378
2379         map->lock(map->lock_arg);
2380
2381         ret = _regmap_multi_reg_write(map, regs, num_regs);
2382
2383         map->unlock(map->lock_arg);
2384
2385         return ret;
2386 }
2387 EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2388
2389 /**
2390  * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2391  *                                     device but not the cache
2392  *
2393  * @map: Register map to write to
2394  * @regs: Array of structures containing register,value to be written
2395  * @num_regs: Number of registers to write
2396  *
2397  * Write multiple registers to the device but not the cache where the set
2398  * of register are supplied in any order.
2399  *
2400  * This function is intended to be used for writing a large block of data
2401  * atomically to the device in single transfer for those I2C client devices
2402  * that implement this alternative block write mode.
2403  *
2404  * A value of zero will be returned on success, a negative errno will
2405  * be returned in error cases.
2406  */
2407 int regmap_multi_reg_write_bypassed(struct regmap *map,
2408                                     const struct reg_sequence *regs,
2409                                     int num_regs)
2410 {
2411         int ret;
2412         bool bypass;
2413
2414         map->lock(map->lock_arg);
2415
2416         bypass = map->cache_bypass;
2417         map->cache_bypass = true;
2418
2419         ret = _regmap_multi_reg_write(map, regs, num_regs);
2420
2421         map->cache_bypass = bypass;
2422
2423         map->unlock(map->lock_arg);
2424
2425         return ret;
2426 }
2427 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2428
2429 /**
2430  * regmap_raw_write_async() - Write raw values to one or more registers
2431  *                            asynchronously
2432  *
2433  * @map: Register map to write to
2434  * @reg: Initial register to write to
2435  * @val: Block of data to be written, laid out for direct transmission to the
2436  *       device.  Must be valid until regmap_async_complete() is called.
2437  * @val_len: Length of data pointed to by val.
2438  *
2439  * This function is intended to be used for things like firmware
2440  * download where a large block of data needs to be transferred to the
2441  * device.  No formatting will be done on the data provided.
2442  *
2443  * If supported by the underlying bus the write will be scheduled
2444  * asynchronously, helping maximise I/O speed on higher speed buses
2445  * like SPI.  regmap_async_complete() can be called to ensure that all
2446  * asynchrnous writes have been completed.
2447  *
2448  * A value of zero will be returned on success, a negative errno will
2449  * be returned in error cases.
2450  */
2451 int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2452                            const void *val, size_t val_len)
2453 {
2454         int ret;
2455
2456         if (val_len % map->format.val_bytes)
2457                 return -EINVAL;
2458         if (!IS_ALIGNED(reg, map->reg_stride))
2459                 return -EINVAL;
2460
2461         map->lock(map->lock_arg);
2462
2463         map->async = true;
2464
2465         ret = _regmap_raw_write(map, reg, val, val_len, false);
2466
2467         map->async = false;
2468
2469         map->unlock(map->lock_arg);
2470
2471         return ret;
2472 }
2473 EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2474
2475 static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2476                             unsigned int val_len, bool noinc)
2477 {
2478         struct regmap_range_node *range;
2479         int ret;
2480
2481         WARN_ON(!map->bus);
2482
2483         if (!map->bus || !map->bus->read)
2484                 return -EINVAL;
2485
2486         range = _regmap_range_lookup(map, reg);
2487         if (range) {
2488                 ret = _regmap_select_page(map, &reg, range,
2489                                           noinc ? 1 : val_len / map->format.val_bytes);
2490                 if (ret != 0)
2491                         return ret;
2492         }
2493
2494         map->format.format_reg(map->work_buf, reg, map->reg_shift);
2495         regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2496                                       map->read_flag_mask);
2497         trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2498
2499         ret = map->bus->read(map->bus_context, map->work_buf,
2500                              map->format.reg_bytes + map->format.pad_bytes,
2501                              val, val_len);
2502
2503         trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2504
2505         return ret;
2506 }
2507
2508 static int _regmap_bus_reg_read(void *context, unsigned int reg,
2509                                 unsigned int *val)
2510 {
2511         struct regmap *map = context;
2512
2513         return map->bus->reg_read(map->bus_context, reg, val);
2514 }
2515
2516 static int _regmap_bus_read(void *context, unsigned int reg,
2517                             unsigned int *val)
2518 {
2519         int ret;
2520         struct regmap *map = context;
2521         void *work_val = map->work_buf + map->format.reg_bytes +
2522                 map->format.pad_bytes;
2523
2524         if (!map->format.parse_val)
2525                 return -EINVAL;
2526
2527         ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2528         if (ret == 0)
2529                 *val = map->format.parse_val(work_val);
2530
2531         return ret;
2532 }
2533
2534 static int _regmap_read(struct regmap *map, unsigned int reg,
2535                         unsigned int *val)
2536 {
2537         int ret;
2538         void *context = _regmap_map_get_context(map);
2539
2540         if (!map->cache_bypass) {
2541                 ret = regcache_read(map, reg, val);
2542                 if (ret == 0)
2543                         return 0;
2544         }
2545
2546         if (map->cache_only)
2547                 return -EBUSY;
2548
2549         if (!regmap_readable(map, reg))
2550                 return -EIO;
2551
2552         ret = map->reg_read(context, reg, val);
2553         if (ret == 0) {
2554                 if (regmap_should_log(map))
2555                         dev_info(map->dev, "%x => %x\n", reg, *val);
2556
2557                 trace_regmap_reg_read(map, reg, *val);
2558
2559                 if (!map->cache_bypass)
2560                         regcache_write(map, reg, *val);
2561         }
2562
2563         return ret;
2564 }
2565
2566 /**
2567  * regmap_read() - Read a value from a single register
2568  *
2569  * @map: Register map to read from
2570  * @reg: Register to be read from
2571  * @val: Pointer to store read value
2572  *
2573  * A value of zero will be returned on success, a negative errno will
2574  * be returned in error cases.
2575  */
2576 int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2577 {
2578         int ret;
2579
2580         if (!IS_ALIGNED(reg, map->reg_stride))
2581                 return -EINVAL;
2582
2583         map->lock(map->lock_arg);
2584
2585         ret = _regmap_read(map, reg, val);
2586
2587         map->unlock(map->lock_arg);
2588
2589         return ret;
2590 }
2591 EXPORT_SYMBOL_GPL(regmap_read);
2592
2593 /**
2594  * regmap_raw_read() - Read raw data from the device
2595  *
2596  * @map: Register map to read from
2597  * @reg: First register to be read from
2598  * @val: Pointer to store read value
2599  * @val_len: Size of data to read
2600  *
2601  * A value of zero will be returned on success, a negative errno will
2602  * be returned in error cases.
2603  */
2604 int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2605                     size_t val_len)
2606 {
2607         size_t val_bytes = map->format.val_bytes;
2608         size_t val_count = val_len / val_bytes;
2609         unsigned int v;
2610         int ret, i;
2611
2612         if (!map->bus)
2613                 return -EINVAL;
2614         if (val_len % map->format.val_bytes)
2615                 return -EINVAL;
2616         if (!IS_ALIGNED(reg, map->reg_stride))
2617                 return -EINVAL;
2618         if (val_count == 0)
2619                 return -EINVAL;
2620
2621         map->lock(map->lock_arg);
2622
2623         if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2624             map->cache_type == REGCACHE_NONE) {
2625                 size_t chunk_count, chunk_bytes;
2626                 size_t chunk_regs = val_count;
2627
2628                 if (!map->bus->read) {
2629                         ret = -ENOTSUPP;
2630                         goto out;
2631                 }
2632
2633                 if (map->use_single_read)
2634                         chunk_regs = 1;
2635                 else if (map->max_raw_read && val_len > map->max_raw_read)
2636                         chunk_regs = map->max_raw_read / val_bytes;
2637
2638                 chunk_count = val_count / chunk_regs;
2639                 chunk_bytes = chunk_regs * val_bytes;
2640
2641                 /* Read bytes that fit into whole chunks */
2642                 for (i = 0; i < chunk_count; i++) {
2643                         ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2644                         if (ret != 0)
2645                                 goto out;
2646
2647                         reg += regmap_get_offset(map, chunk_regs);
2648                         val += chunk_bytes;
2649                         val_len -= chunk_bytes;
2650                 }
2651
2652                 /* Read remaining bytes */
2653                 if (val_len) {
2654                         ret = _regmap_raw_read(map, reg, val, val_len, false);
2655                         if (ret != 0)
2656                                 goto out;
2657                 }
2658         } else {
2659                 /* Otherwise go word by word for the cache; should be low
2660                  * cost as we expect to hit the cache.
2661                  */
2662                 for (i = 0; i < val_count; i++) {
2663                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2664                                            &v);
2665                         if (ret != 0)
2666                                 goto out;
2667
2668                         map->format.format_val(val + (i * val_bytes), v, 0);
2669                 }
2670         }
2671
2672  out:
2673         map->unlock(map->lock_arg);
2674
2675         return ret;
2676 }
2677 EXPORT_SYMBOL_GPL(regmap_raw_read);
2678
2679 /**
2680  * regmap_noinc_read(): Read data from a register without incrementing the
2681  *                      register number
2682  *
2683  * @map: Register map to read from
2684  * @reg: Register to read from
2685  * @val: Pointer to data buffer
2686  * @val_len: Length of output buffer in bytes.
2687  *
2688  * The regmap API usually assumes that bulk bus read operations will read a
2689  * range of registers. Some devices have certain registers for which a read
2690  * operation read will read from an internal FIFO.
2691  *
2692  * The target register must be volatile but registers after it can be
2693  * completely unrelated cacheable registers.
2694  *
2695  * This will attempt multiple reads as required to read val_len bytes.
2696  *
2697  * A value of zero will be returned on success, a negative errno will be
2698  * returned in error cases.
2699  */
2700 int regmap_noinc_read(struct regmap *map, unsigned int reg,
2701                       void *val, size_t val_len)
2702 {
2703         size_t read_len;
2704         int ret;
2705
2706         if (!map->bus)
2707                 return -EINVAL;
2708         if (!map->bus->read)
2709                 return -ENOTSUPP;
2710         if (val_len % map->format.val_bytes)
2711                 return -EINVAL;
2712         if (!IS_ALIGNED(reg, map->reg_stride))
2713                 return -EINVAL;
2714         if (val_len == 0)
2715                 return -EINVAL;
2716
2717         map->lock(map->lock_arg);
2718
2719         if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2720                 ret = -EINVAL;
2721                 goto out_unlock;
2722         }
2723
2724         while (val_len) {
2725                 if (map->max_raw_read && map->max_raw_read < val_len)
2726                         read_len = map->max_raw_read;
2727                 else
2728                         read_len = val_len;
2729                 ret = _regmap_raw_read(map, reg, val, read_len, true);
2730                 if (ret)
2731                         goto out_unlock;
2732                 val = ((u8 *)val) + read_len;
2733                 val_len -= read_len;
2734         }
2735
2736 out_unlock:
2737         map->unlock(map->lock_arg);
2738         return ret;
2739 }
2740 EXPORT_SYMBOL_GPL(regmap_noinc_read);
2741
2742 /**
2743  * regmap_field_read(): Read a value to a single register field
2744  *
2745  * @field: Register field to read from
2746  * @val: Pointer to store read value
2747  *
2748  * A value of zero will be returned on success, a negative errno will
2749  * be returned in error cases.
2750  */
2751 int regmap_field_read(struct regmap_field *field, unsigned int *val)
2752 {
2753         int ret;
2754         unsigned int reg_val;
2755         ret = regmap_read(field->regmap, field->reg, &reg_val);
2756         if (ret != 0)
2757                 return ret;
2758
2759         reg_val &= field->mask;
2760         reg_val >>= field->shift;
2761         *val = reg_val;
2762
2763         return ret;
2764 }
2765 EXPORT_SYMBOL_GPL(regmap_field_read);
2766
2767 /**
2768  * regmap_fields_read() - Read a value to a single register field with port ID
2769  *
2770  * @field: Register field to read from
2771  * @id: port ID
2772  * @val: Pointer to store read value
2773  *
2774  * A value of zero will be returned on success, a negative errno will
2775  * be returned in error cases.
2776  */
2777 int regmap_fields_read(struct regmap_field *field, unsigned int id,
2778                        unsigned int *val)
2779 {
2780         int ret;
2781         unsigned int reg_val;
2782
2783         if (id >= field->id_size)
2784                 return -EINVAL;
2785
2786         ret = regmap_read(field->regmap,
2787                           field->reg + (field->id_offset * id),
2788                           &reg_val);
2789         if (ret != 0)
2790                 return ret;
2791
2792         reg_val &= field->mask;
2793         reg_val >>= field->shift;
2794         *val = reg_val;
2795
2796         return ret;
2797 }
2798 EXPORT_SYMBOL_GPL(regmap_fields_read);
2799
2800 /**
2801  * regmap_bulk_read() - Read multiple registers from the device
2802  *
2803  * @map: Register map to read from
2804  * @reg: First register to be read from
2805  * @val: Pointer to store read value, in native register size for device
2806  * @val_count: Number of registers to read
2807  *
2808  * A value of zero will be returned on success, a negative errno will
2809  * be returned in error cases.
2810  */
2811 int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2812                      size_t val_count)
2813 {
2814         int ret, i;
2815         size_t val_bytes = map->format.val_bytes;
2816         bool vol = regmap_volatile_range(map, reg, val_count);
2817
2818         if (!IS_ALIGNED(reg, map->reg_stride))
2819                 return -EINVAL;
2820         if (val_count == 0)
2821                 return -EINVAL;
2822
2823         if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2824                 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2825                 if (ret != 0)
2826                         return ret;
2827
2828                 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2829                         map->format.parse_inplace(val + i);
2830         } else {
2831 #ifdef CONFIG_64BIT
2832                 u64 *u64 = val;
2833 #endif
2834                 u32 *u32 = val;
2835                 u16 *u16 = val;
2836                 u8 *u8 = val;
2837
2838                 map->lock(map->lock_arg);
2839
2840                 for (i = 0; i < val_count; i++) {
2841                         unsigned int ival;
2842
2843                         ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2844                                            &ival);
2845                         if (ret != 0)
2846                                 goto out;
2847
2848                         switch (map->format.val_bytes) {
2849 #ifdef CONFIG_64BIT
2850                         case 8:
2851                                 u64[i] = ival;
2852                                 break;
2853 #endif
2854                         case 4:
2855                                 u32[i] = ival;
2856                                 break;
2857                         case 2:
2858                                 u16[i] = ival;
2859                                 break;
2860                         case 1:
2861                                 u8[i] = ival;
2862                                 break;
2863                         default:
2864                                 ret = -EINVAL;
2865                                 goto out;
2866                         }
2867                 }
2868
2869 out:
2870                 map->unlock(map->lock_arg);
2871         }
2872
2873         return ret;
2874 }
2875 EXPORT_SYMBOL_GPL(regmap_bulk_read);
2876
2877 static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2878                                unsigned int mask, unsigned int val,
2879                                bool *change, bool force_write)
2880 {
2881         int ret;
2882         unsigned int tmp, orig;
2883
2884         if (change)
2885                 *change = false;
2886
2887         if (regmap_volatile(map, reg) && map->reg_update_bits) {
2888                 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2889                 if (ret == 0 && change)
2890                         *change = true;
2891         } else {
2892                 ret = _regmap_read(map, reg, &orig);
2893                 if (ret != 0)
2894                         return ret;
2895
2896                 tmp = orig & ~mask;
2897                 tmp |= val & mask;
2898
2899                 if (force_write || (tmp != orig)) {
2900                         ret = _regmap_write(map, reg, tmp);
2901                         if (ret == 0 && change)
2902                                 *change = true;
2903                 }
2904         }
2905
2906         return ret;
2907 }
2908
2909 /**
2910  * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2911  *
2912  * @map: Register map to update
2913  * @reg: Register to update
2914  * @mask: Bitmask to change
2915  * @val: New value for bitmask
2916  * @change: Boolean indicating if a write was done
2917  * @async: Boolean indicating asynchronously
2918  * @force: Boolean indicating use force update
2919  *
2920  * Perform a read/modify/write cycle on a register map with change, async, force
2921  * options.
2922  *
2923  * If async is true:
2924  *
2925  * With most buses the read must be done synchronously so this is most useful
2926  * for devices with a cache which do not need to interact with the hardware to
2927  * determine the current register value.
2928  *
2929  * Returns zero for success, a negative number on error.
2930  */
2931 int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2932                             unsigned int mask, unsigned int val,
2933                             bool *change, bool async, bool force)
2934 {
2935         int ret;
2936
2937         map->lock(map->lock_arg);
2938
2939         map->async = async;
2940
2941         ret = _regmap_update_bits(map, reg, mask, val, change, force);
2942
2943         map->async = false;
2944
2945         map->unlock(map->lock_arg);
2946
2947         return ret;
2948 }
2949 EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2950
2951 /**
2952  * regmap_test_bits() - Check if all specified bits are set in a register.
2953  *
2954  * @map: Register map to operate on
2955  * @reg: Register to read from
2956  * @bits: Bits to test
2957  *
2958  * Returns 0 if at least one of the tested bits is not set, 1 if all tested
2959  * bits are set and a negative error number if the underlying regmap_read()
2960  * fails.
2961  */
2962 int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
2963 {
2964         unsigned int val, ret;
2965
2966         ret = regmap_read(map, reg, &val);
2967         if (ret)
2968                 return ret;
2969
2970         return (val & bits) == bits;
2971 }
2972 EXPORT_SYMBOL_GPL(regmap_test_bits);
2973
2974 void regmap_async_complete_cb(struct regmap_async *async, int ret)
2975 {
2976         struct regmap *map = async->map;
2977         bool wake;
2978
2979         trace_regmap_async_io_complete(map);
2980
2981         spin_lock(&map->async_lock);
2982         list_move(&async->list, &map->async_free);
2983         wake = list_empty(&map->async_list);
2984
2985         if (ret != 0)
2986                 map->async_ret = ret;
2987
2988         spin_unlock(&map->async_lock);
2989
2990         if (wake)
2991                 wake_up(&map->async_waitq);
2992 }
2993 EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2994
2995 static int regmap_async_is_done(struct regmap *map)
2996 {
2997         unsigned long flags;
2998         int ret;
2999
3000         spin_lock_irqsave(&map->async_lock, flags);
3001         ret = list_empty(&map->async_list);
3002         spin_unlock_irqrestore(&map->async_lock, flags);
3003
3004         return ret;
3005 }
3006
3007 /**
3008  * regmap_async_complete - Ensure all asynchronous I/O has completed.
3009  *
3010  * @map: Map to operate on.
3011  *
3012  * Blocks until any pending asynchronous I/O has completed.  Returns
3013  * an error code for any failed I/O operations.
3014  */
3015 int regmap_async_complete(struct regmap *map)
3016 {
3017         unsigned long flags;
3018         int ret;
3019
3020         /* Nothing to do with no async support */
3021         if (!map->bus || !map->bus->async_write)
3022                 return 0;
3023
3024         trace_regmap_async_complete_start(map);
3025
3026         wait_event(map->async_waitq, regmap_async_is_done(map));
3027
3028         spin_lock_irqsave(&map->async_lock, flags);
3029         ret = map->async_ret;
3030         map->async_ret = 0;
3031         spin_unlock_irqrestore(&map->async_lock, flags);
3032
3033         trace_regmap_async_complete_done(map);
3034
3035         return ret;
3036 }
3037 EXPORT_SYMBOL_GPL(regmap_async_complete);
3038
3039 /**
3040  * regmap_register_patch - Register and apply register updates to be applied
3041  *                         on device initialistion
3042  *
3043  * @map: Register map to apply updates to.
3044  * @regs: Values to update.
3045  * @num_regs: Number of entries in regs.
3046  *
3047  * Register a set of register updates to be applied to the device
3048  * whenever the device registers are synchronised with the cache and
3049  * apply them immediately.  Typically this is used to apply
3050  * corrections to be applied to the device defaults on startup, such
3051  * as the updates some vendors provide to undocumented registers.
3052  *
3053  * The caller must ensure that this function cannot be called
3054  * concurrently with either itself or regcache_sync().
3055  */
3056 int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3057                           int num_regs)
3058 {
3059         struct reg_sequence *p;
3060         int ret;
3061         bool bypass;
3062
3063         if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3064             num_regs))
3065                 return 0;
3066
3067         p = krealloc(map->patch,
3068                      sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3069                      GFP_KERNEL);
3070         if (p) {
3071                 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3072                 map->patch = p;
3073                 map->patch_regs += num_regs;
3074         } else {
3075                 return -ENOMEM;
3076         }
3077
3078         map->lock(map->lock_arg);
3079
3080         bypass = map->cache_bypass;
3081
3082         map->cache_bypass = true;
3083         map->async = true;
3084
3085         ret = _regmap_multi_reg_write(map, regs, num_regs);
3086
3087         map->async = false;
3088         map->cache_bypass = bypass;
3089
3090         map->unlock(map->lock_arg);
3091
3092         regmap_async_complete(map);
3093
3094         return ret;
3095 }
3096 EXPORT_SYMBOL_GPL(regmap_register_patch);
3097
3098 /**
3099  * regmap_get_val_bytes() - Report the size of a register value
3100  *
3101  * @map: Register map to operate on.
3102  *
3103  * Report the size of a register value, mainly intended to for use by
3104  * generic infrastructure built on top of regmap.
3105  */
3106 int regmap_get_val_bytes(struct regmap *map)
3107 {
3108         if (map->format.format_write)
3109                 return -EINVAL;
3110
3111         return map->format.val_bytes;
3112 }
3113 EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3114
3115 /**
3116  * regmap_get_max_register() - Report the max register value
3117  *
3118  * @map: Register map to operate on.
3119  *
3120  * Report the max register value, mainly intended to for use by
3121  * generic infrastructure built on top of regmap.
3122  */
3123 int regmap_get_max_register(struct regmap *map)
3124 {
3125         return map->max_register ? map->max_register : -EINVAL;
3126 }
3127 EXPORT_SYMBOL_GPL(regmap_get_max_register);
3128
3129 /**
3130  * regmap_get_reg_stride() - Report the register address stride
3131  *
3132  * @map: Register map to operate on.
3133  *
3134  * Report the register address stride, mainly intended to for use by
3135  * generic infrastructure built on top of regmap.
3136  */
3137 int regmap_get_reg_stride(struct regmap *map)
3138 {
3139         return map->reg_stride;
3140 }
3141 EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3142
3143 int regmap_parse_val(struct regmap *map, const void *buf,
3144                         unsigned int *val)
3145 {
3146         if (!map->format.parse_val)
3147                 return -EINVAL;
3148
3149         *val = map->format.parse_val(buf);
3150
3151         return 0;
3152 }
3153 EXPORT_SYMBOL_GPL(regmap_parse_val);
3154
3155 static int __init regmap_initcall(void)
3156 {
3157         regmap_debugfs_initcall();
3158
3159         return 0;
3160 }
3161 postcore_initcall(regmap_initcall);