arch: arm: dts: kirkwood-rd88f6281: Remove disabled marvell,dsa reference
[sfrench/cifs-2.6.git] / drivers / base / regmap / regmap-irq.c
1 /*
2  * regmap based irq_chip
3  *
4  * Copyright 2011 Wolfson Microelectronics plc
5  *
6  * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12
13 #include <linux/device.h>
14 #include <linux/export.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/regmap.h>
20 #include <linux/slab.h>
21
22 #include "internal.h"
23
24 struct regmap_irq_chip_data {
25         struct mutex lock;
26         struct irq_chip irq_chip;
27
28         struct regmap *map;
29         const struct regmap_irq_chip *chip;
30
31         int irq_base;
32         struct irq_domain *domain;
33
34         int irq;
35         int wake_count;
36
37         void *status_reg_buf;
38         unsigned int *status_buf;
39         unsigned int *mask_buf;
40         unsigned int *mask_buf_def;
41         unsigned int *wake_buf;
42         unsigned int *type_buf;
43         unsigned int *type_buf_def;
44
45         unsigned int irq_reg_stride;
46         unsigned int type_reg_stride;
47
48         bool clear_status:1;
49 };
50
51 static inline const
52 struct regmap_irq *irq_to_regmap_irq(struct regmap_irq_chip_data *data,
53                                      int irq)
54 {
55         return &data->chip->irqs[irq];
56 }
57
58 static void regmap_irq_lock(struct irq_data *data)
59 {
60         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
61
62         mutex_lock(&d->lock);
63 }
64
65 static int regmap_irq_update_bits(struct regmap_irq_chip_data *d,
66                                   unsigned int reg, unsigned int mask,
67                                   unsigned int val)
68 {
69         if (d->chip->mask_writeonly)
70                 return regmap_write_bits(d->map, reg, mask, val);
71         else
72                 return regmap_update_bits(d->map, reg, mask, val);
73 }
74
75 static void regmap_irq_sync_unlock(struct irq_data *data)
76 {
77         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
78         struct regmap *map = d->map;
79         int i, ret;
80         u32 reg;
81         u32 unmask_offset;
82         u32 val;
83
84         if (d->chip->runtime_pm) {
85                 ret = pm_runtime_get_sync(map->dev);
86                 if (ret < 0)
87                         dev_err(map->dev, "IRQ sync failed to resume: %d\n",
88                                 ret);
89         }
90
91         if (d->clear_status) {
92                 for (i = 0; i < d->chip->num_regs; i++) {
93                         reg = d->chip->status_base +
94                                 (i * map->reg_stride * d->irq_reg_stride);
95
96                         ret = regmap_read(map, reg, &val);
97                         if (ret)
98                                 dev_err(d->map->dev,
99                                         "Failed to clear the interrupt status bits\n");
100                 }
101
102                 d->clear_status = false;
103         }
104
105         /*
106          * If there's been a change in the mask write it back to the
107          * hardware.  We rely on the use of the regmap core cache to
108          * suppress pointless writes.
109          */
110         for (i = 0; i < d->chip->num_regs; i++) {
111                 reg = d->chip->mask_base +
112                         (i * map->reg_stride * d->irq_reg_stride);
113                 if (d->chip->mask_invert) {
114                         ret = regmap_irq_update_bits(d, reg,
115                                          d->mask_buf_def[i], ~d->mask_buf[i]);
116                 } else if (d->chip->unmask_base) {
117                         /* set mask with mask_base register */
118                         ret = regmap_irq_update_bits(d, reg,
119                                         d->mask_buf_def[i], ~d->mask_buf[i]);
120                         if (ret < 0)
121                                 dev_err(d->map->dev,
122                                         "Failed to sync unmasks in %x\n",
123                                         reg);
124                         unmask_offset = d->chip->unmask_base -
125                                                         d->chip->mask_base;
126                         /* clear mask with unmask_base register */
127                         ret = regmap_irq_update_bits(d,
128                                         reg + unmask_offset,
129                                         d->mask_buf_def[i],
130                                         d->mask_buf[i]);
131                 } else {
132                         ret = regmap_irq_update_bits(d, reg,
133                                          d->mask_buf_def[i], d->mask_buf[i]);
134                 }
135                 if (ret != 0)
136                         dev_err(d->map->dev, "Failed to sync masks in %x\n",
137                                 reg);
138
139                 reg = d->chip->wake_base +
140                         (i * map->reg_stride * d->irq_reg_stride);
141                 if (d->wake_buf) {
142                         if (d->chip->wake_invert)
143                                 ret = regmap_irq_update_bits(d, reg,
144                                                          d->mask_buf_def[i],
145                                                          ~d->wake_buf[i]);
146                         else
147                                 ret = regmap_irq_update_bits(d, reg,
148                                                          d->mask_buf_def[i],
149                                                          d->wake_buf[i]);
150                         if (ret != 0)
151                                 dev_err(d->map->dev,
152                                         "Failed to sync wakes in %x: %d\n",
153                                         reg, ret);
154                 }
155
156                 if (!d->chip->init_ack_masked)
157                         continue;
158                 /*
159                  * Ack all the masked interrupts unconditionally,
160                  * OR if there is masked interrupt which hasn't been Acked,
161                  * it'll be ignored in irq handler, then may introduce irq storm
162                  */
163                 if (d->mask_buf[i] && (d->chip->ack_base || d->chip->use_ack)) {
164                         reg = d->chip->ack_base +
165                                 (i * map->reg_stride * d->irq_reg_stride);
166                         /* some chips ack by write 0 */
167                         if (d->chip->ack_invert)
168                                 ret = regmap_write(map, reg, ~d->mask_buf[i]);
169                         else
170                                 ret = regmap_write(map, reg, d->mask_buf[i]);
171                         if (ret != 0)
172                                 dev_err(d->map->dev, "Failed to ack 0x%x: %d\n",
173                                         reg, ret);
174                 }
175         }
176
177         /* Don't update the type bits if we're using mask bits for irq type. */
178         if (!d->chip->type_in_mask) {
179                 for (i = 0; i < d->chip->num_type_reg; i++) {
180                         if (!d->type_buf_def[i])
181                                 continue;
182                         reg = d->chip->type_base +
183                                 (i * map->reg_stride * d->type_reg_stride);
184                         if (d->chip->type_invert)
185                                 ret = regmap_irq_update_bits(d, reg,
186                                         d->type_buf_def[i], ~d->type_buf[i]);
187                         else
188                                 ret = regmap_irq_update_bits(d, reg,
189                                         d->type_buf_def[i], d->type_buf[i]);
190                         if (ret != 0)
191                                 dev_err(d->map->dev, "Failed to sync type in %x\n",
192                                         reg);
193                 }
194         }
195
196         if (d->chip->runtime_pm)
197                 pm_runtime_put(map->dev);
198
199         /* If we've changed our wakeup count propagate it to the parent */
200         if (d->wake_count < 0)
201                 for (i = d->wake_count; i < 0; i++)
202                         irq_set_irq_wake(d->irq, 0);
203         else if (d->wake_count > 0)
204                 for (i = 0; i < d->wake_count; i++)
205                         irq_set_irq_wake(d->irq, 1);
206
207         d->wake_count = 0;
208
209         mutex_unlock(&d->lock);
210 }
211
212 static void regmap_irq_enable(struct irq_data *data)
213 {
214         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
215         struct regmap *map = d->map;
216         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
217         unsigned int mask, type;
218
219         type = irq_data->type.type_falling_val | irq_data->type.type_rising_val;
220
221         /*
222          * The type_in_mask flag means that the underlying hardware uses
223          * separate mask bits for rising and falling edge interrupts, but
224          * we want to make them into a single virtual interrupt with
225          * configurable edge.
226          *
227          * If the interrupt we're enabling defines the falling or rising
228          * masks then instead of using the regular mask bits for this
229          * interrupt, use the value previously written to the type buffer
230          * at the corresponding offset in regmap_irq_set_type().
231          */
232         if (d->chip->type_in_mask && type)
233                 mask = d->type_buf[irq_data->reg_offset / map->reg_stride];
234         else
235                 mask = irq_data->mask;
236
237         if (d->chip->clear_on_unmask)
238                 d->clear_status = true;
239
240         d->mask_buf[irq_data->reg_offset / map->reg_stride] &= ~mask;
241 }
242
243 static void regmap_irq_disable(struct irq_data *data)
244 {
245         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
246         struct regmap *map = d->map;
247         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
248
249         d->mask_buf[irq_data->reg_offset / map->reg_stride] |= irq_data->mask;
250 }
251
252 static int regmap_irq_set_type(struct irq_data *data, unsigned int type)
253 {
254         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
255         struct regmap *map = d->map;
256         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
257         int reg;
258         const struct regmap_irq_type *t = &irq_data->type;
259
260         if ((t->types_supported & type) != type)
261                 return -ENOTSUPP;
262
263         reg = t->type_reg_offset / map->reg_stride;
264
265         if (t->type_reg_mask)
266                 d->type_buf[reg] &= ~t->type_reg_mask;
267         else
268                 d->type_buf[reg] &= ~(t->type_falling_val |
269                                       t->type_rising_val |
270                                       t->type_level_low_val |
271                                       t->type_level_high_val);
272         switch (type) {
273         case IRQ_TYPE_EDGE_FALLING:
274                 d->type_buf[reg] |= t->type_falling_val;
275                 break;
276
277         case IRQ_TYPE_EDGE_RISING:
278                 d->type_buf[reg] |= t->type_rising_val;
279                 break;
280
281         case IRQ_TYPE_EDGE_BOTH:
282                 d->type_buf[reg] |= (t->type_falling_val |
283                                         t->type_rising_val);
284                 break;
285
286         case IRQ_TYPE_LEVEL_HIGH:
287                 d->type_buf[reg] |= t->type_level_high_val;
288                 break;
289
290         case IRQ_TYPE_LEVEL_LOW:
291                 d->type_buf[reg] |= t->type_level_low_val;
292                 break;
293         default:
294                 return -EINVAL;
295         }
296         return 0;
297 }
298
299 static int regmap_irq_set_wake(struct irq_data *data, unsigned int on)
300 {
301         struct regmap_irq_chip_data *d = irq_data_get_irq_chip_data(data);
302         struct regmap *map = d->map;
303         const struct regmap_irq *irq_data = irq_to_regmap_irq(d, data->hwirq);
304
305         if (on) {
306                 if (d->wake_buf)
307                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
308                                 &= ~irq_data->mask;
309                 d->wake_count++;
310         } else {
311                 if (d->wake_buf)
312                         d->wake_buf[irq_data->reg_offset / map->reg_stride]
313                                 |= irq_data->mask;
314                 d->wake_count--;
315         }
316
317         return 0;
318 }
319
320 static const struct irq_chip regmap_irq_chip = {
321         .irq_bus_lock           = regmap_irq_lock,
322         .irq_bus_sync_unlock    = regmap_irq_sync_unlock,
323         .irq_disable            = regmap_irq_disable,
324         .irq_enable             = regmap_irq_enable,
325         .irq_set_type           = regmap_irq_set_type,
326         .irq_set_wake           = regmap_irq_set_wake,
327 };
328
329 static irqreturn_t regmap_irq_thread(int irq, void *d)
330 {
331         struct regmap_irq_chip_data *data = d;
332         const struct regmap_irq_chip *chip = data->chip;
333         struct regmap *map = data->map;
334         int ret, i;
335         bool handled = false;
336         u32 reg;
337
338         if (chip->handle_pre_irq)
339                 chip->handle_pre_irq(chip->irq_drv_data);
340
341         if (chip->runtime_pm) {
342                 ret = pm_runtime_get_sync(map->dev);
343                 if (ret < 0) {
344                         dev_err(map->dev, "IRQ thread failed to resume: %d\n",
345                                 ret);
346                         pm_runtime_put(map->dev);
347                         goto exit;
348                 }
349         }
350
351         /*
352          * Read in the statuses, using a single bulk read if possible
353          * in order to reduce the I/O overheads.
354          */
355         if (!map->use_single_read && map->reg_stride == 1 &&
356             data->irq_reg_stride == 1) {
357                 u8 *buf8 = data->status_reg_buf;
358                 u16 *buf16 = data->status_reg_buf;
359                 u32 *buf32 = data->status_reg_buf;
360
361                 BUG_ON(!data->status_reg_buf);
362
363                 ret = regmap_bulk_read(map, chip->status_base,
364                                        data->status_reg_buf,
365                                        chip->num_regs);
366                 if (ret != 0) {
367                         dev_err(map->dev, "Failed to read IRQ status: %d\n",
368                                 ret);
369                         goto exit;
370                 }
371
372                 for (i = 0; i < data->chip->num_regs; i++) {
373                         switch (map->format.val_bytes) {
374                         case 1:
375                                 data->status_buf[i] = buf8[i];
376                                 break;
377                         case 2:
378                                 data->status_buf[i] = buf16[i];
379                                 break;
380                         case 4:
381                                 data->status_buf[i] = buf32[i];
382                                 break;
383                         default:
384                                 BUG();
385                                 goto exit;
386                         }
387                 }
388
389         } else {
390                 for (i = 0; i < data->chip->num_regs; i++) {
391                         ret = regmap_read(map, chip->status_base +
392                                           (i * map->reg_stride
393                                            * data->irq_reg_stride),
394                                           &data->status_buf[i]);
395
396                         if (ret != 0) {
397                                 dev_err(map->dev,
398                                         "Failed to read IRQ status: %d\n",
399                                         ret);
400                                 if (chip->runtime_pm)
401                                         pm_runtime_put(map->dev);
402                                 goto exit;
403                         }
404                 }
405         }
406
407         /*
408          * Ignore masked IRQs and ack if we need to; we ack early so
409          * there is no race between handling and acknowleding the
410          * interrupt.  We assume that typically few of the interrupts
411          * will fire simultaneously so don't worry about overhead from
412          * doing a write per register.
413          */
414         for (i = 0; i < data->chip->num_regs; i++) {
415                 data->status_buf[i] &= ~data->mask_buf[i];
416
417                 if (data->status_buf[i] && (chip->ack_base || chip->use_ack)) {
418                         reg = chip->ack_base +
419                                 (i * map->reg_stride * data->irq_reg_stride);
420                         ret = regmap_write(map, reg, data->status_buf[i]);
421                         if (ret != 0)
422                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
423                                         reg, ret);
424                 }
425         }
426
427         for (i = 0; i < chip->num_irqs; i++) {
428                 if (data->status_buf[chip->irqs[i].reg_offset /
429                                      map->reg_stride] & chip->irqs[i].mask) {
430                         handle_nested_irq(irq_find_mapping(data->domain, i));
431                         handled = true;
432                 }
433         }
434
435         if (chip->runtime_pm)
436                 pm_runtime_put(map->dev);
437
438 exit:
439         if (chip->handle_post_irq)
440                 chip->handle_post_irq(chip->irq_drv_data);
441
442         if (handled)
443                 return IRQ_HANDLED;
444         else
445                 return IRQ_NONE;
446 }
447
448 static int regmap_irq_map(struct irq_domain *h, unsigned int virq,
449                           irq_hw_number_t hw)
450 {
451         struct regmap_irq_chip_data *data = h->host_data;
452
453         irq_set_chip_data(virq, data);
454         irq_set_chip(virq, &data->irq_chip);
455         irq_set_nested_thread(virq, 1);
456         irq_set_parent(virq, data->irq);
457         irq_set_noprobe(virq);
458
459         return 0;
460 }
461
462 static const struct irq_domain_ops regmap_domain_ops = {
463         .map    = regmap_irq_map,
464         .xlate  = irq_domain_xlate_onetwocell,
465 };
466
467 /**
468  * regmap_add_irq_chip() - Use standard regmap IRQ controller handling
469  *
470  * @map: The regmap for the device.
471  * @irq: The IRQ the device uses to signal interrupts.
472  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
473  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
474  * @chip: Configuration for the interrupt controller.
475  * @data: Runtime data structure for the controller, allocated on success.
476  *
477  * Returns 0 on success or an errno on failure.
478  *
479  * In order for this to be efficient the chip really should use a
480  * register cache.  The chip driver is responsible for restoring the
481  * register values used by the IRQ controller over suspend and resume.
482  */
483 int regmap_add_irq_chip(struct regmap *map, int irq, int irq_flags,
484                         int irq_base, const struct regmap_irq_chip *chip,
485                         struct regmap_irq_chip_data **data)
486 {
487         struct regmap_irq_chip_data *d;
488         int i;
489         int ret = -ENOMEM;
490         int num_type_reg;
491         u32 reg;
492         u32 unmask_offset;
493
494         if (chip->num_regs <= 0)
495                 return -EINVAL;
496
497         if (chip->clear_on_unmask && (chip->ack_base || chip->use_ack))
498                 return -EINVAL;
499
500         for (i = 0; i < chip->num_irqs; i++) {
501                 if (chip->irqs[i].reg_offset % map->reg_stride)
502                         return -EINVAL;
503                 if (chip->irqs[i].reg_offset / map->reg_stride >=
504                     chip->num_regs)
505                         return -EINVAL;
506         }
507
508         if (irq_base) {
509                 irq_base = irq_alloc_descs(irq_base, 0, chip->num_irqs, 0);
510                 if (irq_base < 0) {
511                         dev_warn(map->dev, "Failed to allocate IRQs: %d\n",
512                                  irq_base);
513                         return irq_base;
514                 }
515         }
516
517         d = kzalloc(sizeof(*d), GFP_KERNEL);
518         if (!d)
519                 return -ENOMEM;
520
521         d->status_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
522                                 GFP_KERNEL);
523         if (!d->status_buf)
524                 goto err_alloc;
525
526         d->mask_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
527                               GFP_KERNEL);
528         if (!d->mask_buf)
529                 goto err_alloc;
530
531         d->mask_buf_def = kcalloc(chip->num_regs, sizeof(unsigned int),
532                                   GFP_KERNEL);
533         if (!d->mask_buf_def)
534                 goto err_alloc;
535
536         if (chip->wake_base) {
537                 d->wake_buf = kcalloc(chip->num_regs, sizeof(unsigned int),
538                                       GFP_KERNEL);
539                 if (!d->wake_buf)
540                         goto err_alloc;
541         }
542
543         num_type_reg = chip->type_in_mask ? chip->num_regs : chip->num_type_reg;
544         if (num_type_reg) {
545                 d->type_buf_def = kcalloc(num_type_reg,
546                                           sizeof(unsigned int), GFP_KERNEL);
547                 if (!d->type_buf_def)
548                         goto err_alloc;
549
550                 d->type_buf = kcalloc(num_type_reg, sizeof(unsigned int),
551                                       GFP_KERNEL);
552                 if (!d->type_buf)
553                         goto err_alloc;
554         }
555
556         d->irq_chip = regmap_irq_chip;
557         d->irq_chip.name = chip->name;
558         d->irq = irq;
559         d->map = map;
560         d->chip = chip;
561         d->irq_base = irq_base;
562
563         if (chip->irq_reg_stride)
564                 d->irq_reg_stride = chip->irq_reg_stride;
565         else
566                 d->irq_reg_stride = 1;
567
568         if (chip->type_reg_stride)
569                 d->type_reg_stride = chip->type_reg_stride;
570         else
571                 d->type_reg_stride = 1;
572
573         if (!map->use_single_read && map->reg_stride == 1 &&
574             d->irq_reg_stride == 1) {
575                 d->status_reg_buf = kmalloc_array(chip->num_regs,
576                                                   map->format.val_bytes,
577                                                   GFP_KERNEL);
578                 if (!d->status_reg_buf)
579                         goto err_alloc;
580         }
581
582         mutex_init(&d->lock);
583
584         for (i = 0; i < chip->num_irqs; i++)
585                 d->mask_buf_def[chip->irqs[i].reg_offset / map->reg_stride]
586                         |= chip->irqs[i].mask;
587
588         /* Mask all the interrupts by default */
589         for (i = 0; i < chip->num_regs; i++) {
590                 d->mask_buf[i] = d->mask_buf_def[i];
591                 reg = chip->mask_base +
592                         (i * map->reg_stride * d->irq_reg_stride);
593                 if (chip->mask_invert)
594                         ret = regmap_irq_update_bits(d, reg,
595                                          d->mask_buf[i], ~d->mask_buf[i]);
596                 else if (d->chip->unmask_base) {
597                         unmask_offset = d->chip->unmask_base -
598                                         d->chip->mask_base;
599                         ret = regmap_irq_update_bits(d,
600                                         reg + unmask_offset,
601                                         d->mask_buf[i],
602                                         d->mask_buf[i]);
603                 } else
604                         ret = regmap_irq_update_bits(d, reg,
605                                          d->mask_buf[i], d->mask_buf[i]);
606                 if (ret != 0) {
607                         dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
608                                 reg, ret);
609                         goto err_alloc;
610                 }
611
612                 if (!chip->init_ack_masked)
613                         continue;
614
615                 /* Ack masked but set interrupts */
616                 reg = chip->status_base +
617                         (i * map->reg_stride * d->irq_reg_stride);
618                 ret = regmap_read(map, reg, &d->status_buf[i]);
619                 if (ret != 0) {
620                         dev_err(map->dev, "Failed to read IRQ status: %d\n",
621                                 ret);
622                         goto err_alloc;
623                 }
624
625                 if (d->status_buf[i] && (chip->ack_base || chip->use_ack)) {
626                         reg = chip->ack_base +
627                                 (i * map->reg_stride * d->irq_reg_stride);
628                         if (chip->ack_invert)
629                                 ret = regmap_write(map, reg,
630                                         ~(d->status_buf[i] & d->mask_buf[i]));
631                         else
632                                 ret = regmap_write(map, reg,
633                                         d->status_buf[i] & d->mask_buf[i]);
634                         if (ret != 0) {
635                                 dev_err(map->dev, "Failed to ack 0x%x: %d\n",
636                                         reg, ret);
637                                 goto err_alloc;
638                         }
639                 }
640         }
641
642         /* Wake is disabled by default */
643         if (d->wake_buf) {
644                 for (i = 0; i < chip->num_regs; i++) {
645                         d->wake_buf[i] = d->mask_buf_def[i];
646                         reg = chip->wake_base +
647                                 (i * map->reg_stride * d->irq_reg_stride);
648
649                         if (chip->wake_invert)
650                                 ret = regmap_irq_update_bits(d, reg,
651                                                          d->mask_buf_def[i],
652                                                          0);
653                         else
654                                 ret = regmap_irq_update_bits(d, reg,
655                                                          d->mask_buf_def[i],
656                                                          d->wake_buf[i]);
657                         if (ret != 0) {
658                                 dev_err(map->dev, "Failed to set masks in 0x%x: %d\n",
659                                         reg, ret);
660                                 goto err_alloc;
661                         }
662                 }
663         }
664
665         if (chip->num_type_reg && !chip->type_in_mask) {
666                 for (i = 0; i < chip->num_type_reg; ++i) {
667                         if (!d->type_buf_def[i])
668                                 continue;
669
670                         reg = chip->type_base +
671                                 (i * map->reg_stride * d->type_reg_stride);
672
673                         ret = regmap_read(map, reg, &d->type_buf_def[i]);
674
675                         if (d->chip->type_invert)
676                                 d->type_buf_def[i] = ~d->type_buf_def[i];
677
678                         if (ret) {
679                                 dev_err(map->dev, "Failed to get type defaults at 0x%x: %d\n",
680                                         reg, ret);
681                                 goto err_alloc;
682                         }
683                 }
684         }
685
686         if (irq_base)
687                 d->domain = irq_domain_add_legacy(map->dev->of_node,
688                                                   chip->num_irqs, irq_base, 0,
689                                                   &regmap_domain_ops, d);
690         else
691                 d->domain = irq_domain_add_linear(map->dev->of_node,
692                                                   chip->num_irqs,
693                                                   &regmap_domain_ops, d);
694         if (!d->domain) {
695                 dev_err(map->dev, "Failed to create IRQ domain\n");
696                 ret = -ENOMEM;
697                 goto err_alloc;
698         }
699
700         ret = request_threaded_irq(irq, NULL, regmap_irq_thread,
701                                    irq_flags | IRQF_ONESHOT,
702                                    chip->name, d);
703         if (ret != 0) {
704                 dev_err(map->dev, "Failed to request IRQ %d for %s: %d\n",
705                         irq, chip->name, ret);
706                 goto err_domain;
707         }
708
709         *data = d;
710
711         return 0;
712
713 err_domain:
714         /* Should really dispose of the domain but... */
715 err_alloc:
716         kfree(d->type_buf);
717         kfree(d->type_buf_def);
718         kfree(d->wake_buf);
719         kfree(d->mask_buf_def);
720         kfree(d->mask_buf);
721         kfree(d->status_buf);
722         kfree(d->status_reg_buf);
723         kfree(d);
724         return ret;
725 }
726 EXPORT_SYMBOL_GPL(regmap_add_irq_chip);
727
728 /**
729  * regmap_del_irq_chip() - Stop interrupt handling for a regmap IRQ chip
730  *
731  * @irq: Primary IRQ for the device
732  * @d: &regmap_irq_chip_data allocated by regmap_add_irq_chip()
733  *
734  * This function also disposes of all mapped IRQs on the chip.
735  */
736 void regmap_del_irq_chip(int irq, struct regmap_irq_chip_data *d)
737 {
738         unsigned int virq;
739         int hwirq;
740
741         if (!d)
742                 return;
743
744         free_irq(irq, d);
745
746         /* Dispose all virtual irq from irq domain before removing it */
747         for (hwirq = 0; hwirq < d->chip->num_irqs; hwirq++) {
748                 /* Ignore hwirq if holes in the IRQ list */
749                 if (!d->chip->irqs[hwirq].mask)
750                         continue;
751
752                 /*
753                  * Find the virtual irq of hwirq on chip and if it is
754                  * there then dispose it
755                  */
756                 virq = irq_find_mapping(d->domain, hwirq);
757                 if (virq)
758                         irq_dispose_mapping(virq);
759         }
760
761         irq_domain_remove(d->domain);
762         kfree(d->type_buf);
763         kfree(d->type_buf_def);
764         kfree(d->wake_buf);
765         kfree(d->mask_buf_def);
766         kfree(d->mask_buf);
767         kfree(d->status_reg_buf);
768         kfree(d->status_buf);
769         kfree(d);
770 }
771 EXPORT_SYMBOL_GPL(regmap_del_irq_chip);
772
773 static void devm_regmap_irq_chip_release(struct device *dev, void *res)
774 {
775         struct regmap_irq_chip_data *d = *(struct regmap_irq_chip_data **)res;
776
777         regmap_del_irq_chip(d->irq, d);
778 }
779
780 static int devm_regmap_irq_chip_match(struct device *dev, void *res, void *data)
781
782 {
783         struct regmap_irq_chip_data **r = res;
784
785         if (!r || !*r) {
786                 WARN_ON(!r || !*r);
787                 return 0;
788         }
789         return *r == data;
790 }
791
792 /**
793  * devm_regmap_add_irq_chip() - Resource manager regmap_add_irq_chip()
794  *
795  * @dev: The device pointer on which irq_chip belongs to.
796  * @map: The regmap for the device.
797  * @irq: The IRQ the device uses to signal interrupts
798  * @irq_flags: The IRQF_ flags to use for the primary interrupt.
799  * @irq_base: Allocate at specific IRQ number if irq_base > 0.
800  * @chip: Configuration for the interrupt controller.
801  * @data: Runtime data structure for the controller, allocated on success
802  *
803  * Returns 0 on success or an errno on failure.
804  *
805  * The &regmap_irq_chip_data will be automatically released when the device is
806  * unbound.
807  */
808 int devm_regmap_add_irq_chip(struct device *dev, struct regmap *map, int irq,
809                              int irq_flags, int irq_base,
810                              const struct regmap_irq_chip *chip,
811                              struct regmap_irq_chip_data **data)
812 {
813         struct regmap_irq_chip_data **ptr, *d;
814         int ret;
815
816         ptr = devres_alloc(devm_regmap_irq_chip_release, sizeof(*ptr),
817                            GFP_KERNEL);
818         if (!ptr)
819                 return -ENOMEM;
820
821         ret = regmap_add_irq_chip(map, irq, irq_flags, irq_base,
822                                   chip, &d);
823         if (ret < 0) {
824                 devres_free(ptr);
825                 return ret;
826         }
827
828         *ptr = d;
829         devres_add(dev, ptr);
830         *data = d;
831         return 0;
832 }
833 EXPORT_SYMBOL_GPL(devm_regmap_add_irq_chip);
834
835 /**
836  * devm_regmap_del_irq_chip() - Resource managed regmap_del_irq_chip()
837  *
838  * @dev: Device for which which resource was allocated.
839  * @irq: Primary IRQ for the device.
840  * @data: &regmap_irq_chip_data allocated by regmap_add_irq_chip().
841  *
842  * A resource managed version of regmap_del_irq_chip().
843  */
844 void devm_regmap_del_irq_chip(struct device *dev, int irq,
845                               struct regmap_irq_chip_data *data)
846 {
847         int rc;
848
849         WARN_ON(irq != data->irq);
850         rc = devres_release(dev, devm_regmap_irq_chip_release,
851                             devm_regmap_irq_chip_match, data);
852
853         if (rc != 0)
854                 WARN_ON(rc);
855 }
856 EXPORT_SYMBOL_GPL(devm_regmap_del_irq_chip);
857
858 /**
859  * regmap_irq_chip_get_base() - Retrieve interrupt base for a regmap IRQ chip
860  *
861  * @data: regmap irq controller to operate on.
862  *
863  * Useful for drivers to request their own IRQs.
864  */
865 int regmap_irq_chip_get_base(struct regmap_irq_chip_data *data)
866 {
867         WARN_ON(!data->irq_base);
868         return data->irq_base;
869 }
870 EXPORT_SYMBOL_GPL(regmap_irq_chip_get_base);
871
872 /**
873  * regmap_irq_get_virq() - Map an interrupt on a chip to a virtual IRQ
874  *
875  * @data: regmap irq controller to operate on.
876  * @irq: index of the interrupt requested in the chip IRQs.
877  *
878  * Useful for drivers to request their own IRQs.
879  */
880 int regmap_irq_get_virq(struct regmap_irq_chip_data *data, int irq)
881 {
882         /* Handle holes in the IRQ list */
883         if (!data->chip->irqs[irq].mask)
884                 return -EINVAL;
885
886         return irq_create_mapping(data->domain, irq);
887 }
888 EXPORT_SYMBOL_GPL(regmap_irq_get_virq);
889
890 /**
891  * regmap_irq_get_domain() - Retrieve the irq_domain for the chip
892  *
893  * @data: regmap_irq controller to operate on.
894  *
895  * Useful for drivers to request their own IRQs and for integration
896  * with subsystems.  For ease of integration NULL is accepted as a
897  * domain, allowing devices to just call this even if no domain is
898  * allocated.
899  */
900 struct irq_domain *regmap_irq_get_domain(struct regmap_irq_chip_data *data)
901 {
902         if (data)
903                 return data->domain;
904         else
905                 return NULL;
906 }
907 EXPORT_SYMBOL_GPL(regmap_irq_get_domain);