HID: apple: Fix stuck function keys when using FN
[sfrench/cifs-2.6.git] / drivers / base / cacheinfo.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * cacheinfo support - processor cache information via sysfs
4  *
5  * Based on arch/x86/kernel/cpu/intel_cacheinfo.c
6  * Author: Sudeep Holla <sudeep.holla@arm.com>
7  */
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/acpi.h>
11 #include <linux/bitops.h>
12 #include <linux/cacheinfo.h>
13 #include <linux/compiler.h>
14 #include <linux/cpu.h>
15 #include <linux/device.h>
16 #include <linux/init.h>
17 #include <linux/of.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/smp.h>
21 #include <linux/sysfs.h>
22
23 /* pointer to per cpu cacheinfo */
24 static DEFINE_PER_CPU(struct cpu_cacheinfo, ci_cpu_cacheinfo);
25 #define ci_cacheinfo(cpu)       (&per_cpu(ci_cpu_cacheinfo, cpu))
26 #define cache_leaves(cpu)       (ci_cacheinfo(cpu)->num_leaves)
27 #define per_cpu_cacheinfo(cpu)  (ci_cacheinfo(cpu)->info_list)
28
29 struct cpu_cacheinfo *get_cpu_cacheinfo(unsigned int cpu)
30 {
31         return ci_cacheinfo(cpu);
32 }
33
34 #ifdef CONFIG_OF
35 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
36                                            struct cacheinfo *sib_leaf)
37 {
38         return sib_leaf->fw_token == this_leaf->fw_token;
39 }
40
41 /* OF properties to query for a given cache type */
42 struct cache_type_info {
43         const char *size_prop;
44         const char *line_size_props[2];
45         const char *nr_sets_prop;
46 };
47
48 static const struct cache_type_info cache_type_info[] = {
49         {
50                 .size_prop       = "cache-size",
51                 .line_size_props = { "cache-line-size",
52                                      "cache-block-size", },
53                 .nr_sets_prop    = "cache-sets",
54         }, {
55                 .size_prop       = "i-cache-size",
56                 .line_size_props = { "i-cache-line-size",
57                                      "i-cache-block-size", },
58                 .nr_sets_prop    = "i-cache-sets",
59         }, {
60                 .size_prop       = "d-cache-size",
61                 .line_size_props = { "d-cache-line-size",
62                                      "d-cache-block-size", },
63                 .nr_sets_prop    = "d-cache-sets",
64         },
65 };
66
67 static inline int get_cacheinfo_idx(enum cache_type type)
68 {
69         if (type == CACHE_TYPE_UNIFIED)
70                 return 0;
71         return type;
72 }
73
74 static void cache_size(struct cacheinfo *this_leaf, struct device_node *np)
75 {
76         const char *propname;
77         int ct_idx;
78
79         ct_idx = get_cacheinfo_idx(this_leaf->type);
80         propname = cache_type_info[ct_idx].size_prop;
81
82         of_property_read_u32(np, propname, &this_leaf->size);
83 }
84
85 /* not cache_line_size() because that's a macro in include/linux/cache.h */
86 static void cache_get_line_size(struct cacheinfo *this_leaf,
87                                 struct device_node *np)
88 {
89         int i, lim, ct_idx;
90
91         ct_idx = get_cacheinfo_idx(this_leaf->type);
92         lim = ARRAY_SIZE(cache_type_info[ct_idx].line_size_props);
93
94         for (i = 0; i < lim; i++) {
95                 int ret;
96                 u32 line_size;
97                 const char *propname;
98
99                 propname = cache_type_info[ct_idx].line_size_props[i];
100                 ret = of_property_read_u32(np, propname, &line_size);
101                 if (!ret) {
102                         this_leaf->coherency_line_size = line_size;
103                         break;
104                 }
105         }
106 }
107
108 static void cache_nr_sets(struct cacheinfo *this_leaf, struct device_node *np)
109 {
110         const char *propname;
111         int ct_idx;
112
113         ct_idx = get_cacheinfo_idx(this_leaf->type);
114         propname = cache_type_info[ct_idx].nr_sets_prop;
115
116         of_property_read_u32(np, propname, &this_leaf->number_of_sets);
117 }
118
119 static void cache_associativity(struct cacheinfo *this_leaf)
120 {
121         unsigned int line_size = this_leaf->coherency_line_size;
122         unsigned int nr_sets = this_leaf->number_of_sets;
123         unsigned int size = this_leaf->size;
124
125         /*
126          * If the cache is fully associative, there is no need to
127          * check the other properties.
128          */
129         if (!(nr_sets == 1) && (nr_sets > 0 && size > 0 && line_size > 0))
130                 this_leaf->ways_of_associativity = (size / nr_sets) / line_size;
131 }
132
133 static bool cache_node_is_unified(struct cacheinfo *this_leaf,
134                                   struct device_node *np)
135 {
136         return of_property_read_bool(np, "cache-unified");
137 }
138
139 static void cache_of_set_props(struct cacheinfo *this_leaf,
140                                struct device_node *np)
141 {
142         /*
143          * init_cache_level must setup the cache level correctly
144          * overriding the architecturally specified levels, so
145          * if type is NONE at this stage, it should be unified
146          */
147         if (this_leaf->type == CACHE_TYPE_NOCACHE &&
148             cache_node_is_unified(this_leaf, np))
149                 this_leaf->type = CACHE_TYPE_UNIFIED;
150         cache_size(this_leaf, np);
151         cache_get_line_size(this_leaf, np);
152         cache_nr_sets(this_leaf, np);
153         cache_associativity(this_leaf);
154 }
155
156 static int cache_setup_of_node(unsigned int cpu)
157 {
158         struct device_node *np;
159         struct cacheinfo *this_leaf;
160         struct device *cpu_dev = get_cpu_device(cpu);
161         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
162         unsigned int index = 0;
163
164         /* skip if fw_token is already populated */
165         if (this_cpu_ci->info_list->fw_token) {
166                 return 0;
167         }
168
169         if (!cpu_dev) {
170                 pr_err("No cpu device for CPU %d\n", cpu);
171                 return -ENODEV;
172         }
173         np = cpu_dev->of_node;
174         if (!np) {
175                 pr_err("Failed to find cpu%d device node\n", cpu);
176                 return -ENOENT;
177         }
178
179         while (index < cache_leaves(cpu)) {
180                 this_leaf = this_cpu_ci->info_list + index;
181                 if (this_leaf->level != 1)
182                         np = of_find_next_cache_node(np);
183                 else
184                         np = of_node_get(np);/* cpu node itself */
185                 if (!np)
186                         break;
187                 cache_of_set_props(this_leaf, np);
188                 this_leaf->fw_token = np;
189                 index++;
190         }
191
192         if (index != cache_leaves(cpu)) /* not all OF nodes populated */
193                 return -ENOENT;
194
195         return 0;
196 }
197 #else
198 static inline int cache_setup_of_node(unsigned int cpu) { return 0; }
199 static inline bool cache_leaves_are_shared(struct cacheinfo *this_leaf,
200                                            struct cacheinfo *sib_leaf)
201 {
202         /*
203          * For non-DT/ACPI systems, assume unique level 1 caches, system-wide
204          * shared caches for all other levels. This will be used only if
205          * arch specific code has not populated shared_cpu_map
206          */
207         return !(this_leaf->level == 1);
208 }
209 #endif
210
211 int __weak cache_setup_acpi(unsigned int cpu)
212 {
213         return -ENOTSUPP;
214 }
215
216 unsigned int coherency_max_size;
217
218 static int cache_shared_cpu_map_setup(unsigned int cpu)
219 {
220         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
221         struct cacheinfo *this_leaf, *sib_leaf;
222         unsigned int index;
223         int ret = 0;
224
225         if (this_cpu_ci->cpu_map_populated)
226                 return 0;
227
228         if (of_have_populated_dt())
229                 ret = cache_setup_of_node(cpu);
230         else if (!acpi_disabled)
231                 ret = cache_setup_acpi(cpu);
232
233         if (ret)
234                 return ret;
235
236         for (index = 0; index < cache_leaves(cpu); index++) {
237                 unsigned int i;
238
239                 this_leaf = this_cpu_ci->info_list + index;
240                 /* skip if shared_cpu_map is already populated */
241                 if (!cpumask_empty(&this_leaf->shared_cpu_map))
242                         continue;
243
244                 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
245                 for_each_online_cpu(i) {
246                         struct cpu_cacheinfo *sib_cpu_ci = get_cpu_cacheinfo(i);
247
248                         if (i == cpu || !sib_cpu_ci->info_list)
249                                 continue;/* skip if itself or no cacheinfo */
250                         sib_leaf = sib_cpu_ci->info_list + index;
251                         if (cache_leaves_are_shared(this_leaf, sib_leaf)) {
252                                 cpumask_set_cpu(cpu, &sib_leaf->shared_cpu_map);
253                                 cpumask_set_cpu(i, &this_leaf->shared_cpu_map);
254                         }
255                 }
256                 /* record the maximum cache line size */
257                 if (this_leaf->coherency_line_size > coherency_max_size)
258                         coherency_max_size = this_leaf->coherency_line_size;
259         }
260
261         return 0;
262 }
263
264 static void cache_shared_cpu_map_remove(unsigned int cpu)
265 {
266         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
267         struct cacheinfo *this_leaf, *sib_leaf;
268         unsigned int sibling, index;
269
270         for (index = 0; index < cache_leaves(cpu); index++) {
271                 this_leaf = this_cpu_ci->info_list + index;
272                 for_each_cpu(sibling, &this_leaf->shared_cpu_map) {
273                         struct cpu_cacheinfo *sib_cpu_ci;
274
275                         if (sibling == cpu) /* skip itself */
276                                 continue;
277
278                         sib_cpu_ci = get_cpu_cacheinfo(sibling);
279                         if (!sib_cpu_ci->info_list)
280                                 continue;
281
282                         sib_leaf = sib_cpu_ci->info_list + index;
283                         cpumask_clear_cpu(cpu, &sib_leaf->shared_cpu_map);
284                         cpumask_clear_cpu(sibling, &this_leaf->shared_cpu_map);
285                 }
286                 if (of_have_populated_dt())
287                         of_node_put(this_leaf->fw_token);
288         }
289 }
290
291 static void free_cache_attributes(unsigned int cpu)
292 {
293         if (!per_cpu_cacheinfo(cpu))
294                 return;
295
296         cache_shared_cpu_map_remove(cpu);
297
298         kfree(per_cpu_cacheinfo(cpu));
299         per_cpu_cacheinfo(cpu) = NULL;
300 }
301
302 int __weak init_cache_level(unsigned int cpu)
303 {
304         return -ENOENT;
305 }
306
307 int __weak populate_cache_leaves(unsigned int cpu)
308 {
309         return -ENOENT;
310 }
311
312 static int detect_cache_attributes(unsigned int cpu)
313 {
314         int ret;
315
316         if (init_cache_level(cpu) || !cache_leaves(cpu))
317                 return -ENOENT;
318
319         per_cpu_cacheinfo(cpu) = kcalloc(cache_leaves(cpu),
320                                          sizeof(struct cacheinfo), GFP_KERNEL);
321         if (per_cpu_cacheinfo(cpu) == NULL)
322                 return -ENOMEM;
323
324         /*
325          * populate_cache_leaves() may completely setup the cache leaves and
326          * shared_cpu_map or it may leave it partially setup.
327          */
328         ret = populate_cache_leaves(cpu);
329         if (ret)
330                 goto free_ci;
331         /*
332          * For systems using DT for cache hierarchy, fw_token
333          * and shared_cpu_map will be set up here only if they are
334          * not populated already
335          */
336         ret = cache_shared_cpu_map_setup(cpu);
337         if (ret) {
338                 pr_warn("Unable to detect cache hierarchy for CPU %d\n", cpu);
339                 goto free_ci;
340         }
341
342         return 0;
343
344 free_ci:
345         free_cache_attributes(cpu);
346         return ret;
347 }
348
349 /* pointer to cpuX/cache device */
350 static DEFINE_PER_CPU(struct device *, ci_cache_dev);
351 #define per_cpu_cache_dev(cpu)  (per_cpu(ci_cache_dev, cpu))
352
353 static cpumask_t cache_dev_map;
354
355 /* pointer to array of devices for cpuX/cache/indexY */
356 static DEFINE_PER_CPU(struct device **, ci_index_dev);
357 #define per_cpu_index_dev(cpu)  (per_cpu(ci_index_dev, cpu))
358 #define per_cache_index_dev(cpu, idx)   ((per_cpu_index_dev(cpu))[idx])
359
360 #define show_one(file_name, object)                             \
361 static ssize_t file_name##_show(struct device *dev,             \
362                 struct device_attribute *attr, char *buf)       \
363 {                                                               \
364         struct cacheinfo *this_leaf = dev_get_drvdata(dev);     \
365         return sprintf(buf, "%u\n", this_leaf->object);         \
366 }
367
368 show_one(id, id);
369 show_one(level, level);
370 show_one(coherency_line_size, coherency_line_size);
371 show_one(number_of_sets, number_of_sets);
372 show_one(physical_line_partition, physical_line_partition);
373 show_one(ways_of_associativity, ways_of_associativity);
374
375 static ssize_t size_show(struct device *dev,
376                          struct device_attribute *attr, char *buf)
377 {
378         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
379
380         return sprintf(buf, "%uK\n", this_leaf->size >> 10);
381 }
382
383 static ssize_t shared_cpumap_show_func(struct device *dev, bool list, char *buf)
384 {
385         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
386         const struct cpumask *mask = &this_leaf->shared_cpu_map;
387
388         return cpumap_print_to_pagebuf(list, buf, mask);
389 }
390
391 static ssize_t shared_cpu_map_show(struct device *dev,
392                                    struct device_attribute *attr, char *buf)
393 {
394         return shared_cpumap_show_func(dev, false, buf);
395 }
396
397 static ssize_t shared_cpu_list_show(struct device *dev,
398                                     struct device_attribute *attr, char *buf)
399 {
400         return shared_cpumap_show_func(dev, true, buf);
401 }
402
403 static ssize_t type_show(struct device *dev,
404                          struct device_attribute *attr, char *buf)
405 {
406         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
407
408         switch (this_leaf->type) {
409         case CACHE_TYPE_DATA:
410                 return sprintf(buf, "Data\n");
411         case CACHE_TYPE_INST:
412                 return sprintf(buf, "Instruction\n");
413         case CACHE_TYPE_UNIFIED:
414                 return sprintf(buf, "Unified\n");
415         default:
416                 return -EINVAL;
417         }
418 }
419
420 static ssize_t allocation_policy_show(struct device *dev,
421                                       struct device_attribute *attr, char *buf)
422 {
423         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
424         unsigned int ci_attr = this_leaf->attributes;
425         int n = 0;
426
427         if ((ci_attr & CACHE_READ_ALLOCATE) && (ci_attr & CACHE_WRITE_ALLOCATE))
428                 n = sprintf(buf, "ReadWriteAllocate\n");
429         else if (ci_attr & CACHE_READ_ALLOCATE)
430                 n = sprintf(buf, "ReadAllocate\n");
431         else if (ci_attr & CACHE_WRITE_ALLOCATE)
432                 n = sprintf(buf, "WriteAllocate\n");
433         return n;
434 }
435
436 static ssize_t write_policy_show(struct device *dev,
437                                  struct device_attribute *attr, char *buf)
438 {
439         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
440         unsigned int ci_attr = this_leaf->attributes;
441         int n = 0;
442
443         if (ci_attr & CACHE_WRITE_THROUGH)
444                 n = sprintf(buf, "WriteThrough\n");
445         else if (ci_attr & CACHE_WRITE_BACK)
446                 n = sprintf(buf, "WriteBack\n");
447         return n;
448 }
449
450 static DEVICE_ATTR_RO(id);
451 static DEVICE_ATTR_RO(level);
452 static DEVICE_ATTR_RO(type);
453 static DEVICE_ATTR_RO(coherency_line_size);
454 static DEVICE_ATTR_RO(ways_of_associativity);
455 static DEVICE_ATTR_RO(number_of_sets);
456 static DEVICE_ATTR_RO(size);
457 static DEVICE_ATTR_RO(allocation_policy);
458 static DEVICE_ATTR_RO(write_policy);
459 static DEVICE_ATTR_RO(shared_cpu_map);
460 static DEVICE_ATTR_RO(shared_cpu_list);
461 static DEVICE_ATTR_RO(physical_line_partition);
462
463 static struct attribute *cache_default_attrs[] = {
464         &dev_attr_id.attr,
465         &dev_attr_type.attr,
466         &dev_attr_level.attr,
467         &dev_attr_shared_cpu_map.attr,
468         &dev_attr_shared_cpu_list.attr,
469         &dev_attr_coherency_line_size.attr,
470         &dev_attr_ways_of_associativity.attr,
471         &dev_attr_number_of_sets.attr,
472         &dev_attr_size.attr,
473         &dev_attr_allocation_policy.attr,
474         &dev_attr_write_policy.attr,
475         &dev_attr_physical_line_partition.attr,
476         NULL
477 };
478
479 static umode_t
480 cache_default_attrs_is_visible(struct kobject *kobj,
481                                struct attribute *attr, int unused)
482 {
483         struct device *dev = kobj_to_dev(kobj);
484         struct cacheinfo *this_leaf = dev_get_drvdata(dev);
485         const struct cpumask *mask = &this_leaf->shared_cpu_map;
486         umode_t mode = attr->mode;
487
488         if ((attr == &dev_attr_id.attr) && (this_leaf->attributes & CACHE_ID))
489                 return mode;
490         if ((attr == &dev_attr_type.attr) && this_leaf->type)
491                 return mode;
492         if ((attr == &dev_attr_level.attr) && this_leaf->level)
493                 return mode;
494         if ((attr == &dev_attr_shared_cpu_map.attr) && !cpumask_empty(mask))
495                 return mode;
496         if ((attr == &dev_attr_shared_cpu_list.attr) && !cpumask_empty(mask))
497                 return mode;
498         if ((attr == &dev_attr_coherency_line_size.attr) &&
499             this_leaf->coherency_line_size)
500                 return mode;
501         if ((attr == &dev_attr_ways_of_associativity.attr) &&
502             this_leaf->size) /* allow 0 = full associativity */
503                 return mode;
504         if ((attr == &dev_attr_number_of_sets.attr) &&
505             this_leaf->number_of_sets)
506                 return mode;
507         if ((attr == &dev_attr_size.attr) && this_leaf->size)
508                 return mode;
509         if ((attr == &dev_attr_write_policy.attr) &&
510             (this_leaf->attributes & CACHE_WRITE_POLICY_MASK))
511                 return mode;
512         if ((attr == &dev_attr_allocation_policy.attr) &&
513             (this_leaf->attributes & CACHE_ALLOCATE_POLICY_MASK))
514                 return mode;
515         if ((attr == &dev_attr_physical_line_partition.attr) &&
516             this_leaf->physical_line_partition)
517                 return mode;
518
519         return 0;
520 }
521
522 static const struct attribute_group cache_default_group = {
523         .attrs = cache_default_attrs,
524         .is_visible = cache_default_attrs_is_visible,
525 };
526
527 static const struct attribute_group *cache_default_groups[] = {
528         &cache_default_group,
529         NULL,
530 };
531
532 static const struct attribute_group *cache_private_groups[] = {
533         &cache_default_group,
534         NULL, /* Place holder for private group */
535         NULL,
536 };
537
538 const struct attribute_group *
539 __weak cache_get_priv_group(struct cacheinfo *this_leaf)
540 {
541         return NULL;
542 }
543
544 static const struct attribute_group **
545 cache_get_attribute_groups(struct cacheinfo *this_leaf)
546 {
547         const struct attribute_group *priv_group =
548                         cache_get_priv_group(this_leaf);
549
550         if (!priv_group)
551                 return cache_default_groups;
552
553         if (!cache_private_groups[1])
554                 cache_private_groups[1] = priv_group;
555
556         return cache_private_groups;
557 }
558
559 /* Add/Remove cache interface for CPU device */
560 static void cpu_cache_sysfs_exit(unsigned int cpu)
561 {
562         int i;
563         struct device *ci_dev;
564
565         if (per_cpu_index_dev(cpu)) {
566                 for (i = 0; i < cache_leaves(cpu); i++) {
567                         ci_dev = per_cache_index_dev(cpu, i);
568                         if (!ci_dev)
569                                 continue;
570                         device_unregister(ci_dev);
571                 }
572                 kfree(per_cpu_index_dev(cpu));
573                 per_cpu_index_dev(cpu) = NULL;
574         }
575         device_unregister(per_cpu_cache_dev(cpu));
576         per_cpu_cache_dev(cpu) = NULL;
577 }
578
579 static int cpu_cache_sysfs_init(unsigned int cpu)
580 {
581         struct device *dev = get_cpu_device(cpu);
582
583         if (per_cpu_cacheinfo(cpu) == NULL)
584                 return -ENOENT;
585
586         per_cpu_cache_dev(cpu) = cpu_device_create(dev, NULL, NULL, "cache");
587         if (IS_ERR(per_cpu_cache_dev(cpu)))
588                 return PTR_ERR(per_cpu_cache_dev(cpu));
589
590         /* Allocate all required memory */
591         per_cpu_index_dev(cpu) = kcalloc(cache_leaves(cpu),
592                                          sizeof(struct device *), GFP_KERNEL);
593         if (unlikely(per_cpu_index_dev(cpu) == NULL))
594                 goto err_out;
595
596         return 0;
597
598 err_out:
599         cpu_cache_sysfs_exit(cpu);
600         return -ENOMEM;
601 }
602
603 static int cache_add_dev(unsigned int cpu)
604 {
605         unsigned int i;
606         int rc;
607         struct device *ci_dev, *parent;
608         struct cacheinfo *this_leaf;
609         struct cpu_cacheinfo *this_cpu_ci = get_cpu_cacheinfo(cpu);
610         const struct attribute_group **cache_groups;
611
612         rc = cpu_cache_sysfs_init(cpu);
613         if (unlikely(rc < 0))
614                 return rc;
615
616         parent = per_cpu_cache_dev(cpu);
617         for (i = 0; i < cache_leaves(cpu); i++) {
618                 this_leaf = this_cpu_ci->info_list + i;
619                 if (this_leaf->disable_sysfs)
620                         continue;
621                 if (this_leaf->type == CACHE_TYPE_NOCACHE)
622                         break;
623                 cache_groups = cache_get_attribute_groups(this_leaf);
624                 ci_dev = cpu_device_create(parent, this_leaf, cache_groups,
625                                            "index%1u", i);
626                 if (IS_ERR(ci_dev)) {
627                         rc = PTR_ERR(ci_dev);
628                         goto err;
629                 }
630                 per_cache_index_dev(cpu, i) = ci_dev;
631         }
632         cpumask_set_cpu(cpu, &cache_dev_map);
633
634         return 0;
635 err:
636         cpu_cache_sysfs_exit(cpu);
637         return rc;
638 }
639
640 static int cacheinfo_cpu_online(unsigned int cpu)
641 {
642         int rc = detect_cache_attributes(cpu);
643
644         if (rc)
645                 return rc;
646         rc = cache_add_dev(cpu);
647         if (rc)
648                 free_cache_attributes(cpu);
649         return rc;
650 }
651
652 static int cacheinfo_cpu_pre_down(unsigned int cpu)
653 {
654         if (cpumask_test_and_clear_cpu(cpu, &cache_dev_map))
655                 cpu_cache_sysfs_exit(cpu);
656
657         free_cache_attributes(cpu);
658         return 0;
659 }
660
661 static int __init cacheinfo_sysfs_init(void)
662 {
663         return cpuhp_setup_state(CPUHP_AP_BASE_CACHEINFO_ONLINE,
664                                  "base/cacheinfo:online",
665                                  cacheinfo_cpu_online, cacheinfo_cpu_pre_down);
666 }
667 device_initcall(cacheinfo_sysfs_init);