Merge tag 'selinux-pr-20210629' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / drivers / acpi / osl.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
4  *
5  *  Copyright (C) 2000       Andrew Henroid
6  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
7  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
8  *  Copyright (c) 2008 Intel Corporation
9  *   Author: Matthew Wilcox <willy@linux.intel.com>
10  */
11
12 #define pr_fmt(fmt) "ACPI: OSL: " fmt
13
14 #include <linux/module.h>
15 #include <linux/kernel.h>
16 #include <linux/slab.h>
17 #include <linux/mm.h>
18 #include <linux/highmem.h>
19 #include <linux/lockdep.h>
20 #include <linux/pci.h>
21 #include <linux/interrupt.h>
22 #include <linux/kmod.h>
23 #include <linux/delay.h>
24 #include <linux/workqueue.h>
25 #include <linux/nmi.h>
26 #include <linux/acpi.h>
27 #include <linux/efi.h>
28 #include <linux/ioport.h>
29 #include <linux/list.h>
30 #include <linux/jiffies.h>
31 #include <linux/semaphore.h>
32 #include <linux/security.h>
33
34 #include <asm/io.h>
35 #include <linux/uaccess.h>
36 #include <linux/io-64-nonatomic-lo-hi.h>
37
38 #include "acpica/accommon.h"
39 #include "acpica/acnamesp.h"
40 #include "internal.h"
41
42 /* Definitions for ACPI_DEBUG_PRINT() */
43 #define _COMPONENT              ACPI_OS_SERVICES
44 ACPI_MODULE_NAME("osl");
45
46 struct acpi_os_dpc {
47         acpi_osd_exec_callback function;
48         void *context;
49         struct work_struct work;
50 };
51
52 #ifdef ENABLE_DEBUGGER
53 #include <linux/kdb.h>
54
55 /* stuff for debugger support */
56 int acpi_in_debugger;
57 EXPORT_SYMBOL(acpi_in_debugger);
58 #endif                          /*ENABLE_DEBUGGER */
59
60 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
61                                       u32 pm1b_ctrl);
62 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
63                                       u32 val_b);
64
65 static acpi_osd_handler acpi_irq_handler;
66 static void *acpi_irq_context;
67 static struct workqueue_struct *kacpid_wq;
68 static struct workqueue_struct *kacpi_notify_wq;
69 static struct workqueue_struct *kacpi_hotplug_wq;
70 static bool acpi_os_initialized;
71 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
72 bool acpi_permanent_mmap = false;
73
74 /*
75  * This list of permanent mappings is for memory that may be accessed from
76  * interrupt context, where we can't do the ioremap().
77  */
78 struct acpi_ioremap {
79         struct list_head list;
80         void __iomem *virt;
81         acpi_physical_address phys;
82         acpi_size size;
83         union {
84                 unsigned long refcount;
85                 struct rcu_work rwork;
86         } track;
87 };
88
89 static LIST_HEAD(acpi_ioremaps);
90 static DEFINE_MUTEX(acpi_ioremap_lock);
91 #define acpi_ioremap_lock_held() lock_is_held(&acpi_ioremap_lock.dep_map)
92
93 static void __init acpi_request_region (struct acpi_generic_address *gas,
94         unsigned int length, char *desc)
95 {
96         u64 addr;
97
98         /* Handle possible alignment issues */
99         memcpy(&addr, &gas->address, sizeof(addr));
100         if (!addr || !length)
101                 return;
102
103         /* Resources are never freed */
104         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
105                 request_region(addr, length, desc);
106         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
107                 request_mem_region(addr, length, desc);
108 }
109
110 static int __init acpi_reserve_resources(void)
111 {
112         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
113                 "ACPI PM1a_EVT_BLK");
114
115         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
116                 "ACPI PM1b_EVT_BLK");
117
118         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
119                 "ACPI PM1a_CNT_BLK");
120
121         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
122                 "ACPI PM1b_CNT_BLK");
123
124         if (acpi_gbl_FADT.pm_timer_length == 4)
125                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
126
127         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
128                 "ACPI PM2_CNT_BLK");
129
130         /* Length of GPE blocks must be a non-negative multiple of 2 */
131
132         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
133                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
134                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
135
136         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
137                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
138                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
139
140         return 0;
141 }
142 fs_initcall_sync(acpi_reserve_resources);
143
144 void acpi_os_printf(const char *fmt, ...)
145 {
146         va_list args;
147         va_start(args, fmt);
148         acpi_os_vprintf(fmt, args);
149         va_end(args);
150 }
151 EXPORT_SYMBOL(acpi_os_printf);
152
153 void acpi_os_vprintf(const char *fmt, va_list args)
154 {
155         static char buffer[512];
156
157         vsprintf(buffer, fmt, args);
158
159 #ifdef ENABLE_DEBUGGER
160         if (acpi_in_debugger) {
161                 kdb_printf("%s", buffer);
162         } else {
163                 if (printk_get_level(buffer))
164                         printk("%s", buffer);
165                 else
166                         printk(KERN_CONT "%s", buffer);
167         }
168 #else
169         if (acpi_debugger_write_log(buffer) < 0) {
170                 if (printk_get_level(buffer))
171                         printk("%s", buffer);
172                 else
173                         printk(KERN_CONT "%s", buffer);
174         }
175 #endif
176 }
177
178 #ifdef CONFIG_KEXEC
179 static unsigned long acpi_rsdp;
180 static int __init setup_acpi_rsdp(char *arg)
181 {
182         return kstrtoul(arg, 16, &acpi_rsdp);
183 }
184 early_param("acpi_rsdp", setup_acpi_rsdp);
185 #endif
186
187 acpi_physical_address __init acpi_os_get_root_pointer(void)
188 {
189         acpi_physical_address pa;
190
191 #ifdef CONFIG_KEXEC
192         /*
193          * We may have been provided with an RSDP on the command line,
194          * but if a malicious user has done so they may be pointing us
195          * at modified ACPI tables that could alter kernel behaviour -
196          * so, we check the lockdown status before making use of
197          * it. If we trust it then also stash it in an architecture
198          * specific location (if appropriate) so it can be carried
199          * over further kexec()s.
200          */
201         if (acpi_rsdp && !security_locked_down(LOCKDOWN_ACPI_TABLES)) {
202                 acpi_arch_set_root_pointer(acpi_rsdp);
203                 return acpi_rsdp;
204         }
205 #endif
206         pa = acpi_arch_get_root_pointer();
207         if (pa)
208                 return pa;
209
210         if (efi_enabled(EFI_CONFIG_TABLES)) {
211                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
212                         return efi.acpi20;
213                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
214                         return efi.acpi;
215                 pr_err("System description tables not found\n");
216         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
217                 acpi_find_root_pointer(&pa);
218         }
219
220         return pa;
221 }
222
223 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
224 static struct acpi_ioremap *
225 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
226 {
227         struct acpi_ioremap *map;
228
229         list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
230                 if (map->phys <= phys &&
231                     phys + size <= map->phys + map->size)
232                         return map;
233
234         return NULL;
235 }
236
237 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
238 static void __iomem *
239 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
240 {
241         struct acpi_ioremap *map;
242
243         map = acpi_map_lookup(phys, size);
244         if (map)
245                 return map->virt + (phys - map->phys);
246
247         return NULL;
248 }
249
250 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
251 {
252         struct acpi_ioremap *map;
253         void __iomem *virt = NULL;
254
255         mutex_lock(&acpi_ioremap_lock);
256         map = acpi_map_lookup(phys, size);
257         if (map) {
258                 virt = map->virt + (phys - map->phys);
259                 map->track.refcount++;
260         }
261         mutex_unlock(&acpi_ioremap_lock);
262         return virt;
263 }
264 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
265
266 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
267 static struct acpi_ioremap *
268 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
269 {
270         struct acpi_ioremap *map;
271
272         list_for_each_entry_rcu(map, &acpi_ioremaps, list, acpi_ioremap_lock_held())
273                 if (map->virt <= virt &&
274                     virt + size <= map->virt + map->size)
275                         return map;
276
277         return NULL;
278 }
279
280 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
281 /* ioremap will take care of cache attributes */
282 #define should_use_kmap(pfn)   0
283 #else
284 #define should_use_kmap(pfn)   page_is_ram(pfn)
285 #endif
286
287 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
288 {
289         unsigned long pfn;
290
291         pfn = pg_off >> PAGE_SHIFT;
292         if (should_use_kmap(pfn)) {
293                 if (pg_sz > PAGE_SIZE)
294                         return NULL;
295                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
296         } else
297                 return acpi_os_ioremap(pg_off, pg_sz);
298 }
299
300 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
301 {
302         unsigned long pfn;
303
304         pfn = pg_off >> PAGE_SHIFT;
305         if (should_use_kmap(pfn))
306                 kunmap(pfn_to_page(pfn));
307         else
308                 iounmap(vaddr);
309 }
310
311 /**
312  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
313  * @phys: Start of the physical address range to map.
314  * @size: Size of the physical address range to map.
315  *
316  * Look up the given physical address range in the list of existing ACPI memory
317  * mappings.  If found, get a reference to it and return a pointer to it (its
318  * virtual address).  If not found, map it, add it to that list and return a
319  * pointer to it.
320  *
321  * During early init (when acpi_permanent_mmap has not been set yet) this
322  * routine simply calls __acpi_map_table() to get the job done.
323  */
324 void __iomem __ref
325 *acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
326 {
327         struct acpi_ioremap *map;
328         void __iomem *virt;
329         acpi_physical_address pg_off;
330         acpi_size pg_sz;
331
332         if (phys > ULONG_MAX) {
333                 pr_err("Cannot map memory that high: 0x%llx\n", phys);
334                 return NULL;
335         }
336
337         if (!acpi_permanent_mmap)
338                 return __acpi_map_table((unsigned long)phys, size);
339
340         mutex_lock(&acpi_ioremap_lock);
341         /* Check if there's a suitable mapping already. */
342         map = acpi_map_lookup(phys, size);
343         if (map) {
344                 map->track.refcount++;
345                 goto out;
346         }
347
348         map = kzalloc(sizeof(*map), GFP_KERNEL);
349         if (!map) {
350                 mutex_unlock(&acpi_ioremap_lock);
351                 return NULL;
352         }
353
354         pg_off = round_down(phys, PAGE_SIZE);
355         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
356         virt = acpi_map(phys, size);
357         if (!virt) {
358                 mutex_unlock(&acpi_ioremap_lock);
359                 kfree(map);
360                 return NULL;
361         }
362
363         INIT_LIST_HEAD(&map->list);
364         map->virt = (void __iomem __force *)((unsigned long)virt & PAGE_MASK);
365         map->phys = pg_off;
366         map->size = pg_sz;
367         map->track.refcount = 1;
368
369         list_add_tail_rcu(&map->list, &acpi_ioremaps);
370
371 out:
372         mutex_unlock(&acpi_ioremap_lock);
373         return map->virt + (phys - map->phys);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
376
377 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
378 {
379         return (void *)acpi_os_map_iomem(phys, size);
380 }
381 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
382
383 static void acpi_os_map_remove(struct work_struct *work)
384 {
385         struct acpi_ioremap *map = container_of(to_rcu_work(work),
386                                                 struct acpi_ioremap,
387                                                 track.rwork);
388
389         acpi_unmap(map->phys, map->virt);
390         kfree(map);
391 }
392
393 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
394 static void acpi_os_drop_map_ref(struct acpi_ioremap *map)
395 {
396         if (--map->track.refcount)
397                 return;
398
399         list_del_rcu(&map->list);
400
401         INIT_RCU_WORK(&map->track.rwork, acpi_os_map_remove);
402         queue_rcu_work(system_wq, &map->track.rwork);
403 }
404
405 /**
406  * acpi_os_unmap_iomem - Drop a memory mapping reference.
407  * @virt: Start of the address range to drop a reference to.
408  * @size: Size of the address range to drop a reference to.
409  *
410  * Look up the given virtual address range in the list of existing ACPI memory
411  * mappings, drop a reference to it and if there are no more active references
412  * to it, queue it up for later removal.
413  *
414  * During early init (when acpi_permanent_mmap has not been set yet) this
415  * routine simply calls __acpi_unmap_table() to get the job done.  Since
416  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
417  * here.
418  */
419 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
420 {
421         struct acpi_ioremap *map;
422
423         if (!acpi_permanent_mmap) {
424                 __acpi_unmap_table(virt, size);
425                 return;
426         }
427
428         mutex_lock(&acpi_ioremap_lock);
429
430         map = acpi_map_lookup_virt(virt, size);
431         if (!map) {
432                 mutex_unlock(&acpi_ioremap_lock);
433                 WARN(true, "ACPI: %s: bad address %p\n", __func__, virt);
434                 return;
435         }
436         acpi_os_drop_map_ref(map);
437
438         mutex_unlock(&acpi_ioremap_lock);
439 }
440 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
441
442 /**
443  * acpi_os_unmap_memory - Drop a memory mapping reference.
444  * @virt: Start of the address range to drop a reference to.
445  * @size: Size of the address range to drop a reference to.
446  */
447 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
448 {
449         acpi_os_unmap_iomem((void __iomem *)virt, size);
450 }
451 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
452
453 void __iomem *acpi_os_map_generic_address(struct acpi_generic_address *gas)
454 {
455         u64 addr;
456
457         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
458                 return NULL;
459
460         /* Handle possible alignment issues */
461         memcpy(&addr, &gas->address, sizeof(addr));
462         if (!addr || !gas->bit_width)
463                 return NULL;
464
465         return acpi_os_map_iomem(addr, gas->bit_width / 8);
466 }
467 EXPORT_SYMBOL(acpi_os_map_generic_address);
468
469 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
470 {
471         u64 addr;
472         struct acpi_ioremap *map;
473
474         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
475                 return;
476
477         /* Handle possible alignment issues */
478         memcpy(&addr, &gas->address, sizeof(addr));
479         if (!addr || !gas->bit_width)
480                 return;
481
482         mutex_lock(&acpi_ioremap_lock);
483
484         map = acpi_map_lookup(addr, gas->bit_width / 8);
485         if (!map) {
486                 mutex_unlock(&acpi_ioremap_lock);
487                 return;
488         }
489         acpi_os_drop_map_ref(map);
490
491         mutex_unlock(&acpi_ioremap_lock);
492 }
493 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
494
495 #ifdef ACPI_FUTURE_USAGE
496 acpi_status
497 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
498 {
499         if (!phys || !virt)
500                 return AE_BAD_PARAMETER;
501
502         *phys = virt_to_phys(virt);
503
504         return AE_OK;
505 }
506 #endif
507
508 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
509 static bool acpi_rev_override;
510
511 int __init acpi_rev_override_setup(char *str)
512 {
513         acpi_rev_override = true;
514         return 1;
515 }
516 __setup("acpi_rev_override", acpi_rev_override_setup);
517 #else
518 #define acpi_rev_override       false
519 #endif
520
521 #define ACPI_MAX_OVERRIDE_LEN 100
522
523 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
524
525 acpi_status
526 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
527                             acpi_string *new_val)
528 {
529         if (!init_val || !new_val)
530                 return AE_BAD_PARAMETER;
531
532         *new_val = NULL;
533         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
534                 pr_info("Overriding _OS definition to '%s'\n", acpi_os_name);
535                 *new_val = acpi_os_name;
536         }
537
538         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
539                 pr_info("Overriding _REV return value to 5\n");
540                 *new_val = (char *)5;
541         }
542
543         return AE_OK;
544 }
545
546 static irqreturn_t acpi_irq(int irq, void *dev_id)
547 {
548         u32 handled;
549
550         handled = (*acpi_irq_handler) (acpi_irq_context);
551
552         if (handled) {
553                 acpi_irq_handled++;
554                 return IRQ_HANDLED;
555         } else {
556                 acpi_irq_not_handled++;
557                 return IRQ_NONE;
558         }
559 }
560
561 acpi_status
562 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
563                                   void *context)
564 {
565         unsigned int irq;
566
567         acpi_irq_stats_init();
568
569         /*
570          * ACPI interrupts different from the SCI in our copy of the FADT are
571          * not supported.
572          */
573         if (gsi != acpi_gbl_FADT.sci_interrupt)
574                 return AE_BAD_PARAMETER;
575
576         if (acpi_irq_handler)
577                 return AE_ALREADY_ACQUIRED;
578
579         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
580                 pr_err("SCI (ACPI GSI %d) not registered\n", gsi);
581                 return AE_OK;
582         }
583
584         acpi_irq_handler = handler;
585         acpi_irq_context = context;
586         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
587                 pr_err("SCI (IRQ%d) allocation failed\n", irq);
588                 acpi_irq_handler = NULL;
589                 return AE_NOT_ACQUIRED;
590         }
591         acpi_sci_irq = irq;
592
593         return AE_OK;
594 }
595
596 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
597 {
598         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
599                 return AE_BAD_PARAMETER;
600
601         free_irq(acpi_sci_irq, acpi_irq);
602         acpi_irq_handler = NULL;
603         acpi_sci_irq = INVALID_ACPI_IRQ;
604
605         return AE_OK;
606 }
607
608 /*
609  * Running in interpreter thread context, safe to sleep
610  */
611
612 void acpi_os_sleep(u64 ms)
613 {
614         msleep(ms);
615 }
616
617 void acpi_os_stall(u32 us)
618 {
619         while (us) {
620                 u32 delay = 1000;
621
622                 if (delay > us)
623                         delay = us;
624                 udelay(delay);
625                 touch_nmi_watchdog();
626                 us -= delay;
627         }
628 }
629
630 /*
631  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
632  * monotonically increasing timer with 100ns granularity. Do not use
633  * ktime_get() to implement this function because this function may get
634  * called after timekeeping has been suspended. Note: calling this function
635  * after timekeeping has been suspended may lead to unexpected results
636  * because when timekeeping is suspended the jiffies counter is not
637  * incremented. See also timekeeping_suspend().
638  */
639 u64 acpi_os_get_timer(void)
640 {
641         return (get_jiffies_64() - INITIAL_JIFFIES) *
642                 (ACPI_100NSEC_PER_SEC / HZ);
643 }
644
645 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
646 {
647         u32 dummy;
648
649         if (!value)
650                 value = &dummy;
651
652         *value = 0;
653         if (width <= 8) {
654                 *(u8 *) value = inb(port);
655         } else if (width <= 16) {
656                 *(u16 *) value = inw(port);
657         } else if (width <= 32) {
658                 *(u32 *) value = inl(port);
659         } else {
660                 BUG();
661         }
662
663         return AE_OK;
664 }
665
666 EXPORT_SYMBOL(acpi_os_read_port);
667
668 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
669 {
670         if (width <= 8) {
671                 outb(value, port);
672         } else if (width <= 16) {
673                 outw(value, port);
674         } else if (width <= 32) {
675                 outl(value, port);
676         } else {
677                 BUG();
678         }
679
680         return AE_OK;
681 }
682
683 EXPORT_SYMBOL(acpi_os_write_port);
684
685 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
686 {
687
688         switch (width) {
689         case 8:
690                 *(u8 *) value = readb(virt_addr);
691                 break;
692         case 16:
693                 *(u16 *) value = readw(virt_addr);
694                 break;
695         case 32:
696                 *(u32 *) value = readl(virt_addr);
697                 break;
698         case 64:
699                 *(u64 *) value = readq(virt_addr);
700                 break;
701         default:
702                 return -EINVAL;
703         }
704
705         return 0;
706 }
707
708 acpi_status
709 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
710 {
711         void __iomem *virt_addr;
712         unsigned int size = width / 8;
713         bool unmap = false;
714         u64 dummy;
715         int error;
716
717         rcu_read_lock();
718         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
719         if (!virt_addr) {
720                 rcu_read_unlock();
721                 virt_addr = acpi_os_ioremap(phys_addr, size);
722                 if (!virt_addr)
723                         return AE_BAD_ADDRESS;
724                 unmap = true;
725         }
726
727         if (!value)
728                 value = &dummy;
729
730         error = acpi_os_read_iomem(virt_addr, value, width);
731         BUG_ON(error);
732
733         if (unmap)
734                 iounmap(virt_addr);
735         else
736                 rcu_read_unlock();
737
738         return AE_OK;
739 }
740
741 acpi_status
742 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
743 {
744         void __iomem *virt_addr;
745         unsigned int size = width / 8;
746         bool unmap = false;
747
748         rcu_read_lock();
749         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
750         if (!virt_addr) {
751                 rcu_read_unlock();
752                 virt_addr = acpi_os_ioremap(phys_addr, size);
753                 if (!virt_addr)
754                         return AE_BAD_ADDRESS;
755                 unmap = true;
756         }
757
758         switch (width) {
759         case 8:
760                 writeb(value, virt_addr);
761                 break;
762         case 16:
763                 writew(value, virt_addr);
764                 break;
765         case 32:
766                 writel(value, virt_addr);
767                 break;
768         case 64:
769                 writeq(value, virt_addr);
770                 break;
771         default:
772                 BUG();
773         }
774
775         if (unmap)
776                 iounmap(virt_addr);
777         else
778                 rcu_read_unlock();
779
780         return AE_OK;
781 }
782
783 #ifdef CONFIG_PCI
784 acpi_status
785 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
786                                u64 *value, u32 width)
787 {
788         int result, size;
789         u32 value32;
790
791         if (!value)
792                 return AE_BAD_PARAMETER;
793
794         switch (width) {
795         case 8:
796                 size = 1;
797                 break;
798         case 16:
799                 size = 2;
800                 break;
801         case 32:
802                 size = 4;
803                 break;
804         default:
805                 return AE_ERROR;
806         }
807
808         result = raw_pci_read(pci_id->segment, pci_id->bus,
809                                 PCI_DEVFN(pci_id->device, pci_id->function),
810                                 reg, size, &value32);
811         *value = value32;
812
813         return (result ? AE_ERROR : AE_OK);
814 }
815
816 acpi_status
817 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
818                                 u64 value, u32 width)
819 {
820         int result, size;
821
822         switch (width) {
823         case 8:
824                 size = 1;
825                 break;
826         case 16:
827                 size = 2;
828                 break;
829         case 32:
830                 size = 4;
831                 break;
832         default:
833                 return AE_ERROR;
834         }
835
836         result = raw_pci_write(pci_id->segment, pci_id->bus,
837                                 PCI_DEVFN(pci_id->device, pci_id->function),
838                                 reg, size, value);
839
840         return (result ? AE_ERROR : AE_OK);
841 }
842 #endif
843
844 static void acpi_os_execute_deferred(struct work_struct *work)
845 {
846         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
847
848         dpc->function(dpc->context);
849         kfree(dpc);
850 }
851
852 #ifdef CONFIG_ACPI_DEBUGGER
853 static struct acpi_debugger acpi_debugger;
854 static bool acpi_debugger_initialized;
855
856 int acpi_register_debugger(struct module *owner,
857                            const struct acpi_debugger_ops *ops)
858 {
859         int ret = 0;
860
861         mutex_lock(&acpi_debugger.lock);
862         if (acpi_debugger.ops) {
863                 ret = -EBUSY;
864                 goto err_lock;
865         }
866
867         acpi_debugger.owner = owner;
868         acpi_debugger.ops = ops;
869
870 err_lock:
871         mutex_unlock(&acpi_debugger.lock);
872         return ret;
873 }
874 EXPORT_SYMBOL(acpi_register_debugger);
875
876 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
877 {
878         mutex_lock(&acpi_debugger.lock);
879         if (ops == acpi_debugger.ops) {
880                 acpi_debugger.ops = NULL;
881                 acpi_debugger.owner = NULL;
882         }
883         mutex_unlock(&acpi_debugger.lock);
884 }
885 EXPORT_SYMBOL(acpi_unregister_debugger);
886
887 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
888 {
889         int ret;
890         int (*func)(acpi_osd_exec_callback, void *);
891         struct module *owner;
892
893         if (!acpi_debugger_initialized)
894                 return -ENODEV;
895         mutex_lock(&acpi_debugger.lock);
896         if (!acpi_debugger.ops) {
897                 ret = -ENODEV;
898                 goto err_lock;
899         }
900         if (!try_module_get(acpi_debugger.owner)) {
901                 ret = -ENODEV;
902                 goto err_lock;
903         }
904         func = acpi_debugger.ops->create_thread;
905         owner = acpi_debugger.owner;
906         mutex_unlock(&acpi_debugger.lock);
907
908         ret = func(function, context);
909
910         mutex_lock(&acpi_debugger.lock);
911         module_put(owner);
912 err_lock:
913         mutex_unlock(&acpi_debugger.lock);
914         return ret;
915 }
916
917 ssize_t acpi_debugger_write_log(const char *msg)
918 {
919         ssize_t ret;
920         ssize_t (*func)(const char *);
921         struct module *owner;
922
923         if (!acpi_debugger_initialized)
924                 return -ENODEV;
925         mutex_lock(&acpi_debugger.lock);
926         if (!acpi_debugger.ops) {
927                 ret = -ENODEV;
928                 goto err_lock;
929         }
930         if (!try_module_get(acpi_debugger.owner)) {
931                 ret = -ENODEV;
932                 goto err_lock;
933         }
934         func = acpi_debugger.ops->write_log;
935         owner = acpi_debugger.owner;
936         mutex_unlock(&acpi_debugger.lock);
937
938         ret = func(msg);
939
940         mutex_lock(&acpi_debugger.lock);
941         module_put(owner);
942 err_lock:
943         mutex_unlock(&acpi_debugger.lock);
944         return ret;
945 }
946
947 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
948 {
949         ssize_t ret;
950         ssize_t (*func)(char *, size_t);
951         struct module *owner;
952
953         if (!acpi_debugger_initialized)
954                 return -ENODEV;
955         mutex_lock(&acpi_debugger.lock);
956         if (!acpi_debugger.ops) {
957                 ret = -ENODEV;
958                 goto err_lock;
959         }
960         if (!try_module_get(acpi_debugger.owner)) {
961                 ret = -ENODEV;
962                 goto err_lock;
963         }
964         func = acpi_debugger.ops->read_cmd;
965         owner = acpi_debugger.owner;
966         mutex_unlock(&acpi_debugger.lock);
967
968         ret = func(buffer, buffer_length);
969
970         mutex_lock(&acpi_debugger.lock);
971         module_put(owner);
972 err_lock:
973         mutex_unlock(&acpi_debugger.lock);
974         return ret;
975 }
976
977 int acpi_debugger_wait_command_ready(void)
978 {
979         int ret;
980         int (*func)(bool, char *, size_t);
981         struct module *owner;
982
983         if (!acpi_debugger_initialized)
984                 return -ENODEV;
985         mutex_lock(&acpi_debugger.lock);
986         if (!acpi_debugger.ops) {
987                 ret = -ENODEV;
988                 goto err_lock;
989         }
990         if (!try_module_get(acpi_debugger.owner)) {
991                 ret = -ENODEV;
992                 goto err_lock;
993         }
994         func = acpi_debugger.ops->wait_command_ready;
995         owner = acpi_debugger.owner;
996         mutex_unlock(&acpi_debugger.lock);
997
998         ret = func(acpi_gbl_method_executing,
999                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
1000
1001         mutex_lock(&acpi_debugger.lock);
1002         module_put(owner);
1003 err_lock:
1004         mutex_unlock(&acpi_debugger.lock);
1005         return ret;
1006 }
1007
1008 int acpi_debugger_notify_command_complete(void)
1009 {
1010         int ret;
1011         int (*func)(void);
1012         struct module *owner;
1013
1014         if (!acpi_debugger_initialized)
1015                 return -ENODEV;
1016         mutex_lock(&acpi_debugger.lock);
1017         if (!acpi_debugger.ops) {
1018                 ret = -ENODEV;
1019                 goto err_lock;
1020         }
1021         if (!try_module_get(acpi_debugger.owner)) {
1022                 ret = -ENODEV;
1023                 goto err_lock;
1024         }
1025         func = acpi_debugger.ops->notify_command_complete;
1026         owner = acpi_debugger.owner;
1027         mutex_unlock(&acpi_debugger.lock);
1028
1029         ret = func();
1030
1031         mutex_lock(&acpi_debugger.lock);
1032         module_put(owner);
1033 err_lock:
1034         mutex_unlock(&acpi_debugger.lock);
1035         return ret;
1036 }
1037
1038 int __init acpi_debugger_init(void)
1039 {
1040         mutex_init(&acpi_debugger.lock);
1041         acpi_debugger_initialized = true;
1042         return 0;
1043 }
1044 #endif
1045
1046 /*******************************************************************************
1047  *
1048  * FUNCTION:    acpi_os_execute
1049  *
1050  * PARAMETERS:  Type               - Type of the callback
1051  *              Function           - Function to be executed
1052  *              Context            - Function parameters
1053  *
1054  * RETURN:      Status
1055  *
1056  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1057  *              immediately executes function on a separate thread.
1058  *
1059  ******************************************************************************/
1060
1061 acpi_status acpi_os_execute(acpi_execute_type type,
1062                             acpi_osd_exec_callback function, void *context)
1063 {
1064         acpi_status status = AE_OK;
1065         struct acpi_os_dpc *dpc;
1066         struct workqueue_struct *queue;
1067         int ret;
1068         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1069                           "Scheduling function [%p(%p)] for deferred execution.\n",
1070                           function, context));
1071
1072         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1073                 ret = acpi_debugger_create_thread(function, context);
1074                 if (ret) {
1075                         pr_err("Kernel thread creation failed\n");
1076                         status = AE_ERROR;
1077                 }
1078                 goto out_thread;
1079         }
1080
1081         /*
1082          * Allocate/initialize DPC structure.  Note that this memory will be
1083          * freed by the callee.  The kernel handles the work_struct list  in a
1084          * way that allows us to also free its memory inside the callee.
1085          * Because we may want to schedule several tasks with different
1086          * parameters we can't use the approach some kernel code uses of
1087          * having a static work_struct.
1088          */
1089
1090         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1091         if (!dpc)
1092                 return AE_NO_MEMORY;
1093
1094         dpc->function = function;
1095         dpc->context = context;
1096
1097         /*
1098          * To prevent lockdep from complaining unnecessarily, make sure that
1099          * there is a different static lockdep key for each workqueue by using
1100          * INIT_WORK() for each of them separately.
1101          */
1102         if (type == OSL_NOTIFY_HANDLER) {
1103                 queue = kacpi_notify_wq;
1104                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1105         } else if (type == OSL_GPE_HANDLER) {
1106                 queue = kacpid_wq;
1107                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1108         } else {
1109                 pr_err("Unsupported os_execute type %d.\n", type);
1110                 status = AE_ERROR;
1111         }
1112
1113         if (ACPI_FAILURE(status))
1114                 goto err_workqueue;
1115
1116         /*
1117          * On some machines, a software-initiated SMI causes corruption unless
1118          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1119          * typically it's done in GPE-related methods that are run via
1120          * workqueues, so we can avoid the known corruption cases by always
1121          * queueing on CPU 0.
1122          */
1123         ret = queue_work_on(0, queue, &dpc->work);
1124         if (!ret) {
1125                 pr_err("Unable to queue work\n");
1126                 status = AE_ERROR;
1127         }
1128 err_workqueue:
1129         if (ACPI_FAILURE(status))
1130                 kfree(dpc);
1131 out_thread:
1132         return status;
1133 }
1134 EXPORT_SYMBOL(acpi_os_execute);
1135
1136 void acpi_os_wait_events_complete(void)
1137 {
1138         /*
1139          * Make sure the GPE handler or the fixed event handler is not used
1140          * on another CPU after removal.
1141          */
1142         if (acpi_sci_irq_valid())
1143                 synchronize_hardirq(acpi_sci_irq);
1144         flush_workqueue(kacpid_wq);
1145         flush_workqueue(kacpi_notify_wq);
1146 }
1147 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1148
1149 struct acpi_hp_work {
1150         struct work_struct work;
1151         struct acpi_device *adev;
1152         u32 src;
1153 };
1154
1155 static void acpi_hotplug_work_fn(struct work_struct *work)
1156 {
1157         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1158
1159         acpi_os_wait_events_complete();
1160         acpi_device_hotplug(hpw->adev, hpw->src);
1161         kfree(hpw);
1162 }
1163
1164 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1165 {
1166         struct acpi_hp_work *hpw;
1167
1168         acpi_handle_debug(adev->handle,
1169                           "Scheduling hotplug event %u for deferred handling\n",
1170                            src);
1171
1172         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1173         if (!hpw)
1174                 return AE_NO_MEMORY;
1175
1176         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1177         hpw->adev = adev;
1178         hpw->src = src;
1179         /*
1180          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1181          * the hotplug code may call driver .remove() functions, which may
1182          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1183          * these workqueues.
1184          */
1185         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1186                 kfree(hpw);
1187                 return AE_ERROR;
1188         }
1189         return AE_OK;
1190 }
1191
1192 bool acpi_queue_hotplug_work(struct work_struct *work)
1193 {
1194         return queue_work(kacpi_hotplug_wq, work);
1195 }
1196
1197 acpi_status
1198 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1199 {
1200         struct semaphore *sem = NULL;
1201
1202         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1203         if (!sem)
1204                 return AE_NO_MEMORY;
1205
1206         sema_init(sem, initial_units);
1207
1208         *handle = (acpi_handle *) sem;
1209
1210         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1211                           *handle, initial_units));
1212
1213         return AE_OK;
1214 }
1215
1216 /*
1217  * TODO: A better way to delete semaphores?  Linux doesn't have a
1218  * 'delete_semaphore()' function -- may result in an invalid
1219  * pointer dereference for non-synchronized consumers.  Should
1220  * we at least check for blocked threads and signal/cancel them?
1221  */
1222
1223 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1224 {
1225         struct semaphore *sem = (struct semaphore *)handle;
1226
1227         if (!sem)
1228                 return AE_BAD_PARAMETER;
1229
1230         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1231
1232         BUG_ON(!list_empty(&sem->wait_list));
1233         kfree(sem);
1234         sem = NULL;
1235
1236         return AE_OK;
1237 }
1238
1239 /*
1240  * TODO: Support for units > 1?
1241  */
1242 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1243 {
1244         acpi_status status = AE_OK;
1245         struct semaphore *sem = (struct semaphore *)handle;
1246         long jiffies;
1247         int ret = 0;
1248
1249         if (!acpi_os_initialized)
1250                 return AE_OK;
1251
1252         if (!sem || (units < 1))
1253                 return AE_BAD_PARAMETER;
1254
1255         if (units > 1)
1256                 return AE_SUPPORT;
1257
1258         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1259                           handle, units, timeout));
1260
1261         if (timeout == ACPI_WAIT_FOREVER)
1262                 jiffies = MAX_SCHEDULE_TIMEOUT;
1263         else
1264                 jiffies = msecs_to_jiffies(timeout);
1265
1266         ret = down_timeout(sem, jiffies);
1267         if (ret)
1268                 status = AE_TIME;
1269
1270         if (ACPI_FAILURE(status)) {
1271                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1272                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1273                                   handle, units, timeout,
1274                                   acpi_format_exception(status)));
1275         } else {
1276                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1277                                   "Acquired semaphore[%p|%d|%d]", handle,
1278                                   units, timeout));
1279         }
1280
1281         return status;
1282 }
1283
1284 /*
1285  * TODO: Support for units > 1?
1286  */
1287 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1288 {
1289         struct semaphore *sem = (struct semaphore *)handle;
1290
1291         if (!acpi_os_initialized)
1292                 return AE_OK;
1293
1294         if (!sem || (units < 1))
1295                 return AE_BAD_PARAMETER;
1296
1297         if (units > 1)
1298                 return AE_SUPPORT;
1299
1300         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1301                           units));
1302
1303         up(sem);
1304
1305         return AE_OK;
1306 }
1307
1308 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1309 {
1310 #ifdef ENABLE_DEBUGGER
1311         if (acpi_in_debugger) {
1312                 u32 chars;
1313
1314                 kdb_read(buffer, buffer_length);
1315
1316                 /* remove the CR kdb includes */
1317                 chars = strlen(buffer) - 1;
1318                 buffer[chars] = '\0';
1319         }
1320 #else
1321         int ret;
1322
1323         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1324         if (ret < 0)
1325                 return AE_ERROR;
1326         if (bytes_read)
1327                 *bytes_read = ret;
1328 #endif
1329
1330         return AE_OK;
1331 }
1332 EXPORT_SYMBOL(acpi_os_get_line);
1333
1334 acpi_status acpi_os_wait_command_ready(void)
1335 {
1336         int ret;
1337
1338         ret = acpi_debugger_wait_command_ready();
1339         if (ret < 0)
1340                 return AE_ERROR;
1341         return AE_OK;
1342 }
1343
1344 acpi_status acpi_os_notify_command_complete(void)
1345 {
1346         int ret;
1347
1348         ret = acpi_debugger_notify_command_complete();
1349         if (ret < 0)
1350                 return AE_ERROR;
1351         return AE_OK;
1352 }
1353
1354 acpi_status acpi_os_signal(u32 function, void *info)
1355 {
1356         switch (function) {
1357         case ACPI_SIGNAL_FATAL:
1358                 pr_err("Fatal opcode executed\n");
1359                 break;
1360         case ACPI_SIGNAL_BREAKPOINT:
1361                 /*
1362                  * AML Breakpoint
1363                  * ACPI spec. says to treat it as a NOP unless
1364                  * you are debugging.  So if/when we integrate
1365                  * AML debugger into the kernel debugger its
1366                  * hook will go here.  But until then it is
1367                  * not useful to print anything on breakpoints.
1368                  */
1369                 break;
1370         default:
1371                 break;
1372         }
1373
1374         return AE_OK;
1375 }
1376
1377 static int __init acpi_os_name_setup(char *str)
1378 {
1379         char *p = acpi_os_name;
1380         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1381
1382         if (!str || !*str)
1383                 return 0;
1384
1385         for (; count-- && *str; str++) {
1386                 if (isalnum(*str) || *str == ' ' || *str == ':')
1387                         *p++ = *str;
1388                 else if (*str == '\'' || *str == '"')
1389                         continue;
1390                 else
1391                         break;
1392         }
1393         *p = 0;
1394
1395         return 1;
1396
1397 }
1398
1399 __setup("acpi_os_name=", acpi_os_name_setup);
1400
1401 /*
1402  * Disable the auto-serialization of named objects creation methods.
1403  *
1404  * This feature is enabled by default.  It marks the AML control methods
1405  * that contain the opcodes to create named objects as "Serialized".
1406  */
1407 static int __init acpi_no_auto_serialize_setup(char *str)
1408 {
1409         acpi_gbl_auto_serialize_methods = FALSE;
1410         pr_info("Auto-serialization disabled\n");
1411
1412         return 1;
1413 }
1414
1415 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1416
1417 /* Check of resource interference between native drivers and ACPI
1418  * OperationRegions (SystemIO and System Memory only).
1419  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1420  * in arbitrary AML code and can interfere with legacy drivers.
1421  * acpi_enforce_resources= can be set to:
1422  *
1423  *   - strict (default) (2)
1424  *     -> further driver trying to access the resources will not load
1425  *   - lax              (1)
1426  *     -> further driver trying to access the resources will load, but you
1427  *     get a system message that something might go wrong...
1428  *
1429  *   - no               (0)
1430  *     -> ACPI Operation Region resources will not be registered
1431  *
1432  */
1433 #define ENFORCE_RESOURCES_STRICT 2
1434 #define ENFORCE_RESOURCES_LAX    1
1435 #define ENFORCE_RESOURCES_NO     0
1436
1437 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1438
1439 static int __init acpi_enforce_resources_setup(char *str)
1440 {
1441         if (str == NULL || *str == '\0')
1442                 return 0;
1443
1444         if (!strcmp("strict", str))
1445                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1446         else if (!strcmp("lax", str))
1447                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1448         else if (!strcmp("no", str))
1449                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1450
1451         return 1;
1452 }
1453
1454 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1455
1456 /* Check for resource conflicts between ACPI OperationRegions and native
1457  * drivers */
1458 int acpi_check_resource_conflict(const struct resource *res)
1459 {
1460         acpi_adr_space_type space_id;
1461
1462         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1463                 return 0;
1464
1465         if (res->flags & IORESOURCE_IO)
1466                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1467         else if (res->flags & IORESOURCE_MEM)
1468                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1469         else
1470                 return 0;
1471
1472         if (!acpi_check_address_range(space_id, res->start, resource_size(res), 1))
1473                 return 0;
1474
1475         pr_info("Resource conflict; ACPI support missing from driver?\n");
1476
1477         if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1478                 return -EBUSY;
1479
1480         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1481                 pr_notice("Resource conflict: System may be unstable or behave erratically\n");
1482
1483         return 0;
1484 }
1485 EXPORT_SYMBOL(acpi_check_resource_conflict);
1486
1487 int acpi_check_region(resource_size_t start, resource_size_t n,
1488                       const char *name)
1489 {
1490         struct resource res = DEFINE_RES_IO_NAMED(start, n, name);
1491
1492         return acpi_check_resource_conflict(&res);
1493 }
1494 EXPORT_SYMBOL(acpi_check_region);
1495
1496 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1497                                               void *_res, void **return_value)
1498 {
1499         struct acpi_mem_space_context **mem_ctx;
1500         union acpi_operand_object *handler_obj;
1501         union acpi_operand_object *region_obj2;
1502         union acpi_operand_object *region_obj;
1503         struct resource *res = _res;
1504         acpi_status status;
1505
1506         region_obj = acpi_ns_get_attached_object(handle);
1507         if (!region_obj)
1508                 return AE_OK;
1509
1510         handler_obj = region_obj->region.handler;
1511         if (!handler_obj)
1512                 return AE_OK;
1513
1514         if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1515                 return AE_OK;
1516
1517         if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1518                 return AE_OK;
1519
1520         region_obj2 = acpi_ns_get_secondary_object(region_obj);
1521         if (!region_obj2)
1522                 return AE_OK;
1523
1524         mem_ctx = (void *)&region_obj2->extra.region_context;
1525
1526         if (!(mem_ctx[0]->address >= res->start &&
1527               mem_ctx[0]->address < res->end))
1528                 return AE_OK;
1529
1530         status = handler_obj->address_space.setup(region_obj,
1531                                                   ACPI_REGION_DEACTIVATE,
1532                                                   NULL, (void **)mem_ctx);
1533         if (ACPI_SUCCESS(status))
1534                 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1535
1536         return status;
1537 }
1538
1539 /**
1540  * acpi_release_memory - Release any mappings done to a memory region
1541  * @handle: Handle to namespace node
1542  * @res: Memory resource
1543  * @level: A level that terminates the search
1544  *
1545  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1546  * overlap with @res and that have already been activated (mapped).
1547  *
1548  * This is a helper that allows drivers to place special requirements on memory
1549  * region that may overlap with operation regions, primarily allowing them to
1550  * safely map the region as non-cached memory.
1551  *
1552  * The unmapped Operation Regions will be automatically remapped next time they
1553  * are called, so the drivers do not need to do anything else.
1554  */
1555 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1556                                 u32 level)
1557 {
1558         acpi_status status;
1559
1560         if (!(res->flags & IORESOURCE_MEM))
1561                 return AE_TYPE;
1562
1563         status = acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1564                                      acpi_deactivate_mem_region, NULL,
1565                                      res, NULL);
1566         if (ACPI_FAILURE(status))
1567                 return status;
1568
1569         /*
1570          * Wait for all of the mappings queued up for removal by
1571          * acpi_deactivate_mem_region() to actually go away.
1572          */
1573         synchronize_rcu();
1574         rcu_barrier();
1575         flush_scheduled_work();
1576
1577         return AE_OK;
1578 }
1579 EXPORT_SYMBOL_GPL(acpi_release_memory);
1580
1581 /*
1582  * Let drivers know whether the resource checks are effective
1583  */
1584 int acpi_resources_are_enforced(void)
1585 {
1586         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1587 }
1588 EXPORT_SYMBOL(acpi_resources_are_enforced);
1589
1590 /*
1591  * Deallocate the memory for a spinlock.
1592  */
1593 void acpi_os_delete_lock(acpi_spinlock handle)
1594 {
1595         ACPI_FREE(handle);
1596 }
1597
1598 /*
1599  * Acquire a spinlock.
1600  *
1601  * handle is a pointer to the spinlock_t.
1602  */
1603
1604 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1605         __acquires(lockp)
1606 {
1607         acpi_cpu_flags flags;
1608         spin_lock_irqsave(lockp, flags);
1609         return flags;
1610 }
1611
1612 /*
1613  * Release a spinlock. See above.
1614  */
1615
1616 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1617         __releases(lockp)
1618 {
1619         spin_unlock_irqrestore(lockp, flags);
1620 }
1621
1622 #ifndef ACPI_USE_LOCAL_CACHE
1623
1624 /*******************************************************************************
1625  *
1626  * FUNCTION:    acpi_os_create_cache
1627  *
1628  * PARAMETERS:  name      - Ascii name for the cache
1629  *              size      - Size of each cached object
1630  *              depth     - Maximum depth of the cache (in objects) <ignored>
1631  *              cache     - Where the new cache object is returned
1632  *
1633  * RETURN:      status
1634  *
1635  * DESCRIPTION: Create a cache object
1636  *
1637  ******************************************************************************/
1638
1639 acpi_status
1640 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1641 {
1642         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1643         if (*cache == NULL)
1644                 return AE_ERROR;
1645         else
1646                 return AE_OK;
1647 }
1648
1649 /*******************************************************************************
1650  *
1651  * FUNCTION:    acpi_os_purge_cache
1652  *
1653  * PARAMETERS:  Cache           - Handle to cache object
1654  *
1655  * RETURN:      Status
1656  *
1657  * DESCRIPTION: Free all objects within the requested cache.
1658  *
1659  ******************************************************************************/
1660
1661 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1662 {
1663         kmem_cache_shrink(cache);
1664         return (AE_OK);
1665 }
1666
1667 /*******************************************************************************
1668  *
1669  * FUNCTION:    acpi_os_delete_cache
1670  *
1671  * PARAMETERS:  Cache           - Handle to cache object
1672  *
1673  * RETURN:      Status
1674  *
1675  * DESCRIPTION: Free all objects within the requested cache and delete the
1676  *              cache object.
1677  *
1678  ******************************************************************************/
1679
1680 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1681 {
1682         kmem_cache_destroy(cache);
1683         return (AE_OK);
1684 }
1685
1686 /*******************************************************************************
1687  *
1688  * FUNCTION:    acpi_os_release_object
1689  *
1690  * PARAMETERS:  Cache       - Handle to cache object
1691  *              Object      - The object to be released
1692  *
1693  * RETURN:      None
1694  *
1695  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1696  *              the object is deleted.
1697  *
1698  ******************************************************************************/
1699
1700 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1701 {
1702         kmem_cache_free(cache, object);
1703         return (AE_OK);
1704 }
1705 #endif
1706
1707 static int __init acpi_no_static_ssdt_setup(char *s)
1708 {
1709         acpi_gbl_disable_ssdt_table_install = TRUE;
1710         pr_info("Static SSDT installation disabled\n");
1711
1712         return 0;
1713 }
1714
1715 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1716
1717 static int __init acpi_disable_return_repair(char *s)
1718 {
1719         pr_notice("Predefined validation mechanism disabled\n");
1720         acpi_gbl_disable_auto_repair = TRUE;
1721
1722         return 1;
1723 }
1724
1725 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1726
1727 acpi_status __init acpi_os_initialize(void)
1728 {
1729         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1730         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1731
1732         acpi_gbl_xgpe0_block_logical_address =
1733                 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1734         acpi_gbl_xgpe1_block_logical_address =
1735                 (unsigned long)acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1736
1737         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1738                 /*
1739                  * Use acpi_os_map_generic_address to pre-map the reset
1740                  * register if it's in system memory.
1741                  */
1742                 void *rv;
1743
1744                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1745                 pr_debug("%s: Reset register mapping %s\n", __func__,
1746                          rv ? "successful" : "failed");
1747         }
1748         acpi_os_initialized = true;
1749
1750         return AE_OK;
1751 }
1752
1753 acpi_status __init acpi_os_initialize1(void)
1754 {
1755         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1756         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1757         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1758         BUG_ON(!kacpid_wq);
1759         BUG_ON(!kacpi_notify_wq);
1760         BUG_ON(!kacpi_hotplug_wq);
1761         acpi_osi_init();
1762         return AE_OK;
1763 }
1764
1765 acpi_status acpi_os_terminate(void)
1766 {
1767         if (acpi_irq_handler) {
1768                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1769                                                  acpi_irq_handler);
1770         }
1771
1772         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1773         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1774         acpi_gbl_xgpe0_block_logical_address = 0UL;
1775         acpi_gbl_xgpe1_block_logical_address = 0UL;
1776
1777         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1778         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1779
1780         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1781                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1782
1783         destroy_workqueue(kacpid_wq);
1784         destroy_workqueue(kacpi_notify_wq);
1785         destroy_workqueue(kacpi_hotplug_wq);
1786
1787         return AE_OK;
1788 }
1789
1790 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1791                                   u32 pm1b_control)
1792 {
1793         int rc = 0;
1794         if (__acpi_os_prepare_sleep)
1795                 rc = __acpi_os_prepare_sleep(sleep_state,
1796                                              pm1a_control, pm1b_control);
1797         if (rc < 0)
1798                 return AE_ERROR;
1799         else if (rc > 0)
1800                 return AE_CTRL_TERMINATE;
1801
1802         return AE_OK;
1803 }
1804
1805 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1806                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1807 {
1808         __acpi_os_prepare_sleep = func;
1809 }
1810
1811 #if (ACPI_REDUCED_HARDWARE)
1812 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1813                                   u32 val_b)
1814 {
1815         int rc = 0;
1816         if (__acpi_os_prepare_extended_sleep)
1817                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1818                                              val_a, val_b);
1819         if (rc < 0)
1820                 return AE_ERROR;
1821         else if (rc > 0)
1822                 return AE_CTRL_TERMINATE;
1823
1824         return AE_OK;
1825 }
1826 #else
1827 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1828                                   u32 val_b)
1829 {
1830         return AE_OK;
1831 }
1832 #endif
1833
1834 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1835                                u32 val_a, u32 val_b))
1836 {
1837         __acpi_os_prepare_extended_sleep = func;
1838 }
1839
1840 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1841                                 u32 reg_a_value, u32 reg_b_value)
1842 {
1843         acpi_status status;
1844
1845         if (acpi_gbl_reduced_hardware)
1846                 status = acpi_os_prepare_extended_sleep(sleep_state,
1847                                                         reg_a_value,
1848                                                         reg_b_value);
1849         else
1850                 status = acpi_os_prepare_sleep(sleep_state,
1851                                                reg_a_value, reg_b_value);
1852         return status;
1853 }