f3038ce5a4cc9de51fc9b779fe2f7eb23b589bd6
[kai/samba.git] / docs / htmldocs / integrate-ms-networks.html
1 <html><head><meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1"><title>Chapter 26. Integrating MS Windows networks with Samba</title><link rel="stylesheet" href="samba.css" type="text/css"><meta name="generator" content="DocBook XSL Stylesheets V1.60.1"><link rel="home" href="index.html" title="SAMBA Project Documentation"><link rel="up" href="optional.html" title="Part III. Advanced Configuration"><link rel="previous" href="pam.html" title="Chapter 25. PAM based Distributed Authentication"><link rel="next" href="unicode.html" title="Chapter 27. Unicode/Charsets"></head><body bgcolor="white" text="black" link="#0000FF" vlink="#840084" alink="#0000FF"><div class="navheader"><table width="100%" summary="Navigation header"><tr><th colspan="3" align="center">Chapter 26. Integrating MS Windows networks with Samba</th></tr><tr><td width="20%" align="left"><a accesskey="p" href="pam.html">Prev</a> </td><th width="60%" align="center">Part III. Advanced Configuration</th><td width="20%" align="right"> <a accesskey="n" href="unicode.html">Next</a></td></tr></table><hr></div><div class="chapter" lang="en"><div class="titlepage"><div><div><h2 class="title"><a name="integrate-ms-networks"></a>Chapter 26. Integrating MS Windows networks with Samba</h2></div><div><div class="author"><h3 class="author"><span class="firstname">John</span> <span class="othername">H.</span> <span class="surname">Terpstra</span></h3><div class="affiliation"><span class="orgname">Samba Team<br></span><div class="address"><p><tt class="email">&lt;<a href="mailto:jht@samba.org">jht@samba.org</a>&gt;</tt></p></div></div></div></div><div><p class="pubdate"> (Jan 01 2001) </p></div></div><div></div></div><div class="toc"><p><b>Table of Contents</b></p><dl><dt><a href="integrate-ms-networks.html#id2999128">Features and Benefits</a></dt><dt><a href="integrate-ms-networks.html#id2999152">Background Information</a></dt><dt><a href="integrate-ms-networks.html#id2999197">Name Resolution in a pure Unix/Linux world</a></dt><dd><dl><dt><a href="integrate-ms-networks.html#id2999254">/etc/hosts</a></dt><dt><a href="integrate-ms-networks.html#id2999378">/etc/resolv.conf</a></dt><dt><a href="integrate-ms-networks.html#id2999422">/etc/host.conf</a></dt><dt><a href="integrate-ms-networks.html#id2999464">/etc/nsswitch.conf</a></dt></dl></dd><dt><a href="integrate-ms-networks.html#id2999552">Name resolution as used within MS Windows networking</a></dt><dd><dl><dt><a href="integrate-ms-networks.html#id2999700">The NetBIOS Name Cache</a></dt><dt><a href="integrate-ms-networks.html#id2999745">The LMHOSTS file</a></dt><dt><a href="integrate-ms-networks.html#id2999989">HOSTS file</a></dt><dt><a href="integrate-ms-networks.html#id3000021">DNS Lookup</a></dt><dt><a href="integrate-ms-networks.html#id3000046">WINS Lookup</a></dt></dl></dd><dt><a href="integrate-ms-networks.html#id3000117">Common Errors</a></dt><dd><dl><dt><a href="integrate-ms-networks.html#id3000133">My Boomerang Won't Come Back</a></dt><dt><a href="integrate-ms-networks.html#id3000164">Very Slow Network Connections</a></dt><dt><a href="integrate-ms-networks.html#id3000216">Samba server name change problem</a></dt></dl></dd></dl></div><p>
2 This section deals with NetBIOS over TCP/IP name to IP address resolution. If
3 your MS Windows clients are NOT configured to use NetBIOS over TCP/IP then this
4 section does not apply to your installation. If your installation involves use of
5 NetBIOS over TCP/IP then this section may help you to resolve networking problems.
6 </p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
7         NetBIOS over TCP/IP has nothing to do with NetBEUI. NetBEUI is NetBIOS
8         over Logical Link Control (LLC). On modern networks it is highly advised
9         to NOT run NetBEUI at all. Note also that there is NO such thing as
10         NetBEUI over TCP/IP - the existence of such a protocol is a complete
11         and utter mis-apprehension.
12 </p></div><div class="sect1" lang="en"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="id2999128"></a>Features and Benefits</h2></div></div><div></div></div><p>
13 Many MS Windows network administrators have never been exposed to basic TCP/IP
14 networking as it is implemented in a Unix/Linux operating system. Likewise, many Unix and
15 Linux adminsitrators have not been exposed to the intricacies of MS Windows TCP/IP based
16 networking (and may have no desire to be either).
17 </p><p>
18 This chapter gives a short introduction to the basics of how a name can be resolved to 
19 it's IP address for each operating system environment.
20 </p></div><div class="sect1" lang="en"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="id2999152"></a>Background Information</h2></div></div><div></div></div><p>
21 Since the introduction of MS Windows 2000 it is possible to run MS Windows networking
22 without the use of NetBIOS over TCP/IP. NetBIOS over TCP/IP uses UDP port 137 for NetBIOS
23 name resolution and uses TCP port 139 for NetBIOS session services. When NetBIOS over
24 TCP/IP is disabled on MS Windows 2000 and later clients then only TCP port 445 will be
25 used and UDP port 137 and TCP port 139 will not.
26 </p><div class="note" style="margin-left: 0.5in; margin-right: 0.5in;"><h3 class="title">Note</h3><p>
27 When using Windows 2000 or later clients, if NetBIOS over TCP/IP is NOT disabled, then
28 the client will use UDP port 137 (NetBIOS Name Service, also known as the Windows Internet
29 Name Service or WINS), TCP port 139 AND TCP port 445 (for actual file and print traffic).
30 </p></div><p>
31 When NetBIOS over TCP/IP is disabled the use of DNS is essential. Most installations that
32 disable NetBIOS over TCP/IP today use MS Active Directory Service (ADS). ADS requires
33 Dynamic DNS with Service Resource Records (SRV RR) and with Incremental Zone Transfers (IXFR).
34 Use of DHCP with ADS is recommended as a further means of maintaining central control
35 over client workstation network configuration.
36 </p></div><div class="sect1" lang="en"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="id2999197"></a>Name Resolution in a pure Unix/Linux world</h2></div></div><div></div></div><p>
37 The key configuration files covered in this section are:
38 </p><div class="itemizedlist"><ul type="disc"><li><p><tt class="filename">/etc/hosts</tt></p></li><li><p><tt class="filename">/etc/resolv.conf</tt></p></li><li><p><tt class="filename">/etc/host.conf</tt></p></li><li><p><tt class="filename">/etc/nsswitch.conf</tt></p></li></ul></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id2999254"></a><tt class="filename">/etc/hosts</tt></h3></div></div><div></div></div><p>
39 Contains a static list of IP Addresses and names.
40 eg:
41 </p><pre class="screen">
42         127.0.0.1       localhost localhost.localdomain
43         192.168.1.1     bigbox.caldera.com      bigbox  alias4box
44 </pre><p>
45 The purpose of <tt class="filename">/etc/hosts</tt> is to provide a 
46 name resolution mechanism so that uses do not need to remember 
47 IP addresses.
48 </p><p>
49 Network packets that are sent over the physical network transport 
50 layer communicate not via IP addresses but rather using the Media 
51 Access Control address, or MAC address. IP Addresses are currently 
52 32 bits in length and are typically presented as four (4) decimal 
53 numbers that are separated by a dot (or period). eg: 168.192.1.1.
54 </p><p>
55 MAC Addresses use 48 bits (or 6 bytes) and are typically represented 
56 as two digit hexadecimal numbers separated by colons. eg: 
57 40:8e:0a:12:34:56
58 </p><p>
59 Every network interface must have an MAC address. Associated with 
60 a MAC address there may be one or more IP addresses. There is NO 
61 relationship between an IP address and a MAC address, all such assignments 
62 are arbitary or discretionary in nature. At the most basic level all 
63 network communications takes place using MAC addressing. Since MAC 
64 addresses must be globally unique, and generally remains fixed for 
65 any particular interface, the assignment of an IP address makes sense 
66 from a network management perspective. More than one IP address can 
67 be assigned per MAC address. One address must be the primary IP address, 
68 this is the address that will be returned in the ARP reply.
69 </p><p>
70 When a user or a process wants to communicate with another machine 
71 the protocol implementation ensures that the &quot;machine name&quot; or &quot;host 
72 name&quot; is resolved to an IP address in a manner that is controlled 
73 by the TCP/IP configuration control files. The file 
74 <tt class="filename">/etc/hosts</tt> is one such file.
75 </p><p>
76 When the IP address of the destination interface has been 
77 determined a protocol called ARP/RARP is used to identify 
78 the MAC address of the target interface. ARP stands for Address 
79 Resolution Protocol, and is a broadcast oriented method that 
80 uses UDP (User Datagram Protocol) to send a request to all 
81 interfaces on the local network segment using the all 1's MAC 
82 address. Network interfaces are programmed to respond to two 
83 MAC addresses only; their own unique address and the address 
84 ff:ff:ff:ff:ff:ff. The reply packet from an ARP request will 
85 contain the MAC address and the primary IP address for each 
86 interface.
87 </p><p>
88 The <tt class="filename">/etc/hosts</tt> file is foundational to all 
89 Unix/Linux TCP/IP installations and as a minumum will contain 
90 the localhost and local network interface IP addresses and the 
91 primary names by which they are known within the local machine. 
92 This file helps to prime the pump so that a basic level of name 
93 resolution can exist before any other method of name resolution 
94 becomes available.
95 </p></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id2999378"></a><tt class="filename">/etc/resolv.conf</tt></h3></div></div><div></div></div><p>
96 This file tells the name resolution libraries:
97 </p><div class="itemizedlist"><ul type="disc"><li><p>The name of the domain to which the machine 
98         belongs
99         </p></li><li><p>The name(s) of any domains that should be 
100         automatically searched when trying to resolve unqualified 
101         host names to their IP address
102         </p></li><li><p>The name or IP address of available Domain 
103         Name Servers that may be asked to perform name to address 
104         translation lookups
105         </p></li></ul></div></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id2999422"></a><tt class="filename">/etc/host.conf</tt></h3></div></div><div></div></div><p>
106 <tt class="filename">/etc/host.conf</tt> is the primary means by 
107 which the setting in /etc/resolv.conf may be affected. It is a 
108 critical configuration file.  This file controls the order by 
109 which name resolution may procede. The typical structure is:
110 </p><pre class="screen">
111         order hosts,bind
112         multi on
113 </pre><p>
114 then both addresses should be returned. Please refer to the 
115 man page for host.conf for further details.
116 </p></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id2999464"></a><tt class="filename">/etc/nsswitch.conf</tt></h3></div></div><div></div></div><p>
117 This file controls the actual name resolution targets. The 
118 file typically has resolver object specifications as follows:
119 </p><pre class="screen">
120         # /etc/nsswitch.conf
121         #
122         # Name Service Switch configuration file.
123         #
124
125         passwd:         compat
126         # Alternative entries for password authentication are:
127         # passwd:       compat files nis ldap winbind
128         shadow:         compat
129         group:          compat
130
131         hosts:          files nis dns
132         # Alternative entries for host name resolution are:
133         # hosts:        files dns nis nis+ hesoid db compat ldap wins
134         networks:       nis files dns
135
136         ethers:         nis files
137         protocols:      nis files
138         rpc:            nis files
139         services:       nis files
140 </pre><p>
141 Of course, each of these mechanisms requires that the appropriate 
142 facilities and/or services are correctly configured.
143 </p><p>
144 It should be noted that unless a network request/message must be 
145 sent, TCP/IP networks are silent. All TCP/IP communications assumes a 
146 principal of speaking only when necessary.
147 </p><p>
148 Starting with version 2.2.0 samba has Linux support for extensions to 
149 the name service switch infrastructure so that linux clients will 
150 be able to obtain resolution of MS Windows NetBIOS names to IP 
151 Addresses. To gain this functionality Samba needs to be compiled 
152 with appropriate arguments to the make command (ie: <b class="userinput"><tt>make 
153 nsswitch/libnss_wins.so</tt></b>). The resulting library should 
154 then be installed in the <tt class="filename">/lib</tt> directory and 
155 the &quot;wins&quot; parameter needs to be added to the &quot;hosts:&quot; line in 
156 the <tt class="filename">/etc/nsswitch.conf</tt> file. At this point it 
157 will be possible to ping any MS Windows machine by it's NetBIOS 
158 machine name, so long as that machine is within the workgroup to 
159 which both the samba machine and the MS Windows machine belong.
160 </p></div></div><div class="sect1" lang="en"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="id2999552"></a>Name resolution as used within MS Windows networking</h2></div></div><div></div></div><p>
161 MS Windows networking is predicated about the name each machine 
162 is given. This name is known variously (and inconsistently) as 
163 the &quot;computer name&quot;, &quot;machine name&quot;, &quot;networking name&quot;, &quot;netbios name&quot;, 
164 &quot;SMB name&quot;. All terms mean the same thing with the exception of 
165 &quot;netbios name&quot; which can apply also to the name of the workgroup or the 
166 domain name. The terms &quot;workgroup&quot; and &quot;domain&quot; are really just a 
167 simply name with which the machine is associated. All NetBIOS names 
168 are exactly 16 characters in length. The 16th character is reserved. 
169 It is used to store a one byte value that indicates service level 
170 information for the NetBIOS name that is registered. A NetBIOS machine 
171 name is therefore registered for each service type that is provided by 
172 the client/server.
173 </p><p>
174 The following are typical NetBIOS name/service type registrations:
175 </p><pre class="screen">
176         Unique NetBIOS Names:
177                 MACHINENAME&lt;00&gt;   = Server Service is running on MACHINENAME
178                 MACHINENAME&lt;03&gt; = Generic Machine Name (NetBIOS name)
179                 MACHINENAME&lt;20&gt; = LanMan Server service is running on MACHINENAME
180                 WORKGROUP&lt;1b&gt; = Domain Master Browser
181
182         Group Names:
183                 WORKGROUP&lt;03&gt; = Generic Name registered by all members of WORKGROUP
184                 WORKGROUP&lt;1c&gt; = Domain Controllers / Netlogon Servers
185                 WORKGROUP&lt;1d&gt; = Local Master Browsers
186                 WORKGROUP&lt;1e&gt; = Internet Name Resolvers
187 </pre><p>
188 It should be noted that all NetBIOS machines register their own 
189 names as per the above. This is in vast contrast to TCP/IP 
190 installations where traditionally the system administrator will 
191 determine in the /etc/hosts or in the DNS database what names 
192 are associated with each IP address.
193 </p><p>
194 One further point of clarification should be noted, the <tt class="filename">/etc/hosts</tt> 
195 file and the DNS records do not provide the NetBIOS name type information 
196 that MS Windows clients depend on to locate the type of service that may 
197 be needed. An example of this is what happens when an MS Windows client 
198 wants to locate a domain logon server. It finds this service and the IP 
199 address of a server that provides it by performing a lookup (via a 
200 NetBIOS broadcast) for enumeration of all machines that have 
201 registered the name type *&lt;1c&gt;. A logon request is then sent to each 
202 IP address that is returned in the enumerated list of IP addresses. Which 
203 ever machine first replies then ends up providing the logon services.
204 </p><p>
205 The name &quot;workgroup&quot; or &quot;domain&quot; really can be confusing since these 
206 have the added significance of indicating what is the security 
207 architecture of the MS Windows network. The term &quot;workgroup&quot; indicates 
208 that the primary nature of the network environment is that of a 
209 peer-to-peer design. In a WORKGROUP all machines are responsible for 
210 their own security, and generally such security is limited to use of 
211 just a password (known as SHARE MODE security). In most situations 
212 with peer-to-peer networking the users who control their own machines 
213 will simply opt to have no security at all. It is possible to have 
214 USER MODE security in a WORKGROUP environment, thus requiring use 
215 of a user name and a matching password.
216 </p><p>
217 MS Windows networking is thus predetermined to use machine names 
218 for all local and remote machine message passing. The protocol used is 
219 called Server Message Block (SMB) and this is implemented using 
220 the NetBIOS protocol (Network Basic Input Output System). NetBIOS can 
221 be encapsulated using LLC (Logical Link Control) protocol - in which case 
222 the resulting protocol is called NetBEUI (Network Basic Extended User 
223 Interface). NetBIOS can also be run over IPX (Internetworking Packet 
224 Exchange) protocol as used by Novell NetWare, and it can be run 
225 over TCP/IP protocols - in which case the resulting protocol is called 
226 NBT or NetBT, the NetBIOS over TCP/IP.
227 </p><p>
228 MS Windows machines use a complex array of name resolution mechanisms. 
229 Since we are primarily concerned with TCP/IP this demonstration is 
230 limited to this area.
231 </p><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id2999700"></a>The NetBIOS Name Cache</h3></div></div><div></div></div><p>
232 All MS Windows machines employ an in memory buffer in which is 
233 stored the NetBIOS names and IP addresses for all external 
234 machines that that machine has communicated with over the 
235 past 10-15 minutes. It is more efficient to obtain an IP address 
236 for a machine from the local cache than it is to go through all the 
237 configured name resolution mechanisms.
238 </p><p>
239 If a machine whose name is in the local name cache has been shut 
240 down before the name had been expired and flushed from the cache, then 
241 an attempt to exchange a message with that machine will be subject 
242 to time-out delays. i.e.: Its name is in the cache, so a name resolution 
243 lookup will succeed, but the machine can not respond. This can be 
244 frustrating for users - but it is a characteristic of the protocol.
245 </p><p>
246 The MS Windows utility that allows examination of the NetBIOS 
247 name cache is called &quot;nbtstat&quot;. The Samba equivalent of this 
248 is called <b class="command">nmblookup</b>.
249 </p></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id2999745"></a>The LMHOSTS file</h3></div></div><div></div></div><p>
250 This file is usually located in MS Windows NT 4.0 or 
251 2000 in <tt class="filename">C:\WINNT\SYSTEM32\DRIVERS\ETC</tt> and contains 
252 the IP Address and the machine name in matched pairs. The 
253 <tt class="filename">LMHOSTS</tt> file performs NetBIOS name 
254 to IP address mapping.
255 </p><p>
256 It typically looks like:
257 </p><pre class="screen">
258         # Copyright (c) 1998 Microsoft Corp.
259         #
260         # This is a sample LMHOSTS file used by the Microsoft Wins Client (NetBIOS
261         # over TCP/IP) stack for Windows98
262         #
263         # This file contains the mappings of IP addresses to NT computernames
264         # (NetBIOS) names.  Each entry should be kept on an individual line.
265         # The IP address should be placed in the first column followed by the
266         # corresponding computername. The address and the comptername
267         # should be separated by at least one space or tab. The &quot;#&quot; character
268         # is generally used to denote the start of a comment (see the exceptions
269         # below).
270         #
271         # This file is compatible with Microsoft LAN Manager 2.x TCP/IP lmhosts
272         # files and offers the following extensions:
273         #
274         #      #PRE
275         #      #DOM:&lt;domain&gt;
276         #      #INCLUDE &lt;filename&gt;
277         #      #BEGIN_ALTERNATE
278         #      #END_ALTERNATE
279         #      \0xnn (non-printing character support)
280         #
281         # Following any entry in the file with the characters &quot;#PRE&quot; will cause
282         # the entry to be preloaded into the name cache. By default, entries are
283         # not preloaded, but are parsed only after dynamic name resolution fails.
284         #
285         # Following an entry with the &quot;#DOM:&lt;domain&gt;&quot; tag will associate the
286         # entry with the domain specified by &lt;domain&gt;. This affects how the
287         # browser and logon services behave in TCP/IP environments. To preload
288         # the host name associated with #DOM entry, it is necessary to also add a
289         # #PRE to the line. The &lt;domain&gt; is always preloaded although it will not
290         # be shown when the name cache is viewed.
291         #
292         # Specifying &quot;#INCLUDE &lt;filename&gt;&quot; will force the RFC NetBIOS (NBT)
293         # software to seek the specified &lt;filename&gt; and parse it as if it were
294         # local. &lt;filename&gt; is generally a UNC-based name, allowing a
295         # centralized lmhosts file to be maintained on a server.
296         # It is ALWAYS necessary to provide a mapping for the IP address of the
297         # server prior to the #INCLUDE. This mapping must use the #PRE directive.
298         # In addtion the share &quot;public&quot; in the example below must be in the
299         # LanManServer list of &quot;NullSessionShares&quot; in order for client machines to
300         # be able to read the lmhosts file successfully. This key is under
301         # \machine\system\currentcontrolset\services\lanmanserver\parameters\nullsessionshares
302         # in the registry. Simply add &quot;public&quot; to the list found there.
303         #
304         # The #BEGIN_ and #END_ALTERNATE keywords allow multiple #INCLUDE
305         # statements to be grouped together. Any single successful include
306         # will cause the group to succeed.
307         #
308         # Finally, non-printing characters can be embedded in mappings by
309         # first surrounding the NetBIOS name in quotations, then using the
310         # \0xnn notation to specify a hex value for a non-printing character.
311         #
312         # The following example illustrates all of these extensions:
313         #
314         # 102.54.94.97     rhino         #PRE #DOM:networking  #net group's DC
315         # 102.54.94.102    &quot;appname  \0x14&quot;                    #special app server
316         # 102.54.94.123    popular            #PRE             #source server
317         # 102.54.94.117    localsrv           #PRE             #needed for the include
318         #
319         # #BEGIN_ALTERNATE
320         # #INCLUDE \\localsrv\public\lmhosts
321         # #INCLUDE \\rhino\public\lmhosts
322         # #END_ALTERNATE
323         #
324         # In the above example, the &quot;appname&quot; server contains a special
325         # character in its name, the &quot;popular&quot; and &quot;localsrv&quot; server names are
326         # preloaded, and the &quot;rhino&quot; server name is specified so it can be used
327         # to later #INCLUDE a centrally maintained lmhosts file if the &quot;localsrv&quot;
328         # system is unavailable.
329         #
330         # Note that the whole file is parsed including comments on each lookup,
331         # so keeping the number of comments to a minimum will improve performance.
332         # Therefore it is not advisable to simply add lmhosts file entries onto the
333         # end of this file.
334 </pre></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id2999989"></a>HOSTS file</h3></div></div><div></div></div><p>
335 This file is usually located in MS Windows NT 4.0 or 2000 in 
336 <tt class="filename">C:\WINNT\SYSTEM32\DRIVERS\ETC</tt> and contains 
337 the IP Address and the IP hostname in matched pairs. It can be 
338 used by the name resolution infrastructure in MS Windows, depending 
339 on how the TCP/IP environment is configured. This file is in 
340 every way the equivalent of the Unix/Linux <tt class="filename">/etc/hosts</tt> file.
341 </p></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id3000021"></a>DNS Lookup</h3></div></div><div></div></div><p>
342 This capability is configured in the TCP/IP setup area in the network 
343 configuration facility. If enabled an elaborate name resolution sequence 
344 is followed the precise nature of which is dependant on what the NetBIOS 
345 Node Type parameter is configured to. A Node Type of 0 means use 
346 NetBIOS broadcast (over UDP broadcast) is first used if the name 
347 that is the subject of a name lookup is not found in the NetBIOS name 
348 cache. If that fails then DNS, HOSTS and LMHOSTS are checked. If set to 
349 Node Type 8, then a NetBIOS Unicast (over UDP Unicast) is sent to the 
350 WINS Server to obtain a lookup before DNS, HOSTS, LMHOSTS, or broadcast 
351 lookup is used.
352 </p></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id3000046"></a>WINS Lookup</h3></div></div><div></div></div><p>
353 A WINS (Windows Internet Name Server) service is the equivaent of the 
354 rfc1001/1002 specified NBNS (NetBIOS Name Server). A WINS server stores 
355 the names and IP addresses that are registered by a Windows client 
356 if the TCP/IP setup has been given at least one WINS Server IP Address.
357 </p><p>
358 To configure Samba to be a WINS server the following parameter needs 
359 to be added to the <tt class="filename">smb.conf</tt> file:
360 </p><pre class="screen">
361         wins support = Yes
362 </pre><p>
363 To configure Samba to use a WINS server the following parameters are 
364 needed in the <tt class="filename">smb.conf</tt> file:
365 </p><pre class="screen">
366         wins support = No
367         wins server = xxx.xxx.xxx.xxx
368 </pre><p>
369 where <i class="replaceable"><tt>xxx.xxx.xxx.xxx</tt></i> is the IP address 
370 of the WINS server.
371 </p></div></div><div class="sect1" lang="en"><div class="titlepage"><div><div><h2 class="title" style="clear: both"><a name="id3000117"></a>Common Errors</h2></div></div><div></div></div><p>
372 TCP/IP network configuration problems find every network administrator sooner or later.
373 The cause can be anything from keybaord mishaps, forgetfulness, simple mistakes, and
374 carelessness. Of course, noone is every deliberately careless!
375 </p><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id3000133"></a>My Boomerang Won't Come Back</h3></div></div><div></div></div><p>
376         Well, the real complaint said, &quot;I can ping my samba server from Windows, but I can
377         not ping my Windows machine from the samba server.&quot;
378         </p><p>
379         The Windows machine was at IP Address 192.168.1.2 with netmask 255.255.255.0, the
380         Samba server (Linux) was at IP Address 192.168.1.130 with netmast 255.255.255.128.
381         The machines were on a local network with no external connections.
382         </p><p>
383         Due to inconsistent netmasks, the Windows machine was on network 192.168.1.0/24, while
384         the Samba server was on network 192.168.1.128/25 - logically a different network.
385         </p></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id3000164"></a>Very Slow Network Connections</h3></div></div><div></div></div><p>
386         A common causes of slow network response includes:
387         </p><div class="itemizedlist"><ul type="disc"><li><p>Client is configured to use DNS and DNS server is down</p></li><li><p>Client is configured to use remote DNS server, but remote connection is down</p></li><li><p>Client is configured to use a WINS server, but there is no WINS server</p></li><li><p>Client is NOT configured to use a WINS server, but there is a WINS server</p></li><li><p>Firewall is filtering our DNS or WINS traffic</p></li></ul></div></div><div class="sect2" lang="en"><div class="titlepage"><div><div><h3 class="title"><a name="id3000216"></a>Samba server name change problem</h3></div></div><div></div></div><p>
388         The name of the samba server was changed, samba was restarted, samba server can not be
389         pinged by new name from MS Windows NT4 Workstation, but it does still respond to ping using
390         the old name. Why?
391         </p><p>
392         From this description three (3) things are rather obvious:
393         </p><div class="itemizedlist"><ul type="disc"><li><p>WINS is NOT in use, only broadcast based name resolution is used</p></li><li><p>The samba server was renamed and restarted within the last 10-15 minutes</p></li><li><p>The old samba server name is still in the NetBIOS name cache on the MS Windows NT4 Workstation</p></li></ul></div><p>
394         To find what names are present in the NetBIOS name cache on the MS Windows NT4 machine,
395         open a cmd shell, then:
396         </p><p>
397         </p><pre class="screen">
398         C:\temp\&gt;nbtstat -n
399
400                       NetBIOS Local Name Table
401
402            Name                 Type          Status
403         ------------------------------------------------
404         SLACK            &lt;03&gt;  UNIQUE      Registered
405         ADMININSTRATOR   &lt;03&gt;  UNIQUE      Registered
406         SLACK            &lt;00&gt;  UNIQUE      Registered
407         SARDON           &lt;00&gt;  GROUP       Registered
408         SLACK            &lt;20&gt;  UNIQUE      Registered
409         SLACK            &lt;1F&gt;  UNIQUE      Registered
410
411
412         C:\Temp\&gt;nbtstat -c
413
414                      NetBIOS Remote Cache Name Table
415
416            Name                 Type       Host Address     Life [sec]
417         --------------------------------------------------------------
418         FRODO            &lt;20&gt;  UNIQUE      192.168.1.1          240
419
420         C:\Temp\&gt;
421         </pre><p>
422         </p><p>
423         In the above example, FRODO is the Samba server and SLACK is the MS Windows NT4 Workstation.
424         The first listing shows the contents of the Local Name Table (ie: Identity information on
425         the MS Windows workstation), the second shows the NetBIOS name in the NetBIOS name cache.
426         The name cache contains the remote machines known to this workstation.
427         </p></div></div></div><div class="navfooter"><hr><table width="100%" summary="Navigation footer"><tr><td width="40%" align="left"><a accesskey="p" href="pam.html">Prev</a> </td><td width="20%" align="center"><a accesskey="u" href="optional.html">Up</a></td><td width="40%" align="right"> <a accesskey="n" href="unicode.html">Next</a></td></tr><tr><td width="40%" align="left" valign="top">Chapter 25. PAM based Distributed Authentication </td><td width="20%" align="center"><a accesskey="h" href="index.html">Home</a></td><td width="40%" align="right" valign="top"> Chapter 27. Unicode/Charsets</td></tr></table></div></body></html>