Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[sfrench/cifs-2.6.git] / arch / xtensa / kernel / pci-dma.c
1 /*
2  * DMA coherent memory allocation.
3  *
4  * This program is free software; you can redistribute  it and/or modify it
5  * under  the terms of  the GNU General  Public License as published by the
6  * Free Software Foundation;  either version 2 of the  License, or (at your
7  * option) any later version.
8  *
9  * Copyright (C) 2002 - 2005 Tensilica Inc.
10  * Copyright (C) 2015 Cadence Design Systems Inc.
11  *
12  * Based on version for i386.
13  *
14  * Chris Zankel <chris@zankel.net>
15  * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
16  */
17
18 #include <linux/dma-contiguous.h>
19 #include <linux/dma-direct.h>
20 #include <linux/gfp.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/pci.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <asm/cacheflush.h>
28 #include <asm/io.h>
29
30 static void do_cache_op(dma_addr_t dma_handle, size_t size,
31                         void (*fn)(unsigned long, unsigned long))
32 {
33         unsigned long off = dma_handle & (PAGE_SIZE - 1);
34         unsigned long pfn = PFN_DOWN(dma_handle);
35         struct page *page = pfn_to_page(pfn);
36
37         if (!PageHighMem(page))
38                 fn((unsigned long)bus_to_virt(dma_handle), size);
39         else
40                 while (size > 0) {
41                         size_t sz = min_t(size_t, size, PAGE_SIZE - off);
42                         void *vaddr = kmap_atomic(page);
43
44                         fn((unsigned long)vaddr + off, sz);
45                         kunmap_atomic(vaddr);
46                         off = 0;
47                         ++page;
48                         size -= sz;
49                 }
50 }
51
52 static void xtensa_sync_single_for_cpu(struct device *dev,
53                                        dma_addr_t dma_handle, size_t size,
54                                        enum dma_data_direction dir)
55 {
56         switch (dir) {
57         case DMA_BIDIRECTIONAL:
58         case DMA_FROM_DEVICE:
59                 do_cache_op(dma_handle, size, __invalidate_dcache_range);
60                 break;
61
62         case DMA_NONE:
63                 BUG();
64                 break;
65
66         default:
67                 break;
68         }
69 }
70
71 static void xtensa_sync_single_for_device(struct device *dev,
72                                           dma_addr_t dma_handle, size_t size,
73                                           enum dma_data_direction dir)
74 {
75         switch (dir) {
76         case DMA_BIDIRECTIONAL:
77         case DMA_TO_DEVICE:
78                 if (XCHAL_DCACHE_IS_WRITEBACK)
79                         do_cache_op(dma_handle, size, __flush_dcache_range);
80                 break;
81
82         case DMA_NONE:
83                 BUG();
84                 break;
85
86         default:
87                 break;
88         }
89 }
90
91 static void xtensa_sync_sg_for_cpu(struct device *dev,
92                                    struct scatterlist *sg, int nents,
93                                    enum dma_data_direction dir)
94 {
95         struct scatterlist *s;
96         int i;
97
98         for_each_sg(sg, s, nents, i) {
99                 xtensa_sync_single_for_cpu(dev, sg_dma_address(s),
100                                            sg_dma_len(s), dir);
101         }
102 }
103
104 static void xtensa_sync_sg_for_device(struct device *dev,
105                                       struct scatterlist *sg, int nents,
106                                       enum dma_data_direction dir)
107 {
108         struct scatterlist *s;
109         int i;
110
111         for_each_sg(sg, s, nents, i) {
112                 xtensa_sync_single_for_device(dev, sg_dma_address(s),
113                                               sg_dma_len(s), dir);
114         }
115 }
116
117 /*
118  * Note: We assume that the full memory space is always mapped to 'kseg'
119  *       Otherwise we have to use page attributes (not implemented).
120  */
121
122 static void *xtensa_dma_alloc(struct device *dev, size_t size,
123                               dma_addr_t *handle, gfp_t flag,
124                               unsigned long attrs)
125 {
126         unsigned long ret;
127         unsigned long uncached;
128         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
129         struct page *page = NULL;
130
131         /* ignore region speicifiers */
132
133         flag &= ~(__GFP_DMA | __GFP_HIGHMEM);
134
135         if (dev == NULL || (dev->coherent_dma_mask < 0xffffffff))
136                 flag |= GFP_DMA;
137
138         if (gfpflags_allow_blocking(flag))
139                 page = dma_alloc_from_contiguous(dev, count, get_order(size),
140                                                  flag & __GFP_NOWARN);
141
142         if (!page)
143                 page = alloc_pages(flag, get_order(size));
144
145         if (!page)
146                 return NULL;
147
148         *handle = phys_to_dma(dev, page_to_phys(page));
149
150 #ifdef CONFIG_MMU
151         if (PageHighMem(page)) {
152                 void *p;
153
154                 p = dma_common_contiguous_remap(page, size, VM_MAP,
155                                                 pgprot_noncached(PAGE_KERNEL),
156                                                 __builtin_return_address(0));
157                 if (!p) {
158                         if (!dma_release_from_contiguous(dev, page, count))
159                                 __free_pages(page, get_order(size));
160                 }
161                 return p;
162         }
163 #endif
164         ret = (unsigned long)page_address(page);
165         BUG_ON(ret < XCHAL_KSEG_CACHED_VADDR ||
166                ret > XCHAL_KSEG_CACHED_VADDR + XCHAL_KSEG_SIZE - 1);
167
168         uncached = ret + XCHAL_KSEG_BYPASS_VADDR - XCHAL_KSEG_CACHED_VADDR;
169         __invalidate_dcache_range(ret, size);
170
171         return (void *)uncached;
172 }
173
174 static void xtensa_dma_free(struct device *dev, size_t size, void *vaddr,
175                             dma_addr_t dma_handle, unsigned long attrs)
176 {
177         unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
178         unsigned long addr = (unsigned long)vaddr;
179         struct page *page;
180
181         if (addr >= XCHAL_KSEG_BYPASS_VADDR &&
182             addr - XCHAL_KSEG_BYPASS_VADDR < XCHAL_KSEG_SIZE) {
183                 addr += XCHAL_KSEG_CACHED_VADDR - XCHAL_KSEG_BYPASS_VADDR;
184                 page = virt_to_page(addr);
185         } else {
186 #ifdef CONFIG_MMU
187                 dma_common_free_remap(vaddr, size, VM_MAP);
188 #endif
189                 page = pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_handle)));
190         }
191
192         if (!dma_release_from_contiguous(dev, page, count))
193                 __free_pages(page, get_order(size));
194 }
195
196 static dma_addr_t xtensa_map_page(struct device *dev, struct page *page,
197                                   unsigned long offset, size_t size,
198                                   enum dma_data_direction dir,
199                                   unsigned long attrs)
200 {
201         dma_addr_t dma_handle = page_to_phys(page) + offset;
202
203         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
204                 xtensa_sync_single_for_device(dev, dma_handle, size, dir);
205
206         return dma_handle;
207 }
208
209 static void xtensa_unmap_page(struct device *dev, dma_addr_t dma_handle,
210                               size_t size, enum dma_data_direction dir,
211                               unsigned long attrs)
212 {
213         if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC))
214                 xtensa_sync_single_for_cpu(dev, dma_handle, size, dir);
215 }
216
217 static int xtensa_map_sg(struct device *dev, struct scatterlist *sg,
218                          int nents, enum dma_data_direction dir,
219                          unsigned long attrs)
220 {
221         struct scatterlist *s;
222         int i;
223
224         for_each_sg(sg, s, nents, i) {
225                 s->dma_address = xtensa_map_page(dev, sg_page(s), s->offset,
226                                                  s->length, dir, attrs);
227         }
228         return nents;
229 }
230
231 static void xtensa_unmap_sg(struct device *dev,
232                             struct scatterlist *sg, int nents,
233                             enum dma_data_direction dir,
234                             unsigned long attrs)
235 {
236         struct scatterlist *s;
237         int i;
238
239         for_each_sg(sg, s, nents, i) {
240                 xtensa_unmap_page(dev, sg_dma_address(s),
241                                   sg_dma_len(s), dir, attrs);
242         }
243 }
244
245 int xtensa_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
246 {
247         return 0;
248 }
249
250 const struct dma_map_ops xtensa_dma_map_ops = {
251         .alloc = xtensa_dma_alloc,
252         .free = xtensa_dma_free,
253         .map_page = xtensa_map_page,
254         .unmap_page = xtensa_unmap_page,
255         .map_sg = xtensa_map_sg,
256         .unmap_sg = xtensa_unmap_sg,
257         .sync_single_for_cpu = xtensa_sync_single_for_cpu,
258         .sync_single_for_device = xtensa_sync_single_for_device,
259         .sync_sg_for_cpu = xtensa_sync_sg_for_cpu,
260         .sync_sg_for_device = xtensa_sync_sg_for_device,
261         .mapping_error = xtensa_dma_mapping_error,
262 };
263 EXPORT_SYMBOL(xtensa_dma_map_ops);