Merge remote-tracking branches 'asoc/topic/ac97', 'asoc/topic/ac97-mfd', 'asoc/topic...
[sfrench/cifs-2.6.git] / arch / x86 / platform / efi / efi_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * x86_64 specific EFI support functions
4  * Based on Extensible Firmware Interface Specification version 1.0
5  *
6  * Copyright (C) 2005-2008 Intel Co.
7  *      Fenghua Yu <fenghua.yu@intel.com>
8  *      Bibo Mao <bibo.mao@intel.com>
9  *      Chandramouli Narayanan <mouli@linux.intel.com>
10  *      Huang Ying <ying.huang@intel.com>
11  *
12  * Code to convert EFI to E820 map has been implemented in elilo bootloader
13  * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
14  * is setup appropriately for EFI runtime code.
15  * - mouli 06/14/2007.
16  *
17  */
18
19 #define pr_fmt(fmt) "efi: " fmt
20
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/mm.h>
24 #include <linux/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/bootmem.h>
27 #include <linux/ioport.h>
28 #include <linux/init.h>
29 #include <linux/mc146818rtc.h>
30 #include <linux/efi.h>
31 #include <linux/uaccess.h>
32 #include <linux/io.h>
33 #include <linux/reboot.h>
34 #include <linux/slab.h>
35 #include <linux/ucs2_string.h>
36
37 #include <asm/setup.h>
38 #include <asm/page.h>
39 #include <asm/e820/api.h>
40 #include <asm/pgtable.h>
41 #include <asm/tlbflush.h>
42 #include <asm/proto.h>
43 #include <asm/efi.h>
44 #include <asm/cacheflush.h>
45 #include <asm/fixmap.h>
46 #include <asm/realmode.h>
47 #include <asm/time.h>
48 #include <asm/pgalloc.h>
49
50 /*
51  * We allocate runtime services regions top-down, starting from -4G, i.e.
52  * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
53  */
54 static u64 efi_va = EFI_VA_START;
55
56 struct efi_scratch efi_scratch;
57
58 static void __init early_code_mapping_set_exec(int executable)
59 {
60         efi_memory_desc_t *md;
61
62         if (!(__supported_pte_mask & _PAGE_NX))
63                 return;
64
65         /* Make EFI service code area executable */
66         for_each_efi_memory_desc(md) {
67                 if (md->type == EFI_RUNTIME_SERVICES_CODE ||
68                     md->type == EFI_BOOT_SERVICES_CODE)
69                         efi_set_executable(md, executable);
70         }
71 }
72
73 pgd_t * __init efi_call_phys_prolog(void)
74 {
75         unsigned long vaddr, addr_pgd, addr_p4d, addr_pud;
76         pgd_t *save_pgd, *pgd_k, *pgd_efi;
77         p4d_t *p4d, *p4d_k, *p4d_efi;
78         pud_t *pud;
79
80         int pgd;
81         int n_pgds, i, j;
82
83         if (!efi_enabled(EFI_OLD_MEMMAP)) {
84                 save_pgd = (pgd_t *)__read_cr3();
85                 write_cr3((unsigned long)efi_scratch.efi_pgt);
86                 goto out;
87         }
88
89         early_code_mapping_set_exec(1);
90
91         n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
92         save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
93
94         /*
95          * Build 1:1 identity mapping for efi=old_map usage. Note that
96          * PAGE_OFFSET is PGDIR_SIZE aligned when KASLR is disabled, while
97          * it is PUD_SIZE ALIGNED with KASLR enabled. So for a given physical
98          * address X, the pud_index(X) != pud_index(__va(X)), we can only copy
99          * PUD entry of __va(X) to fill in pud entry of X to build 1:1 mapping.
100          * This means here we can only reuse the PMD tables of the direct mapping.
101          */
102         for (pgd = 0; pgd < n_pgds; pgd++) {
103                 addr_pgd = (unsigned long)(pgd * PGDIR_SIZE);
104                 vaddr = (unsigned long)__va(pgd * PGDIR_SIZE);
105                 pgd_efi = pgd_offset_k(addr_pgd);
106                 save_pgd[pgd] = *pgd_efi;
107
108                 p4d = p4d_alloc(&init_mm, pgd_efi, addr_pgd);
109                 if (!p4d) {
110                         pr_err("Failed to allocate p4d table!\n");
111                         goto out;
112                 }
113
114                 for (i = 0; i < PTRS_PER_P4D; i++) {
115                         addr_p4d = addr_pgd + i * P4D_SIZE;
116                         p4d_efi = p4d + p4d_index(addr_p4d);
117
118                         pud = pud_alloc(&init_mm, p4d_efi, addr_p4d);
119                         if (!pud) {
120                                 pr_err("Failed to allocate pud table!\n");
121                                 goto out;
122                         }
123
124                         for (j = 0; j < PTRS_PER_PUD; j++) {
125                                 addr_pud = addr_p4d + j * PUD_SIZE;
126
127                                 if (addr_pud > (max_pfn << PAGE_SHIFT))
128                                         break;
129
130                                 vaddr = (unsigned long)__va(addr_pud);
131
132                                 pgd_k = pgd_offset_k(vaddr);
133                                 p4d_k = p4d_offset(pgd_k, vaddr);
134                                 pud[j] = *pud_offset(p4d_k, vaddr);
135                         }
136                 }
137         }
138 out:
139         __flush_tlb_all();
140
141         return save_pgd;
142 }
143
144 void __init efi_call_phys_epilog(pgd_t *save_pgd)
145 {
146         /*
147          * After the lock is released, the original page table is restored.
148          */
149         int pgd_idx, i;
150         int nr_pgds;
151         pgd_t *pgd;
152         p4d_t *p4d;
153         pud_t *pud;
154
155         if (!efi_enabled(EFI_OLD_MEMMAP)) {
156                 write_cr3((unsigned long)save_pgd);
157                 __flush_tlb_all();
158                 return;
159         }
160
161         nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
162
163         for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++) {
164                 pgd = pgd_offset_k(pgd_idx * PGDIR_SIZE);
165                 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
166
167                 if (!(pgd_val(*pgd) & _PAGE_PRESENT))
168                         continue;
169
170                 for (i = 0; i < PTRS_PER_P4D; i++) {
171                         p4d = p4d_offset(pgd,
172                                          pgd_idx * PGDIR_SIZE + i * P4D_SIZE);
173
174                         if (!(p4d_val(*p4d) & _PAGE_PRESENT))
175                                 continue;
176
177                         pud = (pud_t *)p4d_page_vaddr(*p4d);
178                         pud_free(&init_mm, pud);
179                 }
180
181                 p4d = (p4d_t *)pgd_page_vaddr(*pgd);
182                 p4d_free(&init_mm, p4d);
183         }
184
185         kfree(save_pgd);
186
187         __flush_tlb_all();
188         early_code_mapping_set_exec(0);
189 }
190
191 static pgd_t *efi_pgd;
192
193 /*
194  * We need our own copy of the higher levels of the page tables
195  * because we want to avoid inserting EFI region mappings (EFI_VA_END
196  * to EFI_VA_START) into the standard kernel page tables. Everything
197  * else can be shared, see efi_sync_low_kernel_mappings().
198  */
199 int __init efi_alloc_page_tables(void)
200 {
201         pgd_t *pgd;
202         p4d_t *p4d;
203         pud_t *pud;
204         gfp_t gfp_mask;
205
206         if (efi_enabled(EFI_OLD_MEMMAP))
207                 return 0;
208
209         gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
210         efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
211         if (!efi_pgd)
212                 return -ENOMEM;
213
214         pgd = efi_pgd + pgd_index(EFI_VA_END);
215         p4d = p4d_alloc(&init_mm, pgd, EFI_VA_END);
216         if (!p4d) {
217                 free_page((unsigned long)efi_pgd);
218                 return -ENOMEM;
219         }
220
221         pud = pud_alloc(&init_mm, p4d, EFI_VA_END);
222         if (!pud) {
223                 if (CONFIG_PGTABLE_LEVELS > 4)
224                         free_page((unsigned long) pgd_page_vaddr(*pgd));
225                 free_page((unsigned long)efi_pgd);
226                 return -ENOMEM;
227         }
228
229         return 0;
230 }
231
232 /*
233  * Add low kernel mappings for passing arguments to EFI functions.
234  */
235 void efi_sync_low_kernel_mappings(void)
236 {
237         unsigned num_entries;
238         pgd_t *pgd_k, *pgd_efi;
239         p4d_t *p4d_k, *p4d_efi;
240         pud_t *pud_k, *pud_efi;
241
242         if (efi_enabled(EFI_OLD_MEMMAP))
243                 return;
244
245         /*
246          * We can share all PGD entries apart from the one entry that
247          * covers the EFI runtime mapping space.
248          *
249          * Make sure the EFI runtime region mappings are guaranteed to
250          * only span a single PGD entry and that the entry also maps
251          * other important kernel regions.
252          */
253         BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
254         BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
255                         (EFI_VA_END & PGDIR_MASK));
256
257         pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
258         pgd_k = pgd_offset_k(PAGE_OFFSET);
259
260         num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
261         memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
262
263         /*
264          * As with PGDs, we share all P4D entries apart from the one entry
265          * that covers the EFI runtime mapping space.
266          */
267         BUILD_BUG_ON(p4d_index(EFI_VA_END) != p4d_index(MODULES_END));
268         BUILD_BUG_ON((EFI_VA_START & P4D_MASK) != (EFI_VA_END & P4D_MASK));
269
270         pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
271         pgd_k = pgd_offset_k(EFI_VA_END);
272         p4d_efi = p4d_offset(pgd_efi, 0);
273         p4d_k = p4d_offset(pgd_k, 0);
274
275         num_entries = p4d_index(EFI_VA_END);
276         memcpy(p4d_efi, p4d_k, sizeof(p4d_t) * num_entries);
277
278         /*
279          * We share all the PUD entries apart from those that map the
280          * EFI regions. Copy around them.
281          */
282         BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
283         BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
284
285         p4d_efi = p4d_offset(pgd_efi, EFI_VA_END);
286         p4d_k = p4d_offset(pgd_k, EFI_VA_END);
287         pud_efi = pud_offset(p4d_efi, 0);
288         pud_k = pud_offset(p4d_k, 0);
289
290         num_entries = pud_index(EFI_VA_END);
291         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
292
293         pud_efi = pud_offset(p4d_efi, EFI_VA_START);
294         pud_k = pud_offset(p4d_k, EFI_VA_START);
295
296         num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
297         memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
298 }
299
300 /*
301  * Wrapper for slow_virt_to_phys() that handles NULL addresses.
302  */
303 static inline phys_addr_t
304 virt_to_phys_or_null_size(void *va, unsigned long size)
305 {
306         bool bad_size;
307
308         if (!va)
309                 return 0;
310
311         if (virt_addr_valid(va))
312                 return virt_to_phys(va);
313
314         /*
315          * A fully aligned variable on the stack is guaranteed not to
316          * cross a page bounary. Try to catch strings on the stack by
317          * checking that 'size' is a power of two.
318          */
319         bad_size = size > PAGE_SIZE || !is_power_of_2(size);
320
321         WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
322
323         return slow_virt_to_phys(va);
324 }
325
326 #define virt_to_phys_or_null(addr)                              \
327         virt_to_phys_or_null_size((addr), sizeof(*(addr)))
328
329 int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
330 {
331         unsigned long pfn, text, pf;
332         struct page *page;
333         unsigned npages;
334         pgd_t *pgd;
335
336         if (efi_enabled(EFI_OLD_MEMMAP))
337                 return 0;
338
339         /*
340          * Since the PGD is encrypted, set the encryption mask so that when
341          * this value is loaded into cr3 the PGD will be decrypted during
342          * the pagetable walk.
343          */
344         efi_scratch.efi_pgt = (pgd_t *)__sme_pa(efi_pgd);
345         pgd = efi_pgd;
346
347         /*
348          * It can happen that the physical address of new_memmap lands in memory
349          * which is not mapped in the EFI page table. Therefore we need to go
350          * and ident-map those pages containing the map before calling
351          * phys_efi_set_virtual_address_map().
352          */
353         pfn = pa_memmap >> PAGE_SHIFT;
354         pf = _PAGE_NX | _PAGE_RW | _PAGE_ENC;
355         if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, pf)) {
356                 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
357                 return 1;
358         }
359
360         efi_scratch.use_pgd = true;
361
362         /*
363          * Certain firmware versions are way too sentimential and still believe
364          * they are exclusive and unquestionable owners of the first physical page,
365          * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
366          * (but then write-access it later during SetVirtualAddressMap()).
367          *
368          * Create a 1:1 mapping for this page, to avoid triple faults during early
369          * boot with such firmware. We are free to hand this page to the BIOS,
370          * as trim_bios_range() will reserve the first page and isolate it away
371          * from memory allocators anyway.
372          */
373         if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, _PAGE_RW)) {
374                 pr_err("Failed to create 1:1 mapping for the first page!\n");
375                 return 1;
376         }
377
378         /*
379          * When making calls to the firmware everything needs to be 1:1
380          * mapped and addressable with 32-bit pointers. Map the kernel
381          * text and allocate a new stack because we can't rely on the
382          * stack pointer being < 4GB.
383          */
384         if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
385                 return 0;
386
387         page = alloc_page(GFP_KERNEL|__GFP_DMA32);
388         if (!page)
389                 panic("Unable to allocate EFI runtime stack < 4GB\n");
390
391         efi_scratch.phys_stack = virt_to_phys(page_address(page));
392         efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
393
394         npages = (_etext - _text) >> PAGE_SHIFT;
395         text = __pa(_text);
396         pfn = text >> PAGE_SHIFT;
397
398         pf = _PAGE_RW | _PAGE_ENC;
399         if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, pf)) {
400                 pr_err("Failed to map kernel text 1:1\n");
401                 return 1;
402         }
403
404         return 0;
405 }
406
407 static void __init __map_region(efi_memory_desc_t *md, u64 va)
408 {
409         unsigned long flags = _PAGE_RW;
410         unsigned long pfn;
411         pgd_t *pgd = efi_pgd;
412
413         if (!(md->attribute & EFI_MEMORY_WB))
414                 flags |= _PAGE_PCD;
415
416         pfn = md->phys_addr >> PAGE_SHIFT;
417         if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
418                 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
419                            md->phys_addr, va);
420 }
421
422 void __init efi_map_region(efi_memory_desc_t *md)
423 {
424         unsigned long size = md->num_pages << PAGE_SHIFT;
425         u64 pa = md->phys_addr;
426
427         if (efi_enabled(EFI_OLD_MEMMAP))
428                 return old_map_region(md);
429
430         /*
431          * Make sure the 1:1 mappings are present as a catch-all for b0rked
432          * firmware which doesn't update all internal pointers after switching
433          * to virtual mode and would otherwise crap on us.
434          */
435         __map_region(md, md->phys_addr);
436
437         /*
438          * Enforce the 1:1 mapping as the default virtual address when
439          * booting in EFI mixed mode, because even though we may be
440          * running a 64-bit kernel, the firmware may only be 32-bit.
441          */
442         if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
443                 md->virt_addr = md->phys_addr;
444                 return;
445         }
446
447         efi_va -= size;
448
449         /* Is PA 2M-aligned? */
450         if (!(pa & (PMD_SIZE - 1))) {
451                 efi_va &= PMD_MASK;
452         } else {
453                 u64 pa_offset = pa & (PMD_SIZE - 1);
454                 u64 prev_va = efi_va;
455
456                 /* get us the same offset within this 2M page */
457                 efi_va = (efi_va & PMD_MASK) + pa_offset;
458
459                 if (efi_va > prev_va)
460                         efi_va -= PMD_SIZE;
461         }
462
463         if (efi_va < EFI_VA_END) {
464                 pr_warn(FW_WARN "VA address range overflow!\n");
465                 return;
466         }
467
468         /* Do the VA map */
469         __map_region(md, efi_va);
470         md->virt_addr = efi_va;
471 }
472
473 /*
474  * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
475  * md->virt_addr is the original virtual address which had been mapped in kexec
476  * 1st kernel.
477  */
478 void __init efi_map_region_fixed(efi_memory_desc_t *md)
479 {
480         __map_region(md, md->phys_addr);
481         __map_region(md, md->virt_addr);
482 }
483
484 void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
485                                  u32 type, u64 attribute)
486 {
487         unsigned long last_map_pfn;
488
489         if (type == EFI_MEMORY_MAPPED_IO)
490                 return ioremap(phys_addr, size);
491
492         last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
493         if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
494                 unsigned long top = last_map_pfn << PAGE_SHIFT;
495                 efi_ioremap(top, size - (top - phys_addr), type, attribute);
496         }
497
498         if (!(attribute & EFI_MEMORY_WB))
499                 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
500
501         return (void __iomem *)__va(phys_addr);
502 }
503
504 void __init parse_efi_setup(u64 phys_addr, u32 data_len)
505 {
506         efi_setup = phys_addr + sizeof(struct setup_data);
507 }
508
509 static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
510 {
511         unsigned long pfn;
512         pgd_t *pgd = efi_pgd;
513         int err1, err2;
514
515         /* Update the 1:1 mapping */
516         pfn = md->phys_addr >> PAGE_SHIFT;
517         err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
518         if (err1) {
519                 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
520                            md->phys_addr, md->virt_addr);
521         }
522
523         err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
524         if (err2) {
525                 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
526                            md->phys_addr, md->virt_addr);
527         }
528
529         return err1 || err2;
530 }
531
532 static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
533 {
534         unsigned long pf = 0;
535
536         if (md->attribute & EFI_MEMORY_XP)
537                 pf |= _PAGE_NX;
538
539         if (!(md->attribute & EFI_MEMORY_RO))
540                 pf |= _PAGE_RW;
541
542         return efi_update_mappings(md, pf);
543 }
544
545 void __init efi_runtime_update_mappings(void)
546 {
547         efi_memory_desc_t *md;
548
549         if (efi_enabled(EFI_OLD_MEMMAP)) {
550                 if (__supported_pte_mask & _PAGE_NX)
551                         runtime_code_page_mkexec();
552                 return;
553         }
554
555         /*
556          * Use the EFI Memory Attribute Table for mapping permissions if it
557          * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
558          */
559         if (efi_enabled(EFI_MEM_ATTR)) {
560                 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
561                 return;
562         }
563
564         /*
565          * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
566          * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
567          * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
568          * published by the firmware. Even if we find a buggy implementation of
569          * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
570          * EFI_PROPERTIES_TABLE, because of the same reason.
571          */
572
573         if (!efi_enabled(EFI_NX_PE_DATA))
574                 return;
575
576         for_each_efi_memory_desc(md) {
577                 unsigned long pf = 0;
578
579                 if (!(md->attribute & EFI_MEMORY_RUNTIME))
580                         continue;
581
582                 if (!(md->attribute & EFI_MEMORY_WB))
583                         pf |= _PAGE_PCD;
584
585                 if ((md->attribute & EFI_MEMORY_XP) ||
586                         (md->type == EFI_RUNTIME_SERVICES_DATA))
587                         pf |= _PAGE_NX;
588
589                 if (!(md->attribute & EFI_MEMORY_RO) &&
590                         (md->type != EFI_RUNTIME_SERVICES_CODE))
591                         pf |= _PAGE_RW;
592
593                 efi_update_mappings(md, pf);
594         }
595 }
596
597 void __init efi_dump_pagetable(void)
598 {
599 #ifdef CONFIG_EFI_PGT_DUMP
600         if (efi_enabled(EFI_OLD_MEMMAP))
601                 ptdump_walk_pgd_level(NULL, swapper_pg_dir);
602         else
603                 ptdump_walk_pgd_level(NULL, efi_pgd);
604 #endif
605 }
606
607 #ifdef CONFIG_EFI_MIXED
608 extern efi_status_t efi64_thunk(u32, ...);
609
610 #define runtime_service32(func)                                          \
611 ({                                                                       \
612         u32 table = (u32)(unsigned long)efi.systab;                      \
613         u32 *rt, *___f;                                                  \
614                                                                          \
615         rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime));  \
616         ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
617         *___f;                                                           \
618 })
619
620 /*
621  * Switch to the EFI page tables early so that we can access the 1:1
622  * runtime services mappings which are not mapped in any other page
623  * tables. This function must be called before runtime_service32().
624  *
625  * Also, disable interrupts because the IDT points to 64-bit handlers,
626  * which aren't going to function correctly when we switch to 32-bit.
627  */
628 #define efi_thunk(f, ...)                                               \
629 ({                                                                      \
630         efi_status_t __s;                                               \
631         unsigned long __flags;                                          \
632         u32 __func;                                                     \
633                                                                         \
634         local_irq_save(__flags);                                        \
635         arch_efi_call_virt_setup();                                     \
636                                                                         \
637         __func = runtime_service32(f);                                  \
638         __s = efi64_thunk(__func, __VA_ARGS__);                         \
639                                                                         \
640         arch_efi_call_virt_teardown();                                  \
641         local_irq_restore(__flags);                                     \
642                                                                         \
643         __s;                                                            \
644 })
645
646 efi_status_t efi_thunk_set_virtual_address_map(
647         void *phys_set_virtual_address_map,
648         unsigned long memory_map_size,
649         unsigned long descriptor_size,
650         u32 descriptor_version,
651         efi_memory_desc_t *virtual_map)
652 {
653         efi_status_t status;
654         unsigned long flags;
655         u32 func;
656
657         efi_sync_low_kernel_mappings();
658         local_irq_save(flags);
659
660         efi_scratch.prev_cr3 = __read_cr3();
661         write_cr3((unsigned long)efi_scratch.efi_pgt);
662         __flush_tlb_all();
663
664         func = (u32)(unsigned long)phys_set_virtual_address_map;
665         status = efi64_thunk(func, memory_map_size, descriptor_size,
666                              descriptor_version, virtual_map);
667
668         write_cr3(efi_scratch.prev_cr3);
669         __flush_tlb_all();
670         local_irq_restore(flags);
671
672         return status;
673 }
674
675 static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
676 {
677         efi_status_t status;
678         u32 phys_tm, phys_tc;
679
680         spin_lock(&rtc_lock);
681
682         phys_tm = virt_to_phys_or_null(tm);
683         phys_tc = virt_to_phys_or_null(tc);
684
685         status = efi_thunk(get_time, phys_tm, phys_tc);
686
687         spin_unlock(&rtc_lock);
688
689         return status;
690 }
691
692 static efi_status_t efi_thunk_set_time(efi_time_t *tm)
693 {
694         efi_status_t status;
695         u32 phys_tm;
696
697         spin_lock(&rtc_lock);
698
699         phys_tm = virt_to_phys_or_null(tm);
700
701         status = efi_thunk(set_time, phys_tm);
702
703         spin_unlock(&rtc_lock);
704
705         return status;
706 }
707
708 static efi_status_t
709 efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
710                           efi_time_t *tm)
711 {
712         efi_status_t status;
713         u32 phys_enabled, phys_pending, phys_tm;
714
715         spin_lock(&rtc_lock);
716
717         phys_enabled = virt_to_phys_or_null(enabled);
718         phys_pending = virt_to_phys_or_null(pending);
719         phys_tm = virt_to_phys_or_null(tm);
720
721         status = efi_thunk(get_wakeup_time, phys_enabled,
722                              phys_pending, phys_tm);
723
724         spin_unlock(&rtc_lock);
725
726         return status;
727 }
728
729 static efi_status_t
730 efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
731 {
732         efi_status_t status;
733         u32 phys_tm;
734
735         spin_lock(&rtc_lock);
736
737         phys_tm = virt_to_phys_or_null(tm);
738
739         status = efi_thunk(set_wakeup_time, enabled, phys_tm);
740
741         spin_unlock(&rtc_lock);
742
743         return status;
744 }
745
746 static unsigned long efi_name_size(efi_char16_t *name)
747 {
748         return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
749 }
750
751 static efi_status_t
752 efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
753                        u32 *attr, unsigned long *data_size, void *data)
754 {
755         efi_status_t status;
756         u32 phys_name, phys_vendor, phys_attr;
757         u32 phys_data_size, phys_data;
758
759         phys_data_size = virt_to_phys_or_null(data_size);
760         phys_vendor = virt_to_phys_or_null(vendor);
761         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
762         phys_attr = virt_to_phys_or_null(attr);
763         phys_data = virt_to_phys_or_null_size(data, *data_size);
764
765         status = efi_thunk(get_variable, phys_name, phys_vendor,
766                            phys_attr, phys_data_size, phys_data);
767
768         return status;
769 }
770
771 static efi_status_t
772 efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
773                        u32 attr, unsigned long data_size, void *data)
774 {
775         u32 phys_name, phys_vendor, phys_data;
776         efi_status_t status;
777
778         phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
779         phys_vendor = virt_to_phys_or_null(vendor);
780         phys_data = virt_to_phys_or_null_size(data, data_size);
781
782         /* If data_size is > sizeof(u32) we've got problems */
783         status = efi_thunk(set_variable, phys_name, phys_vendor,
784                            attr, data_size, phys_data);
785
786         return status;
787 }
788
789 static efi_status_t
790 efi_thunk_get_next_variable(unsigned long *name_size,
791                             efi_char16_t *name,
792                             efi_guid_t *vendor)
793 {
794         efi_status_t status;
795         u32 phys_name_size, phys_name, phys_vendor;
796
797         phys_name_size = virt_to_phys_or_null(name_size);
798         phys_vendor = virt_to_phys_or_null(vendor);
799         phys_name = virt_to_phys_or_null_size(name, *name_size);
800
801         status = efi_thunk(get_next_variable, phys_name_size,
802                            phys_name, phys_vendor);
803
804         return status;
805 }
806
807 static efi_status_t
808 efi_thunk_get_next_high_mono_count(u32 *count)
809 {
810         efi_status_t status;
811         u32 phys_count;
812
813         phys_count = virt_to_phys_or_null(count);
814         status = efi_thunk(get_next_high_mono_count, phys_count);
815
816         return status;
817 }
818
819 static void
820 efi_thunk_reset_system(int reset_type, efi_status_t status,
821                        unsigned long data_size, efi_char16_t *data)
822 {
823         u32 phys_data;
824
825         phys_data = virt_to_phys_or_null_size(data, data_size);
826
827         efi_thunk(reset_system, reset_type, status, data_size, phys_data);
828 }
829
830 static efi_status_t
831 efi_thunk_update_capsule(efi_capsule_header_t **capsules,
832                          unsigned long count, unsigned long sg_list)
833 {
834         /*
835          * To properly support this function we would need to repackage
836          * 'capsules' because the firmware doesn't understand 64-bit
837          * pointers.
838          */
839         return EFI_UNSUPPORTED;
840 }
841
842 static efi_status_t
843 efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
844                               u64 *remaining_space,
845                               u64 *max_variable_size)
846 {
847         efi_status_t status;
848         u32 phys_storage, phys_remaining, phys_max;
849
850         if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
851                 return EFI_UNSUPPORTED;
852
853         phys_storage = virt_to_phys_or_null(storage_space);
854         phys_remaining = virt_to_phys_or_null(remaining_space);
855         phys_max = virt_to_phys_or_null(max_variable_size);
856
857         status = efi_thunk(query_variable_info, attr, phys_storage,
858                            phys_remaining, phys_max);
859
860         return status;
861 }
862
863 static efi_status_t
864 efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
865                              unsigned long count, u64 *max_size,
866                              int *reset_type)
867 {
868         /*
869          * To properly support this function we would need to repackage
870          * 'capsules' because the firmware doesn't understand 64-bit
871          * pointers.
872          */
873         return EFI_UNSUPPORTED;
874 }
875
876 void efi_thunk_runtime_setup(void)
877 {
878         efi.get_time = efi_thunk_get_time;
879         efi.set_time = efi_thunk_set_time;
880         efi.get_wakeup_time = efi_thunk_get_wakeup_time;
881         efi.set_wakeup_time = efi_thunk_set_wakeup_time;
882         efi.get_variable = efi_thunk_get_variable;
883         efi.get_next_variable = efi_thunk_get_next_variable;
884         efi.set_variable = efi_thunk_set_variable;
885         efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
886         efi.reset_system = efi_thunk_reset_system;
887         efi.query_variable_info = efi_thunk_query_variable_info;
888         efi.update_capsule = efi_thunk_update_capsule;
889         efi.query_capsule_caps = efi_thunk_query_capsule_caps;
890 }
891 #endif /* CONFIG_EFI_MIXED */