Merge branch 'x86/boot' into x86/mm, to avoid conflict
[sfrench/cifs-2.6.git] / arch / x86 / mm / pageattr.c
1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32         unsigned long   *vaddr;
33         pgd_t           *pgd;
34         pgprot_t        mask_set;
35         pgprot_t        mask_clr;
36         unsigned long   numpages;
37         int             flags;
38         unsigned long   pfn;
39         unsigned        force_split : 1;
40         int             curpage;
41         struct page     **pages;
42 };
43
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58
59 void update_page_count(int level, unsigned long pages)
60 {
61         /* Protect against CPA */
62         spin_lock(&pgd_lock);
63         direct_pages_count[level] += pages;
64         spin_unlock(&pgd_lock);
65 }
66
67 static void split_page_count(int level)
68 {
69         if (direct_pages_count[level] == 0)
70                 return;
71
72         direct_pages_count[level]--;
73         direct_pages_count[level - 1] += PTRS_PER_PTE;
74 }
75
76 void arch_report_meminfo(struct seq_file *m)
77 {
78         seq_printf(m, "DirectMap4k:    %8lu kB\n",
79                         direct_pages_count[PG_LEVEL_4K] << 2);
80 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
81         seq_printf(m, "DirectMap2M:    %8lu kB\n",
82                         direct_pages_count[PG_LEVEL_2M] << 11);
83 #else
84         seq_printf(m, "DirectMap4M:    %8lu kB\n",
85                         direct_pages_count[PG_LEVEL_2M] << 12);
86 #endif
87         if (direct_gbpages)
88                 seq_printf(m, "DirectMap1G:    %8lu kB\n",
89                         direct_pages_count[PG_LEVEL_1G] << 20);
90 }
91 #else
92 static inline void split_page_count(int level) { }
93 #endif
94
95 #ifdef CONFIG_X86_64
96
97 static inline unsigned long highmap_start_pfn(void)
98 {
99         return __pa_symbol(_text) >> PAGE_SHIFT;
100 }
101
102 static inline unsigned long highmap_end_pfn(void)
103 {
104         /* Do not reference physical address outside the kernel. */
105         return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
106 }
107
108 #endif
109
110 static inline int
111 within(unsigned long addr, unsigned long start, unsigned long end)
112 {
113         return addr >= start && addr < end;
114 }
115
116 static inline int
117 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
118 {
119         return addr >= start && addr <= end;
120 }
121
122 /*
123  * Flushing functions
124  */
125
126 /**
127  * clflush_cache_range - flush a cache range with clflush
128  * @vaddr:      virtual start address
129  * @size:       number of bytes to flush
130  *
131  * clflushopt is an unordered instruction which needs fencing with mfence or
132  * sfence to avoid ordering issues.
133  */
134 void clflush_cache_range(void *vaddr, unsigned int size)
135 {
136         const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
137         void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
138         void *vend = vaddr + size;
139
140         if (p >= vend)
141                 return;
142
143         mb();
144
145         for (; p < vend; p += clflush_size)
146                 clflushopt(p);
147
148         mb();
149 }
150 EXPORT_SYMBOL_GPL(clflush_cache_range);
151
152 static void __cpa_flush_all(void *arg)
153 {
154         unsigned long cache = (unsigned long)arg;
155
156         /*
157          * Flush all to work around Errata in early athlons regarding
158          * large page flushing.
159          */
160         __flush_tlb_all();
161
162         if (cache && boot_cpu_data.x86 >= 4)
163                 wbinvd();
164 }
165
166 static void cpa_flush_all(unsigned long cache)
167 {
168         BUG_ON(irqs_disabled());
169
170         on_each_cpu(__cpa_flush_all, (void *) cache, 1);
171 }
172
173 static void __cpa_flush_range(void *arg)
174 {
175         /*
176          * We could optimize that further and do individual per page
177          * tlb invalidates for a low number of pages. Caveat: we must
178          * flush the high aliases on 64bit as well.
179          */
180         __flush_tlb_all();
181 }
182
183 static void cpa_flush_range(unsigned long start, int numpages, int cache)
184 {
185         unsigned int i, level;
186         unsigned long addr;
187
188         BUG_ON(irqs_disabled());
189         WARN_ON(PAGE_ALIGN(start) != start);
190
191         on_each_cpu(__cpa_flush_range, NULL, 1);
192
193         if (!cache)
194                 return;
195
196         /*
197          * We only need to flush on one CPU,
198          * clflush is a MESI-coherent instruction that
199          * will cause all other CPUs to flush the same
200          * cachelines:
201          */
202         for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
203                 pte_t *pte = lookup_address(addr, &level);
204
205                 /*
206                  * Only flush present addresses:
207                  */
208                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
209                         clflush_cache_range((void *) addr, PAGE_SIZE);
210         }
211 }
212
213 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
214                             int in_flags, struct page **pages)
215 {
216         unsigned int i, level;
217 #ifdef CONFIG_PREEMPT
218         /*
219          * Avoid wbinvd() because it causes latencies on all CPUs,
220          * regardless of any CPU isolation that may be in effect.
221          *
222          * This should be extended for CAT enabled systems independent of
223          * PREEMPT because wbinvd() does not respect the CAT partitions and
224          * this is exposed to unpriviledged users through the graphics
225          * subsystem.
226          */
227         unsigned long do_wbinvd = 0;
228 #else
229         unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
230 #endif
231
232         BUG_ON(irqs_disabled());
233
234         on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
235
236         if (!cache || do_wbinvd)
237                 return;
238
239         /*
240          * We only need to flush on one CPU,
241          * clflush is a MESI-coherent instruction that
242          * will cause all other CPUs to flush the same
243          * cachelines:
244          */
245         for (i = 0; i < numpages; i++) {
246                 unsigned long addr;
247                 pte_t *pte;
248
249                 if (in_flags & CPA_PAGES_ARRAY)
250                         addr = (unsigned long)page_address(pages[i]);
251                 else
252                         addr = start[i];
253
254                 pte = lookup_address(addr, &level);
255
256                 /*
257                  * Only flush present addresses:
258                  */
259                 if (pte && (pte_val(*pte) & _PAGE_PRESENT))
260                         clflush_cache_range((void *)addr, PAGE_SIZE);
261         }
262 }
263
264 /*
265  * Certain areas of memory on x86 require very specific protection flags,
266  * for example the BIOS area or kernel text. Callers don't always get this
267  * right (again, ioremap() on BIOS memory is not uncommon) so this function
268  * checks and fixes these known static required protection bits.
269  */
270 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
271                                    unsigned long pfn)
272 {
273         pgprot_t forbidden = __pgprot(0);
274
275         /*
276          * The BIOS area between 640k and 1Mb needs to be executable for
277          * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
278          */
279 #ifdef CONFIG_PCI_BIOS
280         if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
281                 pgprot_val(forbidden) |= _PAGE_NX;
282 #endif
283
284         /*
285          * The kernel text needs to be executable for obvious reasons
286          * Does not cover __inittext since that is gone later on. On
287          * 64bit we do not enforce !NX on the low mapping
288          */
289         if (within(address, (unsigned long)_text, (unsigned long)_etext))
290                 pgprot_val(forbidden) |= _PAGE_NX;
291
292         /*
293          * The .rodata section needs to be read-only. Using the pfn
294          * catches all aliases.
295          */
296         if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
297                    __pa_symbol(__end_rodata) >> PAGE_SHIFT))
298                 pgprot_val(forbidden) |= _PAGE_RW;
299
300 #if defined(CONFIG_X86_64)
301         /*
302          * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
303          * kernel text mappings for the large page aligned text, rodata sections
304          * will be always read-only. For the kernel identity mappings covering
305          * the holes caused by this alignment can be anything that user asks.
306          *
307          * This will preserve the large page mappings for kernel text/data
308          * at no extra cost.
309          */
310         if (kernel_set_to_readonly &&
311             within(address, (unsigned long)_text,
312                    (unsigned long)__end_rodata_hpage_align)) {
313                 unsigned int level;
314
315                 /*
316                  * Don't enforce the !RW mapping for the kernel text mapping,
317                  * if the current mapping is already using small page mapping.
318                  * No need to work hard to preserve large page mappings in this
319                  * case.
320                  *
321                  * This also fixes the Linux Xen paravirt guest boot failure
322                  * (because of unexpected read-only mappings for kernel identity
323                  * mappings). In this paravirt guest case, the kernel text
324                  * mapping and the kernel identity mapping share the same
325                  * page-table pages. Thus we can't really use different
326                  * protections for the kernel text and identity mappings. Also,
327                  * these shared mappings are made of small page mappings.
328                  * Thus this don't enforce !RW mapping for small page kernel
329                  * text mapping logic will help Linux Xen parvirt guest boot
330                  * as well.
331                  */
332                 if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
333                         pgprot_val(forbidden) |= _PAGE_RW;
334         }
335 #endif
336
337         prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
338
339         return prot;
340 }
341
342 /*
343  * Lookup the page table entry for a virtual address in a specific pgd.
344  * Return a pointer to the entry and the level of the mapping.
345  */
346 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
347                              unsigned int *level)
348 {
349         p4d_t *p4d;
350         pud_t *pud;
351         pmd_t *pmd;
352
353         *level = PG_LEVEL_NONE;
354
355         if (pgd_none(*pgd))
356                 return NULL;
357
358         p4d = p4d_offset(pgd, address);
359         if (p4d_none(*p4d))
360                 return NULL;
361
362         *level = PG_LEVEL_512G;
363         if (p4d_large(*p4d) || !p4d_present(*p4d))
364                 return (pte_t *)p4d;
365
366         pud = pud_offset(p4d, address);
367         if (pud_none(*pud))
368                 return NULL;
369
370         *level = PG_LEVEL_1G;
371         if (pud_large(*pud) || !pud_present(*pud))
372                 return (pte_t *)pud;
373
374         pmd = pmd_offset(pud, address);
375         if (pmd_none(*pmd))
376                 return NULL;
377
378         *level = PG_LEVEL_2M;
379         if (pmd_large(*pmd) || !pmd_present(*pmd))
380                 return (pte_t *)pmd;
381
382         *level = PG_LEVEL_4K;
383
384         return pte_offset_kernel(pmd, address);
385 }
386
387 /*
388  * Lookup the page table entry for a virtual address. Return a pointer
389  * to the entry and the level of the mapping.
390  *
391  * Note: We return pud and pmd either when the entry is marked large
392  * or when the present bit is not set. Otherwise we would return a
393  * pointer to a nonexisting mapping.
394  */
395 pte_t *lookup_address(unsigned long address, unsigned int *level)
396 {
397         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
398 }
399 EXPORT_SYMBOL_GPL(lookup_address);
400
401 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
402                                   unsigned int *level)
403 {
404         if (cpa->pgd)
405                 return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
406                                                address, level);
407
408         return lookup_address(address, level);
409 }
410
411 /*
412  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
413  * or NULL if not present.
414  */
415 pmd_t *lookup_pmd_address(unsigned long address)
416 {
417         pgd_t *pgd;
418         p4d_t *p4d;
419         pud_t *pud;
420
421         pgd = pgd_offset_k(address);
422         if (pgd_none(*pgd))
423                 return NULL;
424
425         p4d = p4d_offset(pgd, address);
426         if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
427                 return NULL;
428
429         pud = pud_offset(p4d, address);
430         if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
431                 return NULL;
432
433         return pmd_offset(pud, address);
434 }
435
436 /*
437  * This is necessary because __pa() does not work on some
438  * kinds of memory, like vmalloc() or the alloc_remap()
439  * areas on 32-bit NUMA systems.  The percpu areas can
440  * end up in this kind of memory, for instance.
441  *
442  * This could be optimized, but it is only intended to be
443  * used at inititalization time, and keeping it
444  * unoptimized should increase the testing coverage for
445  * the more obscure platforms.
446  */
447 phys_addr_t slow_virt_to_phys(void *__virt_addr)
448 {
449         unsigned long virt_addr = (unsigned long)__virt_addr;
450         phys_addr_t phys_addr;
451         unsigned long offset;
452         enum pg_level level;
453         pte_t *pte;
454
455         pte = lookup_address(virt_addr, &level);
456         BUG_ON(!pte);
457
458         /*
459          * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
460          * before being left-shifted PAGE_SHIFT bits -- this trick is to
461          * make 32-PAE kernel work correctly.
462          */
463         switch (level) {
464         case PG_LEVEL_1G:
465                 phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
466                 offset = virt_addr & ~PUD_PAGE_MASK;
467                 break;
468         case PG_LEVEL_2M:
469                 phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
470                 offset = virt_addr & ~PMD_PAGE_MASK;
471                 break;
472         default:
473                 phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
474                 offset = virt_addr & ~PAGE_MASK;
475         }
476
477         return (phys_addr_t)(phys_addr | offset);
478 }
479 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
480
481 /*
482  * Set the new pmd in all the pgds we know about:
483  */
484 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
485 {
486         /* change init_mm */
487         set_pte_atomic(kpte, pte);
488 #ifdef CONFIG_X86_32
489         if (!SHARED_KERNEL_PMD) {
490                 struct page *page;
491
492                 list_for_each_entry(page, &pgd_list, lru) {
493                         pgd_t *pgd;
494                         p4d_t *p4d;
495                         pud_t *pud;
496                         pmd_t *pmd;
497
498                         pgd = (pgd_t *)page_address(page) + pgd_index(address);
499                         p4d = p4d_offset(pgd, address);
500                         pud = pud_offset(p4d, address);
501                         pmd = pmd_offset(pud, address);
502                         set_pte_atomic((pte_t *)pmd, pte);
503                 }
504         }
505 #endif
506 }
507
508 static int
509 try_preserve_large_page(pte_t *kpte, unsigned long address,
510                         struct cpa_data *cpa)
511 {
512         unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
513         pte_t new_pte, old_pte, *tmp;
514         pgprot_t old_prot, new_prot, req_prot;
515         int i, do_split = 1;
516         enum pg_level level;
517
518         if (cpa->force_split)
519                 return 1;
520
521         spin_lock(&pgd_lock);
522         /*
523          * Check for races, another CPU might have split this page
524          * up already:
525          */
526         tmp = _lookup_address_cpa(cpa, address, &level);
527         if (tmp != kpte)
528                 goto out_unlock;
529
530         switch (level) {
531         case PG_LEVEL_2M:
532                 old_prot = pmd_pgprot(*(pmd_t *)kpte);
533                 old_pfn = pmd_pfn(*(pmd_t *)kpte);
534                 break;
535         case PG_LEVEL_1G:
536                 old_prot = pud_pgprot(*(pud_t *)kpte);
537                 old_pfn = pud_pfn(*(pud_t *)kpte);
538                 break;
539         default:
540                 do_split = -EINVAL;
541                 goto out_unlock;
542         }
543
544         psize = page_level_size(level);
545         pmask = page_level_mask(level);
546
547         /*
548          * Calculate the number of pages, which fit into this large
549          * page starting at address:
550          */
551         nextpage_addr = (address + psize) & pmask;
552         numpages = (nextpage_addr - address) >> PAGE_SHIFT;
553         if (numpages < cpa->numpages)
554                 cpa->numpages = numpages;
555
556         /*
557          * We are safe now. Check whether the new pgprot is the same:
558          * Convert protection attributes to 4k-format, as cpa->mask* are set
559          * up accordingly.
560          */
561         old_pte = *kpte;
562         req_prot = pgprot_large_2_4k(old_prot);
563
564         pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
565         pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
566
567         /*
568          * req_prot is in format of 4k pages. It must be converted to large
569          * page format: the caching mode includes the PAT bit located at
570          * different bit positions in the two formats.
571          */
572         req_prot = pgprot_4k_2_large(req_prot);
573
574         /*
575          * Set the PSE and GLOBAL flags only if the PRESENT flag is
576          * set otherwise pmd_present/pmd_huge will return true even on
577          * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
578          * for the ancient hardware that doesn't support it.
579          */
580         if (pgprot_val(req_prot) & _PAGE_PRESENT)
581                 pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
582         else
583                 pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
584
585         req_prot = canon_pgprot(req_prot);
586
587         /*
588          * old_pfn points to the large page base pfn. So we need
589          * to add the offset of the virtual address:
590          */
591         pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
592         cpa->pfn = pfn;
593
594         new_prot = static_protections(req_prot, address, pfn);
595
596         /*
597          * We need to check the full range, whether
598          * static_protection() requires a different pgprot for one of
599          * the pages in the range we try to preserve:
600          */
601         addr = address & pmask;
602         pfn = old_pfn;
603         for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
604                 pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
605
606                 if (pgprot_val(chk_prot) != pgprot_val(new_prot))
607                         goto out_unlock;
608         }
609
610         /*
611          * If there are no changes, return. maxpages has been updated
612          * above:
613          */
614         if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
615                 do_split = 0;
616                 goto out_unlock;
617         }
618
619         /*
620          * We need to change the attributes. Check, whether we can
621          * change the large page in one go. We request a split, when
622          * the address is not aligned and the number of pages is
623          * smaller than the number of pages in the large page. Note
624          * that we limited the number of possible pages already to
625          * the number of pages in the large page.
626          */
627         if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
628                 /*
629                  * The address is aligned and the number of pages
630                  * covers the full page.
631                  */
632                 new_pte = pfn_pte(old_pfn, new_prot);
633                 __set_pmd_pte(kpte, address, new_pte);
634                 cpa->flags |= CPA_FLUSHTLB;
635                 do_split = 0;
636         }
637
638 out_unlock:
639         spin_unlock(&pgd_lock);
640
641         return do_split;
642 }
643
644 static int
645 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
646                    struct page *base)
647 {
648         pte_t *pbase = (pte_t *)page_address(base);
649         unsigned long ref_pfn, pfn, pfninc = 1;
650         unsigned int i, level;
651         pte_t *tmp;
652         pgprot_t ref_prot;
653
654         spin_lock(&pgd_lock);
655         /*
656          * Check for races, another CPU might have split this page
657          * up for us already:
658          */
659         tmp = _lookup_address_cpa(cpa, address, &level);
660         if (tmp != kpte) {
661                 spin_unlock(&pgd_lock);
662                 return 1;
663         }
664
665         paravirt_alloc_pte(&init_mm, page_to_pfn(base));
666
667         switch (level) {
668         case PG_LEVEL_2M:
669                 ref_prot = pmd_pgprot(*(pmd_t *)kpte);
670                 /* clear PSE and promote PAT bit to correct position */
671                 ref_prot = pgprot_large_2_4k(ref_prot);
672                 ref_pfn = pmd_pfn(*(pmd_t *)kpte);
673                 break;
674
675         case PG_LEVEL_1G:
676                 ref_prot = pud_pgprot(*(pud_t *)kpte);
677                 ref_pfn = pud_pfn(*(pud_t *)kpte);
678                 pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
679
680                 /*
681                  * Clear the PSE flags if the PRESENT flag is not set
682                  * otherwise pmd_present/pmd_huge will return true
683                  * even on a non present pmd.
684                  */
685                 if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
686                         pgprot_val(ref_prot) &= ~_PAGE_PSE;
687                 break;
688
689         default:
690                 spin_unlock(&pgd_lock);
691                 return 1;
692         }
693
694         /*
695          * Set the GLOBAL flags only if the PRESENT flag is set
696          * otherwise pmd/pte_present will return true even on a non
697          * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
698          * for the ancient hardware that doesn't support it.
699          */
700         if (pgprot_val(ref_prot) & _PAGE_PRESENT)
701                 pgprot_val(ref_prot) |= _PAGE_GLOBAL;
702         else
703                 pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
704
705         /*
706          * Get the target pfn from the original entry:
707          */
708         pfn = ref_pfn;
709         for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
710                 set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
711
712         if (virt_addr_valid(address)) {
713                 unsigned long pfn = PFN_DOWN(__pa(address));
714
715                 if (pfn_range_is_mapped(pfn, pfn + 1))
716                         split_page_count(level);
717         }
718
719         /*
720          * Install the new, split up pagetable.
721          *
722          * We use the standard kernel pagetable protections for the new
723          * pagetable protections, the actual ptes set above control the
724          * primary protection behavior:
725          */
726         __set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
727
728         /*
729          * Intel Atom errata AAH41 workaround.
730          *
731          * The real fix should be in hw or in a microcode update, but
732          * we also probabilistically try to reduce the window of having
733          * a large TLB mixed with 4K TLBs while instruction fetches are
734          * going on.
735          */
736         __flush_tlb_all();
737         spin_unlock(&pgd_lock);
738
739         return 0;
740 }
741
742 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
743                             unsigned long address)
744 {
745         struct page *base;
746
747         if (!debug_pagealloc_enabled())
748                 spin_unlock(&cpa_lock);
749         base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
750         if (!debug_pagealloc_enabled())
751                 spin_lock(&cpa_lock);
752         if (!base)
753                 return -ENOMEM;
754
755         if (__split_large_page(cpa, kpte, address, base))
756                 __free_page(base);
757
758         return 0;
759 }
760
761 static bool try_to_free_pte_page(pte_t *pte)
762 {
763         int i;
764
765         for (i = 0; i < PTRS_PER_PTE; i++)
766                 if (!pte_none(pte[i]))
767                         return false;
768
769         free_page((unsigned long)pte);
770         return true;
771 }
772
773 static bool try_to_free_pmd_page(pmd_t *pmd)
774 {
775         int i;
776
777         for (i = 0; i < PTRS_PER_PMD; i++)
778                 if (!pmd_none(pmd[i]))
779                         return false;
780
781         free_page((unsigned long)pmd);
782         return true;
783 }
784
785 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
786 {
787         pte_t *pte = pte_offset_kernel(pmd, start);
788
789         while (start < end) {
790                 set_pte(pte, __pte(0));
791
792                 start += PAGE_SIZE;
793                 pte++;
794         }
795
796         if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
797                 pmd_clear(pmd);
798                 return true;
799         }
800         return false;
801 }
802
803 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
804                               unsigned long start, unsigned long end)
805 {
806         if (unmap_pte_range(pmd, start, end))
807                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
808                         pud_clear(pud);
809 }
810
811 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
812 {
813         pmd_t *pmd = pmd_offset(pud, start);
814
815         /*
816          * Not on a 2MB page boundary?
817          */
818         if (start & (PMD_SIZE - 1)) {
819                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
820                 unsigned long pre_end = min_t(unsigned long, end, next_page);
821
822                 __unmap_pmd_range(pud, pmd, start, pre_end);
823
824                 start = pre_end;
825                 pmd++;
826         }
827
828         /*
829          * Try to unmap in 2M chunks.
830          */
831         while (end - start >= PMD_SIZE) {
832                 if (pmd_large(*pmd))
833                         pmd_clear(pmd);
834                 else
835                         __unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
836
837                 start += PMD_SIZE;
838                 pmd++;
839         }
840
841         /*
842          * 4K leftovers?
843          */
844         if (start < end)
845                 return __unmap_pmd_range(pud, pmd, start, end);
846
847         /*
848          * Try again to free the PMD page if haven't succeeded above.
849          */
850         if (!pud_none(*pud))
851                 if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
852                         pud_clear(pud);
853 }
854
855 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
856 {
857         pud_t *pud = pud_offset(p4d, start);
858
859         /*
860          * Not on a GB page boundary?
861          */
862         if (start & (PUD_SIZE - 1)) {
863                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
864                 unsigned long pre_end   = min_t(unsigned long, end, next_page);
865
866                 unmap_pmd_range(pud, start, pre_end);
867
868                 start = pre_end;
869                 pud++;
870         }
871
872         /*
873          * Try to unmap in 1G chunks?
874          */
875         while (end - start >= PUD_SIZE) {
876
877                 if (pud_large(*pud))
878                         pud_clear(pud);
879                 else
880                         unmap_pmd_range(pud, start, start + PUD_SIZE);
881
882                 start += PUD_SIZE;
883                 pud++;
884         }
885
886         /*
887          * 2M leftovers?
888          */
889         if (start < end)
890                 unmap_pmd_range(pud, start, end);
891
892         /*
893          * No need to try to free the PUD page because we'll free it in
894          * populate_pgd's error path
895          */
896 }
897
898 static int alloc_pte_page(pmd_t *pmd)
899 {
900         pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
901         if (!pte)
902                 return -1;
903
904         set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
905         return 0;
906 }
907
908 static int alloc_pmd_page(pud_t *pud)
909 {
910         pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
911         if (!pmd)
912                 return -1;
913
914         set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
915         return 0;
916 }
917
918 static void populate_pte(struct cpa_data *cpa,
919                          unsigned long start, unsigned long end,
920                          unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
921 {
922         pte_t *pte;
923
924         pte = pte_offset_kernel(pmd, start);
925
926         /*
927          * Set the GLOBAL flags only if the PRESENT flag is
928          * set otherwise pte_present will return true even on
929          * a non present pte. The canon_pgprot will clear
930          * _PAGE_GLOBAL for the ancient hardware that doesn't
931          * support it.
932          */
933         if (pgprot_val(pgprot) & _PAGE_PRESENT)
934                 pgprot_val(pgprot) |= _PAGE_GLOBAL;
935         else
936                 pgprot_val(pgprot) &= ~_PAGE_GLOBAL;
937
938         pgprot = canon_pgprot(pgprot);
939
940         while (num_pages-- && start < end) {
941                 set_pte(pte, pfn_pte(cpa->pfn, pgprot));
942
943                 start    += PAGE_SIZE;
944                 cpa->pfn++;
945                 pte++;
946         }
947 }
948
949 static long populate_pmd(struct cpa_data *cpa,
950                          unsigned long start, unsigned long end,
951                          unsigned num_pages, pud_t *pud, pgprot_t pgprot)
952 {
953         long cur_pages = 0;
954         pmd_t *pmd;
955         pgprot_t pmd_pgprot;
956
957         /*
958          * Not on a 2M boundary?
959          */
960         if (start & (PMD_SIZE - 1)) {
961                 unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
962                 unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
963
964                 pre_end   = min_t(unsigned long, pre_end, next_page);
965                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
966                 cur_pages = min_t(unsigned int, num_pages, cur_pages);
967
968                 /*
969                  * Need a PTE page?
970                  */
971                 pmd = pmd_offset(pud, start);
972                 if (pmd_none(*pmd))
973                         if (alloc_pte_page(pmd))
974                                 return -1;
975
976                 populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
977
978                 start = pre_end;
979         }
980
981         /*
982          * We mapped them all?
983          */
984         if (num_pages == cur_pages)
985                 return cur_pages;
986
987         pmd_pgprot = pgprot_4k_2_large(pgprot);
988
989         while (end - start >= PMD_SIZE) {
990
991                 /*
992                  * We cannot use a 1G page so allocate a PMD page if needed.
993                  */
994                 if (pud_none(*pud))
995                         if (alloc_pmd_page(pud))
996                                 return -1;
997
998                 pmd = pmd_offset(pud, start);
999
1000                 set_pmd(pmd, __pmd(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1001                                    massage_pgprot(pmd_pgprot)));
1002
1003                 start     += PMD_SIZE;
1004                 cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1005                 cur_pages += PMD_SIZE >> PAGE_SHIFT;
1006         }
1007
1008         /*
1009          * Map trailing 4K pages.
1010          */
1011         if (start < end) {
1012                 pmd = pmd_offset(pud, start);
1013                 if (pmd_none(*pmd))
1014                         if (alloc_pte_page(pmd))
1015                                 return -1;
1016
1017                 populate_pte(cpa, start, end, num_pages - cur_pages,
1018                              pmd, pgprot);
1019         }
1020         return num_pages;
1021 }
1022
1023 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1024                         pgprot_t pgprot)
1025 {
1026         pud_t *pud;
1027         unsigned long end;
1028         long cur_pages = 0;
1029         pgprot_t pud_pgprot;
1030
1031         end = start + (cpa->numpages << PAGE_SHIFT);
1032
1033         /*
1034          * Not on a Gb page boundary? => map everything up to it with
1035          * smaller pages.
1036          */
1037         if (start & (PUD_SIZE - 1)) {
1038                 unsigned long pre_end;
1039                 unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1040
1041                 pre_end   = min_t(unsigned long, end, next_page);
1042                 cur_pages = (pre_end - start) >> PAGE_SHIFT;
1043                 cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1044
1045                 pud = pud_offset(p4d, start);
1046
1047                 /*
1048                  * Need a PMD page?
1049                  */
1050                 if (pud_none(*pud))
1051                         if (alloc_pmd_page(pud))
1052                                 return -1;
1053
1054                 cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1055                                          pud, pgprot);
1056                 if (cur_pages < 0)
1057                         return cur_pages;
1058
1059                 start = pre_end;
1060         }
1061
1062         /* We mapped them all? */
1063         if (cpa->numpages == cur_pages)
1064                 return cur_pages;
1065
1066         pud = pud_offset(p4d, start);
1067         pud_pgprot = pgprot_4k_2_large(pgprot);
1068
1069         /*
1070          * Map everything starting from the Gb boundary, possibly with 1G pages
1071          */
1072         while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1073                 set_pud(pud, __pud(cpa->pfn << PAGE_SHIFT | _PAGE_PSE |
1074                                    massage_pgprot(pud_pgprot)));
1075
1076                 start     += PUD_SIZE;
1077                 cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1078                 cur_pages += PUD_SIZE >> PAGE_SHIFT;
1079                 pud++;
1080         }
1081
1082         /* Map trailing leftover */
1083         if (start < end) {
1084                 long tmp;
1085
1086                 pud = pud_offset(p4d, start);
1087                 if (pud_none(*pud))
1088                         if (alloc_pmd_page(pud))
1089                                 return -1;
1090
1091                 tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1092                                    pud, pgprot);
1093                 if (tmp < 0)
1094                         return cur_pages;
1095
1096                 cur_pages += tmp;
1097         }
1098         return cur_pages;
1099 }
1100
1101 /*
1102  * Restrictions for kernel page table do not necessarily apply when mapping in
1103  * an alternate PGD.
1104  */
1105 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1106 {
1107         pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1108         pud_t *pud = NULL;      /* shut up gcc */
1109         p4d_t *p4d;
1110         pgd_t *pgd_entry;
1111         long ret;
1112
1113         pgd_entry = cpa->pgd + pgd_index(addr);
1114
1115         if (pgd_none(*pgd_entry)) {
1116                 p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1117                 if (!p4d)
1118                         return -1;
1119
1120                 set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1121         }
1122
1123         /*
1124          * Allocate a PUD page and hand it down for mapping.
1125          */
1126         p4d = p4d_offset(pgd_entry, addr);
1127         if (p4d_none(*p4d)) {
1128                 pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1129                 if (!pud)
1130                         return -1;
1131
1132                 set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1133         }
1134
1135         pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1136         pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1137
1138         ret = populate_pud(cpa, addr, p4d, pgprot);
1139         if (ret < 0) {
1140                 /*
1141                  * Leave the PUD page in place in case some other CPU or thread
1142                  * already found it, but remove any useless entries we just
1143                  * added to it.
1144                  */
1145                 unmap_pud_range(p4d, addr,
1146                                 addr + (cpa->numpages << PAGE_SHIFT));
1147                 return ret;
1148         }
1149
1150         cpa->numpages = ret;
1151         return 0;
1152 }
1153
1154 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1155                                int primary)
1156 {
1157         if (cpa->pgd) {
1158                 /*
1159                  * Right now, we only execute this code path when mapping
1160                  * the EFI virtual memory map regions, no other users
1161                  * provide a ->pgd value. This may change in the future.
1162                  */
1163                 return populate_pgd(cpa, vaddr);
1164         }
1165
1166         /*
1167          * Ignore all non primary paths.
1168          */
1169         if (!primary) {
1170                 cpa->numpages = 1;
1171                 return 0;
1172         }
1173
1174         /*
1175          * Ignore the NULL PTE for kernel identity mapping, as it is expected
1176          * to have holes.
1177          * Also set numpages to '1' indicating that we processed cpa req for
1178          * one virtual address page and its pfn. TBD: numpages can be set based
1179          * on the initial value and the level returned by lookup_address().
1180          */
1181         if (within(vaddr, PAGE_OFFSET,
1182                    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1183                 cpa->numpages = 1;
1184                 cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1185                 return 0;
1186         } else {
1187                 WARN(1, KERN_WARNING "CPA: called for zero pte. "
1188                         "vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1189                         *cpa->vaddr);
1190
1191                 return -EFAULT;
1192         }
1193 }
1194
1195 static int __change_page_attr(struct cpa_data *cpa, int primary)
1196 {
1197         unsigned long address;
1198         int do_split, err;
1199         unsigned int level;
1200         pte_t *kpte, old_pte;
1201
1202         if (cpa->flags & CPA_PAGES_ARRAY) {
1203                 struct page *page = cpa->pages[cpa->curpage];
1204                 if (unlikely(PageHighMem(page)))
1205                         return 0;
1206                 address = (unsigned long)page_address(page);
1207         } else if (cpa->flags & CPA_ARRAY)
1208                 address = cpa->vaddr[cpa->curpage];
1209         else
1210                 address = *cpa->vaddr;
1211 repeat:
1212         kpte = _lookup_address_cpa(cpa, address, &level);
1213         if (!kpte)
1214                 return __cpa_process_fault(cpa, address, primary);
1215
1216         old_pte = *kpte;
1217         if (pte_none(old_pte))
1218                 return __cpa_process_fault(cpa, address, primary);
1219
1220         if (level == PG_LEVEL_4K) {
1221                 pte_t new_pte;
1222                 pgprot_t new_prot = pte_pgprot(old_pte);
1223                 unsigned long pfn = pte_pfn(old_pte);
1224
1225                 pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1226                 pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1227
1228                 new_prot = static_protections(new_prot, address, pfn);
1229
1230                 /*
1231                  * Set the GLOBAL flags only if the PRESENT flag is
1232                  * set otherwise pte_present will return true even on
1233                  * a non present pte. The canon_pgprot will clear
1234                  * _PAGE_GLOBAL for the ancient hardware that doesn't
1235                  * support it.
1236                  */
1237                 if (pgprot_val(new_prot) & _PAGE_PRESENT)
1238                         pgprot_val(new_prot) |= _PAGE_GLOBAL;
1239                 else
1240                         pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1241
1242                 /*
1243                  * We need to keep the pfn from the existing PTE,
1244                  * after all we're only going to change it's attributes
1245                  * not the memory it points to
1246                  */
1247                 new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1248                 cpa->pfn = pfn;
1249                 /*
1250                  * Do we really change anything ?
1251                  */
1252                 if (pte_val(old_pte) != pte_val(new_pte)) {
1253                         set_pte_atomic(kpte, new_pte);
1254                         cpa->flags |= CPA_FLUSHTLB;
1255                 }
1256                 cpa->numpages = 1;
1257                 return 0;
1258         }
1259
1260         /*
1261          * Check, whether we can keep the large page intact
1262          * and just change the pte:
1263          */
1264         do_split = try_preserve_large_page(kpte, address, cpa);
1265         /*
1266          * When the range fits into the existing large page,
1267          * return. cp->numpages and cpa->tlbflush have been updated in
1268          * try_large_page:
1269          */
1270         if (do_split <= 0)
1271                 return do_split;
1272
1273         /*
1274          * We have to split the large page:
1275          */
1276         err = split_large_page(cpa, kpte, address);
1277         if (!err) {
1278                 /*
1279                  * Do a global flush tlb after splitting the large page
1280                  * and before we do the actual change page attribute in the PTE.
1281                  *
1282                  * With out this, we violate the TLB application note, that says
1283                  * "The TLBs may contain both ordinary and large-page
1284                  *  translations for a 4-KByte range of linear addresses. This
1285                  *  may occur if software modifies the paging structures so that
1286                  *  the page size used for the address range changes. If the two
1287                  *  translations differ with respect to page frame or attributes
1288                  *  (e.g., permissions), processor behavior is undefined and may
1289                  *  be implementation-specific."
1290                  *
1291                  * We do this global tlb flush inside the cpa_lock, so that we
1292                  * don't allow any other cpu, with stale tlb entries change the
1293                  * page attribute in parallel, that also falls into the
1294                  * just split large page entry.
1295                  */
1296                 flush_tlb_all();
1297                 goto repeat;
1298         }
1299
1300         return err;
1301 }
1302
1303 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1304
1305 static int cpa_process_alias(struct cpa_data *cpa)
1306 {
1307         struct cpa_data alias_cpa;
1308         unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1309         unsigned long vaddr;
1310         int ret;
1311
1312         if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1313                 return 0;
1314
1315         /*
1316          * No need to redo, when the primary call touched the direct
1317          * mapping already:
1318          */
1319         if (cpa->flags & CPA_PAGES_ARRAY) {
1320                 struct page *page = cpa->pages[cpa->curpage];
1321                 if (unlikely(PageHighMem(page)))
1322                         return 0;
1323                 vaddr = (unsigned long)page_address(page);
1324         } else if (cpa->flags & CPA_ARRAY)
1325                 vaddr = cpa->vaddr[cpa->curpage];
1326         else
1327                 vaddr = *cpa->vaddr;
1328
1329         if (!(within(vaddr, PAGE_OFFSET,
1330                     PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1331
1332                 alias_cpa = *cpa;
1333                 alias_cpa.vaddr = &laddr;
1334                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1335
1336                 ret = __change_page_attr_set_clr(&alias_cpa, 0);
1337                 if (ret)
1338                         return ret;
1339         }
1340
1341 #ifdef CONFIG_X86_64
1342         /*
1343          * If the primary call didn't touch the high mapping already
1344          * and the physical address is inside the kernel map, we need
1345          * to touch the high mapped kernel as well:
1346          */
1347         if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1348             within_inclusive(cpa->pfn, highmap_start_pfn(),
1349                              highmap_end_pfn())) {
1350                 unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1351                                                __START_KERNEL_map - phys_base;
1352                 alias_cpa = *cpa;
1353                 alias_cpa.vaddr = &temp_cpa_vaddr;
1354                 alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1355
1356                 /*
1357                  * The high mapping range is imprecise, so ignore the
1358                  * return value.
1359                  */
1360                 __change_page_attr_set_clr(&alias_cpa, 0);
1361         }
1362 #endif
1363
1364         return 0;
1365 }
1366
1367 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1368 {
1369         unsigned long numpages = cpa->numpages;
1370         int ret;
1371
1372         while (numpages) {
1373                 /*
1374                  * Store the remaining nr of pages for the large page
1375                  * preservation check.
1376                  */
1377                 cpa->numpages = numpages;
1378                 /* for array changes, we can't use large page */
1379                 if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1380                         cpa->numpages = 1;
1381
1382                 if (!debug_pagealloc_enabled())
1383                         spin_lock(&cpa_lock);
1384                 ret = __change_page_attr(cpa, checkalias);
1385                 if (!debug_pagealloc_enabled())
1386                         spin_unlock(&cpa_lock);
1387                 if (ret)
1388                         return ret;
1389
1390                 if (checkalias) {
1391                         ret = cpa_process_alias(cpa);
1392                         if (ret)
1393                                 return ret;
1394                 }
1395
1396                 /*
1397                  * Adjust the number of pages with the result of the
1398                  * CPA operation. Either a large page has been
1399                  * preserved or a single page update happened.
1400                  */
1401                 BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1402                 numpages -= cpa->numpages;
1403                 if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1404                         cpa->curpage++;
1405                 else
1406                         *cpa->vaddr += cpa->numpages * PAGE_SIZE;
1407
1408         }
1409         return 0;
1410 }
1411
1412 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1413                                     pgprot_t mask_set, pgprot_t mask_clr,
1414                                     int force_split, int in_flag,
1415                                     struct page **pages)
1416 {
1417         struct cpa_data cpa;
1418         int ret, cache, checkalias;
1419         unsigned long baddr = 0;
1420
1421         memset(&cpa, 0, sizeof(cpa));
1422
1423         /*
1424          * Check, if we are requested to change a not supported
1425          * feature:
1426          */
1427         mask_set = canon_pgprot(mask_set);
1428         mask_clr = canon_pgprot(mask_clr);
1429         if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1430                 return 0;
1431
1432         /* Ensure we are PAGE_SIZE aligned */
1433         if (in_flag & CPA_ARRAY) {
1434                 int i;
1435                 for (i = 0; i < numpages; i++) {
1436                         if (addr[i] & ~PAGE_MASK) {
1437                                 addr[i] &= PAGE_MASK;
1438                                 WARN_ON_ONCE(1);
1439                         }
1440                 }
1441         } else if (!(in_flag & CPA_PAGES_ARRAY)) {
1442                 /*
1443                  * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1444                  * No need to cehck in that case
1445                  */
1446                 if (*addr & ~PAGE_MASK) {
1447                         *addr &= PAGE_MASK;
1448                         /*
1449                          * People should not be passing in unaligned addresses:
1450                          */
1451                         WARN_ON_ONCE(1);
1452                 }
1453                 /*
1454                  * Save address for cache flush. *addr is modified in the call
1455                  * to __change_page_attr_set_clr() below.
1456                  */
1457                 baddr = *addr;
1458         }
1459
1460         /* Must avoid aliasing mappings in the highmem code */
1461         kmap_flush_unused();
1462
1463         vm_unmap_aliases();
1464
1465         cpa.vaddr = addr;
1466         cpa.pages = pages;
1467         cpa.numpages = numpages;
1468         cpa.mask_set = mask_set;
1469         cpa.mask_clr = mask_clr;
1470         cpa.flags = 0;
1471         cpa.curpage = 0;
1472         cpa.force_split = force_split;
1473
1474         if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1475                 cpa.flags |= in_flag;
1476
1477         /* No alias checking for _NX bit modifications */
1478         checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1479
1480         ret = __change_page_attr_set_clr(&cpa, checkalias);
1481
1482         /*
1483          * Check whether we really changed something:
1484          */
1485         if (!(cpa.flags & CPA_FLUSHTLB))
1486                 goto out;
1487
1488         /*
1489          * No need to flush, when we did not set any of the caching
1490          * attributes:
1491          */
1492         cache = !!pgprot2cachemode(mask_set);
1493
1494         /*
1495          * On success we use CLFLUSH, when the CPU supports it to
1496          * avoid the WBINVD. If the CPU does not support it and in the
1497          * error case we fall back to cpa_flush_all (which uses
1498          * WBINVD):
1499          */
1500         if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1501                 if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1502                         cpa_flush_array(addr, numpages, cache,
1503                                         cpa.flags, pages);
1504                 } else
1505                         cpa_flush_range(baddr, numpages, cache);
1506         } else
1507                 cpa_flush_all(cache);
1508
1509 out:
1510         return ret;
1511 }
1512
1513 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1514                                        pgprot_t mask, int array)
1515 {
1516         return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1517                 (array ? CPA_ARRAY : 0), NULL);
1518 }
1519
1520 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1521                                          pgprot_t mask, int array)
1522 {
1523         return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1524                 (array ? CPA_ARRAY : 0), NULL);
1525 }
1526
1527 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1528                                        pgprot_t mask)
1529 {
1530         return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1531                 CPA_PAGES_ARRAY, pages);
1532 }
1533
1534 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1535                                          pgprot_t mask)
1536 {
1537         return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1538                 CPA_PAGES_ARRAY, pages);
1539 }
1540
1541 int _set_memory_uc(unsigned long addr, int numpages)
1542 {
1543         /*
1544          * for now UC MINUS. see comments in ioremap_nocache()
1545          * If you really need strong UC use ioremap_uc(), but note
1546          * that you cannot override IO areas with set_memory_*() as
1547          * these helpers cannot work with IO memory.
1548          */
1549         return change_page_attr_set(&addr, numpages,
1550                                     cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1551                                     0);
1552 }
1553
1554 int set_memory_uc(unsigned long addr, int numpages)
1555 {
1556         int ret;
1557
1558         /*
1559          * for now UC MINUS. see comments in ioremap_nocache()
1560          */
1561         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1562                               _PAGE_CACHE_MODE_UC_MINUS, NULL);
1563         if (ret)
1564                 goto out_err;
1565
1566         ret = _set_memory_uc(addr, numpages);
1567         if (ret)
1568                 goto out_free;
1569
1570         return 0;
1571
1572 out_free:
1573         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1574 out_err:
1575         return ret;
1576 }
1577 EXPORT_SYMBOL(set_memory_uc);
1578
1579 static int _set_memory_array(unsigned long *addr, int addrinarray,
1580                 enum page_cache_mode new_type)
1581 {
1582         enum page_cache_mode set_type;
1583         int i, j;
1584         int ret;
1585
1586         for (i = 0; i < addrinarray; i++) {
1587                 ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1588                                         new_type, NULL);
1589                 if (ret)
1590                         goto out_free;
1591         }
1592
1593         /* If WC, set to UC- first and then WC */
1594         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1595                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1596
1597         ret = change_page_attr_set(addr, addrinarray,
1598                                    cachemode2pgprot(set_type), 1);
1599
1600         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1601                 ret = change_page_attr_set_clr(addr, addrinarray,
1602                                                cachemode2pgprot(
1603                                                 _PAGE_CACHE_MODE_WC),
1604                                                __pgprot(_PAGE_CACHE_MASK),
1605                                                0, CPA_ARRAY, NULL);
1606         if (ret)
1607                 goto out_free;
1608
1609         return 0;
1610
1611 out_free:
1612         for (j = 0; j < i; j++)
1613                 free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1614
1615         return ret;
1616 }
1617
1618 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1619 {
1620         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1621 }
1622 EXPORT_SYMBOL(set_memory_array_uc);
1623
1624 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1625 {
1626         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1627 }
1628 EXPORT_SYMBOL(set_memory_array_wc);
1629
1630 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1631 {
1632         return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1633 }
1634 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1635
1636 int _set_memory_wc(unsigned long addr, int numpages)
1637 {
1638         int ret;
1639         unsigned long addr_copy = addr;
1640
1641         ret = change_page_attr_set(&addr, numpages,
1642                                    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1643                                    0);
1644         if (!ret) {
1645                 ret = change_page_attr_set_clr(&addr_copy, numpages,
1646                                                cachemode2pgprot(
1647                                                 _PAGE_CACHE_MODE_WC),
1648                                                __pgprot(_PAGE_CACHE_MASK),
1649                                                0, 0, NULL);
1650         }
1651         return ret;
1652 }
1653
1654 int set_memory_wc(unsigned long addr, int numpages)
1655 {
1656         int ret;
1657
1658         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1659                 _PAGE_CACHE_MODE_WC, NULL);
1660         if (ret)
1661                 return ret;
1662
1663         ret = _set_memory_wc(addr, numpages);
1664         if (ret)
1665                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1666
1667         return ret;
1668 }
1669 EXPORT_SYMBOL(set_memory_wc);
1670
1671 int _set_memory_wt(unsigned long addr, int numpages)
1672 {
1673         return change_page_attr_set(&addr, numpages,
1674                                     cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1675 }
1676
1677 int set_memory_wt(unsigned long addr, int numpages)
1678 {
1679         int ret;
1680
1681         ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1682                               _PAGE_CACHE_MODE_WT, NULL);
1683         if (ret)
1684                 return ret;
1685
1686         ret = _set_memory_wt(addr, numpages);
1687         if (ret)
1688                 free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1689
1690         return ret;
1691 }
1692 EXPORT_SYMBOL_GPL(set_memory_wt);
1693
1694 int _set_memory_wb(unsigned long addr, int numpages)
1695 {
1696         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1697         return change_page_attr_clear(&addr, numpages,
1698                                       __pgprot(_PAGE_CACHE_MASK), 0);
1699 }
1700
1701 int set_memory_wb(unsigned long addr, int numpages)
1702 {
1703         int ret;
1704
1705         ret = _set_memory_wb(addr, numpages);
1706         if (ret)
1707                 return ret;
1708
1709         free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1710         return 0;
1711 }
1712 EXPORT_SYMBOL(set_memory_wb);
1713
1714 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1715 {
1716         int i;
1717         int ret;
1718
1719         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1720         ret = change_page_attr_clear(addr, addrinarray,
1721                                       __pgprot(_PAGE_CACHE_MASK), 1);
1722         if (ret)
1723                 return ret;
1724
1725         for (i = 0; i < addrinarray; i++)
1726                 free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1727
1728         return 0;
1729 }
1730 EXPORT_SYMBOL(set_memory_array_wb);
1731
1732 int set_memory_x(unsigned long addr, int numpages)
1733 {
1734         if (!(__supported_pte_mask & _PAGE_NX))
1735                 return 0;
1736
1737         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1738 }
1739 EXPORT_SYMBOL(set_memory_x);
1740
1741 int set_memory_nx(unsigned long addr, int numpages)
1742 {
1743         if (!(__supported_pte_mask & _PAGE_NX))
1744                 return 0;
1745
1746         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1747 }
1748 EXPORT_SYMBOL(set_memory_nx);
1749
1750 int set_memory_ro(unsigned long addr, int numpages)
1751 {
1752         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1753 }
1754
1755 int set_memory_rw(unsigned long addr, int numpages)
1756 {
1757         return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1758 }
1759
1760 int set_memory_np(unsigned long addr, int numpages)
1761 {
1762         return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1763 }
1764
1765 int set_memory_4k(unsigned long addr, int numpages)
1766 {
1767         return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1768                                         __pgprot(0), 1, 0, NULL);
1769 }
1770
1771 int set_pages_uc(struct page *page, int numpages)
1772 {
1773         unsigned long addr = (unsigned long)page_address(page);
1774
1775         return set_memory_uc(addr, numpages);
1776 }
1777 EXPORT_SYMBOL(set_pages_uc);
1778
1779 static int _set_pages_array(struct page **pages, int addrinarray,
1780                 enum page_cache_mode new_type)
1781 {
1782         unsigned long start;
1783         unsigned long end;
1784         enum page_cache_mode set_type;
1785         int i;
1786         int free_idx;
1787         int ret;
1788
1789         for (i = 0; i < addrinarray; i++) {
1790                 if (PageHighMem(pages[i]))
1791                         continue;
1792                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1793                 end = start + PAGE_SIZE;
1794                 if (reserve_memtype(start, end, new_type, NULL))
1795                         goto err_out;
1796         }
1797
1798         /* If WC, set to UC- first and then WC */
1799         set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1800                                 _PAGE_CACHE_MODE_UC_MINUS : new_type;
1801
1802         ret = cpa_set_pages_array(pages, addrinarray,
1803                                   cachemode2pgprot(set_type));
1804         if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1805                 ret = change_page_attr_set_clr(NULL, addrinarray,
1806                                                cachemode2pgprot(
1807                                                 _PAGE_CACHE_MODE_WC),
1808                                                __pgprot(_PAGE_CACHE_MASK),
1809                                                0, CPA_PAGES_ARRAY, pages);
1810         if (ret)
1811                 goto err_out;
1812         return 0; /* Success */
1813 err_out:
1814         free_idx = i;
1815         for (i = 0; i < free_idx; i++) {
1816                 if (PageHighMem(pages[i]))
1817                         continue;
1818                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1819                 end = start + PAGE_SIZE;
1820                 free_memtype(start, end);
1821         }
1822         return -EINVAL;
1823 }
1824
1825 int set_pages_array_uc(struct page **pages, int addrinarray)
1826 {
1827         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1828 }
1829 EXPORT_SYMBOL(set_pages_array_uc);
1830
1831 int set_pages_array_wc(struct page **pages, int addrinarray)
1832 {
1833         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1834 }
1835 EXPORT_SYMBOL(set_pages_array_wc);
1836
1837 int set_pages_array_wt(struct page **pages, int addrinarray)
1838 {
1839         return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1840 }
1841 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1842
1843 int set_pages_wb(struct page *page, int numpages)
1844 {
1845         unsigned long addr = (unsigned long)page_address(page);
1846
1847         return set_memory_wb(addr, numpages);
1848 }
1849 EXPORT_SYMBOL(set_pages_wb);
1850
1851 int set_pages_array_wb(struct page **pages, int addrinarray)
1852 {
1853         int retval;
1854         unsigned long start;
1855         unsigned long end;
1856         int i;
1857
1858         /* WB cache mode is hard wired to all cache attribute bits being 0 */
1859         retval = cpa_clear_pages_array(pages, addrinarray,
1860                         __pgprot(_PAGE_CACHE_MASK));
1861         if (retval)
1862                 return retval;
1863
1864         for (i = 0; i < addrinarray; i++) {
1865                 if (PageHighMem(pages[i]))
1866                         continue;
1867                 start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1868                 end = start + PAGE_SIZE;
1869                 free_memtype(start, end);
1870         }
1871
1872         return 0;
1873 }
1874 EXPORT_SYMBOL(set_pages_array_wb);
1875
1876 int set_pages_x(struct page *page, int numpages)
1877 {
1878         unsigned long addr = (unsigned long)page_address(page);
1879
1880         return set_memory_x(addr, numpages);
1881 }
1882 EXPORT_SYMBOL(set_pages_x);
1883
1884 int set_pages_nx(struct page *page, int numpages)
1885 {
1886         unsigned long addr = (unsigned long)page_address(page);
1887
1888         return set_memory_nx(addr, numpages);
1889 }
1890 EXPORT_SYMBOL(set_pages_nx);
1891
1892 int set_pages_ro(struct page *page, int numpages)
1893 {
1894         unsigned long addr = (unsigned long)page_address(page);
1895
1896         return set_memory_ro(addr, numpages);
1897 }
1898
1899 int set_pages_rw(struct page *page, int numpages)
1900 {
1901         unsigned long addr = (unsigned long)page_address(page);
1902
1903         return set_memory_rw(addr, numpages);
1904 }
1905
1906 #ifdef CONFIG_DEBUG_PAGEALLOC
1907
1908 static int __set_pages_p(struct page *page, int numpages)
1909 {
1910         unsigned long tempaddr = (unsigned long) page_address(page);
1911         struct cpa_data cpa = { .vaddr = &tempaddr,
1912                                 .pgd = NULL,
1913                                 .numpages = numpages,
1914                                 .mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1915                                 .mask_clr = __pgprot(0),
1916                                 .flags = 0};
1917
1918         /*
1919          * No alias checking needed for setting present flag. otherwise,
1920          * we may need to break large pages for 64-bit kernel text
1921          * mappings (this adds to complexity if we want to do this from
1922          * atomic context especially). Let's keep it simple!
1923          */
1924         return __change_page_attr_set_clr(&cpa, 0);
1925 }
1926
1927 static int __set_pages_np(struct page *page, int numpages)
1928 {
1929         unsigned long tempaddr = (unsigned long) page_address(page);
1930         struct cpa_data cpa = { .vaddr = &tempaddr,
1931                                 .pgd = NULL,
1932                                 .numpages = numpages,
1933                                 .mask_set = __pgprot(0),
1934                                 .mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1935                                 .flags = 0};
1936
1937         /*
1938          * No alias checking needed for setting not present flag. otherwise,
1939          * we may need to break large pages for 64-bit kernel text
1940          * mappings (this adds to complexity if we want to do this from
1941          * atomic context especially). Let's keep it simple!
1942          */
1943         return __change_page_attr_set_clr(&cpa, 0);
1944 }
1945
1946 void __kernel_map_pages(struct page *page, int numpages, int enable)
1947 {
1948         if (PageHighMem(page))
1949                 return;
1950         if (!enable) {
1951                 debug_check_no_locks_freed(page_address(page),
1952                                            numpages * PAGE_SIZE);
1953         }
1954
1955         /*
1956          * The return value is ignored as the calls cannot fail.
1957          * Large pages for identity mappings are not used at boot time
1958          * and hence no memory allocations during large page split.
1959          */
1960         if (enable)
1961                 __set_pages_p(page, numpages);
1962         else
1963                 __set_pages_np(page, numpages);
1964
1965         /*
1966          * We should perform an IPI and flush all tlbs,
1967          * but that can deadlock->flush only current cpu:
1968          */
1969         __flush_tlb_all();
1970
1971         arch_flush_lazy_mmu_mode();
1972 }
1973
1974 #ifdef CONFIG_HIBERNATION
1975
1976 bool kernel_page_present(struct page *page)
1977 {
1978         unsigned int level;
1979         pte_t *pte;
1980
1981         if (PageHighMem(page))
1982                 return false;
1983
1984         pte = lookup_address((unsigned long)page_address(page), &level);
1985         return (pte_val(*pte) & _PAGE_PRESENT);
1986 }
1987
1988 #endif /* CONFIG_HIBERNATION */
1989
1990 #endif /* CONFIG_DEBUG_PAGEALLOC */
1991
1992 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1993                             unsigned numpages, unsigned long page_flags)
1994 {
1995         int retval = -EINVAL;
1996
1997         struct cpa_data cpa = {
1998                 .vaddr = &address,
1999                 .pfn = pfn,
2000                 .pgd = pgd,
2001                 .numpages = numpages,
2002                 .mask_set = __pgprot(0),
2003                 .mask_clr = __pgprot(0),
2004                 .flags = 0,
2005         };
2006
2007         if (!(__supported_pte_mask & _PAGE_NX))
2008                 goto out;
2009
2010         if (!(page_flags & _PAGE_NX))
2011                 cpa.mask_clr = __pgprot(_PAGE_NX);
2012
2013         if (!(page_flags & _PAGE_RW))
2014                 cpa.mask_clr = __pgprot(_PAGE_RW);
2015
2016         cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2017
2018         retval = __change_page_attr_set_clr(&cpa, 0);
2019         __flush_tlb_all();
2020
2021 out:
2022         return retval;
2023 }
2024
2025 /*
2026  * The testcases use internal knowledge of the implementation that shouldn't
2027  * be exposed to the rest of the kernel. Include these directly here.
2028  */
2029 #ifdef CONFIG_CPA_DEBUG
2030 #include "pageattr-test.c"
2031 #endif