tracing: Add __string_src() helper to help compilers not to get confused
[sfrench/cifs-2.6.git] / arch / x86 / mm / kasan_init_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define DISABLE_BRANCH_PROFILING
3 #define pr_fmt(fmt) "kasan: " fmt
4
5 /* cpu_feature_enabled() cannot be used this early */
6 #define USE_EARLY_PGTABLE_L5
7
8 #include <linux/memblock.h>
9 #include <linux/kasan.h>
10 #include <linux/kdebug.h>
11 #include <linux/mm.h>
12 #include <linux/sched.h>
13 #include <linux/sched/task.h>
14 #include <linux/vmalloc.h>
15
16 #include <asm/e820/types.h>
17 #include <asm/pgalloc.h>
18 #include <asm/tlbflush.h>
19 #include <asm/sections.h>
20 #include <asm/cpu_entry_area.h>
21
22 extern struct range pfn_mapped[E820_MAX_ENTRIES];
23
24 static p4d_t tmp_p4d_table[MAX_PTRS_PER_P4D] __initdata __aligned(PAGE_SIZE);
25
26 static __init void *early_alloc(size_t size, int nid, bool should_panic)
27 {
28         void *ptr = memblock_alloc_try_nid(size, size,
29                         __pa(MAX_DMA_ADDRESS), MEMBLOCK_ALLOC_ACCESSIBLE, nid);
30
31         if (!ptr && should_panic)
32                 panic("%pS: Failed to allocate page, nid=%d from=%lx\n",
33                       (void *)_RET_IP_, nid, __pa(MAX_DMA_ADDRESS));
34
35         return ptr;
36 }
37
38 static void __init kasan_populate_pmd(pmd_t *pmd, unsigned long addr,
39                                       unsigned long end, int nid)
40 {
41         pte_t *pte;
42
43         if (pmd_none(*pmd)) {
44                 void *p;
45
46                 if (boot_cpu_has(X86_FEATURE_PSE) &&
47                     ((end - addr) == PMD_SIZE) &&
48                     IS_ALIGNED(addr, PMD_SIZE)) {
49                         p = early_alloc(PMD_SIZE, nid, false);
50                         if (p && pmd_set_huge(pmd, __pa(p), PAGE_KERNEL))
51                                 return;
52                         memblock_free(p, PMD_SIZE);
53                 }
54
55                 p = early_alloc(PAGE_SIZE, nid, true);
56                 pmd_populate_kernel(&init_mm, pmd, p);
57         }
58
59         pte = pte_offset_kernel(pmd, addr);
60         do {
61                 pte_t entry;
62                 void *p;
63
64                 if (!pte_none(*pte))
65                         continue;
66
67                 p = early_alloc(PAGE_SIZE, nid, true);
68                 entry = pfn_pte(PFN_DOWN(__pa(p)), PAGE_KERNEL);
69                 set_pte_at(&init_mm, addr, pte, entry);
70         } while (pte++, addr += PAGE_SIZE, addr != end);
71 }
72
73 static void __init kasan_populate_pud(pud_t *pud, unsigned long addr,
74                                       unsigned long end, int nid)
75 {
76         pmd_t *pmd;
77         unsigned long next;
78
79         if (pud_none(*pud)) {
80                 void *p;
81
82                 if (boot_cpu_has(X86_FEATURE_GBPAGES) &&
83                     ((end - addr) == PUD_SIZE) &&
84                     IS_ALIGNED(addr, PUD_SIZE)) {
85                         p = early_alloc(PUD_SIZE, nid, false);
86                         if (p && pud_set_huge(pud, __pa(p), PAGE_KERNEL))
87                                 return;
88                         memblock_free(p, PUD_SIZE);
89                 }
90
91                 p = early_alloc(PAGE_SIZE, nid, true);
92                 pud_populate(&init_mm, pud, p);
93         }
94
95         pmd = pmd_offset(pud, addr);
96         do {
97                 next = pmd_addr_end(addr, end);
98                 if (!pmd_large(*pmd))
99                         kasan_populate_pmd(pmd, addr, next, nid);
100         } while (pmd++, addr = next, addr != end);
101 }
102
103 static void __init kasan_populate_p4d(p4d_t *p4d, unsigned long addr,
104                                       unsigned long end, int nid)
105 {
106         pud_t *pud;
107         unsigned long next;
108
109         if (p4d_none(*p4d)) {
110                 void *p = early_alloc(PAGE_SIZE, nid, true);
111
112                 p4d_populate(&init_mm, p4d, p);
113         }
114
115         pud = pud_offset(p4d, addr);
116         do {
117                 next = pud_addr_end(addr, end);
118                 if (!pud_large(*pud))
119                         kasan_populate_pud(pud, addr, next, nid);
120         } while (pud++, addr = next, addr != end);
121 }
122
123 static void __init kasan_populate_pgd(pgd_t *pgd, unsigned long addr,
124                                       unsigned long end, int nid)
125 {
126         void *p;
127         p4d_t *p4d;
128         unsigned long next;
129
130         if (pgd_none(*pgd)) {
131                 p = early_alloc(PAGE_SIZE, nid, true);
132                 pgd_populate(&init_mm, pgd, p);
133         }
134
135         p4d = p4d_offset(pgd, addr);
136         do {
137                 next = p4d_addr_end(addr, end);
138                 kasan_populate_p4d(p4d, addr, next, nid);
139         } while (p4d++, addr = next, addr != end);
140 }
141
142 static void __init kasan_populate_shadow(unsigned long addr, unsigned long end,
143                                          int nid)
144 {
145         pgd_t *pgd;
146         unsigned long next;
147
148         addr = addr & PAGE_MASK;
149         end = round_up(end, PAGE_SIZE);
150         pgd = pgd_offset_k(addr);
151         do {
152                 next = pgd_addr_end(addr, end);
153                 kasan_populate_pgd(pgd, addr, next, nid);
154         } while (pgd++, addr = next, addr != end);
155 }
156
157 static void __init map_range(struct range *range)
158 {
159         unsigned long start;
160         unsigned long end;
161
162         start = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->start));
163         end = (unsigned long)kasan_mem_to_shadow(pfn_to_kaddr(range->end));
164
165         kasan_populate_shadow(start, end, early_pfn_to_nid(range->start));
166 }
167
168 static void __init clear_pgds(unsigned long start,
169                         unsigned long end)
170 {
171         pgd_t *pgd;
172         /* See comment in kasan_init() */
173         unsigned long pgd_end = end & PGDIR_MASK;
174
175         for (; start < pgd_end; start += PGDIR_SIZE) {
176                 pgd = pgd_offset_k(start);
177                 /*
178                  * With folded p4d, pgd_clear() is nop, use p4d_clear()
179                  * instead.
180                  */
181                 if (pgtable_l5_enabled())
182                         pgd_clear(pgd);
183                 else
184                         p4d_clear(p4d_offset(pgd, start));
185         }
186
187         pgd = pgd_offset_k(start);
188         for (; start < end; start += P4D_SIZE)
189                 p4d_clear(p4d_offset(pgd, start));
190 }
191
192 static inline p4d_t *early_p4d_offset(pgd_t *pgd, unsigned long addr)
193 {
194         unsigned long p4d;
195
196         if (!pgtable_l5_enabled())
197                 return (p4d_t *)pgd;
198
199         p4d = pgd_val(*pgd) & PTE_PFN_MASK;
200         p4d += __START_KERNEL_map - phys_base;
201         return (p4d_t *)p4d + p4d_index(addr);
202 }
203
204 static void __init kasan_early_p4d_populate(pgd_t *pgd,
205                 unsigned long addr,
206                 unsigned long end)
207 {
208         pgd_t pgd_entry;
209         p4d_t *p4d, p4d_entry;
210         unsigned long next;
211
212         if (pgd_none(*pgd)) {
213                 pgd_entry = __pgd(_KERNPG_TABLE |
214                                         __pa_nodebug(kasan_early_shadow_p4d));
215                 set_pgd(pgd, pgd_entry);
216         }
217
218         p4d = early_p4d_offset(pgd, addr);
219         do {
220                 next = p4d_addr_end(addr, end);
221
222                 if (!p4d_none(*p4d))
223                         continue;
224
225                 p4d_entry = __p4d(_KERNPG_TABLE |
226                                         __pa_nodebug(kasan_early_shadow_pud));
227                 set_p4d(p4d, p4d_entry);
228         } while (p4d++, addr = next, addr != end && p4d_none(*p4d));
229 }
230
231 static void __init kasan_map_early_shadow(pgd_t *pgd)
232 {
233         /* See comment in kasan_init() */
234         unsigned long addr = KASAN_SHADOW_START & PGDIR_MASK;
235         unsigned long end = KASAN_SHADOW_END;
236         unsigned long next;
237
238         pgd += pgd_index(addr);
239         do {
240                 next = pgd_addr_end(addr, end);
241                 kasan_early_p4d_populate(pgd, addr, next);
242         } while (pgd++, addr = next, addr != end);
243 }
244
245 static void __init kasan_shallow_populate_p4ds(pgd_t *pgd,
246                                                unsigned long addr,
247                                                unsigned long end)
248 {
249         p4d_t *p4d;
250         unsigned long next;
251         void *p;
252
253         p4d = p4d_offset(pgd, addr);
254         do {
255                 next = p4d_addr_end(addr, end);
256
257                 if (p4d_none(*p4d)) {
258                         p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
259                         p4d_populate(&init_mm, p4d, p);
260                 }
261         } while (p4d++, addr = next, addr != end);
262 }
263
264 static void __init kasan_shallow_populate_pgds(void *start, void *end)
265 {
266         unsigned long addr, next;
267         pgd_t *pgd;
268         void *p;
269
270         addr = (unsigned long)start;
271         pgd = pgd_offset_k(addr);
272         do {
273                 next = pgd_addr_end(addr, (unsigned long)end);
274
275                 if (pgd_none(*pgd)) {
276                         p = early_alloc(PAGE_SIZE, NUMA_NO_NODE, true);
277                         pgd_populate(&init_mm, pgd, p);
278                 }
279
280                 /*
281                  * we need to populate p4ds to be synced when running in
282                  * four level mode - see sync_global_pgds_l4()
283                  */
284                 kasan_shallow_populate_p4ds(pgd, addr, next);
285         } while (pgd++, addr = next, addr != (unsigned long)end);
286 }
287
288 void __init kasan_early_init(void)
289 {
290         int i;
291         pteval_t pte_val = __pa_nodebug(kasan_early_shadow_page) |
292                                 __PAGE_KERNEL | _PAGE_ENC;
293         pmdval_t pmd_val = __pa_nodebug(kasan_early_shadow_pte) | _KERNPG_TABLE;
294         pudval_t pud_val = __pa_nodebug(kasan_early_shadow_pmd) | _KERNPG_TABLE;
295         p4dval_t p4d_val = __pa_nodebug(kasan_early_shadow_pud) | _KERNPG_TABLE;
296
297         /* Mask out unsupported __PAGE_KERNEL bits: */
298         pte_val &= __default_kernel_pte_mask;
299         pmd_val &= __default_kernel_pte_mask;
300         pud_val &= __default_kernel_pte_mask;
301         p4d_val &= __default_kernel_pte_mask;
302
303         for (i = 0; i < PTRS_PER_PTE; i++)
304                 kasan_early_shadow_pte[i] = __pte(pte_val);
305
306         for (i = 0; i < PTRS_PER_PMD; i++)
307                 kasan_early_shadow_pmd[i] = __pmd(pmd_val);
308
309         for (i = 0; i < PTRS_PER_PUD; i++)
310                 kasan_early_shadow_pud[i] = __pud(pud_val);
311
312         for (i = 0; pgtable_l5_enabled() && i < PTRS_PER_P4D; i++)
313                 kasan_early_shadow_p4d[i] = __p4d(p4d_val);
314
315         kasan_map_early_shadow(early_top_pgt);
316         kasan_map_early_shadow(init_top_pgt);
317 }
318
319 static unsigned long kasan_mem_to_shadow_align_down(unsigned long va)
320 {
321         unsigned long shadow = (unsigned long)kasan_mem_to_shadow((void *)va);
322
323         return round_down(shadow, PAGE_SIZE);
324 }
325
326 static unsigned long kasan_mem_to_shadow_align_up(unsigned long va)
327 {
328         unsigned long shadow = (unsigned long)kasan_mem_to_shadow((void *)va);
329
330         return round_up(shadow, PAGE_SIZE);
331 }
332
333 void __init kasan_populate_shadow_for_vaddr(void *va, size_t size, int nid)
334 {
335         unsigned long shadow_start, shadow_end;
336
337         shadow_start = kasan_mem_to_shadow_align_down((unsigned long)va);
338         shadow_end = kasan_mem_to_shadow_align_up((unsigned long)va + size);
339         kasan_populate_shadow(shadow_start, shadow_end, nid);
340 }
341
342 void __init kasan_init(void)
343 {
344         unsigned long shadow_cea_begin, shadow_cea_per_cpu_begin, shadow_cea_end;
345         int i;
346
347         memcpy(early_top_pgt, init_top_pgt, sizeof(early_top_pgt));
348
349         /*
350          * We use the same shadow offset for 4- and 5-level paging to
351          * facilitate boot-time switching between paging modes.
352          * As result in 5-level paging mode KASAN_SHADOW_START and
353          * KASAN_SHADOW_END are not aligned to PGD boundary.
354          *
355          * KASAN_SHADOW_START doesn't share PGD with anything else.
356          * We claim whole PGD entry to make things easier.
357          *
358          * KASAN_SHADOW_END lands in the last PGD entry and it collides with
359          * bunch of things like kernel code, modules, EFI mapping, etc.
360          * We need to take extra steps to not overwrite them.
361          */
362         if (pgtable_l5_enabled()) {
363                 void *ptr;
364
365                 ptr = (void *)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_END));
366                 memcpy(tmp_p4d_table, (void *)ptr, sizeof(tmp_p4d_table));
367                 set_pgd(&early_top_pgt[pgd_index(KASAN_SHADOW_END)],
368                                 __pgd(__pa(tmp_p4d_table) | _KERNPG_TABLE));
369         }
370
371         load_cr3(early_top_pgt);
372         __flush_tlb_all();
373
374         clear_pgds(KASAN_SHADOW_START & PGDIR_MASK, KASAN_SHADOW_END);
375
376         kasan_populate_early_shadow((void *)(KASAN_SHADOW_START & PGDIR_MASK),
377                         kasan_mem_to_shadow((void *)PAGE_OFFSET));
378
379         for (i = 0; i < E820_MAX_ENTRIES; i++) {
380                 if (pfn_mapped[i].end == 0)
381                         break;
382
383                 map_range(&pfn_mapped[i]);
384         }
385
386         shadow_cea_begin = kasan_mem_to_shadow_align_down(CPU_ENTRY_AREA_BASE);
387         shadow_cea_per_cpu_begin = kasan_mem_to_shadow_align_up(CPU_ENTRY_AREA_PER_CPU);
388         shadow_cea_end = kasan_mem_to_shadow_align_up(CPU_ENTRY_AREA_BASE +
389                                                       CPU_ENTRY_AREA_MAP_SIZE);
390
391         kasan_populate_early_shadow(
392                 kasan_mem_to_shadow((void *)PAGE_OFFSET + MAXMEM),
393                 kasan_mem_to_shadow((void *)VMALLOC_START));
394
395         /*
396          * If we're in full vmalloc mode, don't back vmalloc space with early
397          * shadow pages. Instead, prepopulate pgds/p4ds so they are synced to
398          * the global table and we can populate the lower levels on demand.
399          */
400         if (IS_ENABLED(CONFIG_KASAN_VMALLOC))
401                 kasan_shallow_populate_pgds(
402                         kasan_mem_to_shadow((void *)VMALLOC_START),
403                         kasan_mem_to_shadow((void *)VMALLOC_END));
404         else
405                 kasan_populate_early_shadow(
406                         kasan_mem_to_shadow((void *)VMALLOC_START),
407                         kasan_mem_to_shadow((void *)VMALLOC_END));
408
409         kasan_populate_early_shadow(
410                 kasan_mem_to_shadow((void *)VMALLOC_END + 1),
411                 (void *)shadow_cea_begin);
412
413         /*
414          * Populate the shadow for the shared portion of the CPU entry area.
415          * Shadows for the per-CPU areas are mapped on-demand, as each CPU's
416          * area is randomly placed somewhere in the 512GiB range and mapping
417          * the entire 512GiB range is prohibitively expensive.
418          */
419         kasan_populate_shadow(shadow_cea_begin,
420                               shadow_cea_per_cpu_begin, 0);
421
422         kasan_populate_early_shadow((void *)shadow_cea_end,
423                         kasan_mem_to_shadow((void *)__START_KERNEL_map));
424
425         kasan_populate_shadow((unsigned long)kasan_mem_to_shadow(_stext),
426                               (unsigned long)kasan_mem_to_shadow(_end),
427                               early_pfn_to_nid(__pa(_stext)));
428
429         kasan_populate_early_shadow(kasan_mem_to_shadow((void *)MODULES_END),
430                                         (void *)KASAN_SHADOW_END);
431
432         load_cr3(init_top_pgt);
433         __flush_tlb_all();
434
435         /*
436          * kasan_early_shadow_page has been used as early shadow memory, thus
437          * it may contain some garbage. Now we can clear and write protect it,
438          * since after the TLB flush no one should write to it.
439          */
440         memset(kasan_early_shadow_page, 0, PAGE_SIZE);
441         for (i = 0; i < PTRS_PER_PTE; i++) {
442                 pte_t pte;
443                 pgprot_t prot;
444
445                 prot = __pgprot(__PAGE_KERNEL_RO | _PAGE_ENC);
446                 pgprot_val(prot) &= __default_kernel_pte_mask;
447
448                 pte = __pte(__pa(kasan_early_shadow_page) | pgprot_val(prot));
449                 set_pte(&kasan_early_shadow_pte[i], pte);
450         }
451         /* Flush TLBs again to be sure that write protection applied. */
452         __flush_tlb_all();
453
454         init_task.kasan_depth = 0;
455         pr_info("KernelAddressSanitizer initialized\n");
456 }