Merge remote-tracking branches 'asoc/topic/ac97', 'asoc/topic/ac97-mfd', 'asoc/topic...
[sfrench/cifs-2.6.git] / arch / x86 / math-emu / poly_sin.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*---------------------------------------------------------------------------+
3  |  poly_sin.c                                                               |
4  |                                                                           |
5  |  Computation of an approximation of the sin function and the cosine       |
6  |  function by a polynomial.                                                |
7  |                                                                           |
8  | Copyright (C) 1992,1993,1994,1997,1999                                    |
9  |                  W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
10  |                  E-mail   billm@melbpc.org.au                             |
11  |                                                                           |
12  |                                                                           |
13  +---------------------------------------------------------------------------*/
14
15 #include "exception.h"
16 #include "reg_constant.h"
17 #include "fpu_emu.h"
18 #include "fpu_system.h"
19 #include "control_w.h"
20 #include "poly.h"
21
22 #define N_COEFF_P       4
23 #define N_COEFF_N       4
24
25 static const unsigned long long pos_terms_l[N_COEFF_P] = {
26         0xaaaaaaaaaaaaaaabLL,
27         0x00d00d00d00cf906LL,
28         0x000006b99159a8bbLL,
29         0x000000000d7392e6LL
30 };
31
32 static const unsigned long long neg_terms_l[N_COEFF_N] = {
33         0x2222222222222167LL,
34         0x0002e3bc74aab624LL,
35         0x0000000b09229062LL,
36         0x00000000000c7973LL
37 };
38
39 #define N_COEFF_PH      4
40 #define N_COEFF_NH      4
41 static const unsigned long long pos_terms_h[N_COEFF_PH] = {
42         0x0000000000000000LL,
43         0x05b05b05b05b0406LL,
44         0x000049f93edd91a9LL,
45         0x00000000c9c9ed62LL
46 };
47
48 static const unsigned long long neg_terms_h[N_COEFF_NH] = {
49         0xaaaaaaaaaaaaaa98LL,
50         0x001a01a01a019064LL,
51         0x0000008f76c68a77LL,
52         0x0000000000d58f5eLL
53 };
54
55 /*--- poly_sine() -----------------------------------------------------------+
56  |                                                                           |
57  +---------------------------------------------------------------------------*/
58 void poly_sine(FPU_REG *st0_ptr)
59 {
60         int exponent, echange;
61         Xsig accumulator, argSqrd, argTo4;
62         unsigned long fix_up, adj;
63         unsigned long long fixed_arg;
64         FPU_REG result;
65
66         exponent = exponent(st0_ptr);
67
68         accumulator.lsw = accumulator.midw = accumulator.msw = 0;
69
70         /* Split into two ranges, for arguments below and above 1.0 */
71         /* The boundary between upper and lower is approx 0.88309101259 */
72         if ((exponent < -1)
73             || ((exponent == -1) && (st0_ptr->sigh <= 0xe21240aa))) {
74                 /* The argument is <= 0.88309101259 */
75
76                 argSqrd.msw = st0_ptr->sigh;
77                 argSqrd.midw = st0_ptr->sigl;
78                 argSqrd.lsw = 0;
79                 mul64_Xsig(&argSqrd, &significand(st0_ptr));
80                 shr_Xsig(&argSqrd, 2 * (-1 - exponent));
81                 argTo4.msw = argSqrd.msw;
82                 argTo4.midw = argSqrd.midw;
83                 argTo4.lsw = argSqrd.lsw;
84                 mul_Xsig_Xsig(&argTo4, &argTo4);
85
86                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
87                                 N_COEFF_N - 1);
88                 mul_Xsig_Xsig(&accumulator, &argSqrd);
89                 negate_Xsig(&accumulator);
90
91                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
92                                 N_COEFF_P - 1);
93
94                 shr_Xsig(&accumulator, 2);      /* Divide by four */
95                 accumulator.msw |= 0x80000000;  /* Add 1.0 */
96
97                 mul64_Xsig(&accumulator, &significand(st0_ptr));
98                 mul64_Xsig(&accumulator, &significand(st0_ptr));
99                 mul64_Xsig(&accumulator, &significand(st0_ptr));
100
101                 /* Divide by four, FPU_REG compatible, etc */
102                 exponent = 3 * exponent;
103
104                 /* The minimum exponent difference is 3 */
105                 shr_Xsig(&accumulator, exponent(st0_ptr) - exponent);
106
107                 negate_Xsig(&accumulator);
108                 XSIG_LL(accumulator) += significand(st0_ptr);
109
110                 echange = round_Xsig(&accumulator);
111
112                 setexponentpos(&result, exponent(st0_ptr) + echange);
113         } else {
114                 /* The argument is > 0.88309101259 */
115                 /* We use sin(st(0)) = cos(pi/2-st(0)) */
116
117                 fixed_arg = significand(st0_ptr);
118
119                 if (exponent == 0) {
120                         /* The argument is >= 1.0 */
121
122                         /* Put the binary point at the left. */
123                         fixed_arg <<= 1;
124                 }
125                 /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
126                 fixed_arg = 0x921fb54442d18469LL - fixed_arg;
127                 /* There is a special case which arises due to rounding, to fix here. */
128                 if (fixed_arg == 0xffffffffffffffffLL)
129                         fixed_arg = 0;
130
131                 XSIG_LL(argSqrd) = fixed_arg;
132                 argSqrd.lsw = 0;
133                 mul64_Xsig(&argSqrd, &fixed_arg);
134
135                 XSIG_LL(argTo4) = XSIG_LL(argSqrd);
136                 argTo4.lsw = argSqrd.lsw;
137                 mul_Xsig_Xsig(&argTo4, &argTo4);
138
139                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
140                                 N_COEFF_NH - 1);
141                 mul_Xsig_Xsig(&accumulator, &argSqrd);
142                 negate_Xsig(&accumulator);
143
144                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
145                                 N_COEFF_PH - 1);
146                 negate_Xsig(&accumulator);
147
148                 mul64_Xsig(&accumulator, &fixed_arg);
149                 mul64_Xsig(&accumulator, &fixed_arg);
150
151                 shr_Xsig(&accumulator, 3);
152                 negate_Xsig(&accumulator);
153
154                 add_Xsig_Xsig(&accumulator, &argSqrd);
155
156                 shr_Xsig(&accumulator, 1);
157
158                 accumulator.lsw |= 1;   /* A zero accumulator here would cause problems */
159                 negate_Xsig(&accumulator);
160
161                 /* The basic computation is complete. Now fix the answer to
162                    compensate for the error due to the approximation used for
163                    pi/2
164                  */
165
166                 /* This has an exponent of -65 */
167                 fix_up = 0x898cc517;
168                 /* The fix-up needs to be improved for larger args */
169                 if (argSqrd.msw & 0xffc00000) {
170                         /* Get about 32 bit precision in these: */
171                         fix_up -= mul_32_32(0x898cc517, argSqrd.msw) / 6;
172                 }
173                 fix_up = mul_32_32(fix_up, LL_MSW(fixed_arg));
174
175                 adj = accumulator.lsw;  /* temp save */
176                 accumulator.lsw -= fix_up;
177                 if (accumulator.lsw > adj)
178                         XSIG_LL(accumulator)--;
179
180                 echange = round_Xsig(&accumulator);
181
182                 setexponentpos(&result, echange - 1);
183         }
184
185         significand(&result) = XSIG_LL(accumulator);
186         setsign(&result, getsign(st0_ptr));
187         FPU_copy_to_reg0(&result, TAG_Valid);
188
189 #ifdef PARANOID
190         if ((exponent(&result) >= 0)
191             && (significand(&result) > 0x8000000000000000LL)) {
192                 EXCEPTION(EX_INTERNAL | 0x150);
193         }
194 #endif /* PARANOID */
195
196 }
197
198 /*--- poly_cos() ------------------------------------------------------------+
199  |                                                                           |
200  +---------------------------------------------------------------------------*/
201 void poly_cos(FPU_REG *st0_ptr)
202 {
203         FPU_REG result;
204         long int exponent, exp2, echange;
205         Xsig accumulator, argSqrd, fix_up, argTo4;
206         unsigned long long fixed_arg;
207
208 #ifdef PARANOID
209         if ((exponent(st0_ptr) > 0)
210             || ((exponent(st0_ptr) == 0)
211                 && (significand(st0_ptr) > 0xc90fdaa22168c234LL))) {
212                 EXCEPTION(EX_Invalid);
213                 FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
214                 return;
215         }
216 #endif /* PARANOID */
217
218         exponent = exponent(st0_ptr);
219
220         accumulator.lsw = accumulator.midw = accumulator.msw = 0;
221
222         if ((exponent < -1)
223             || ((exponent == -1) && (st0_ptr->sigh <= 0xb00d6f54))) {
224                 /* arg is < 0.687705 */
225
226                 argSqrd.msw = st0_ptr->sigh;
227                 argSqrd.midw = st0_ptr->sigl;
228                 argSqrd.lsw = 0;
229                 mul64_Xsig(&argSqrd, &significand(st0_ptr));
230
231                 if (exponent < -1) {
232                         /* shift the argument right by the required places */
233                         shr_Xsig(&argSqrd, 2 * (-1 - exponent));
234                 }
235
236                 argTo4.msw = argSqrd.msw;
237                 argTo4.midw = argSqrd.midw;
238                 argTo4.lsw = argSqrd.lsw;
239                 mul_Xsig_Xsig(&argTo4, &argTo4);
240
241                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_h,
242                                 N_COEFF_NH - 1);
243                 mul_Xsig_Xsig(&accumulator, &argSqrd);
244                 negate_Xsig(&accumulator);
245
246                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_h,
247                                 N_COEFF_PH - 1);
248                 negate_Xsig(&accumulator);
249
250                 mul64_Xsig(&accumulator, &significand(st0_ptr));
251                 mul64_Xsig(&accumulator, &significand(st0_ptr));
252                 shr_Xsig(&accumulator, -2 * (1 + exponent));
253
254                 shr_Xsig(&accumulator, 3);
255                 negate_Xsig(&accumulator);
256
257                 add_Xsig_Xsig(&accumulator, &argSqrd);
258
259                 shr_Xsig(&accumulator, 1);
260
261                 /* It doesn't matter if accumulator is all zero here, the
262                    following code will work ok */
263                 negate_Xsig(&accumulator);
264
265                 if (accumulator.lsw & 0x80000000)
266                         XSIG_LL(accumulator)++;
267                 if (accumulator.msw == 0) {
268                         /* The result is 1.0 */
269                         FPU_copy_to_reg0(&CONST_1, TAG_Valid);
270                         return;
271                 } else {
272                         significand(&result) = XSIG_LL(accumulator);
273
274                         /* will be a valid positive nr with expon = -1 */
275                         setexponentpos(&result, -1);
276                 }
277         } else {
278                 fixed_arg = significand(st0_ptr);
279
280                 if (exponent == 0) {
281                         /* The argument is >= 1.0 */
282
283                         /* Put the binary point at the left. */
284                         fixed_arg <<= 1;
285                 }
286                 /* pi/2 in hex is: 1.921fb54442d18469 898CC51701B839A2 52049C1 */
287                 fixed_arg = 0x921fb54442d18469LL - fixed_arg;
288                 /* There is a special case which arises due to rounding, to fix here. */
289                 if (fixed_arg == 0xffffffffffffffffLL)
290                         fixed_arg = 0;
291
292                 exponent = -1;
293                 exp2 = -1;
294
295                 /* A shift is needed here only for a narrow range of arguments,
296                    i.e. for fixed_arg approx 2^-32, but we pick up more... */
297                 if (!(LL_MSW(fixed_arg) & 0xffff0000)) {
298                         fixed_arg <<= 16;
299                         exponent -= 16;
300                         exp2 -= 16;
301                 }
302
303                 XSIG_LL(argSqrd) = fixed_arg;
304                 argSqrd.lsw = 0;
305                 mul64_Xsig(&argSqrd, &fixed_arg);
306
307                 if (exponent < -1) {
308                         /* shift the argument right by the required places */
309                         shr_Xsig(&argSqrd, 2 * (-1 - exponent));
310                 }
311
312                 argTo4.msw = argSqrd.msw;
313                 argTo4.midw = argSqrd.midw;
314                 argTo4.lsw = argSqrd.lsw;
315                 mul_Xsig_Xsig(&argTo4, &argTo4);
316
317                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), neg_terms_l,
318                                 N_COEFF_N - 1);
319                 mul_Xsig_Xsig(&accumulator, &argSqrd);
320                 negate_Xsig(&accumulator);
321
322                 polynomial_Xsig(&accumulator, &XSIG_LL(argTo4), pos_terms_l,
323                                 N_COEFF_P - 1);
324
325                 shr_Xsig(&accumulator, 2);      /* Divide by four */
326                 accumulator.msw |= 0x80000000;  /* Add 1.0 */
327
328                 mul64_Xsig(&accumulator, &fixed_arg);
329                 mul64_Xsig(&accumulator, &fixed_arg);
330                 mul64_Xsig(&accumulator, &fixed_arg);
331
332                 /* Divide by four, FPU_REG compatible, etc */
333                 exponent = 3 * exponent;
334
335                 /* The minimum exponent difference is 3 */
336                 shr_Xsig(&accumulator, exp2 - exponent);
337
338                 negate_Xsig(&accumulator);
339                 XSIG_LL(accumulator) += fixed_arg;
340
341                 /* The basic computation is complete. Now fix the answer to
342                    compensate for the error due to the approximation used for
343                    pi/2
344                  */
345
346                 /* This has an exponent of -65 */
347                 XSIG_LL(fix_up) = 0x898cc51701b839a2ll;
348                 fix_up.lsw = 0;
349
350                 /* The fix-up needs to be improved for larger args */
351                 if (argSqrd.msw & 0xffc00000) {
352                         /* Get about 32 bit precision in these: */
353                         fix_up.msw -= mul_32_32(0x898cc517, argSqrd.msw) / 2;
354                         fix_up.msw += mul_32_32(0x898cc517, argTo4.msw) / 24;
355                 }
356
357                 exp2 += norm_Xsig(&accumulator);
358                 shr_Xsig(&accumulator, 1);      /* Prevent overflow */
359                 exp2++;
360                 shr_Xsig(&fix_up, 65 + exp2);
361
362                 add_Xsig_Xsig(&accumulator, &fix_up);
363
364                 echange = round_Xsig(&accumulator);
365
366                 setexponentpos(&result, exp2 + echange);
367                 significand(&result) = XSIG_LL(accumulator);
368         }
369
370         FPU_copy_to_reg0(&result, TAG_Valid);
371
372 #ifdef PARANOID
373         if ((exponent(&result) >= 0)
374             && (significand(&result) > 0x8000000000000000LL)) {
375                 EXCEPTION(EX_INTERNAL | 0x151);
376         }
377 #endif /* PARANOID */
378
379 }