Merge tag 'devicetree-fixes-for-5.16-1' of git://git.kernel.org/pub/scm/linux/kernel...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92
93 #define emul_to_vcpu(ctxt) \
94         ((struct kvm_vcpu *)(ctxt)->vcpu)
95
96 /* EFER defaults:
97  * - enable syscall per default because its emulated by KVM
98  * - enable LME and LMA per default on 64 bit KVM
99  */
100 #ifdef CONFIG_X86_64
101 static
102 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
103 #else
104 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
105 #endif
106
107 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
108
109 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
110
111 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
112                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
113
114 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
115 static void process_nmi(struct kvm_vcpu *vcpu);
116 static void process_smi(struct kvm_vcpu *vcpu);
117 static void enter_smm(struct kvm_vcpu *vcpu);
118 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
119 static void store_regs(struct kvm_vcpu *vcpu);
120 static int sync_regs(struct kvm_vcpu *vcpu);
121
122 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
123 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
124
125 struct kvm_x86_ops kvm_x86_ops __read_mostly;
126 EXPORT_SYMBOL_GPL(kvm_x86_ops);
127
128 #define KVM_X86_OP(func)                                             \
129         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
130                                 *(((struct kvm_x86_ops *)0)->func));
131 #define KVM_X86_OP_NULL KVM_X86_OP
132 #include <asm/kvm-x86-ops.h>
133 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
134 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
135 EXPORT_STATIC_CALL_GPL(kvm_x86_tlb_flush_current);
136
137 static bool __read_mostly ignore_msrs = 0;
138 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
139
140 bool __read_mostly report_ignored_msrs = true;
141 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
142 EXPORT_SYMBOL_GPL(report_ignored_msrs);
143
144 unsigned int min_timer_period_us = 200;
145 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
146
147 static bool __read_mostly kvmclock_periodic_sync = true;
148 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
149
150 bool __read_mostly kvm_has_tsc_control;
151 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
152 u32  __read_mostly kvm_max_guest_tsc_khz;
153 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
154 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
155 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
156 u64  __read_mostly kvm_max_tsc_scaling_ratio;
157 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
158 u64 __read_mostly kvm_default_tsc_scaling_ratio;
159 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
160 bool __read_mostly kvm_has_bus_lock_exit;
161 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
162
163 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
164 static u32 __read_mostly tsc_tolerance_ppm = 250;
165 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
166
167 /*
168  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
169  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
170  * advancement entirely.  Any other value is used as-is and disables adaptive
171  * tuning, i.e. allows privileged userspace to set an exact advancement time.
172  */
173 static int __read_mostly lapic_timer_advance_ns = -1;
174 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
175
176 static bool __read_mostly vector_hashing = true;
177 module_param(vector_hashing, bool, S_IRUGO);
178
179 bool __read_mostly enable_vmware_backdoor = false;
180 module_param(enable_vmware_backdoor, bool, S_IRUGO);
181 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
182
183 static bool __read_mostly force_emulation_prefix = false;
184 module_param(force_emulation_prefix, bool, S_IRUGO);
185
186 int __read_mostly pi_inject_timer = -1;
187 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
188
189 /*
190  * Restoring the host value for MSRs that are only consumed when running in
191  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
192  * returns to userspace, i.e. the kernel can run with the guest's value.
193  */
194 #define KVM_MAX_NR_USER_RETURN_MSRS 16
195
196 struct kvm_user_return_msrs {
197         struct user_return_notifier urn;
198         bool registered;
199         struct kvm_user_return_msr_values {
200                 u64 host;
201                 u64 curr;
202         } values[KVM_MAX_NR_USER_RETURN_MSRS];
203 };
204
205 u32 __read_mostly kvm_nr_uret_msrs;
206 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
207 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
208 static struct kvm_user_return_msrs __percpu *user_return_msrs;
209
210 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
211                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
212                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
213                                 | XFEATURE_MASK_PKRU)
214
215 u64 __read_mostly host_efer;
216 EXPORT_SYMBOL_GPL(host_efer);
217
218 bool __read_mostly allow_smaller_maxphyaddr = 0;
219 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
220
221 bool __read_mostly enable_apicv = true;
222 EXPORT_SYMBOL_GPL(enable_apicv);
223
224 u64 __read_mostly host_xss;
225 EXPORT_SYMBOL_GPL(host_xss);
226 u64 __read_mostly supported_xss;
227 EXPORT_SYMBOL_GPL(supported_xss);
228
229 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
230         KVM_GENERIC_VM_STATS(),
231         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
232         STATS_DESC_COUNTER(VM, mmu_pte_write),
233         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
234         STATS_DESC_COUNTER(VM, mmu_flooded),
235         STATS_DESC_COUNTER(VM, mmu_recycled),
236         STATS_DESC_COUNTER(VM, mmu_cache_miss),
237         STATS_DESC_ICOUNTER(VM, mmu_unsync),
238         STATS_DESC_ICOUNTER(VM, pages_4k),
239         STATS_DESC_ICOUNTER(VM, pages_2m),
240         STATS_DESC_ICOUNTER(VM, pages_1g),
241         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
242         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
243         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
244 };
245
246 const struct kvm_stats_header kvm_vm_stats_header = {
247         .name_size = KVM_STATS_NAME_SIZE,
248         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
249         .id_offset = sizeof(struct kvm_stats_header),
250         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
251         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
252                        sizeof(kvm_vm_stats_desc),
253 };
254
255 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
256         KVM_GENERIC_VCPU_STATS(),
257         STATS_DESC_COUNTER(VCPU, pf_fixed),
258         STATS_DESC_COUNTER(VCPU, pf_guest),
259         STATS_DESC_COUNTER(VCPU, tlb_flush),
260         STATS_DESC_COUNTER(VCPU, invlpg),
261         STATS_DESC_COUNTER(VCPU, exits),
262         STATS_DESC_COUNTER(VCPU, io_exits),
263         STATS_DESC_COUNTER(VCPU, mmio_exits),
264         STATS_DESC_COUNTER(VCPU, signal_exits),
265         STATS_DESC_COUNTER(VCPU, irq_window_exits),
266         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
267         STATS_DESC_COUNTER(VCPU, l1d_flush),
268         STATS_DESC_COUNTER(VCPU, halt_exits),
269         STATS_DESC_COUNTER(VCPU, request_irq_exits),
270         STATS_DESC_COUNTER(VCPU, irq_exits),
271         STATS_DESC_COUNTER(VCPU, host_state_reload),
272         STATS_DESC_COUNTER(VCPU, fpu_reload),
273         STATS_DESC_COUNTER(VCPU, insn_emulation),
274         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
275         STATS_DESC_COUNTER(VCPU, hypercalls),
276         STATS_DESC_COUNTER(VCPU, irq_injections),
277         STATS_DESC_COUNTER(VCPU, nmi_injections),
278         STATS_DESC_COUNTER(VCPU, req_event),
279         STATS_DESC_COUNTER(VCPU, nested_run),
280         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
281         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
282         STATS_DESC_ICOUNTER(VCPU, guest_mode)
283 };
284
285 const struct kvm_stats_header kvm_vcpu_stats_header = {
286         .name_size = KVM_STATS_NAME_SIZE,
287         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
288         .id_offset = sizeof(struct kvm_stats_header),
289         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
290         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
291                        sizeof(kvm_vcpu_stats_desc),
292 };
293
294 u64 __read_mostly host_xcr0;
295 u64 __read_mostly supported_xcr0;
296 EXPORT_SYMBOL_GPL(supported_xcr0);
297
298 static struct kmem_cache *x86_emulator_cache;
299
300 /*
301  * When called, it means the previous get/set msr reached an invalid msr.
302  * Return true if we want to ignore/silent this failed msr access.
303  */
304 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
305 {
306         const char *op = write ? "wrmsr" : "rdmsr";
307
308         if (ignore_msrs) {
309                 if (report_ignored_msrs)
310                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
311                                       op, msr, data);
312                 /* Mask the error */
313                 return true;
314         } else {
315                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
316                                       op, msr, data);
317                 return false;
318         }
319 }
320
321 static struct kmem_cache *kvm_alloc_emulator_cache(void)
322 {
323         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
324         unsigned int size = sizeof(struct x86_emulate_ctxt);
325
326         return kmem_cache_create_usercopy("x86_emulator", size,
327                                           __alignof__(struct x86_emulate_ctxt),
328                                           SLAB_ACCOUNT, useroffset,
329                                           size - useroffset, NULL);
330 }
331
332 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
333
334 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
335 {
336         int i;
337         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
338                 vcpu->arch.apf.gfns[i] = ~0;
339 }
340
341 static void kvm_on_user_return(struct user_return_notifier *urn)
342 {
343         unsigned slot;
344         struct kvm_user_return_msrs *msrs
345                 = container_of(urn, struct kvm_user_return_msrs, urn);
346         struct kvm_user_return_msr_values *values;
347         unsigned long flags;
348
349         /*
350          * Disabling irqs at this point since the following code could be
351          * interrupted and executed through kvm_arch_hardware_disable()
352          */
353         local_irq_save(flags);
354         if (msrs->registered) {
355                 msrs->registered = false;
356                 user_return_notifier_unregister(urn);
357         }
358         local_irq_restore(flags);
359         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
360                 values = &msrs->values[slot];
361                 if (values->host != values->curr) {
362                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
363                         values->curr = values->host;
364                 }
365         }
366 }
367
368 static int kvm_probe_user_return_msr(u32 msr)
369 {
370         u64 val;
371         int ret;
372
373         preempt_disable();
374         ret = rdmsrl_safe(msr, &val);
375         if (ret)
376                 goto out;
377         ret = wrmsrl_safe(msr, val);
378 out:
379         preempt_enable();
380         return ret;
381 }
382
383 int kvm_add_user_return_msr(u32 msr)
384 {
385         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
386
387         if (kvm_probe_user_return_msr(msr))
388                 return -1;
389
390         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
391         return kvm_nr_uret_msrs++;
392 }
393 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
394
395 int kvm_find_user_return_msr(u32 msr)
396 {
397         int i;
398
399         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
400                 if (kvm_uret_msrs_list[i] == msr)
401                         return i;
402         }
403         return -1;
404 }
405 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
406
407 static void kvm_user_return_msr_cpu_online(void)
408 {
409         unsigned int cpu = smp_processor_id();
410         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
411         u64 value;
412         int i;
413
414         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
415                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
416                 msrs->values[i].host = value;
417                 msrs->values[i].curr = value;
418         }
419 }
420
421 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
422 {
423         unsigned int cpu = smp_processor_id();
424         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
425         int err;
426
427         value = (value & mask) | (msrs->values[slot].host & ~mask);
428         if (value == msrs->values[slot].curr)
429                 return 0;
430         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
431         if (err)
432                 return 1;
433
434         msrs->values[slot].curr = value;
435         if (!msrs->registered) {
436                 msrs->urn.on_user_return = kvm_on_user_return;
437                 user_return_notifier_register(&msrs->urn);
438                 msrs->registered = true;
439         }
440         return 0;
441 }
442 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
443
444 static void drop_user_return_notifiers(void)
445 {
446         unsigned int cpu = smp_processor_id();
447         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
448
449         if (msrs->registered)
450                 kvm_on_user_return(&msrs->urn);
451 }
452
453 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
454 {
455         return vcpu->arch.apic_base;
456 }
457 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
458
459 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
460 {
461         return kvm_apic_mode(kvm_get_apic_base(vcpu));
462 }
463 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
464
465 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
466 {
467         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
468         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
469         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
470                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
471
472         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
473                 return 1;
474         if (!msr_info->host_initiated) {
475                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
476                         return 1;
477                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
478                         return 1;
479         }
480
481         kvm_lapic_set_base(vcpu, msr_info->data);
482         kvm_recalculate_apic_map(vcpu->kvm);
483         return 0;
484 }
485 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
486
487 /*
488  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
489  *
490  * Hardware virtualization extension instructions may fault if a reboot turns
491  * off virtualization while processes are running.  Usually after catching the
492  * fault we just panic; during reboot instead the instruction is ignored.
493  */
494 noinstr void kvm_spurious_fault(void)
495 {
496         /* Fault while not rebooting.  We want the trace. */
497         BUG_ON(!kvm_rebooting);
498 }
499 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
500
501 #define EXCPT_BENIGN            0
502 #define EXCPT_CONTRIBUTORY      1
503 #define EXCPT_PF                2
504
505 static int exception_class(int vector)
506 {
507         switch (vector) {
508         case PF_VECTOR:
509                 return EXCPT_PF;
510         case DE_VECTOR:
511         case TS_VECTOR:
512         case NP_VECTOR:
513         case SS_VECTOR:
514         case GP_VECTOR:
515                 return EXCPT_CONTRIBUTORY;
516         default:
517                 break;
518         }
519         return EXCPT_BENIGN;
520 }
521
522 #define EXCPT_FAULT             0
523 #define EXCPT_TRAP              1
524 #define EXCPT_ABORT             2
525 #define EXCPT_INTERRUPT         3
526
527 static int exception_type(int vector)
528 {
529         unsigned int mask;
530
531         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
532                 return EXCPT_INTERRUPT;
533
534         mask = 1 << vector;
535
536         /* #DB is trap, as instruction watchpoints are handled elsewhere */
537         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
538                 return EXCPT_TRAP;
539
540         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
541                 return EXCPT_ABORT;
542
543         /* Reserved exceptions will result in fault */
544         return EXCPT_FAULT;
545 }
546
547 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
548 {
549         unsigned nr = vcpu->arch.exception.nr;
550         bool has_payload = vcpu->arch.exception.has_payload;
551         unsigned long payload = vcpu->arch.exception.payload;
552
553         if (!has_payload)
554                 return;
555
556         switch (nr) {
557         case DB_VECTOR:
558                 /*
559                  * "Certain debug exceptions may clear bit 0-3.  The
560                  * remaining contents of the DR6 register are never
561                  * cleared by the processor".
562                  */
563                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
564                 /*
565                  * In order to reflect the #DB exception payload in guest
566                  * dr6, three components need to be considered: active low
567                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
568                  * DR6_BS and DR6_BT)
569                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
570                  * In the target guest dr6:
571                  * FIXED_1 bits should always be set.
572                  * Active low bits should be cleared if 1-setting in payload.
573                  * Active high bits should be set if 1-setting in payload.
574                  *
575                  * Note, the payload is compatible with the pending debug
576                  * exceptions/exit qualification under VMX, that active_low bits
577                  * are active high in payload.
578                  * So they need to be flipped for DR6.
579                  */
580                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
581                 vcpu->arch.dr6 |= payload;
582                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
583
584                 /*
585                  * The #DB payload is defined as compatible with the 'pending
586                  * debug exceptions' field under VMX, not DR6. While bit 12 is
587                  * defined in the 'pending debug exceptions' field (enabled
588                  * breakpoint), it is reserved and must be zero in DR6.
589                  */
590                 vcpu->arch.dr6 &= ~BIT(12);
591                 break;
592         case PF_VECTOR:
593                 vcpu->arch.cr2 = payload;
594                 break;
595         }
596
597         vcpu->arch.exception.has_payload = false;
598         vcpu->arch.exception.payload = 0;
599 }
600 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
601
602 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
603                 unsigned nr, bool has_error, u32 error_code,
604                 bool has_payload, unsigned long payload, bool reinject)
605 {
606         u32 prev_nr;
607         int class1, class2;
608
609         kvm_make_request(KVM_REQ_EVENT, vcpu);
610
611         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
612         queue:
613                 if (reinject) {
614                         /*
615                          * On vmentry, vcpu->arch.exception.pending is only
616                          * true if an event injection was blocked by
617                          * nested_run_pending.  In that case, however,
618                          * vcpu_enter_guest requests an immediate exit,
619                          * and the guest shouldn't proceed far enough to
620                          * need reinjection.
621                          */
622                         WARN_ON_ONCE(vcpu->arch.exception.pending);
623                         vcpu->arch.exception.injected = true;
624                         if (WARN_ON_ONCE(has_payload)) {
625                                 /*
626                                  * A reinjected event has already
627                                  * delivered its payload.
628                                  */
629                                 has_payload = false;
630                                 payload = 0;
631                         }
632                 } else {
633                         vcpu->arch.exception.pending = true;
634                         vcpu->arch.exception.injected = false;
635                 }
636                 vcpu->arch.exception.has_error_code = has_error;
637                 vcpu->arch.exception.nr = nr;
638                 vcpu->arch.exception.error_code = error_code;
639                 vcpu->arch.exception.has_payload = has_payload;
640                 vcpu->arch.exception.payload = payload;
641                 if (!is_guest_mode(vcpu))
642                         kvm_deliver_exception_payload(vcpu);
643                 return;
644         }
645
646         /* to check exception */
647         prev_nr = vcpu->arch.exception.nr;
648         if (prev_nr == DF_VECTOR) {
649                 /* triple fault -> shutdown */
650                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
651                 return;
652         }
653         class1 = exception_class(prev_nr);
654         class2 = exception_class(nr);
655         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
656                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
657                 /*
658                  * Generate double fault per SDM Table 5-5.  Set
659                  * exception.pending = true so that the double fault
660                  * can trigger a nested vmexit.
661                  */
662                 vcpu->arch.exception.pending = true;
663                 vcpu->arch.exception.injected = false;
664                 vcpu->arch.exception.has_error_code = true;
665                 vcpu->arch.exception.nr = DF_VECTOR;
666                 vcpu->arch.exception.error_code = 0;
667                 vcpu->arch.exception.has_payload = false;
668                 vcpu->arch.exception.payload = 0;
669         } else
670                 /* replace previous exception with a new one in a hope
671                    that instruction re-execution will regenerate lost
672                    exception */
673                 goto queue;
674 }
675
676 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
677 {
678         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
679 }
680 EXPORT_SYMBOL_GPL(kvm_queue_exception);
681
682 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
683 {
684         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
685 }
686 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
687
688 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
689                            unsigned long payload)
690 {
691         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
692 }
693 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
694
695 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
696                                     u32 error_code, unsigned long payload)
697 {
698         kvm_multiple_exception(vcpu, nr, true, error_code,
699                                true, payload, false);
700 }
701
702 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
703 {
704         if (err)
705                 kvm_inject_gp(vcpu, 0);
706         else
707                 return kvm_skip_emulated_instruction(vcpu);
708
709         return 1;
710 }
711 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
712
713 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
714 {
715         ++vcpu->stat.pf_guest;
716         vcpu->arch.exception.nested_apf =
717                 is_guest_mode(vcpu) && fault->async_page_fault;
718         if (vcpu->arch.exception.nested_apf) {
719                 vcpu->arch.apf.nested_apf_token = fault->address;
720                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
721         } else {
722                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
723                                         fault->address);
724         }
725 }
726 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
727
728 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
729                                     struct x86_exception *fault)
730 {
731         struct kvm_mmu *fault_mmu;
732         WARN_ON_ONCE(fault->vector != PF_VECTOR);
733
734         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
735                                                vcpu->arch.walk_mmu;
736
737         /*
738          * Invalidate the TLB entry for the faulting address, if it exists,
739          * else the access will fault indefinitely (and to emulate hardware).
740          */
741         if ((fault->error_code & PFERR_PRESENT_MASK) &&
742             !(fault->error_code & PFERR_RSVD_MASK))
743                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
744                                        fault_mmu->root_hpa);
745
746         fault_mmu->inject_page_fault(vcpu, fault);
747         return fault->nested_page_fault;
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
750
751 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
752 {
753         atomic_inc(&vcpu->arch.nmi_queued);
754         kvm_make_request(KVM_REQ_NMI, vcpu);
755 }
756 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
757
758 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
759 {
760         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
761 }
762 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
763
764 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
765 {
766         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
767 }
768 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
769
770 /*
771  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
772  * a #GP and return false.
773  */
774 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
775 {
776         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
777                 return true;
778         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
779         return false;
780 }
781 EXPORT_SYMBOL_GPL(kvm_require_cpl);
782
783 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
784 {
785         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
786                 return true;
787
788         kvm_queue_exception(vcpu, UD_VECTOR);
789         return false;
790 }
791 EXPORT_SYMBOL_GPL(kvm_require_dr);
792
793 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
794 {
795         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
796 }
797
798 /*
799  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
800  */
801 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
802 {
803         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
804         gpa_t real_gpa;
805         int i;
806         int ret;
807         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
808
809         /*
810          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
811          * to an L1 GPA.
812          */
813         real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(pdpt_gfn),
814                                       PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
815         if (real_gpa == UNMAPPED_GVA)
816                 return 0;
817
818         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
819         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
820                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
821         if (ret < 0)
822                 return 0;
823
824         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
825                 if ((pdpte[i] & PT_PRESENT_MASK) &&
826                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
827                         return 0;
828                 }
829         }
830
831         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
832         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
833         vcpu->arch.pdptrs_from_userspace = false;
834
835         return 1;
836 }
837 EXPORT_SYMBOL_GPL(load_pdptrs);
838
839 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
840 {
841         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
842                 kvm_clear_async_pf_completion_queue(vcpu);
843                 kvm_async_pf_hash_reset(vcpu);
844         }
845
846         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
847                 kvm_mmu_reset_context(vcpu);
848
849         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
850             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
851             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
852                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
853 }
854 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
855
856 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
857 {
858         unsigned long old_cr0 = kvm_read_cr0(vcpu);
859         unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
860
861         cr0 |= X86_CR0_ET;
862
863 #ifdef CONFIG_X86_64
864         if (cr0 & 0xffffffff00000000UL)
865                 return 1;
866 #endif
867
868         cr0 &= ~CR0_RESERVED_BITS;
869
870         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
871                 return 1;
872
873         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
874                 return 1;
875
876 #ifdef CONFIG_X86_64
877         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
878             (cr0 & X86_CR0_PG)) {
879                 int cs_db, cs_l;
880
881                 if (!is_pae(vcpu))
882                         return 1;
883                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
884                 if (cs_l)
885                         return 1;
886         }
887 #endif
888         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
889             is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
890             !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
891                 return 1;
892
893         if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
894                 return 1;
895
896         static_call(kvm_x86_set_cr0)(vcpu, cr0);
897
898         kvm_post_set_cr0(vcpu, old_cr0, cr0);
899
900         return 0;
901 }
902 EXPORT_SYMBOL_GPL(kvm_set_cr0);
903
904 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
905 {
906         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
907 }
908 EXPORT_SYMBOL_GPL(kvm_lmsw);
909
910 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
911 {
912         if (vcpu->arch.guest_state_protected)
913                 return;
914
915         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
916
917                 if (vcpu->arch.xcr0 != host_xcr0)
918                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
919
920                 if (vcpu->arch.xsaves_enabled &&
921                     vcpu->arch.ia32_xss != host_xss)
922                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
923         }
924
925         if (static_cpu_has(X86_FEATURE_PKU) &&
926             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
927              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
928             vcpu->arch.pkru != vcpu->arch.host_pkru)
929                 write_pkru(vcpu->arch.pkru);
930 }
931 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
932
933 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
934 {
935         if (vcpu->arch.guest_state_protected)
936                 return;
937
938         if (static_cpu_has(X86_FEATURE_PKU) &&
939             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
940              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
941                 vcpu->arch.pkru = rdpkru();
942                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
943                         write_pkru(vcpu->arch.host_pkru);
944         }
945
946         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
947
948                 if (vcpu->arch.xcr0 != host_xcr0)
949                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
950
951                 if (vcpu->arch.xsaves_enabled &&
952                     vcpu->arch.ia32_xss != host_xss)
953                         wrmsrl(MSR_IA32_XSS, host_xss);
954         }
955
956 }
957 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
958
959 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
960 {
961         u64 xcr0 = xcr;
962         u64 old_xcr0 = vcpu->arch.xcr0;
963         u64 valid_bits;
964
965         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
966         if (index != XCR_XFEATURE_ENABLED_MASK)
967                 return 1;
968         if (!(xcr0 & XFEATURE_MASK_FP))
969                 return 1;
970         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
971                 return 1;
972
973         /*
974          * Do not allow the guest to set bits that we do not support
975          * saving.  However, xcr0 bit 0 is always set, even if the
976          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
977          */
978         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
979         if (xcr0 & ~valid_bits)
980                 return 1;
981
982         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
983             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
984                 return 1;
985
986         if (xcr0 & XFEATURE_MASK_AVX512) {
987                 if (!(xcr0 & XFEATURE_MASK_YMM))
988                         return 1;
989                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
990                         return 1;
991         }
992         vcpu->arch.xcr0 = xcr0;
993
994         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
995                 kvm_update_cpuid_runtime(vcpu);
996         return 0;
997 }
998
999 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1000 {
1001         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1002             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1003                 kvm_inject_gp(vcpu, 0);
1004                 return 1;
1005         }
1006
1007         return kvm_skip_emulated_instruction(vcpu);
1008 }
1009 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1010
1011 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1012 {
1013         if (cr4 & cr4_reserved_bits)
1014                 return false;
1015
1016         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1017                 return false;
1018
1019         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1020 }
1021 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1022
1023 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1024 {
1025         /*
1026          * If any role bit is changed, the MMU needs to be reset.
1027          *
1028          * If CR4.PCIDE is changed 1 -> 0, the guest TLB must be flushed.
1029          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1030          * according to the SDM; however, stale prev_roots could be reused
1031          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1032          * free them all.  KVM_REQ_MMU_RELOAD is fit for the both cases; it
1033          * is slow, but changing CR4.PCIDE is a rare case.
1034          *
1035          * If CR4.PGE is changed, the guest TLB must be flushed.
1036          *
1037          * Note: resetting MMU is a superset of KVM_REQ_MMU_RELOAD and
1038          * KVM_REQ_MMU_RELOAD is a superset of KVM_REQ_TLB_FLUSH_GUEST, hence
1039          * the usage of "else if".
1040          */
1041         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1042                 kvm_mmu_reset_context(vcpu);
1043         else if ((cr4 ^ old_cr4) & X86_CR4_PCIDE)
1044                 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
1045         else if ((cr4 ^ old_cr4) & X86_CR4_PGE)
1046                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1047 }
1048 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1049
1050 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1051 {
1052         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1053         unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
1054                                    X86_CR4_SMEP;
1055
1056         if (!kvm_is_valid_cr4(vcpu, cr4))
1057                 return 1;
1058
1059         if (is_long_mode(vcpu)) {
1060                 if (!(cr4 & X86_CR4_PAE))
1061                         return 1;
1062                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1063                         return 1;
1064         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1065                    && ((cr4 ^ old_cr4) & pdptr_bits)
1066                    && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
1067                                    kvm_read_cr3(vcpu)))
1068                 return 1;
1069
1070         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1071                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1072                         return 1;
1073
1074                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1075                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1076                         return 1;
1077         }
1078
1079         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1080
1081         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1082
1083         return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1086
1087 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1088 {
1089         struct kvm_mmu *mmu = vcpu->arch.mmu;
1090         unsigned long roots_to_free = 0;
1091         int i;
1092
1093         /*
1094          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1095          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1096          * also via the emulator.  KVM's TDP page tables are not in the scope of
1097          * the invalidation, but the guest's TLB entries need to be flushed as
1098          * the CPU may have cached entries in its TLB for the target PCID.
1099          */
1100         if (unlikely(tdp_enabled)) {
1101                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1102                 return;
1103         }
1104
1105         /*
1106          * If neither the current CR3 nor any of the prev_roots use the given
1107          * PCID, then nothing needs to be done here because a resync will
1108          * happen anyway before switching to any other CR3.
1109          */
1110         if (kvm_get_active_pcid(vcpu) == pcid) {
1111                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1112                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1113         }
1114
1115         /*
1116          * If PCID is disabled, there is no need to free prev_roots even if the
1117          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1118          * with PCIDE=0.
1119          */
1120         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1121                 return;
1122
1123         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1124                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1125                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1126
1127         kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
1128 }
1129
1130 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1131 {
1132         bool skip_tlb_flush = false;
1133         unsigned long pcid = 0;
1134 #ifdef CONFIG_X86_64
1135         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1136
1137         if (pcid_enabled) {
1138                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1139                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1140                 pcid = cr3 & X86_CR3_PCID_MASK;
1141         }
1142 #endif
1143
1144         /* PDPTRs are always reloaded for PAE paging. */
1145         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1146                 goto handle_tlb_flush;
1147
1148         /*
1149          * Do not condition the GPA check on long mode, this helper is used to
1150          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1151          * the current vCPU mode is accurate.
1152          */
1153         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1154                 return 1;
1155
1156         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
1157                 return 1;
1158
1159         if (cr3 != kvm_read_cr3(vcpu))
1160                 kvm_mmu_new_pgd(vcpu, cr3);
1161
1162         vcpu->arch.cr3 = cr3;
1163         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1164
1165 handle_tlb_flush:
1166         /*
1167          * A load of CR3 that flushes the TLB flushes only the current PCID,
1168          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1169          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1170          * and it's impossible to use a non-zero PCID when PCID is disabled,
1171          * i.e. only PCID=0 can be relevant.
1172          */
1173         if (!skip_tlb_flush)
1174                 kvm_invalidate_pcid(vcpu, pcid);
1175
1176         return 0;
1177 }
1178 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1179
1180 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1181 {
1182         if (cr8 & CR8_RESERVED_BITS)
1183                 return 1;
1184         if (lapic_in_kernel(vcpu))
1185                 kvm_lapic_set_tpr(vcpu, cr8);
1186         else
1187                 vcpu->arch.cr8 = cr8;
1188         return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1191
1192 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1193 {
1194         if (lapic_in_kernel(vcpu))
1195                 return kvm_lapic_get_cr8(vcpu);
1196         else
1197                 return vcpu->arch.cr8;
1198 }
1199 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1200
1201 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1202 {
1203         int i;
1204
1205         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1206                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1207                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1208         }
1209 }
1210
1211 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1212 {
1213         unsigned long dr7;
1214
1215         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1216                 dr7 = vcpu->arch.guest_debug_dr7;
1217         else
1218                 dr7 = vcpu->arch.dr7;
1219         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1220         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1221         if (dr7 & DR7_BP_EN_MASK)
1222                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1223 }
1224 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1225
1226 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1227 {
1228         u64 fixed = DR6_FIXED_1;
1229
1230         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1231                 fixed |= DR6_RTM;
1232
1233         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1234                 fixed |= DR6_BUS_LOCK;
1235         return fixed;
1236 }
1237
1238 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1239 {
1240         size_t size = ARRAY_SIZE(vcpu->arch.db);
1241
1242         switch (dr) {
1243         case 0 ... 3:
1244                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1245                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1246                         vcpu->arch.eff_db[dr] = val;
1247                 break;
1248         case 4:
1249         case 6:
1250                 if (!kvm_dr6_valid(val))
1251                         return 1; /* #GP */
1252                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1253                 break;
1254         case 5:
1255         default: /* 7 */
1256                 if (!kvm_dr7_valid(val))
1257                         return 1; /* #GP */
1258                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1259                 kvm_update_dr7(vcpu);
1260                 break;
1261         }
1262
1263         return 0;
1264 }
1265 EXPORT_SYMBOL_GPL(kvm_set_dr);
1266
1267 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1268 {
1269         size_t size = ARRAY_SIZE(vcpu->arch.db);
1270
1271         switch (dr) {
1272         case 0 ... 3:
1273                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1274                 break;
1275         case 4:
1276         case 6:
1277                 *val = vcpu->arch.dr6;
1278                 break;
1279         case 5:
1280         default: /* 7 */
1281                 *val = vcpu->arch.dr7;
1282                 break;
1283         }
1284 }
1285 EXPORT_SYMBOL_GPL(kvm_get_dr);
1286
1287 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1288 {
1289         u32 ecx = kvm_rcx_read(vcpu);
1290         u64 data;
1291
1292         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1293                 kvm_inject_gp(vcpu, 0);
1294                 return 1;
1295         }
1296
1297         kvm_rax_write(vcpu, (u32)data);
1298         kvm_rdx_write(vcpu, data >> 32);
1299         return kvm_skip_emulated_instruction(vcpu);
1300 }
1301 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1302
1303 /*
1304  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1305  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1306  *
1307  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1308  * extract the supported MSRs from the related const lists.
1309  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1310  * capabilities of the host cpu. This capabilities test skips MSRs that are
1311  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1312  * may depend on host virtualization features rather than host cpu features.
1313  */
1314
1315 static const u32 msrs_to_save_all[] = {
1316         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1317         MSR_STAR,
1318 #ifdef CONFIG_X86_64
1319         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1320 #endif
1321         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1322         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1323         MSR_IA32_SPEC_CTRL,
1324         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1325         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1326         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1327         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1328         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1329         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1330         MSR_IA32_UMWAIT_CONTROL,
1331
1332         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1333         MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1334         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1335         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1336         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1337         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1338         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1339         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1340         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1341         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1342         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1343         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1344         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1345         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1346         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1347         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1348         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1349         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1350         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1351         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1352         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1353         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1354
1355         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1356         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1357         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1358         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1359         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1360         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1361 };
1362
1363 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1364 static unsigned num_msrs_to_save;
1365
1366 static const u32 emulated_msrs_all[] = {
1367         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1368         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1369         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1370         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1371         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1372         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1373         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1374         HV_X64_MSR_RESET,
1375         HV_X64_MSR_VP_INDEX,
1376         HV_X64_MSR_VP_RUNTIME,
1377         HV_X64_MSR_SCONTROL,
1378         HV_X64_MSR_STIMER0_CONFIG,
1379         HV_X64_MSR_VP_ASSIST_PAGE,
1380         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1381         HV_X64_MSR_TSC_EMULATION_STATUS,
1382         HV_X64_MSR_SYNDBG_OPTIONS,
1383         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1384         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1385         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1386
1387         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1388         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1389
1390         MSR_IA32_TSC_ADJUST,
1391         MSR_IA32_TSC_DEADLINE,
1392         MSR_IA32_ARCH_CAPABILITIES,
1393         MSR_IA32_PERF_CAPABILITIES,
1394         MSR_IA32_MISC_ENABLE,
1395         MSR_IA32_MCG_STATUS,
1396         MSR_IA32_MCG_CTL,
1397         MSR_IA32_MCG_EXT_CTL,
1398         MSR_IA32_SMBASE,
1399         MSR_SMI_COUNT,
1400         MSR_PLATFORM_INFO,
1401         MSR_MISC_FEATURES_ENABLES,
1402         MSR_AMD64_VIRT_SPEC_CTRL,
1403         MSR_AMD64_TSC_RATIO,
1404         MSR_IA32_POWER_CTL,
1405         MSR_IA32_UCODE_REV,
1406
1407         /*
1408          * The following list leaves out MSRs whose values are determined
1409          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1410          * We always support the "true" VMX control MSRs, even if the host
1411          * processor does not, so I am putting these registers here rather
1412          * than in msrs_to_save_all.
1413          */
1414         MSR_IA32_VMX_BASIC,
1415         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1416         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1417         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1418         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1419         MSR_IA32_VMX_MISC,
1420         MSR_IA32_VMX_CR0_FIXED0,
1421         MSR_IA32_VMX_CR4_FIXED0,
1422         MSR_IA32_VMX_VMCS_ENUM,
1423         MSR_IA32_VMX_PROCBASED_CTLS2,
1424         MSR_IA32_VMX_EPT_VPID_CAP,
1425         MSR_IA32_VMX_VMFUNC,
1426
1427         MSR_K7_HWCR,
1428         MSR_KVM_POLL_CONTROL,
1429 };
1430
1431 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1432 static unsigned num_emulated_msrs;
1433
1434 /*
1435  * List of msr numbers which are used to expose MSR-based features that
1436  * can be used by a hypervisor to validate requested CPU features.
1437  */
1438 static const u32 msr_based_features_all[] = {
1439         MSR_IA32_VMX_BASIC,
1440         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1441         MSR_IA32_VMX_PINBASED_CTLS,
1442         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1443         MSR_IA32_VMX_PROCBASED_CTLS,
1444         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1445         MSR_IA32_VMX_EXIT_CTLS,
1446         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1447         MSR_IA32_VMX_ENTRY_CTLS,
1448         MSR_IA32_VMX_MISC,
1449         MSR_IA32_VMX_CR0_FIXED0,
1450         MSR_IA32_VMX_CR0_FIXED1,
1451         MSR_IA32_VMX_CR4_FIXED0,
1452         MSR_IA32_VMX_CR4_FIXED1,
1453         MSR_IA32_VMX_VMCS_ENUM,
1454         MSR_IA32_VMX_PROCBASED_CTLS2,
1455         MSR_IA32_VMX_EPT_VPID_CAP,
1456         MSR_IA32_VMX_VMFUNC,
1457
1458         MSR_F10H_DECFG,
1459         MSR_IA32_UCODE_REV,
1460         MSR_IA32_ARCH_CAPABILITIES,
1461         MSR_IA32_PERF_CAPABILITIES,
1462 };
1463
1464 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1465 static unsigned int num_msr_based_features;
1466
1467 static u64 kvm_get_arch_capabilities(void)
1468 {
1469         u64 data = 0;
1470
1471         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1472                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1473
1474         /*
1475          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1476          * the nested hypervisor runs with NX huge pages.  If it is not,
1477          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1478          * L1 guests, so it need not worry about its own (L2) guests.
1479          */
1480         data |= ARCH_CAP_PSCHANGE_MC_NO;
1481
1482         /*
1483          * If we're doing cache flushes (either "always" or "cond")
1484          * we will do one whenever the guest does a vmlaunch/vmresume.
1485          * If an outer hypervisor is doing the cache flush for us
1486          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1487          * capability to the guest too, and if EPT is disabled we're not
1488          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1489          * require a nested hypervisor to do a flush of its own.
1490          */
1491         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1492                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1493
1494         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1495                 data |= ARCH_CAP_RDCL_NO;
1496         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1497                 data |= ARCH_CAP_SSB_NO;
1498         if (!boot_cpu_has_bug(X86_BUG_MDS))
1499                 data |= ARCH_CAP_MDS_NO;
1500
1501         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1502                 /*
1503                  * If RTM=0 because the kernel has disabled TSX, the host might
1504                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1505                  * and therefore knows that there cannot be TAA) but keep
1506                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1507                  * and we want to allow migrating those guests to tsx=off hosts.
1508                  */
1509                 data &= ~ARCH_CAP_TAA_NO;
1510         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1511                 data |= ARCH_CAP_TAA_NO;
1512         } else {
1513                 /*
1514                  * Nothing to do here; we emulate TSX_CTRL if present on the
1515                  * host so the guest can choose between disabling TSX or
1516                  * using VERW to clear CPU buffers.
1517                  */
1518         }
1519
1520         return data;
1521 }
1522
1523 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1524 {
1525         switch (msr->index) {
1526         case MSR_IA32_ARCH_CAPABILITIES:
1527                 msr->data = kvm_get_arch_capabilities();
1528                 break;
1529         case MSR_IA32_UCODE_REV:
1530                 rdmsrl_safe(msr->index, &msr->data);
1531                 break;
1532         default:
1533                 return static_call(kvm_x86_get_msr_feature)(msr);
1534         }
1535         return 0;
1536 }
1537
1538 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1539 {
1540         struct kvm_msr_entry msr;
1541         int r;
1542
1543         msr.index = index;
1544         r = kvm_get_msr_feature(&msr);
1545
1546         if (r == KVM_MSR_RET_INVALID) {
1547                 /* Unconditionally clear the output for simplicity */
1548                 *data = 0;
1549                 if (kvm_msr_ignored_check(index, 0, false))
1550                         r = 0;
1551         }
1552
1553         if (r)
1554                 return r;
1555
1556         *data = msr.data;
1557
1558         return 0;
1559 }
1560
1561 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1562 {
1563         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1564                 return false;
1565
1566         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1567                 return false;
1568
1569         if (efer & (EFER_LME | EFER_LMA) &&
1570             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1571                 return false;
1572
1573         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1574                 return false;
1575
1576         return true;
1577
1578 }
1579 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1580 {
1581         if (efer & efer_reserved_bits)
1582                 return false;
1583
1584         return __kvm_valid_efer(vcpu, efer);
1585 }
1586 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1587
1588 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1589 {
1590         u64 old_efer = vcpu->arch.efer;
1591         u64 efer = msr_info->data;
1592         int r;
1593
1594         if (efer & efer_reserved_bits)
1595                 return 1;
1596
1597         if (!msr_info->host_initiated) {
1598                 if (!__kvm_valid_efer(vcpu, efer))
1599                         return 1;
1600
1601                 if (is_paging(vcpu) &&
1602                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1603                         return 1;
1604         }
1605
1606         efer &= ~EFER_LMA;
1607         efer |= vcpu->arch.efer & EFER_LMA;
1608
1609         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1610         if (r) {
1611                 WARN_ON(r > 0);
1612                 return r;
1613         }
1614
1615         /* Update reserved bits */
1616         if ((efer ^ old_efer) & EFER_NX)
1617                 kvm_mmu_reset_context(vcpu);
1618
1619         return 0;
1620 }
1621
1622 void kvm_enable_efer_bits(u64 mask)
1623 {
1624        efer_reserved_bits &= ~mask;
1625 }
1626 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1627
1628 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1629 {
1630         struct kvm_x86_msr_filter *msr_filter;
1631         struct msr_bitmap_range *ranges;
1632         struct kvm *kvm = vcpu->kvm;
1633         bool allowed;
1634         int idx;
1635         u32 i;
1636
1637         /* x2APIC MSRs do not support filtering. */
1638         if (index >= 0x800 && index <= 0x8ff)
1639                 return true;
1640
1641         idx = srcu_read_lock(&kvm->srcu);
1642
1643         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1644         if (!msr_filter) {
1645                 allowed = true;
1646                 goto out;
1647         }
1648
1649         allowed = msr_filter->default_allow;
1650         ranges = msr_filter->ranges;
1651
1652         for (i = 0; i < msr_filter->count; i++) {
1653                 u32 start = ranges[i].base;
1654                 u32 end = start + ranges[i].nmsrs;
1655                 u32 flags = ranges[i].flags;
1656                 unsigned long *bitmap = ranges[i].bitmap;
1657
1658                 if ((index >= start) && (index < end) && (flags & type)) {
1659                         allowed = !!test_bit(index - start, bitmap);
1660                         break;
1661                 }
1662         }
1663
1664 out:
1665         srcu_read_unlock(&kvm->srcu, idx);
1666
1667         return allowed;
1668 }
1669 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1670
1671 /*
1672  * Write @data into the MSR specified by @index.  Select MSR specific fault
1673  * checks are bypassed if @host_initiated is %true.
1674  * Returns 0 on success, non-0 otherwise.
1675  * Assumes vcpu_load() was already called.
1676  */
1677 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1678                          bool host_initiated)
1679 {
1680         struct msr_data msr;
1681
1682         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1683                 return KVM_MSR_RET_FILTERED;
1684
1685         switch (index) {
1686         case MSR_FS_BASE:
1687         case MSR_GS_BASE:
1688         case MSR_KERNEL_GS_BASE:
1689         case MSR_CSTAR:
1690         case MSR_LSTAR:
1691                 if (is_noncanonical_address(data, vcpu))
1692                         return 1;
1693                 break;
1694         case MSR_IA32_SYSENTER_EIP:
1695         case MSR_IA32_SYSENTER_ESP:
1696                 /*
1697                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1698                  * non-canonical address is written on Intel but not on
1699                  * AMD (which ignores the top 32-bits, because it does
1700                  * not implement 64-bit SYSENTER).
1701                  *
1702                  * 64-bit code should hence be able to write a non-canonical
1703                  * value on AMD.  Making the address canonical ensures that
1704                  * vmentry does not fail on Intel after writing a non-canonical
1705                  * value, and that something deterministic happens if the guest
1706                  * invokes 64-bit SYSENTER.
1707                  */
1708                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1709                 break;
1710         case MSR_TSC_AUX:
1711                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1712                         return 1;
1713
1714                 if (!host_initiated &&
1715                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1716                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1717                         return 1;
1718
1719                 /*
1720                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1721                  * incomplete and conflicting architectural behavior.  Current
1722                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1723                  * reserved and always read as zeros.  Enforce Intel's reserved
1724                  * bits check if and only if the guest CPU is Intel, and clear
1725                  * the bits in all other cases.  This ensures cross-vendor
1726                  * migration will provide consistent behavior for the guest.
1727                  */
1728                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1729                         return 1;
1730
1731                 data = (u32)data;
1732                 break;
1733         }
1734
1735         msr.data = data;
1736         msr.index = index;
1737         msr.host_initiated = host_initiated;
1738
1739         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1740 }
1741
1742 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1743                                      u32 index, u64 data, bool host_initiated)
1744 {
1745         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1746
1747         if (ret == KVM_MSR_RET_INVALID)
1748                 if (kvm_msr_ignored_check(index, data, true))
1749                         ret = 0;
1750
1751         return ret;
1752 }
1753
1754 /*
1755  * Read the MSR specified by @index into @data.  Select MSR specific fault
1756  * checks are bypassed if @host_initiated is %true.
1757  * Returns 0 on success, non-0 otherwise.
1758  * Assumes vcpu_load() was already called.
1759  */
1760 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1761                   bool host_initiated)
1762 {
1763         struct msr_data msr;
1764         int ret;
1765
1766         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1767                 return KVM_MSR_RET_FILTERED;
1768
1769         switch (index) {
1770         case MSR_TSC_AUX:
1771                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1772                         return 1;
1773
1774                 if (!host_initiated &&
1775                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1776                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1777                         return 1;
1778                 break;
1779         }
1780
1781         msr.index = index;
1782         msr.host_initiated = host_initiated;
1783
1784         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1785         if (!ret)
1786                 *data = msr.data;
1787         return ret;
1788 }
1789
1790 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1791                                      u32 index, u64 *data, bool host_initiated)
1792 {
1793         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1794
1795         if (ret == KVM_MSR_RET_INVALID) {
1796                 /* Unconditionally clear *data for simplicity */
1797                 *data = 0;
1798                 if (kvm_msr_ignored_check(index, 0, false))
1799                         ret = 0;
1800         }
1801
1802         return ret;
1803 }
1804
1805 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1806 {
1807         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1808 }
1809 EXPORT_SYMBOL_GPL(kvm_get_msr);
1810
1811 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1812 {
1813         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1814 }
1815 EXPORT_SYMBOL_GPL(kvm_set_msr);
1816
1817 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1818 {
1819         int err = vcpu->run->msr.error;
1820         if (!err) {
1821                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1822                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1823         }
1824
1825         return static_call(kvm_x86_complete_emulated_msr)(vcpu, err);
1826 }
1827
1828 static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1829 {
1830         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1831 }
1832
1833 static u64 kvm_msr_reason(int r)
1834 {
1835         switch (r) {
1836         case KVM_MSR_RET_INVALID:
1837                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1838         case KVM_MSR_RET_FILTERED:
1839                 return KVM_MSR_EXIT_REASON_FILTER;
1840         default:
1841                 return KVM_MSR_EXIT_REASON_INVAL;
1842         }
1843 }
1844
1845 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1846                               u32 exit_reason, u64 data,
1847                               int (*completion)(struct kvm_vcpu *vcpu),
1848                               int r)
1849 {
1850         u64 msr_reason = kvm_msr_reason(r);
1851
1852         /* Check if the user wanted to know about this MSR fault */
1853         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1854                 return 0;
1855
1856         vcpu->run->exit_reason = exit_reason;
1857         vcpu->run->msr.error = 0;
1858         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1859         vcpu->run->msr.reason = msr_reason;
1860         vcpu->run->msr.index = index;
1861         vcpu->run->msr.data = data;
1862         vcpu->arch.complete_userspace_io = completion;
1863
1864         return 1;
1865 }
1866
1867 static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1868 {
1869         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1870                                    complete_emulated_rdmsr, r);
1871 }
1872
1873 static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1874 {
1875         return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1876                                    complete_emulated_wrmsr, r);
1877 }
1878
1879 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1880 {
1881         u32 ecx = kvm_rcx_read(vcpu);
1882         u64 data;
1883         int r;
1884
1885         r = kvm_get_msr(vcpu, ecx, &data);
1886
1887         /* MSR read failed? See if we should ask user space */
1888         if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1889                 /* Bounce to user space */
1890                 return 0;
1891         }
1892
1893         if (!r) {
1894                 trace_kvm_msr_read(ecx, data);
1895
1896                 kvm_rax_write(vcpu, data & -1u);
1897                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1898         } else {
1899                 trace_kvm_msr_read_ex(ecx);
1900         }
1901
1902         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1903 }
1904 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1905
1906 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1907 {
1908         u32 ecx = kvm_rcx_read(vcpu);
1909         u64 data = kvm_read_edx_eax(vcpu);
1910         int r;
1911
1912         r = kvm_set_msr(vcpu, ecx, data);
1913
1914         /* MSR write failed? See if we should ask user space */
1915         if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1916                 /* Bounce to user space */
1917                 return 0;
1918
1919         /* Signal all other negative errors to userspace */
1920         if (r < 0)
1921                 return r;
1922
1923         if (!r)
1924                 trace_kvm_msr_write(ecx, data);
1925         else
1926                 trace_kvm_msr_write_ex(ecx, data);
1927
1928         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1931
1932 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1933 {
1934         return kvm_skip_emulated_instruction(vcpu);
1935 }
1936 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1937
1938 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1939 {
1940         /* Treat an INVD instruction as a NOP and just skip it. */
1941         return kvm_emulate_as_nop(vcpu);
1942 }
1943 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
1944
1945 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
1946 {
1947         pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
1948         return kvm_emulate_as_nop(vcpu);
1949 }
1950 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
1951
1952 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
1953 {
1954         kvm_queue_exception(vcpu, UD_VECTOR);
1955         return 1;
1956 }
1957 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
1958
1959 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
1960 {
1961         pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
1962         return kvm_emulate_as_nop(vcpu);
1963 }
1964 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
1965
1966 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1967 {
1968         xfer_to_guest_mode_prepare();
1969         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
1970                 xfer_to_guest_mode_work_pending();
1971 }
1972
1973 /*
1974  * The fast path for frequent and performance sensitive wrmsr emulation,
1975  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1976  * the latency of virtual IPI by avoiding the expensive bits of transitioning
1977  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1978  * other cases which must be called after interrupts are enabled on the host.
1979  */
1980 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1981 {
1982         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1983                 return 1;
1984
1985         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1986                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1987                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1988                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1989
1990                 data &= ~(1 << 12);
1991                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1992                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1993                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1994                 trace_kvm_apic_write(APIC_ICR, (u32)data);
1995                 return 0;
1996         }
1997
1998         return 1;
1999 }
2000
2001 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2002 {
2003         if (!kvm_can_use_hv_timer(vcpu))
2004                 return 1;
2005
2006         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2007         return 0;
2008 }
2009
2010 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2011 {
2012         u32 msr = kvm_rcx_read(vcpu);
2013         u64 data;
2014         fastpath_t ret = EXIT_FASTPATH_NONE;
2015
2016         switch (msr) {
2017         case APIC_BASE_MSR + (APIC_ICR >> 4):
2018                 data = kvm_read_edx_eax(vcpu);
2019                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2020                         kvm_skip_emulated_instruction(vcpu);
2021                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2022                 }
2023                 break;
2024         case MSR_IA32_TSC_DEADLINE:
2025                 data = kvm_read_edx_eax(vcpu);
2026                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2027                         kvm_skip_emulated_instruction(vcpu);
2028                         ret = EXIT_FASTPATH_REENTER_GUEST;
2029                 }
2030                 break;
2031         default:
2032                 break;
2033         }
2034
2035         if (ret != EXIT_FASTPATH_NONE)
2036                 trace_kvm_msr_write(msr, data);
2037
2038         return ret;
2039 }
2040 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2041
2042 /*
2043  * Adapt set_msr() to msr_io()'s calling convention
2044  */
2045 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2046 {
2047         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2048 }
2049
2050 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2051 {
2052         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2053 }
2054
2055 #ifdef CONFIG_X86_64
2056 struct pvclock_clock {
2057         int vclock_mode;
2058         u64 cycle_last;
2059         u64 mask;
2060         u32 mult;
2061         u32 shift;
2062         u64 base_cycles;
2063         u64 offset;
2064 };
2065
2066 struct pvclock_gtod_data {
2067         seqcount_t      seq;
2068
2069         struct pvclock_clock clock; /* extract of a clocksource struct */
2070         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2071
2072         ktime_t         offs_boot;
2073         u64             wall_time_sec;
2074 };
2075
2076 static struct pvclock_gtod_data pvclock_gtod_data;
2077
2078 static void update_pvclock_gtod(struct timekeeper *tk)
2079 {
2080         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2081
2082         write_seqcount_begin(&vdata->seq);
2083
2084         /* copy pvclock gtod data */
2085         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2086         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2087         vdata->clock.mask               = tk->tkr_mono.mask;
2088         vdata->clock.mult               = tk->tkr_mono.mult;
2089         vdata->clock.shift              = tk->tkr_mono.shift;
2090         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2091         vdata->clock.offset             = tk->tkr_mono.base;
2092
2093         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2094         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2095         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2096         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2097         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2098         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2099         vdata->raw_clock.offset         = tk->tkr_raw.base;
2100
2101         vdata->wall_time_sec            = tk->xtime_sec;
2102
2103         vdata->offs_boot                = tk->offs_boot;
2104
2105         write_seqcount_end(&vdata->seq);
2106 }
2107
2108 static s64 get_kvmclock_base_ns(void)
2109 {
2110         /* Count up from boot time, but with the frequency of the raw clock.  */
2111         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2112 }
2113 #else
2114 static s64 get_kvmclock_base_ns(void)
2115 {
2116         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2117         return ktime_get_boottime_ns();
2118 }
2119 #endif
2120
2121 void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2122 {
2123         int version;
2124         int r;
2125         struct pvclock_wall_clock wc;
2126         u32 wc_sec_hi;
2127         u64 wall_nsec;
2128
2129         if (!wall_clock)
2130                 return;
2131
2132         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2133         if (r)
2134                 return;
2135
2136         if (version & 1)
2137                 ++version;  /* first time write, random junk */
2138
2139         ++version;
2140
2141         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2142                 return;
2143
2144         /*
2145          * The guest calculates current wall clock time by adding
2146          * system time (updated by kvm_guest_time_update below) to the
2147          * wall clock specified here.  We do the reverse here.
2148          */
2149         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2150
2151         wc.nsec = do_div(wall_nsec, 1000000000);
2152         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2153         wc.version = version;
2154
2155         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2156
2157         if (sec_hi_ofs) {
2158                 wc_sec_hi = wall_nsec >> 32;
2159                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2160                                 &wc_sec_hi, sizeof(wc_sec_hi));
2161         }
2162
2163         version++;
2164         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2165 }
2166
2167 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2168                                   bool old_msr, bool host_initiated)
2169 {
2170         struct kvm_arch *ka = &vcpu->kvm->arch;
2171
2172         if (vcpu->vcpu_id == 0 && !host_initiated) {
2173                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2174                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2175
2176                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2177         }
2178
2179         vcpu->arch.time = system_time;
2180         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2181
2182         /* we verify if the enable bit is set... */
2183         vcpu->arch.pv_time_enabled = false;
2184         if (!(system_time & 1))
2185                 return;
2186
2187         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2188                                        &vcpu->arch.pv_time, system_time & ~1ULL,
2189                                        sizeof(struct pvclock_vcpu_time_info)))
2190                 vcpu->arch.pv_time_enabled = true;
2191
2192         return;
2193 }
2194
2195 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2196 {
2197         do_shl32_div32(dividend, divisor);
2198         return dividend;
2199 }
2200
2201 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2202                                s8 *pshift, u32 *pmultiplier)
2203 {
2204         uint64_t scaled64;
2205         int32_t  shift = 0;
2206         uint64_t tps64;
2207         uint32_t tps32;
2208
2209         tps64 = base_hz;
2210         scaled64 = scaled_hz;
2211         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2212                 tps64 >>= 1;
2213                 shift--;
2214         }
2215
2216         tps32 = (uint32_t)tps64;
2217         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2218                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2219                         scaled64 >>= 1;
2220                 else
2221                         tps32 <<= 1;
2222                 shift++;
2223         }
2224
2225         *pshift = shift;
2226         *pmultiplier = div_frac(scaled64, tps32);
2227 }
2228
2229 #ifdef CONFIG_X86_64
2230 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2231 #endif
2232
2233 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2234 static unsigned long max_tsc_khz;
2235
2236 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2237 {
2238         u64 v = (u64)khz * (1000000 + ppm);
2239         do_div(v, 1000000);
2240         return v;
2241 }
2242
2243 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2244
2245 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2246 {
2247         u64 ratio;
2248
2249         /* Guest TSC same frequency as host TSC? */
2250         if (!scale) {
2251                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2252                 return 0;
2253         }
2254
2255         /* TSC scaling supported? */
2256         if (!kvm_has_tsc_control) {
2257                 if (user_tsc_khz > tsc_khz) {
2258                         vcpu->arch.tsc_catchup = 1;
2259                         vcpu->arch.tsc_always_catchup = 1;
2260                         return 0;
2261                 } else {
2262                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2263                         return -1;
2264                 }
2265         }
2266
2267         /* TSC scaling required  - calculate ratio */
2268         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2269                                 user_tsc_khz, tsc_khz);
2270
2271         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2272                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2273                                     user_tsc_khz);
2274                 return -1;
2275         }
2276
2277         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2278         return 0;
2279 }
2280
2281 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2282 {
2283         u32 thresh_lo, thresh_hi;
2284         int use_scaling = 0;
2285
2286         /* tsc_khz can be zero if TSC calibration fails */
2287         if (user_tsc_khz == 0) {
2288                 /* set tsc_scaling_ratio to a safe value */
2289                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2290                 return -1;
2291         }
2292
2293         /* Compute a scale to convert nanoseconds in TSC cycles */
2294         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2295                            &vcpu->arch.virtual_tsc_shift,
2296                            &vcpu->arch.virtual_tsc_mult);
2297         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2298
2299         /*
2300          * Compute the variation in TSC rate which is acceptable
2301          * within the range of tolerance and decide if the
2302          * rate being applied is within that bounds of the hardware
2303          * rate.  If so, no scaling or compensation need be done.
2304          */
2305         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2306         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2307         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2308                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2309                 use_scaling = 1;
2310         }
2311         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2312 }
2313
2314 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2315 {
2316         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2317                                       vcpu->arch.virtual_tsc_mult,
2318                                       vcpu->arch.virtual_tsc_shift);
2319         tsc += vcpu->arch.this_tsc_write;
2320         return tsc;
2321 }
2322
2323 static inline int gtod_is_based_on_tsc(int mode)
2324 {
2325         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2326 }
2327
2328 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2329 {
2330 #ifdef CONFIG_X86_64
2331         bool vcpus_matched;
2332         struct kvm_arch *ka = &vcpu->kvm->arch;
2333         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2334
2335         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2336                          atomic_read(&vcpu->kvm->online_vcpus));
2337
2338         /*
2339          * Once the masterclock is enabled, always perform request in
2340          * order to update it.
2341          *
2342          * In order to enable masterclock, the host clocksource must be TSC
2343          * and the vcpus need to have matched TSCs.  When that happens,
2344          * perform request to enable masterclock.
2345          */
2346         if (ka->use_master_clock ||
2347             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2348                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2349
2350         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2351                             atomic_read(&vcpu->kvm->online_vcpus),
2352                             ka->use_master_clock, gtod->clock.vclock_mode);
2353 #endif
2354 }
2355
2356 /*
2357  * Multiply tsc by a fixed point number represented by ratio.
2358  *
2359  * The most significant 64-N bits (mult) of ratio represent the
2360  * integral part of the fixed point number; the remaining N bits
2361  * (frac) represent the fractional part, ie. ratio represents a fixed
2362  * point number (mult + frac * 2^(-N)).
2363  *
2364  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2365  */
2366 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2367 {
2368         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2369 }
2370
2371 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc, u64 ratio)
2372 {
2373         u64 _tsc = tsc;
2374
2375         if (ratio != kvm_default_tsc_scaling_ratio)
2376                 _tsc = __scale_tsc(ratio, tsc);
2377
2378         return _tsc;
2379 }
2380 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2381
2382 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2383 {
2384         u64 tsc;
2385
2386         tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2387
2388         return target_tsc - tsc;
2389 }
2390
2391 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2392 {
2393         return vcpu->arch.l1_tsc_offset +
2394                 kvm_scale_tsc(vcpu, host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2395 }
2396 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2397
2398 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2399 {
2400         u64 nested_offset;
2401
2402         if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2403                 nested_offset = l1_offset;
2404         else
2405                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2406                                                 kvm_tsc_scaling_ratio_frac_bits);
2407
2408         nested_offset += l2_offset;
2409         return nested_offset;
2410 }
2411 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2412
2413 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2414 {
2415         if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2416                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2417                                        kvm_tsc_scaling_ratio_frac_bits);
2418
2419         return l1_multiplier;
2420 }
2421 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2422
2423 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2424 {
2425         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2426                                    vcpu->arch.l1_tsc_offset,
2427                                    l1_offset);
2428
2429         vcpu->arch.l1_tsc_offset = l1_offset;
2430
2431         /*
2432          * If we are here because L1 chose not to trap WRMSR to TSC then
2433          * according to the spec this should set L1's TSC (as opposed to
2434          * setting L1's offset for L2).
2435          */
2436         if (is_guest_mode(vcpu))
2437                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2438                         l1_offset,
2439                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2440                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2441         else
2442                 vcpu->arch.tsc_offset = l1_offset;
2443
2444         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2445 }
2446
2447 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2448 {
2449         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2450
2451         /* Userspace is changing the multiplier while L2 is active */
2452         if (is_guest_mode(vcpu))
2453                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2454                         l1_multiplier,
2455                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2456         else
2457                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2458
2459         if (kvm_has_tsc_control)
2460                 static_call(kvm_x86_write_tsc_multiplier)(
2461                         vcpu, vcpu->arch.tsc_scaling_ratio);
2462 }
2463
2464 static inline bool kvm_check_tsc_unstable(void)
2465 {
2466 #ifdef CONFIG_X86_64
2467         /*
2468          * TSC is marked unstable when we're running on Hyper-V,
2469          * 'TSC page' clocksource is good.
2470          */
2471         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2472                 return false;
2473 #endif
2474         return check_tsc_unstable();
2475 }
2476
2477 /*
2478  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2479  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2480  * participates in.
2481  */
2482 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2483                                   u64 ns, bool matched)
2484 {
2485         struct kvm *kvm = vcpu->kvm;
2486
2487         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2488
2489         /*
2490          * We also track th most recent recorded KHZ, write and time to
2491          * allow the matching interval to be extended at each write.
2492          */
2493         kvm->arch.last_tsc_nsec = ns;
2494         kvm->arch.last_tsc_write = tsc;
2495         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2496         kvm->arch.last_tsc_offset = offset;
2497
2498         vcpu->arch.last_guest_tsc = tsc;
2499
2500         kvm_vcpu_write_tsc_offset(vcpu, offset);
2501
2502         if (!matched) {
2503                 /*
2504                  * We split periods of matched TSC writes into generations.
2505                  * For each generation, we track the original measured
2506                  * nanosecond time, offset, and write, so if TSCs are in
2507                  * sync, we can match exact offset, and if not, we can match
2508                  * exact software computation in compute_guest_tsc()
2509                  *
2510                  * These values are tracked in kvm->arch.cur_xxx variables.
2511                  */
2512                 kvm->arch.cur_tsc_generation++;
2513                 kvm->arch.cur_tsc_nsec = ns;
2514                 kvm->arch.cur_tsc_write = tsc;
2515                 kvm->arch.cur_tsc_offset = offset;
2516                 kvm->arch.nr_vcpus_matched_tsc = 0;
2517         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2518                 kvm->arch.nr_vcpus_matched_tsc++;
2519         }
2520
2521         /* Keep track of which generation this VCPU has synchronized to */
2522         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2523         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2524         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2525
2526         kvm_track_tsc_matching(vcpu);
2527 }
2528
2529 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2530 {
2531         struct kvm *kvm = vcpu->kvm;
2532         u64 offset, ns, elapsed;
2533         unsigned long flags;
2534         bool matched = false;
2535         bool synchronizing = false;
2536
2537         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2538         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2539         ns = get_kvmclock_base_ns();
2540         elapsed = ns - kvm->arch.last_tsc_nsec;
2541
2542         if (vcpu->arch.virtual_tsc_khz) {
2543                 if (data == 0) {
2544                         /*
2545                          * detection of vcpu initialization -- need to sync
2546                          * with other vCPUs. This particularly helps to keep
2547                          * kvm_clock stable after CPU hotplug
2548                          */
2549                         synchronizing = true;
2550                 } else {
2551                         u64 tsc_exp = kvm->arch.last_tsc_write +
2552                                                 nsec_to_cycles(vcpu, elapsed);
2553                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2554                         /*
2555                          * Special case: TSC write with a small delta (1 second)
2556                          * of virtual cycle time against real time is
2557                          * interpreted as an attempt to synchronize the CPU.
2558                          */
2559                         synchronizing = data < tsc_exp + tsc_hz &&
2560                                         data + tsc_hz > tsc_exp;
2561                 }
2562         }
2563
2564         /*
2565          * For a reliable TSC, we can match TSC offsets, and for an unstable
2566          * TSC, we add elapsed time in this computation.  We could let the
2567          * compensation code attempt to catch up if we fall behind, but
2568          * it's better to try to match offsets from the beginning.
2569          */
2570         if (synchronizing &&
2571             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2572                 if (!kvm_check_tsc_unstable()) {
2573                         offset = kvm->arch.cur_tsc_offset;
2574                 } else {
2575                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2576                         data += delta;
2577                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2578                 }
2579                 matched = true;
2580         }
2581
2582         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2583         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2584 }
2585
2586 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2587                                            s64 adjustment)
2588 {
2589         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2590         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2591 }
2592
2593 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2594 {
2595         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2596                 WARN_ON(adjustment < 0);
2597         adjustment = kvm_scale_tsc(vcpu, (u64) adjustment,
2598                                    vcpu->arch.l1_tsc_scaling_ratio);
2599         adjust_tsc_offset_guest(vcpu, adjustment);
2600 }
2601
2602 #ifdef CONFIG_X86_64
2603
2604 static u64 read_tsc(void)
2605 {
2606         u64 ret = (u64)rdtsc_ordered();
2607         u64 last = pvclock_gtod_data.clock.cycle_last;
2608
2609         if (likely(ret >= last))
2610                 return ret;
2611
2612         /*
2613          * GCC likes to generate cmov here, but this branch is extremely
2614          * predictable (it's just a function of time and the likely is
2615          * very likely) and there's a data dependence, so force GCC
2616          * to generate a branch instead.  I don't barrier() because
2617          * we don't actually need a barrier, and if this function
2618          * ever gets inlined it will generate worse code.
2619          */
2620         asm volatile ("");
2621         return last;
2622 }
2623
2624 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2625                           int *mode)
2626 {
2627         long v;
2628         u64 tsc_pg_val;
2629
2630         switch (clock->vclock_mode) {
2631         case VDSO_CLOCKMODE_HVCLOCK:
2632                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2633                                                   tsc_timestamp);
2634                 if (tsc_pg_val != U64_MAX) {
2635                         /* TSC page valid */
2636                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2637                         v = (tsc_pg_val - clock->cycle_last) &
2638                                 clock->mask;
2639                 } else {
2640                         /* TSC page invalid */
2641                         *mode = VDSO_CLOCKMODE_NONE;
2642                 }
2643                 break;
2644         case VDSO_CLOCKMODE_TSC:
2645                 *mode = VDSO_CLOCKMODE_TSC;
2646                 *tsc_timestamp = read_tsc();
2647                 v = (*tsc_timestamp - clock->cycle_last) &
2648                         clock->mask;
2649                 break;
2650         default:
2651                 *mode = VDSO_CLOCKMODE_NONE;
2652         }
2653
2654         if (*mode == VDSO_CLOCKMODE_NONE)
2655                 *tsc_timestamp = v = 0;
2656
2657         return v * clock->mult;
2658 }
2659
2660 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2661 {
2662         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2663         unsigned long seq;
2664         int mode;
2665         u64 ns;
2666
2667         do {
2668                 seq = read_seqcount_begin(&gtod->seq);
2669                 ns = gtod->raw_clock.base_cycles;
2670                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2671                 ns >>= gtod->raw_clock.shift;
2672                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2673         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2674         *t = ns;
2675
2676         return mode;
2677 }
2678
2679 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2680 {
2681         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2682         unsigned long seq;
2683         int mode;
2684         u64 ns;
2685
2686         do {
2687                 seq = read_seqcount_begin(&gtod->seq);
2688                 ts->tv_sec = gtod->wall_time_sec;
2689                 ns = gtod->clock.base_cycles;
2690                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2691                 ns >>= gtod->clock.shift;
2692         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2693
2694         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2695         ts->tv_nsec = ns;
2696
2697         return mode;
2698 }
2699
2700 /* returns true if host is using TSC based clocksource */
2701 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2702 {
2703         /* checked again under seqlock below */
2704         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2705                 return false;
2706
2707         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2708                                                       tsc_timestamp));
2709 }
2710
2711 /* returns true if host is using TSC based clocksource */
2712 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2713                                            u64 *tsc_timestamp)
2714 {
2715         /* checked again under seqlock below */
2716         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2717                 return false;
2718
2719         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2720 }
2721 #endif
2722
2723 /*
2724  *
2725  * Assuming a stable TSC across physical CPUS, and a stable TSC
2726  * across virtual CPUs, the following condition is possible.
2727  * Each numbered line represents an event visible to both
2728  * CPUs at the next numbered event.
2729  *
2730  * "timespecX" represents host monotonic time. "tscX" represents
2731  * RDTSC value.
2732  *
2733  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2734  *
2735  * 1.  read timespec0,tsc0
2736  * 2.                                   | timespec1 = timespec0 + N
2737  *                                      | tsc1 = tsc0 + M
2738  * 3. transition to guest               | transition to guest
2739  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2740  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2741  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2742  *
2743  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2744  *
2745  *      - ret0 < ret1
2746  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2747  *              ...
2748  *      - 0 < N - M => M < N
2749  *
2750  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2751  * always the case (the difference between two distinct xtime instances
2752  * might be smaller then the difference between corresponding TSC reads,
2753  * when updating guest vcpus pvclock areas).
2754  *
2755  * To avoid that problem, do not allow visibility of distinct
2756  * system_timestamp/tsc_timestamp values simultaneously: use a master
2757  * copy of host monotonic time values. Update that master copy
2758  * in lockstep.
2759  *
2760  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2761  *
2762  */
2763
2764 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2765 {
2766 #ifdef CONFIG_X86_64
2767         struct kvm_arch *ka = &kvm->arch;
2768         int vclock_mode;
2769         bool host_tsc_clocksource, vcpus_matched;
2770
2771         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2772         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2773                         atomic_read(&kvm->online_vcpus));
2774
2775         /*
2776          * If the host uses TSC clock, then passthrough TSC as stable
2777          * to the guest.
2778          */
2779         host_tsc_clocksource = kvm_get_time_and_clockread(
2780                                         &ka->master_kernel_ns,
2781                                         &ka->master_cycle_now);
2782
2783         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2784                                 && !ka->backwards_tsc_observed
2785                                 && !ka->boot_vcpu_runs_old_kvmclock;
2786
2787         if (ka->use_master_clock)
2788                 atomic_set(&kvm_guest_has_master_clock, 1);
2789
2790         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2791         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2792                                         vcpus_matched);
2793 #endif
2794 }
2795
2796 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2797 {
2798         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2799 }
2800
2801 static void __kvm_start_pvclock_update(struct kvm *kvm)
2802 {
2803         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2804         write_seqcount_begin(&kvm->arch.pvclock_sc);
2805 }
2806
2807 static void kvm_start_pvclock_update(struct kvm *kvm)
2808 {
2809         kvm_make_mclock_inprogress_request(kvm);
2810
2811         /* no guest entries from this point */
2812         __kvm_start_pvclock_update(kvm);
2813 }
2814
2815 static void kvm_end_pvclock_update(struct kvm *kvm)
2816 {
2817         struct kvm_arch *ka = &kvm->arch;
2818         struct kvm_vcpu *vcpu;
2819         int i;
2820
2821         write_seqcount_end(&ka->pvclock_sc);
2822         raw_spin_unlock_irq(&ka->tsc_write_lock);
2823         kvm_for_each_vcpu(i, vcpu, kvm)
2824                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2825
2826         /* guest entries allowed */
2827         kvm_for_each_vcpu(i, vcpu, kvm)
2828                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2829 }
2830
2831 static void kvm_update_masterclock(struct kvm *kvm)
2832 {
2833         kvm_hv_invalidate_tsc_page(kvm);
2834         kvm_start_pvclock_update(kvm);
2835         pvclock_update_vm_gtod_copy(kvm);
2836         kvm_end_pvclock_update(kvm);
2837 }
2838
2839 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2840 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2841 {
2842         struct kvm_arch *ka = &kvm->arch;
2843         struct pvclock_vcpu_time_info hv_clock;
2844
2845         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2846         get_cpu();
2847
2848         data->flags = 0;
2849         if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2850 #ifdef CONFIG_X86_64
2851                 struct timespec64 ts;
2852
2853                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2854                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2855                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2856                 } else
2857 #endif
2858                 data->host_tsc = rdtsc();
2859
2860                 data->flags |= KVM_CLOCK_TSC_STABLE;
2861                 hv_clock.tsc_timestamp = ka->master_cycle_now;
2862                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2863                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2864                                    &hv_clock.tsc_shift,
2865                                    &hv_clock.tsc_to_system_mul);
2866                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2867         } else {
2868                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2869         }
2870
2871         put_cpu();
2872 }
2873
2874 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2875 {
2876         struct kvm_arch *ka = &kvm->arch;
2877         unsigned seq;
2878
2879         do {
2880                 seq = read_seqcount_begin(&ka->pvclock_sc);
2881                 __get_kvmclock(kvm, data);
2882         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2883 }
2884
2885 u64 get_kvmclock_ns(struct kvm *kvm)
2886 {
2887         struct kvm_clock_data data;
2888
2889         get_kvmclock(kvm, &data);
2890         return data.clock;
2891 }
2892
2893 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2894                                    struct gfn_to_hva_cache *cache,
2895                                    unsigned int offset)
2896 {
2897         struct kvm_vcpu_arch *vcpu = &v->arch;
2898         struct pvclock_vcpu_time_info guest_hv_clock;
2899
2900         if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2901                 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2902                 return;
2903
2904         /* This VCPU is paused, but it's legal for a guest to read another
2905          * VCPU's kvmclock, so we really have to follow the specification where
2906          * it says that version is odd if data is being modified, and even after
2907          * it is consistent.
2908          *
2909          * Version field updates must be kept separate.  This is because
2910          * kvm_write_guest_cached might use a "rep movs" instruction, and
2911          * writes within a string instruction are weakly ordered.  So there
2912          * are three writes overall.
2913          *
2914          * As a small optimization, only write the version field in the first
2915          * and third write.  The vcpu->pv_time cache is still valid, because the
2916          * version field is the first in the struct.
2917          */
2918         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2919
2920         if (guest_hv_clock.version & 1)
2921                 ++guest_hv_clock.version;  /* first time write, random junk */
2922
2923         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2924         kvm_write_guest_offset_cached(v->kvm, cache,
2925                                       &vcpu->hv_clock, offset,
2926                                       sizeof(vcpu->hv_clock.version));
2927
2928         smp_wmb();
2929
2930         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2931         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2932
2933         if (vcpu->pvclock_set_guest_stopped_request) {
2934                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2935                 vcpu->pvclock_set_guest_stopped_request = false;
2936         }
2937
2938         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2939
2940         kvm_write_guest_offset_cached(v->kvm, cache,
2941                                       &vcpu->hv_clock, offset,
2942                                       sizeof(vcpu->hv_clock));
2943
2944         smp_wmb();
2945
2946         vcpu->hv_clock.version++;
2947         kvm_write_guest_offset_cached(v->kvm, cache,
2948                                      &vcpu->hv_clock, offset,
2949                                      sizeof(vcpu->hv_clock.version));
2950 }
2951
2952 static int kvm_guest_time_update(struct kvm_vcpu *v)
2953 {
2954         unsigned long flags, tgt_tsc_khz;
2955         unsigned seq;
2956         struct kvm_vcpu_arch *vcpu = &v->arch;
2957         struct kvm_arch *ka = &v->kvm->arch;
2958         s64 kernel_ns;
2959         u64 tsc_timestamp, host_tsc;
2960         u8 pvclock_flags;
2961         bool use_master_clock;
2962
2963         kernel_ns = 0;
2964         host_tsc = 0;
2965
2966         /*
2967          * If the host uses TSC clock, then passthrough TSC as stable
2968          * to the guest.
2969          */
2970         do {
2971                 seq = read_seqcount_begin(&ka->pvclock_sc);
2972                 use_master_clock = ka->use_master_clock;
2973                 if (use_master_clock) {
2974                         host_tsc = ka->master_cycle_now;
2975                         kernel_ns = ka->master_kernel_ns;
2976                 }
2977         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2978
2979         /* Keep irq disabled to prevent changes to the clock */
2980         local_irq_save(flags);
2981         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2982         if (unlikely(tgt_tsc_khz == 0)) {
2983                 local_irq_restore(flags);
2984                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2985                 return 1;
2986         }
2987         if (!use_master_clock) {
2988                 host_tsc = rdtsc();
2989                 kernel_ns = get_kvmclock_base_ns();
2990         }
2991
2992         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2993
2994         /*
2995          * We may have to catch up the TSC to match elapsed wall clock
2996          * time for two reasons, even if kvmclock is used.
2997          *   1) CPU could have been running below the maximum TSC rate
2998          *   2) Broken TSC compensation resets the base at each VCPU
2999          *      entry to avoid unknown leaps of TSC even when running
3000          *      again on the same CPU.  This may cause apparent elapsed
3001          *      time to disappear, and the guest to stand still or run
3002          *      very slowly.
3003          */
3004         if (vcpu->tsc_catchup) {
3005                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3006                 if (tsc > tsc_timestamp) {
3007                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3008                         tsc_timestamp = tsc;
3009                 }
3010         }
3011
3012         local_irq_restore(flags);
3013
3014         /* With all the info we got, fill in the values */
3015
3016         if (kvm_has_tsc_control)
3017                 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz,
3018                                             v->arch.l1_tsc_scaling_ratio);
3019
3020         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3021                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3022                                    &vcpu->hv_clock.tsc_shift,
3023                                    &vcpu->hv_clock.tsc_to_system_mul);
3024                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3025         }
3026
3027         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3028         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3029         vcpu->last_guest_tsc = tsc_timestamp;
3030
3031         /* If the host uses TSC clocksource, then it is stable */
3032         pvclock_flags = 0;
3033         if (use_master_clock)
3034                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3035
3036         vcpu->hv_clock.flags = pvclock_flags;
3037
3038         if (vcpu->pv_time_enabled)
3039                 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3040         if (vcpu->xen.vcpu_info_set)
3041                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3042                                        offsetof(struct compat_vcpu_info, time));
3043         if (vcpu->xen.vcpu_time_info_set)
3044                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3045         if (!v->vcpu_idx)
3046                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3047         return 0;
3048 }
3049
3050 /*
3051  * kvmclock updates which are isolated to a given vcpu, such as
3052  * vcpu->cpu migration, should not allow system_timestamp from
3053  * the rest of the vcpus to remain static. Otherwise ntp frequency
3054  * correction applies to one vcpu's system_timestamp but not
3055  * the others.
3056  *
3057  * So in those cases, request a kvmclock update for all vcpus.
3058  * We need to rate-limit these requests though, as they can
3059  * considerably slow guests that have a large number of vcpus.
3060  * The time for a remote vcpu to update its kvmclock is bound
3061  * by the delay we use to rate-limit the updates.
3062  */
3063
3064 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3065
3066 static void kvmclock_update_fn(struct work_struct *work)
3067 {
3068         int i;
3069         struct delayed_work *dwork = to_delayed_work(work);
3070         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3071                                            kvmclock_update_work);
3072         struct kvm *kvm = container_of(ka, struct kvm, arch);
3073         struct kvm_vcpu *vcpu;
3074
3075         kvm_for_each_vcpu(i, vcpu, kvm) {
3076                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3077                 kvm_vcpu_kick(vcpu);
3078         }
3079 }
3080
3081 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3082 {
3083         struct kvm *kvm = v->kvm;
3084
3085         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3086         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3087                                         KVMCLOCK_UPDATE_DELAY);
3088 }
3089
3090 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3091
3092 static void kvmclock_sync_fn(struct work_struct *work)
3093 {
3094         struct delayed_work *dwork = to_delayed_work(work);
3095         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3096                                            kvmclock_sync_work);
3097         struct kvm *kvm = container_of(ka, struct kvm, arch);
3098
3099         if (!kvmclock_periodic_sync)
3100                 return;
3101
3102         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3103         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3104                                         KVMCLOCK_SYNC_PERIOD);
3105 }
3106
3107 /*
3108  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3109  */
3110 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3111 {
3112         /* McStatusWrEn enabled? */
3113         if (guest_cpuid_is_amd_or_hygon(vcpu))
3114                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3115
3116         return false;
3117 }
3118
3119 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3120 {
3121         u64 mcg_cap = vcpu->arch.mcg_cap;
3122         unsigned bank_num = mcg_cap & 0xff;
3123         u32 msr = msr_info->index;
3124         u64 data = msr_info->data;
3125
3126         switch (msr) {
3127         case MSR_IA32_MCG_STATUS:
3128                 vcpu->arch.mcg_status = data;
3129                 break;
3130         case MSR_IA32_MCG_CTL:
3131                 if (!(mcg_cap & MCG_CTL_P) &&
3132                     (data || !msr_info->host_initiated))
3133                         return 1;
3134                 if (data != 0 && data != ~(u64)0)
3135                         return 1;
3136                 vcpu->arch.mcg_ctl = data;
3137                 break;
3138         default:
3139                 if (msr >= MSR_IA32_MC0_CTL &&
3140                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3141                         u32 offset = array_index_nospec(
3142                                 msr - MSR_IA32_MC0_CTL,
3143                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3144
3145                         /* only 0 or all 1s can be written to IA32_MCi_CTL
3146                          * some Linux kernels though clear bit 10 in bank 4 to
3147                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3148                          * this to avoid an uncatched #GP in the guest
3149                          */
3150                         if ((offset & 0x3) == 0 &&
3151                             data != 0 && (data | (1 << 10)) != ~(u64)0)
3152                                 return -1;
3153
3154                         /* MCi_STATUS */
3155                         if (!msr_info->host_initiated &&
3156                             (offset & 0x3) == 1 && data != 0) {
3157                                 if (!can_set_mci_status(vcpu))
3158                                         return -1;
3159                         }
3160
3161                         vcpu->arch.mce_banks[offset] = data;
3162                         break;
3163                 }
3164                 return 1;
3165         }
3166         return 0;
3167 }
3168
3169 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3170 {
3171         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3172
3173         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3174 }
3175
3176 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3177 {
3178         gpa_t gpa = data & ~0x3f;
3179
3180         /* Bits 4:5 are reserved, Should be zero */
3181         if (data & 0x30)
3182                 return 1;
3183
3184         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3185             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3186                 return 1;
3187
3188         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3189             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3190                 return 1;
3191
3192         if (!lapic_in_kernel(vcpu))
3193                 return data ? 1 : 0;
3194
3195         vcpu->arch.apf.msr_en_val = data;
3196
3197         if (!kvm_pv_async_pf_enabled(vcpu)) {
3198                 kvm_clear_async_pf_completion_queue(vcpu);
3199                 kvm_async_pf_hash_reset(vcpu);
3200                 return 0;
3201         }
3202
3203         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3204                                         sizeof(u64)))
3205                 return 1;
3206
3207         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3208         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3209
3210         kvm_async_pf_wakeup_all(vcpu);
3211
3212         return 0;
3213 }
3214
3215 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3216 {
3217         /* Bits 8-63 are reserved */
3218         if (data >> 8)
3219                 return 1;
3220
3221         if (!lapic_in_kernel(vcpu))
3222                 return 1;
3223
3224         vcpu->arch.apf.msr_int_val = data;
3225
3226         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3227
3228         return 0;
3229 }
3230
3231 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3232 {
3233         vcpu->arch.pv_time_enabled = false;
3234         vcpu->arch.time = 0;
3235 }
3236
3237 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3238 {
3239         ++vcpu->stat.tlb_flush;
3240         static_call(kvm_x86_tlb_flush_all)(vcpu);
3241 }
3242
3243 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3244 {
3245         ++vcpu->stat.tlb_flush;
3246
3247         if (!tdp_enabled) {
3248                 /*
3249                  * A TLB flush on behalf of the guest is equivalent to
3250                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3251                  * a forced sync of the shadow page tables.  Ensure all the
3252                  * roots are synced and the guest TLB in hardware is clean.
3253                  */
3254                 kvm_mmu_sync_roots(vcpu);
3255                 kvm_mmu_sync_prev_roots(vcpu);
3256         }
3257
3258         static_call(kvm_x86_tlb_flush_guest)(vcpu);
3259 }
3260
3261 static void record_steal_time(struct kvm_vcpu *vcpu)
3262 {
3263         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3264         struct kvm_steal_time __user *st;
3265         struct kvm_memslots *slots;
3266         u64 steal;
3267         u32 version;
3268
3269         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3270                 kvm_xen_runstate_set_running(vcpu);
3271                 return;
3272         }
3273
3274         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3275                 return;
3276
3277         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3278                 return;
3279
3280         slots = kvm_memslots(vcpu->kvm);
3281
3282         if (unlikely(slots->generation != ghc->generation ||
3283                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3284                 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3285
3286                 /* We rely on the fact that it fits in a single page. */
3287                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3288
3289                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3290                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3291                         return;
3292         }
3293
3294         st = (struct kvm_steal_time __user *)ghc->hva;
3295         /*
3296          * Doing a TLB flush here, on the guest's behalf, can avoid
3297          * expensive IPIs.
3298          */
3299         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3300                 u8 st_preempted = 0;
3301                 int err = -EFAULT;
3302
3303                 if (!user_access_begin(st, sizeof(*st)))
3304                         return;
3305
3306                 asm volatile("1: xchgb %0, %2\n"
3307                              "xor %1, %1\n"
3308                              "2:\n"
3309                              _ASM_EXTABLE_UA(1b, 2b)
3310                              : "+r" (st_preempted),
3311                                "+&r" (err)
3312                              : "m" (st->preempted));
3313                 if (err)
3314                         goto out;
3315
3316                 user_access_end();
3317
3318                 vcpu->arch.st.preempted = 0;
3319
3320                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3321                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3322                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3323                         kvm_vcpu_flush_tlb_guest(vcpu);
3324
3325                 if (!user_access_begin(st, sizeof(*st)))
3326                         goto dirty;
3327         } else {
3328                 if (!user_access_begin(st, sizeof(*st)))
3329                         return;
3330
3331                 unsafe_put_user(0, &st->preempted, out);
3332                 vcpu->arch.st.preempted = 0;
3333         }
3334
3335         unsafe_get_user(version, &st->version, out);
3336         if (version & 1)
3337                 version += 1;  /* first time write, random junk */
3338
3339         version += 1;
3340         unsafe_put_user(version, &st->version, out);
3341
3342         smp_wmb();
3343
3344         unsafe_get_user(steal, &st->steal, out);
3345         steal += current->sched_info.run_delay -
3346                 vcpu->arch.st.last_steal;
3347         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3348         unsafe_put_user(steal, &st->steal, out);
3349
3350         version += 1;
3351         unsafe_put_user(version, &st->version, out);
3352
3353  out:
3354         user_access_end();
3355  dirty:
3356         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3357 }
3358
3359 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3360 {
3361         bool pr = false;
3362         u32 msr = msr_info->index;
3363         u64 data = msr_info->data;
3364
3365         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3366                 return kvm_xen_write_hypercall_page(vcpu, data);
3367
3368         switch (msr) {
3369         case MSR_AMD64_NB_CFG:
3370         case MSR_IA32_UCODE_WRITE:
3371         case MSR_VM_HSAVE_PA:
3372         case MSR_AMD64_PATCH_LOADER:
3373         case MSR_AMD64_BU_CFG2:
3374         case MSR_AMD64_DC_CFG:
3375         case MSR_F15H_EX_CFG:
3376                 break;
3377
3378         case MSR_IA32_UCODE_REV:
3379                 if (msr_info->host_initiated)
3380                         vcpu->arch.microcode_version = data;
3381                 break;
3382         case MSR_IA32_ARCH_CAPABILITIES:
3383                 if (!msr_info->host_initiated)
3384                         return 1;
3385                 vcpu->arch.arch_capabilities = data;
3386                 break;
3387         case MSR_IA32_PERF_CAPABILITIES: {
3388                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3389
3390                 if (!msr_info->host_initiated)
3391                         return 1;
3392                 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3393                         return 1;
3394                 if (data & ~msr_ent.data)
3395                         return 1;
3396
3397                 vcpu->arch.perf_capabilities = data;
3398
3399                 return 0;
3400                 }
3401         case MSR_EFER:
3402                 return set_efer(vcpu, msr_info);
3403         case MSR_K7_HWCR:
3404                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3405                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3406                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3407
3408                 /* Handle McStatusWrEn */
3409                 if (data == BIT_ULL(18)) {
3410                         vcpu->arch.msr_hwcr = data;
3411                 } else if (data != 0) {
3412                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3413                                     data);
3414                         return 1;
3415                 }
3416                 break;
3417         case MSR_FAM10H_MMIO_CONF_BASE:
3418                 if (data != 0) {
3419                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3420                                     "0x%llx\n", data);
3421                         return 1;
3422                 }
3423                 break;
3424         case 0x200 ... 0x2ff:
3425                 return kvm_mtrr_set_msr(vcpu, msr, data);
3426         case MSR_IA32_APICBASE:
3427                 return kvm_set_apic_base(vcpu, msr_info);
3428         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3429                 return kvm_x2apic_msr_write(vcpu, msr, data);
3430         case MSR_IA32_TSC_DEADLINE:
3431                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3432                 break;
3433         case MSR_IA32_TSC_ADJUST:
3434                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3435                         if (!msr_info->host_initiated) {
3436                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3437                                 adjust_tsc_offset_guest(vcpu, adj);
3438                                 /* Before back to guest, tsc_timestamp must be adjusted
3439                                  * as well, otherwise guest's percpu pvclock time could jump.
3440                                  */
3441                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3442                         }
3443                         vcpu->arch.ia32_tsc_adjust_msr = data;
3444                 }
3445                 break;
3446         case MSR_IA32_MISC_ENABLE:
3447                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3448                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3449                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3450                                 return 1;
3451                         vcpu->arch.ia32_misc_enable_msr = data;
3452                         kvm_update_cpuid_runtime(vcpu);
3453                 } else {
3454                         vcpu->arch.ia32_misc_enable_msr = data;
3455                 }
3456                 break;
3457         case MSR_IA32_SMBASE:
3458                 if (!msr_info->host_initiated)
3459                         return 1;
3460                 vcpu->arch.smbase = data;
3461                 break;
3462         case MSR_IA32_POWER_CTL:
3463                 vcpu->arch.msr_ia32_power_ctl = data;
3464                 break;
3465         case MSR_IA32_TSC:
3466                 if (msr_info->host_initiated) {
3467                         kvm_synchronize_tsc(vcpu, data);
3468                 } else {
3469                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3470                         adjust_tsc_offset_guest(vcpu, adj);
3471                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3472                 }
3473                 break;
3474         case MSR_IA32_XSS:
3475                 if (!msr_info->host_initiated &&
3476                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3477                         return 1;
3478                 /*
3479                  * KVM supports exposing PT to the guest, but does not support
3480                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3481                  * XSAVES/XRSTORS to save/restore PT MSRs.
3482                  */
3483                 if (data & ~supported_xss)
3484                         return 1;
3485                 vcpu->arch.ia32_xss = data;
3486                 break;
3487         case MSR_SMI_COUNT:
3488                 if (!msr_info->host_initiated)
3489                         return 1;
3490                 vcpu->arch.smi_count = data;
3491                 break;
3492         case MSR_KVM_WALL_CLOCK_NEW:
3493                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3494                         return 1;
3495
3496                 vcpu->kvm->arch.wall_clock = data;
3497                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3498                 break;
3499         case MSR_KVM_WALL_CLOCK:
3500                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3501                         return 1;
3502
3503                 vcpu->kvm->arch.wall_clock = data;
3504                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3505                 break;
3506         case MSR_KVM_SYSTEM_TIME_NEW:
3507                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3508                         return 1;
3509
3510                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3511                 break;
3512         case MSR_KVM_SYSTEM_TIME:
3513                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3514                         return 1;
3515
3516                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3517                 break;
3518         case MSR_KVM_ASYNC_PF_EN:
3519                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3520                         return 1;
3521
3522                 if (kvm_pv_enable_async_pf(vcpu, data))
3523                         return 1;
3524                 break;
3525         case MSR_KVM_ASYNC_PF_INT:
3526                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3527                         return 1;
3528
3529                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3530                         return 1;
3531                 break;
3532         case MSR_KVM_ASYNC_PF_ACK:
3533                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3534                         return 1;
3535                 if (data & 0x1) {
3536                         vcpu->arch.apf.pageready_pending = false;
3537                         kvm_check_async_pf_completion(vcpu);
3538                 }
3539                 break;
3540         case MSR_KVM_STEAL_TIME:
3541                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3542                         return 1;
3543
3544                 if (unlikely(!sched_info_on()))
3545                         return 1;
3546
3547                 if (data & KVM_STEAL_RESERVED_MASK)
3548                         return 1;
3549
3550                 vcpu->arch.st.msr_val = data;
3551
3552                 if (!(data & KVM_MSR_ENABLED))
3553                         break;
3554
3555                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3556
3557                 break;
3558         case MSR_KVM_PV_EOI_EN:
3559                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3560                         return 1;
3561
3562                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3563                         return 1;
3564                 break;
3565
3566         case MSR_KVM_POLL_CONTROL:
3567                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3568                         return 1;
3569
3570                 /* only enable bit supported */
3571                 if (data & (-1ULL << 1))
3572                         return 1;
3573
3574                 vcpu->arch.msr_kvm_poll_control = data;
3575                 break;
3576
3577         case MSR_IA32_MCG_CTL:
3578         case MSR_IA32_MCG_STATUS:
3579         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3580                 return set_msr_mce(vcpu, msr_info);
3581
3582         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3583         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3584                 pr = true;
3585                 fallthrough;
3586         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3587         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3588                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3589                         return kvm_pmu_set_msr(vcpu, msr_info);
3590
3591                 if (pr || data != 0)
3592                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3593                                     "0x%x data 0x%llx\n", msr, data);
3594                 break;
3595         case MSR_K7_CLK_CTL:
3596                 /*
3597                  * Ignore all writes to this no longer documented MSR.
3598                  * Writes are only relevant for old K7 processors,
3599                  * all pre-dating SVM, but a recommended workaround from
3600                  * AMD for these chips. It is possible to specify the
3601                  * affected processor models on the command line, hence
3602                  * the need to ignore the workaround.
3603                  */
3604                 break;
3605         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3606         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3607         case HV_X64_MSR_SYNDBG_OPTIONS:
3608         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3609         case HV_X64_MSR_CRASH_CTL:
3610         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3611         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3612         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3613         case HV_X64_MSR_TSC_EMULATION_STATUS:
3614                 return kvm_hv_set_msr_common(vcpu, msr, data,
3615                                              msr_info->host_initiated);
3616         case MSR_IA32_BBL_CR_CTL3:
3617                 /* Drop writes to this legacy MSR -- see rdmsr
3618                  * counterpart for further detail.
3619                  */
3620                 if (report_ignored_msrs)
3621                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3622                                 msr, data);
3623                 break;
3624         case MSR_AMD64_OSVW_ID_LENGTH:
3625                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3626                         return 1;
3627                 vcpu->arch.osvw.length = data;
3628                 break;
3629         case MSR_AMD64_OSVW_STATUS:
3630                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3631                         return 1;
3632                 vcpu->arch.osvw.status = data;
3633                 break;
3634         case MSR_PLATFORM_INFO:
3635                 if (!msr_info->host_initiated ||
3636                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3637                      cpuid_fault_enabled(vcpu)))
3638                         return 1;
3639                 vcpu->arch.msr_platform_info = data;
3640                 break;
3641         case MSR_MISC_FEATURES_ENABLES:
3642                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3643                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3644                      !supports_cpuid_fault(vcpu)))
3645                         return 1;
3646                 vcpu->arch.msr_misc_features_enables = data;
3647                 break;
3648         default:
3649                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3650                         return kvm_pmu_set_msr(vcpu, msr_info);
3651                 return KVM_MSR_RET_INVALID;
3652         }
3653         return 0;
3654 }
3655 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3656
3657 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3658 {
3659         u64 data;
3660         u64 mcg_cap = vcpu->arch.mcg_cap;
3661         unsigned bank_num = mcg_cap & 0xff;
3662
3663         switch (msr) {
3664         case MSR_IA32_P5_MC_ADDR:
3665         case MSR_IA32_P5_MC_TYPE:
3666                 data = 0;
3667                 break;
3668         case MSR_IA32_MCG_CAP:
3669                 data = vcpu->arch.mcg_cap;
3670                 break;
3671         case MSR_IA32_MCG_CTL:
3672                 if (!(mcg_cap & MCG_CTL_P) && !host)
3673                         return 1;
3674                 data = vcpu->arch.mcg_ctl;
3675                 break;
3676         case MSR_IA32_MCG_STATUS:
3677                 data = vcpu->arch.mcg_status;
3678                 break;
3679         default:
3680                 if (msr >= MSR_IA32_MC0_CTL &&
3681                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3682                         u32 offset = array_index_nospec(
3683                                 msr - MSR_IA32_MC0_CTL,
3684                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3685
3686                         data = vcpu->arch.mce_banks[offset];
3687                         break;
3688                 }
3689                 return 1;
3690         }
3691         *pdata = data;
3692         return 0;
3693 }
3694
3695 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3696 {
3697         switch (msr_info->index) {
3698         case MSR_IA32_PLATFORM_ID:
3699         case MSR_IA32_EBL_CR_POWERON:
3700         case MSR_IA32_LASTBRANCHFROMIP:
3701         case MSR_IA32_LASTBRANCHTOIP:
3702         case MSR_IA32_LASTINTFROMIP:
3703         case MSR_IA32_LASTINTTOIP:
3704         case MSR_AMD64_SYSCFG:
3705         case MSR_K8_TSEG_ADDR:
3706         case MSR_K8_TSEG_MASK:
3707         case MSR_VM_HSAVE_PA:
3708         case MSR_K8_INT_PENDING_MSG:
3709         case MSR_AMD64_NB_CFG:
3710         case MSR_FAM10H_MMIO_CONF_BASE:
3711         case MSR_AMD64_BU_CFG2:
3712         case MSR_IA32_PERF_CTL:
3713         case MSR_AMD64_DC_CFG:
3714         case MSR_F15H_EX_CFG:
3715         /*
3716          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3717          * limit) MSRs. Just return 0, as we do not want to expose the host
3718          * data here. Do not conditionalize this on CPUID, as KVM does not do
3719          * so for existing CPU-specific MSRs.
3720          */
3721         case MSR_RAPL_POWER_UNIT:
3722         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3723         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3724         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3725         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3726                 msr_info->data = 0;
3727                 break;
3728         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3729                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3730                         return kvm_pmu_get_msr(vcpu, msr_info);
3731                 if (!msr_info->host_initiated)
3732                         return 1;
3733                 msr_info->data = 0;
3734                 break;
3735         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3736         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3737         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3738         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3739                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3740                         return kvm_pmu_get_msr(vcpu, msr_info);
3741                 msr_info->data = 0;
3742                 break;
3743         case MSR_IA32_UCODE_REV:
3744                 msr_info->data = vcpu->arch.microcode_version;
3745                 break;
3746         case MSR_IA32_ARCH_CAPABILITIES:
3747                 if (!msr_info->host_initiated &&
3748                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3749                         return 1;
3750                 msr_info->data = vcpu->arch.arch_capabilities;
3751                 break;
3752         case MSR_IA32_PERF_CAPABILITIES:
3753                 if (!msr_info->host_initiated &&
3754                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3755                         return 1;
3756                 msr_info->data = vcpu->arch.perf_capabilities;
3757                 break;
3758         case MSR_IA32_POWER_CTL:
3759                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3760                 break;
3761         case MSR_IA32_TSC: {
3762                 /*
3763                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3764                  * even when not intercepted. AMD manual doesn't explicitly
3765                  * state this but appears to behave the same.
3766                  *
3767                  * On userspace reads and writes, however, we unconditionally
3768                  * return L1's TSC value to ensure backwards-compatible
3769                  * behavior for migration.
3770                  */
3771                 u64 offset, ratio;
3772
3773                 if (msr_info->host_initiated) {
3774                         offset = vcpu->arch.l1_tsc_offset;
3775                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
3776                 } else {
3777                         offset = vcpu->arch.tsc_offset;
3778                         ratio = vcpu->arch.tsc_scaling_ratio;
3779                 }
3780
3781                 msr_info->data = kvm_scale_tsc(vcpu, rdtsc(), ratio) + offset;
3782                 break;
3783         }
3784         case MSR_MTRRcap:
3785         case 0x200 ... 0x2ff:
3786                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3787         case 0xcd: /* fsb frequency */
3788                 msr_info->data = 3;
3789                 break;
3790                 /*
3791                  * MSR_EBC_FREQUENCY_ID
3792                  * Conservative value valid for even the basic CPU models.
3793                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3794                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3795                  * and 266MHz for model 3, or 4. Set Core Clock
3796                  * Frequency to System Bus Frequency Ratio to 1 (bits
3797                  * 31:24) even though these are only valid for CPU
3798                  * models > 2, however guests may end up dividing or
3799                  * multiplying by zero otherwise.
3800                  */
3801         case MSR_EBC_FREQUENCY_ID:
3802                 msr_info->data = 1 << 24;
3803                 break;
3804         case MSR_IA32_APICBASE:
3805                 msr_info->data = kvm_get_apic_base(vcpu);
3806                 break;
3807         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3808                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3809         case MSR_IA32_TSC_DEADLINE:
3810                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3811                 break;
3812         case MSR_IA32_TSC_ADJUST:
3813                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3814                 break;
3815         case MSR_IA32_MISC_ENABLE:
3816                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3817                 break;
3818         case MSR_IA32_SMBASE:
3819                 if (!msr_info->host_initiated)
3820                         return 1;
3821                 msr_info->data = vcpu->arch.smbase;
3822                 break;
3823         case MSR_SMI_COUNT:
3824                 msr_info->data = vcpu->arch.smi_count;
3825                 break;
3826         case MSR_IA32_PERF_STATUS:
3827                 /* TSC increment by tick */
3828                 msr_info->data = 1000ULL;
3829                 /* CPU multiplier */
3830                 msr_info->data |= (((uint64_t)4ULL) << 40);
3831                 break;
3832         case MSR_EFER:
3833                 msr_info->data = vcpu->arch.efer;
3834                 break;
3835         case MSR_KVM_WALL_CLOCK:
3836                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3837                         return 1;
3838
3839                 msr_info->data = vcpu->kvm->arch.wall_clock;
3840                 break;
3841         case MSR_KVM_WALL_CLOCK_NEW:
3842                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3843                         return 1;
3844
3845                 msr_info->data = vcpu->kvm->arch.wall_clock;
3846                 break;
3847         case MSR_KVM_SYSTEM_TIME:
3848                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3849                         return 1;
3850
3851                 msr_info->data = vcpu->arch.time;
3852                 break;
3853         case MSR_KVM_SYSTEM_TIME_NEW:
3854                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3855                         return 1;
3856
3857                 msr_info->data = vcpu->arch.time;
3858                 break;
3859         case MSR_KVM_ASYNC_PF_EN:
3860                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3861                         return 1;
3862
3863                 msr_info->data = vcpu->arch.apf.msr_en_val;
3864                 break;
3865         case MSR_KVM_ASYNC_PF_INT:
3866                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3867                         return 1;
3868
3869                 msr_info->data = vcpu->arch.apf.msr_int_val;
3870                 break;
3871         case MSR_KVM_ASYNC_PF_ACK:
3872                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3873                         return 1;
3874
3875                 msr_info->data = 0;
3876                 break;
3877         case MSR_KVM_STEAL_TIME:
3878                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3879                         return 1;
3880
3881                 msr_info->data = vcpu->arch.st.msr_val;
3882                 break;
3883         case MSR_KVM_PV_EOI_EN:
3884                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3885                         return 1;
3886
3887                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3888                 break;
3889         case MSR_KVM_POLL_CONTROL:
3890                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3891                         return 1;
3892
3893                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3894                 break;
3895         case MSR_IA32_P5_MC_ADDR:
3896         case MSR_IA32_P5_MC_TYPE:
3897         case MSR_IA32_MCG_CAP:
3898         case MSR_IA32_MCG_CTL:
3899         case MSR_IA32_MCG_STATUS:
3900         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3901                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3902                                    msr_info->host_initiated);
3903         case MSR_IA32_XSS:
3904                 if (!msr_info->host_initiated &&
3905                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3906                         return 1;
3907                 msr_info->data = vcpu->arch.ia32_xss;
3908                 break;
3909         case MSR_K7_CLK_CTL:
3910                 /*
3911                  * Provide expected ramp-up count for K7. All other
3912                  * are set to zero, indicating minimum divisors for
3913                  * every field.
3914                  *
3915                  * This prevents guest kernels on AMD host with CPU
3916                  * type 6, model 8 and higher from exploding due to
3917                  * the rdmsr failing.
3918                  */
3919                 msr_info->data = 0x20000000;
3920                 break;
3921         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3922         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3923         case HV_X64_MSR_SYNDBG_OPTIONS:
3924         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3925         case HV_X64_MSR_CRASH_CTL:
3926         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3927         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3928         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3929         case HV_X64_MSR_TSC_EMULATION_STATUS:
3930                 return kvm_hv_get_msr_common(vcpu,
3931                                              msr_info->index, &msr_info->data,
3932                                              msr_info->host_initiated);
3933         case MSR_IA32_BBL_CR_CTL3:
3934                 /* This legacy MSR exists but isn't fully documented in current
3935                  * silicon.  It is however accessed by winxp in very narrow
3936                  * scenarios where it sets bit #19, itself documented as
3937                  * a "reserved" bit.  Best effort attempt to source coherent
3938                  * read data here should the balance of the register be
3939                  * interpreted by the guest:
3940                  *
3941                  * L2 cache control register 3: 64GB range, 256KB size,
3942                  * enabled, latency 0x1, configured
3943                  */
3944                 msr_info->data = 0xbe702111;
3945                 break;
3946         case MSR_AMD64_OSVW_ID_LENGTH:
3947                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3948                         return 1;
3949                 msr_info->data = vcpu->arch.osvw.length;
3950                 break;
3951         case MSR_AMD64_OSVW_STATUS:
3952                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3953                         return 1;
3954                 msr_info->data = vcpu->arch.osvw.status;
3955                 break;
3956         case MSR_PLATFORM_INFO:
3957                 if (!msr_info->host_initiated &&
3958                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3959                         return 1;
3960                 msr_info->data = vcpu->arch.msr_platform_info;
3961                 break;
3962         case MSR_MISC_FEATURES_ENABLES:
3963                 msr_info->data = vcpu->arch.msr_misc_features_enables;
3964                 break;
3965         case MSR_K7_HWCR:
3966                 msr_info->data = vcpu->arch.msr_hwcr;
3967                 break;
3968         default:
3969                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3970                         return kvm_pmu_get_msr(vcpu, msr_info);
3971                 return KVM_MSR_RET_INVALID;
3972         }
3973         return 0;
3974 }
3975 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3976
3977 /*
3978  * Read or write a bunch of msrs. All parameters are kernel addresses.
3979  *
3980  * @return number of msrs set successfully.
3981  */
3982 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3983                     struct kvm_msr_entry *entries,
3984                     int (*do_msr)(struct kvm_vcpu *vcpu,
3985                                   unsigned index, u64 *data))
3986 {
3987         int i;
3988
3989         for (i = 0; i < msrs->nmsrs; ++i)
3990                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3991                         break;
3992
3993         return i;
3994 }
3995
3996 /*
3997  * Read or write a bunch of msrs. Parameters are user addresses.
3998  *
3999  * @return number of msrs set successfully.
4000  */
4001 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4002                   int (*do_msr)(struct kvm_vcpu *vcpu,
4003                                 unsigned index, u64 *data),
4004                   int writeback)
4005 {
4006         struct kvm_msrs msrs;
4007         struct kvm_msr_entry *entries;
4008         int r, n;
4009         unsigned size;
4010
4011         r = -EFAULT;
4012         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4013                 goto out;
4014
4015         r = -E2BIG;
4016         if (msrs.nmsrs >= MAX_IO_MSRS)
4017                 goto out;
4018
4019         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4020         entries = memdup_user(user_msrs->entries, size);
4021         if (IS_ERR(entries)) {
4022                 r = PTR_ERR(entries);
4023                 goto out;
4024         }
4025
4026         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4027         if (r < 0)
4028                 goto out_free;
4029
4030         r = -EFAULT;
4031         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4032                 goto out_free;
4033
4034         r = n;
4035
4036 out_free:
4037         kfree(entries);
4038 out:
4039         return r;
4040 }
4041
4042 static inline bool kvm_can_mwait_in_guest(void)
4043 {
4044         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4045                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4046                 boot_cpu_has(X86_FEATURE_ARAT);
4047 }
4048
4049 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4050                                             struct kvm_cpuid2 __user *cpuid_arg)
4051 {
4052         struct kvm_cpuid2 cpuid;
4053         int r;
4054
4055         r = -EFAULT;
4056         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4057                 return r;
4058
4059         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4060         if (r)
4061                 return r;
4062
4063         r = -EFAULT;
4064         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4065                 return r;
4066
4067         return 0;
4068 }
4069
4070 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4071 {
4072         int r = 0;
4073
4074         switch (ext) {
4075         case KVM_CAP_IRQCHIP:
4076         case KVM_CAP_HLT:
4077         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4078         case KVM_CAP_SET_TSS_ADDR:
4079         case KVM_CAP_EXT_CPUID:
4080         case KVM_CAP_EXT_EMUL_CPUID:
4081         case KVM_CAP_CLOCKSOURCE:
4082         case KVM_CAP_PIT:
4083         case KVM_CAP_NOP_IO_DELAY:
4084         case KVM_CAP_MP_STATE:
4085         case KVM_CAP_SYNC_MMU:
4086         case KVM_CAP_USER_NMI:
4087         case KVM_CAP_REINJECT_CONTROL:
4088         case KVM_CAP_IRQ_INJECT_STATUS:
4089         case KVM_CAP_IOEVENTFD:
4090         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4091         case KVM_CAP_PIT2:
4092         case KVM_CAP_PIT_STATE2:
4093         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4094         case KVM_CAP_VCPU_EVENTS:
4095         case KVM_CAP_HYPERV:
4096         case KVM_CAP_HYPERV_VAPIC:
4097         case KVM_CAP_HYPERV_SPIN:
4098         case KVM_CAP_HYPERV_SYNIC:
4099         case KVM_CAP_HYPERV_SYNIC2:
4100         case KVM_CAP_HYPERV_VP_INDEX:
4101         case KVM_CAP_HYPERV_EVENTFD:
4102         case KVM_CAP_HYPERV_TLBFLUSH:
4103         case KVM_CAP_HYPERV_SEND_IPI:
4104         case KVM_CAP_HYPERV_CPUID:
4105         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4106         case KVM_CAP_SYS_HYPERV_CPUID:
4107         case KVM_CAP_PCI_SEGMENT:
4108         case KVM_CAP_DEBUGREGS:
4109         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4110         case KVM_CAP_XSAVE:
4111         case KVM_CAP_ASYNC_PF:
4112         case KVM_CAP_ASYNC_PF_INT:
4113         case KVM_CAP_GET_TSC_KHZ:
4114         case KVM_CAP_KVMCLOCK_CTRL:
4115         case KVM_CAP_READONLY_MEM:
4116         case KVM_CAP_HYPERV_TIME:
4117         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4118         case KVM_CAP_TSC_DEADLINE_TIMER:
4119         case KVM_CAP_DISABLE_QUIRKS:
4120         case KVM_CAP_SET_BOOT_CPU_ID:
4121         case KVM_CAP_SPLIT_IRQCHIP:
4122         case KVM_CAP_IMMEDIATE_EXIT:
4123         case KVM_CAP_PMU_EVENT_FILTER:
4124         case KVM_CAP_GET_MSR_FEATURES:
4125         case KVM_CAP_MSR_PLATFORM_INFO:
4126         case KVM_CAP_EXCEPTION_PAYLOAD:
4127         case KVM_CAP_SET_GUEST_DEBUG:
4128         case KVM_CAP_LAST_CPU:
4129         case KVM_CAP_X86_USER_SPACE_MSR:
4130         case KVM_CAP_X86_MSR_FILTER:
4131         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4132 #ifdef CONFIG_X86_SGX_KVM
4133         case KVM_CAP_SGX_ATTRIBUTE:
4134 #endif
4135         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4136         case KVM_CAP_SREGS2:
4137         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4138         case KVM_CAP_VCPU_ATTRIBUTES:
4139                 r = 1;
4140                 break;
4141         case KVM_CAP_EXIT_HYPERCALL:
4142                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4143                 break;
4144         case KVM_CAP_SET_GUEST_DEBUG2:
4145                 return KVM_GUESTDBG_VALID_MASK;
4146 #ifdef CONFIG_KVM_XEN
4147         case KVM_CAP_XEN_HVM:
4148                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4149                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4150                     KVM_XEN_HVM_CONFIG_SHARED_INFO;
4151                 if (sched_info_on())
4152                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4153                 break;
4154 #endif
4155         case KVM_CAP_SYNC_REGS:
4156                 r = KVM_SYNC_X86_VALID_FIELDS;
4157                 break;
4158         case KVM_CAP_ADJUST_CLOCK:
4159                 r = KVM_CLOCK_VALID_FLAGS;
4160                 break;
4161         case KVM_CAP_X86_DISABLE_EXITS:
4162                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4163                       KVM_X86_DISABLE_EXITS_CSTATE;
4164                 if(kvm_can_mwait_in_guest())
4165                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
4166                 break;
4167         case KVM_CAP_X86_SMM:
4168                 /* SMBASE is usually relocated above 1M on modern chipsets,
4169                  * and SMM handlers might indeed rely on 4G segment limits,
4170                  * so do not report SMM to be available if real mode is
4171                  * emulated via vm86 mode.  Still, do not go to great lengths
4172                  * to avoid userspace's usage of the feature, because it is a
4173                  * fringe case that is not enabled except via specific settings
4174                  * of the module parameters.
4175                  */
4176                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4177                 break;
4178         case KVM_CAP_VAPIC:
4179                 r = !static_call(kvm_x86_cpu_has_accelerated_tpr)();
4180                 break;
4181         case KVM_CAP_NR_VCPUS:
4182                 r = num_online_cpus();
4183                 break;
4184         case KVM_CAP_MAX_VCPUS:
4185                 r = KVM_MAX_VCPUS;
4186                 break;
4187         case KVM_CAP_MAX_VCPU_ID:
4188                 r = KVM_MAX_VCPU_IDS;
4189                 break;
4190         case KVM_CAP_PV_MMU:    /* obsolete */
4191                 r = 0;
4192                 break;
4193         case KVM_CAP_MCE:
4194                 r = KVM_MAX_MCE_BANKS;
4195                 break;
4196         case KVM_CAP_XCRS:
4197                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4198                 break;
4199         case KVM_CAP_TSC_CONTROL:
4200                 r = kvm_has_tsc_control;
4201                 break;
4202         case KVM_CAP_X2APIC_API:
4203                 r = KVM_X2APIC_API_VALID_FLAGS;
4204                 break;
4205         case KVM_CAP_NESTED_STATE:
4206                 r = kvm_x86_ops.nested_ops->get_state ?
4207                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4208                 break;
4209         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4210                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4211                 break;
4212         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4213                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4214                 break;
4215         case KVM_CAP_SMALLER_MAXPHYADDR:
4216                 r = (int) allow_smaller_maxphyaddr;
4217                 break;
4218         case KVM_CAP_STEAL_TIME:
4219                 r = sched_info_on();
4220                 break;
4221         case KVM_CAP_X86_BUS_LOCK_EXIT:
4222                 if (kvm_has_bus_lock_exit)
4223                         r = KVM_BUS_LOCK_DETECTION_OFF |
4224                             KVM_BUS_LOCK_DETECTION_EXIT;
4225                 else
4226                         r = 0;
4227                 break;
4228         default:
4229                 break;
4230         }
4231         return r;
4232
4233 }
4234
4235 long kvm_arch_dev_ioctl(struct file *filp,
4236                         unsigned int ioctl, unsigned long arg)
4237 {
4238         void __user *argp = (void __user *)arg;
4239         long r;
4240
4241         switch (ioctl) {
4242         case KVM_GET_MSR_INDEX_LIST: {
4243                 struct kvm_msr_list __user *user_msr_list = argp;
4244                 struct kvm_msr_list msr_list;
4245                 unsigned n;
4246
4247                 r = -EFAULT;
4248                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4249                         goto out;
4250                 n = msr_list.nmsrs;
4251                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4252                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4253                         goto out;
4254                 r = -E2BIG;
4255                 if (n < msr_list.nmsrs)
4256                         goto out;
4257                 r = -EFAULT;
4258                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4259                                  num_msrs_to_save * sizeof(u32)))
4260                         goto out;
4261                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4262                                  &emulated_msrs,
4263                                  num_emulated_msrs * sizeof(u32)))
4264                         goto out;
4265                 r = 0;
4266                 break;
4267         }
4268         case KVM_GET_SUPPORTED_CPUID:
4269         case KVM_GET_EMULATED_CPUID: {
4270                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4271                 struct kvm_cpuid2 cpuid;
4272
4273                 r = -EFAULT;
4274                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4275                         goto out;
4276
4277                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4278                                             ioctl);
4279                 if (r)
4280                         goto out;
4281
4282                 r = -EFAULT;
4283                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4284                         goto out;
4285                 r = 0;
4286                 break;
4287         }
4288         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4289                 r = -EFAULT;
4290                 if (copy_to_user(argp, &kvm_mce_cap_supported,
4291                                  sizeof(kvm_mce_cap_supported)))
4292                         goto out;
4293                 r = 0;
4294                 break;
4295         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4296                 struct kvm_msr_list __user *user_msr_list = argp;
4297                 struct kvm_msr_list msr_list;
4298                 unsigned int n;
4299
4300                 r = -EFAULT;
4301                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4302                         goto out;
4303                 n = msr_list.nmsrs;
4304                 msr_list.nmsrs = num_msr_based_features;
4305                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4306                         goto out;
4307                 r = -E2BIG;
4308                 if (n < msr_list.nmsrs)
4309                         goto out;
4310                 r = -EFAULT;
4311                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4312                                  num_msr_based_features * sizeof(u32)))
4313                         goto out;
4314                 r = 0;
4315                 break;
4316         }
4317         case KVM_GET_MSRS:
4318                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4319                 break;
4320         case KVM_GET_SUPPORTED_HV_CPUID:
4321                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4322                 break;
4323         default:
4324                 r = -EINVAL;
4325                 break;
4326         }
4327 out:
4328         return r;
4329 }
4330
4331 static void wbinvd_ipi(void *garbage)
4332 {
4333         wbinvd();
4334 }
4335
4336 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4337 {
4338         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4339 }
4340
4341 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4342 {
4343         /* Address WBINVD may be executed by guest */
4344         if (need_emulate_wbinvd(vcpu)) {
4345                 if (static_call(kvm_x86_has_wbinvd_exit)())
4346                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4347                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4348                         smp_call_function_single(vcpu->cpu,
4349                                         wbinvd_ipi, NULL, 1);
4350         }
4351
4352         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4353
4354         /* Save host pkru register if supported */
4355         vcpu->arch.host_pkru = read_pkru();
4356
4357         /* Apply any externally detected TSC adjustments (due to suspend) */
4358         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4359                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4360                 vcpu->arch.tsc_offset_adjustment = 0;
4361                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4362         }
4363
4364         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4365                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4366                                 rdtsc() - vcpu->arch.last_host_tsc;
4367                 if (tsc_delta < 0)
4368                         mark_tsc_unstable("KVM discovered backwards TSC");
4369
4370                 if (kvm_check_tsc_unstable()) {
4371                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4372                                                 vcpu->arch.last_guest_tsc);
4373                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4374                         vcpu->arch.tsc_catchup = 1;
4375                 }
4376
4377                 if (kvm_lapic_hv_timer_in_use(vcpu))
4378                         kvm_lapic_restart_hv_timer(vcpu);
4379
4380                 /*
4381                  * On a host with synchronized TSC, there is no need to update
4382                  * kvmclock on vcpu->cpu migration
4383                  */
4384                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4385                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4386                 if (vcpu->cpu != cpu)
4387                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4388                 vcpu->cpu = cpu;
4389         }
4390
4391         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4392 }
4393
4394 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4395 {
4396         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4397         struct kvm_steal_time __user *st;
4398         struct kvm_memslots *slots;
4399         static const u8 preempted = KVM_VCPU_PREEMPTED;
4400
4401         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4402                 return;
4403
4404         if (vcpu->arch.st.preempted)
4405                 return;
4406
4407         /* This happens on process exit */
4408         if (unlikely(current->mm != vcpu->kvm->mm))
4409                 return;
4410
4411         slots = kvm_memslots(vcpu->kvm);
4412
4413         if (unlikely(slots->generation != ghc->generation ||
4414                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4415                 return;
4416
4417         st = (struct kvm_steal_time __user *)ghc->hva;
4418         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4419
4420         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4421                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4422
4423         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4424 }
4425
4426 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4427 {
4428         int idx;
4429
4430         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4431                 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4432
4433         /*
4434          * Take the srcu lock as memslots will be accessed to check the gfn
4435          * cache generation against the memslots generation.
4436          */
4437         idx = srcu_read_lock(&vcpu->kvm->srcu);
4438         if (kvm_xen_msr_enabled(vcpu->kvm))
4439                 kvm_xen_runstate_set_preempted(vcpu);
4440         else
4441                 kvm_steal_time_set_preempted(vcpu);
4442         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4443
4444         static_call(kvm_x86_vcpu_put)(vcpu);
4445         vcpu->arch.last_host_tsc = rdtsc();
4446 }
4447
4448 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4449                                     struct kvm_lapic_state *s)
4450 {
4451         if (vcpu->arch.apicv_active)
4452                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
4453
4454         return kvm_apic_get_state(vcpu, s);
4455 }
4456
4457 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4458                                     struct kvm_lapic_state *s)
4459 {
4460         int r;
4461
4462         r = kvm_apic_set_state(vcpu, s);
4463         if (r)
4464                 return r;
4465         update_cr8_intercept(vcpu);
4466
4467         return 0;
4468 }
4469
4470 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4471 {
4472         /*
4473          * We can accept userspace's request for interrupt injection
4474          * as long as we have a place to store the interrupt number.
4475          * The actual injection will happen when the CPU is able to
4476          * deliver the interrupt.
4477          */
4478         if (kvm_cpu_has_extint(vcpu))
4479                 return false;
4480
4481         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4482         return (!lapic_in_kernel(vcpu) ||
4483                 kvm_apic_accept_pic_intr(vcpu));
4484 }
4485
4486 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4487 {
4488         /*
4489          * Do not cause an interrupt window exit if an exception
4490          * is pending or an event needs reinjection; userspace
4491          * might want to inject the interrupt manually using KVM_SET_REGS
4492          * or KVM_SET_SREGS.  For that to work, we must be at an
4493          * instruction boundary and with no events half-injected.
4494          */
4495         return (kvm_arch_interrupt_allowed(vcpu) &&
4496                 kvm_cpu_accept_dm_intr(vcpu) &&
4497                 !kvm_event_needs_reinjection(vcpu) &&
4498                 !vcpu->arch.exception.pending);
4499 }
4500
4501 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4502                                     struct kvm_interrupt *irq)
4503 {
4504         if (irq->irq >= KVM_NR_INTERRUPTS)
4505                 return -EINVAL;
4506
4507         if (!irqchip_in_kernel(vcpu->kvm)) {
4508                 kvm_queue_interrupt(vcpu, irq->irq, false);
4509                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4510                 return 0;
4511         }
4512
4513         /*
4514          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4515          * fail for in-kernel 8259.
4516          */
4517         if (pic_in_kernel(vcpu->kvm))
4518                 return -ENXIO;
4519
4520         if (vcpu->arch.pending_external_vector != -1)
4521                 return -EEXIST;
4522
4523         vcpu->arch.pending_external_vector = irq->irq;
4524         kvm_make_request(KVM_REQ_EVENT, vcpu);
4525         return 0;
4526 }
4527
4528 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4529 {
4530         kvm_inject_nmi(vcpu);
4531
4532         return 0;
4533 }
4534
4535 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4536 {
4537         kvm_make_request(KVM_REQ_SMI, vcpu);
4538
4539         return 0;
4540 }
4541
4542 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4543                                            struct kvm_tpr_access_ctl *tac)
4544 {
4545         if (tac->flags)
4546                 return -EINVAL;
4547         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4548         return 0;
4549 }
4550
4551 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4552                                         u64 mcg_cap)
4553 {
4554         int r;
4555         unsigned bank_num = mcg_cap & 0xff, bank;
4556
4557         r = -EINVAL;
4558         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4559                 goto out;
4560         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4561                 goto out;
4562         r = 0;
4563         vcpu->arch.mcg_cap = mcg_cap;
4564         /* Init IA32_MCG_CTL to all 1s */
4565         if (mcg_cap & MCG_CTL_P)
4566                 vcpu->arch.mcg_ctl = ~(u64)0;
4567         /* Init IA32_MCi_CTL to all 1s */
4568         for (bank = 0; bank < bank_num; bank++)
4569                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4570
4571         static_call(kvm_x86_setup_mce)(vcpu);
4572 out:
4573         return r;
4574 }
4575
4576 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4577                                       struct kvm_x86_mce *mce)
4578 {
4579         u64 mcg_cap = vcpu->arch.mcg_cap;
4580         unsigned bank_num = mcg_cap & 0xff;
4581         u64 *banks = vcpu->arch.mce_banks;
4582
4583         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4584                 return -EINVAL;
4585         /*
4586          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4587          * reporting is disabled
4588          */
4589         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4590             vcpu->arch.mcg_ctl != ~(u64)0)
4591                 return 0;
4592         banks += 4 * mce->bank;
4593         /*
4594          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4595          * reporting is disabled for the bank
4596          */
4597         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4598                 return 0;
4599         if (mce->status & MCI_STATUS_UC) {
4600                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4601                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4602                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4603                         return 0;
4604                 }
4605                 if (banks[1] & MCI_STATUS_VAL)
4606                         mce->status |= MCI_STATUS_OVER;
4607                 banks[2] = mce->addr;
4608                 banks[3] = mce->misc;
4609                 vcpu->arch.mcg_status = mce->mcg_status;
4610                 banks[1] = mce->status;
4611                 kvm_queue_exception(vcpu, MC_VECTOR);
4612         } else if (!(banks[1] & MCI_STATUS_VAL)
4613                    || !(banks[1] & MCI_STATUS_UC)) {
4614                 if (banks[1] & MCI_STATUS_VAL)
4615                         mce->status |= MCI_STATUS_OVER;
4616                 banks[2] = mce->addr;
4617                 banks[3] = mce->misc;
4618                 banks[1] = mce->status;
4619         } else
4620                 banks[1] |= MCI_STATUS_OVER;
4621         return 0;
4622 }
4623
4624 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4625                                                struct kvm_vcpu_events *events)
4626 {
4627         process_nmi(vcpu);
4628
4629         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4630                 process_smi(vcpu);
4631
4632         /*
4633          * In guest mode, payload delivery should be deferred,
4634          * so that the L1 hypervisor can intercept #PF before
4635          * CR2 is modified (or intercept #DB before DR6 is
4636          * modified under nVMX). Unless the per-VM capability,
4637          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4638          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4639          * opportunistically defer the exception payload, deliver it if the
4640          * capability hasn't been requested before processing a
4641          * KVM_GET_VCPU_EVENTS.
4642          */
4643         if (!vcpu->kvm->arch.exception_payload_enabled &&
4644             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4645                 kvm_deliver_exception_payload(vcpu);
4646
4647         /*
4648          * The API doesn't provide the instruction length for software
4649          * exceptions, so don't report them. As long as the guest RIP
4650          * isn't advanced, we should expect to encounter the exception
4651          * again.
4652          */
4653         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4654                 events->exception.injected = 0;
4655                 events->exception.pending = 0;
4656         } else {
4657                 events->exception.injected = vcpu->arch.exception.injected;
4658                 events->exception.pending = vcpu->arch.exception.pending;
4659                 /*
4660                  * For ABI compatibility, deliberately conflate
4661                  * pending and injected exceptions when
4662                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4663                  */
4664                 if (!vcpu->kvm->arch.exception_payload_enabled)
4665                         events->exception.injected |=
4666                                 vcpu->arch.exception.pending;
4667         }
4668         events->exception.nr = vcpu->arch.exception.nr;
4669         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4670         events->exception.error_code = vcpu->arch.exception.error_code;
4671         events->exception_has_payload = vcpu->arch.exception.has_payload;
4672         events->exception_payload = vcpu->arch.exception.payload;
4673
4674         events->interrupt.injected =
4675                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4676         events->interrupt.nr = vcpu->arch.interrupt.nr;
4677         events->interrupt.soft = 0;
4678         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4679
4680         events->nmi.injected = vcpu->arch.nmi_injected;
4681         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4682         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4683         events->nmi.pad = 0;
4684
4685         events->sipi_vector = 0; /* never valid when reporting to user space */
4686
4687         events->smi.smm = is_smm(vcpu);
4688         events->smi.pending = vcpu->arch.smi_pending;
4689         events->smi.smm_inside_nmi =
4690                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4691         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4692
4693         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4694                          | KVM_VCPUEVENT_VALID_SHADOW
4695                          | KVM_VCPUEVENT_VALID_SMM);
4696         if (vcpu->kvm->arch.exception_payload_enabled)
4697                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4698
4699         memset(&events->reserved, 0, sizeof(events->reserved));
4700 }
4701
4702 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4703
4704 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4705                                               struct kvm_vcpu_events *events)
4706 {
4707         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4708                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4709                               | KVM_VCPUEVENT_VALID_SHADOW
4710                               | KVM_VCPUEVENT_VALID_SMM
4711                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4712                 return -EINVAL;
4713
4714         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4715                 if (!vcpu->kvm->arch.exception_payload_enabled)
4716                         return -EINVAL;
4717                 if (events->exception.pending)
4718                         events->exception.injected = 0;
4719                 else
4720                         events->exception_has_payload = 0;
4721         } else {
4722                 events->exception.pending = 0;
4723                 events->exception_has_payload = 0;
4724         }
4725
4726         if ((events->exception.injected || events->exception.pending) &&
4727             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4728                 return -EINVAL;
4729
4730         /* INITs are latched while in SMM */
4731         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4732             (events->smi.smm || events->smi.pending) &&
4733             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4734                 return -EINVAL;
4735
4736         process_nmi(vcpu);
4737         vcpu->arch.exception.injected = events->exception.injected;
4738         vcpu->arch.exception.pending = events->exception.pending;
4739         vcpu->arch.exception.nr = events->exception.nr;
4740         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4741         vcpu->arch.exception.error_code = events->exception.error_code;
4742         vcpu->arch.exception.has_payload = events->exception_has_payload;
4743         vcpu->arch.exception.payload = events->exception_payload;
4744
4745         vcpu->arch.interrupt.injected = events->interrupt.injected;
4746         vcpu->arch.interrupt.nr = events->interrupt.nr;
4747         vcpu->arch.interrupt.soft = events->interrupt.soft;
4748         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4749                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4750                                                 events->interrupt.shadow);
4751
4752         vcpu->arch.nmi_injected = events->nmi.injected;
4753         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4754                 vcpu->arch.nmi_pending = events->nmi.pending;
4755         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4756
4757         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4758             lapic_in_kernel(vcpu))
4759                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4760
4761         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4762                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm)
4763                         kvm_smm_changed(vcpu, events->smi.smm);
4764
4765                 vcpu->arch.smi_pending = events->smi.pending;
4766
4767                 if (events->smi.smm) {
4768                         if (events->smi.smm_inside_nmi)
4769                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4770                         else
4771                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4772                 }
4773
4774                 if (lapic_in_kernel(vcpu)) {
4775                         if (events->smi.latched_init)
4776                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4777                         else
4778                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4779                 }
4780         }
4781
4782         kvm_make_request(KVM_REQ_EVENT, vcpu);
4783
4784         return 0;
4785 }
4786
4787 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4788                                              struct kvm_debugregs *dbgregs)
4789 {
4790         unsigned long val;
4791
4792         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4793         kvm_get_dr(vcpu, 6, &val);
4794         dbgregs->dr6 = val;
4795         dbgregs->dr7 = vcpu->arch.dr7;
4796         dbgregs->flags = 0;
4797         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4798 }
4799
4800 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4801                                             struct kvm_debugregs *dbgregs)
4802 {
4803         if (dbgregs->flags)
4804                 return -EINVAL;
4805
4806         if (!kvm_dr6_valid(dbgregs->dr6))
4807                 return -EINVAL;
4808         if (!kvm_dr7_valid(dbgregs->dr7))
4809                 return -EINVAL;
4810
4811         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
4812         kvm_update_dr0123(vcpu);
4813         vcpu->arch.dr6 = dbgregs->dr6;
4814         vcpu->arch.dr7 = dbgregs->dr7;
4815         kvm_update_dr7(vcpu);
4816
4817         return 0;
4818 }
4819
4820 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4821                                          struct kvm_xsave *guest_xsave)
4822 {
4823         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4824                 return;
4825
4826         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
4827                                        guest_xsave->region,
4828                                        sizeof(guest_xsave->region),
4829                                        vcpu->arch.pkru);
4830 }
4831
4832 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4833                                         struct kvm_xsave *guest_xsave)
4834 {
4835         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
4836                 return 0;
4837
4838         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
4839                                               guest_xsave->region,
4840                                               supported_xcr0, &vcpu->arch.pkru);
4841 }
4842
4843 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4844                                         struct kvm_xcrs *guest_xcrs)
4845 {
4846         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4847                 guest_xcrs->nr_xcrs = 0;
4848                 return;
4849         }
4850
4851         guest_xcrs->nr_xcrs = 1;
4852         guest_xcrs->flags = 0;
4853         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4854         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4855 }
4856
4857 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4858                                        struct kvm_xcrs *guest_xcrs)
4859 {
4860         int i, r = 0;
4861
4862         if (!boot_cpu_has(X86_FEATURE_XSAVE))
4863                 return -EINVAL;
4864
4865         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4866                 return -EINVAL;
4867
4868         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4869                 /* Only support XCR0 currently */
4870                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4871                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4872                                 guest_xcrs->xcrs[i].value);
4873                         break;
4874                 }
4875         if (r)
4876                 r = -EINVAL;
4877         return r;
4878 }
4879
4880 /*
4881  * kvm_set_guest_paused() indicates to the guest kernel that it has been
4882  * stopped by the hypervisor.  This function will be called from the host only.
4883  * EINVAL is returned when the host attempts to set the flag for a guest that
4884  * does not support pv clocks.
4885  */
4886 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4887 {
4888         if (!vcpu->arch.pv_time_enabled)
4889                 return -EINVAL;
4890         vcpu->arch.pvclock_set_guest_stopped_request = true;
4891         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4892         return 0;
4893 }
4894
4895 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
4896                                  struct kvm_device_attr *attr)
4897 {
4898         int r;
4899
4900         switch (attr->attr) {
4901         case KVM_VCPU_TSC_OFFSET:
4902                 r = 0;
4903                 break;
4904         default:
4905                 r = -ENXIO;
4906         }
4907
4908         return r;
4909 }
4910
4911 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
4912                                  struct kvm_device_attr *attr)
4913 {
4914         u64 __user *uaddr = (u64 __user *)(unsigned long)attr->addr;
4915         int r;
4916
4917         if ((u64)(unsigned long)uaddr != attr->addr)
4918                 return -EFAULT;
4919
4920         switch (attr->attr) {
4921         case KVM_VCPU_TSC_OFFSET:
4922                 r = -EFAULT;
4923                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
4924                         break;
4925                 r = 0;
4926                 break;
4927         default:
4928                 r = -ENXIO;
4929         }
4930
4931         return r;
4932 }
4933
4934 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
4935                                  struct kvm_device_attr *attr)
4936 {
4937         u64 __user *uaddr = (u64 __user *)(unsigned long)attr->addr;
4938         struct kvm *kvm = vcpu->kvm;
4939         int r;
4940
4941         if ((u64)(unsigned long)uaddr != attr->addr)
4942                 return -EFAULT;
4943
4944         switch (attr->attr) {
4945         case KVM_VCPU_TSC_OFFSET: {
4946                 u64 offset, tsc, ns;
4947                 unsigned long flags;
4948                 bool matched;
4949
4950                 r = -EFAULT;
4951                 if (get_user(offset, uaddr))
4952                         break;
4953
4954                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
4955
4956                 matched = (vcpu->arch.virtual_tsc_khz &&
4957                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
4958                            kvm->arch.last_tsc_offset == offset);
4959
4960                 tsc = kvm_scale_tsc(vcpu, rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
4961                 ns = get_kvmclock_base_ns();
4962
4963                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
4964                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
4965
4966                 r = 0;
4967                 break;
4968         }
4969         default:
4970                 r = -ENXIO;
4971         }
4972
4973         return r;
4974 }
4975
4976 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
4977                                       unsigned int ioctl,
4978                                       void __user *argp)
4979 {
4980         struct kvm_device_attr attr;
4981         int r;
4982
4983         if (copy_from_user(&attr, argp, sizeof(attr)))
4984                 return -EFAULT;
4985
4986         if (attr.group != KVM_VCPU_TSC_CTRL)
4987                 return -ENXIO;
4988
4989         switch (ioctl) {
4990         case KVM_HAS_DEVICE_ATTR:
4991                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
4992                 break;
4993         case KVM_GET_DEVICE_ATTR:
4994                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
4995                 break;
4996         case KVM_SET_DEVICE_ATTR:
4997                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
4998                 break;
4999         }
5000
5001         return r;
5002 }
5003
5004 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5005                                      struct kvm_enable_cap *cap)
5006 {
5007         int r;
5008         uint16_t vmcs_version;
5009         void __user *user_ptr;
5010
5011         if (cap->flags)
5012                 return -EINVAL;
5013
5014         switch (cap->cap) {
5015         case KVM_CAP_HYPERV_SYNIC2:
5016                 if (cap->args[0])
5017                         return -EINVAL;
5018                 fallthrough;
5019
5020         case KVM_CAP_HYPERV_SYNIC:
5021                 if (!irqchip_in_kernel(vcpu->kvm))
5022                         return -EINVAL;
5023                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5024                                              KVM_CAP_HYPERV_SYNIC2);
5025         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5026                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5027                         return -ENOTTY;
5028                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5029                 if (!r) {
5030                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5031                         if (copy_to_user(user_ptr, &vmcs_version,
5032                                          sizeof(vmcs_version)))
5033                                 r = -EFAULT;
5034                 }
5035                 return r;
5036         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5037                 if (!kvm_x86_ops.enable_direct_tlbflush)
5038                         return -ENOTTY;
5039
5040                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5041
5042         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5043                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5044
5045         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5046                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5047                 if (vcpu->arch.pv_cpuid.enforce)
5048                         kvm_update_pv_runtime(vcpu);
5049
5050                 return 0;
5051         default:
5052                 return -EINVAL;
5053         }
5054 }
5055
5056 long kvm_arch_vcpu_ioctl(struct file *filp,
5057                          unsigned int ioctl, unsigned long arg)
5058 {
5059         struct kvm_vcpu *vcpu = filp->private_data;
5060         void __user *argp = (void __user *)arg;
5061         int r;
5062         union {
5063                 struct kvm_sregs2 *sregs2;
5064                 struct kvm_lapic_state *lapic;
5065                 struct kvm_xsave *xsave;
5066                 struct kvm_xcrs *xcrs;
5067                 void *buffer;
5068         } u;
5069
5070         vcpu_load(vcpu);
5071
5072         u.buffer = NULL;
5073         switch (ioctl) {
5074         case KVM_GET_LAPIC: {
5075                 r = -EINVAL;
5076                 if (!lapic_in_kernel(vcpu))
5077                         goto out;
5078                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5079                                 GFP_KERNEL_ACCOUNT);
5080
5081                 r = -ENOMEM;
5082                 if (!u.lapic)
5083                         goto out;
5084                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5085                 if (r)
5086                         goto out;
5087                 r = -EFAULT;
5088                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5089                         goto out;
5090                 r = 0;
5091                 break;
5092         }
5093         case KVM_SET_LAPIC: {
5094                 r = -EINVAL;
5095                 if (!lapic_in_kernel(vcpu))
5096                         goto out;
5097                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5098                 if (IS_ERR(u.lapic)) {
5099                         r = PTR_ERR(u.lapic);
5100                         goto out_nofree;
5101                 }
5102
5103                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5104                 break;
5105         }
5106         case KVM_INTERRUPT: {
5107                 struct kvm_interrupt irq;
5108
5109                 r = -EFAULT;
5110                 if (copy_from_user(&irq, argp, sizeof(irq)))
5111                         goto out;
5112                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5113                 break;
5114         }
5115         case KVM_NMI: {
5116                 r = kvm_vcpu_ioctl_nmi(vcpu);
5117                 break;
5118         }
5119         case KVM_SMI: {
5120                 r = kvm_vcpu_ioctl_smi(vcpu);
5121                 break;
5122         }
5123         case KVM_SET_CPUID: {
5124                 struct kvm_cpuid __user *cpuid_arg = argp;
5125                 struct kvm_cpuid cpuid;
5126
5127                 r = -EFAULT;
5128                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5129                         goto out;
5130                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5131                 break;
5132         }
5133         case KVM_SET_CPUID2: {
5134                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5135                 struct kvm_cpuid2 cpuid;
5136
5137                 r = -EFAULT;
5138                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5139                         goto out;
5140                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5141                                               cpuid_arg->entries);
5142                 break;
5143         }
5144         case KVM_GET_CPUID2: {
5145                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5146                 struct kvm_cpuid2 cpuid;
5147
5148                 r = -EFAULT;
5149                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5150                         goto out;
5151                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5152                                               cpuid_arg->entries);
5153                 if (r)
5154                         goto out;
5155                 r = -EFAULT;
5156                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5157                         goto out;
5158                 r = 0;
5159                 break;
5160         }
5161         case KVM_GET_MSRS: {
5162                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5163                 r = msr_io(vcpu, argp, do_get_msr, 1);
5164                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5165                 break;
5166         }
5167         case KVM_SET_MSRS: {
5168                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5169                 r = msr_io(vcpu, argp, do_set_msr, 0);
5170                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5171                 break;
5172         }
5173         case KVM_TPR_ACCESS_REPORTING: {
5174                 struct kvm_tpr_access_ctl tac;
5175
5176                 r = -EFAULT;
5177                 if (copy_from_user(&tac, argp, sizeof(tac)))
5178                         goto out;
5179                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5180                 if (r)
5181                         goto out;
5182                 r = -EFAULT;
5183                 if (copy_to_user(argp, &tac, sizeof(tac)))
5184                         goto out;
5185                 r = 0;
5186                 break;
5187         };
5188         case KVM_SET_VAPIC_ADDR: {
5189                 struct kvm_vapic_addr va;
5190                 int idx;
5191
5192                 r = -EINVAL;
5193                 if (!lapic_in_kernel(vcpu))
5194                         goto out;
5195                 r = -EFAULT;
5196                 if (copy_from_user(&va, argp, sizeof(va)))
5197                         goto out;
5198                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5199                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5200                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5201                 break;
5202         }
5203         case KVM_X86_SETUP_MCE: {
5204                 u64 mcg_cap;
5205
5206                 r = -EFAULT;
5207                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5208                         goto out;
5209                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5210                 break;
5211         }
5212         case KVM_X86_SET_MCE: {
5213                 struct kvm_x86_mce mce;
5214
5215                 r = -EFAULT;
5216                 if (copy_from_user(&mce, argp, sizeof(mce)))
5217                         goto out;
5218                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5219                 break;
5220         }
5221         case KVM_GET_VCPU_EVENTS: {
5222                 struct kvm_vcpu_events events;
5223
5224                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5225
5226                 r = -EFAULT;
5227                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5228                         break;
5229                 r = 0;
5230                 break;
5231         }
5232         case KVM_SET_VCPU_EVENTS: {
5233                 struct kvm_vcpu_events events;
5234
5235                 r = -EFAULT;
5236                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5237                         break;
5238
5239                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5240                 break;
5241         }
5242         case KVM_GET_DEBUGREGS: {
5243                 struct kvm_debugregs dbgregs;
5244
5245                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5246
5247                 r = -EFAULT;
5248                 if (copy_to_user(argp, &dbgregs,
5249                                  sizeof(struct kvm_debugregs)))
5250                         break;
5251                 r = 0;
5252                 break;
5253         }
5254         case KVM_SET_DEBUGREGS: {
5255                 struct kvm_debugregs dbgregs;
5256
5257                 r = -EFAULT;
5258                 if (copy_from_user(&dbgregs, argp,
5259                                    sizeof(struct kvm_debugregs)))
5260                         break;
5261
5262                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5263                 break;
5264         }
5265         case KVM_GET_XSAVE: {
5266                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5267                 r = -ENOMEM;
5268                 if (!u.xsave)
5269                         break;
5270
5271                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5272
5273                 r = -EFAULT;
5274                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5275                         break;
5276                 r = 0;
5277                 break;
5278         }
5279         case KVM_SET_XSAVE: {
5280                 u.xsave = memdup_user(argp, sizeof(*u.xsave));
5281                 if (IS_ERR(u.xsave)) {
5282                         r = PTR_ERR(u.xsave);
5283                         goto out_nofree;
5284                 }
5285
5286                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5287                 break;
5288         }
5289         case KVM_GET_XCRS: {
5290                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5291                 r = -ENOMEM;
5292                 if (!u.xcrs)
5293                         break;
5294
5295                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5296
5297                 r = -EFAULT;
5298                 if (copy_to_user(argp, u.xcrs,
5299                                  sizeof(struct kvm_xcrs)))
5300                         break;
5301                 r = 0;
5302                 break;
5303         }
5304         case KVM_SET_XCRS: {
5305                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5306                 if (IS_ERR(u.xcrs)) {
5307                         r = PTR_ERR(u.xcrs);
5308                         goto out_nofree;
5309                 }
5310
5311                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5312                 break;
5313         }
5314         case KVM_SET_TSC_KHZ: {
5315                 u32 user_tsc_khz;
5316
5317                 r = -EINVAL;
5318                 user_tsc_khz = (u32)arg;
5319
5320                 if (kvm_has_tsc_control &&
5321                     user_tsc_khz >= kvm_max_guest_tsc_khz)
5322                         goto out;
5323
5324                 if (user_tsc_khz == 0)
5325                         user_tsc_khz = tsc_khz;
5326
5327                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5328                         r = 0;
5329
5330                 goto out;
5331         }
5332         case KVM_GET_TSC_KHZ: {
5333                 r = vcpu->arch.virtual_tsc_khz;
5334                 goto out;
5335         }
5336         case KVM_KVMCLOCK_CTRL: {
5337                 r = kvm_set_guest_paused(vcpu);
5338                 goto out;
5339         }
5340         case KVM_ENABLE_CAP: {
5341                 struct kvm_enable_cap cap;
5342
5343                 r = -EFAULT;
5344                 if (copy_from_user(&cap, argp, sizeof(cap)))
5345                         goto out;
5346                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5347                 break;
5348         }
5349         case KVM_GET_NESTED_STATE: {
5350                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5351                 u32 user_data_size;
5352
5353                 r = -EINVAL;
5354                 if (!kvm_x86_ops.nested_ops->get_state)
5355                         break;
5356
5357                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5358                 r = -EFAULT;
5359                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5360                         break;
5361
5362                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5363                                                      user_data_size);
5364                 if (r < 0)
5365                         break;
5366
5367                 if (r > user_data_size) {
5368                         if (put_user(r, &user_kvm_nested_state->size))
5369                                 r = -EFAULT;
5370                         else
5371                                 r = -E2BIG;
5372                         break;
5373                 }
5374
5375                 r = 0;
5376                 break;
5377         }
5378         case KVM_SET_NESTED_STATE: {
5379                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5380                 struct kvm_nested_state kvm_state;
5381                 int idx;
5382
5383                 r = -EINVAL;
5384                 if (!kvm_x86_ops.nested_ops->set_state)
5385                         break;
5386
5387                 r = -EFAULT;
5388                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5389                         break;
5390
5391                 r = -EINVAL;
5392                 if (kvm_state.size < sizeof(kvm_state))
5393                         break;
5394
5395                 if (kvm_state.flags &
5396                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5397                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5398                       | KVM_STATE_NESTED_GIF_SET))
5399                         break;
5400
5401                 /* nested_run_pending implies guest_mode.  */
5402                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5403                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5404                         break;
5405
5406                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5407                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5408                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5409                 break;
5410         }
5411         case KVM_GET_SUPPORTED_HV_CPUID:
5412                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5413                 break;
5414 #ifdef CONFIG_KVM_XEN
5415         case KVM_XEN_VCPU_GET_ATTR: {
5416                 struct kvm_xen_vcpu_attr xva;
5417
5418                 r = -EFAULT;
5419                 if (copy_from_user(&xva, argp, sizeof(xva)))
5420                         goto out;
5421                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5422                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5423                         r = -EFAULT;
5424                 break;
5425         }
5426         case KVM_XEN_VCPU_SET_ATTR: {
5427                 struct kvm_xen_vcpu_attr xva;
5428
5429                 r = -EFAULT;
5430                 if (copy_from_user(&xva, argp, sizeof(xva)))
5431                         goto out;
5432                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5433                 break;
5434         }
5435 #endif
5436         case KVM_GET_SREGS2: {
5437                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5438                 r = -ENOMEM;
5439                 if (!u.sregs2)
5440                         goto out;
5441                 __get_sregs2(vcpu, u.sregs2);
5442                 r = -EFAULT;
5443                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5444                         goto out;
5445                 r = 0;
5446                 break;
5447         }
5448         case KVM_SET_SREGS2: {
5449                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5450                 if (IS_ERR(u.sregs2)) {
5451                         r = PTR_ERR(u.sregs2);
5452                         u.sregs2 = NULL;
5453                         goto out;
5454                 }
5455                 r = __set_sregs2(vcpu, u.sregs2);
5456                 break;
5457         }
5458         case KVM_HAS_DEVICE_ATTR:
5459         case KVM_GET_DEVICE_ATTR:
5460         case KVM_SET_DEVICE_ATTR:
5461                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5462                 break;
5463         default:
5464                 r = -EINVAL;
5465         }
5466 out:
5467         kfree(u.buffer);
5468 out_nofree:
5469         vcpu_put(vcpu);
5470         return r;
5471 }
5472
5473 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5474 {
5475         return VM_FAULT_SIGBUS;
5476 }
5477
5478 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5479 {
5480         int ret;
5481
5482         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5483                 return -EINVAL;
5484         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5485         return ret;
5486 }
5487
5488 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5489                                               u64 ident_addr)
5490 {
5491         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5492 }
5493
5494 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5495                                          unsigned long kvm_nr_mmu_pages)
5496 {
5497         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5498                 return -EINVAL;
5499
5500         mutex_lock(&kvm->slots_lock);
5501
5502         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5503         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5504
5505         mutex_unlock(&kvm->slots_lock);
5506         return 0;
5507 }
5508
5509 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5510 {
5511         return kvm->arch.n_max_mmu_pages;
5512 }
5513
5514 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5515 {
5516         struct kvm_pic *pic = kvm->arch.vpic;
5517         int r;
5518
5519         r = 0;
5520         switch (chip->chip_id) {
5521         case KVM_IRQCHIP_PIC_MASTER:
5522                 memcpy(&chip->chip.pic, &pic->pics[0],
5523                         sizeof(struct kvm_pic_state));
5524                 break;
5525         case KVM_IRQCHIP_PIC_SLAVE:
5526                 memcpy(&chip->chip.pic, &pic->pics[1],
5527                         sizeof(struct kvm_pic_state));
5528                 break;
5529         case KVM_IRQCHIP_IOAPIC:
5530                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5531                 break;
5532         default:
5533                 r = -EINVAL;
5534                 break;
5535         }
5536         return r;
5537 }
5538
5539 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5540 {
5541         struct kvm_pic *pic = kvm->arch.vpic;
5542         int r;
5543
5544         r = 0;
5545         switch (chip->chip_id) {
5546         case KVM_IRQCHIP_PIC_MASTER:
5547                 spin_lock(&pic->lock);
5548                 memcpy(&pic->pics[0], &chip->chip.pic,
5549                         sizeof(struct kvm_pic_state));
5550                 spin_unlock(&pic->lock);
5551                 break;
5552         case KVM_IRQCHIP_PIC_SLAVE:
5553                 spin_lock(&pic->lock);
5554                 memcpy(&pic->pics[1], &chip->chip.pic,
5555                         sizeof(struct kvm_pic_state));
5556                 spin_unlock(&pic->lock);
5557                 break;
5558         case KVM_IRQCHIP_IOAPIC:
5559                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5560                 break;
5561         default:
5562                 r = -EINVAL;
5563                 break;
5564         }
5565         kvm_pic_update_irq(pic);
5566         return r;
5567 }
5568
5569 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5570 {
5571         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5572
5573         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5574
5575         mutex_lock(&kps->lock);
5576         memcpy(ps, &kps->channels, sizeof(*ps));
5577         mutex_unlock(&kps->lock);
5578         return 0;
5579 }
5580
5581 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5582 {
5583         int i;
5584         struct kvm_pit *pit = kvm->arch.vpit;
5585
5586         mutex_lock(&pit->pit_state.lock);
5587         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5588         for (i = 0; i < 3; i++)
5589                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5590         mutex_unlock(&pit->pit_state.lock);
5591         return 0;
5592 }
5593
5594 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5595 {
5596         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5597         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5598                 sizeof(ps->channels));
5599         ps->flags = kvm->arch.vpit->pit_state.flags;
5600         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5601         memset(&ps->reserved, 0, sizeof(ps->reserved));
5602         return 0;
5603 }
5604
5605 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5606 {
5607         int start = 0;
5608         int i;
5609         u32 prev_legacy, cur_legacy;
5610         struct kvm_pit *pit = kvm->arch.vpit;
5611
5612         mutex_lock(&pit->pit_state.lock);
5613         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5614         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5615         if (!prev_legacy && cur_legacy)
5616                 start = 1;
5617         memcpy(&pit->pit_state.channels, &ps->channels,
5618                sizeof(pit->pit_state.channels));
5619         pit->pit_state.flags = ps->flags;
5620         for (i = 0; i < 3; i++)
5621                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5622                                    start && i == 0);
5623         mutex_unlock(&pit->pit_state.lock);
5624         return 0;
5625 }
5626
5627 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5628                                  struct kvm_reinject_control *control)
5629 {
5630         struct kvm_pit *pit = kvm->arch.vpit;
5631
5632         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5633          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5634          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5635          */
5636         mutex_lock(&pit->pit_state.lock);
5637         kvm_pit_set_reinject(pit, control->pit_reinject);
5638         mutex_unlock(&pit->pit_state.lock);
5639
5640         return 0;
5641 }
5642
5643 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5644 {
5645
5646         /*
5647          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5648          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5649          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5650          * VM-Exit.
5651          */
5652         struct kvm_vcpu *vcpu;
5653         int i;
5654
5655         kvm_for_each_vcpu(i, vcpu, kvm)
5656                 kvm_vcpu_kick(vcpu);
5657 }
5658
5659 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5660                         bool line_status)
5661 {
5662         if (!irqchip_in_kernel(kvm))
5663                 return -ENXIO;
5664
5665         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5666                                         irq_event->irq, irq_event->level,
5667                                         line_status);
5668         return 0;
5669 }
5670
5671 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5672                             struct kvm_enable_cap *cap)
5673 {
5674         int r;
5675
5676         if (cap->flags)
5677                 return -EINVAL;
5678
5679         switch (cap->cap) {
5680         case KVM_CAP_DISABLE_QUIRKS:
5681                 kvm->arch.disabled_quirks = cap->args[0];
5682                 r = 0;
5683                 break;
5684         case KVM_CAP_SPLIT_IRQCHIP: {
5685                 mutex_lock(&kvm->lock);
5686                 r = -EINVAL;
5687                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5688                         goto split_irqchip_unlock;
5689                 r = -EEXIST;
5690                 if (irqchip_in_kernel(kvm))
5691                         goto split_irqchip_unlock;
5692                 if (kvm->created_vcpus)
5693                         goto split_irqchip_unlock;
5694                 r = kvm_setup_empty_irq_routing(kvm);
5695                 if (r)
5696                         goto split_irqchip_unlock;
5697                 /* Pairs with irqchip_in_kernel. */
5698                 smp_wmb();
5699                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5700                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5701                 r = 0;
5702 split_irqchip_unlock:
5703                 mutex_unlock(&kvm->lock);
5704                 break;
5705         }
5706         case KVM_CAP_X2APIC_API:
5707                 r = -EINVAL;
5708                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5709                         break;
5710
5711                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5712                         kvm->arch.x2apic_format = true;
5713                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5714                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5715
5716                 r = 0;
5717                 break;
5718         case KVM_CAP_X86_DISABLE_EXITS:
5719                 r = -EINVAL;
5720                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5721                         break;
5722
5723                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5724                         kvm_can_mwait_in_guest())
5725                         kvm->arch.mwait_in_guest = true;
5726                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5727                         kvm->arch.hlt_in_guest = true;
5728                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5729                         kvm->arch.pause_in_guest = true;
5730                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5731                         kvm->arch.cstate_in_guest = true;
5732                 r = 0;
5733                 break;
5734         case KVM_CAP_MSR_PLATFORM_INFO:
5735                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5736                 r = 0;
5737                 break;
5738         case KVM_CAP_EXCEPTION_PAYLOAD:
5739                 kvm->arch.exception_payload_enabled = cap->args[0];
5740                 r = 0;
5741                 break;
5742         case KVM_CAP_X86_USER_SPACE_MSR:
5743                 kvm->arch.user_space_msr_mask = cap->args[0];
5744                 r = 0;
5745                 break;
5746         case KVM_CAP_X86_BUS_LOCK_EXIT:
5747                 r = -EINVAL;
5748                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5749                         break;
5750
5751                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5752                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5753                         break;
5754
5755                 if (kvm_has_bus_lock_exit &&
5756                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5757                         kvm->arch.bus_lock_detection_enabled = true;
5758                 r = 0;
5759                 break;
5760 #ifdef CONFIG_X86_SGX_KVM
5761         case KVM_CAP_SGX_ATTRIBUTE: {
5762                 unsigned long allowed_attributes = 0;
5763
5764                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5765                 if (r)
5766                         break;
5767
5768                 /* KVM only supports the PROVISIONKEY privileged attribute. */
5769                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5770                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5771                         kvm->arch.sgx_provisioning_allowed = true;
5772                 else
5773                         r = -EINVAL;
5774                 break;
5775         }
5776 #endif
5777         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
5778                 r = -EINVAL;
5779                 if (kvm_x86_ops.vm_copy_enc_context_from)
5780                         r = kvm_x86_ops.vm_copy_enc_context_from(kvm, cap->args[0]);
5781                 return r;
5782         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
5783                 r = -EINVAL;
5784                 if (kvm_x86_ops.vm_move_enc_context_from)
5785                         r = kvm_x86_ops.vm_move_enc_context_from(
5786                                 kvm, cap->args[0]);
5787                 return r;
5788         case KVM_CAP_EXIT_HYPERCALL:
5789                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
5790                         r = -EINVAL;
5791                         break;
5792                 }
5793                 kvm->arch.hypercall_exit_enabled = cap->args[0];
5794                 r = 0;
5795                 break;
5796         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
5797                 r = -EINVAL;
5798                 if (cap->args[0] & ~1)
5799                         break;
5800                 kvm->arch.exit_on_emulation_error = cap->args[0];
5801                 r = 0;
5802                 break;
5803         default:
5804                 r = -EINVAL;
5805                 break;
5806         }
5807         return r;
5808 }
5809
5810 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
5811 {
5812         struct kvm_x86_msr_filter *msr_filter;
5813
5814         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
5815         if (!msr_filter)
5816                 return NULL;
5817
5818         msr_filter->default_allow = default_allow;
5819         return msr_filter;
5820 }
5821
5822 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
5823 {
5824         u32 i;
5825
5826         if (!msr_filter)
5827                 return;
5828
5829         for (i = 0; i < msr_filter->count; i++)
5830                 kfree(msr_filter->ranges[i].bitmap);
5831
5832         kfree(msr_filter);
5833 }
5834
5835 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
5836                               struct kvm_msr_filter_range *user_range)
5837 {
5838         unsigned long *bitmap = NULL;
5839         size_t bitmap_size;
5840
5841         if (!user_range->nmsrs)
5842                 return 0;
5843
5844         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
5845                 return -EINVAL;
5846
5847         if (!user_range->flags)
5848                 return -EINVAL;
5849
5850         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5851         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5852                 return -EINVAL;
5853
5854         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5855         if (IS_ERR(bitmap))
5856                 return PTR_ERR(bitmap);
5857
5858         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
5859                 .flags = user_range->flags,
5860                 .base = user_range->base,
5861                 .nmsrs = user_range->nmsrs,
5862                 .bitmap = bitmap,
5863         };
5864
5865         msr_filter->count++;
5866         return 0;
5867 }
5868
5869 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5870 {
5871         struct kvm_msr_filter __user *user_msr_filter = argp;
5872         struct kvm_x86_msr_filter *new_filter, *old_filter;
5873         struct kvm_msr_filter filter;
5874         bool default_allow;
5875         bool empty = true;
5876         int r = 0;
5877         u32 i;
5878
5879         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5880                 return -EFAULT;
5881
5882         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5883                 empty &= !filter.ranges[i].nmsrs;
5884
5885         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
5886         if (empty && !default_allow)
5887                 return -EINVAL;
5888
5889         new_filter = kvm_alloc_msr_filter(default_allow);
5890         if (!new_filter)
5891                 return -ENOMEM;
5892
5893         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5894                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
5895                 if (r) {
5896                         kvm_free_msr_filter(new_filter);
5897                         return r;
5898                 }
5899         }
5900
5901         mutex_lock(&kvm->lock);
5902
5903         /* The per-VM filter is protected by kvm->lock... */
5904         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
5905
5906         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
5907         synchronize_srcu(&kvm->srcu);
5908
5909         kvm_free_msr_filter(old_filter);
5910
5911         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5912         mutex_unlock(&kvm->lock);
5913
5914         return 0;
5915 }
5916
5917 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
5918 static int kvm_arch_suspend_notifier(struct kvm *kvm)
5919 {
5920         struct kvm_vcpu *vcpu;
5921         int i, ret = 0;
5922
5923         mutex_lock(&kvm->lock);
5924         kvm_for_each_vcpu(i, vcpu, kvm) {
5925                 if (!vcpu->arch.pv_time_enabled)
5926                         continue;
5927
5928                 ret = kvm_set_guest_paused(vcpu);
5929                 if (ret) {
5930                         kvm_err("Failed to pause guest VCPU%d: %d\n",
5931                                 vcpu->vcpu_id, ret);
5932                         break;
5933                 }
5934         }
5935         mutex_unlock(&kvm->lock);
5936
5937         return ret ? NOTIFY_BAD : NOTIFY_DONE;
5938 }
5939
5940 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
5941 {
5942         switch (state) {
5943         case PM_HIBERNATION_PREPARE:
5944         case PM_SUSPEND_PREPARE:
5945                 return kvm_arch_suspend_notifier(kvm);
5946         }
5947
5948         return NOTIFY_DONE;
5949 }
5950 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
5951
5952 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
5953 {
5954         struct kvm_clock_data data = { 0 };
5955
5956         get_kvmclock(kvm, &data);
5957         if (copy_to_user(argp, &data, sizeof(data)))
5958                 return -EFAULT;
5959
5960         return 0;
5961 }
5962
5963 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
5964 {
5965         struct kvm_arch *ka = &kvm->arch;
5966         struct kvm_clock_data data;
5967         u64 now_raw_ns;
5968
5969         if (copy_from_user(&data, argp, sizeof(data)))
5970                 return -EFAULT;
5971
5972         /*
5973          * Only KVM_CLOCK_REALTIME is used, but allow passing the
5974          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
5975          */
5976         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
5977                 return -EINVAL;
5978
5979         kvm_hv_invalidate_tsc_page(kvm);
5980         kvm_start_pvclock_update(kvm);
5981         pvclock_update_vm_gtod_copy(kvm);
5982
5983         /*
5984          * This pairs with kvm_guest_time_update(): when masterclock is
5985          * in use, we use master_kernel_ns + kvmclock_offset to set
5986          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
5987          * is slightly ahead) here we risk going negative on unsigned
5988          * 'system_time' when 'data.clock' is very small.
5989          */
5990         if (data.flags & KVM_CLOCK_REALTIME) {
5991                 u64 now_real_ns = ktime_get_real_ns();
5992
5993                 /*
5994                  * Avoid stepping the kvmclock backwards.
5995                  */
5996                 if (now_real_ns > data.realtime)
5997                         data.clock += now_real_ns - data.realtime;
5998         }
5999
6000         if (ka->use_master_clock)
6001                 now_raw_ns = ka->master_kernel_ns;
6002         else
6003                 now_raw_ns = get_kvmclock_base_ns();
6004         ka->kvmclock_offset = data.clock - now_raw_ns;
6005         kvm_end_pvclock_update(kvm);
6006         return 0;
6007 }
6008
6009 long kvm_arch_vm_ioctl(struct file *filp,
6010                        unsigned int ioctl, unsigned long arg)
6011 {
6012         struct kvm *kvm = filp->private_data;
6013         void __user *argp = (void __user *)arg;
6014         int r = -ENOTTY;
6015         /*
6016          * This union makes it completely explicit to gcc-3.x
6017          * that these two variables' stack usage should be
6018          * combined, not added together.
6019          */
6020         union {
6021                 struct kvm_pit_state ps;
6022                 struct kvm_pit_state2 ps2;
6023                 struct kvm_pit_config pit_config;
6024         } u;
6025
6026         switch (ioctl) {
6027         case KVM_SET_TSS_ADDR:
6028                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6029                 break;
6030         case KVM_SET_IDENTITY_MAP_ADDR: {
6031                 u64 ident_addr;
6032
6033                 mutex_lock(&kvm->lock);
6034                 r = -EINVAL;
6035                 if (kvm->created_vcpus)
6036                         goto set_identity_unlock;
6037                 r = -EFAULT;
6038                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6039                         goto set_identity_unlock;
6040                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6041 set_identity_unlock:
6042                 mutex_unlock(&kvm->lock);
6043                 break;
6044         }
6045         case KVM_SET_NR_MMU_PAGES:
6046                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6047                 break;
6048         case KVM_GET_NR_MMU_PAGES:
6049                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6050                 break;
6051         case KVM_CREATE_IRQCHIP: {
6052                 mutex_lock(&kvm->lock);
6053
6054                 r = -EEXIST;
6055                 if (irqchip_in_kernel(kvm))
6056                         goto create_irqchip_unlock;
6057
6058                 r = -EINVAL;
6059                 if (kvm->created_vcpus)
6060                         goto create_irqchip_unlock;
6061
6062                 r = kvm_pic_init(kvm);
6063                 if (r)
6064                         goto create_irqchip_unlock;
6065
6066                 r = kvm_ioapic_init(kvm);
6067                 if (r) {
6068                         kvm_pic_destroy(kvm);
6069                         goto create_irqchip_unlock;
6070                 }
6071
6072                 r = kvm_setup_default_irq_routing(kvm);
6073                 if (r) {
6074                         kvm_ioapic_destroy(kvm);
6075                         kvm_pic_destroy(kvm);
6076                         goto create_irqchip_unlock;
6077                 }
6078                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6079                 smp_wmb();
6080                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6081         create_irqchip_unlock:
6082                 mutex_unlock(&kvm->lock);
6083                 break;
6084         }
6085         case KVM_CREATE_PIT:
6086                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6087                 goto create_pit;
6088         case KVM_CREATE_PIT2:
6089                 r = -EFAULT;
6090                 if (copy_from_user(&u.pit_config, argp,
6091                                    sizeof(struct kvm_pit_config)))
6092                         goto out;
6093         create_pit:
6094                 mutex_lock(&kvm->lock);
6095                 r = -EEXIST;
6096                 if (kvm->arch.vpit)
6097                         goto create_pit_unlock;
6098                 r = -ENOMEM;
6099                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6100                 if (kvm->arch.vpit)
6101                         r = 0;
6102         create_pit_unlock:
6103                 mutex_unlock(&kvm->lock);
6104                 break;
6105         case KVM_GET_IRQCHIP: {
6106                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6107                 struct kvm_irqchip *chip;
6108
6109                 chip = memdup_user(argp, sizeof(*chip));
6110                 if (IS_ERR(chip)) {
6111                         r = PTR_ERR(chip);
6112                         goto out;
6113                 }
6114
6115                 r = -ENXIO;
6116                 if (!irqchip_kernel(kvm))
6117                         goto get_irqchip_out;
6118                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6119                 if (r)
6120                         goto get_irqchip_out;
6121                 r = -EFAULT;
6122                 if (copy_to_user(argp, chip, sizeof(*chip)))
6123                         goto get_irqchip_out;
6124                 r = 0;
6125         get_irqchip_out:
6126                 kfree(chip);
6127                 break;
6128         }
6129         case KVM_SET_IRQCHIP: {
6130                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6131                 struct kvm_irqchip *chip;
6132
6133                 chip = memdup_user(argp, sizeof(*chip));
6134                 if (IS_ERR(chip)) {
6135                         r = PTR_ERR(chip);
6136                         goto out;
6137                 }
6138
6139                 r = -ENXIO;
6140                 if (!irqchip_kernel(kvm))
6141                         goto set_irqchip_out;
6142                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6143         set_irqchip_out:
6144                 kfree(chip);
6145                 break;
6146         }
6147         case KVM_GET_PIT: {
6148                 r = -EFAULT;
6149                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6150                         goto out;
6151                 r = -ENXIO;
6152                 if (!kvm->arch.vpit)
6153                         goto out;
6154                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6155                 if (r)
6156                         goto out;
6157                 r = -EFAULT;
6158                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6159                         goto out;
6160                 r = 0;
6161                 break;
6162         }
6163         case KVM_SET_PIT: {
6164                 r = -EFAULT;
6165                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6166                         goto out;
6167                 mutex_lock(&kvm->lock);
6168                 r = -ENXIO;
6169                 if (!kvm->arch.vpit)
6170                         goto set_pit_out;
6171                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6172 set_pit_out:
6173                 mutex_unlock(&kvm->lock);
6174                 break;
6175         }
6176         case KVM_GET_PIT2: {
6177                 r = -ENXIO;
6178                 if (!kvm->arch.vpit)
6179                         goto out;
6180                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6181                 if (r)
6182                         goto out;
6183                 r = -EFAULT;
6184                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6185                         goto out;
6186                 r = 0;
6187                 break;
6188         }
6189         case KVM_SET_PIT2: {
6190                 r = -EFAULT;
6191                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6192                         goto out;
6193                 mutex_lock(&kvm->lock);
6194                 r = -ENXIO;
6195                 if (!kvm->arch.vpit)
6196                         goto set_pit2_out;
6197                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6198 set_pit2_out:
6199                 mutex_unlock(&kvm->lock);
6200                 break;
6201         }
6202         case KVM_REINJECT_CONTROL: {
6203                 struct kvm_reinject_control control;
6204                 r =  -EFAULT;
6205                 if (copy_from_user(&control, argp, sizeof(control)))
6206                         goto out;
6207                 r = -ENXIO;
6208                 if (!kvm->arch.vpit)
6209                         goto out;
6210                 r = kvm_vm_ioctl_reinject(kvm, &control);
6211                 break;
6212         }
6213         case KVM_SET_BOOT_CPU_ID:
6214                 r = 0;
6215                 mutex_lock(&kvm->lock);
6216                 if (kvm->created_vcpus)
6217                         r = -EBUSY;
6218                 else
6219                         kvm->arch.bsp_vcpu_id = arg;
6220                 mutex_unlock(&kvm->lock);
6221                 break;
6222 #ifdef CONFIG_KVM_XEN
6223         case KVM_XEN_HVM_CONFIG: {
6224                 struct kvm_xen_hvm_config xhc;
6225                 r = -EFAULT;
6226                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6227                         goto out;
6228                 r = kvm_xen_hvm_config(kvm, &xhc);
6229                 break;
6230         }
6231         case KVM_XEN_HVM_GET_ATTR: {
6232                 struct kvm_xen_hvm_attr xha;
6233
6234                 r = -EFAULT;
6235                 if (copy_from_user(&xha, argp, sizeof(xha)))
6236                         goto out;
6237                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6238                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6239                         r = -EFAULT;
6240                 break;
6241         }
6242         case KVM_XEN_HVM_SET_ATTR: {
6243                 struct kvm_xen_hvm_attr xha;
6244
6245                 r = -EFAULT;
6246                 if (copy_from_user(&xha, argp, sizeof(xha)))
6247                         goto out;
6248                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6249                 break;
6250         }
6251 #endif
6252         case KVM_SET_CLOCK:
6253                 r = kvm_vm_ioctl_set_clock(kvm, argp);
6254                 break;
6255         case KVM_GET_CLOCK:
6256                 r = kvm_vm_ioctl_get_clock(kvm, argp);
6257                 break;
6258         case KVM_MEMORY_ENCRYPT_OP: {
6259                 r = -ENOTTY;
6260                 if (kvm_x86_ops.mem_enc_op)
6261                         r = static_call(kvm_x86_mem_enc_op)(kvm, argp);
6262                 break;
6263         }
6264         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6265                 struct kvm_enc_region region;
6266
6267                 r = -EFAULT;
6268                 if (copy_from_user(&region, argp, sizeof(region)))
6269                         goto out;
6270
6271                 r = -ENOTTY;
6272                 if (kvm_x86_ops.mem_enc_reg_region)
6273                         r = static_call(kvm_x86_mem_enc_reg_region)(kvm, &region);
6274                 break;
6275         }
6276         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6277                 struct kvm_enc_region region;
6278
6279                 r = -EFAULT;
6280                 if (copy_from_user(&region, argp, sizeof(region)))
6281                         goto out;
6282
6283                 r = -ENOTTY;
6284                 if (kvm_x86_ops.mem_enc_unreg_region)
6285                         r = static_call(kvm_x86_mem_enc_unreg_region)(kvm, &region);
6286                 break;
6287         }
6288         case KVM_HYPERV_EVENTFD: {
6289                 struct kvm_hyperv_eventfd hvevfd;
6290
6291                 r = -EFAULT;
6292                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6293                         goto out;
6294                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6295                 break;
6296         }
6297         case KVM_SET_PMU_EVENT_FILTER:
6298                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6299                 break;
6300         case KVM_X86_SET_MSR_FILTER:
6301                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6302                 break;
6303         default:
6304                 r = -ENOTTY;
6305         }
6306 out:
6307         return r;
6308 }
6309
6310 static void kvm_init_msr_list(void)
6311 {
6312         struct x86_pmu_capability x86_pmu;
6313         u32 dummy[2];
6314         unsigned i;
6315
6316         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6317                          "Please update the fixed PMCs in msrs_to_saved_all[]");
6318
6319         perf_get_x86_pmu_capability(&x86_pmu);
6320
6321         num_msrs_to_save = 0;
6322         num_emulated_msrs = 0;
6323         num_msr_based_features = 0;
6324
6325         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6326                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6327                         continue;
6328
6329                 /*
6330                  * Even MSRs that are valid in the host may not be exposed
6331                  * to the guests in some cases.
6332                  */
6333                 switch (msrs_to_save_all[i]) {
6334                 case MSR_IA32_BNDCFGS:
6335                         if (!kvm_mpx_supported())
6336                                 continue;
6337                         break;
6338                 case MSR_TSC_AUX:
6339                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6340                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6341                                 continue;
6342                         break;
6343                 case MSR_IA32_UMWAIT_CONTROL:
6344                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6345                                 continue;
6346                         break;
6347                 case MSR_IA32_RTIT_CTL:
6348                 case MSR_IA32_RTIT_STATUS:
6349                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6350                                 continue;
6351                         break;
6352                 case MSR_IA32_RTIT_CR3_MATCH:
6353                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6354                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6355                                 continue;
6356                         break;
6357                 case MSR_IA32_RTIT_OUTPUT_BASE:
6358                 case MSR_IA32_RTIT_OUTPUT_MASK:
6359                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6360                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6361                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6362                                 continue;
6363                         break;
6364                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6365                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6366                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6367                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6368                                 continue;
6369                         break;
6370                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6371                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6372                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6373                                 continue;
6374                         break;
6375                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6376                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6377                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6378                                 continue;
6379                         break;
6380                 default:
6381                         break;
6382                 }
6383
6384                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6385         }
6386
6387         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6388                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6389                         continue;
6390
6391                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6392         }
6393
6394         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6395                 struct kvm_msr_entry msr;
6396
6397                 msr.index = msr_based_features_all[i];
6398                 if (kvm_get_msr_feature(&msr))
6399                         continue;
6400
6401                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6402         }
6403 }
6404
6405 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6406                            const void *v)
6407 {
6408         int handled = 0;
6409         int n;
6410
6411         do {
6412                 n = min(len, 8);
6413                 if (!(lapic_in_kernel(vcpu) &&
6414                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6415                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6416                         break;
6417                 handled += n;
6418                 addr += n;
6419                 len -= n;
6420                 v += n;
6421         } while (len);
6422
6423         return handled;
6424 }
6425
6426 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6427 {
6428         int handled = 0;
6429         int n;
6430
6431         do {
6432                 n = min(len, 8);
6433                 if (!(lapic_in_kernel(vcpu) &&
6434                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6435                                          addr, n, v))
6436                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6437                         break;
6438                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6439                 handled += n;
6440                 addr += n;
6441                 len -= n;
6442                 v += n;
6443         } while (len);
6444
6445         return handled;
6446 }
6447
6448 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6449                         struct kvm_segment *var, int seg)
6450 {
6451         static_call(kvm_x86_set_segment)(vcpu, var, seg);
6452 }
6453
6454 void kvm_get_segment(struct kvm_vcpu *vcpu,
6455                      struct kvm_segment *var, int seg)
6456 {
6457         static_call(kvm_x86_get_segment)(vcpu, var, seg);
6458 }
6459
6460 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6461                            struct x86_exception *exception)
6462 {
6463         gpa_t t_gpa;
6464
6465         BUG_ON(!mmu_is_nested(vcpu));
6466
6467         /* NPT walks are always user-walks */
6468         access |= PFERR_USER_MASK;
6469         t_gpa  = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
6470
6471         return t_gpa;
6472 }
6473
6474 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6475                               struct x86_exception *exception)
6476 {
6477         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6478         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6479 }
6480 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6481
6482  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6483                                 struct x86_exception *exception)
6484 {
6485         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6486         access |= PFERR_FETCH_MASK;
6487         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6488 }
6489
6490 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6491                                struct x86_exception *exception)
6492 {
6493         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6494         access |= PFERR_WRITE_MASK;
6495         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6496 }
6497 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6498
6499 /* uses this to access any guest's mapped memory without checking CPL */
6500 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6501                                 struct x86_exception *exception)
6502 {
6503         return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
6504 }
6505
6506 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6507                                       struct kvm_vcpu *vcpu, u32 access,
6508                                       struct x86_exception *exception)
6509 {
6510         void *data = val;
6511         int r = X86EMUL_CONTINUE;
6512
6513         while (bytes) {
6514                 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
6515                                                             exception);
6516                 unsigned offset = addr & (PAGE_SIZE-1);
6517                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6518                 int ret;
6519
6520                 if (gpa == UNMAPPED_GVA)
6521                         return X86EMUL_PROPAGATE_FAULT;
6522                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6523                                                offset, toread);
6524                 if (ret < 0) {
6525                         r = X86EMUL_IO_NEEDED;
6526                         goto out;
6527                 }
6528
6529                 bytes -= toread;
6530                 data += toread;
6531                 addr += toread;
6532         }
6533 out:
6534         return r;
6535 }
6536
6537 /* used for instruction fetching */
6538 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6539                                 gva_t addr, void *val, unsigned int bytes,
6540                                 struct x86_exception *exception)
6541 {
6542         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6543         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6544         unsigned offset;
6545         int ret;
6546
6547         /* Inline kvm_read_guest_virt_helper for speed.  */
6548         gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
6549                                                     exception);
6550         if (unlikely(gpa == UNMAPPED_GVA))
6551                 return X86EMUL_PROPAGATE_FAULT;
6552
6553         offset = addr & (PAGE_SIZE-1);
6554         if (WARN_ON(offset + bytes > PAGE_SIZE))
6555                 bytes = (unsigned)PAGE_SIZE - offset;
6556         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6557                                        offset, bytes);
6558         if (unlikely(ret < 0))
6559                 return X86EMUL_IO_NEEDED;
6560
6561         return X86EMUL_CONTINUE;
6562 }
6563
6564 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6565                                gva_t addr, void *val, unsigned int bytes,
6566                                struct x86_exception *exception)
6567 {
6568         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6569
6570         /*
6571          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6572          * is returned, but our callers are not ready for that and they blindly
6573          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6574          * uninitialized kernel stack memory into cr2 and error code.
6575          */
6576         memset(exception, 0, sizeof(*exception));
6577         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6578                                           exception);
6579 }
6580 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6581
6582 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6583                              gva_t addr, void *val, unsigned int bytes,
6584                              struct x86_exception *exception, bool system)
6585 {
6586         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6587         u32 access = 0;
6588
6589         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6590                 access |= PFERR_USER_MASK;
6591
6592         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6593 }
6594
6595 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6596                 unsigned long addr, void *val, unsigned int bytes)
6597 {
6598         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6599         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6600
6601         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6602 }
6603
6604 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6605                                       struct kvm_vcpu *vcpu, u32 access,
6606                                       struct x86_exception *exception)
6607 {
6608         void *data = val;
6609         int r = X86EMUL_CONTINUE;
6610
6611         while (bytes) {
6612                 gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
6613                                                              access,
6614                                                              exception);
6615                 unsigned offset = addr & (PAGE_SIZE-1);
6616                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6617                 int ret;
6618
6619                 if (gpa == UNMAPPED_GVA)
6620                         return X86EMUL_PROPAGATE_FAULT;
6621                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6622                 if (ret < 0) {
6623                         r = X86EMUL_IO_NEEDED;
6624                         goto out;
6625                 }
6626
6627                 bytes -= towrite;
6628                 data += towrite;
6629                 addr += towrite;
6630         }
6631 out:
6632         return r;
6633 }
6634
6635 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6636                               unsigned int bytes, struct x86_exception *exception,
6637                               bool system)
6638 {
6639         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6640         u32 access = PFERR_WRITE_MASK;
6641
6642         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6643                 access |= PFERR_USER_MASK;
6644
6645         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6646                                            access, exception);
6647 }
6648
6649 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6650                                 unsigned int bytes, struct x86_exception *exception)
6651 {
6652         /* kvm_write_guest_virt_system can pull in tons of pages. */
6653         vcpu->arch.l1tf_flush_l1d = true;
6654
6655         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6656                                            PFERR_WRITE_MASK, exception);
6657 }
6658 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6659
6660 int handle_ud(struct kvm_vcpu *vcpu)
6661 {
6662         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6663         int emul_type = EMULTYPE_TRAP_UD;
6664         char sig[5]; /* ud2; .ascii "kvm" */
6665         struct x86_exception e;
6666
6667         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, NULL, 0)))
6668                 return 1;
6669
6670         if (force_emulation_prefix &&
6671             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6672                                 sig, sizeof(sig), &e) == 0 &&
6673             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6674                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6675                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6676         }
6677
6678         return kvm_emulate_instruction(vcpu, emul_type);
6679 }
6680 EXPORT_SYMBOL_GPL(handle_ud);
6681
6682 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6683                             gpa_t gpa, bool write)
6684 {
6685         /* For APIC access vmexit */
6686         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6687                 return 1;
6688
6689         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6690                 trace_vcpu_match_mmio(gva, gpa, write, true);
6691                 return 1;
6692         }
6693
6694         return 0;
6695 }
6696
6697 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6698                                 gpa_t *gpa, struct x86_exception *exception,
6699                                 bool write)
6700 {
6701         u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6702                 | (write ? PFERR_WRITE_MASK : 0);
6703
6704         /*
6705          * currently PKRU is only applied to ept enabled guest so
6706          * there is no pkey in EPT page table for L1 guest or EPT
6707          * shadow page table for L2 guest.
6708          */
6709         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6710             !permission_fault(vcpu, vcpu->arch.walk_mmu,
6711                               vcpu->arch.mmio_access, 0, access))) {
6712                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6713                                         (gva & (PAGE_SIZE - 1));
6714                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6715                 return 1;
6716         }
6717
6718         *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6719
6720         if (*gpa == UNMAPPED_GVA)
6721                 return -1;
6722
6723         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6724 }
6725
6726 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6727                         const void *val, int bytes)
6728 {
6729         int ret;
6730
6731         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
6732         if (ret < 0)
6733                 return 0;
6734         kvm_page_track_write(vcpu, gpa, val, bytes);
6735         return 1;
6736 }
6737
6738 struct read_write_emulator_ops {
6739         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6740                                   int bytes);
6741         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6742                                   void *val, int bytes);
6743         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6744                                int bytes, void *val);
6745         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6746                                     void *val, int bytes);
6747         bool write;
6748 };
6749
6750 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6751 {
6752         if (vcpu->mmio_read_completed) {
6753                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
6754                                vcpu->mmio_fragments[0].gpa, val);
6755                 vcpu->mmio_read_completed = 0;
6756                 return 1;
6757         }
6758
6759         return 0;
6760 }
6761
6762 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6763                         void *val, int bytes)
6764 {
6765         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
6766 }
6767
6768 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6769                          void *val, int bytes)
6770 {
6771         return emulator_write_phys(vcpu, gpa, val, bytes);
6772 }
6773
6774 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6775 {
6776         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
6777         return vcpu_mmio_write(vcpu, gpa, bytes, val);
6778 }
6779
6780 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6781                           void *val, int bytes)
6782 {
6783         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
6784         return X86EMUL_IO_NEEDED;
6785 }
6786
6787 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6788                            void *val, int bytes)
6789 {
6790         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6791
6792         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
6793         return X86EMUL_CONTINUE;
6794 }
6795
6796 static const struct read_write_emulator_ops read_emultor = {
6797         .read_write_prepare = read_prepare,
6798         .read_write_emulate = read_emulate,
6799         .read_write_mmio = vcpu_mmio_read,
6800         .read_write_exit_mmio = read_exit_mmio,
6801 };
6802
6803 static const struct read_write_emulator_ops write_emultor = {
6804         .read_write_emulate = write_emulate,
6805         .read_write_mmio = write_mmio,
6806         .read_write_exit_mmio = write_exit_mmio,
6807         .write = true,
6808 };
6809
6810 static int emulator_read_write_onepage(unsigned long addr, void *val,
6811                                        unsigned int bytes,
6812                                        struct x86_exception *exception,
6813                                        struct kvm_vcpu *vcpu,
6814                                        const struct read_write_emulator_ops *ops)
6815 {
6816         gpa_t gpa;
6817         int handled, ret;
6818         bool write = ops->write;
6819         struct kvm_mmio_fragment *frag;
6820         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
6821
6822         /*
6823          * If the exit was due to a NPF we may already have a GPA.
6824          * If the GPA is present, use it to avoid the GVA to GPA table walk.
6825          * Note, this cannot be used on string operations since string
6826          * operation using rep will only have the initial GPA from the NPF
6827          * occurred.
6828          */
6829         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6830             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6831                 gpa = ctxt->gpa_val;
6832                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6833         } else {
6834                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6835                 if (ret < 0)
6836                         return X86EMUL_PROPAGATE_FAULT;
6837         }
6838
6839         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
6840                 return X86EMUL_CONTINUE;
6841
6842         /*
6843          * Is this MMIO handled locally?
6844          */
6845         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
6846         if (handled == bytes)
6847                 return X86EMUL_CONTINUE;
6848
6849         gpa += handled;
6850         bytes -= handled;
6851         val += handled;
6852
6853         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6854         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6855         frag->gpa = gpa;
6856         frag->data = val;
6857         frag->len = bytes;
6858         return X86EMUL_CONTINUE;
6859 }
6860
6861 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6862                         unsigned long addr,
6863                         void *val, unsigned int bytes,
6864                         struct x86_exception *exception,
6865                         const struct read_write_emulator_ops *ops)
6866 {
6867         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6868         gpa_t gpa;
6869         int rc;
6870
6871         if (ops->read_write_prepare &&
6872                   ops->read_write_prepare(vcpu, val, bytes))
6873                 return X86EMUL_CONTINUE;
6874
6875         vcpu->mmio_nr_fragments = 0;
6876
6877         /* Crossing a page boundary? */
6878         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
6879                 int now;
6880
6881                 now = -addr & ~PAGE_MASK;
6882                 rc = emulator_read_write_onepage(addr, val, now, exception,
6883                                                  vcpu, ops);
6884
6885                 if (rc != X86EMUL_CONTINUE)
6886                         return rc;
6887                 addr += now;
6888                 if (ctxt->mode != X86EMUL_MODE_PROT64)
6889                         addr = (u32)addr;
6890                 val += now;
6891                 bytes -= now;
6892         }
6893
6894         rc = emulator_read_write_onepage(addr, val, bytes, exception,
6895                                          vcpu, ops);
6896         if (rc != X86EMUL_CONTINUE)
6897                 return rc;
6898
6899         if (!vcpu->mmio_nr_fragments)
6900                 return rc;
6901
6902         gpa = vcpu->mmio_fragments[0].gpa;
6903
6904         vcpu->mmio_needed = 1;
6905         vcpu->mmio_cur_fragment = 0;
6906
6907         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
6908         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6909         vcpu->run->exit_reason = KVM_EXIT_MMIO;
6910         vcpu->run->mmio.phys_addr = gpa;
6911
6912         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
6913 }
6914
6915 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6916                                   unsigned long addr,
6917                                   void *val,
6918                                   unsigned int bytes,
6919                                   struct x86_exception *exception)
6920 {
6921         return emulator_read_write(ctxt, addr, val, bytes,
6922                                    exception, &read_emultor);
6923 }
6924
6925 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
6926                             unsigned long addr,
6927                             const void *val,
6928                             unsigned int bytes,
6929                             struct x86_exception *exception)
6930 {
6931         return emulator_read_write(ctxt, addr, (void *)val, bytes,
6932                                    exception, &write_emultor);
6933 }
6934
6935 #define CMPXCHG_TYPE(t, ptr, old, new) \
6936         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6937
6938 #ifdef CONFIG_X86_64
6939 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6940 #else
6941 #  define CMPXCHG64(ptr, old, new) \
6942         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
6943 #endif
6944
6945 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6946                                      unsigned long addr,
6947                                      const void *old,
6948                                      const void *new,
6949                                      unsigned int bytes,
6950                                      struct x86_exception *exception)
6951 {
6952         struct kvm_host_map map;
6953         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6954         u64 page_line_mask;
6955         gpa_t gpa;
6956         char *kaddr;
6957         bool exchanged;
6958
6959         /* guests cmpxchg8b have to be emulated atomically */
6960         if (bytes > 8 || (bytes & (bytes - 1)))
6961                 goto emul_write;
6962
6963         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
6964
6965         if (gpa == UNMAPPED_GVA ||
6966             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6967                 goto emul_write;
6968
6969         /*
6970          * Emulate the atomic as a straight write to avoid #AC if SLD is
6971          * enabled in the host and the access splits a cache line.
6972          */
6973         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6974                 page_line_mask = ~(cache_line_size() - 1);
6975         else
6976                 page_line_mask = PAGE_MASK;
6977
6978         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
6979                 goto emul_write;
6980
6981         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
6982                 goto emul_write;
6983
6984         kaddr = map.hva + offset_in_page(gpa);
6985
6986         switch (bytes) {
6987         case 1:
6988                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6989                 break;
6990         case 2:
6991                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6992                 break;
6993         case 4:
6994                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6995                 break;
6996         case 8:
6997                 exchanged = CMPXCHG64(kaddr, old, new);
6998                 break;
6999         default:
7000                 BUG();
7001         }
7002
7003         kvm_vcpu_unmap(vcpu, &map, true);
7004
7005         if (!exchanged)
7006                 return X86EMUL_CMPXCHG_FAILED;
7007
7008         kvm_page_track_write(vcpu, gpa, new, bytes);
7009
7010         return X86EMUL_CONTINUE;
7011
7012 emul_write:
7013         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7014
7015         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7016 }
7017
7018 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7019 {
7020         int r = 0, i;
7021
7022         for (i = 0; i < vcpu->arch.pio.count; i++) {
7023                 if (vcpu->arch.pio.in)
7024                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7025                                             vcpu->arch.pio.size, pd);
7026                 else
7027                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7028                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
7029                                              pd);
7030                 if (r)
7031                         break;
7032                 pd += vcpu->arch.pio.size;
7033         }
7034         return r;
7035 }
7036
7037 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7038                                unsigned short port,
7039                                unsigned int count, bool in)
7040 {
7041         vcpu->arch.pio.port = port;
7042         vcpu->arch.pio.in = in;
7043         vcpu->arch.pio.count  = count;
7044         vcpu->arch.pio.size = size;
7045
7046         if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7047                 return 1;
7048
7049         vcpu->run->exit_reason = KVM_EXIT_IO;
7050         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7051         vcpu->run->io.size = size;
7052         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7053         vcpu->run->io.count = count;
7054         vcpu->run->io.port = port;
7055
7056         return 0;
7057 }
7058
7059 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7060                              unsigned short port, unsigned int count)
7061 {
7062         WARN_ON(vcpu->arch.pio.count);
7063         memset(vcpu->arch.pio_data, 0, size * count);
7064         return emulator_pio_in_out(vcpu, size, port, count, true);
7065 }
7066
7067 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7068 {
7069         int size = vcpu->arch.pio.size;
7070         unsigned count = vcpu->arch.pio.count;
7071         memcpy(val, vcpu->arch.pio_data, size * count);
7072         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7073         vcpu->arch.pio.count = 0;
7074 }
7075
7076 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7077                            unsigned short port, void *val, unsigned int count)
7078 {
7079         if (vcpu->arch.pio.count) {
7080                 /* Complete previous iteration.  */
7081         } else {
7082                 int r = __emulator_pio_in(vcpu, size, port, count);
7083                 if (!r)
7084                         return r;
7085
7086                 /* Results already available, fall through.  */
7087         }
7088
7089         WARN_ON(count != vcpu->arch.pio.count);
7090         complete_emulator_pio_in(vcpu, val);
7091         return 1;
7092 }
7093
7094 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7095                                     int size, unsigned short port, void *val,
7096                                     unsigned int count)
7097 {
7098         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7099
7100 }
7101
7102 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7103                             unsigned short port, const void *val,
7104                             unsigned int count)
7105 {
7106         int ret;
7107
7108         memcpy(vcpu->arch.pio_data, val, size * count);
7109         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7110         ret = emulator_pio_in_out(vcpu, size, port, count, false);
7111         if (ret)
7112                 vcpu->arch.pio.count = 0;
7113
7114         return ret;
7115 }
7116
7117 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7118                                      int size, unsigned short port,
7119                                      const void *val, unsigned int count)
7120 {
7121         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7122 }
7123
7124 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7125 {
7126         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7127 }
7128
7129 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7130 {
7131         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7132 }
7133
7134 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7135 {
7136         if (!need_emulate_wbinvd(vcpu))
7137                 return X86EMUL_CONTINUE;
7138
7139         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7140                 int cpu = get_cpu();
7141
7142                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7143                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7144                                 wbinvd_ipi, NULL, 1);
7145                 put_cpu();
7146                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7147         } else
7148                 wbinvd();
7149         return X86EMUL_CONTINUE;
7150 }
7151
7152 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7153 {
7154         kvm_emulate_wbinvd_noskip(vcpu);
7155         return kvm_skip_emulated_instruction(vcpu);
7156 }
7157 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7158
7159
7160
7161 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7162 {
7163         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7164 }
7165
7166 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7167                             unsigned long *dest)
7168 {
7169         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7170 }
7171
7172 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7173                            unsigned long value)
7174 {
7175
7176         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7177 }
7178
7179 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7180 {
7181         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7182 }
7183
7184 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7185 {
7186         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7187         unsigned long value;
7188
7189         switch (cr) {
7190         case 0:
7191                 value = kvm_read_cr0(vcpu);
7192                 break;
7193         case 2:
7194                 value = vcpu->arch.cr2;
7195                 break;
7196         case 3:
7197                 value = kvm_read_cr3(vcpu);
7198                 break;
7199         case 4:
7200                 value = kvm_read_cr4(vcpu);
7201                 break;
7202         case 8:
7203                 value = kvm_get_cr8(vcpu);
7204                 break;
7205         default:
7206                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7207                 return 0;
7208         }
7209
7210         return value;
7211 }
7212
7213 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7214 {
7215         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7216         int res = 0;
7217
7218         switch (cr) {
7219         case 0:
7220                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7221                 break;
7222         case 2:
7223                 vcpu->arch.cr2 = val;
7224                 break;
7225         case 3:
7226                 res = kvm_set_cr3(vcpu, val);
7227                 break;
7228         case 4:
7229                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7230                 break;
7231         case 8:
7232                 res = kvm_set_cr8(vcpu, val);
7233                 break;
7234         default:
7235                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7236                 res = -1;
7237         }
7238
7239         return res;
7240 }
7241
7242 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7243 {
7244         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7245 }
7246
7247 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7248 {
7249         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7250 }
7251
7252 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7253 {
7254         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7255 }
7256
7257 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7258 {
7259         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7260 }
7261
7262 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7263 {
7264         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7265 }
7266
7267 static unsigned long emulator_get_cached_segment_base(
7268         struct x86_emulate_ctxt *ctxt, int seg)
7269 {
7270         return get_segment_base(emul_to_vcpu(ctxt), seg);
7271 }
7272
7273 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7274                                  struct desc_struct *desc, u32 *base3,
7275                                  int seg)
7276 {
7277         struct kvm_segment var;
7278
7279         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7280         *selector = var.selector;
7281
7282         if (var.unusable) {
7283                 memset(desc, 0, sizeof(*desc));
7284                 if (base3)
7285                         *base3 = 0;
7286                 return false;
7287         }
7288
7289         if (var.g)
7290                 var.limit >>= 12;
7291         set_desc_limit(desc, var.limit);
7292         set_desc_base(desc, (unsigned long)var.base);
7293 #ifdef CONFIG_X86_64
7294         if (base3)
7295                 *base3 = var.base >> 32;
7296 #endif
7297         desc->type = var.type;
7298         desc->s = var.s;
7299         desc->dpl = var.dpl;
7300         desc->p = var.present;
7301         desc->avl = var.avl;
7302         desc->l = var.l;
7303         desc->d = var.db;
7304         desc->g = var.g;
7305
7306         return true;
7307 }
7308
7309 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7310                                  struct desc_struct *desc, u32 base3,
7311                                  int seg)
7312 {
7313         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7314         struct kvm_segment var;
7315
7316         var.selector = selector;
7317         var.base = get_desc_base(desc);
7318 #ifdef CONFIG_X86_64
7319         var.base |= ((u64)base3) << 32;
7320 #endif
7321         var.limit = get_desc_limit(desc);
7322         if (desc->g)
7323                 var.limit = (var.limit << 12) | 0xfff;
7324         var.type = desc->type;
7325         var.dpl = desc->dpl;
7326         var.db = desc->d;
7327         var.s = desc->s;
7328         var.l = desc->l;
7329         var.g = desc->g;
7330         var.avl = desc->avl;
7331         var.present = desc->p;
7332         var.unusable = !var.present;
7333         var.padding = 0;
7334
7335         kvm_set_segment(vcpu, &var, seg);
7336         return;
7337 }
7338
7339 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7340                             u32 msr_index, u64 *pdata)
7341 {
7342         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7343         int r;
7344
7345         r = kvm_get_msr(vcpu, msr_index, pdata);
7346
7347         if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
7348                 /* Bounce to user space */
7349                 return X86EMUL_IO_NEEDED;
7350         }
7351
7352         return r;
7353 }
7354
7355 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7356                             u32 msr_index, u64 data)
7357 {
7358         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7359         int r;
7360
7361         r = kvm_set_msr(vcpu, msr_index, data);
7362
7363         if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
7364                 /* Bounce to user space */
7365                 return X86EMUL_IO_NEEDED;
7366         }
7367
7368         return r;
7369 }
7370
7371 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7372 {
7373         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7374
7375         return vcpu->arch.smbase;
7376 }
7377
7378 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7379 {
7380         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7381
7382         vcpu->arch.smbase = smbase;
7383 }
7384
7385 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7386                               u32 pmc)
7387 {
7388         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7389                 return 0;
7390         return -EINVAL;
7391 }
7392
7393 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7394                              u32 pmc, u64 *pdata)
7395 {
7396         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7397 }
7398
7399 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7400 {
7401         emul_to_vcpu(ctxt)->arch.halt_request = 1;
7402 }
7403
7404 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7405                               struct x86_instruction_info *info,
7406                               enum x86_intercept_stage stage)
7407 {
7408         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7409                                             &ctxt->exception);
7410 }
7411
7412 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7413                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7414                               bool exact_only)
7415 {
7416         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7417 }
7418
7419 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7420 {
7421         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7422 }
7423
7424 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7425 {
7426         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7427 }
7428
7429 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7430 {
7431         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7432 }
7433
7434 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7435 {
7436         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7437 }
7438
7439 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7440 {
7441         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7442 }
7443
7444 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7445 {
7446         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7447 }
7448
7449 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7450 {
7451         return emul_to_vcpu(ctxt)->arch.hflags;
7452 }
7453
7454 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7455 {
7456         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7457
7458         kvm_smm_changed(vcpu, false);
7459 }
7460
7461 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7462                                   const char *smstate)
7463 {
7464         return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7465 }
7466
7467 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7468 {
7469         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7470 }
7471
7472 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7473 {
7474         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7475 }
7476
7477 static const struct x86_emulate_ops emulate_ops = {
7478         .read_gpr            = emulator_read_gpr,
7479         .write_gpr           = emulator_write_gpr,
7480         .read_std            = emulator_read_std,
7481         .write_std           = emulator_write_std,
7482         .read_phys           = kvm_read_guest_phys_system,
7483         .fetch               = kvm_fetch_guest_virt,
7484         .read_emulated       = emulator_read_emulated,
7485         .write_emulated      = emulator_write_emulated,
7486         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7487         .invlpg              = emulator_invlpg,
7488         .pio_in_emulated     = emulator_pio_in_emulated,
7489         .pio_out_emulated    = emulator_pio_out_emulated,
7490         .get_segment         = emulator_get_segment,
7491         .set_segment         = emulator_set_segment,
7492         .get_cached_segment_base = emulator_get_cached_segment_base,
7493         .get_gdt             = emulator_get_gdt,
7494         .get_idt             = emulator_get_idt,
7495         .set_gdt             = emulator_set_gdt,
7496         .set_idt             = emulator_set_idt,
7497         .get_cr              = emulator_get_cr,
7498         .set_cr              = emulator_set_cr,
7499         .cpl                 = emulator_get_cpl,
7500         .get_dr              = emulator_get_dr,
7501         .set_dr              = emulator_set_dr,
7502         .get_smbase          = emulator_get_smbase,
7503         .set_smbase          = emulator_set_smbase,
7504         .set_msr             = emulator_set_msr,
7505         .get_msr             = emulator_get_msr,
7506         .check_pmc           = emulator_check_pmc,
7507         .read_pmc            = emulator_read_pmc,
7508         .halt                = emulator_halt,
7509         .wbinvd              = emulator_wbinvd,
7510         .fix_hypercall       = emulator_fix_hypercall,
7511         .intercept           = emulator_intercept,
7512         .get_cpuid           = emulator_get_cpuid,
7513         .guest_has_long_mode = emulator_guest_has_long_mode,
7514         .guest_has_movbe     = emulator_guest_has_movbe,
7515         .guest_has_fxsr      = emulator_guest_has_fxsr,
7516         .set_nmi_mask        = emulator_set_nmi_mask,
7517         .get_hflags          = emulator_get_hflags,
7518         .exiting_smm         = emulator_exiting_smm,
7519         .leave_smm           = emulator_leave_smm,
7520         .triple_fault        = emulator_triple_fault,
7521         .set_xcr             = emulator_set_xcr,
7522 };
7523
7524 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7525 {
7526         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7527         /*
7528          * an sti; sti; sequence only disable interrupts for the first
7529          * instruction. So, if the last instruction, be it emulated or
7530          * not, left the system with the INT_STI flag enabled, it
7531          * means that the last instruction is an sti. We should not
7532          * leave the flag on in this case. The same goes for mov ss
7533          */
7534         if (int_shadow & mask)
7535                 mask = 0;
7536         if (unlikely(int_shadow || mask)) {
7537                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7538                 if (!mask)
7539                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7540         }
7541 }
7542
7543 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7544 {
7545         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7546         if (ctxt->exception.vector == PF_VECTOR)
7547                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7548
7549         if (ctxt->exception.error_code_valid)
7550                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7551                                       ctxt->exception.error_code);
7552         else
7553                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7554         return false;
7555 }
7556
7557 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7558 {
7559         struct x86_emulate_ctxt *ctxt;
7560
7561         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7562         if (!ctxt) {
7563                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7564                 return NULL;
7565         }
7566
7567         ctxt->vcpu = vcpu;
7568         ctxt->ops = &emulate_ops;
7569         vcpu->arch.emulate_ctxt = ctxt;
7570
7571         return ctxt;
7572 }
7573
7574 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7575 {
7576         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7577         int cs_db, cs_l;
7578
7579         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7580
7581         ctxt->gpa_available = false;
7582         ctxt->eflags = kvm_get_rflags(vcpu);
7583         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7584
7585         ctxt->eip = kvm_rip_read(vcpu);
7586         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7587                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7588                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7589                      cs_db                              ? X86EMUL_MODE_PROT32 :
7590                                                           X86EMUL_MODE_PROT16;
7591         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7592         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7593         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7594
7595         ctxt->interruptibility = 0;
7596         ctxt->have_exception = false;
7597         ctxt->exception.vector = -1;
7598         ctxt->perm_ok = false;
7599
7600         init_decode_cache(ctxt);
7601         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7602 }
7603
7604 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7605 {
7606         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7607         int ret;
7608
7609         init_emulate_ctxt(vcpu);
7610
7611         ctxt->op_bytes = 2;
7612         ctxt->ad_bytes = 2;
7613         ctxt->_eip = ctxt->eip + inc_eip;
7614         ret = emulate_int_real(ctxt, irq);
7615
7616         if (ret != X86EMUL_CONTINUE) {
7617                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7618         } else {
7619                 ctxt->eip = ctxt->_eip;
7620                 kvm_rip_write(vcpu, ctxt->eip);
7621                 kvm_set_rflags(vcpu, ctxt->eflags);
7622         }
7623 }
7624 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7625
7626 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7627                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
7628 {
7629         struct kvm_run *run = vcpu->run;
7630         u64 info[5];
7631         u8 info_start;
7632
7633         /*
7634          * Zero the whole array used to retrieve the exit info, as casting to
7635          * u32 for select entries will leave some chunks uninitialized.
7636          */
7637         memset(&info, 0, sizeof(info));
7638
7639         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7640                                            &info[2], (u32 *)&info[3],
7641                                            (u32 *)&info[4]);
7642
7643         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7644         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7645
7646         /*
7647          * There's currently space for 13 entries, but 5 are used for the exit
7648          * reason and info.  Restrict to 4 to reduce the maintenance burden
7649          * when expanding kvm_run.emulation_failure in the future.
7650          */
7651         if (WARN_ON_ONCE(ndata > 4))
7652                 ndata = 4;
7653
7654         /* Always include the flags as a 'data' entry. */
7655         info_start = 1;
7656         run->emulation_failure.flags = 0;
7657
7658         if (insn_size) {
7659                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7660                               sizeof(run->emulation_failure.insn_bytes) != 16));
7661                 info_start += 2;
7662                 run->emulation_failure.flags |=
7663                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7664                 run->emulation_failure.insn_size = insn_size;
7665                 memset(run->emulation_failure.insn_bytes, 0x90,
7666                        sizeof(run->emulation_failure.insn_bytes));
7667                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7668         }
7669
7670         memcpy(&run->internal.data[info_start], info, sizeof(info));
7671         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7672                ndata * sizeof(data[0]));
7673
7674         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7675 }
7676
7677 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7678 {
7679         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7680
7681         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7682                                        ctxt->fetch.end - ctxt->fetch.data);
7683 }
7684
7685 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7686                                           u8 ndata)
7687 {
7688         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7689 }
7690 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7691
7692 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7693 {
7694         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7695 }
7696 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7697
7698 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7699 {
7700         struct kvm *kvm = vcpu->kvm;
7701
7702         ++vcpu->stat.insn_emulation_fail;
7703         trace_kvm_emulate_insn_failed(vcpu);
7704
7705         if (emulation_type & EMULTYPE_VMWARE_GP) {
7706                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7707                 return 1;
7708         }
7709
7710         if (kvm->arch.exit_on_emulation_error ||
7711             (emulation_type & EMULTYPE_SKIP)) {
7712                 prepare_emulation_ctxt_failure_exit(vcpu);
7713                 return 0;
7714         }
7715
7716         kvm_queue_exception(vcpu, UD_VECTOR);
7717
7718         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7719                 prepare_emulation_ctxt_failure_exit(vcpu);
7720                 return 0;
7721         }
7722
7723         return 1;
7724 }
7725
7726 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7727                                   bool write_fault_to_shadow_pgtable,
7728                                   int emulation_type)
7729 {
7730         gpa_t gpa = cr2_or_gpa;
7731         kvm_pfn_t pfn;
7732
7733         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7734                 return false;
7735
7736         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7737             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7738                 return false;
7739
7740         if (!vcpu->arch.mmu->direct_map) {
7741                 /*
7742                  * Write permission should be allowed since only
7743                  * write access need to be emulated.
7744                  */
7745                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7746
7747                 /*
7748                  * If the mapping is invalid in guest, let cpu retry
7749                  * it to generate fault.
7750                  */
7751                 if (gpa == UNMAPPED_GVA)
7752                         return true;
7753         }
7754
7755         /*
7756          * Do not retry the unhandleable instruction if it faults on the
7757          * readonly host memory, otherwise it will goto a infinite loop:
7758          * retry instruction -> write #PF -> emulation fail -> retry
7759          * instruction -> ...
7760          */
7761         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
7762
7763         /*
7764          * If the instruction failed on the error pfn, it can not be fixed,
7765          * report the error to userspace.
7766          */
7767         if (is_error_noslot_pfn(pfn))
7768                 return false;
7769
7770         kvm_release_pfn_clean(pfn);
7771
7772         /* The instructions are well-emulated on direct mmu. */
7773         if (vcpu->arch.mmu->direct_map) {
7774                 unsigned int indirect_shadow_pages;
7775
7776                 write_lock(&vcpu->kvm->mmu_lock);
7777                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7778                 write_unlock(&vcpu->kvm->mmu_lock);
7779
7780                 if (indirect_shadow_pages)
7781                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7782
7783                 return true;
7784         }
7785
7786         /*
7787          * if emulation was due to access to shadowed page table
7788          * and it failed try to unshadow page and re-enter the
7789          * guest to let CPU execute the instruction.
7790          */
7791         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7792
7793         /*
7794          * If the access faults on its page table, it can not
7795          * be fixed by unprotecting shadow page and it should
7796          * be reported to userspace.
7797          */
7798         return !write_fault_to_shadow_pgtable;
7799 }
7800
7801 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
7802                               gpa_t cr2_or_gpa,  int emulation_type)
7803 {
7804         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7805         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
7806
7807         last_retry_eip = vcpu->arch.last_retry_eip;
7808         last_retry_addr = vcpu->arch.last_retry_addr;
7809
7810         /*
7811          * If the emulation is caused by #PF and it is non-page_table
7812          * writing instruction, it means the VM-EXIT is caused by shadow
7813          * page protected, we can zap the shadow page and retry this
7814          * instruction directly.
7815          *
7816          * Note: if the guest uses a non-page-table modifying instruction
7817          * on the PDE that points to the instruction, then we will unmap
7818          * the instruction and go to an infinite loop. So, we cache the
7819          * last retried eip and the last fault address, if we meet the eip
7820          * and the address again, we can break out of the potential infinite
7821          * loop.
7822          */
7823         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7824
7825         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
7826                 return false;
7827
7828         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7829             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
7830                 return false;
7831
7832         if (x86_page_table_writing_insn(ctxt))
7833                 return false;
7834
7835         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
7836                 return false;
7837
7838         vcpu->arch.last_retry_eip = ctxt->eip;
7839         vcpu->arch.last_retry_addr = cr2_or_gpa;
7840
7841         if (!vcpu->arch.mmu->direct_map)
7842                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
7843
7844         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7845
7846         return true;
7847 }
7848
7849 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7850 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7851
7852 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
7853 {
7854         trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
7855
7856         if (entering_smm) {
7857                 vcpu->arch.hflags |= HF_SMM_MASK;
7858         } else {
7859                 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
7860
7861                 /* Process a latched INIT or SMI, if any.  */
7862                 kvm_make_request(KVM_REQ_EVENT, vcpu);
7863
7864                 /*
7865                  * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
7866                  * on SMM exit we still need to reload them from
7867                  * guest memory
7868                  */
7869                 vcpu->arch.pdptrs_from_userspace = false;
7870         }
7871
7872         kvm_mmu_reset_context(vcpu);
7873 }
7874
7875 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7876                                 unsigned long *db)
7877 {
7878         u32 dr6 = 0;
7879         int i;
7880         u32 enable, rwlen;
7881
7882         enable = dr7;
7883         rwlen = dr7 >> 16;
7884         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7885                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7886                         dr6 |= (1 << i);
7887         return dr6;
7888 }
7889
7890 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
7891 {
7892         struct kvm_run *kvm_run = vcpu->run;
7893
7894         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7895                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
7896                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
7897                 kvm_run->debug.arch.exception = DB_VECTOR;
7898                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
7899                 return 0;
7900         }
7901         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
7902         return 1;
7903 }
7904
7905 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7906 {
7907         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
7908         int r;
7909
7910         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
7911         if (unlikely(!r))
7912                 return 0;
7913
7914         /*
7915          * rflags is the old, "raw" value of the flags.  The new value has
7916          * not been saved yet.
7917          *
7918          * This is correct even for TF set by the guest, because "the
7919          * processor will not generate this exception after the instruction
7920          * that sets the TF flag".
7921          */
7922         if (unlikely(rflags & X86_EFLAGS_TF))
7923                 r = kvm_vcpu_do_singlestep(vcpu);
7924         return r;
7925 }
7926 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7927
7928 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7929 {
7930         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7931             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
7932                 struct kvm_run *kvm_run = vcpu->run;
7933                 unsigned long eip = kvm_get_linear_rip(vcpu);
7934                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7935                                            vcpu->arch.guest_debug_dr7,
7936                                            vcpu->arch.eff_db);
7937
7938                 if (dr6 != 0) {
7939                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
7940                         kvm_run->debug.arch.pc = eip;
7941                         kvm_run->debug.arch.exception = DB_VECTOR;
7942                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
7943                         *r = 0;
7944                         return true;
7945                 }
7946         }
7947
7948         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7949             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
7950                 unsigned long eip = kvm_get_linear_rip(vcpu);
7951                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
7952                                            vcpu->arch.dr7,
7953                                            vcpu->arch.db);
7954
7955                 if (dr6 != 0) {
7956                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
7957                         *r = 1;
7958                         return true;
7959                 }
7960         }
7961
7962         return false;
7963 }
7964
7965 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7966 {
7967         switch (ctxt->opcode_len) {
7968         case 1:
7969                 switch (ctxt->b) {
7970                 case 0xe4:      /* IN */
7971                 case 0xe5:
7972                 case 0xec:
7973                 case 0xed:
7974                 case 0xe6:      /* OUT */
7975                 case 0xe7:
7976                 case 0xee:
7977                 case 0xef:
7978                 case 0x6c:      /* INS */
7979                 case 0x6d:
7980                 case 0x6e:      /* OUTS */
7981                 case 0x6f:
7982                         return true;
7983                 }
7984                 break;
7985         case 2:
7986                 switch (ctxt->b) {
7987                 case 0x33:      /* RDPMC */
7988                         return true;
7989                 }
7990                 break;
7991         }
7992
7993         return false;
7994 }
7995
7996 /*
7997  * Decode to be emulated instruction. Return EMULATION_OK if success.
7998  */
7999 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8000                                     void *insn, int insn_len)
8001 {
8002         int r = EMULATION_OK;
8003         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8004
8005         init_emulate_ctxt(vcpu);
8006
8007         /*
8008          * We will reenter on the same instruction since we do not set
8009          * complete_userspace_io. This does not handle watchpoints yet,
8010          * those would be handled in the emulate_ops.
8011          */
8012         if (!(emulation_type & EMULTYPE_SKIP) &&
8013             kvm_vcpu_check_breakpoint(vcpu, &r))
8014                 return r;
8015
8016         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8017
8018         trace_kvm_emulate_insn_start(vcpu);
8019         ++vcpu->stat.insn_emulation;
8020
8021         return r;
8022 }
8023 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8024
8025 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8026                             int emulation_type, void *insn, int insn_len)
8027 {
8028         int r;
8029         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8030         bool writeback = true;
8031         bool write_fault_to_spt;
8032
8033         if (unlikely(!static_call(kvm_x86_can_emulate_instruction)(vcpu, insn, insn_len)))
8034                 return 1;
8035
8036         vcpu->arch.l1tf_flush_l1d = true;
8037
8038         /*
8039          * Clear write_fault_to_shadow_pgtable here to ensure it is
8040          * never reused.
8041          */
8042         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8043         vcpu->arch.write_fault_to_shadow_pgtable = false;
8044
8045         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8046                 kvm_clear_exception_queue(vcpu);
8047
8048                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8049                                                     insn, insn_len);
8050                 if (r != EMULATION_OK)  {
8051                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8052                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8053                                 kvm_queue_exception(vcpu, UD_VECTOR);
8054                                 return 1;
8055                         }
8056                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8057                                                   write_fault_to_spt,
8058                                                   emulation_type))
8059                                 return 1;
8060                         if (ctxt->have_exception) {
8061                                 /*
8062                                  * #UD should result in just EMULATION_FAILED, and trap-like
8063                                  * exception should not be encountered during decode.
8064                                  */
8065                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8066                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8067                                 inject_emulated_exception(vcpu);
8068                                 return 1;
8069                         }
8070                         return handle_emulation_failure(vcpu, emulation_type);
8071                 }
8072         }
8073
8074         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8075             !is_vmware_backdoor_opcode(ctxt)) {
8076                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8077                 return 1;
8078         }
8079
8080         /*
8081          * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
8082          * for kvm_skip_emulated_instruction().  The caller is responsible for
8083          * updating interruptibility state and injecting single-step #DBs.
8084          */
8085         if (emulation_type & EMULTYPE_SKIP) {
8086                 kvm_rip_write(vcpu, ctxt->_eip);
8087                 if (ctxt->eflags & X86_EFLAGS_RF)
8088                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8089                 return 1;
8090         }
8091
8092         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8093                 return 1;
8094
8095         /* this is needed for vmware backdoor interface to work since it
8096            changes registers values  during IO operation */
8097         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8098                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8099                 emulator_invalidate_register_cache(ctxt);
8100         }
8101
8102 restart:
8103         if (emulation_type & EMULTYPE_PF) {
8104                 /* Save the faulting GPA (cr2) in the address field */
8105                 ctxt->exception.address = cr2_or_gpa;
8106
8107                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8108                 if (vcpu->arch.mmu->direct_map) {
8109                         ctxt->gpa_available = true;
8110                         ctxt->gpa_val = cr2_or_gpa;
8111                 }
8112         } else {
8113                 /* Sanitize the address out of an abundance of paranoia. */
8114                 ctxt->exception.address = 0;
8115         }
8116
8117         r = x86_emulate_insn(ctxt);
8118
8119         if (r == EMULATION_INTERCEPTED)
8120                 return 1;
8121
8122         if (r == EMULATION_FAILED) {
8123                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8124                                         emulation_type))
8125                         return 1;
8126
8127                 return handle_emulation_failure(vcpu, emulation_type);
8128         }
8129
8130         if (ctxt->have_exception) {
8131                 r = 1;
8132                 if (inject_emulated_exception(vcpu))
8133                         return r;
8134         } else if (vcpu->arch.pio.count) {
8135                 if (!vcpu->arch.pio.in) {
8136                         /* FIXME: return into emulator if single-stepping.  */
8137                         vcpu->arch.pio.count = 0;
8138                 } else {
8139                         writeback = false;
8140                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
8141                 }
8142                 r = 0;
8143         } else if (vcpu->mmio_needed) {
8144                 ++vcpu->stat.mmio_exits;
8145
8146                 if (!vcpu->mmio_is_write)
8147                         writeback = false;
8148                 r = 0;
8149                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8150         } else if (r == EMULATION_RESTART)
8151                 goto restart;
8152         else
8153                 r = 1;
8154
8155         if (writeback) {
8156                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8157                 toggle_interruptibility(vcpu, ctxt->interruptibility);
8158                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8159                 if (!ctxt->have_exception ||
8160                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8161                         kvm_rip_write(vcpu, ctxt->eip);
8162                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8163                                 r = kvm_vcpu_do_singlestep(vcpu);
8164                         if (kvm_x86_ops.update_emulated_instruction)
8165                                 static_call(kvm_x86_update_emulated_instruction)(vcpu);
8166                         __kvm_set_rflags(vcpu, ctxt->eflags);
8167                 }
8168
8169                 /*
8170                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8171                  * do nothing, and it will be requested again as soon as
8172                  * the shadow expires.  But we still need to check here,
8173                  * because POPF has no interrupt shadow.
8174                  */
8175                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8176                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8177         } else
8178                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8179
8180         return r;
8181 }
8182
8183 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8184 {
8185         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8186 }
8187 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8188
8189 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8190                                         void *insn, int insn_len)
8191 {
8192         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8193 }
8194 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8195
8196 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8197 {
8198         vcpu->arch.pio.count = 0;
8199         return 1;
8200 }
8201
8202 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8203 {
8204         vcpu->arch.pio.count = 0;
8205
8206         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8207                 return 1;
8208
8209         return kvm_skip_emulated_instruction(vcpu);
8210 }
8211
8212 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8213                             unsigned short port)
8214 {
8215         unsigned long val = kvm_rax_read(vcpu);
8216         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8217
8218         if (ret)
8219                 return ret;
8220
8221         /*
8222          * Workaround userspace that relies on old KVM behavior of %rip being
8223          * incremented prior to exiting to userspace to handle "OUT 0x7e".
8224          */
8225         if (port == 0x7e &&
8226             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8227                 vcpu->arch.complete_userspace_io =
8228                         complete_fast_pio_out_port_0x7e;
8229                 kvm_skip_emulated_instruction(vcpu);
8230         } else {
8231                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8232                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8233         }
8234         return 0;
8235 }
8236
8237 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8238 {
8239         unsigned long val;
8240
8241         /* We should only ever be called with arch.pio.count equal to 1 */
8242         BUG_ON(vcpu->arch.pio.count != 1);
8243
8244         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8245                 vcpu->arch.pio.count = 0;
8246                 return 1;
8247         }
8248
8249         /* For size less than 4 we merge, else we zero extend */
8250         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8251
8252         /*
8253          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8254          * the copy and tracing
8255          */
8256         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8257         kvm_rax_write(vcpu, val);
8258
8259         return kvm_skip_emulated_instruction(vcpu);
8260 }
8261
8262 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8263                            unsigned short port)
8264 {
8265         unsigned long val;
8266         int ret;
8267
8268         /* For size less than 4 we merge, else we zero extend */
8269         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8270
8271         ret = emulator_pio_in(vcpu, size, port, &val, 1);
8272         if (ret) {
8273                 kvm_rax_write(vcpu, val);
8274                 return ret;
8275         }
8276
8277         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8278         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8279
8280         return 0;
8281 }
8282
8283 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8284 {
8285         int ret;
8286
8287         if (in)
8288                 ret = kvm_fast_pio_in(vcpu, size, port);
8289         else
8290                 ret = kvm_fast_pio_out(vcpu, size, port);
8291         return ret && kvm_skip_emulated_instruction(vcpu);
8292 }
8293 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8294
8295 static int kvmclock_cpu_down_prep(unsigned int cpu)
8296 {
8297         __this_cpu_write(cpu_tsc_khz, 0);
8298         return 0;
8299 }
8300
8301 static void tsc_khz_changed(void *data)
8302 {
8303         struct cpufreq_freqs *freq = data;
8304         unsigned long khz = 0;
8305
8306         if (data)
8307                 khz = freq->new;
8308         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8309                 khz = cpufreq_quick_get(raw_smp_processor_id());
8310         if (!khz)
8311                 khz = tsc_khz;
8312         __this_cpu_write(cpu_tsc_khz, khz);
8313 }
8314
8315 #ifdef CONFIG_X86_64
8316 static void kvm_hyperv_tsc_notifier(void)
8317 {
8318         struct kvm *kvm;
8319         int cpu;
8320
8321         mutex_lock(&kvm_lock);
8322         list_for_each_entry(kvm, &vm_list, vm_list)
8323                 kvm_make_mclock_inprogress_request(kvm);
8324
8325         /* no guest entries from this point */
8326         hyperv_stop_tsc_emulation();
8327
8328         /* TSC frequency always matches when on Hyper-V */
8329         for_each_present_cpu(cpu)
8330                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8331         kvm_max_guest_tsc_khz = tsc_khz;
8332
8333         list_for_each_entry(kvm, &vm_list, vm_list) {
8334                 __kvm_start_pvclock_update(kvm);
8335                 pvclock_update_vm_gtod_copy(kvm);
8336                 kvm_end_pvclock_update(kvm);
8337         }
8338
8339         mutex_unlock(&kvm_lock);
8340 }
8341 #endif
8342
8343 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8344 {
8345         struct kvm *kvm;
8346         struct kvm_vcpu *vcpu;
8347         int i, send_ipi = 0;
8348
8349         /*
8350          * We allow guests to temporarily run on slowing clocks,
8351          * provided we notify them after, or to run on accelerating
8352          * clocks, provided we notify them before.  Thus time never
8353          * goes backwards.
8354          *
8355          * However, we have a problem.  We can't atomically update
8356          * the frequency of a given CPU from this function; it is
8357          * merely a notifier, which can be called from any CPU.
8358          * Changing the TSC frequency at arbitrary points in time
8359          * requires a recomputation of local variables related to
8360          * the TSC for each VCPU.  We must flag these local variables
8361          * to be updated and be sure the update takes place with the
8362          * new frequency before any guests proceed.
8363          *
8364          * Unfortunately, the combination of hotplug CPU and frequency
8365          * change creates an intractable locking scenario; the order
8366          * of when these callouts happen is undefined with respect to
8367          * CPU hotplug, and they can race with each other.  As such,
8368          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8369          * undefined; you can actually have a CPU frequency change take
8370          * place in between the computation of X and the setting of the
8371          * variable.  To protect against this problem, all updates of
8372          * the per_cpu tsc_khz variable are done in an interrupt
8373          * protected IPI, and all callers wishing to update the value
8374          * must wait for a synchronous IPI to complete (which is trivial
8375          * if the caller is on the CPU already).  This establishes the
8376          * necessary total order on variable updates.
8377          *
8378          * Note that because a guest time update may take place
8379          * anytime after the setting of the VCPU's request bit, the
8380          * correct TSC value must be set before the request.  However,
8381          * to ensure the update actually makes it to any guest which
8382          * starts running in hardware virtualization between the set
8383          * and the acquisition of the spinlock, we must also ping the
8384          * CPU after setting the request bit.
8385          *
8386          */
8387
8388         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8389
8390         mutex_lock(&kvm_lock);
8391         list_for_each_entry(kvm, &vm_list, vm_list) {
8392                 kvm_for_each_vcpu(i, vcpu, kvm) {
8393                         if (vcpu->cpu != cpu)
8394                                 continue;
8395                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8396                         if (vcpu->cpu != raw_smp_processor_id())
8397                                 send_ipi = 1;
8398                 }
8399         }
8400         mutex_unlock(&kvm_lock);
8401
8402         if (freq->old < freq->new && send_ipi) {
8403                 /*
8404                  * We upscale the frequency.  Must make the guest
8405                  * doesn't see old kvmclock values while running with
8406                  * the new frequency, otherwise we risk the guest sees
8407                  * time go backwards.
8408                  *
8409                  * In case we update the frequency for another cpu
8410                  * (which might be in guest context) send an interrupt
8411                  * to kick the cpu out of guest context.  Next time
8412                  * guest context is entered kvmclock will be updated,
8413                  * so the guest will not see stale values.
8414                  */
8415                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8416         }
8417 }
8418
8419 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8420                                      void *data)
8421 {
8422         struct cpufreq_freqs *freq = data;
8423         int cpu;
8424
8425         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8426                 return 0;
8427         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8428                 return 0;
8429
8430         for_each_cpu(cpu, freq->policy->cpus)
8431                 __kvmclock_cpufreq_notifier(freq, cpu);
8432
8433         return 0;
8434 }
8435
8436 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8437         .notifier_call  = kvmclock_cpufreq_notifier
8438 };
8439
8440 static int kvmclock_cpu_online(unsigned int cpu)
8441 {
8442         tsc_khz_changed(NULL);
8443         return 0;
8444 }
8445
8446 static void kvm_timer_init(void)
8447 {
8448         max_tsc_khz = tsc_khz;
8449
8450         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8451 #ifdef CONFIG_CPU_FREQ
8452                 struct cpufreq_policy *policy;
8453                 int cpu;
8454
8455                 cpu = get_cpu();
8456                 policy = cpufreq_cpu_get(cpu);
8457                 if (policy) {
8458                         if (policy->cpuinfo.max_freq)
8459                                 max_tsc_khz = policy->cpuinfo.max_freq;
8460                         cpufreq_cpu_put(policy);
8461                 }
8462                 put_cpu();
8463 #endif
8464                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8465                                           CPUFREQ_TRANSITION_NOTIFIER);
8466         }
8467
8468         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8469                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
8470 }
8471
8472 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
8473 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
8474
8475 int kvm_is_in_guest(void)
8476 {
8477         return __this_cpu_read(current_vcpu) != NULL;
8478 }
8479
8480 static int kvm_is_user_mode(void)
8481 {
8482         int user_mode = 3;
8483
8484         if (__this_cpu_read(current_vcpu))
8485                 user_mode = static_call(kvm_x86_get_cpl)(__this_cpu_read(current_vcpu));
8486
8487         return user_mode != 0;
8488 }
8489
8490 static unsigned long kvm_get_guest_ip(void)
8491 {
8492         unsigned long ip = 0;
8493
8494         if (__this_cpu_read(current_vcpu))
8495                 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
8496
8497         return ip;
8498 }
8499
8500 static void kvm_handle_intel_pt_intr(void)
8501 {
8502         struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
8503
8504         kvm_make_request(KVM_REQ_PMI, vcpu);
8505         __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
8506                         (unsigned long *)&vcpu->arch.pmu.global_status);
8507 }
8508
8509 static struct perf_guest_info_callbacks kvm_guest_cbs = {
8510         .is_in_guest            = kvm_is_in_guest,
8511         .is_user_mode           = kvm_is_user_mode,
8512         .get_guest_ip           = kvm_get_guest_ip,
8513         .handle_intel_pt_intr   = kvm_handle_intel_pt_intr,
8514 };
8515
8516 #ifdef CONFIG_X86_64
8517 static void pvclock_gtod_update_fn(struct work_struct *work)
8518 {
8519         struct kvm *kvm;
8520
8521         struct kvm_vcpu *vcpu;
8522         int i;
8523
8524         mutex_lock(&kvm_lock);
8525         list_for_each_entry(kvm, &vm_list, vm_list)
8526                 kvm_for_each_vcpu(i, vcpu, kvm)
8527                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8528         atomic_set(&kvm_guest_has_master_clock, 0);
8529         mutex_unlock(&kvm_lock);
8530 }
8531
8532 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8533
8534 /*
8535  * Indirection to move queue_work() out of the tk_core.seq write held
8536  * region to prevent possible deadlocks against time accessors which
8537  * are invoked with work related locks held.
8538  */
8539 static void pvclock_irq_work_fn(struct irq_work *w)
8540 {
8541         queue_work(system_long_wq, &pvclock_gtod_work);
8542 }
8543
8544 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8545
8546 /*
8547  * Notification about pvclock gtod data update.
8548  */
8549 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8550                                void *priv)
8551 {
8552         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8553         struct timekeeper *tk = priv;
8554
8555         update_pvclock_gtod(tk);
8556
8557         /*
8558          * Disable master clock if host does not trust, or does not use,
8559          * TSC based clocksource. Delegate queue_work() to irq_work as
8560          * this is invoked with tk_core.seq write held.
8561          */
8562         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8563             atomic_read(&kvm_guest_has_master_clock) != 0)
8564                 irq_work_queue(&pvclock_irq_work);
8565         return 0;
8566 }
8567
8568 static struct notifier_block pvclock_gtod_notifier = {
8569         .notifier_call = pvclock_gtod_notify,
8570 };
8571 #endif
8572
8573 int kvm_arch_init(void *opaque)
8574 {
8575         struct kvm_x86_init_ops *ops = opaque;
8576         int r;
8577
8578         if (kvm_x86_ops.hardware_enable) {
8579                 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8580                 r = -EEXIST;
8581                 goto out;
8582         }
8583
8584         if (!ops->cpu_has_kvm_support()) {
8585                 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8586                                    ops->runtime_ops->name);
8587                 r = -EOPNOTSUPP;
8588                 goto out;
8589         }
8590         if (ops->disabled_by_bios()) {
8591                 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8592                                    ops->runtime_ops->name);
8593                 r = -EOPNOTSUPP;
8594                 goto out;
8595         }
8596
8597         /*
8598          * KVM explicitly assumes that the guest has an FPU and
8599          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8600          * vCPU's FPU state as a fxregs_state struct.
8601          */
8602         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8603                 printk(KERN_ERR "kvm: inadequate fpu\n");
8604                 r = -EOPNOTSUPP;
8605                 goto out;
8606         }
8607
8608         r = -ENOMEM;
8609
8610         x86_emulator_cache = kvm_alloc_emulator_cache();
8611         if (!x86_emulator_cache) {
8612                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8613                 goto out;
8614         }
8615
8616         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8617         if (!user_return_msrs) {
8618                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8619                 goto out_free_x86_emulator_cache;
8620         }
8621         kvm_nr_uret_msrs = 0;
8622
8623         r = kvm_mmu_module_init();
8624         if (r)
8625                 goto out_free_percpu;
8626
8627         kvm_timer_init();
8628
8629         perf_register_guest_info_callbacks(&kvm_guest_cbs);
8630
8631         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8632                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8633                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8634         }
8635
8636         if (pi_inject_timer == -1)
8637                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8638 #ifdef CONFIG_X86_64
8639         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8640
8641         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8642                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8643 #endif
8644
8645         return 0;
8646
8647 out_free_percpu:
8648         free_percpu(user_return_msrs);
8649 out_free_x86_emulator_cache:
8650         kmem_cache_destroy(x86_emulator_cache);
8651 out:
8652         return r;
8653 }
8654
8655 void kvm_arch_exit(void)
8656 {
8657 #ifdef CONFIG_X86_64
8658         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8659                 clear_hv_tscchange_cb();
8660 #endif
8661         kvm_lapic_exit();
8662         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
8663
8664         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8665                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8666                                             CPUFREQ_TRANSITION_NOTIFIER);
8667         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8668 #ifdef CONFIG_X86_64
8669         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8670         irq_work_sync(&pvclock_irq_work);
8671         cancel_work_sync(&pvclock_gtod_work);
8672 #endif
8673         kvm_x86_ops.hardware_enable = NULL;
8674         kvm_mmu_module_exit();
8675         free_percpu(user_return_msrs);
8676         kmem_cache_destroy(x86_emulator_cache);
8677 #ifdef CONFIG_KVM_XEN
8678         static_key_deferred_flush(&kvm_xen_enabled);
8679         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8680 #endif
8681 }
8682
8683 static int __kvm_vcpu_halt(struct kvm_vcpu *vcpu, int state, int reason)
8684 {
8685         ++vcpu->stat.halt_exits;
8686         if (lapic_in_kernel(vcpu)) {
8687                 vcpu->arch.mp_state = state;
8688                 return 1;
8689         } else {
8690                 vcpu->run->exit_reason = reason;
8691                 return 0;
8692         }
8693 }
8694
8695 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8696 {
8697         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8698 }
8699 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
8700
8701 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8702 {
8703         int ret = kvm_skip_emulated_instruction(vcpu);
8704         /*
8705          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8706          * KVM_EXIT_DEBUG here.
8707          */
8708         return kvm_vcpu_halt(vcpu) && ret;
8709 }
8710 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8711
8712 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8713 {
8714         int ret = kvm_skip_emulated_instruction(vcpu);
8715
8716         return __kvm_vcpu_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, KVM_EXIT_AP_RESET_HOLD) && ret;
8717 }
8718 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8719
8720 #ifdef CONFIG_X86_64
8721 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8722                                 unsigned long clock_type)
8723 {
8724         struct kvm_clock_pairing clock_pairing;
8725         struct timespec64 ts;
8726         u64 cycle;
8727         int ret;
8728
8729         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8730                 return -KVM_EOPNOTSUPP;
8731
8732         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8733                 return -KVM_EOPNOTSUPP;
8734
8735         clock_pairing.sec = ts.tv_sec;
8736         clock_pairing.nsec = ts.tv_nsec;
8737         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8738         clock_pairing.flags = 0;
8739         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8740
8741         ret = 0;
8742         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
8743                             sizeof(struct kvm_clock_pairing)))
8744                 ret = -KVM_EFAULT;
8745
8746         return ret;
8747 }
8748 #endif
8749
8750 /*
8751  * kvm_pv_kick_cpu_op:  Kick a vcpu.
8752  *
8753  * @apicid - apicid of vcpu to be kicked.
8754  */
8755 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8756 {
8757         struct kvm_lapic_irq lapic_irq;
8758
8759         lapic_irq.shorthand = APIC_DEST_NOSHORT;
8760         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
8761         lapic_irq.level = 0;
8762         lapic_irq.dest_id = apicid;
8763         lapic_irq.msi_redir_hint = false;
8764
8765         lapic_irq.delivery_mode = APIC_DM_REMRD;
8766         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
8767 }
8768
8769 bool kvm_apicv_activated(struct kvm *kvm)
8770 {
8771         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8772 }
8773 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8774
8775 static void kvm_apicv_init(struct kvm *kvm)
8776 {
8777         init_rwsem(&kvm->arch.apicv_update_lock);
8778
8779         if (enable_apicv)
8780                 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8781                           &kvm->arch.apicv_inhibit_reasons);
8782         else
8783                 set_bit(APICV_INHIBIT_REASON_DISABLE,
8784                         &kvm->arch.apicv_inhibit_reasons);
8785 }
8786
8787 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
8788 {
8789         struct kvm_vcpu *target = NULL;
8790         struct kvm_apic_map *map;
8791
8792         vcpu->stat.directed_yield_attempted++;
8793
8794         if (single_task_running())
8795                 goto no_yield;
8796
8797         rcu_read_lock();
8798         map = rcu_dereference(vcpu->kvm->arch.apic_map);
8799
8800         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8801                 target = map->phys_map[dest_id]->vcpu;
8802
8803         rcu_read_unlock();
8804
8805         if (!target || !READ_ONCE(target->ready))
8806                 goto no_yield;
8807
8808         /* Ignore requests to yield to self */
8809         if (vcpu == target)
8810                 goto no_yield;
8811
8812         if (kvm_vcpu_yield_to(target) <= 0)
8813                 goto no_yield;
8814
8815         vcpu->stat.directed_yield_successful++;
8816
8817 no_yield:
8818         return;
8819 }
8820
8821 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
8822 {
8823         u64 ret = vcpu->run->hypercall.ret;
8824
8825         if (!is_64_bit_mode(vcpu))
8826                 ret = (u32)ret;
8827         kvm_rax_write(vcpu, ret);
8828         ++vcpu->stat.hypercalls;
8829         return kvm_skip_emulated_instruction(vcpu);
8830 }
8831
8832 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8833 {
8834         unsigned long nr, a0, a1, a2, a3, ret;
8835         int op_64_bit;
8836
8837         if (kvm_xen_hypercall_enabled(vcpu->kvm))
8838                 return kvm_xen_hypercall(vcpu);
8839
8840         if (kvm_hv_hypercall_enabled(vcpu))
8841                 return kvm_hv_hypercall(vcpu);
8842
8843         nr = kvm_rax_read(vcpu);
8844         a0 = kvm_rbx_read(vcpu);
8845         a1 = kvm_rcx_read(vcpu);
8846         a2 = kvm_rdx_read(vcpu);
8847         a3 = kvm_rsi_read(vcpu);
8848
8849         trace_kvm_hypercall(nr, a0, a1, a2, a3);
8850
8851         op_64_bit = is_64_bit_mode(vcpu);
8852         if (!op_64_bit) {
8853                 nr &= 0xFFFFFFFF;
8854                 a0 &= 0xFFFFFFFF;
8855                 a1 &= 0xFFFFFFFF;
8856                 a2 &= 0xFFFFFFFF;
8857                 a3 &= 0xFFFFFFFF;
8858         }
8859
8860         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
8861                 ret = -KVM_EPERM;
8862                 goto out;
8863         }
8864
8865         ret = -KVM_ENOSYS;
8866
8867         switch (nr) {
8868         case KVM_HC_VAPIC_POLL_IRQ:
8869                 ret = 0;
8870                 break;
8871         case KVM_HC_KICK_CPU:
8872                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8873                         break;
8874
8875                 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
8876                 kvm_sched_yield(vcpu, a1);
8877                 ret = 0;
8878                 break;
8879 #ifdef CONFIG_X86_64
8880         case KVM_HC_CLOCK_PAIRING:
8881                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8882                 break;
8883 #endif
8884         case KVM_HC_SEND_IPI:
8885                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8886                         break;
8887
8888                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8889                 break;
8890         case KVM_HC_SCHED_YIELD:
8891                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8892                         break;
8893
8894                 kvm_sched_yield(vcpu, a0);
8895                 ret = 0;
8896                 break;
8897         case KVM_HC_MAP_GPA_RANGE: {
8898                 u64 gpa = a0, npages = a1, attrs = a2;
8899
8900                 ret = -KVM_ENOSYS;
8901                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
8902                         break;
8903
8904                 if (!PAGE_ALIGNED(gpa) || !npages ||
8905                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
8906                         ret = -KVM_EINVAL;
8907                         break;
8908                 }
8909
8910                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
8911                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
8912                 vcpu->run->hypercall.args[0]  = gpa;
8913                 vcpu->run->hypercall.args[1]  = npages;
8914                 vcpu->run->hypercall.args[2]  = attrs;
8915                 vcpu->run->hypercall.longmode = op_64_bit;
8916                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
8917                 return 0;
8918         }
8919         default:
8920                 ret = -KVM_ENOSYS;
8921                 break;
8922         }
8923 out:
8924         if (!op_64_bit)
8925                 ret = (u32)ret;
8926         kvm_rax_write(vcpu, ret);
8927
8928         ++vcpu->stat.hypercalls;
8929         return kvm_skip_emulated_instruction(vcpu);
8930 }
8931 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8932
8933 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8934 {
8935         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8936         char instruction[3];
8937         unsigned long rip = kvm_rip_read(vcpu);
8938
8939         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8940
8941         return emulator_write_emulated(ctxt, rip, instruction, 3,
8942                 &ctxt->exception);
8943 }
8944
8945 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
8946 {
8947         return vcpu->run->request_interrupt_window &&
8948                 likely(!pic_in_kernel(vcpu->kvm));
8949 }
8950
8951 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
8952 {
8953         struct kvm_run *kvm_run = vcpu->run;
8954
8955         /*
8956          * if_flag is obsolete and useless, so do not bother
8957          * setting it for SEV-ES guests.  Userspace can just
8958          * use kvm_run->ready_for_interrupt_injection.
8959          */
8960         kvm_run->if_flag = !vcpu->arch.guest_state_protected
8961                 && (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
8962
8963         kvm_run->cr8 = kvm_get_cr8(vcpu);
8964         kvm_run->apic_base = kvm_get_apic_base(vcpu);
8965
8966         /*
8967          * The call to kvm_ready_for_interrupt_injection() may end up in
8968          * kvm_xen_has_interrupt() which may require the srcu lock to be
8969          * held, to protect against changes in the vcpu_info address.
8970          */
8971         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8972         kvm_run->ready_for_interrupt_injection =
8973                 pic_in_kernel(vcpu->kvm) ||
8974                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
8975         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8976
8977         if (is_smm(vcpu))
8978                 kvm_run->flags |= KVM_RUN_X86_SMM;
8979 }
8980
8981 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8982 {
8983         int max_irr, tpr;
8984
8985         if (!kvm_x86_ops.update_cr8_intercept)
8986                 return;
8987
8988         if (!lapic_in_kernel(vcpu))
8989                 return;
8990
8991         if (vcpu->arch.apicv_active)
8992                 return;
8993
8994         if (!vcpu->arch.apic->vapic_addr)
8995                 max_irr = kvm_lapic_find_highest_irr(vcpu);
8996         else
8997                 max_irr = -1;
8998
8999         if (max_irr != -1)
9000                 max_irr >>= 4;
9001
9002         tpr = kvm_lapic_get_cr8(vcpu);
9003
9004         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9005 }
9006
9007
9008 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9009 {
9010         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9011                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9012                 return 1;
9013         }
9014
9015         return kvm_x86_ops.nested_ops->check_events(vcpu);
9016 }
9017
9018 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9019 {
9020         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9021                 vcpu->arch.exception.error_code = false;
9022         static_call(kvm_x86_queue_exception)(vcpu);
9023 }
9024
9025 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9026 {
9027         int r;
9028         bool can_inject = true;
9029
9030         /* try to reinject previous events if any */
9031
9032         if (vcpu->arch.exception.injected) {
9033                 kvm_inject_exception(vcpu);
9034                 can_inject = false;
9035         }
9036         /*
9037          * Do not inject an NMI or interrupt if there is a pending
9038          * exception.  Exceptions and interrupts are recognized at
9039          * instruction boundaries, i.e. the start of an instruction.
9040          * Trap-like exceptions, e.g. #DB, have higher priority than
9041          * NMIs and interrupts, i.e. traps are recognized before an
9042          * NMI/interrupt that's pending on the same instruction.
9043          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9044          * priority, but are only generated (pended) during instruction
9045          * execution, i.e. a pending fault-like exception means the
9046          * fault occurred on the *previous* instruction and must be
9047          * serviced prior to recognizing any new events in order to
9048          * fully complete the previous instruction.
9049          */
9050         else if (!vcpu->arch.exception.pending) {
9051                 if (vcpu->arch.nmi_injected) {
9052                         static_call(kvm_x86_set_nmi)(vcpu);
9053                         can_inject = false;
9054                 } else if (vcpu->arch.interrupt.injected) {
9055                         static_call(kvm_x86_set_irq)(vcpu);
9056                         can_inject = false;
9057                 }
9058         }
9059
9060         WARN_ON_ONCE(vcpu->arch.exception.injected &&
9061                      vcpu->arch.exception.pending);
9062
9063         /*
9064          * Call check_nested_events() even if we reinjected a previous event
9065          * in order for caller to determine if it should require immediate-exit
9066          * from L2 to L1 due to pending L1 events which require exit
9067          * from L2 to L1.
9068          */
9069         if (is_guest_mode(vcpu)) {
9070                 r = kvm_check_nested_events(vcpu);
9071                 if (r < 0)
9072                         goto out;
9073         }
9074
9075         /* try to inject new event if pending */
9076         if (vcpu->arch.exception.pending) {
9077                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9078                                         vcpu->arch.exception.has_error_code,
9079                                         vcpu->arch.exception.error_code);
9080
9081                 vcpu->arch.exception.pending = false;
9082                 vcpu->arch.exception.injected = true;
9083
9084                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9085                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9086                                              X86_EFLAGS_RF);
9087
9088                 if (vcpu->arch.exception.nr == DB_VECTOR) {
9089                         kvm_deliver_exception_payload(vcpu);
9090                         if (vcpu->arch.dr7 & DR7_GD) {
9091                                 vcpu->arch.dr7 &= ~DR7_GD;
9092                                 kvm_update_dr7(vcpu);
9093                         }
9094                 }
9095
9096                 kvm_inject_exception(vcpu);
9097                 can_inject = false;
9098         }
9099
9100         /* Don't inject interrupts if the user asked to avoid doing so */
9101         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9102                 return 0;
9103
9104         /*
9105          * Finally, inject interrupt events.  If an event cannot be injected
9106          * due to architectural conditions (e.g. IF=0) a window-open exit
9107          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9108          * and can architecturally be injected, but we cannot do it right now:
9109          * an interrupt could have arrived just now and we have to inject it
9110          * as a vmexit, or there could already an event in the queue, which is
9111          * indicated by can_inject.  In that case we request an immediate exit
9112          * in order to make progress and get back here for another iteration.
9113          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9114          */
9115         if (vcpu->arch.smi_pending) {
9116                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9117                 if (r < 0)
9118                         goto out;
9119                 if (r) {
9120                         vcpu->arch.smi_pending = false;
9121                         ++vcpu->arch.smi_count;
9122                         enter_smm(vcpu);
9123                         can_inject = false;
9124                 } else
9125                         static_call(kvm_x86_enable_smi_window)(vcpu);
9126         }
9127
9128         if (vcpu->arch.nmi_pending) {
9129                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9130                 if (r < 0)
9131                         goto out;
9132                 if (r) {
9133                         --vcpu->arch.nmi_pending;
9134                         vcpu->arch.nmi_injected = true;
9135                         static_call(kvm_x86_set_nmi)(vcpu);
9136                         can_inject = false;
9137                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9138                 }
9139                 if (vcpu->arch.nmi_pending)
9140                         static_call(kvm_x86_enable_nmi_window)(vcpu);
9141         }
9142
9143         if (kvm_cpu_has_injectable_intr(vcpu)) {
9144                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9145                 if (r < 0)
9146                         goto out;
9147                 if (r) {
9148                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9149                         static_call(kvm_x86_set_irq)(vcpu);
9150                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9151                 }
9152                 if (kvm_cpu_has_injectable_intr(vcpu))
9153                         static_call(kvm_x86_enable_irq_window)(vcpu);
9154         }
9155
9156         if (is_guest_mode(vcpu) &&
9157             kvm_x86_ops.nested_ops->hv_timer_pending &&
9158             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9159                 *req_immediate_exit = true;
9160
9161         WARN_ON(vcpu->arch.exception.pending);
9162         return 0;
9163
9164 out:
9165         if (r == -EBUSY) {
9166                 *req_immediate_exit = true;
9167                 r = 0;
9168         }
9169         return r;
9170 }
9171
9172 static void process_nmi(struct kvm_vcpu *vcpu)
9173 {
9174         unsigned limit = 2;
9175
9176         /*
9177          * x86 is limited to one NMI running, and one NMI pending after it.
9178          * If an NMI is already in progress, limit further NMIs to just one.
9179          * Otherwise, allow two (and we'll inject the first one immediately).
9180          */
9181         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9182                 limit = 1;
9183
9184         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9185         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9186         kvm_make_request(KVM_REQ_EVENT, vcpu);
9187 }
9188
9189 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9190 {
9191         u32 flags = 0;
9192         flags |= seg->g       << 23;
9193         flags |= seg->db      << 22;
9194         flags |= seg->l       << 21;
9195         flags |= seg->avl     << 20;
9196         flags |= seg->present << 15;
9197         flags |= seg->dpl     << 13;
9198         flags |= seg->s       << 12;
9199         flags |= seg->type    << 8;
9200         return flags;
9201 }
9202
9203 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9204 {
9205         struct kvm_segment seg;
9206         int offset;
9207
9208         kvm_get_segment(vcpu, &seg, n);
9209         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9210
9211         if (n < 3)
9212                 offset = 0x7f84 + n * 12;
9213         else
9214                 offset = 0x7f2c + (n - 3) * 12;
9215
9216         put_smstate(u32, buf, offset + 8, seg.base);
9217         put_smstate(u32, buf, offset + 4, seg.limit);
9218         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9219 }
9220
9221 #ifdef CONFIG_X86_64
9222 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9223 {
9224         struct kvm_segment seg;
9225         int offset;
9226         u16 flags;
9227
9228         kvm_get_segment(vcpu, &seg, n);
9229         offset = 0x7e00 + n * 16;
9230
9231         flags = enter_smm_get_segment_flags(&seg) >> 8;
9232         put_smstate(u16, buf, offset, seg.selector);
9233         put_smstate(u16, buf, offset + 2, flags);
9234         put_smstate(u32, buf, offset + 4, seg.limit);
9235         put_smstate(u64, buf, offset + 8, seg.base);
9236 }
9237 #endif
9238
9239 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9240 {
9241         struct desc_ptr dt;
9242         struct kvm_segment seg;
9243         unsigned long val;
9244         int i;
9245
9246         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9247         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9248         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9249         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9250
9251         for (i = 0; i < 8; i++)
9252                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9253
9254         kvm_get_dr(vcpu, 6, &val);
9255         put_smstate(u32, buf, 0x7fcc, (u32)val);
9256         kvm_get_dr(vcpu, 7, &val);
9257         put_smstate(u32, buf, 0x7fc8, (u32)val);
9258
9259         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9260         put_smstate(u32, buf, 0x7fc4, seg.selector);
9261         put_smstate(u32, buf, 0x7f64, seg.base);
9262         put_smstate(u32, buf, 0x7f60, seg.limit);
9263         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9264
9265         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9266         put_smstate(u32, buf, 0x7fc0, seg.selector);
9267         put_smstate(u32, buf, 0x7f80, seg.base);
9268         put_smstate(u32, buf, 0x7f7c, seg.limit);
9269         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9270
9271         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9272         put_smstate(u32, buf, 0x7f74, dt.address);
9273         put_smstate(u32, buf, 0x7f70, dt.size);
9274
9275         static_call(kvm_x86_get_idt)(vcpu, &dt);
9276         put_smstate(u32, buf, 0x7f58, dt.address);
9277         put_smstate(u32, buf, 0x7f54, dt.size);
9278
9279         for (i = 0; i < 6; i++)
9280                 enter_smm_save_seg_32(vcpu, buf, i);
9281
9282         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9283
9284         /* revision id */
9285         put_smstate(u32, buf, 0x7efc, 0x00020000);
9286         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9287 }
9288
9289 #ifdef CONFIG_X86_64
9290 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9291 {
9292         struct desc_ptr dt;
9293         struct kvm_segment seg;
9294         unsigned long val;
9295         int i;
9296
9297         for (i = 0; i < 16; i++)
9298                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9299
9300         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9301         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9302
9303         kvm_get_dr(vcpu, 6, &val);
9304         put_smstate(u64, buf, 0x7f68, val);
9305         kvm_get_dr(vcpu, 7, &val);
9306         put_smstate(u64, buf, 0x7f60, val);
9307
9308         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9309         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9310         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9311
9312         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9313
9314         /* revision id */
9315         put_smstate(u32, buf, 0x7efc, 0x00020064);
9316
9317         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9318
9319         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9320         put_smstate(u16, buf, 0x7e90, seg.selector);
9321         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9322         put_smstate(u32, buf, 0x7e94, seg.limit);
9323         put_smstate(u64, buf, 0x7e98, seg.base);
9324
9325         static_call(kvm_x86_get_idt)(vcpu, &dt);
9326         put_smstate(u32, buf, 0x7e84, dt.size);
9327         put_smstate(u64, buf, 0x7e88, dt.address);
9328
9329         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9330         put_smstate(u16, buf, 0x7e70, seg.selector);
9331         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9332         put_smstate(u32, buf, 0x7e74, seg.limit);
9333         put_smstate(u64, buf, 0x7e78, seg.base);
9334
9335         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9336         put_smstate(u32, buf, 0x7e64, dt.size);
9337         put_smstate(u64, buf, 0x7e68, dt.address);
9338
9339         for (i = 0; i < 6; i++)
9340                 enter_smm_save_seg_64(vcpu, buf, i);
9341 }
9342 #endif
9343
9344 static void enter_smm(struct kvm_vcpu *vcpu)
9345 {
9346         struct kvm_segment cs, ds;
9347         struct desc_ptr dt;
9348         unsigned long cr0;
9349         char buf[512];
9350
9351         memset(buf, 0, 512);
9352 #ifdef CONFIG_X86_64
9353         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9354                 enter_smm_save_state_64(vcpu, buf);
9355         else
9356 #endif
9357                 enter_smm_save_state_32(vcpu, buf);
9358
9359         /*
9360          * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9361          * state (e.g. leave guest mode) after we've saved the state into the
9362          * SMM state-save area.
9363          */
9364         static_call(kvm_x86_enter_smm)(vcpu, buf);
9365
9366         kvm_smm_changed(vcpu, true);
9367         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9368
9369         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9370                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9371         else
9372                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9373
9374         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9375         kvm_rip_write(vcpu, 0x8000);
9376
9377         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9378         static_call(kvm_x86_set_cr0)(vcpu, cr0);
9379         vcpu->arch.cr0 = cr0;
9380
9381         static_call(kvm_x86_set_cr4)(vcpu, 0);
9382
9383         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
9384         dt.address = dt.size = 0;
9385         static_call(kvm_x86_set_idt)(vcpu, &dt);
9386
9387         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9388
9389         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9390         cs.base = vcpu->arch.smbase;
9391
9392         ds.selector = 0;
9393         ds.base = 0;
9394
9395         cs.limit    = ds.limit = 0xffffffff;
9396         cs.type     = ds.type = 0x3;
9397         cs.dpl      = ds.dpl = 0;
9398         cs.db       = ds.db = 0;
9399         cs.s        = ds.s = 1;
9400         cs.l        = ds.l = 0;
9401         cs.g        = ds.g = 1;
9402         cs.avl      = ds.avl = 0;
9403         cs.present  = ds.present = 1;
9404         cs.unusable = ds.unusable = 0;
9405         cs.padding  = ds.padding = 0;
9406
9407         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9408         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9409         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9410         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9411         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9412         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9413
9414 #ifdef CONFIG_X86_64
9415         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9416                 static_call(kvm_x86_set_efer)(vcpu, 0);
9417 #endif
9418
9419         kvm_update_cpuid_runtime(vcpu);
9420         kvm_mmu_reset_context(vcpu);
9421 }
9422
9423 static void process_smi(struct kvm_vcpu *vcpu)
9424 {
9425         vcpu->arch.smi_pending = true;
9426         kvm_make_request(KVM_REQ_EVENT, vcpu);
9427 }
9428
9429 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9430                                        unsigned long *vcpu_bitmap)
9431 {
9432         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9433 }
9434
9435 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9436 {
9437         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9438 }
9439
9440 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9441 {
9442         bool activate;
9443
9444         if (!lapic_in_kernel(vcpu))
9445                 return;
9446
9447         down_read(&vcpu->kvm->arch.apicv_update_lock);
9448
9449         activate = kvm_apicv_activated(vcpu->kvm);
9450         if (vcpu->arch.apicv_active == activate)
9451                 goto out;
9452
9453         vcpu->arch.apicv_active = activate;
9454         kvm_apic_update_apicv(vcpu);
9455         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9456
9457         /*
9458          * When APICv gets disabled, we may still have injected interrupts
9459          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9460          * still active when the interrupt got accepted. Make sure
9461          * inject_pending_event() is called to check for that.
9462          */
9463         if (!vcpu->arch.apicv_active)
9464                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9465
9466 out:
9467         up_read(&vcpu->kvm->arch.apicv_update_lock);
9468 }
9469 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9470
9471 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9472 {
9473         unsigned long old, new;
9474
9475         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9476
9477         if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
9478             !static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9479                 return;
9480
9481         old = new = kvm->arch.apicv_inhibit_reasons;
9482
9483         if (activate)
9484                 __clear_bit(bit, &new);
9485         else
9486                 __set_bit(bit, &new);
9487
9488         if (!!old != !!new) {
9489                 trace_kvm_apicv_update_request(activate, bit);
9490                 /*
9491                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9492                  * false positives in the sanity check WARN in svm_vcpu_run().
9493                  * This task will wait for all vCPUs to ack the kick IRQ before
9494                  * updating apicv_inhibit_reasons, and all other vCPUs will
9495                  * block on acquiring apicv_update_lock so that vCPUs can't
9496                  * redo svm_vcpu_run() without seeing the new inhibit state.
9497                  *
9498                  * Note, holding apicv_update_lock and taking it in the read
9499                  * side (handling the request) also prevents other vCPUs from
9500                  * servicing the request with a stale apicv_inhibit_reasons.
9501                  */
9502                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9503                 kvm->arch.apicv_inhibit_reasons = new;
9504                 if (new) {
9505                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9506                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
9507                 }
9508         } else
9509                 kvm->arch.apicv_inhibit_reasons = new;
9510 }
9511 EXPORT_SYMBOL_GPL(__kvm_request_apicv_update);
9512
9513 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9514 {
9515         down_write(&kvm->arch.apicv_update_lock);
9516         __kvm_request_apicv_update(kvm, activate, bit);
9517         up_write(&kvm->arch.apicv_update_lock);
9518 }
9519 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9520
9521 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9522 {
9523         if (!kvm_apic_present(vcpu))
9524                 return;
9525
9526         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9527
9528         if (irqchip_split(vcpu->kvm))
9529                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9530         else {
9531                 if (vcpu->arch.apicv_active)
9532                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9533                 if (ioapic_in_kernel(vcpu->kvm))
9534                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9535         }
9536
9537         if (is_guest_mode(vcpu))
9538                 vcpu->arch.load_eoi_exitmap_pending = true;
9539         else
9540                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9541 }
9542
9543 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9544 {
9545         u64 eoi_exit_bitmap[4];
9546
9547         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9548                 return;
9549
9550         if (to_hv_vcpu(vcpu))
9551                 bitmap_or((ulong *)eoi_exit_bitmap,
9552                           vcpu->arch.ioapic_handled_vectors,
9553                           to_hv_synic(vcpu)->vec_bitmap, 256);
9554
9555         static_call(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9556 }
9557
9558 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9559                                             unsigned long start, unsigned long end)
9560 {
9561         unsigned long apic_address;
9562
9563         /*
9564          * The physical address of apic access page is stored in the VMCS.
9565          * Update it when it becomes invalid.
9566          */
9567         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9568         if (start <= apic_address && apic_address < end)
9569                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9570 }
9571
9572 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9573 {
9574         if (!lapic_in_kernel(vcpu))
9575                 return;
9576
9577         if (!kvm_x86_ops.set_apic_access_page_addr)
9578                 return;
9579
9580         static_call(kvm_x86_set_apic_access_page_addr)(vcpu);
9581 }
9582
9583 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9584 {
9585         smp_send_reschedule(vcpu->cpu);
9586 }
9587 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9588
9589 /*
9590  * Returns 1 to let vcpu_run() continue the guest execution loop without
9591  * exiting to the userspace.  Otherwise, the value will be returned to the
9592  * userspace.
9593  */
9594 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9595 {
9596         int r;
9597         bool req_int_win =
9598                 dm_request_for_irq_injection(vcpu) &&
9599                 kvm_cpu_accept_dm_intr(vcpu);
9600         fastpath_t exit_fastpath;
9601
9602         bool req_immediate_exit = false;
9603
9604         /* Forbid vmenter if vcpu dirty ring is soft-full */
9605         if (unlikely(vcpu->kvm->dirty_ring_size &&
9606                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9607                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9608                 trace_kvm_dirty_ring_exit(vcpu);
9609                 r = 0;
9610                 goto out;
9611         }
9612
9613         if (kvm_request_pending(vcpu)) {
9614                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9615                         r = -EIO;
9616                         goto out;
9617                 }
9618                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9619                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9620                                 r = 0;
9621                                 goto out;
9622                         }
9623                 }
9624                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9625                         kvm_mmu_unload(vcpu);
9626                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9627                         __kvm_migrate_timers(vcpu);
9628                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9629                         kvm_update_masterclock(vcpu->kvm);
9630                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9631                         kvm_gen_kvmclock_update(vcpu);
9632                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9633                         r = kvm_guest_time_update(vcpu);
9634                         if (unlikely(r))
9635                                 goto out;
9636                 }
9637                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9638                         kvm_mmu_sync_roots(vcpu);
9639                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9640                         kvm_mmu_load_pgd(vcpu);
9641                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9642                         kvm_vcpu_flush_tlb_all(vcpu);
9643
9644                         /* Flushing all ASIDs flushes the current ASID... */
9645                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9646                 }
9647                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
9648                         kvm_vcpu_flush_tlb_current(vcpu);
9649                 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
9650                         kvm_vcpu_flush_tlb_guest(vcpu);
9651
9652                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9653                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9654                         r = 0;
9655                         goto out;
9656                 }
9657                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9658                         if (is_guest_mode(vcpu)) {
9659                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9660                         } else {
9661                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9662                                 vcpu->mmio_needed = 0;
9663                                 r = 0;
9664                                 goto out;
9665                         }
9666                 }
9667                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9668                         /* Page is swapped out. Do synthetic halt */
9669                         vcpu->arch.apf.halted = true;
9670                         r = 1;
9671                         goto out;
9672                 }
9673                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9674                         record_steal_time(vcpu);
9675                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9676                         process_smi(vcpu);
9677                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9678                         process_nmi(vcpu);
9679                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9680                         kvm_pmu_handle_event(vcpu);
9681                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9682                         kvm_pmu_deliver_pmi(vcpu);
9683                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9684                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9685                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
9686                                      vcpu->arch.ioapic_handled_vectors)) {
9687                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9688                                 vcpu->run->eoi.vector =
9689                                                 vcpu->arch.pending_ioapic_eoi;
9690                                 r = 0;
9691                                 goto out;
9692                         }
9693                 }
9694                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9695                         vcpu_scan_ioapic(vcpu);
9696                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9697                         vcpu_load_eoi_exitmap(vcpu);
9698                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9699                         kvm_vcpu_reload_apic_access_page(vcpu);
9700                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9701                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9702                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9703                         r = 0;
9704                         goto out;
9705                 }
9706                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9707                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9708                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9709                         r = 0;
9710                         goto out;
9711                 }
9712                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9713                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9714
9715                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9716                         vcpu->run->hyperv = hv_vcpu->exit;
9717                         r = 0;
9718                         goto out;
9719                 }
9720
9721                 /*
9722                  * KVM_REQ_HV_STIMER has to be processed after
9723                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9724                  * depend on the guest clock being up-to-date
9725                  */
9726                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9727                         kvm_hv_process_stimers(vcpu);
9728                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9729                         kvm_vcpu_update_apicv(vcpu);
9730                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9731                         kvm_check_async_pf_completion(vcpu);
9732                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9733                         static_call(kvm_x86_msr_filter_changed)(vcpu);
9734
9735                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9736                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9737         }
9738
9739         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9740             kvm_xen_has_interrupt(vcpu)) {
9741                 ++vcpu->stat.req_event;
9742                 r = kvm_apic_accept_events(vcpu);
9743                 if (r < 0) {
9744                         r = 0;
9745                         goto out;
9746                 }
9747                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9748                         r = 1;
9749                         goto out;
9750                 }
9751
9752                 r = inject_pending_event(vcpu, &req_immediate_exit);
9753                 if (r < 0) {
9754                         r = 0;
9755                         goto out;
9756                 }
9757                 if (req_int_win)
9758                         static_call(kvm_x86_enable_irq_window)(vcpu);
9759
9760                 if (kvm_lapic_enabled(vcpu)) {
9761                         update_cr8_intercept(vcpu);
9762                         kvm_lapic_sync_to_vapic(vcpu);
9763                 }
9764         }
9765
9766         r = kvm_mmu_reload(vcpu);
9767         if (unlikely(r)) {
9768                 goto cancel_injection;
9769         }
9770
9771         preempt_disable();
9772
9773         static_call(kvm_x86_prepare_guest_switch)(vcpu);
9774
9775         /*
9776          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
9777          * IPI are then delayed after guest entry, which ensures that they
9778          * result in virtual interrupt delivery.
9779          */
9780         local_irq_disable();
9781         vcpu->mode = IN_GUEST_MODE;
9782
9783         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9784
9785         /*
9786          * 1) We should set ->mode before checking ->requests.  Please see
9787          * the comment in kvm_vcpu_exiting_guest_mode().
9788          *
9789          * 2) For APICv, we should set ->mode before checking PID.ON. This
9790          * pairs with the memory barrier implicit in pi_test_and_set_on
9791          * (see vmx_deliver_posted_interrupt).
9792          *
9793          * 3) This also orders the write to mode from any reads to the page
9794          * tables done while the VCPU is running.  Please see the comment
9795          * in kvm_flush_remote_tlbs.
9796          */
9797         smp_mb__after_srcu_read_unlock();
9798
9799         /*
9800          * This handles the case where a posted interrupt was
9801          * notified with kvm_vcpu_kick.
9802          */
9803         if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
9804                 static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9805
9806         if (kvm_vcpu_exit_request(vcpu)) {
9807                 vcpu->mode = OUTSIDE_GUEST_MODE;
9808                 smp_wmb();
9809                 local_irq_enable();
9810                 preempt_enable();
9811                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9812                 r = 1;
9813                 goto cancel_injection;
9814         }
9815
9816         if (req_immediate_exit) {
9817                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9818                 static_call(kvm_x86_request_immediate_exit)(vcpu);
9819         }
9820
9821         fpregs_assert_state_consistent();
9822         if (test_thread_flag(TIF_NEED_FPU_LOAD))
9823                 switch_fpu_return();
9824
9825         if (unlikely(vcpu->arch.switch_db_regs)) {
9826                 set_debugreg(0, 7);
9827                 set_debugreg(vcpu->arch.eff_db[0], 0);
9828                 set_debugreg(vcpu->arch.eff_db[1], 1);
9829                 set_debugreg(vcpu->arch.eff_db[2], 2);
9830                 set_debugreg(vcpu->arch.eff_db[3], 3);
9831         } else if (unlikely(hw_breakpoint_active())) {
9832                 set_debugreg(0, 7);
9833         }
9834
9835         for (;;) {
9836                 /*
9837                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
9838                  * update must kick and wait for all vCPUs before toggling the
9839                  * per-VM state, and responsing vCPUs must wait for the update
9840                  * to complete before servicing KVM_REQ_APICV_UPDATE.
9841                  */
9842                 WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
9843
9844                 exit_fastpath = static_call(kvm_x86_run)(vcpu);
9845                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
9846                         break;
9847
9848                 if (vcpu->arch.apicv_active)
9849                         static_call(kvm_x86_sync_pir_to_irr)(vcpu);
9850
9851                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
9852                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
9853                         break;
9854                 }
9855         }
9856
9857         /*
9858          * Do this here before restoring debug registers on the host.  And
9859          * since we do this before handling the vmexit, a DR access vmexit
9860          * can (a) read the correct value of the debug registers, (b) set
9861          * KVM_DEBUGREG_WONT_EXIT again.
9862          */
9863         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
9864                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
9865                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
9866                 kvm_update_dr0123(vcpu);
9867                 kvm_update_dr7(vcpu);
9868         }
9869
9870         /*
9871          * If the guest has used debug registers, at least dr7
9872          * will be disabled while returning to the host.
9873          * If we don't have active breakpoints in the host, we don't
9874          * care about the messed up debug address registers. But if
9875          * we have some of them active, restore the old state.
9876          */
9877         if (hw_breakpoint_active())
9878                 hw_breakpoint_restore();
9879
9880         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
9881         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
9882
9883         vcpu->mode = OUTSIDE_GUEST_MODE;
9884         smp_wmb();
9885
9886         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
9887
9888         /*
9889          * Consume any pending interrupts, including the possible source of
9890          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
9891          * An instruction is required after local_irq_enable() to fully unblock
9892          * interrupts on processors that implement an interrupt shadow, the
9893          * stat.exits increment will do nicely.
9894          */
9895         kvm_before_interrupt(vcpu);
9896         local_irq_enable();
9897         ++vcpu->stat.exits;
9898         local_irq_disable();
9899         kvm_after_interrupt(vcpu);
9900
9901         /*
9902          * Wait until after servicing IRQs to account guest time so that any
9903          * ticks that occurred while running the guest are properly accounted
9904          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
9905          * of accounting via context tracking, but the loss of accuracy is
9906          * acceptable for all known use cases.
9907          */
9908         vtime_account_guest_exit();
9909
9910         if (lapic_in_kernel(vcpu)) {
9911                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9912                 if (delta != S64_MIN) {
9913                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9914                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9915                 }
9916         }
9917
9918         local_irq_enable();
9919         preempt_enable();
9920
9921         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9922
9923         /*
9924          * Profile KVM exit RIPs:
9925          */
9926         if (unlikely(prof_on == KVM_PROFILING)) {
9927                 unsigned long rip = kvm_rip_read(vcpu);
9928                 profile_hit(KVM_PROFILING, (void *)rip);
9929         }
9930
9931         if (unlikely(vcpu->arch.tsc_always_catchup))
9932                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9933
9934         if (vcpu->arch.apic_attention)
9935                 kvm_lapic_sync_from_vapic(vcpu);
9936
9937         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
9938         return r;
9939
9940 cancel_injection:
9941         if (req_immediate_exit)
9942                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9943         static_call(kvm_x86_cancel_injection)(vcpu);
9944         if (unlikely(vcpu->arch.apic_attention))
9945                 kvm_lapic_sync_from_vapic(vcpu);
9946 out:
9947         return r;
9948 }
9949
9950 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9951 {
9952         if (!kvm_arch_vcpu_runnable(vcpu) &&
9953             (!kvm_x86_ops.pre_block || static_call(kvm_x86_pre_block)(vcpu) == 0)) {
9954                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9955                 kvm_vcpu_block(vcpu);
9956                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
9957
9958                 if (kvm_x86_ops.post_block)
9959                         static_call(kvm_x86_post_block)(vcpu);
9960
9961                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9962                         return 1;
9963         }
9964
9965         if (kvm_apic_accept_events(vcpu) < 0)
9966                 return 0;
9967         switch(vcpu->arch.mp_state) {
9968         case KVM_MP_STATE_HALTED:
9969         case KVM_MP_STATE_AP_RESET_HOLD:
9970                 vcpu->arch.pv.pv_unhalted = false;
9971                 vcpu->arch.mp_state =
9972                         KVM_MP_STATE_RUNNABLE;
9973                 fallthrough;
9974         case KVM_MP_STATE_RUNNABLE:
9975                 vcpu->arch.apf.halted = false;
9976                 break;
9977         case KVM_MP_STATE_INIT_RECEIVED:
9978                 break;
9979         default:
9980                 return -EINTR;
9981         }
9982         return 1;
9983 }
9984
9985 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9986 {
9987         if (is_guest_mode(vcpu))
9988                 kvm_check_nested_events(vcpu);
9989
9990         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9991                 !vcpu->arch.apf.halted);
9992 }
9993
9994 static int vcpu_run(struct kvm_vcpu *vcpu)
9995 {
9996         int r;
9997         struct kvm *kvm = vcpu->kvm;
9998
9999         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10000         vcpu->arch.l1tf_flush_l1d = true;
10001
10002         for (;;) {
10003                 if (kvm_vcpu_running(vcpu)) {
10004                         r = vcpu_enter_guest(vcpu);
10005                 } else {
10006                         r = vcpu_block(kvm, vcpu);
10007                 }
10008
10009                 if (r <= 0)
10010                         break;
10011
10012                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10013                 if (kvm_cpu_has_pending_timer(vcpu))
10014                         kvm_inject_pending_timer_irqs(vcpu);
10015
10016                 if (dm_request_for_irq_injection(vcpu) &&
10017                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10018                         r = 0;
10019                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10020                         ++vcpu->stat.request_irq_exits;
10021                         break;
10022                 }
10023
10024                 if (__xfer_to_guest_mode_work_pending()) {
10025                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10026                         r = xfer_to_guest_mode_handle_work(vcpu);
10027                         if (r)
10028                                 return r;
10029                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10030                 }
10031         }
10032
10033         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10034
10035         return r;
10036 }
10037
10038 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10039 {
10040         int r;
10041
10042         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10043         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10044         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10045         return r;
10046 }
10047
10048 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10049 {
10050         BUG_ON(!vcpu->arch.pio.count);
10051
10052         return complete_emulated_io(vcpu);
10053 }
10054
10055 /*
10056  * Implements the following, as a state machine:
10057  *
10058  * read:
10059  *   for each fragment
10060  *     for each mmio piece in the fragment
10061  *       write gpa, len
10062  *       exit
10063  *       copy data
10064  *   execute insn
10065  *
10066  * write:
10067  *   for each fragment
10068  *     for each mmio piece in the fragment
10069  *       write gpa, len
10070  *       copy data
10071  *       exit
10072  */
10073 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10074 {
10075         struct kvm_run *run = vcpu->run;
10076         struct kvm_mmio_fragment *frag;
10077         unsigned len;
10078
10079         BUG_ON(!vcpu->mmio_needed);
10080
10081         /* Complete previous fragment */
10082         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10083         len = min(8u, frag->len);
10084         if (!vcpu->mmio_is_write)
10085                 memcpy(frag->data, run->mmio.data, len);
10086
10087         if (frag->len <= 8) {
10088                 /* Switch to the next fragment. */
10089                 frag++;
10090                 vcpu->mmio_cur_fragment++;
10091         } else {
10092                 /* Go forward to the next mmio piece. */
10093                 frag->data += len;
10094                 frag->gpa += len;
10095                 frag->len -= len;
10096         }
10097
10098         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10099                 vcpu->mmio_needed = 0;
10100
10101                 /* FIXME: return into emulator if single-stepping.  */
10102                 if (vcpu->mmio_is_write)
10103                         return 1;
10104                 vcpu->mmio_read_completed = 1;
10105                 return complete_emulated_io(vcpu);
10106         }
10107
10108         run->exit_reason = KVM_EXIT_MMIO;
10109         run->mmio.phys_addr = frag->gpa;
10110         if (vcpu->mmio_is_write)
10111                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10112         run->mmio.len = min(8u, frag->len);
10113         run->mmio.is_write = vcpu->mmio_is_write;
10114         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10115         return 0;
10116 }
10117
10118 /* Swap (qemu) user FPU context for the guest FPU context. */
10119 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10120 {
10121         /*
10122          * Exclude PKRU from restore as restored separately in
10123          * kvm_x86_ops.run().
10124          */
10125         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10126         trace_kvm_fpu(1);
10127 }
10128
10129 /* When vcpu_run ends, restore user space FPU context. */
10130 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10131 {
10132         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10133         ++vcpu->stat.fpu_reload;
10134         trace_kvm_fpu(0);
10135 }
10136
10137 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10138 {
10139         struct kvm_run *kvm_run = vcpu->run;
10140         int r;
10141
10142         vcpu_load(vcpu);
10143         kvm_sigset_activate(vcpu);
10144         kvm_run->flags = 0;
10145         kvm_load_guest_fpu(vcpu);
10146
10147         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10148                 if (kvm_run->immediate_exit) {
10149                         r = -EINTR;
10150                         goto out;
10151                 }
10152                 kvm_vcpu_block(vcpu);
10153                 if (kvm_apic_accept_events(vcpu) < 0) {
10154                         r = 0;
10155                         goto out;
10156                 }
10157                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10158                 r = -EAGAIN;
10159                 if (signal_pending(current)) {
10160                         r = -EINTR;
10161                         kvm_run->exit_reason = KVM_EXIT_INTR;
10162                         ++vcpu->stat.signal_exits;
10163                 }
10164                 goto out;
10165         }
10166
10167         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10168             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10169                 r = -EINVAL;
10170                 goto out;
10171         }
10172
10173         if (kvm_run->kvm_dirty_regs) {
10174                 r = sync_regs(vcpu);
10175                 if (r != 0)
10176                         goto out;
10177         }
10178
10179         /* re-sync apic's tpr */
10180         if (!lapic_in_kernel(vcpu)) {
10181                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10182                         r = -EINVAL;
10183                         goto out;
10184                 }
10185         }
10186
10187         if (unlikely(vcpu->arch.complete_userspace_io)) {
10188                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10189                 vcpu->arch.complete_userspace_io = NULL;
10190                 r = cui(vcpu);
10191                 if (r <= 0)
10192                         goto out;
10193         } else
10194                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10195
10196         if (kvm_run->immediate_exit)
10197                 r = -EINTR;
10198         else
10199                 r = vcpu_run(vcpu);
10200
10201 out:
10202         kvm_put_guest_fpu(vcpu);
10203         if (kvm_run->kvm_valid_regs)
10204                 store_regs(vcpu);
10205         post_kvm_run_save(vcpu);
10206         kvm_sigset_deactivate(vcpu);
10207
10208         vcpu_put(vcpu);
10209         return r;
10210 }
10211
10212 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10213 {
10214         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10215                 /*
10216                  * We are here if userspace calls get_regs() in the middle of
10217                  * instruction emulation. Registers state needs to be copied
10218                  * back from emulation context to vcpu. Userspace shouldn't do
10219                  * that usually, but some bad designed PV devices (vmware
10220                  * backdoor interface) need this to work
10221                  */
10222                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10223                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10224         }
10225         regs->rax = kvm_rax_read(vcpu);
10226         regs->rbx = kvm_rbx_read(vcpu);
10227         regs->rcx = kvm_rcx_read(vcpu);
10228         regs->rdx = kvm_rdx_read(vcpu);
10229         regs->rsi = kvm_rsi_read(vcpu);
10230         regs->rdi = kvm_rdi_read(vcpu);
10231         regs->rsp = kvm_rsp_read(vcpu);
10232         regs->rbp = kvm_rbp_read(vcpu);
10233 #ifdef CONFIG_X86_64
10234         regs->r8 = kvm_r8_read(vcpu);
10235         regs->r9 = kvm_r9_read(vcpu);
10236         regs->r10 = kvm_r10_read(vcpu);
10237         regs->r11 = kvm_r11_read(vcpu);
10238         regs->r12 = kvm_r12_read(vcpu);
10239         regs->r13 = kvm_r13_read(vcpu);
10240         regs->r14 = kvm_r14_read(vcpu);
10241         regs->r15 = kvm_r15_read(vcpu);
10242 #endif
10243
10244         regs->rip = kvm_rip_read(vcpu);
10245         regs->rflags = kvm_get_rflags(vcpu);
10246 }
10247
10248 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10249 {
10250         vcpu_load(vcpu);
10251         __get_regs(vcpu, regs);
10252         vcpu_put(vcpu);
10253         return 0;
10254 }
10255
10256 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10257 {
10258         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10259         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10260
10261         kvm_rax_write(vcpu, regs->rax);
10262         kvm_rbx_write(vcpu, regs->rbx);
10263         kvm_rcx_write(vcpu, regs->rcx);
10264         kvm_rdx_write(vcpu, regs->rdx);
10265         kvm_rsi_write(vcpu, regs->rsi);
10266         kvm_rdi_write(vcpu, regs->rdi);
10267         kvm_rsp_write(vcpu, regs->rsp);
10268         kvm_rbp_write(vcpu, regs->rbp);
10269 #ifdef CONFIG_X86_64
10270         kvm_r8_write(vcpu, regs->r8);
10271         kvm_r9_write(vcpu, regs->r9);
10272         kvm_r10_write(vcpu, regs->r10);
10273         kvm_r11_write(vcpu, regs->r11);
10274         kvm_r12_write(vcpu, regs->r12);
10275         kvm_r13_write(vcpu, regs->r13);
10276         kvm_r14_write(vcpu, regs->r14);
10277         kvm_r15_write(vcpu, regs->r15);
10278 #endif
10279
10280         kvm_rip_write(vcpu, regs->rip);
10281         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10282
10283         vcpu->arch.exception.pending = false;
10284
10285         kvm_make_request(KVM_REQ_EVENT, vcpu);
10286 }
10287
10288 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10289 {
10290         vcpu_load(vcpu);
10291         __set_regs(vcpu, regs);
10292         vcpu_put(vcpu);
10293         return 0;
10294 }
10295
10296 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
10297 {
10298         struct kvm_segment cs;
10299
10300         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10301         *db = cs.db;
10302         *l = cs.l;
10303 }
10304 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
10305
10306 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10307 {
10308         struct desc_ptr dt;
10309
10310         if (vcpu->arch.guest_state_protected)
10311                 goto skip_protected_regs;
10312
10313         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10314         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10315         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10316         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10317         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10318         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10319
10320         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10321         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10322
10323         static_call(kvm_x86_get_idt)(vcpu, &dt);
10324         sregs->idt.limit = dt.size;
10325         sregs->idt.base = dt.address;
10326         static_call(kvm_x86_get_gdt)(vcpu, &dt);
10327         sregs->gdt.limit = dt.size;
10328         sregs->gdt.base = dt.address;
10329
10330         sregs->cr2 = vcpu->arch.cr2;
10331         sregs->cr3 = kvm_read_cr3(vcpu);
10332
10333 skip_protected_regs:
10334         sregs->cr0 = kvm_read_cr0(vcpu);
10335         sregs->cr4 = kvm_read_cr4(vcpu);
10336         sregs->cr8 = kvm_get_cr8(vcpu);
10337         sregs->efer = vcpu->arch.efer;
10338         sregs->apic_base = kvm_get_apic_base(vcpu);
10339 }
10340
10341 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10342 {
10343         __get_sregs_common(vcpu, sregs);
10344
10345         if (vcpu->arch.guest_state_protected)
10346                 return;
10347
10348         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10349                 set_bit(vcpu->arch.interrupt.nr,
10350                         (unsigned long *)sregs->interrupt_bitmap);
10351 }
10352
10353 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10354 {
10355         int i;
10356
10357         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10358
10359         if (vcpu->arch.guest_state_protected)
10360                 return;
10361
10362         if (is_pae_paging(vcpu)) {
10363                 for (i = 0 ; i < 4 ; i++)
10364                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10365                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10366         }
10367 }
10368
10369 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10370                                   struct kvm_sregs *sregs)
10371 {
10372         vcpu_load(vcpu);
10373         __get_sregs(vcpu, sregs);
10374         vcpu_put(vcpu);
10375         return 0;
10376 }
10377
10378 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10379                                     struct kvm_mp_state *mp_state)
10380 {
10381         int r;
10382
10383         vcpu_load(vcpu);
10384         if (kvm_mpx_supported())
10385                 kvm_load_guest_fpu(vcpu);
10386
10387         r = kvm_apic_accept_events(vcpu);
10388         if (r < 0)
10389                 goto out;
10390         r = 0;
10391
10392         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10393              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10394             vcpu->arch.pv.pv_unhalted)
10395                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10396         else
10397                 mp_state->mp_state = vcpu->arch.mp_state;
10398
10399 out:
10400         if (kvm_mpx_supported())
10401                 kvm_put_guest_fpu(vcpu);
10402         vcpu_put(vcpu);
10403         return r;
10404 }
10405
10406 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10407                                     struct kvm_mp_state *mp_state)
10408 {
10409         int ret = -EINVAL;
10410
10411         vcpu_load(vcpu);
10412
10413         if (!lapic_in_kernel(vcpu) &&
10414             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10415                 goto out;
10416
10417         /*
10418          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10419          * INIT state; latched init should be reported using
10420          * KVM_SET_VCPU_EVENTS, so reject it here.
10421          */
10422         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10423             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10424              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10425                 goto out;
10426
10427         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10428                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10429                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10430         } else
10431                 vcpu->arch.mp_state = mp_state->mp_state;
10432         kvm_make_request(KVM_REQ_EVENT, vcpu);
10433
10434         ret = 0;
10435 out:
10436         vcpu_put(vcpu);
10437         return ret;
10438 }
10439
10440 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10441                     int reason, bool has_error_code, u32 error_code)
10442 {
10443         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10444         int ret;
10445
10446         init_emulate_ctxt(vcpu);
10447
10448         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10449                                    has_error_code, error_code);
10450         if (ret) {
10451                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10452                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10453                 vcpu->run->internal.ndata = 0;
10454                 return 0;
10455         }
10456
10457         kvm_rip_write(vcpu, ctxt->eip);
10458         kvm_set_rflags(vcpu, ctxt->eflags);
10459         return 1;
10460 }
10461 EXPORT_SYMBOL_GPL(kvm_task_switch);
10462
10463 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10464 {
10465         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10466                 /*
10467                  * When EFER.LME and CR0.PG are set, the processor is in
10468                  * 64-bit mode (though maybe in a 32-bit code segment).
10469                  * CR4.PAE and EFER.LMA must be set.
10470                  */
10471                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10472                         return false;
10473                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10474                         return false;
10475         } else {
10476                 /*
10477                  * Not in 64-bit mode: EFER.LMA is clear and the code
10478                  * segment cannot be 64-bit.
10479                  */
10480                 if (sregs->efer & EFER_LMA || sregs->cs.l)
10481                         return false;
10482         }
10483
10484         return kvm_is_valid_cr4(vcpu, sregs->cr4);
10485 }
10486
10487 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10488                 int *mmu_reset_needed, bool update_pdptrs)
10489 {
10490         struct msr_data apic_base_msr;
10491         int idx;
10492         struct desc_ptr dt;
10493
10494         if (!kvm_is_valid_sregs(vcpu, sregs))
10495                 return -EINVAL;
10496
10497         apic_base_msr.data = sregs->apic_base;
10498         apic_base_msr.host_initiated = true;
10499         if (kvm_set_apic_base(vcpu, &apic_base_msr))
10500                 return -EINVAL;
10501
10502         if (vcpu->arch.guest_state_protected)
10503                 return 0;
10504
10505         dt.size = sregs->idt.limit;
10506         dt.address = sregs->idt.base;
10507         static_call(kvm_x86_set_idt)(vcpu, &dt);
10508         dt.size = sregs->gdt.limit;
10509         dt.address = sregs->gdt.base;
10510         static_call(kvm_x86_set_gdt)(vcpu, &dt);
10511
10512         vcpu->arch.cr2 = sregs->cr2;
10513         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10514         vcpu->arch.cr3 = sregs->cr3;
10515         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
10516
10517         kvm_set_cr8(vcpu, sregs->cr8);
10518
10519         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10520         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10521
10522         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10523         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10524         vcpu->arch.cr0 = sregs->cr0;
10525
10526         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10527         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10528
10529         if (update_pdptrs) {
10530                 idx = srcu_read_lock(&vcpu->kvm->srcu);
10531                 if (is_pae_paging(vcpu)) {
10532                         load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
10533                         *mmu_reset_needed = 1;
10534                 }
10535                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10536         }
10537
10538         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10539         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10540         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10541         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10542         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10543         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10544
10545         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10546         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10547
10548         update_cr8_intercept(vcpu);
10549
10550         /* Older userspace won't unhalt the vcpu on reset. */
10551         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10552             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10553             !is_protmode(vcpu))
10554                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10555
10556         return 0;
10557 }
10558
10559 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10560 {
10561         int pending_vec, max_bits;
10562         int mmu_reset_needed = 0;
10563         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10564
10565         if (ret)
10566                 return ret;
10567
10568         if (mmu_reset_needed)
10569                 kvm_mmu_reset_context(vcpu);
10570
10571         max_bits = KVM_NR_INTERRUPTS;
10572         pending_vec = find_first_bit(
10573                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10574
10575         if (pending_vec < max_bits) {
10576                 kvm_queue_interrupt(vcpu, pending_vec, false);
10577                 pr_debug("Set back pending irq %d\n", pending_vec);
10578                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10579         }
10580         return 0;
10581 }
10582
10583 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10584 {
10585         int mmu_reset_needed = 0;
10586         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10587         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10588                 !(sregs2->efer & EFER_LMA);
10589         int i, ret;
10590
10591         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10592                 return -EINVAL;
10593
10594         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10595                 return -EINVAL;
10596
10597         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10598                                  &mmu_reset_needed, !valid_pdptrs);
10599         if (ret)
10600                 return ret;
10601
10602         if (valid_pdptrs) {
10603                 for (i = 0; i < 4 ; i++)
10604                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10605
10606                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10607                 mmu_reset_needed = 1;
10608                 vcpu->arch.pdptrs_from_userspace = true;
10609         }
10610         if (mmu_reset_needed)
10611                 kvm_mmu_reset_context(vcpu);
10612         return 0;
10613 }
10614
10615 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10616                                   struct kvm_sregs *sregs)
10617 {
10618         int ret;
10619
10620         vcpu_load(vcpu);
10621         ret = __set_sregs(vcpu, sregs);
10622         vcpu_put(vcpu);
10623         return ret;
10624 }
10625
10626 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10627 {
10628         bool inhibit = false;
10629         struct kvm_vcpu *vcpu;
10630         int i;
10631
10632         down_write(&kvm->arch.apicv_update_lock);
10633
10634         kvm_for_each_vcpu(i, vcpu, kvm) {
10635                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10636                         inhibit = true;
10637                         break;
10638                 }
10639         }
10640         __kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ);
10641         up_write(&kvm->arch.apicv_update_lock);
10642 }
10643
10644 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10645                                         struct kvm_guest_debug *dbg)
10646 {
10647         unsigned long rflags;
10648         int i, r;
10649
10650         if (vcpu->arch.guest_state_protected)
10651                 return -EINVAL;
10652
10653         vcpu_load(vcpu);
10654
10655         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10656                 r = -EBUSY;
10657                 if (vcpu->arch.exception.pending)
10658                         goto out;
10659                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10660                         kvm_queue_exception(vcpu, DB_VECTOR);
10661                 else
10662                         kvm_queue_exception(vcpu, BP_VECTOR);
10663         }
10664
10665         /*
10666          * Read rflags as long as potentially injected trace flags are still
10667          * filtered out.
10668          */
10669         rflags = kvm_get_rflags(vcpu);
10670
10671         vcpu->guest_debug = dbg->control;
10672         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10673                 vcpu->guest_debug = 0;
10674
10675         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10676                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10677                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10678                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10679         } else {
10680                 for (i = 0; i < KVM_NR_DB_REGS; i++)
10681                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10682         }
10683         kvm_update_dr7(vcpu);
10684
10685         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10686                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10687
10688         /*
10689          * Trigger an rflags update that will inject or remove the trace
10690          * flags.
10691          */
10692         kvm_set_rflags(vcpu, rflags);
10693
10694         static_call(kvm_x86_update_exception_bitmap)(vcpu);
10695
10696         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
10697
10698         r = 0;
10699
10700 out:
10701         vcpu_put(vcpu);
10702         return r;
10703 }
10704
10705 /*
10706  * Translate a guest virtual address to a guest physical address.
10707  */
10708 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10709                                     struct kvm_translation *tr)
10710 {
10711         unsigned long vaddr = tr->linear_address;
10712         gpa_t gpa;
10713         int idx;
10714
10715         vcpu_load(vcpu);
10716
10717         idx = srcu_read_lock(&vcpu->kvm->srcu);
10718         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
10719         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10720         tr->physical_address = gpa;
10721         tr->valid = gpa != UNMAPPED_GVA;
10722         tr->writeable = 1;
10723         tr->usermode = 0;
10724
10725         vcpu_put(vcpu);
10726         return 0;
10727 }
10728
10729 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10730 {
10731         struct fxregs_state *fxsave;
10732
10733         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10734                 return 0;
10735
10736         vcpu_load(vcpu);
10737
10738         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10739         memcpy(fpu->fpr, fxsave->st_space, 128);
10740         fpu->fcw = fxsave->cwd;
10741         fpu->fsw = fxsave->swd;
10742         fpu->ftwx = fxsave->twd;
10743         fpu->last_opcode = fxsave->fop;
10744         fpu->last_ip = fxsave->rip;
10745         fpu->last_dp = fxsave->rdp;
10746         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
10747
10748         vcpu_put(vcpu);
10749         return 0;
10750 }
10751
10752 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
10753 {
10754         struct fxregs_state *fxsave;
10755
10756         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
10757                 return 0;
10758
10759         vcpu_load(vcpu);
10760
10761         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
10762
10763         memcpy(fxsave->st_space, fpu->fpr, 128);
10764         fxsave->cwd = fpu->fcw;
10765         fxsave->swd = fpu->fsw;
10766         fxsave->twd = fpu->ftwx;
10767         fxsave->fop = fpu->last_opcode;
10768         fxsave->rip = fpu->last_ip;
10769         fxsave->rdp = fpu->last_dp;
10770         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
10771
10772         vcpu_put(vcpu);
10773         return 0;
10774 }
10775
10776 static void store_regs(struct kvm_vcpu *vcpu)
10777 {
10778         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
10779
10780         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
10781                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
10782
10783         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
10784                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
10785
10786         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
10787                 kvm_vcpu_ioctl_x86_get_vcpu_events(
10788                                 vcpu, &vcpu->run->s.regs.events);
10789 }
10790
10791 static int sync_regs(struct kvm_vcpu *vcpu)
10792 {
10793         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
10794                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
10795                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
10796         }
10797         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
10798                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
10799                         return -EINVAL;
10800                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
10801         }
10802         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
10803                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
10804                                 vcpu, &vcpu->run->s.regs.events))
10805                         return -EINVAL;
10806                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
10807         }
10808
10809         return 0;
10810 }
10811
10812 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
10813 {
10814         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
10815                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
10816                              "guest TSC will not be reliable\n");
10817
10818         return 0;
10819 }
10820
10821 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
10822 {
10823         struct page *page;
10824         int r;
10825
10826         vcpu->arch.last_vmentry_cpu = -1;
10827         vcpu->arch.regs_avail = ~0;
10828         vcpu->arch.regs_dirty = ~0;
10829
10830         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
10831                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10832         else
10833                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
10834
10835         r = kvm_mmu_create(vcpu);
10836         if (r < 0)
10837                 return r;
10838
10839         if (irqchip_in_kernel(vcpu->kvm)) {
10840                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
10841                 if (r < 0)
10842                         goto fail_mmu_destroy;
10843                 if (kvm_apicv_activated(vcpu->kvm))
10844                         vcpu->arch.apicv_active = true;
10845         } else
10846                 static_branch_inc(&kvm_has_noapic_vcpu);
10847
10848         r = -ENOMEM;
10849
10850         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
10851         if (!page)
10852                 goto fail_free_lapic;
10853         vcpu->arch.pio_data = page_address(page);
10854
10855         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
10856                                        GFP_KERNEL_ACCOUNT);
10857         if (!vcpu->arch.mce_banks)
10858                 goto fail_free_pio_data;
10859         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
10860
10861         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
10862                                 GFP_KERNEL_ACCOUNT))
10863                 goto fail_free_mce_banks;
10864
10865         if (!alloc_emulate_ctxt(vcpu))
10866                 goto free_wbinvd_dirty_mask;
10867
10868         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
10869                 pr_err("kvm: failed to allocate vcpu's fpu\n");
10870                 goto free_emulate_ctxt;
10871         }
10872
10873         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
10874         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
10875
10876         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
10877
10878         kvm_async_pf_hash_reset(vcpu);
10879         kvm_pmu_init(vcpu);
10880
10881         vcpu->arch.pending_external_vector = -1;
10882         vcpu->arch.preempted_in_kernel = false;
10883
10884 #if IS_ENABLED(CONFIG_HYPERV)
10885         vcpu->arch.hv_root_tdp = INVALID_PAGE;
10886 #endif
10887
10888         r = static_call(kvm_x86_vcpu_create)(vcpu);
10889         if (r)
10890                 goto free_guest_fpu;
10891
10892         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
10893         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
10894         kvm_vcpu_mtrr_init(vcpu);
10895         vcpu_load(vcpu);
10896         kvm_set_tsc_khz(vcpu, max_tsc_khz);
10897         kvm_vcpu_reset(vcpu, false);
10898         kvm_init_mmu(vcpu);
10899         vcpu_put(vcpu);
10900         return 0;
10901
10902 free_guest_fpu:
10903         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
10904 free_emulate_ctxt:
10905         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10906 free_wbinvd_dirty_mask:
10907         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10908 fail_free_mce_banks:
10909         kfree(vcpu->arch.mce_banks);
10910 fail_free_pio_data:
10911         free_page((unsigned long)vcpu->arch.pio_data);
10912 fail_free_lapic:
10913         kvm_free_lapic(vcpu);
10914 fail_mmu_destroy:
10915         kvm_mmu_destroy(vcpu);
10916         return r;
10917 }
10918
10919 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
10920 {
10921         struct kvm *kvm = vcpu->kvm;
10922
10923         if (mutex_lock_killable(&vcpu->mutex))
10924                 return;
10925         vcpu_load(vcpu);
10926         kvm_synchronize_tsc(vcpu, 0);
10927         vcpu_put(vcpu);
10928
10929         /* poll control enabled by default */
10930         vcpu->arch.msr_kvm_poll_control = 1;
10931
10932         mutex_unlock(&vcpu->mutex);
10933
10934         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
10935                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
10936                                                 KVMCLOCK_SYNC_PERIOD);
10937 }
10938
10939 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
10940 {
10941         int idx;
10942
10943         kvmclock_reset(vcpu);
10944
10945         static_call(kvm_x86_vcpu_free)(vcpu);
10946
10947         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
10948         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
10949         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
10950
10951         kvm_hv_vcpu_uninit(vcpu);
10952         kvm_pmu_destroy(vcpu);
10953         kfree(vcpu->arch.mce_banks);
10954         kvm_free_lapic(vcpu);
10955         idx = srcu_read_lock(&vcpu->kvm->srcu);
10956         kvm_mmu_destroy(vcpu);
10957         srcu_read_unlock(&vcpu->kvm->srcu, idx);
10958         free_page((unsigned long)vcpu->arch.pio_data);
10959         kvfree(vcpu->arch.cpuid_entries);
10960         if (!lapic_in_kernel(vcpu))
10961                 static_branch_dec(&kvm_has_noapic_vcpu);
10962 }
10963
10964 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
10965 {
10966         struct kvm_cpuid_entry2 *cpuid_0x1;
10967         unsigned long old_cr0 = kvm_read_cr0(vcpu);
10968         unsigned long new_cr0;
10969
10970         /*
10971          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
10972          * to handle side effects.  RESET emulation hits those flows and relies
10973          * on emulated/virtualized registers, including those that are loaded
10974          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
10975          * to detect improper or missing initialization.
10976          */
10977         WARN_ON_ONCE(!init_event &&
10978                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
10979
10980         kvm_lapic_reset(vcpu, init_event);
10981
10982         vcpu->arch.hflags = 0;
10983
10984         vcpu->arch.smi_pending = 0;
10985         vcpu->arch.smi_count = 0;
10986         atomic_set(&vcpu->arch.nmi_queued, 0);
10987         vcpu->arch.nmi_pending = 0;
10988         vcpu->arch.nmi_injected = false;
10989         kvm_clear_interrupt_queue(vcpu);
10990         kvm_clear_exception_queue(vcpu);
10991
10992         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
10993         kvm_update_dr0123(vcpu);
10994         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
10995         vcpu->arch.dr7 = DR7_FIXED_1;
10996         kvm_update_dr7(vcpu);
10997
10998         vcpu->arch.cr2 = 0;
10999
11000         kvm_make_request(KVM_REQ_EVENT, vcpu);
11001         vcpu->arch.apf.msr_en_val = 0;
11002         vcpu->arch.apf.msr_int_val = 0;
11003         vcpu->arch.st.msr_val = 0;
11004
11005         kvmclock_reset(vcpu);
11006
11007         kvm_clear_async_pf_completion_queue(vcpu);
11008         kvm_async_pf_hash_reset(vcpu);
11009         vcpu->arch.apf.halted = false;
11010
11011         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11012                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11013
11014                 /*
11015                  * To avoid have the INIT path from kvm_apic_has_events() that be
11016                  * called with loaded FPU and does not let userspace fix the state.
11017                  */
11018                 if (init_event)
11019                         kvm_put_guest_fpu(vcpu);
11020
11021                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11022                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11023
11024                 if (init_event)
11025                         kvm_load_guest_fpu(vcpu);
11026         }
11027
11028         if (!init_event) {
11029                 kvm_pmu_reset(vcpu);
11030                 vcpu->arch.smbase = 0x30000;
11031
11032                 vcpu->arch.msr_misc_features_enables = 0;
11033
11034                 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
11035         }
11036
11037         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11038         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11039         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11040
11041         /*
11042          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11043          * if no CPUID match is found.  Note, it's impossible to get a match at
11044          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11045          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11046          * on RESET.  But, go through the motions in case that's ever remedied.
11047          */
11048         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11049         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11050
11051         vcpu->arch.ia32_xss = 0;
11052
11053         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11054
11055         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11056         kvm_rip_write(vcpu, 0xfff0);
11057
11058         vcpu->arch.cr3 = 0;
11059         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11060
11061         /*
11062          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11063          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11064          * (or qualify) that with a footnote stating that CD/NW are preserved.
11065          */
11066         new_cr0 = X86_CR0_ET;
11067         if (init_event)
11068                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11069         else
11070                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11071
11072         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11073         static_call(kvm_x86_set_cr4)(vcpu, 0);
11074         static_call(kvm_x86_set_efer)(vcpu, 0);
11075         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11076
11077         /*
11078          * Reset the MMU context if paging was enabled prior to INIT (which is
11079          * implied if CR0.PG=1 as CR0 will be '0' prior to RESET).  Unlike the
11080          * standard CR0/CR4/EFER modification paths, only CR0.PG needs to be
11081          * checked because it is unconditionally cleared on INIT and all other
11082          * paging related bits are ignored if paging is disabled, i.e. CR0.WP,
11083          * CR4, and EFER changes are all irrelevant if CR0.PG was '0'.
11084          */
11085         if (old_cr0 & X86_CR0_PG)
11086                 kvm_mmu_reset_context(vcpu);
11087
11088         /*
11089          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11090          * APM states the TLBs are untouched by INIT, but it also states that
11091          * the TLBs are flushed on "External initialization of the processor."
11092          * Flush the guest TLB regardless of vendor, there is no meaningful
11093          * benefit in relying on the guest to flush the TLB immediately after
11094          * INIT.  A spurious TLB flush is benign and likely negligible from a
11095          * performance perspective.
11096          */
11097         if (init_event)
11098                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11099 }
11100 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11101
11102 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11103 {
11104         struct kvm_segment cs;
11105
11106         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11107         cs.selector = vector << 8;
11108         cs.base = vector << 12;
11109         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11110         kvm_rip_write(vcpu, 0);
11111 }
11112 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11113
11114 int kvm_arch_hardware_enable(void)
11115 {
11116         struct kvm *kvm;
11117         struct kvm_vcpu *vcpu;
11118         int i;
11119         int ret;
11120         u64 local_tsc;
11121         u64 max_tsc = 0;
11122         bool stable, backwards_tsc = false;
11123
11124         kvm_user_return_msr_cpu_online();
11125         ret = static_call(kvm_x86_hardware_enable)();
11126         if (ret != 0)
11127                 return ret;
11128
11129         local_tsc = rdtsc();
11130         stable = !kvm_check_tsc_unstable();
11131         list_for_each_entry(kvm, &vm_list, vm_list) {
11132                 kvm_for_each_vcpu(i, vcpu, kvm) {
11133                         if (!stable && vcpu->cpu == smp_processor_id())
11134                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11135                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11136                                 backwards_tsc = true;
11137                                 if (vcpu->arch.last_host_tsc > max_tsc)
11138                                         max_tsc = vcpu->arch.last_host_tsc;
11139                         }
11140                 }
11141         }
11142
11143         /*
11144          * Sometimes, even reliable TSCs go backwards.  This happens on
11145          * platforms that reset TSC during suspend or hibernate actions, but
11146          * maintain synchronization.  We must compensate.  Fortunately, we can
11147          * detect that condition here, which happens early in CPU bringup,
11148          * before any KVM threads can be running.  Unfortunately, we can't
11149          * bring the TSCs fully up to date with real time, as we aren't yet far
11150          * enough into CPU bringup that we know how much real time has actually
11151          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11152          * variables that haven't been updated yet.
11153          *
11154          * So we simply find the maximum observed TSC above, then record the
11155          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11156          * the adjustment will be applied.  Note that we accumulate
11157          * adjustments, in case multiple suspend cycles happen before some VCPU
11158          * gets a chance to run again.  In the event that no KVM threads get a
11159          * chance to run, we will miss the entire elapsed period, as we'll have
11160          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11161          * loose cycle time.  This isn't too big a deal, since the loss will be
11162          * uniform across all VCPUs (not to mention the scenario is extremely
11163          * unlikely). It is possible that a second hibernate recovery happens
11164          * much faster than a first, causing the observed TSC here to be
11165          * smaller; this would require additional padding adjustment, which is
11166          * why we set last_host_tsc to the local tsc observed here.
11167          *
11168          * N.B. - this code below runs only on platforms with reliable TSC,
11169          * as that is the only way backwards_tsc is set above.  Also note
11170          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11171          * have the same delta_cyc adjustment applied if backwards_tsc
11172          * is detected.  Note further, this adjustment is only done once,
11173          * as we reset last_host_tsc on all VCPUs to stop this from being
11174          * called multiple times (one for each physical CPU bringup).
11175          *
11176          * Platforms with unreliable TSCs don't have to deal with this, they
11177          * will be compensated by the logic in vcpu_load, which sets the TSC to
11178          * catchup mode.  This will catchup all VCPUs to real time, but cannot
11179          * guarantee that they stay in perfect synchronization.
11180          */
11181         if (backwards_tsc) {
11182                 u64 delta_cyc = max_tsc - local_tsc;
11183                 list_for_each_entry(kvm, &vm_list, vm_list) {
11184                         kvm->arch.backwards_tsc_observed = true;
11185                         kvm_for_each_vcpu(i, vcpu, kvm) {
11186                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11187                                 vcpu->arch.last_host_tsc = local_tsc;
11188                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11189                         }
11190
11191                         /*
11192                          * We have to disable TSC offset matching.. if you were
11193                          * booting a VM while issuing an S4 host suspend....
11194                          * you may have some problem.  Solving this issue is
11195                          * left as an exercise to the reader.
11196                          */
11197                         kvm->arch.last_tsc_nsec = 0;
11198                         kvm->arch.last_tsc_write = 0;
11199                 }
11200
11201         }
11202         return 0;
11203 }
11204
11205 void kvm_arch_hardware_disable(void)
11206 {
11207         static_call(kvm_x86_hardware_disable)();
11208         drop_user_return_notifiers();
11209 }
11210
11211 int kvm_arch_hardware_setup(void *opaque)
11212 {
11213         struct kvm_x86_init_ops *ops = opaque;
11214         int r;
11215
11216         rdmsrl_safe(MSR_EFER, &host_efer);
11217
11218         if (boot_cpu_has(X86_FEATURE_XSAVES))
11219                 rdmsrl(MSR_IA32_XSS, host_xss);
11220
11221         r = ops->hardware_setup();
11222         if (r != 0)
11223                 return r;
11224
11225         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11226         kvm_ops_static_call_update();
11227
11228         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11229                 supported_xss = 0;
11230
11231 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11232         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11233 #undef __kvm_cpu_cap_has
11234
11235         if (kvm_has_tsc_control) {
11236                 /*
11237                  * Make sure the user can only configure tsc_khz values that
11238                  * fit into a signed integer.
11239                  * A min value is not calculated because it will always
11240                  * be 1 on all machines.
11241                  */
11242                 u64 max = min(0x7fffffffULL,
11243                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11244                 kvm_max_guest_tsc_khz = max;
11245
11246                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11247         }
11248
11249         kvm_init_msr_list();
11250         return 0;
11251 }
11252
11253 void kvm_arch_hardware_unsetup(void)
11254 {
11255         static_call(kvm_x86_hardware_unsetup)();
11256 }
11257
11258 int kvm_arch_check_processor_compat(void *opaque)
11259 {
11260         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11261         struct kvm_x86_init_ops *ops = opaque;
11262
11263         WARN_ON(!irqs_disabled());
11264
11265         if (__cr4_reserved_bits(cpu_has, c) !=
11266             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11267                 return -EIO;
11268
11269         return ops->check_processor_compatibility();
11270 }
11271
11272 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11273 {
11274         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11275 }
11276 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11277
11278 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11279 {
11280         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11281 }
11282
11283 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11284 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11285
11286 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11287 {
11288         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11289
11290         vcpu->arch.l1tf_flush_l1d = true;
11291         if (pmu->version && unlikely(pmu->event_count)) {
11292                 pmu->need_cleanup = true;
11293                 kvm_make_request(KVM_REQ_PMU, vcpu);
11294         }
11295         static_call(kvm_x86_sched_in)(vcpu, cpu);
11296 }
11297
11298 void kvm_arch_free_vm(struct kvm *kvm)
11299 {
11300         kfree(to_kvm_hv(kvm)->hv_pa_pg);
11301         __kvm_arch_free_vm(kvm);
11302 }
11303
11304
11305 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11306 {
11307         int ret;
11308         unsigned long flags;
11309
11310         if (type)
11311                 return -EINVAL;
11312
11313         ret = kvm_page_track_init(kvm);
11314         if (ret)
11315                 return ret;
11316
11317         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11318         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11319         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11320         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11321         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11322         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11323
11324         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11325         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11326         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11327         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11328                 &kvm->arch.irq_sources_bitmap);
11329
11330         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11331         mutex_init(&kvm->arch.apic_map_lock);
11332         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11333         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11334
11335         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11336         pvclock_update_vm_gtod_copy(kvm);
11337         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11338
11339         kvm->arch.guest_can_read_msr_platform_info = true;
11340
11341 #if IS_ENABLED(CONFIG_HYPERV)
11342         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11343         kvm->arch.hv_root_tdp = INVALID_PAGE;
11344 #endif
11345
11346         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11347         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11348
11349         kvm_apicv_init(kvm);
11350         kvm_hv_init_vm(kvm);
11351         kvm_mmu_init_vm(kvm);
11352         kvm_xen_init_vm(kvm);
11353
11354         return static_call(kvm_x86_vm_init)(kvm);
11355 }
11356
11357 int kvm_arch_post_init_vm(struct kvm *kvm)
11358 {
11359         return kvm_mmu_post_init_vm(kvm);
11360 }
11361
11362 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11363 {
11364         vcpu_load(vcpu);
11365         kvm_mmu_unload(vcpu);
11366         vcpu_put(vcpu);
11367 }
11368
11369 static void kvm_free_vcpus(struct kvm *kvm)
11370 {
11371         unsigned int i;
11372         struct kvm_vcpu *vcpu;
11373
11374         /*
11375          * Unpin any mmu pages first.
11376          */
11377         kvm_for_each_vcpu(i, vcpu, kvm) {
11378                 kvm_clear_async_pf_completion_queue(vcpu);
11379                 kvm_unload_vcpu_mmu(vcpu);
11380         }
11381         kvm_for_each_vcpu(i, vcpu, kvm)
11382                 kvm_vcpu_destroy(vcpu);
11383
11384         mutex_lock(&kvm->lock);
11385         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
11386                 kvm->vcpus[i] = NULL;
11387
11388         atomic_set(&kvm->online_vcpus, 0);
11389         mutex_unlock(&kvm->lock);
11390 }
11391
11392 void kvm_arch_sync_events(struct kvm *kvm)
11393 {
11394         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11395         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11396         kvm_free_pit(kvm);
11397 }
11398
11399 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
11400
11401 /**
11402  * __x86_set_memory_region: Setup KVM internal memory slot
11403  *
11404  * @kvm: the kvm pointer to the VM.
11405  * @id: the slot ID to setup.
11406  * @gpa: the GPA to install the slot (unused when @size == 0).
11407  * @size: the size of the slot. Set to zero to uninstall a slot.
11408  *
11409  * This function helps to setup a KVM internal memory slot.  Specify
11410  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11411  * slot.  The return code can be one of the following:
11412  *
11413  *   HVA:           on success (uninstall will return a bogus HVA)
11414  *   -errno:        on error
11415  *
11416  * The caller should always use IS_ERR() to check the return value
11417  * before use.  Note, the KVM internal memory slots are guaranteed to
11418  * remain valid and unchanged until the VM is destroyed, i.e., the
11419  * GPA->HVA translation will not change.  However, the HVA is a user
11420  * address, i.e. its accessibility is not guaranteed, and must be
11421  * accessed via __copy_{to,from}_user().
11422  */
11423 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11424                                       u32 size)
11425 {
11426         int i, r;
11427         unsigned long hva, old_npages;
11428         struct kvm_memslots *slots = kvm_memslots(kvm);
11429         struct kvm_memory_slot *slot;
11430
11431         /* Called with kvm->slots_lock held.  */
11432         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11433                 return ERR_PTR_USR(-EINVAL);
11434
11435         slot = id_to_memslot(slots, id);
11436         if (size) {
11437                 if (slot && slot->npages)
11438                         return ERR_PTR_USR(-EEXIST);
11439
11440                 /*
11441                  * MAP_SHARED to prevent internal slot pages from being moved
11442                  * by fork()/COW.
11443                  */
11444                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11445                               MAP_SHARED | MAP_ANONYMOUS, 0);
11446                 if (IS_ERR((void *)hva))
11447                         return (void __user *)hva;
11448         } else {
11449                 if (!slot || !slot->npages)
11450                         return NULL;
11451
11452                 old_npages = slot->npages;
11453                 hva = slot->userspace_addr;
11454         }
11455
11456         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11457                 struct kvm_userspace_memory_region m;
11458
11459                 m.slot = id | (i << 16);
11460                 m.flags = 0;
11461                 m.guest_phys_addr = gpa;
11462                 m.userspace_addr = hva;
11463                 m.memory_size = size;
11464                 r = __kvm_set_memory_region(kvm, &m);
11465                 if (r < 0)
11466                         return ERR_PTR_USR(r);
11467         }
11468
11469         if (!size)
11470                 vm_munmap(hva, old_npages * PAGE_SIZE);
11471
11472         return (void __user *)hva;
11473 }
11474 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11475
11476 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11477 {
11478         kvm_mmu_pre_destroy_vm(kvm);
11479 }
11480
11481 void kvm_arch_destroy_vm(struct kvm *kvm)
11482 {
11483         if (current->mm == kvm->mm) {
11484                 /*
11485                  * Free memory regions allocated on behalf of userspace,
11486                  * unless the the memory map has changed due to process exit
11487                  * or fd copying.
11488                  */
11489                 mutex_lock(&kvm->slots_lock);
11490                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11491                                         0, 0);
11492                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11493                                         0, 0);
11494                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11495                 mutex_unlock(&kvm->slots_lock);
11496         }
11497         static_call_cond(kvm_x86_vm_destroy)(kvm);
11498         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11499         kvm_pic_destroy(kvm);
11500         kvm_ioapic_destroy(kvm);
11501         kvm_free_vcpus(kvm);
11502         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11503         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11504         kvm_mmu_uninit_vm(kvm);
11505         kvm_page_track_cleanup(kvm);
11506         kvm_xen_destroy_vm(kvm);
11507         kvm_hv_destroy_vm(kvm);
11508 }
11509
11510 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11511 {
11512         int i;
11513
11514         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11515                 kvfree(slot->arch.rmap[i]);
11516                 slot->arch.rmap[i] = NULL;
11517         }
11518 }
11519
11520 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11521 {
11522         int i;
11523
11524         memslot_rmap_free(slot);
11525
11526         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11527                 kvfree(slot->arch.lpage_info[i - 1]);
11528                 slot->arch.lpage_info[i - 1] = NULL;
11529         }
11530
11531         kvm_page_track_free_memslot(slot);
11532 }
11533
11534 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11535 {
11536         const int sz = sizeof(*slot->arch.rmap[0]);
11537         int i;
11538
11539         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11540                 int level = i + 1;
11541                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11542
11543                 if (slot->arch.rmap[i])
11544                         continue;
11545
11546                 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11547                 if (!slot->arch.rmap[i]) {
11548                         memslot_rmap_free(slot);
11549                         return -ENOMEM;
11550                 }
11551         }
11552
11553         return 0;
11554 }
11555
11556 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11557                                       struct kvm_memory_slot *slot,
11558                                       unsigned long npages)
11559 {
11560         int i, r;
11561
11562         /*
11563          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11564          * old arrays will be freed by __kvm_set_memory_region() if installing
11565          * the new memslot is successful.
11566          */
11567         memset(&slot->arch, 0, sizeof(slot->arch));
11568
11569         if (kvm_memslots_have_rmaps(kvm)) {
11570                 r = memslot_rmap_alloc(slot, npages);
11571                 if (r)
11572                         return r;
11573         }
11574
11575         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11576                 struct kvm_lpage_info *linfo;
11577                 unsigned long ugfn;
11578                 int lpages;
11579                 int level = i + 1;
11580
11581                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11582
11583                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11584                 if (!linfo)
11585                         goto out_free;
11586
11587                 slot->arch.lpage_info[i - 1] = linfo;
11588
11589                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11590                         linfo[0].disallow_lpage = 1;
11591                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11592                         linfo[lpages - 1].disallow_lpage = 1;
11593                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11594                 /*
11595                  * If the gfn and userspace address are not aligned wrt each
11596                  * other, disable large page support for this slot.
11597                  */
11598                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11599                         unsigned long j;
11600
11601                         for (j = 0; j < lpages; ++j)
11602                                 linfo[j].disallow_lpage = 1;
11603                 }
11604         }
11605
11606         if (kvm_page_track_create_memslot(kvm, slot, npages))
11607                 goto out_free;
11608
11609         return 0;
11610
11611 out_free:
11612         memslot_rmap_free(slot);
11613
11614         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11615                 kvfree(slot->arch.lpage_info[i - 1]);
11616                 slot->arch.lpage_info[i - 1] = NULL;
11617         }
11618         return -ENOMEM;
11619 }
11620
11621 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11622 {
11623         struct kvm_vcpu *vcpu;
11624         int i;
11625
11626         /*
11627          * memslots->generation has been incremented.
11628          * mmio generation may have reached its maximum value.
11629          */
11630         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11631
11632         /* Force re-initialization of steal_time cache */
11633         kvm_for_each_vcpu(i, vcpu, kvm)
11634                 kvm_vcpu_kick(vcpu);
11635 }
11636
11637 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11638                                 struct kvm_memory_slot *memslot,
11639                                 const struct kvm_userspace_memory_region *mem,
11640                                 enum kvm_mr_change change)
11641 {
11642         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11643                 return kvm_alloc_memslot_metadata(kvm, memslot,
11644                                                   mem->memory_size >> PAGE_SHIFT);
11645         return 0;
11646 }
11647
11648
11649 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11650 {
11651         struct kvm_arch *ka = &kvm->arch;
11652
11653         if (!kvm_x86_ops.cpu_dirty_log_size)
11654                 return;
11655
11656         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11657             (!enable && --ka->cpu_dirty_logging_count == 0))
11658                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11659
11660         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11661 }
11662
11663 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11664                                      struct kvm_memory_slot *old,
11665                                      const struct kvm_memory_slot *new,
11666                                      enum kvm_mr_change change)
11667 {
11668         bool log_dirty_pages = new->flags & KVM_MEM_LOG_DIRTY_PAGES;
11669
11670         /*
11671          * Update CPU dirty logging if dirty logging is being toggled.  This
11672          * applies to all operations.
11673          */
11674         if ((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)
11675                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11676
11677         /*
11678          * Nothing more to do for RO slots (which can't be dirtied and can't be
11679          * made writable) or CREATE/MOVE/DELETE of a slot.
11680          *
11681          * For a memslot with dirty logging disabled:
11682          * CREATE:      No dirty mappings will already exist.
11683          * MOVE/DELETE: The old mappings will already have been cleaned up by
11684          *              kvm_arch_flush_shadow_memslot()
11685          *
11686          * For a memslot with dirty logging enabled:
11687          * CREATE:      No shadow pages exist, thus nothing to write-protect
11688          *              and no dirty bits to clear.
11689          * MOVE/DELETE: The old mappings will already have been cleaned up by
11690          *              kvm_arch_flush_shadow_memslot().
11691          */
11692         if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
11693                 return;
11694
11695         /*
11696          * READONLY and non-flags changes were filtered out above, and the only
11697          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11698          * logging isn't being toggled on or off.
11699          */
11700         if (WARN_ON_ONCE(!((old->flags ^ new->flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11701                 return;
11702
11703         if (!log_dirty_pages) {
11704                 /*
11705                  * Dirty logging tracks sptes in 4k granularity, meaning that
11706                  * large sptes have to be split.  If live migration succeeds,
11707                  * the guest in the source machine will be destroyed and large
11708                  * sptes will be created in the destination.  However, if the
11709                  * guest continues to run in the source machine (for example if
11710                  * live migration fails), small sptes will remain around and
11711                  * cause bad performance.
11712                  *
11713                  * Scan sptes if dirty logging has been stopped, dropping those
11714                  * which can be collapsed into a single large-page spte.  Later
11715                  * page faults will create the large-page sptes.
11716                  */
11717                 kvm_mmu_zap_collapsible_sptes(kvm, new);
11718         } else {
11719                 /*
11720                  * Initially-all-set does not require write protecting any page,
11721                  * because they're all assumed to be dirty.
11722                  */
11723                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
11724                         return;
11725
11726                 if (kvm_x86_ops.cpu_dirty_log_size) {
11727                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
11728                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
11729                 } else {
11730                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
11731                 }
11732         }
11733 }
11734
11735 void kvm_arch_commit_memory_region(struct kvm *kvm,
11736                                 const struct kvm_userspace_memory_region *mem,
11737                                 struct kvm_memory_slot *old,
11738                                 const struct kvm_memory_slot *new,
11739                                 enum kvm_mr_change change)
11740 {
11741         if (!kvm->arch.n_requested_mmu_pages)
11742                 kvm_mmu_change_mmu_pages(kvm,
11743                                 kvm_mmu_calculate_default_mmu_pages(kvm));
11744
11745         kvm_mmu_slot_apply_flags(kvm, old, new, change);
11746
11747         /* Free the arrays associated with the old memslot. */
11748         if (change == KVM_MR_MOVE)
11749                 kvm_arch_free_memslot(kvm, old);
11750 }
11751
11752 void kvm_arch_flush_shadow_all(struct kvm *kvm)
11753 {
11754         kvm_mmu_zap_all(kvm);
11755 }
11756
11757 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
11758                                    struct kvm_memory_slot *slot)
11759 {
11760         kvm_page_track_flush_slot(kvm, slot);
11761 }
11762
11763 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
11764 {
11765         return (is_guest_mode(vcpu) &&
11766                         kvm_x86_ops.guest_apic_has_interrupt &&
11767                         static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
11768 }
11769
11770 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
11771 {
11772         if (!list_empty_careful(&vcpu->async_pf.done))
11773                 return true;
11774
11775         if (kvm_apic_has_events(vcpu))
11776                 return true;
11777
11778         if (vcpu->arch.pv.pv_unhalted)
11779                 return true;
11780
11781         if (vcpu->arch.exception.pending)
11782                 return true;
11783
11784         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11785             (vcpu->arch.nmi_pending &&
11786              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
11787                 return true;
11788
11789         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
11790             (vcpu->arch.smi_pending &&
11791              static_call(kvm_x86_smi_allowed)(vcpu, false)))
11792                 return true;
11793
11794         if (kvm_arch_interrupt_allowed(vcpu) &&
11795             (kvm_cpu_has_interrupt(vcpu) ||
11796             kvm_guest_apic_has_interrupt(vcpu)))
11797                 return true;
11798
11799         if (kvm_hv_has_stimer_pending(vcpu))
11800                 return true;
11801
11802         if (is_guest_mode(vcpu) &&
11803             kvm_x86_ops.nested_ops->hv_timer_pending &&
11804             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
11805                 return true;
11806
11807         return false;
11808 }
11809
11810 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
11811 {
11812         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
11813 }
11814
11815 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
11816 {
11817         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
11818                 return true;
11819
11820         return false;
11821 }
11822
11823 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
11824 {
11825         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
11826                 return true;
11827
11828         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
11829                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
11830                  kvm_test_request(KVM_REQ_EVENT, vcpu))
11831                 return true;
11832
11833         return kvm_arch_dy_has_pending_interrupt(vcpu);
11834 }
11835
11836 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
11837 {
11838         if (vcpu->arch.guest_state_protected)
11839                 return true;
11840
11841         return vcpu->arch.preempted_in_kernel;
11842 }
11843
11844 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
11845 {
11846         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
11847 }
11848
11849 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
11850 {
11851         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
11852 }
11853
11854 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
11855 {
11856         /* Can't read the RIP when guest state is protected, just return 0 */
11857         if (vcpu->arch.guest_state_protected)
11858                 return 0;
11859
11860         if (is_64_bit_mode(vcpu))
11861                 return kvm_rip_read(vcpu);
11862         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
11863                      kvm_rip_read(vcpu));
11864 }
11865 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
11866
11867 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
11868 {
11869         return kvm_get_linear_rip(vcpu) == linear_rip;
11870 }
11871 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
11872
11873 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
11874 {
11875         unsigned long rflags;
11876
11877         rflags = static_call(kvm_x86_get_rflags)(vcpu);
11878         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11879                 rflags &= ~X86_EFLAGS_TF;
11880         return rflags;
11881 }
11882 EXPORT_SYMBOL_GPL(kvm_get_rflags);
11883
11884 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11885 {
11886         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
11887             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
11888                 rflags |= X86_EFLAGS_TF;
11889         static_call(kvm_x86_set_rflags)(vcpu, rflags);
11890 }
11891
11892 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
11893 {
11894         __kvm_set_rflags(vcpu, rflags);
11895         kvm_make_request(KVM_REQ_EVENT, vcpu);
11896 }
11897 EXPORT_SYMBOL_GPL(kvm_set_rflags);
11898
11899 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
11900 {
11901         int r;
11902
11903         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
11904               work->wakeup_all)
11905                 return;
11906
11907         r = kvm_mmu_reload(vcpu);
11908         if (unlikely(r))
11909                 return;
11910
11911         if (!vcpu->arch.mmu->direct_map &&
11912               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
11913                 return;
11914
11915         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
11916 }
11917
11918 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
11919 {
11920         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
11921
11922         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
11923 }
11924
11925 static inline u32 kvm_async_pf_next_probe(u32 key)
11926 {
11927         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
11928 }
11929
11930 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11931 {
11932         u32 key = kvm_async_pf_hash_fn(gfn);
11933
11934         while (vcpu->arch.apf.gfns[key] != ~0)
11935                 key = kvm_async_pf_next_probe(key);
11936
11937         vcpu->arch.apf.gfns[key] = gfn;
11938 }
11939
11940 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
11941 {
11942         int i;
11943         u32 key = kvm_async_pf_hash_fn(gfn);
11944
11945         for (i = 0; i < ASYNC_PF_PER_VCPU &&
11946                      (vcpu->arch.apf.gfns[key] != gfn &&
11947                       vcpu->arch.apf.gfns[key] != ~0); i++)
11948                 key = kvm_async_pf_next_probe(key);
11949
11950         return key;
11951 }
11952
11953 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11954 {
11955         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
11956 }
11957
11958 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
11959 {
11960         u32 i, j, k;
11961
11962         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
11963
11964         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
11965                 return;
11966
11967         while (true) {
11968                 vcpu->arch.apf.gfns[i] = ~0;
11969                 do {
11970                         j = kvm_async_pf_next_probe(j);
11971                         if (vcpu->arch.apf.gfns[j] == ~0)
11972                                 return;
11973                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
11974                         /*
11975                          * k lies cyclically in ]i,j]
11976                          * |    i.k.j |
11977                          * |....j i.k.| or  |.k..j i...|
11978                          */
11979                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
11980                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
11981                 i = j;
11982         }
11983 }
11984
11985 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
11986 {
11987         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
11988
11989         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
11990                                       sizeof(reason));
11991 }
11992
11993 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
11994 {
11995         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
11996
11997         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
11998                                              &token, offset, sizeof(token));
11999 }
12000
12001 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12002 {
12003         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12004         u32 val;
12005
12006         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12007                                          &val, offset, sizeof(val)))
12008                 return false;
12009
12010         return !val;
12011 }
12012
12013 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12014 {
12015         if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
12016                 return false;
12017
12018         if (!kvm_pv_async_pf_enabled(vcpu) ||
12019             (vcpu->arch.apf.send_user_only && static_call(kvm_x86_get_cpl)(vcpu) == 0))
12020                 return false;
12021
12022         return true;
12023 }
12024
12025 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12026 {
12027         if (unlikely(!lapic_in_kernel(vcpu) ||
12028                      kvm_event_needs_reinjection(vcpu) ||
12029                      vcpu->arch.exception.pending))
12030                 return false;
12031
12032         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12033                 return false;
12034
12035         /*
12036          * If interrupts are off we cannot even use an artificial
12037          * halt state.
12038          */
12039         return kvm_arch_interrupt_allowed(vcpu);
12040 }
12041
12042 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12043                                      struct kvm_async_pf *work)
12044 {
12045         struct x86_exception fault;
12046
12047         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12048         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12049
12050         if (kvm_can_deliver_async_pf(vcpu) &&
12051             !apf_put_user_notpresent(vcpu)) {
12052                 fault.vector = PF_VECTOR;
12053                 fault.error_code_valid = true;
12054                 fault.error_code = 0;
12055                 fault.nested_page_fault = false;
12056                 fault.address = work->arch.token;
12057                 fault.async_page_fault = true;
12058                 kvm_inject_page_fault(vcpu, &fault);
12059                 return true;
12060         } else {
12061                 /*
12062                  * It is not possible to deliver a paravirtualized asynchronous
12063                  * page fault, but putting the guest in an artificial halt state
12064                  * can be beneficial nevertheless: if an interrupt arrives, we
12065                  * can deliver it timely and perhaps the guest will schedule
12066                  * another process.  When the instruction that triggered a page
12067                  * fault is retried, hopefully the page will be ready in the host.
12068                  */
12069                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12070                 return false;
12071         }
12072 }
12073
12074 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12075                                  struct kvm_async_pf *work)
12076 {
12077         struct kvm_lapic_irq irq = {
12078                 .delivery_mode = APIC_DM_FIXED,
12079                 .vector = vcpu->arch.apf.vec
12080         };
12081
12082         if (work->wakeup_all)
12083                 work->arch.token = ~0; /* broadcast wakeup */
12084         else
12085                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12086         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12087
12088         if ((work->wakeup_all || work->notpresent_injected) &&
12089             kvm_pv_async_pf_enabled(vcpu) &&
12090             !apf_put_user_ready(vcpu, work->arch.token)) {
12091                 vcpu->arch.apf.pageready_pending = true;
12092                 kvm_apic_set_irq(vcpu, &irq, NULL);
12093         }
12094
12095         vcpu->arch.apf.halted = false;
12096         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12097 }
12098
12099 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12100 {
12101         kvm_make_request(KVM_REQ_APF_READY, vcpu);
12102         if (!vcpu->arch.apf.pageready_pending)
12103                 kvm_vcpu_kick(vcpu);
12104 }
12105
12106 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12107 {
12108         if (!kvm_pv_async_pf_enabled(vcpu))
12109                 return true;
12110         else
12111                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12112 }
12113
12114 void kvm_arch_start_assignment(struct kvm *kvm)
12115 {
12116         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12117                 static_call_cond(kvm_x86_start_assignment)(kvm);
12118 }
12119 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12120
12121 void kvm_arch_end_assignment(struct kvm *kvm)
12122 {
12123         atomic_dec(&kvm->arch.assigned_device_count);
12124 }
12125 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12126
12127 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12128 {
12129         return atomic_read(&kvm->arch.assigned_device_count);
12130 }
12131 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12132
12133 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12134 {
12135         atomic_inc(&kvm->arch.noncoherent_dma_count);
12136 }
12137 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12138
12139 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12140 {
12141         atomic_dec(&kvm->arch.noncoherent_dma_count);
12142 }
12143 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12144
12145 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12146 {
12147         return atomic_read(&kvm->arch.noncoherent_dma_count);
12148 }
12149 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12150
12151 bool kvm_arch_has_irq_bypass(void)
12152 {
12153         return true;
12154 }
12155
12156 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12157                                       struct irq_bypass_producer *prod)
12158 {
12159         struct kvm_kernel_irqfd *irqfd =
12160                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12161         int ret;
12162
12163         irqfd->producer = prod;
12164         kvm_arch_start_assignment(irqfd->kvm);
12165         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm,
12166                                          prod->irq, irqfd->gsi, 1);
12167
12168         if (ret)
12169                 kvm_arch_end_assignment(irqfd->kvm);
12170
12171         return ret;
12172 }
12173
12174 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12175                                       struct irq_bypass_producer *prod)
12176 {
12177         int ret;
12178         struct kvm_kernel_irqfd *irqfd =
12179                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12180
12181         WARN_ON(irqfd->producer != prod);
12182         irqfd->producer = NULL;
12183
12184         /*
12185          * When producer of consumer is unregistered, we change back to
12186          * remapped mode, so we can re-use the current implementation
12187          * when the irq is masked/disabled or the consumer side (KVM
12188          * int this case doesn't want to receive the interrupts.
12189         */
12190         ret = static_call(kvm_x86_update_pi_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12191         if (ret)
12192                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12193                        " fails: %d\n", irqfd->consumer.token, ret);
12194
12195         kvm_arch_end_assignment(irqfd->kvm);
12196 }
12197
12198 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12199                                    uint32_t guest_irq, bool set)
12200 {
12201         return static_call(kvm_x86_update_pi_irte)(kvm, host_irq, guest_irq, set);
12202 }
12203
12204 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12205                                   struct kvm_kernel_irq_routing_entry *new)
12206 {
12207         if (new->type != KVM_IRQ_ROUTING_MSI)
12208                 return true;
12209
12210         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12211 }
12212
12213 bool kvm_vector_hashing_enabled(void)
12214 {
12215         return vector_hashing;
12216 }
12217
12218 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12219 {
12220         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12221 }
12222 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12223
12224
12225 int kvm_spec_ctrl_test_value(u64 value)
12226 {
12227         /*
12228          * test that setting IA32_SPEC_CTRL to given value
12229          * is allowed by the host processor
12230          */
12231
12232         u64 saved_value;
12233         unsigned long flags;
12234         int ret = 0;
12235
12236         local_irq_save(flags);
12237
12238         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12239                 ret = 1;
12240         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12241                 ret = 1;
12242         else
12243                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12244
12245         local_irq_restore(flags);
12246
12247         return ret;
12248 }
12249 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12250
12251 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12252 {
12253         struct x86_exception fault;
12254         u32 access = error_code &
12255                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12256
12257         if (!(error_code & PFERR_PRESENT_MASK) ||
12258             vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
12259                 /*
12260                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12261                  * tables probably do not match the TLB.  Just proceed
12262                  * with the error code that the processor gave.
12263                  */
12264                 fault.vector = PF_VECTOR;
12265                 fault.error_code_valid = true;
12266                 fault.error_code = error_code;
12267                 fault.nested_page_fault = false;
12268                 fault.address = gva;
12269         }
12270         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12271 }
12272 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12273
12274 /*
12275  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12276  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12277  * indicates whether exit to userspace is needed.
12278  */
12279 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12280                               struct x86_exception *e)
12281 {
12282         if (r == X86EMUL_PROPAGATE_FAULT) {
12283                 kvm_inject_emulated_page_fault(vcpu, e);
12284                 return 1;
12285         }
12286
12287         /*
12288          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12289          * while handling a VMX instruction KVM could've handled the request
12290          * correctly by exiting to userspace and performing I/O but there
12291          * doesn't seem to be a real use-case behind such requests, just return
12292          * KVM_EXIT_INTERNAL_ERROR for now.
12293          */
12294         kvm_prepare_emulation_failure_exit(vcpu);
12295
12296         return 0;
12297 }
12298 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12299
12300 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12301 {
12302         bool pcid_enabled;
12303         struct x86_exception e;
12304         struct {
12305                 u64 pcid;
12306                 u64 gla;
12307         } operand;
12308         int r;
12309
12310         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12311         if (r != X86EMUL_CONTINUE)
12312                 return kvm_handle_memory_failure(vcpu, r, &e);
12313
12314         if (operand.pcid >> 12 != 0) {
12315                 kvm_inject_gp(vcpu, 0);
12316                 return 1;
12317         }
12318
12319         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12320
12321         switch (type) {
12322         case INVPCID_TYPE_INDIV_ADDR:
12323                 if ((!pcid_enabled && (operand.pcid != 0)) ||
12324                     is_noncanonical_address(operand.gla, vcpu)) {
12325                         kvm_inject_gp(vcpu, 0);
12326                         return 1;
12327                 }
12328                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12329                 return kvm_skip_emulated_instruction(vcpu);
12330
12331         case INVPCID_TYPE_SINGLE_CTXT:
12332                 if (!pcid_enabled && (operand.pcid != 0)) {
12333                         kvm_inject_gp(vcpu, 0);
12334                         return 1;
12335                 }
12336
12337                 kvm_invalidate_pcid(vcpu, operand.pcid);
12338                 return kvm_skip_emulated_instruction(vcpu);
12339
12340         case INVPCID_TYPE_ALL_NON_GLOBAL:
12341                 /*
12342                  * Currently, KVM doesn't mark global entries in the shadow
12343                  * page tables, so a non-global flush just degenerates to a
12344                  * global flush. If needed, we could optimize this later by
12345                  * keeping track of global entries in shadow page tables.
12346                  */
12347
12348                 fallthrough;
12349         case INVPCID_TYPE_ALL_INCL_GLOBAL:
12350                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12351                 return kvm_skip_emulated_instruction(vcpu);
12352
12353         default:
12354                 kvm_inject_gp(vcpu, 0);
12355                 return 1;
12356         }
12357 }
12358 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12359
12360 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12361 {
12362         struct kvm_run *run = vcpu->run;
12363         struct kvm_mmio_fragment *frag;
12364         unsigned int len;
12365
12366         BUG_ON(!vcpu->mmio_needed);
12367
12368         /* Complete previous fragment */
12369         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12370         len = min(8u, frag->len);
12371         if (!vcpu->mmio_is_write)
12372                 memcpy(frag->data, run->mmio.data, len);
12373
12374         if (frag->len <= 8) {
12375                 /* Switch to the next fragment. */
12376                 frag++;
12377                 vcpu->mmio_cur_fragment++;
12378         } else {
12379                 /* Go forward to the next mmio piece. */
12380                 frag->data += len;
12381                 frag->gpa += len;
12382                 frag->len -= len;
12383         }
12384
12385         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12386                 vcpu->mmio_needed = 0;
12387
12388                 // VMG change, at this point, we're always done
12389                 // RIP has already been advanced
12390                 return 1;
12391         }
12392
12393         // More MMIO is needed
12394         run->mmio.phys_addr = frag->gpa;
12395         run->mmio.len = min(8u, frag->len);
12396         run->mmio.is_write = vcpu->mmio_is_write;
12397         if (run->mmio.is_write)
12398                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12399         run->exit_reason = KVM_EXIT_MMIO;
12400
12401         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12402
12403         return 0;
12404 }
12405
12406 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12407                           void *data)
12408 {
12409         int handled;
12410         struct kvm_mmio_fragment *frag;
12411
12412         if (!data)
12413                 return -EINVAL;
12414
12415         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12416         if (handled == bytes)
12417                 return 1;
12418
12419         bytes -= handled;
12420         gpa += handled;
12421         data += handled;
12422
12423         /*TODO: Check if need to increment number of frags */
12424         frag = vcpu->mmio_fragments;
12425         vcpu->mmio_nr_fragments = 1;
12426         frag->len = bytes;
12427         frag->gpa = gpa;
12428         frag->data = data;
12429
12430         vcpu->mmio_needed = 1;
12431         vcpu->mmio_cur_fragment = 0;
12432
12433         vcpu->run->mmio.phys_addr = gpa;
12434         vcpu->run->mmio.len = min(8u, frag->len);
12435         vcpu->run->mmio.is_write = 1;
12436         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12437         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12438
12439         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12440
12441         return 0;
12442 }
12443 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12444
12445 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12446                          void *data)
12447 {
12448         int handled;
12449         struct kvm_mmio_fragment *frag;
12450
12451         if (!data)
12452                 return -EINVAL;
12453
12454         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12455         if (handled == bytes)
12456                 return 1;
12457
12458         bytes -= handled;
12459         gpa += handled;
12460         data += handled;
12461
12462         /*TODO: Check if need to increment number of frags */
12463         frag = vcpu->mmio_fragments;
12464         vcpu->mmio_nr_fragments = 1;
12465         frag->len = bytes;
12466         frag->gpa = gpa;
12467         frag->data = data;
12468
12469         vcpu->mmio_needed = 1;
12470         vcpu->mmio_cur_fragment = 0;
12471
12472         vcpu->run->mmio.phys_addr = gpa;
12473         vcpu->run->mmio.len = min(8u, frag->len);
12474         vcpu->run->mmio.is_write = 0;
12475         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12476
12477         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12478
12479         return 0;
12480 }
12481 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12482
12483 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12484                            unsigned int port);
12485
12486 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12487 {
12488         int size = vcpu->arch.pio.size;
12489         int port = vcpu->arch.pio.port;
12490
12491         vcpu->arch.pio.count = 0;
12492         if (vcpu->arch.sev_pio_count)
12493                 return kvm_sev_es_outs(vcpu, size, port);
12494         return 1;
12495 }
12496
12497 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12498                            unsigned int port)
12499 {
12500         for (;;) {
12501                 unsigned int count =
12502                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12503                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12504
12505                 /* memcpy done already by emulator_pio_out.  */
12506                 vcpu->arch.sev_pio_count -= count;
12507                 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12508                 if (!ret)
12509                         break;
12510
12511                 /* Emulation done by the kernel.  */
12512                 if (!vcpu->arch.sev_pio_count)
12513                         return 1;
12514         }
12515
12516         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12517         return 0;
12518 }
12519
12520 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12521                           unsigned int port);
12522
12523 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12524 {
12525         unsigned count = vcpu->arch.pio.count;
12526         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12527         vcpu->arch.sev_pio_count -= count;
12528         vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12529 }
12530
12531 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12532 {
12533         int size = vcpu->arch.pio.size;
12534         int port = vcpu->arch.pio.port;
12535
12536         advance_sev_es_emulated_ins(vcpu);
12537         if (vcpu->arch.sev_pio_count)
12538                 return kvm_sev_es_ins(vcpu, size, port);
12539         return 1;
12540 }
12541
12542 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12543                           unsigned int port)
12544 {
12545         for (;;) {
12546                 unsigned int count =
12547                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12548                 if (!__emulator_pio_in(vcpu, size, port, count))
12549                         break;
12550
12551                 /* Emulation done by the kernel.  */
12552                 advance_sev_es_emulated_ins(vcpu);
12553                 if (!vcpu->arch.sev_pio_count)
12554                         return 1;
12555         }
12556
12557         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12558         return 0;
12559 }
12560
12561 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12562                          unsigned int port, void *data,  unsigned int count,
12563                          int in)
12564 {
12565         vcpu->arch.sev_pio_data = data;
12566         vcpu->arch.sev_pio_count = count;
12567         return in ? kvm_sev_es_ins(vcpu, size, port)
12568                   : kvm_sev_es_outs(vcpu, size, port);
12569 }
12570 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12571
12572 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12573 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12574 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12575 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12576 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12577 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12578 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12579 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12580 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12581 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12582 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12583 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12584 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12585 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12586 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12587 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12588 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12589 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12590 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12591 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12592 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12593 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12594 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12595 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12596 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12597 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12598 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);