KVM: x86: flush TLB separately from MMU reset
[sfrench/cifs-2.6.git] / arch / x86 / kvm / x86.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * derived from drivers/kvm/kvm_main.c
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright (C) 2008 Qumranet, Inc.
9  * Copyright IBM Corporation, 2008
10  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11  *
12  * Authors:
13  *   Avi Kivity   <avi@qumranet.com>
14  *   Yaniv Kamay  <yaniv@qumranet.com>
15  *   Amit Shah    <amit.shah@qumranet.com>
16  *   Ben-Ami Yassour <benami@il.ibm.com>
17  */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/intel-iommu.h>
45 #include <linux/cpufreq.h>
46 #include <linux/user-return-notifier.h>
47 #include <linux/srcu.h>
48 #include <linux/slab.h>
49 #include <linux/perf_event.h>
50 #include <linux/uaccess.h>
51 #include <linux/hash.h>
52 #include <linux/pci.h>
53 #include <linux/timekeeper_internal.h>
54 #include <linux/pvclock_gtod.h>
55 #include <linux/kvm_irqfd.h>
56 #include <linux/irqbypass.h>
57 #include <linux/sched/stat.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/mem_encrypt.h>
60 #include <linux/entry-kvm.h>
61 #include <linux/suspend.h>
62
63 #include <trace/events/kvm.h>
64
65 #include <asm/debugreg.h>
66 #include <asm/msr.h>
67 #include <asm/desc.h>
68 #include <asm/mce.h>
69 #include <asm/pkru.h>
70 #include <linux/kernel_stat.h>
71 #include <asm/fpu/api.h>
72 #include <asm/fpu/xcr.h>
73 #include <asm/fpu/xstate.h>
74 #include <asm/pvclock.h>
75 #include <asm/div64.h>
76 #include <asm/irq_remapping.h>
77 #include <asm/mshyperv.h>
78 #include <asm/hypervisor.h>
79 #include <asm/tlbflush.h>
80 #include <asm/intel_pt.h>
81 #include <asm/emulate_prefix.h>
82 #include <asm/sgx.h>
83 #include <clocksource/hyperv_timer.h>
84
85 #define CREATE_TRACE_POINTS
86 #include "trace.h"
87
88 #define MAX_IO_MSRS 256
89 #define KVM_MAX_MCE_BANKS 32
90 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
91 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
92
93 #define  ERR_PTR_USR(e)  ((void __user *)ERR_PTR(e))
94
95 #define emul_to_vcpu(ctxt) \
96         ((struct kvm_vcpu *)(ctxt)->vcpu)
97
98 /* EFER defaults:
99  * - enable syscall per default because its emulated by KVM
100  * - enable LME and LMA per default on 64 bit KVM
101  */
102 #ifdef CONFIG_X86_64
103 static
104 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
105 #else
106 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
107 #endif
108
109 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
110
111 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
112
113 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
114
115 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
116                                     KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
117
118 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
119 static void process_nmi(struct kvm_vcpu *vcpu);
120 static void process_smi(struct kvm_vcpu *vcpu);
121 static void enter_smm(struct kvm_vcpu *vcpu);
122 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
123 static void store_regs(struct kvm_vcpu *vcpu);
124 static int sync_regs(struct kvm_vcpu *vcpu);
125 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
126
127 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
128 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
129
130 struct kvm_x86_ops kvm_x86_ops __read_mostly;
131
132 #define KVM_X86_OP(func)                                             \
133         DEFINE_STATIC_CALL_NULL(kvm_x86_##func,                      \
134                                 *(((struct kvm_x86_ops *)0)->func));
135 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
136 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
137 #include <asm/kvm-x86-ops.h>
138 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
139 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
140
141 static bool __read_mostly ignore_msrs = 0;
142 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
143
144 bool __read_mostly report_ignored_msrs = true;
145 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
146 EXPORT_SYMBOL_GPL(report_ignored_msrs);
147
148 unsigned int min_timer_period_us = 200;
149 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
150
151 static bool __read_mostly kvmclock_periodic_sync = true;
152 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
153
154 bool __read_mostly kvm_has_tsc_control;
155 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
156 u32  __read_mostly kvm_max_guest_tsc_khz;
157 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
158 u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
159 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
160 u64  __read_mostly kvm_max_tsc_scaling_ratio;
161 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
162 u64 __read_mostly kvm_default_tsc_scaling_ratio;
163 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
164 bool __read_mostly kvm_has_bus_lock_exit;
165 EXPORT_SYMBOL_GPL(kvm_has_bus_lock_exit);
166
167 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
168 static u32 __read_mostly tsc_tolerance_ppm = 250;
169 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
170
171 /*
172  * lapic timer advance (tscdeadline mode only) in nanoseconds.  '-1' enables
173  * adaptive tuning starting from default advancement of 1000ns.  '0' disables
174  * advancement entirely.  Any other value is used as-is and disables adaptive
175  * tuning, i.e. allows privileged userspace to set an exact advancement time.
176  */
177 static int __read_mostly lapic_timer_advance_ns = -1;
178 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
179
180 static bool __read_mostly vector_hashing = true;
181 module_param(vector_hashing, bool, S_IRUGO);
182
183 bool __read_mostly enable_vmware_backdoor = false;
184 module_param(enable_vmware_backdoor, bool, S_IRUGO);
185 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
186
187 static bool __read_mostly force_emulation_prefix = false;
188 module_param(force_emulation_prefix, bool, S_IRUGO);
189
190 int __read_mostly pi_inject_timer = -1;
191 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
192
193 /* Enable/disable PMU virtualization */
194 bool __read_mostly enable_pmu = true;
195 EXPORT_SYMBOL_GPL(enable_pmu);
196 module_param(enable_pmu, bool, 0444);
197
198 bool __read_mostly eager_page_split = true;
199 module_param(eager_page_split, bool, 0644);
200
201 /*
202  * Restoring the host value for MSRs that are only consumed when running in
203  * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
204  * returns to userspace, i.e. the kernel can run with the guest's value.
205  */
206 #define KVM_MAX_NR_USER_RETURN_MSRS 16
207
208 struct kvm_user_return_msrs {
209         struct user_return_notifier urn;
210         bool registered;
211         struct kvm_user_return_msr_values {
212                 u64 host;
213                 u64 curr;
214         } values[KVM_MAX_NR_USER_RETURN_MSRS];
215 };
216
217 u32 __read_mostly kvm_nr_uret_msrs;
218 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
219 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
220 static struct kvm_user_return_msrs __percpu *user_return_msrs;
221
222 #define KVM_SUPPORTED_XCR0     (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
223                                 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
224                                 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
225                                 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
226
227 u64 __read_mostly host_efer;
228 EXPORT_SYMBOL_GPL(host_efer);
229
230 bool __read_mostly allow_smaller_maxphyaddr = 0;
231 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
232
233 bool __read_mostly enable_apicv = true;
234 EXPORT_SYMBOL_GPL(enable_apicv);
235
236 u64 __read_mostly host_xss;
237 EXPORT_SYMBOL_GPL(host_xss);
238 u64 __read_mostly supported_xss;
239 EXPORT_SYMBOL_GPL(supported_xss);
240
241 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
242         KVM_GENERIC_VM_STATS(),
243         STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
244         STATS_DESC_COUNTER(VM, mmu_pte_write),
245         STATS_DESC_COUNTER(VM, mmu_pde_zapped),
246         STATS_DESC_COUNTER(VM, mmu_flooded),
247         STATS_DESC_COUNTER(VM, mmu_recycled),
248         STATS_DESC_COUNTER(VM, mmu_cache_miss),
249         STATS_DESC_ICOUNTER(VM, mmu_unsync),
250         STATS_DESC_ICOUNTER(VM, pages_4k),
251         STATS_DESC_ICOUNTER(VM, pages_2m),
252         STATS_DESC_ICOUNTER(VM, pages_1g),
253         STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
254         STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
255         STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
256 };
257
258 const struct kvm_stats_header kvm_vm_stats_header = {
259         .name_size = KVM_STATS_NAME_SIZE,
260         .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
261         .id_offset = sizeof(struct kvm_stats_header),
262         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
263         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
264                        sizeof(kvm_vm_stats_desc),
265 };
266
267 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
268         KVM_GENERIC_VCPU_STATS(),
269         STATS_DESC_COUNTER(VCPU, pf_fixed),
270         STATS_DESC_COUNTER(VCPU, pf_guest),
271         STATS_DESC_COUNTER(VCPU, tlb_flush),
272         STATS_DESC_COUNTER(VCPU, invlpg),
273         STATS_DESC_COUNTER(VCPU, exits),
274         STATS_DESC_COUNTER(VCPU, io_exits),
275         STATS_DESC_COUNTER(VCPU, mmio_exits),
276         STATS_DESC_COUNTER(VCPU, signal_exits),
277         STATS_DESC_COUNTER(VCPU, irq_window_exits),
278         STATS_DESC_COUNTER(VCPU, nmi_window_exits),
279         STATS_DESC_COUNTER(VCPU, l1d_flush),
280         STATS_DESC_COUNTER(VCPU, halt_exits),
281         STATS_DESC_COUNTER(VCPU, request_irq_exits),
282         STATS_DESC_COUNTER(VCPU, irq_exits),
283         STATS_DESC_COUNTER(VCPU, host_state_reload),
284         STATS_DESC_COUNTER(VCPU, fpu_reload),
285         STATS_DESC_COUNTER(VCPU, insn_emulation),
286         STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
287         STATS_DESC_COUNTER(VCPU, hypercalls),
288         STATS_DESC_COUNTER(VCPU, irq_injections),
289         STATS_DESC_COUNTER(VCPU, nmi_injections),
290         STATS_DESC_COUNTER(VCPU, req_event),
291         STATS_DESC_COUNTER(VCPU, nested_run),
292         STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
293         STATS_DESC_COUNTER(VCPU, directed_yield_successful),
294         STATS_DESC_ICOUNTER(VCPU, guest_mode)
295 };
296
297 const struct kvm_stats_header kvm_vcpu_stats_header = {
298         .name_size = KVM_STATS_NAME_SIZE,
299         .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
300         .id_offset = sizeof(struct kvm_stats_header),
301         .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
302         .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
303                        sizeof(kvm_vcpu_stats_desc),
304 };
305
306 u64 __read_mostly host_xcr0;
307 u64 __read_mostly supported_xcr0;
308 EXPORT_SYMBOL_GPL(supported_xcr0);
309
310 static struct kmem_cache *x86_emulator_cache;
311
312 /*
313  * When called, it means the previous get/set msr reached an invalid msr.
314  * Return true if we want to ignore/silent this failed msr access.
315  */
316 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
317 {
318         const char *op = write ? "wrmsr" : "rdmsr";
319
320         if (ignore_msrs) {
321                 if (report_ignored_msrs)
322                         kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
323                                       op, msr, data);
324                 /* Mask the error */
325                 return true;
326         } else {
327                 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
328                                       op, msr, data);
329                 return false;
330         }
331 }
332
333 static struct kmem_cache *kvm_alloc_emulator_cache(void)
334 {
335         unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
336         unsigned int size = sizeof(struct x86_emulate_ctxt);
337
338         return kmem_cache_create_usercopy("x86_emulator", size,
339                                           __alignof__(struct x86_emulate_ctxt),
340                                           SLAB_ACCOUNT, useroffset,
341                                           size - useroffset, NULL);
342 }
343
344 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
345
346 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
347 {
348         int i;
349         for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
350                 vcpu->arch.apf.gfns[i] = ~0;
351 }
352
353 static void kvm_on_user_return(struct user_return_notifier *urn)
354 {
355         unsigned slot;
356         struct kvm_user_return_msrs *msrs
357                 = container_of(urn, struct kvm_user_return_msrs, urn);
358         struct kvm_user_return_msr_values *values;
359         unsigned long flags;
360
361         /*
362          * Disabling irqs at this point since the following code could be
363          * interrupted and executed through kvm_arch_hardware_disable()
364          */
365         local_irq_save(flags);
366         if (msrs->registered) {
367                 msrs->registered = false;
368                 user_return_notifier_unregister(urn);
369         }
370         local_irq_restore(flags);
371         for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
372                 values = &msrs->values[slot];
373                 if (values->host != values->curr) {
374                         wrmsrl(kvm_uret_msrs_list[slot], values->host);
375                         values->curr = values->host;
376                 }
377         }
378 }
379
380 static int kvm_probe_user_return_msr(u32 msr)
381 {
382         u64 val;
383         int ret;
384
385         preempt_disable();
386         ret = rdmsrl_safe(msr, &val);
387         if (ret)
388                 goto out;
389         ret = wrmsrl_safe(msr, val);
390 out:
391         preempt_enable();
392         return ret;
393 }
394
395 int kvm_add_user_return_msr(u32 msr)
396 {
397         BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
398
399         if (kvm_probe_user_return_msr(msr))
400                 return -1;
401
402         kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
403         return kvm_nr_uret_msrs++;
404 }
405 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
406
407 int kvm_find_user_return_msr(u32 msr)
408 {
409         int i;
410
411         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
412                 if (kvm_uret_msrs_list[i] == msr)
413                         return i;
414         }
415         return -1;
416 }
417 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
418
419 static void kvm_user_return_msr_cpu_online(void)
420 {
421         unsigned int cpu = smp_processor_id();
422         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
423         u64 value;
424         int i;
425
426         for (i = 0; i < kvm_nr_uret_msrs; ++i) {
427                 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
428                 msrs->values[i].host = value;
429                 msrs->values[i].curr = value;
430         }
431 }
432
433 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
434 {
435         unsigned int cpu = smp_processor_id();
436         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
437         int err;
438
439         value = (value & mask) | (msrs->values[slot].host & ~mask);
440         if (value == msrs->values[slot].curr)
441                 return 0;
442         err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
443         if (err)
444                 return 1;
445
446         msrs->values[slot].curr = value;
447         if (!msrs->registered) {
448                 msrs->urn.on_user_return = kvm_on_user_return;
449                 user_return_notifier_register(&msrs->urn);
450                 msrs->registered = true;
451         }
452         return 0;
453 }
454 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
455
456 static void drop_user_return_notifiers(void)
457 {
458         unsigned int cpu = smp_processor_id();
459         struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
460
461         if (msrs->registered)
462                 kvm_on_user_return(&msrs->urn);
463 }
464
465 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
466 {
467         return vcpu->arch.apic_base;
468 }
469 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
470
471 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
472 {
473         return kvm_apic_mode(kvm_get_apic_base(vcpu));
474 }
475 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
476
477 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
478 {
479         enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
480         enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
481         u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
482                 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
483
484         if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
485                 return 1;
486         if (!msr_info->host_initiated) {
487                 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
488                         return 1;
489                 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
490                         return 1;
491         }
492
493         kvm_lapic_set_base(vcpu, msr_info->data);
494         kvm_recalculate_apic_map(vcpu->kvm);
495         return 0;
496 }
497 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
498
499 /*
500  * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
501  *
502  * Hardware virtualization extension instructions may fault if a reboot turns
503  * off virtualization while processes are running.  Usually after catching the
504  * fault we just panic; during reboot instead the instruction is ignored.
505  */
506 noinstr void kvm_spurious_fault(void)
507 {
508         /* Fault while not rebooting.  We want the trace. */
509         BUG_ON(!kvm_rebooting);
510 }
511 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
512
513 #define EXCPT_BENIGN            0
514 #define EXCPT_CONTRIBUTORY      1
515 #define EXCPT_PF                2
516
517 static int exception_class(int vector)
518 {
519         switch (vector) {
520         case PF_VECTOR:
521                 return EXCPT_PF;
522         case DE_VECTOR:
523         case TS_VECTOR:
524         case NP_VECTOR:
525         case SS_VECTOR:
526         case GP_VECTOR:
527                 return EXCPT_CONTRIBUTORY;
528         default:
529                 break;
530         }
531         return EXCPT_BENIGN;
532 }
533
534 #define EXCPT_FAULT             0
535 #define EXCPT_TRAP              1
536 #define EXCPT_ABORT             2
537 #define EXCPT_INTERRUPT         3
538
539 static int exception_type(int vector)
540 {
541         unsigned int mask;
542
543         if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
544                 return EXCPT_INTERRUPT;
545
546         mask = 1 << vector;
547
548         /* #DB is trap, as instruction watchpoints are handled elsewhere */
549         if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
550                 return EXCPT_TRAP;
551
552         if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
553                 return EXCPT_ABORT;
554
555         /* Reserved exceptions will result in fault */
556         return EXCPT_FAULT;
557 }
558
559 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
560 {
561         unsigned nr = vcpu->arch.exception.nr;
562         bool has_payload = vcpu->arch.exception.has_payload;
563         unsigned long payload = vcpu->arch.exception.payload;
564
565         if (!has_payload)
566                 return;
567
568         switch (nr) {
569         case DB_VECTOR:
570                 /*
571                  * "Certain debug exceptions may clear bit 0-3.  The
572                  * remaining contents of the DR6 register are never
573                  * cleared by the processor".
574                  */
575                 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
576                 /*
577                  * In order to reflect the #DB exception payload in guest
578                  * dr6, three components need to be considered: active low
579                  * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
580                  * DR6_BS and DR6_BT)
581                  * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
582                  * In the target guest dr6:
583                  * FIXED_1 bits should always be set.
584                  * Active low bits should be cleared if 1-setting in payload.
585                  * Active high bits should be set if 1-setting in payload.
586                  *
587                  * Note, the payload is compatible with the pending debug
588                  * exceptions/exit qualification under VMX, that active_low bits
589                  * are active high in payload.
590                  * So they need to be flipped for DR6.
591                  */
592                 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
593                 vcpu->arch.dr6 |= payload;
594                 vcpu->arch.dr6 ^= payload & DR6_ACTIVE_LOW;
595
596                 /*
597                  * The #DB payload is defined as compatible with the 'pending
598                  * debug exceptions' field under VMX, not DR6. While bit 12 is
599                  * defined in the 'pending debug exceptions' field (enabled
600                  * breakpoint), it is reserved and must be zero in DR6.
601                  */
602                 vcpu->arch.dr6 &= ~BIT(12);
603                 break;
604         case PF_VECTOR:
605                 vcpu->arch.cr2 = payload;
606                 break;
607         }
608
609         vcpu->arch.exception.has_payload = false;
610         vcpu->arch.exception.payload = 0;
611 }
612 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
613
614 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
615                 unsigned nr, bool has_error, u32 error_code,
616                 bool has_payload, unsigned long payload, bool reinject)
617 {
618         u32 prev_nr;
619         int class1, class2;
620
621         kvm_make_request(KVM_REQ_EVENT, vcpu);
622
623         if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
624         queue:
625                 if (reinject) {
626                         /*
627                          * On vmentry, vcpu->arch.exception.pending is only
628                          * true if an event injection was blocked by
629                          * nested_run_pending.  In that case, however,
630                          * vcpu_enter_guest requests an immediate exit,
631                          * and the guest shouldn't proceed far enough to
632                          * need reinjection.
633                          */
634                         WARN_ON_ONCE(vcpu->arch.exception.pending);
635                         vcpu->arch.exception.injected = true;
636                         if (WARN_ON_ONCE(has_payload)) {
637                                 /*
638                                  * A reinjected event has already
639                                  * delivered its payload.
640                                  */
641                                 has_payload = false;
642                                 payload = 0;
643                         }
644                 } else {
645                         vcpu->arch.exception.pending = true;
646                         vcpu->arch.exception.injected = false;
647                 }
648                 vcpu->arch.exception.has_error_code = has_error;
649                 vcpu->arch.exception.nr = nr;
650                 vcpu->arch.exception.error_code = error_code;
651                 vcpu->arch.exception.has_payload = has_payload;
652                 vcpu->arch.exception.payload = payload;
653                 if (!is_guest_mode(vcpu))
654                         kvm_deliver_exception_payload(vcpu);
655                 return;
656         }
657
658         /* to check exception */
659         prev_nr = vcpu->arch.exception.nr;
660         if (prev_nr == DF_VECTOR) {
661                 /* triple fault -> shutdown */
662                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
663                 return;
664         }
665         class1 = exception_class(prev_nr);
666         class2 = exception_class(nr);
667         if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
668                 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
669                 /*
670                  * Generate double fault per SDM Table 5-5.  Set
671                  * exception.pending = true so that the double fault
672                  * can trigger a nested vmexit.
673                  */
674                 vcpu->arch.exception.pending = true;
675                 vcpu->arch.exception.injected = false;
676                 vcpu->arch.exception.has_error_code = true;
677                 vcpu->arch.exception.nr = DF_VECTOR;
678                 vcpu->arch.exception.error_code = 0;
679                 vcpu->arch.exception.has_payload = false;
680                 vcpu->arch.exception.payload = 0;
681         } else
682                 /* replace previous exception with a new one in a hope
683                    that instruction re-execution will regenerate lost
684                    exception */
685                 goto queue;
686 }
687
688 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
689 {
690         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
691 }
692 EXPORT_SYMBOL_GPL(kvm_queue_exception);
693
694 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
695 {
696         kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
697 }
698 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
699
700 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
701                            unsigned long payload)
702 {
703         kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
704 }
705 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
706
707 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
708                                     u32 error_code, unsigned long payload)
709 {
710         kvm_multiple_exception(vcpu, nr, true, error_code,
711                                true, payload, false);
712 }
713
714 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
715 {
716         if (err)
717                 kvm_inject_gp(vcpu, 0);
718         else
719                 return kvm_skip_emulated_instruction(vcpu);
720
721         return 1;
722 }
723 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
724
725 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
726 {
727         if (err) {
728                 kvm_inject_gp(vcpu, 0);
729                 return 1;
730         }
731
732         return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
733                                        EMULTYPE_COMPLETE_USER_EXIT);
734 }
735
736 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
737 {
738         ++vcpu->stat.pf_guest;
739         vcpu->arch.exception.nested_apf =
740                 is_guest_mode(vcpu) && fault->async_page_fault;
741         if (vcpu->arch.exception.nested_apf) {
742                 vcpu->arch.apf.nested_apf_token = fault->address;
743                 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
744         } else {
745                 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
746                                         fault->address);
747         }
748 }
749 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
750
751 bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
752                                     struct x86_exception *fault)
753 {
754         struct kvm_mmu *fault_mmu;
755         WARN_ON_ONCE(fault->vector != PF_VECTOR);
756
757         fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
758                                                vcpu->arch.walk_mmu;
759
760         /*
761          * Invalidate the TLB entry for the faulting address, if it exists,
762          * else the access will fault indefinitely (and to emulate hardware).
763          */
764         if ((fault->error_code & PFERR_PRESENT_MASK) &&
765             !(fault->error_code & PFERR_RSVD_MASK))
766                 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
767                                        fault_mmu->root.hpa);
768
769         fault_mmu->inject_page_fault(vcpu, fault);
770         return fault->nested_page_fault;
771 }
772 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
773
774 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
775 {
776         atomic_inc(&vcpu->arch.nmi_queued);
777         kvm_make_request(KVM_REQ_NMI, vcpu);
778 }
779 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
780
781 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
782 {
783         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
784 }
785 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
786
787 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
788 {
789         kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
790 }
791 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
792
793 /*
794  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
795  * a #GP and return false.
796  */
797 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
798 {
799         if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
800                 return true;
801         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
802         return false;
803 }
804 EXPORT_SYMBOL_GPL(kvm_require_cpl);
805
806 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
807 {
808         if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
809                 return true;
810
811         kvm_queue_exception(vcpu, UD_VECTOR);
812         return false;
813 }
814 EXPORT_SYMBOL_GPL(kvm_require_dr);
815
816 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
817 {
818         return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
819 }
820
821 /*
822  * Load the pae pdptrs.  Return 1 if they are all valid, 0 otherwise.
823  */
824 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
825 {
826         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
827         gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
828         gpa_t real_gpa;
829         int i;
830         int ret;
831         u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
832
833         /*
834          * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
835          * to an L1 GPA.
836          */
837         real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
838                                      PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
839         if (real_gpa == UNMAPPED_GVA)
840                 return 0;
841
842         /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
843         ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
844                                        cr3 & GENMASK(11, 5), sizeof(pdpte));
845         if (ret < 0)
846                 return 0;
847
848         for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
849                 if ((pdpte[i] & PT_PRESENT_MASK) &&
850                     (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
851                         return 0;
852                 }
853         }
854
855         /*
856          * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
857          * Shadow page roots need to be reconstructed instead.
858          */
859         if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
860                 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
861
862         memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
863         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
864         kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
865         vcpu->arch.pdptrs_from_userspace = false;
866
867         return 1;
868 }
869 EXPORT_SYMBOL_GPL(load_pdptrs);
870
871 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
872 {
873         if ((cr0 ^ old_cr0) & X86_CR0_PG) {
874                 kvm_clear_async_pf_completion_queue(vcpu);
875                 kvm_async_pf_hash_reset(vcpu);
876
877                 /*
878                  * Clearing CR0.PG is defined to flush the TLB from the guest's
879                  * perspective.
880                  */
881                 if (!(cr0 & X86_CR0_PG))
882                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
883         }
884
885         if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
886                 kvm_mmu_reset_context(vcpu);
887
888         if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
889             kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
890             !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
891                 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
892 }
893 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
894
895 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
896 {
897         unsigned long old_cr0 = kvm_read_cr0(vcpu);
898
899         cr0 |= X86_CR0_ET;
900
901 #ifdef CONFIG_X86_64
902         if (cr0 & 0xffffffff00000000UL)
903                 return 1;
904 #endif
905
906         cr0 &= ~CR0_RESERVED_BITS;
907
908         if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
909                 return 1;
910
911         if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
912                 return 1;
913
914 #ifdef CONFIG_X86_64
915         if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
916             (cr0 & X86_CR0_PG)) {
917                 int cs_db, cs_l;
918
919                 if (!is_pae(vcpu))
920                         return 1;
921                 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
922                 if (cs_l)
923                         return 1;
924         }
925 #endif
926         if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
927             is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
928             !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
929                 return 1;
930
931         if (!(cr0 & X86_CR0_PG) &&
932             (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
933                 return 1;
934
935         static_call(kvm_x86_set_cr0)(vcpu, cr0);
936
937         kvm_post_set_cr0(vcpu, old_cr0, cr0);
938
939         return 0;
940 }
941 EXPORT_SYMBOL_GPL(kvm_set_cr0);
942
943 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
944 {
945         (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
946 }
947 EXPORT_SYMBOL_GPL(kvm_lmsw);
948
949 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
950 {
951         if (vcpu->arch.guest_state_protected)
952                 return;
953
954         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
955
956                 if (vcpu->arch.xcr0 != host_xcr0)
957                         xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
958
959                 if (vcpu->arch.xsaves_enabled &&
960                     vcpu->arch.ia32_xss != host_xss)
961                         wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
962         }
963
964         if (static_cpu_has(X86_FEATURE_PKU) &&
965             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
966              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
967             vcpu->arch.pkru != vcpu->arch.host_pkru)
968                 write_pkru(vcpu->arch.pkru);
969 }
970 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
971
972 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
973 {
974         if (vcpu->arch.guest_state_protected)
975                 return;
976
977         if (static_cpu_has(X86_FEATURE_PKU) &&
978             (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
979              (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
980                 vcpu->arch.pkru = rdpkru();
981                 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
982                         write_pkru(vcpu->arch.host_pkru);
983         }
984
985         if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
986
987                 if (vcpu->arch.xcr0 != host_xcr0)
988                         xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
989
990                 if (vcpu->arch.xsaves_enabled &&
991                     vcpu->arch.ia32_xss != host_xss)
992                         wrmsrl(MSR_IA32_XSS, host_xss);
993         }
994
995 }
996 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
997
998 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
999 {
1000         u64 xcr0 = xcr;
1001         u64 old_xcr0 = vcpu->arch.xcr0;
1002         u64 valid_bits;
1003
1004         /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
1005         if (index != XCR_XFEATURE_ENABLED_MASK)
1006                 return 1;
1007         if (!(xcr0 & XFEATURE_MASK_FP))
1008                 return 1;
1009         if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1010                 return 1;
1011
1012         /*
1013          * Do not allow the guest to set bits that we do not support
1014          * saving.  However, xcr0 bit 0 is always set, even if the
1015          * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1016          */
1017         valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1018         if (xcr0 & ~valid_bits)
1019                 return 1;
1020
1021         if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1022             (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1023                 return 1;
1024
1025         if (xcr0 & XFEATURE_MASK_AVX512) {
1026                 if (!(xcr0 & XFEATURE_MASK_YMM))
1027                         return 1;
1028                 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1029                         return 1;
1030         }
1031
1032         if ((xcr0 & XFEATURE_MASK_XTILE) &&
1033             ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1034                 return 1;
1035
1036         vcpu->arch.xcr0 = xcr0;
1037
1038         if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1039                 kvm_update_cpuid_runtime(vcpu);
1040         return 0;
1041 }
1042
1043 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1044 {
1045         if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1046             __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1047                 kvm_inject_gp(vcpu, 0);
1048                 return 1;
1049         }
1050
1051         return kvm_skip_emulated_instruction(vcpu);
1052 }
1053 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1054
1055 bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1056 {
1057         if (cr4 & cr4_reserved_bits)
1058                 return false;
1059
1060         if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1061                 return false;
1062
1063         return static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1064 }
1065 EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
1066
1067 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1068 {
1069         if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1070                 kvm_mmu_reset_context(vcpu);
1071
1072         /*
1073          * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1074          * according to the SDM; however, stale prev_roots could be reused
1075          * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1076          * free them all.  This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1077          * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1078          * so fall through.
1079          */
1080         if (!tdp_enabled &&
1081             (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1082                 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
1083
1084         /*
1085          * The TLB has to be flushed for all PCIDs if any of the following
1086          * (architecturally required) changes happen:
1087          * - CR4.PCIDE is changed from 1 to 0
1088          * - CR4.PGE is toggled
1089          *
1090          * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1091          */
1092         if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1093             (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1094                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1095
1096         /*
1097          * The TLB has to be flushed for the current PCID if any of the
1098          * following (architecturally required) changes happen:
1099          * - CR4.SMEP is changed from 0 to 1
1100          * - CR4.PAE is toggled
1101          */
1102         else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1103                  ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1104                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1105
1106 }
1107 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1108
1109 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1110 {
1111         unsigned long old_cr4 = kvm_read_cr4(vcpu);
1112
1113         if (!kvm_is_valid_cr4(vcpu, cr4))
1114                 return 1;
1115
1116         if (is_long_mode(vcpu)) {
1117                 if (!(cr4 & X86_CR4_PAE))
1118                         return 1;
1119                 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1120                         return 1;
1121         } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1122                    && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1123                    && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1124                 return 1;
1125
1126         if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1127                 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1128                         return 1;
1129
1130                 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1131                 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1132                         return 1;
1133         }
1134
1135         static_call(kvm_x86_set_cr4)(vcpu, cr4);
1136
1137         kvm_post_set_cr4(vcpu, old_cr4, cr4);
1138
1139         return 0;
1140 }
1141 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1142
1143 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1144 {
1145         struct kvm_mmu *mmu = vcpu->arch.mmu;
1146         unsigned long roots_to_free = 0;
1147         int i;
1148
1149         /*
1150          * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1151          * this is reachable when running EPT=1 and unrestricted_guest=0,  and
1152          * also via the emulator.  KVM's TDP page tables are not in the scope of
1153          * the invalidation, but the guest's TLB entries need to be flushed as
1154          * the CPU may have cached entries in its TLB for the target PCID.
1155          */
1156         if (unlikely(tdp_enabled)) {
1157                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1158                 return;
1159         }
1160
1161         /*
1162          * If neither the current CR3 nor any of the prev_roots use the given
1163          * PCID, then nothing needs to be done here because a resync will
1164          * happen anyway before switching to any other CR3.
1165          */
1166         if (kvm_get_active_pcid(vcpu) == pcid) {
1167                 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1168                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1169         }
1170
1171         /*
1172          * If PCID is disabled, there is no need to free prev_roots even if the
1173          * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1174          * with PCIDE=0.
1175          */
1176         if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1177                 return;
1178
1179         for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1180                 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1181                         roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1182
1183         kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1184 }
1185
1186 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1187 {
1188         bool skip_tlb_flush = false;
1189         unsigned long pcid = 0;
1190 #ifdef CONFIG_X86_64
1191         bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1192
1193         if (pcid_enabled) {
1194                 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1195                 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1196                 pcid = cr3 & X86_CR3_PCID_MASK;
1197         }
1198 #endif
1199
1200         /* PDPTRs are always reloaded for PAE paging. */
1201         if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1202                 goto handle_tlb_flush;
1203
1204         /*
1205          * Do not condition the GPA check on long mode, this helper is used to
1206          * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1207          * the current vCPU mode is accurate.
1208          */
1209         if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1210                 return 1;
1211
1212         if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1213                 return 1;
1214
1215         if (cr3 != kvm_read_cr3(vcpu))
1216                 kvm_mmu_new_pgd(vcpu, cr3);
1217
1218         vcpu->arch.cr3 = cr3;
1219         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1220         /* Do not call post_set_cr3, we do not get here for confidential guests.  */
1221
1222 handle_tlb_flush:
1223         /*
1224          * A load of CR3 that flushes the TLB flushes only the current PCID,
1225          * even if PCID is disabled, in which case PCID=0 is flushed.  It's a
1226          * moot point in the end because _disabling_ PCID will flush all PCIDs,
1227          * and it's impossible to use a non-zero PCID when PCID is disabled,
1228          * i.e. only PCID=0 can be relevant.
1229          */
1230         if (!skip_tlb_flush)
1231                 kvm_invalidate_pcid(vcpu, pcid);
1232
1233         return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1236
1237 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1238 {
1239         if (cr8 & CR8_RESERVED_BITS)
1240                 return 1;
1241         if (lapic_in_kernel(vcpu))
1242                 kvm_lapic_set_tpr(vcpu, cr8);
1243         else
1244                 vcpu->arch.cr8 = cr8;
1245         return 0;
1246 }
1247 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1248
1249 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1250 {
1251         if (lapic_in_kernel(vcpu))
1252                 return kvm_lapic_get_cr8(vcpu);
1253         else
1254                 return vcpu->arch.cr8;
1255 }
1256 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1257
1258 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1259 {
1260         int i;
1261
1262         if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1263                 for (i = 0; i < KVM_NR_DB_REGS; i++)
1264                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1265         }
1266 }
1267
1268 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1269 {
1270         unsigned long dr7;
1271
1272         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1273                 dr7 = vcpu->arch.guest_debug_dr7;
1274         else
1275                 dr7 = vcpu->arch.dr7;
1276         static_call(kvm_x86_set_dr7)(vcpu, dr7);
1277         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1278         if (dr7 & DR7_BP_EN_MASK)
1279                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1280 }
1281 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1282
1283 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1284 {
1285         u64 fixed = DR6_FIXED_1;
1286
1287         if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1288                 fixed |= DR6_RTM;
1289
1290         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1291                 fixed |= DR6_BUS_LOCK;
1292         return fixed;
1293 }
1294
1295 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1296 {
1297         size_t size = ARRAY_SIZE(vcpu->arch.db);
1298
1299         switch (dr) {
1300         case 0 ... 3:
1301                 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1302                 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1303                         vcpu->arch.eff_db[dr] = val;
1304                 break;
1305         case 4:
1306         case 6:
1307                 if (!kvm_dr6_valid(val))
1308                         return 1; /* #GP */
1309                 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1310                 break;
1311         case 5:
1312         default: /* 7 */
1313                 if (!kvm_dr7_valid(val))
1314                         return 1; /* #GP */
1315                 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1316                 kvm_update_dr7(vcpu);
1317                 break;
1318         }
1319
1320         return 0;
1321 }
1322 EXPORT_SYMBOL_GPL(kvm_set_dr);
1323
1324 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1325 {
1326         size_t size = ARRAY_SIZE(vcpu->arch.db);
1327
1328         switch (dr) {
1329         case 0 ... 3:
1330                 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1331                 break;
1332         case 4:
1333         case 6:
1334                 *val = vcpu->arch.dr6;
1335                 break;
1336         case 5:
1337         default: /* 7 */
1338                 *val = vcpu->arch.dr7;
1339                 break;
1340         }
1341 }
1342 EXPORT_SYMBOL_GPL(kvm_get_dr);
1343
1344 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1345 {
1346         u32 ecx = kvm_rcx_read(vcpu);
1347         u64 data;
1348
1349         if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1350                 kvm_inject_gp(vcpu, 0);
1351                 return 1;
1352         }
1353
1354         kvm_rax_write(vcpu, (u32)data);
1355         kvm_rdx_write(vcpu, data >> 32);
1356         return kvm_skip_emulated_instruction(vcpu);
1357 }
1358 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1359
1360 /*
1361  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1362  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1363  *
1364  * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1365  * extract the supported MSRs from the related const lists.
1366  * msrs_to_save is selected from the msrs_to_save_all to reflect the
1367  * capabilities of the host cpu. This capabilities test skips MSRs that are
1368  * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1369  * may depend on host virtualization features rather than host cpu features.
1370  */
1371
1372 static const u32 msrs_to_save_all[] = {
1373         MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1374         MSR_STAR,
1375 #ifdef CONFIG_X86_64
1376         MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1377 #endif
1378         MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1379         MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1380         MSR_IA32_SPEC_CTRL,
1381         MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1382         MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1383         MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1384         MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1385         MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1386         MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1387         MSR_IA32_UMWAIT_CONTROL,
1388
1389         MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1390         MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1391         MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1392         MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1393         MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1394         MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1395         MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1396         MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1397         MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1398         MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1399         MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1400         MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1401         MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1402         MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1403         MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1404         MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1405         MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1406         MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1407         MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1408         MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1409         MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1410         MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1411
1412         MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1413         MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1414         MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1415         MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1416         MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1417         MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1418         MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1419 };
1420
1421 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1422 static unsigned num_msrs_to_save;
1423
1424 static const u32 emulated_msrs_all[] = {
1425         MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1426         MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1427         HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1428         HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1429         HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1430         HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1431         HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1432         HV_X64_MSR_RESET,
1433         HV_X64_MSR_VP_INDEX,
1434         HV_X64_MSR_VP_RUNTIME,
1435         HV_X64_MSR_SCONTROL,
1436         HV_X64_MSR_STIMER0_CONFIG,
1437         HV_X64_MSR_VP_ASSIST_PAGE,
1438         HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1439         HV_X64_MSR_TSC_EMULATION_STATUS,
1440         HV_X64_MSR_SYNDBG_OPTIONS,
1441         HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1442         HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1443         HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1444
1445         MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1446         MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1447
1448         MSR_IA32_TSC_ADJUST,
1449         MSR_IA32_TSC_DEADLINE,
1450         MSR_IA32_ARCH_CAPABILITIES,
1451         MSR_IA32_PERF_CAPABILITIES,
1452         MSR_IA32_MISC_ENABLE,
1453         MSR_IA32_MCG_STATUS,
1454         MSR_IA32_MCG_CTL,
1455         MSR_IA32_MCG_EXT_CTL,
1456         MSR_IA32_SMBASE,
1457         MSR_SMI_COUNT,
1458         MSR_PLATFORM_INFO,
1459         MSR_MISC_FEATURES_ENABLES,
1460         MSR_AMD64_VIRT_SPEC_CTRL,
1461         MSR_AMD64_TSC_RATIO,
1462         MSR_IA32_POWER_CTL,
1463         MSR_IA32_UCODE_REV,
1464
1465         /*
1466          * The following list leaves out MSRs whose values are determined
1467          * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1468          * We always support the "true" VMX control MSRs, even if the host
1469          * processor does not, so I am putting these registers here rather
1470          * than in msrs_to_save_all.
1471          */
1472         MSR_IA32_VMX_BASIC,
1473         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1474         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1475         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1476         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1477         MSR_IA32_VMX_MISC,
1478         MSR_IA32_VMX_CR0_FIXED0,
1479         MSR_IA32_VMX_CR4_FIXED0,
1480         MSR_IA32_VMX_VMCS_ENUM,
1481         MSR_IA32_VMX_PROCBASED_CTLS2,
1482         MSR_IA32_VMX_EPT_VPID_CAP,
1483         MSR_IA32_VMX_VMFUNC,
1484
1485         MSR_K7_HWCR,
1486         MSR_KVM_POLL_CONTROL,
1487 };
1488
1489 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1490 static unsigned num_emulated_msrs;
1491
1492 /*
1493  * List of msr numbers which are used to expose MSR-based features that
1494  * can be used by a hypervisor to validate requested CPU features.
1495  */
1496 static const u32 msr_based_features_all[] = {
1497         MSR_IA32_VMX_BASIC,
1498         MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1499         MSR_IA32_VMX_PINBASED_CTLS,
1500         MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1501         MSR_IA32_VMX_PROCBASED_CTLS,
1502         MSR_IA32_VMX_TRUE_EXIT_CTLS,
1503         MSR_IA32_VMX_EXIT_CTLS,
1504         MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1505         MSR_IA32_VMX_ENTRY_CTLS,
1506         MSR_IA32_VMX_MISC,
1507         MSR_IA32_VMX_CR0_FIXED0,
1508         MSR_IA32_VMX_CR0_FIXED1,
1509         MSR_IA32_VMX_CR4_FIXED0,
1510         MSR_IA32_VMX_CR4_FIXED1,
1511         MSR_IA32_VMX_VMCS_ENUM,
1512         MSR_IA32_VMX_PROCBASED_CTLS2,
1513         MSR_IA32_VMX_EPT_VPID_CAP,
1514         MSR_IA32_VMX_VMFUNC,
1515
1516         MSR_F10H_DECFG,
1517         MSR_IA32_UCODE_REV,
1518         MSR_IA32_ARCH_CAPABILITIES,
1519         MSR_IA32_PERF_CAPABILITIES,
1520 };
1521
1522 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1523 static unsigned int num_msr_based_features;
1524
1525 static u64 kvm_get_arch_capabilities(void)
1526 {
1527         u64 data = 0;
1528
1529         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1530                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1531
1532         /*
1533          * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1534          * the nested hypervisor runs with NX huge pages.  If it is not,
1535          * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1536          * L1 guests, so it need not worry about its own (L2) guests.
1537          */
1538         data |= ARCH_CAP_PSCHANGE_MC_NO;
1539
1540         /*
1541          * If we're doing cache flushes (either "always" or "cond")
1542          * we will do one whenever the guest does a vmlaunch/vmresume.
1543          * If an outer hypervisor is doing the cache flush for us
1544          * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1545          * capability to the guest too, and if EPT is disabled we're not
1546          * vulnerable.  Overall, only VMENTER_L1D_FLUSH_NEVER will
1547          * require a nested hypervisor to do a flush of its own.
1548          */
1549         if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1550                 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1551
1552         if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1553                 data |= ARCH_CAP_RDCL_NO;
1554         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1555                 data |= ARCH_CAP_SSB_NO;
1556         if (!boot_cpu_has_bug(X86_BUG_MDS))
1557                 data |= ARCH_CAP_MDS_NO;
1558
1559         if (!boot_cpu_has(X86_FEATURE_RTM)) {
1560                 /*
1561                  * If RTM=0 because the kernel has disabled TSX, the host might
1562                  * have TAA_NO or TSX_CTRL.  Clear TAA_NO (the guest sees RTM=0
1563                  * and therefore knows that there cannot be TAA) but keep
1564                  * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1565                  * and we want to allow migrating those guests to tsx=off hosts.
1566                  */
1567                 data &= ~ARCH_CAP_TAA_NO;
1568         } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1569                 data |= ARCH_CAP_TAA_NO;
1570         } else {
1571                 /*
1572                  * Nothing to do here; we emulate TSX_CTRL if present on the
1573                  * host so the guest can choose between disabling TSX or
1574                  * using VERW to clear CPU buffers.
1575                  */
1576         }
1577
1578         return data;
1579 }
1580
1581 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1582 {
1583         switch (msr->index) {
1584         case MSR_IA32_ARCH_CAPABILITIES:
1585                 msr->data = kvm_get_arch_capabilities();
1586                 break;
1587         case MSR_IA32_UCODE_REV:
1588                 rdmsrl_safe(msr->index, &msr->data);
1589                 break;
1590         default:
1591                 return static_call(kvm_x86_get_msr_feature)(msr);
1592         }
1593         return 0;
1594 }
1595
1596 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1597 {
1598         struct kvm_msr_entry msr;
1599         int r;
1600
1601         msr.index = index;
1602         r = kvm_get_msr_feature(&msr);
1603
1604         if (r == KVM_MSR_RET_INVALID) {
1605                 /* Unconditionally clear the output for simplicity */
1606                 *data = 0;
1607                 if (kvm_msr_ignored_check(index, 0, false))
1608                         r = 0;
1609         }
1610
1611         if (r)
1612                 return r;
1613
1614         *data = msr.data;
1615
1616         return 0;
1617 }
1618
1619 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1620 {
1621         if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1622                 return false;
1623
1624         if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1625                 return false;
1626
1627         if (efer & (EFER_LME | EFER_LMA) &&
1628             !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1629                 return false;
1630
1631         if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1632                 return false;
1633
1634         return true;
1635
1636 }
1637 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1638 {
1639         if (efer & efer_reserved_bits)
1640                 return false;
1641
1642         return __kvm_valid_efer(vcpu, efer);
1643 }
1644 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1645
1646 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1647 {
1648         u64 old_efer = vcpu->arch.efer;
1649         u64 efer = msr_info->data;
1650         int r;
1651
1652         if (efer & efer_reserved_bits)
1653                 return 1;
1654
1655         if (!msr_info->host_initiated) {
1656                 if (!__kvm_valid_efer(vcpu, efer))
1657                         return 1;
1658
1659                 if (is_paging(vcpu) &&
1660                     (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1661                         return 1;
1662         }
1663
1664         efer &= ~EFER_LMA;
1665         efer |= vcpu->arch.efer & EFER_LMA;
1666
1667         r = static_call(kvm_x86_set_efer)(vcpu, efer);
1668         if (r) {
1669                 WARN_ON(r > 0);
1670                 return r;
1671         }
1672
1673         if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1674                 kvm_mmu_reset_context(vcpu);
1675
1676         return 0;
1677 }
1678
1679 void kvm_enable_efer_bits(u64 mask)
1680 {
1681        efer_reserved_bits &= ~mask;
1682 }
1683 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1684
1685 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1686 {
1687         struct kvm_x86_msr_filter *msr_filter;
1688         struct msr_bitmap_range *ranges;
1689         struct kvm *kvm = vcpu->kvm;
1690         bool allowed;
1691         int idx;
1692         u32 i;
1693
1694         /* x2APIC MSRs do not support filtering. */
1695         if (index >= 0x800 && index <= 0x8ff)
1696                 return true;
1697
1698         idx = srcu_read_lock(&kvm->srcu);
1699
1700         msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1701         if (!msr_filter) {
1702                 allowed = true;
1703                 goto out;
1704         }
1705
1706         allowed = msr_filter->default_allow;
1707         ranges = msr_filter->ranges;
1708
1709         for (i = 0; i < msr_filter->count; i++) {
1710                 u32 start = ranges[i].base;
1711                 u32 end = start + ranges[i].nmsrs;
1712                 u32 flags = ranges[i].flags;
1713                 unsigned long *bitmap = ranges[i].bitmap;
1714
1715                 if ((index >= start) && (index < end) && (flags & type)) {
1716                         allowed = !!test_bit(index - start, bitmap);
1717                         break;
1718                 }
1719         }
1720
1721 out:
1722         srcu_read_unlock(&kvm->srcu, idx);
1723
1724         return allowed;
1725 }
1726 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1727
1728 /*
1729  * Write @data into the MSR specified by @index.  Select MSR specific fault
1730  * checks are bypassed if @host_initiated is %true.
1731  * Returns 0 on success, non-0 otherwise.
1732  * Assumes vcpu_load() was already called.
1733  */
1734 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1735                          bool host_initiated)
1736 {
1737         struct msr_data msr;
1738
1739         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1740                 return KVM_MSR_RET_FILTERED;
1741
1742         switch (index) {
1743         case MSR_FS_BASE:
1744         case MSR_GS_BASE:
1745         case MSR_KERNEL_GS_BASE:
1746         case MSR_CSTAR:
1747         case MSR_LSTAR:
1748                 if (is_noncanonical_address(data, vcpu))
1749                         return 1;
1750                 break;
1751         case MSR_IA32_SYSENTER_EIP:
1752         case MSR_IA32_SYSENTER_ESP:
1753                 /*
1754                  * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1755                  * non-canonical address is written on Intel but not on
1756                  * AMD (which ignores the top 32-bits, because it does
1757                  * not implement 64-bit SYSENTER).
1758                  *
1759                  * 64-bit code should hence be able to write a non-canonical
1760                  * value on AMD.  Making the address canonical ensures that
1761                  * vmentry does not fail on Intel after writing a non-canonical
1762                  * value, and that something deterministic happens if the guest
1763                  * invokes 64-bit SYSENTER.
1764                  */
1765                 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1766                 break;
1767         case MSR_TSC_AUX:
1768                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1769                         return 1;
1770
1771                 if (!host_initiated &&
1772                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1773                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1774                         return 1;
1775
1776                 /*
1777                  * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1778                  * incomplete and conflicting architectural behavior.  Current
1779                  * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1780                  * reserved and always read as zeros.  Enforce Intel's reserved
1781                  * bits check if and only if the guest CPU is Intel, and clear
1782                  * the bits in all other cases.  This ensures cross-vendor
1783                  * migration will provide consistent behavior for the guest.
1784                  */
1785                 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1786                         return 1;
1787
1788                 data = (u32)data;
1789                 break;
1790         }
1791
1792         msr.data = data;
1793         msr.index = index;
1794         msr.host_initiated = host_initiated;
1795
1796         return static_call(kvm_x86_set_msr)(vcpu, &msr);
1797 }
1798
1799 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1800                                      u32 index, u64 data, bool host_initiated)
1801 {
1802         int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1803
1804         if (ret == KVM_MSR_RET_INVALID)
1805                 if (kvm_msr_ignored_check(index, data, true))
1806                         ret = 0;
1807
1808         return ret;
1809 }
1810
1811 /*
1812  * Read the MSR specified by @index into @data.  Select MSR specific fault
1813  * checks are bypassed if @host_initiated is %true.
1814  * Returns 0 on success, non-0 otherwise.
1815  * Assumes vcpu_load() was already called.
1816  */
1817 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1818                   bool host_initiated)
1819 {
1820         struct msr_data msr;
1821         int ret;
1822
1823         if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1824                 return KVM_MSR_RET_FILTERED;
1825
1826         switch (index) {
1827         case MSR_TSC_AUX:
1828                 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1829                         return 1;
1830
1831                 if (!host_initiated &&
1832                     !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1833                     !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1834                         return 1;
1835                 break;
1836         }
1837
1838         msr.index = index;
1839         msr.host_initiated = host_initiated;
1840
1841         ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1842         if (!ret)
1843                 *data = msr.data;
1844         return ret;
1845 }
1846
1847 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1848                                      u32 index, u64 *data, bool host_initiated)
1849 {
1850         int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1851
1852         if (ret == KVM_MSR_RET_INVALID) {
1853                 /* Unconditionally clear *data for simplicity */
1854                 *data = 0;
1855                 if (kvm_msr_ignored_check(index, 0, false))
1856                         ret = 0;
1857         }
1858
1859         return ret;
1860 }
1861
1862 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1863 {
1864         return kvm_get_msr_ignored_check(vcpu, index, data, false);
1865 }
1866 EXPORT_SYMBOL_GPL(kvm_get_msr);
1867
1868 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1869 {
1870         return kvm_set_msr_ignored_check(vcpu, index, data, false);
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_set_msr);
1873
1874 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1875 {
1876         if (!vcpu->run->msr.error) {
1877                 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1878                 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1879         }
1880 }
1881
1882 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1883 {
1884         return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1885 }
1886
1887 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1888 {
1889         complete_userspace_rdmsr(vcpu);
1890         return complete_emulated_msr_access(vcpu);
1891 }
1892
1893 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1894 {
1895         return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1896 }
1897
1898 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1899 {
1900         complete_userspace_rdmsr(vcpu);
1901         return complete_fast_msr_access(vcpu);
1902 }
1903
1904 static u64 kvm_msr_reason(int r)
1905 {
1906         switch (r) {
1907         case KVM_MSR_RET_INVALID:
1908                 return KVM_MSR_EXIT_REASON_UNKNOWN;
1909         case KVM_MSR_RET_FILTERED:
1910                 return KVM_MSR_EXIT_REASON_FILTER;
1911         default:
1912                 return KVM_MSR_EXIT_REASON_INVAL;
1913         }
1914 }
1915
1916 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1917                               u32 exit_reason, u64 data,
1918                               int (*completion)(struct kvm_vcpu *vcpu),
1919                               int r)
1920 {
1921         u64 msr_reason = kvm_msr_reason(r);
1922
1923         /* Check if the user wanted to know about this MSR fault */
1924         if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1925                 return 0;
1926
1927         vcpu->run->exit_reason = exit_reason;
1928         vcpu->run->msr.error = 0;
1929         memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1930         vcpu->run->msr.reason = msr_reason;
1931         vcpu->run->msr.index = index;
1932         vcpu->run->msr.data = data;
1933         vcpu->arch.complete_userspace_io = completion;
1934
1935         return 1;
1936 }
1937
1938 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1939 {
1940         u32 ecx = kvm_rcx_read(vcpu);
1941         u64 data;
1942         int r;
1943
1944         r = kvm_get_msr(vcpu, ecx, &data);
1945
1946         if (!r) {
1947                 trace_kvm_msr_read(ecx, data);
1948
1949                 kvm_rax_write(vcpu, data & -1u);
1950                 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1951         } else {
1952                 /* MSR read failed? See if we should ask user space */
1953                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
1954                                        complete_fast_rdmsr, r))
1955                         return 0;
1956                 trace_kvm_msr_read_ex(ecx);
1957         }
1958
1959         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1960 }
1961 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1962
1963 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1964 {
1965         u32 ecx = kvm_rcx_read(vcpu);
1966         u64 data = kvm_read_edx_eax(vcpu);
1967         int r;
1968
1969         r = kvm_set_msr(vcpu, ecx, data);
1970
1971         if (!r) {
1972                 trace_kvm_msr_write(ecx, data);
1973         } else {
1974                 /* MSR write failed? See if we should ask user space */
1975                 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
1976                                        complete_fast_msr_access, r))
1977                         return 0;
1978                 /* Signal all other negative errors to userspace */
1979                 if (r < 0)
1980                         return r;
1981                 trace_kvm_msr_write_ex(ecx, data);
1982         }
1983
1984         return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1985 }
1986 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1987
1988 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
1989 {
1990         return kvm_skip_emulated_instruction(vcpu);
1991 }
1992 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
1993
1994 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
1995 {
1996         /* Treat an INVD instruction as a NOP and just skip it. */
1997         return kvm_emulate_as_nop(vcpu);
1998 }
1999 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2000
2001 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2002 {
2003         pr_warn_once("kvm: MWAIT instruction emulated as NOP!\n");
2004         return kvm_emulate_as_nop(vcpu);
2005 }
2006 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2007
2008 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2009 {
2010         kvm_queue_exception(vcpu, UD_VECTOR);
2011         return 1;
2012 }
2013 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2014
2015 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2016 {
2017         pr_warn_once("kvm: MONITOR instruction emulated as NOP!\n");
2018         return kvm_emulate_as_nop(vcpu);
2019 }
2020 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2021
2022 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2023 {
2024         xfer_to_guest_mode_prepare();
2025         return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2026                 xfer_to_guest_mode_work_pending();
2027 }
2028
2029 /*
2030  * The fast path for frequent and performance sensitive wrmsr emulation,
2031  * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2032  * the latency of virtual IPI by avoiding the expensive bits of transitioning
2033  * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2034  * other cases which must be called after interrupts are enabled on the host.
2035  */
2036 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2037 {
2038         if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2039                 return 1;
2040
2041         if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2042                 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2043                 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2044                 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
2045
2046                 data &= ~(1 << 12);
2047                 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
2048                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
2049                 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
2050                 trace_kvm_apic_write(APIC_ICR, (u32)data);
2051                 return 0;
2052         }
2053
2054         return 1;
2055 }
2056
2057 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2058 {
2059         if (!kvm_can_use_hv_timer(vcpu))
2060                 return 1;
2061
2062         kvm_set_lapic_tscdeadline_msr(vcpu, data);
2063         return 0;
2064 }
2065
2066 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2067 {
2068         u32 msr = kvm_rcx_read(vcpu);
2069         u64 data;
2070         fastpath_t ret = EXIT_FASTPATH_NONE;
2071
2072         switch (msr) {
2073         case APIC_BASE_MSR + (APIC_ICR >> 4):
2074                 data = kvm_read_edx_eax(vcpu);
2075                 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2076                         kvm_skip_emulated_instruction(vcpu);
2077                         ret = EXIT_FASTPATH_EXIT_HANDLED;
2078                 }
2079                 break;
2080         case MSR_IA32_TSC_DEADLINE:
2081                 data = kvm_read_edx_eax(vcpu);
2082                 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2083                         kvm_skip_emulated_instruction(vcpu);
2084                         ret = EXIT_FASTPATH_REENTER_GUEST;
2085                 }
2086                 break;
2087         default:
2088                 break;
2089         }
2090
2091         if (ret != EXIT_FASTPATH_NONE)
2092                 trace_kvm_msr_write(msr, data);
2093
2094         return ret;
2095 }
2096 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2097
2098 /*
2099  * Adapt set_msr() to msr_io()'s calling convention
2100  */
2101 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2102 {
2103         return kvm_get_msr_ignored_check(vcpu, index, data, true);
2104 }
2105
2106 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2107 {
2108         return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2109 }
2110
2111 #ifdef CONFIG_X86_64
2112 struct pvclock_clock {
2113         int vclock_mode;
2114         u64 cycle_last;
2115         u64 mask;
2116         u32 mult;
2117         u32 shift;
2118         u64 base_cycles;
2119         u64 offset;
2120 };
2121
2122 struct pvclock_gtod_data {
2123         seqcount_t      seq;
2124
2125         struct pvclock_clock clock; /* extract of a clocksource struct */
2126         struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2127
2128         ktime_t         offs_boot;
2129         u64             wall_time_sec;
2130 };
2131
2132 static struct pvclock_gtod_data pvclock_gtod_data;
2133
2134 static void update_pvclock_gtod(struct timekeeper *tk)
2135 {
2136         struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2137
2138         write_seqcount_begin(&vdata->seq);
2139
2140         /* copy pvclock gtod data */
2141         vdata->clock.vclock_mode        = tk->tkr_mono.clock->vdso_clock_mode;
2142         vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
2143         vdata->clock.mask               = tk->tkr_mono.mask;
2144         vdata->clock.mult               = tk->tkr_mono.mult;
2145         vdata->clock.shift              = tk->tkr_mono.shift;
2146         vdata->clock.base_cycles        = tk->tkr_mono.xtime_nsec;
2147         vdata->clock.offset             = tk->tkr_mono.base;
2148
2149         vdata->raw_clock.vclock_mode    = tk->tkr_raw.clock->vdso_clock_mode;
2150         vdata->raw_clock.cycle_last     = tk->tkr_raw.cycle_last;
2151         vdata->raw_clock.mask           = tk->tkr_raw.mask;
2152         vdata->raw_clock.mult           = tk->tkr_raw.mult;
2153         vdata->raw_clock.shift          = tk->tkr_raw.shift;
2154         vdata->raw_clock.base_cycles    = tk->tkr_raw.xtime_nsec;
2155         vdata->raw_clock.offset         = tk->tkr_raw.base;
2156
2157         vdata->wall_time_sec            = tk->xtime_sec;
2158
2159         vdata->offs_boot                = tk->offs_boot;
2160
2161         write_seqcount_end(&vdata->seq);
2162 }
2163
2164 static s64 get_kvmclock_base_ns(void)
2165 {
2166         /* Count up from boot time, but with the frequency of the raw clock.  */
2167         return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2168 }
2169 #else
2170 static s64 get_kvmclock_base_ns(void)
2171 {
2172         /* Master clock not used, so we can just use CLOCK_BOOTTIME.  */
2173         return ktime_get_boottime_ns();
2174 }
2175 #endif
2176
2177 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2178 {
2179         int version;
2180         int r;
2181         struct pvclock_wall_clock wc;
2182         u32 wc_sec_hi;
2183         u64 wall_nsec;
2184
2185         if (!wall_clock)
2186                 return;
2187
2188         r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2189         if (r)
2190                 return;
2191
2192         if (version & 1)
2193                 ++version;  /* first time write, random junk */
2194
2195         ++version;
2196
2197         if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2198                 return;
2199
2200         /*
2201          * The guest calculates current wall clock time by adding
2202          * system time (updated by kvm_guest_time_update below) to the
2203          * wall clock specified here.  We do the reverse here.
2204          */
2205         wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2206
2207         wc.nsec = do_div(wall_nsec, 1000000000);
2208         wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2209         wc.version = version;
2210
2211         kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2212
2213         if (sec_hi_ofs) {
2214                 wc_sec_hi = wall_nsec >> 32;
2215                 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2216                                 &wc_sec_hi, sizeof(wc_sec_hi));
2217         }
2218
2219         version++;
2220         kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2221 }
2222
2223 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2224                                   bool old_msr, bool host_initiated)
2225 {
2226         struct kvm_arch *ka = &vcpu->kvm->arch;
2227
2228         if (vcpu->vcpu_id == 0 && !host_initiated) {
2229                 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2230                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2231
2232                 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2233         }
2234
2235         vcpu->arch.time = system_time;
2236         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2237
2238         /* we verify if the enable bit is set... */
2239         vcpu->arch.pv_time_enabled = false;
2240         if (!(system_time & 1))
2241                 return;
2242
2243         if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2244                                        &vcpu->arch.pv_time, system_time & ~1ULL,
2245                                        sizeof(struct pvclock_vcpu_time_info)))
2246                 vcpu->arch.pv_time_enabled = true;
2247
2248         return;
2249 }
2250
2251 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2252 {
2253         do_shl32_div32(dividend, divisor);
2254         return dividend;
2255 }
2256
2257 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2258                                s8 *pshift, u32 *pmultiplier)
2259 {
2260         uint64_t scaled64;
2261         int32_t  shift = 0;
2262         uint64_t tps64;
2263         uint32_t tps32;
2264
2265         tps64 = base_hz;
2266         scaled64 = scaled_hz;
2267         while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2268                 tps64 >>= 1;
2269                 shift--;
2270         }
2271
2272         tps32 = (uint32_t)tps64;
2273         while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2274                 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2275                         scaled64 >>= 1;
2276                 else
2277                         tps32 <<= 1;
2278                 shift++;
2279         }
2280
2281         *pshift = shift;
2282         *pmultiplier = div_frac(scaled64, tps32);
2283 }
2284
2285 #ifdef CONFIG_X86_64
2286 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2287 #endif
2288
2289 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2290 static unsigned long max_tsc_khz;
2291
2292 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2293 {
2294         u64 v = (u64)khz * (1000000 + ppm);
2295         do_div(v, 1000000);
2296         return v;
2297 }
2298
2299 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2300
2301 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2302 {
2303         u64 ratio;
2304
2305         /* Guest TSC same frequency as host TSC? */
2306         if (!scale) {
2307                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2308                 return 0;
2309         }
2310
2311         /* TSC scaling supported? */
2312         if (!kvm_has_tsc_control) {
2313                 if (user_tsc_khz > tsc_khz) {
2314                         vcpu->arch.tsc_catchup = 1;
2315                         vcpu->arch.tsc_always_catchup = 1;
2316                         return 0;
2317                 } else {
2318                         pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2319                         return -1;
2320                 }
2321         }
2322
2323         /* TSC scaling required  - calculate ratio */
2324         ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2325                                 user_tsc_khz, tsc_khz);
2326
2327         if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
2328                 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2329                                     user_tsc_khz);
2330                 return -1;
2331         }
2332
2333         kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2334         return 0;
2335 }
2336
2337 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2338 {
2339         u32 thresh_lo, thresh_hi;
2340         int use_scaling = 0;
2341
2342         /* tsc_khz can be zero if TSC calibration fails */
2343         if (user_tsc_khz == 0) {
2344                 /* set tsc_scaling_ratio to a safe value */
2345                 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_default_tsc_scaling_ratio);
2346                 return -1;
2347         }
2348
2349         /* Compute a scale to convert nanoseconds in TSC cycles */
2350         kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2351                            &vcpu->arch.virtual_tsc_shift,
2352                            &vcpu->arch.virtual_tsc_mult);
2353         vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2354
2355         /*
2356          * Compute the variation in TSC rate which is acceptable
2357          * within the range of tolerance and decide if the
2358          * rate being applied is within that bounds of the hardware
2359          * rate.  If so, no scaling or compensation need be done.
2360          */
2361         thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2362         thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2363         if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2364                 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2365                 use_scaling = 1;
2366         }
2367         return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2368 }
2369
2370 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2371 {
2372         u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2373                                       vcpu->arch.virtual_tsc_mult,
2374                                       vcpu->arch.virtual_tsc_shift);
2375         tsc += vcpu->arch.this_tsc_write;
2376         return tsc;
2377 }
2378
2379 static inline int gtod_is_based_on_tsc(int mode)
2380 {
2381         return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2382 }
2383
2384 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2385 {
2386 #ifdef CONFIG_X86_64
2387         bool vcpus_matched;
2388         struct kvm_arch *ka = &vcpu->kvm->arch;
2389         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2390
2391         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2392                          atomic_read(&vcpu->kvm->online_vcpus));
2393
2394         /*
2395          * Once the masterclock is enabled, always perform request in
2396          * order to update it.
2397          *
2398          * In order to enable masterclock, the host clocksource must be TSC
2399          * and the vcpus need to have matched TSCs.  When that happens,
2400          * perform request to enable masterclock.
2401          */
2402         if (ka->use_master_clock ||
2403             (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2404                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2405
2406         trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2407                             atomic_read(&vcpu->kvm->online_vcpus),
2408                             ka->use_master_clock, gtod->clock.vclock_mode);
2409 #endif
2410 }
2411
2412 /*
2413  * Multiply tsc by a fixed point number represented by ratio.
2414  *
2415  * The most significant 64-N bits (mult) of ratio represent the
2416  * integral part of the fixed point number; the remaining N bits
2417  * (frac) represent the fractional part, ie. ratio represents a fixed
2418  * point number (mult + frac * 2^(-N)).
2419  *
2420  * N equals to kvm_tsc_scaling_ratio_frac_bits.
2421  */
2422 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2423 {
2424         return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2425 }
2426
2427 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2428 {
2429         u64 _tsc = tsc;
2430
2431         if (ratio != kvm_default_tsc_scaling_ratio)
2432                 _tsc = __scale_tsc(ratio, tsc);
2433
2434         return _tsc;
2435 }
2436 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2437
2438 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2439 {
2440         u64 tsc;
2441
2442         tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2443
2444         return target_tsc - tsc;
2445 }
2446
2447 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2448 {
2449         return vcpu->arch.l1_tsc_offset +
2450                 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2451 }
2452 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2453
2454 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2455 {
2456         u64 nested_offset;
2457
2458         if (l2_multiplier == kvm_default_tsc_scaling_ratio)
2459                 nested_offset = l1_offset;
2460         else
2461                 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2462                                                 kvm_tsc_scaling_ratio_frac_bits);
2463
2464         nested_offset += l2_offset;
2465         return nested_offset;
2466 }
2467 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2468
2469 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2470 {
2471         if (l2_multiplier != kvm_default_tsc_scaling_ratio)
2472                 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2473                                        kvm_tsc_scaling_ratio_frac_bits);
2474
2475         return l1_multiplier;
2476 }
2477 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2478
2479 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2480 {
2481         trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2482                                    vcpu->arch.l1_tsc_offset,
2483                                    l1_offset);
2484
2485         vcpu->arch.l1_tsc_offset = l1_offset;
2486
2487         /*
2488          * If we are here because L1 chose not to trap WRMSR to TSC then
2489          * according to the spec this should set L1's TSC (as opposed to
2490          * setting L1's offset for L2).
2491          */
2492         if (is_guest_mode(vcpu))
2493                 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2494                         l1_offset,
2495                         static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2496                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2497         else
2498                 vcpu->arch.tsc_offset = l1_offset;
2499
2500         static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2501 }
2502
2503 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2504 {
2505         vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2506
2507         /* Userspace is changing the multiplier while L2 is active */
2508         if (is_guest_mode(vcpu))
2509                 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2510                         l1_multiplier,
2511                         static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2512         else
2513                 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2514
2515         if (kvm_has_tsc_control)
2516                 static_call(kvm_x86_write_tsc_multiplier)(
2517                         vcpu, vcpu->arch.tsc_scaling_ratio);
2518 }
2519
2520 static inline bool kvm_check_tsc_unstable(void)
2521 {
2522 #ifdef CONFIG_X86_64
2523         /*
2524          * TSC is marked unstable when we're running on Hyper-V,
2525          * 'TSC page' clocksource is good.
2526          */
2527         if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2528                 return false;
2529 #endif
2530         return check_tsc_unstable();
2531 }
2532
2533 /*
2534  * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2535  * offset for the vcpu and tracks the TSC matching generation that the vcpu
2536  * participates in.
2537  */
2538 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2539                                   u64 ns, bool matched)
2540 {
2541         struct kvm *kvm = vcpu->kvm;
2542
2543         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2544
2545         /*
2546          * We also track th most recent recorded KHZ, write and time to
2547          * allow the matching interval to be extended at each write.
2548          */
2549         kvm->arch.last_tsc_nsec = ns;
2550         kvm->arch.last_tsc_write = tsc;
2551         kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2552         kvm->arch.last_tsc_offset = offset;
2553
2554         vcpu->arch.last_guest_tsc = tsc;
2555
2556         kvm_vcpu_write_tsc_offset(vcpu, offset);
2557
2558         if (!matched) {
2559                 /*
2560                  * We split periods of matched TSC writes into generations.
2561                  * For each generation, we track the original measured
2562                  * nanosecond time, offset, and write, so if TSCs are in
2563                  * sync, we can match exact offset, and if not, we can match
2564                  * exact software computation in compute_guest_tsc()
2565                  *
2566                  * These values are tracked in kvm->arch.cur_xxx variables.
2567                  */
2568                 kvm->arch.cur_tsc_generation++;
2569                 kvm->arch.cur_tsc_nsec = ns;
2570                 kvm->arch.cur_tsc_write = tsc;
2571                 kvm->arch.cur_tsc_offset = offset;
2572                 kvm->arch.nr_vcpus_matched_tsc = 0;
2573         } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2574                 kvm->arch.nr_vcpus_matched_tsc++;
2575         }
2576
2577         /* Keep track of which generation this VCPU has synchronized to */
2578         vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2579         vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2580         vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2581
2582         kvm_track_tsc_matching(vcpu);
2583 }
2584
2585 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2586 {
2587         struct kvm *kvm = vcpu->kvm;
2588         u64 offset, ns, elapsed;
2589         unsigned long flags;
2590         bool matched = false;
2591         bool synchronizing = false;
2592
2593         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2594         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2595         ns = get_kvmclock_base_ns();
2596         elapsed = ns - kvm->arch.last_tsc_nsec;
2597
2598         if (vcpu->arch.virtual_tsc_khz) {
2599                 if (data == 0) {
2600                         /*
2601                          * detection of vcpu initialization -- need to sync
2602                          * with other vCPUs. This particularly helps to keep
2603                          * kvm_clock stable after CPU hotplug
2604                          */
2605                         synchronizing = true;
2606                 } else {
2607                         u64 tsc_exp = kvm->arch.last_tsc_write +
2608                                                 nsec_to_cycles(vcpu, elapsed);
2609                         u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2610                         /*
2611                          * Special case: TSC write with a small delta (1 second)
2612                          * of virtual cycle time against real time is
2613                          * interpreted as an attempt to synchronize the CPU.
2614                          */
2615                         synchronizing = data < tsc_exp + tsc_hz &&
2616                                         data + tsc_hz > tsc_exp;
2617                 }
2618         }
2619
2620         /*
2621          * For a reliable TSC, we can match TSC offsets, and for an unstable
2622          * TSC, we add elapsed time in this computation.  We could let the
2623          * compensation code attempt to catch up if we fall behind, but
2624          * it's better to try to match offsets from the beginning.
2625          */
2626         if (synchronizing &&
2627             vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2628                 if (!kvm_check_tsc_unstable()) {
2629                         offset = kvm->arch.cur_tsc_offset;
2630                 } else {
2631                         u64 delta = nsec_to_cycles(vcpu, elapsed);
2632                         data += delta;
2633                         offset = kvm_compute_l1_tsc_offset(vcpu, data);
2634                 }
2635                 matched = true;
2636         }
2637
2638         __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2639         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2640 }
2641
2642 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2643                                            s64 adjustment)
2644 {
2645         u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2646         kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2647 }
2648
2649 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2650 {
2651         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2652                 WARN_ON(adjustment < 0);
2653         adjustment = kvm_scale_tsc((u64) adjustment,
2654                                    vcpu->arch.l1_tsc_scaling_ratio);
2655         adjust_tsc_offset_guest(vcpu, adjustment);
2656 }
2657
2658 #ifdef CONFIG_X86_64
2659
2660 static u64 read_tsc(void)
2661 {
2662         u64 ret = (u64)rdtsc_ordered();
2663         u64 last = pvclock_gtod_data.clock.cycle_last;
2664
2665         if (likely(ret >= last))
2666                 return ret;
2667
2668         /*
2669          * GCC likes to generate cmov here, but this branch is extremely
2670          * predictable (it's just a function of time and the likely is
2671          * very likely) and there's a data dependence, so force GCC
2672          * to generate a branch instead.  I don't barrier() because
2673          * we don't actually need a barrier, and if this function
2674          * ever gets inlined it will generate worse code.
2675          */
2676         asm volatile ("");
2677         return last;
2678 }
2679
2680 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2681                           int *mode)
2682 {
2683         long v;
2684         u64 tsc_pg_val;
2685
2686         switch (clock->vclock_mode) {
2687         case VDSO_CLOCKMODE_HVCLOCK:
2688                 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2689                                                   tsc_timestamp);
2690                 if (tsc_pg_val != U64_MAX) {
2691                         /* TSC page valid */
2692                         *mode = VDSO_CLOCKMODE_HVCLOCK;
2693                         v = (tsc_pg_val - clock->cycle_last) &
2694                                 clock->mask;
2695                 } else {
2696                         /* TSC page invalid */
2697                         *mode = VDSO_CLOCKMODE_NONE;
2698                 }
2699                 break;
2700         case VDSO_CLOCKMODE_TSC:
2701                 *mode = VDSO_CLOCKMODE_TSC;
2702                 *tsc_timestamp = read_tsc();
2703                 v = (*tsc_timestamp - clock->cycle_last) &
2704                         clock->mask;
2705                 break;
2706         default:
2707                 *mode = VDSO_CLOCKMODE_NONE;
2708         }
2709
2710         if (*mode == VDSO_CLOCKMODE_NONE)
2711                 *tsc_timestamp = v = 0;
2712
2713         return v * clock->mult;
2714 }
2715
2716 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2717 {
2718         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2719         unsigned long seq;
2720         int mode;
2721         u64 ns;
2722
2723         do {
2724                 seq = read_seqcount_begin(&gtod->seq);
2725                 ns = gtod->raw_clock.base_cycles;
2726                 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
2727                 ns >>= gtod->raw_clock.shift;
2728                 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2729         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2730         *t = ns;
2731
2732         return mode;
2733 }
2734
2735 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2736 {
2737         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2738         unsigned long seq;
2739         int mode;
2740         u64 ns;
2741
2742         do {
2743                 seq = read_seqcount_begin(&gtod->seq);
2744                 ts->tv_sec = gtod->wall_time_sec;
2745                 ns = gtod->clock.base_cycles;
2746                 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
2747                 ns >>= gtod->clock.shift;
2748         } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2749
2750         ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2751         ts->tv_nsec = ns;
2752
2753         return mode;
2754 }
2755
2756 /* returns true if host is using TSC based clocksource */
2757 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2758 {
2759         /* checked again under seqlock below */
2760         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2761                 return false;
2762
2763         return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2764                                                       tsc_timestamp));
2765 }
2766
2767 /* returns true if host is using TSC based clocksource */
2768 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2769                                            u64 *tsc_timestamp)
2770 {
2771         /* checked again under seqlock below */
2772         if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2773                 return false;
2774
2775         return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2776 }
2777 #endif
2778
2779 /*
2780  *
2781  * Assuming a stable TSC across physical CPUS, and a stable TSC
2782  * across virtual CPUs, the following condition is possible.
2783  * Each numbered line represents an event visible to both
2784  * CPUs at the next numbered event.
2785  *
2786  * "timespecX" represents host monotonic time. "tscX" represents
2787  * RDTSC value.
2788  *
2789  *              VCPU0 on CPU0           |       VCPU1 on CPU1
2790  *
2791  * 1.  read timespec0,tsc0
2792  * 2.                                   | timespec1 = timespec0 + N
2793  *                                      | tsc1 = tsc0 + M
2794  * 3. transition to guest               | transition to guest
2795  * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2796  * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
2797  *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2798  *
2799  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2800  *
2801  *      - ret0 < ret1
2802  *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2803  *              ...
2804  *      - 0 < N - M => M < N
2805  *
2806  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2807  * always the case (the difference between two distinct xtime instances
2808  * might be smaller then the difference between corresponding TSC reads,
2809  * when updating guest vcpus pvclock areas).
2810  *
2811  * To avoid that problem, do not allow visibility of distinct
2812  * system_timestamp/tsc_timestamp values simultaneously: use a master
2813  * copy of host monotonic time values. Update that master copy
2814  * in lockstep.
2815  *
2816  * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2817  *
2818  */
2819
2820 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2821 {
2822 #ifdef CONFIG_X86_64
2823         struct kvm_arch *ka = &kvm->arch;
2824         int vclock_mode;
2825         bool host_tsc_clocksource, vcpus_matched;
2826
2827         lockdep_assert_held(&kvm->arch.tsc_write_lock);
2828         vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2829                         atomic_read(&kvm->online_vcpus));
2830
2831         /*
2832          * If the host uses TSC clock, then passthrough TSC as stable
2833          * to the guest.
2834          */
2835         host_tsc_clocksource = kvm_get_time_and_clockread(
2836                                         &ka->master_kernel_ns,
2837                                         &ka->master_cycle_now);
2838
2839         ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2840                                 && !ka->backwards_tsc_observed
2841                                 && !ka->boot_vcpu_runs_old_kvmclock;
2842
2843         if (ka->use_master_clock)
2844                 atomic_set(&kvm_guest_has_master_clock, 1);
2845
2846         vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2847         trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2848                                         vcpus_matched);
2849 #endif
2850 }
2851
2852 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2853 {
2854         kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2855 }
2856
2857 static void __kvm_start_pvclock_update(struct kvm *kvm)
2858 {
2859         raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2860         write_seqcount_begin(&kvm->arch.pvclock_sc);
2861 }
2862
2863 static void kvm_start_pvclock_update(struct kvm *kvm)
2864 {
2865         kvm_make_mclock_inprogress_request(kvm);
2866
2867         /* no guest entries from this point */
2868         __kvm_start_pvclock_update(kvm);
2869 }
2870
2871 static void kvm_end_pvclock_update(struct kvm *kvm)
2872 {
2873         struct kvm_arch *ka = &kvm->arch;
2874         struct kvm_vcpu *vcpu;
2875         unsigned long i;
2876
2877         write_seqcount_end(&ka->pvclock_sc);
2878         raw_spin_unlock_irq(&ka->tsc_write_lock);
2879         kvm_for_each_vcpu(i, vcpu, kvm)
2880                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2881
2882         /* guest entries allowed */
2883         kvm_for_each_vcpu(i, vcpu, kvm)
2884                 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2885 }
2886
2887 static void kvm_update_masterclock(struct kvm *kvm)
2888 {
2889         kvm_hv_invalidate_tsc_page(kvm);
2890         kvm_start_pvclock_update(kvm);
2891         pvclock_update_vm_gtod_copy(kvm);
2892         kvm_end_pvclock_update(kvm);
2893 }
2894
2895 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc.  */
2896 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2897 {
2898         struct kvm_arch *ka = &kvm->arch;
2899         struct pvclock_vcpu_time_info hv_clock;
2900
2901         /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2902         get_cpu();
2903
2904         data->flags = 0;
2905         if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2906 #ifdef CONFIG_X86_64
2907                 struct timespec64 ts;
2908
2909                 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2910                         data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2911                         data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2912                 } else
2913 #endif
2914                 data->host_tsc = rdtsc();
2915
2916                 data->flags |= KVM_CLOCK_TSC_STABLE;
2917                 hv_clock.tsc_timestamp = ka->master_cycle_now;
2918                 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2919                 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2920                                    &hv_clock.tsc_shift,
2921                                    &hv_clock.tsc_to_system_mul);
2922                 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
2923         } else {
2924                 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
2925         }
2926
2927         put_cpu();
2928 }
2929
2930 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2931 {
2932         struct kvm_arch *ka = &kvm->arch;
2933         unsigned seq;
2934
2935         do {
2936                 seq = read_seqcount_begin(&ka->pvclock_sc);
2937                 __get_kvmclock(kvm, data);
2938         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
2939 }
2940
2941 u64 get_kvmclock_ns(struct kvm *kvm)
2942 {
2943         struct kvm_clock_data data;
2944
2945         get_kvmclock(kvm, &data);
2946         return data.clock;
2947 }
2948
2949 static void kvm_setup_pvclock_page(struct kvm_vcpu *v,
2950                                    struct gfn_to_hva_cache *cache,
2951                                    unsigned int offset)
2952 {
2953         struct kvm_vcpu_arch *vcpu = &v->arch;
2954         struct pvclock_vcpu_time_info guest_hv_clock;
2955
2956         if (unlikely(kvm_read_guest_offset_cached(v->kvm, cache,
2957                 &guest_hv_clock, offset, sizeof(guest_hv_clock))))
2958                 return;
2959
2960         /* This VCPU is paused, but it's legal for a guest to read another
2961          * VCPU's kvmclock, so we really have to follow the specification where
2962          * it says that version is odd if data is being modified, and even after
2963          * it is consistent.
2964          *
2965          * Version field updates must be kept separate.  This is because
2966          * kvm_write_guest_cached might use a "rep movs" instruction, and
2967          * writes within a string instruction are weakly ordered.  So there
2968          * are three writes overall.
2969          *
2970          * As a small optimization, only write the version field in the first
2971          * and third write.  The vcpu->pv_time cache is still valid, because the
2972          * version field is the first in the struct.
2973          */
2974         BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2975
2976         if (guest_hv_clock.version & 1)
2977                 ++guest_hv_clock.version;  /* first time write, random junk */
2978
2979         vcpu->hv_clock.version = guest_hv_clock.version + 1;
2980         kvm_write_guest_offset_cached(v->kvm, cache,
2981                                       &vcpu->hv_clock, offset,
2982                                       sizeof(vcpu->hv_clock.version));
2983
2984         smp_wmb();
2985
2986         /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2987         vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2988
2989         if (vcpu->pvclock_set_guest_stopped_request) {
2990                 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2991                 vcpu->pvclock_set_guest_stopped_request = false;
2992         }
2993
2994         trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2995
2996         kvm_write_guest_offset_cached(v->kvm, cache,
2997                                       &vcpu->hv_clock, offset,
2998                                       sizeof(vcpu->hv_clock));
2999
3000         smp_wmb();
3001
3002         vcpu->hv_clock.version++;
3003         kvm_write_guest_offset_cached(v->kvm, cache,
3004                                      &vcpu->hv_clock, offset,
3005                                      sizeof(vcpu->hv_clock.version));
3006 }
3007
3008 static int kvm_guest_time_update(struct kvm_vcpu *v)
3009 {
3010         unsigned long flags, tgt_tsc_khz;
3011         unsigned seq;
3012         struct kvm_vcpu_arch *vcpu = &v->arch;
3013         struct kvm_arch *ka = &v->kvm->arch;
3014         s64 kernel_ns;
3015         u64 tsc_timestamp, host_tsc;
3016         u8 pvclock_flags;
3017         bool use_master_clock;
3018
3019         kernel_ns = 0;
3020         host_tsc = 0;
3021
3022         /*
3023          * If the host uses TSC clock, then passthrough TSC as stable
3024          * to the guest.
3025          */
3026         do {
3027                 seq = read_seqcount_begin(&ka->pvclock_sc);
3028                 use_master_clock = ka->use_master_clock;
3029                 if (use_master_clock) {
3030                         host_tsc = ka->master_cycle_now;
3031                         kernel_ns = ka->master_kernel_ns;
3032                 }
3033         } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3034
3035         /* Keep irq disabled to prevent changes to the clock */
3036         local_irq_save(flags);
3037         tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3038         if (unlikely(tgt_tsc_khz == 0)) {
3039                 local_irq_restore(flags);
3040                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3041                 return 1;
3042         }
3043         if (!use_master_clock) {
3044                 host_tsc = rdtsc();
3045                 kernel_ns = get_kvmclock_base_ns();
3046         }
3047
3048         tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3049
3050         /*
3051          * We may have to catch up the TSC to match elapsed wall clock
3052          * time for two reasons, even if kvmclock is used.
3053          *   1) CPU could have been running below the maximum TSC rate
3054          *   2) Broken TSC compensation resets the base at each VCPU
3055          *      entry to avoid unknown leaps of TSC even when running
3056          *      again on the same CPU.  This may cause apparent elapsed
3057          *      time to disappear, and the guest to stand still or run
3058          *      very slowly.
3059          */
3060         if (vcpu->tsc_catchup) {
3061                 u64 tsc = compute_guest_tsc(v, kernel_ns);
3062                 if (tsc > tsc_timestamp) {
3063                         adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3064                         tsc_timestamp = tsc;
3065                 }
3066         }
3067
3068         local_irq_restore(flags);
3069
3070         /* With all the info we got, fill in the values */
3071
3072         if (kvm_has_tsc_control)
3073                 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3074                                             v->arch.l1_tsc_scaling_ratio);
3075
3076         if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3077                 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3078                                    &vcpu->hv_clock.tsc_shift,
3079                                    &vcpu->hv_clock.tsc_to_system_mul);
3080                 vcpu->hw_tsc_khz = tgt_tsc_khz;
3081         }
3082
3083         vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3084         vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3085         vcpu->last_guest_tsc = tsc_timestamp;
3086
3087         /* If the host uses TSC clocksource, then it is stable */
3088         pvclock_flags = 0;
3089         if (use_master_clock)
3090                 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3091
3092         vcpu->hv_clock.flags = pvclock_flags;
3093
3094         if (vcpu->pv_time_enabled)
3095                 kvm_setup_pvclock_page(v, &vcpu->pv_time, 0);
3096         if (vcpu->xen.vcpu_info_set)
3097                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_info_cache,
3098                                        offsetof(struct compat_vcpu_info, time));
3099         if (vcpu->xen.vcpu_time_info_set)
3100                 kvm_setup_pvclock_page(v, &vcpu->xen.vcpu_time_info_cache, 0);
3101         if (!v->vcpu_idx)
3102                 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3103         return 0;
3104 }
3105
3106 /*
3107  * kvmclock updates which are isolated to a given vcpu, such as
3108  * vcpu->cpu migration, should not allow system_timestamp from
3109  * the rest of the vcpus to remain static. Otherwise ntp frequency
3110  * correction applies to one vcpu's system_timestamp but not
3111  * the others.
3112  *
3113  * So in those cases, request a kvmclock update for all vcpus.
3114  * We need to rate-limit these requests though, as they can
3115  * considerably slow guests that have a large number of vcpus.
3116  * The time for a remote vcpu to update its kvmclock is bound
3117  * by the delay we use to rate-limit the updates.
3118  */
3119
3120 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3121
3122 static void kvmclock_update_fn(struct work_struct *work)
3123 {
3124         unsigned long i;
3125         struct delayed_work *dwork = to_delayed_work(work);
3126         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3127                                            kvmclock_update_work);
3128         struct kvm *kvm = container_of(ka, struct kvm, arch);
3129         struct kvm_vcpu *vcpu;
3130
3131         kvm_for_each_vcpu(i, vcpu, kvm) {
3132                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3133                 kvm_vcpu_kick(vcpu);
3134         }
3135 }
3136
3137 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3138 {
3139         struct kvm *kvm = v->kvm;
3140
3141         kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3142         schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3143                                         KVMCLOCK_UPDATE_DELAY);
3144 }
3145
3146 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3147
3148 static void kvmclock_sync_fn(struct work_struct *work)
3149 {
3150         struct delayed_work *dwork = to_delayed_work(work);
3151         struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3152                                            kvmclock_sync_work);
3153         struct kvm *kvm = container_of(ka, struct kvm, arch);
3154
3155         if (!kvmclock_periodic_sync)
3156                 return;
3157
3158         schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3159         schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3160                                         KVMCLOCK_SYNC_PERIOD);
3161 }
3162
3163 /*
3164  * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3165  */
3166 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3167 {
3168         /* McStatusWrEn enabled? */
3169         if (guest_cpuid_is_amd_or_hygon(vcpu))
3170                 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3171
3172         return false;
3173 }
3174
3175 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3176 {
3177         u64 mcg_cap = vcpu->arch.mcg_cap;
3178         unsigned bank_num = mcg_cap & 0xff;
3179         u32 msr = msr_info->index;
3180         u64 data = msr_info->data;
3181
3182         switch (msr) {
3183         case MSR_IA32_MCG_STATUS:
3184                 vcpu->arch.mcg_status = data;
3185                 break;
3186         case MSR_IA32_MCG_CTL:
3187                 if (!(mcg_cap & MCG_CTL_P) &&
3188                     (data || !msr_info->host_initiated))
3189                         return 1;
3190                 if (data != 0 && data != ~(u64)0)
3191                         return 1;
3192                 vcpu->arch.mcg_ctl = data;
3193                 break;
3194         default:
3195                 if (msr >= MSR_IA32_MC0_CTL &&
3196                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3197                         u32 offset = array_index_nospec(
3198                                 msr - MSR_IA32_MC0_CTL,
3199                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3200
3201                         /* only 0 or all 1s can be written to IA32_MCi_CTL
3202                          * some Linux kernels though clear bit 10 in bank 4 to
3203                          * workaround a BIOS/GART TBL issue on AMD K8s, ignore
3204                          * this to avoid an uncatched #GP in the guest
3205                          */
3206                         if ((offset & 0x3) == 0 &&
3207                             data != 0 && (data | (1 << 10)) != ~(u64)0)
3208                                 return -1;
3209
3210                         /* MCi_STATUS */
3211                         if (!msr_info->host_initiated &&
3212                             (offset & 0x3) == 1 && data != 0) {
3213                                 if (!can_set_mci_status(vcpu))
3214                                         return -1;
3215                         }
3216
3217                         vcpu->arch.mce_banks[offset] = data;
3218                         break;
3219                 }
3220                 return 1;
3221         }
3222         return 0;
3223 }
3224
3225 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3226 {
3227         u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3228
3229         return (vcpu->arch.apf.msr_en_val & mask) == mask;
3230 }
3231
3232 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3233 {
3234         gpa_t gpa = data & ~0x3f;
3235
3236         /* Bits 4:5 are reserved, Should be zero */
3237         if (data & 0x30)
3238                 return 1;
3239
3240         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3241             (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3242                 return 1;
3243
3244         if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3245             (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3246                 return 1;
3247
3248         if (!lapic_in_kernel(vcpu))
3249                 return data ? 1 : 0;
3250
3251         vcpu->arch.apf.msr_en_val = data;
3252
3253         if (!kvm_pv_async_pf_enabled(vcpu)) {
3254                 kvm_clear_async_pf_completion_queue(vcpu);
3255                 kvm_async_pf_hash_reset(vcpu);
3256                 return 0;
3257         }
3258
3259         if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3260                                         sizeof(u64)))
3261                 return 1;
3262
3263         vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3264         vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3265
3266         kvm_async_pf_wakeup_all(vcpu);
3267
3268         return 0;
3269 }
3270
3271 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3272 {
3273         /* Bits 8-63 are reserved */
3274         if (data >> 8)
3275                 return 1;
3276
3277         if (!lapic_in_kernel(vcpu))
3278                 return 1;
3279
3280         vcpu->arch.apf.msr_int_val = data;
3281
3282         vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3283
3284         return 0;
3285 }
3286
3287 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3288 {
3289         vcpu->arch.pv_time_enabled = false;
3290         vcpu->arch.time = 0;
3291 }
3292
3293 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3294 {
3295         ++vcpu->stat.tlb_flush;
3296         static_call(kvm_x86_flush_tlb_all)(vcpu);
3297 }
3298
3299 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3300 {
3301         ++vcpu->stat.tlb_flush;
3302
3303         if (!tdp_enabled) {
3304                 /*
3305                  * A TLB flush on behalf of the guest is equivalent to
3306                  * INVPCID(all), toggling CR4.PGE, etc., which requires
3307                  * a forced sync of the shadow page tables.  Ensure all the
3308                  * roots are synced and the guest TLB in hardware is clean.
3309                  */
3310                 kvm_mmu_sync_roots(vcpu);
3311                 kvm_mmu_sync_prev_roots(vcpu);
3312         }
3313
3314         static_call(kvm_x86_flush_tlb_guest)(vcpu);
3315 }
3316
3317
3318 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3319 {
3320         ++vcpu->stat.tlb_flush;
3321         static_call(kvm_x86_flush_tlb_current)(vcpu);
3322 }
3323
3324 /*
3325  * Service "local" TLB flush requests, which are specific to the current MMU
3326  * context.  In addition to the generic event handling in vcpu_enter_guest(),
3327  * TLB flushes that are targeted at an MMU context also need to be serviced
3328  * prior before nested VM-Enter/VM-Exit.
3329  */
3330 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3331 {
3332         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3333                 kvm_vcpu_flush_tlb_current(vcpu);
3334
3335         if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3336                 kvm_vcpu_flush_tlb_guest(vcpu);
3337 }
3338 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3339
3340 static void record_steal_time(struct kvm_vcpu *vcpu)
3341 {
3342         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3343         struct kvm_steal_time __user *st;
3344         struct kvm_memslots *slots;
3345         u64 steal;
3346         u32 version;
3347
3348         if (kvm_xen_msr_enabled(vcpu->kvm)) {
3349                 kvm_xen_runstate_set_running(vcpu);
3350                 return;
3351         }
3352
3353         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3354                 return;
3355
3356         if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3357                 return;
3358
3359         slots = kvm_memslots(vcpu->kvm);
3360
3361         if (unlikely(slots->generation != ghc->generation ||
3362                      kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3363                 gfn_t gfn = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3364
3365                 /* We rely on the fact that it fits in a single page. */
3366                 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3367
3368                 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gfn, sizeof(*st)) ||
3369                     kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3370                         return;
3371         }
3372
3373         st = (struct kvm_steal_time __user *)ghc->hva;
3374         /*
3375          * Doing a TLB flush here, on the guest's behalf, can avoid
3376          * expensive IPIs.
3377          */
3378         if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3379                 u8 st_preempted = 0;
3380                 int err = -EFAULT;
3381
3382                 if (!user_access_begin(st, sizeof(*st)))
3383                         return;
3384
3385                 asm volatile("1: xchgb %0, %2\n"
3386                              "xor %1, %1\n"
3387                              "2:\n"
3388                              _ASM_EXTABLE_UA(1b, 2b)
3389                              : "+q" (st_preempted),
3390                                "+&r" (err),
3391                                "+m" (st->preempted));
3392                 if (err)
3393                         goto out;
3394
3395                 user_access_end();
3396
3397                 vcpu->arch.st.preempted = 0;
3398
3399                 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3400                                        st_preempted & KVM_VCPU_FLUSH_TLB);
3401                 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3402                         kvm_vcpu_flush_tlb_guest(vcpu);
3403
3404                 if (!user_access_begin(st, sizeof(*st)))
3405                         goto dirty;
3406         } else {
3407                 if (!user_access_begin(st, sizeof(*st)))
3408                         return;
3409
3410                 unsafe_put_user(0, &st->preempted, out);
3411                 vcpu->arch.st.preempted = 0;
3412         }
3413
3414         unsafe_get_user(version, &st->version, out);
3415         if (version & 1)
3416                 version += 1;  /* first time write, random junk */
3417
3418         version += 1;
3419         unsafe_put_user(version, &st->version, out);
3420
3421         smp_wmb();
3422
3423         unsafe_get_user(steal, &st->steal, out);
3424         steal += current->sched_info.run_delay -
3425                 vcpu->arch.st.last_steal;
3426         vcpu->arch.st.last_steal = current->sched_info.run_delay;
3427         unsafe_put_user(steal, &st->steal, out);
3428
3429         version += 1;
3430         unsafe_put_user(version, &st->version, out);
3431
3432  out:
3433         user_access_end();
3434  dirty:
3435         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3436 }
3437
3438 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3439 {
3440         bool pr = false;
3441         u32 msr = msr_info->index;
3442         u64 data = msr_info->data;
3443
3444         if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3445                 return kvm_xen_write_hypercall_page(vcpu, data);
3446
3447         switch (msr) {
3448         case MSR_AMD64_NB_CFG:
3449         case MSR_IA32_UCODE_WRITE:
3450         case MSR_VM_HSAVE_PA:
3451         case MSR_AMD64_PATCH_LOADER:
3452         case MSR_AMD64_BU_CFG2:
3453         case MSR_AMD64_DC_CFG:
3454         case MSR_F15H_EX_CFG:
3455                 break;
3456
3457         case MSR_IA32_UCODE_REV:
3458                 if (msr_info->host_initiated)
3459                         vcpu->arch.microcode_version = data;
3460                 break;
3461         case MSR_IA32_ARCH_CAPABILITIES:
3462                 if (!msr_info->host_initiated)
3463                         return 1;
3464                 vcpu->arch.arch_capabilities = data;
3465                 break;
3466         case MSR_IA32_PERF_CAPABILITIES: {
3467                 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3468
3469                 if (!msr_info->host_initiated)
3470                         return 1;
3471                 if (kvm_get_msr_feature(&msr_ent))
3472                         return 1;
3473                 if (data & ~msr_ent.data)
3474                         return 1;
3475
3476                 vcpu->arch.perf_capabilities = data;
3477
3478                 return 0;
3479                 }
3480         case MSR_EFER:
3481                 return set_efer(vcpu, msr_info);
3482         case MSR_K7_HWCR:
3483                 data &= ~(u64)0x40;     /* ignore flush filter disable */
3484                 data &= ~(u64)0x100;    /* ignore ignne emulation enable */
3485                 data &= ~(u64)0x8;      /* ignore TLB cache disable */
3486
3487                 /* Handle McStatusWrEn */
3488                 if (data == BIT_ULL(18)) {
3489                         vcpu->arch.msr_hwcr = data;
3490                 } else if (data != 0) {
3491                         vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3492                                     data);
3493                         return 1;
3494                 }
3495                 break;
3496         case MSR_FAM10H_MMIO_CONF_BASE:
3497                 if (data != 0) {
3498                         vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3499                                     "0x%llx\n", data);
3500                         return 1;
3501                 }
3502                 break;
3503         case 0x200 ... 0x2ff:
3504                 return kvm_mtrr_set_msr(vcpu, msr, data);
3505         case MSR_IA32_APICBASE:
3506                 return kvm_set_apic_base(vcpu, msr_info);
3507         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3508                 return kvm_x2apic_msr_write(vcpu, msr, data);
3509         case MSR_IA32_TSC_DEADLINE:
3510                 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3511                 break;
3512         case MSR_IA32_TSC_ADJUST:
3513                 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3514                         if (!msr_info->host_initiated) {
3515                                 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3516                                 adjust_tsc_offset_guest(vcpu, adj);
3517                                 /* Before back to guest, tsc_timestamp must be adjusted
3518                                  * as well, otherwise guest's percpu pvclock time could jump.
3519                                  */
3520                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3521                         }
3522                         vcpu->arch.ia32_tsc_adjust_msr = data;
3523                 }
3524                 break;
3525         case MSR_IA32_MISC_ENABLE:
3526                 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3527                     ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3528                         if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3529                                 return 1;
3530                         vcpu->arch.ia32_misc_enable_msr = data;
3531                         kvm_update_cpuid_runtime(vcpu);
3532                 } else {
3533                         vcpu->arch.ia32_misc_enable_msr = data;
3534                 }
3535                 break;
3536         case MSR_IA32_SMBASE:
3537                 if (!msr_info->host_initiated)
3538                         return 1;
3539                 vcpu->arch.smbase = data;
3540                 break;
3541         case MSR_IA32_POWER_CTL:
3542                 vcpu->arch.msr_ia32_power_ctl = data;
3543                 break;
3544         case MSR_IA32_TSC:
3545                 if (msr_info->host_initiated) {
3546                         kvm_synchronize_tsc(vcpu, data);
3547                 } else {
3548                         u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3549                         adjust_tsc_offset_guest(vcpu, adj);
3550                         vcpu->arch.ia32_tsc_adjust_msr += adj;
3551                 }
3552                 break;
3553         case MSR_IA32_XSS:
3554                 if (!msr_info->host_initiated &&
3555                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3556                         return 1;
3557                 /*
3558                  * KVM supports exposing PT to the guest, but does not support
3559                  * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3560                  * XSAVES/XRSTORS to save/restore PT MSRs.
3561                  */
3562                 if (data & ~supported_xss)
3563                         return 1;
3564                 vcpu->arch.ia32_xss = data;
3565                 kvm_update_cpuid_runtime(vcpu);
3566                 break;
3567         case MSR_SMI_COUNT:
3568                 if (!msr_info->host_initiated)
3569                         return 1;
3570                 vcpu->arch.smi_count = data;
3571                 break;
3572         case MSR_KVM_WALL_CLOCK_NEW:
3573                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3574                         return 1;
3575
3576                 vcpu->kvm->arch.wall_clock = data;
3577                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3578                 break;
3579         case MSR_KVM_WALL_CLOCK:
3580                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3581                         return 1;
3582
3583                 vcpu->kvm->arch.wall_clock = data;
3584                 kvm_write_wall_clock(vcpu->kvm, data, 0);
3585                 break;
3586         case MSR_KVM_SYSTEM_TIME_NEW:
3587                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3588                         return 1;
3589
3590                 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3591                 break;
3592         case MSR_KVM_SYSTEM_TIME:
3593                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3594                         return 1;
3595
3596                 kvm_write_system_time(vcpu, data, true,  msr_info->host_initiated);
3597                 break;
3598         case MSR_KVM_ASYNC_PF_EN:
3599                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3600                         return 1;
3601
3602                 if (kvm_pv_enable_async_pf(vcpu, data))
3603                         return 1;
3604                 break;
3605         case MSR_KVM_ASYNC_PF_INT:
3606                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3607                         return 1;
3608
3609                 if (kvm_pv_enable_async_pf_int(vcpu, data))
3610                         return 1;
3611                 break;
3612         case MSR_KVM_ASYNC_PF_ACK:
3613                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3614                         return 1;
3615                 if (data & 0x1) {
3616                         vcpu->arch.apf.pageready_pending = false;
3617                         kvm_check_async_pf_completion(vcpu);
3618                 }
3619                 break;
3620         case MSR_KVM_STEAL_TIME:
3621                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3622                         return 1;
3623
3624                 if (unlikely(!sched_info_on()))
3625                         return 1;
3626
3627                 if (data & KVM_STEAL_RESERVED_MASK)
3628                         return 1;
3629
3630                 vcpu->arch.st.msr_val = data;
3631
3632                 if (!(data & KVM_MSR_ENABLED))
3633                         break;
3634
3635                 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3636
3637                 break;
3638         case MSR_KVM_PV_EOI_EN:
3639                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3640                         return 1;
3641
3642                 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3643                         return 1;
3644                 break;
3645
3646         case MSR_KVM_POLL_CONTROL:
3647                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3648                         return 1;
3649
3650                 /* only enable bit supported */
3651                 if (data & (-1ULL << 1))
3652                         return 1;
3653
3654                 vcpu->arch.msr_kvm_poll_control = data;
3655                 break;
3656
3657         case MSR_IA32_MCG_CTL:
3658         case MSR_IA32_MCG_STATUS:
3659         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3660                 return set_msr_mce(vcpu, msr_info);
3661
3662         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3663         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3664                 pr = true;
3665                 fallthrough;
3666         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3667         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3668                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3669                         return kvm_pmu_set_msr(vcpu, msr_info);
3670
3671                 if (pr || data != 0)
3672                         vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3673                                     "0x%x data 0x%llx\n", msr, data);
3674                 break;
3675         case MSR_K7_CLK_CTL:
3676                 /*
3677                  * Ignore all writes to this no longer documented MSR.
3678                  * Writes are only relevant for old K7 processors,
3679                  * all pre-dating SVM, but a recommended workaround from
3680                  * AMD for these chips. It is possible to specify the
3681                  * affected processor models on the command line, hence
3682                  * the need to ignore the workaround.
3683                  */
3684                 break;
3685         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3686         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3687         case HV_X64_MSR_SYNDBG_OPTIONS:
3688         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3689         case HV_X64_MSR_CRASH_CTL:
3690         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3691         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3692         case HV_X64_MSR_TSC_EMULATION_CONTROL:
3693         case HV_X64_MSR_TSC_EMULATION_STATUS:
3694                 return kvm_hv_set_msr_common(vcpu, msr, data,
3695                                              msr_info->host_initiated);
3696         case MSR_IA32_BBL_CR_CTL3:
3697                 /* Drop writes to this legacy MSR -- see rdmsr
3698                  * counterpart for further detail.
3699                  */
3700                 if (report_ignored_msrs)
3701                         vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3702                                 msr, data);
3703                 break;
3704         case MSR_AMD64_OSVW_ID_LENGTH:
3705                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3706                         return 1;
3707                 vcpu->arch.osvw.length = data;
3708                 break;
3709         case MSR_AMD64_OSVW_STATUS:
3710                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3711                         return 1;
3712                 vcpu->arch.osvw.status = data;
3713                 break;
3714         case MSR_PLATFORM_INFO:
3715                 if (!msr_info->host_initiated ||
3716                     (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3717                      cpuid_fault_enabled(vcpu)))
3718                         return 1;
3719                 vcpu->arch.msr_platform_info = data;
3720                 break;
3721         case MSR_MISC_FEATURES_ENABLES:
3722                 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3723                     (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3724                      !supports_cpuid_fault(vcpu)))
3725                         return 1;
3726                 vcpu->arch.msr_misc_features_enables = data;
3727                 break;
3728 #ifdef CONFIG_X86_64
3729         case MSR_IA32_XFD:
3730                 if (!msr_info->host_initiated &&
3731                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3732                         return 1;
3733
3734                 if (data & ~(XFEATURE_MASK_USER_DYNAMIC &
3735                              vcpu->arch.guest_supported_xcr0))
3736                         return 1;
3737
3738                 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3739                 break;
3740         case MSR_IA32_XFD_ERR:
3741                 if (!msr_info->host_initiated &&
3742                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3743                         return 1;
3744
3745                 if (data & ~(XFEATURE_MASK_USER_DYNAMIC &
3746                              vcpu->arch.guest_supported_xcr0))
3747                         return 1;
3748
3749                 vcpu->arch.guest_fpu.xfd_err = data;
3750                 break;
3751 #endif
3752         default:
3753                 if (kvm_pmu_is_valid_msr(vcpu, msr))
3754                         return kvm_pmu_set_msr(vcpu, msr_info);
3755                 return KVM_MSR_RET_INVALID;
3756         }
3757         return 0;
3758 }
3759 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3760
3761 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3762 {
3763         u64 data;
3764         u64 mcg_cap = vcpu->arch.mcg_cap;
3765         unsigned bank_num = mcg_cap & 0xff;
3766
3767         switch (msr) {
3768         case MSR_IA32_P5_MC_ADDR:
3769         case MSR_IA32_P5_MC_TYPE:
3770                 data = 0;
3771                 break;
3772         case MSR_IA32_MCG_CAP:
3773                 data = vcpu->arch.mcg_cap;
3774                 break;
3775         case MSR_IA32_MCG_CTL:
3776                 if (!(mcg_cap & MCG_CTL_P) && !host)
3777                         return 1;
3778                 data = vcpu->arch.mcg_ctl;
3779                 break;
3780         case MSR_IA32_MCG_STATUS:
3781                 data = vcpu->arch.mcg_status;
3782                 break;
3783         default:
3784                 if (msr >= MSR_IA32_MC0_CTL &&
3785                     msr < MSR_IA32_MCx_CTL(bank_num)) {
3786                         u32 offset = array_index_nospec(
3787                                 msr - MSR_IA32_MC0_CTL,
3788                                 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3789
3790                         data = vcpu->arch.mce_banks[offset];
3791                         break;
3792                 }
3793                 return 1;
3794         }
3795         *pdata = data;
3796         return 0;
3797 }
3798
3799 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3800 {
3801         switch (msr_info->index) {
3802         case MSR_IA32_PLATFORM_ID:
3803         case MSR_IA32_EBL_CR_POWERON:
3804         case MSR_IA32_LASTBRANCHFROMIP:
3805         case MSR_IA32_LASTBRANCHTOIP:
3806         case MSR_IA32_LASTINTFROMIP:
3807         case MSR_IA32_LASTINTTOIP:
3808         case MSR_AMD64_SYSCFG:
3809         case MSR_K8_TSEG_ADDR:
3810         case MSR_K8_TSEG_MASK:
3811         case MSR_VM_HSAVE_PA:
3812         case MSR_K8_INT_PENDING_MSG:
3813         case MSR_AMD64_NB_CFG:
3814         case MSR_FAM10H_MMIO_CONF_BASE:
3815         case MSR_AMD64_BU_CFG2:
3816         case MSR_IA32_PERF_CTL:
3817         case MSR_AMD64_DC_CFG:
3818         case MSR_F15H_EX_CFG:
3819         /*
3820          * Intel Sandy Bridge CPUs must support the RAPL (running average power
3821          * limit) MSRs. Just return 0, as we do not want to expose the host
3822          * data here. Do not conditionalize this on CPUID, as KVM does not do
3823          * so for existing CPU-specific MSRs.
3824          */
3825         case MSR_RAPL_POWER_UNIT:
3826         case MSR_PP0_ENERGY_STATUS:     /* Power plane 0 (core) */
3827         case MSR_PP1_ENERGY_STATUS:     /* Power plane 1 (graphics uncore) */
3828         case MSR_PKG_ENERGY_STATUS:     /* Total package */
3829         case MSR_DRAM_ENERGY_STATUS:    /* DRAM controller */
3830                 msr_info->data = 0;
3831                 break;
3832         case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3833                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3834                         return kvm_pmu_get_msr(vcpu, msr_info);
3835                 if (!msr_info->host_initiated)
3836                         return 1;
3837                 msr_info->data = 0;
3838                 break;
3839         case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3840         case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3841         case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3842         case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3843                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3844                         return kvm_pmu_get_msr(vcpu, msr_info);
3845                 msr_info->data = 0;
3846                 break;
3847         case MSR_IA32_UCODE_REV:
3848                 msr_info->data = vcpu->arch.microcode_version;
3849                 break;
3850         case MSR_IA32_ARCH_CAPABILITIES:
3851                 if (!msr_info->host_initiated &&
3852                     !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3853                         return 1;
3854                 msr_info->data = vcpu->arch.arch_capabilities;
3855                 break;
3856         case MSR_IA32_PERF_CAPABILITIES:
3857                 if (!msr_info->host_initiated &&
3858                     !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3859                         return 1;
3860                 msr_info->data = vcpu->arch.perf_capabilities;
3861                 break;
3862         case MSR_IA32_POWER_CTL:
3863                 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3864                 break;
3865         case MSR_IA32_TSC: {
3866                 /*
3867                  * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3868                  * even when not intercepted. AMD manual doesn't explicitly
3869                  * state this but appears to behave the same.
3870                  *
3871                  * On userspace reads and writes, however, we unconditionally
3872                  * return L1's TSC value to ensure backwards-compatible
3873                  * behavior for migration.
3874                  */
3875                 u64 offset, ratio;
3876
3877                 if (msr_info->host_initiated) {
3878                         offset = vcpu->arch.l1_tsc_offset;
3879                         ratio = vcpu->arch.l1_tsc_scaling_ratio;
3880                 } else {
3881                         offset = vcpu->arch.tsc_offset;
3882                         ratio = vcpu->arch.tsc_scaling_ratio;
3883                 }
3884
3885                 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
3886                 break;
3887         }
3888         case MSR_MTRRcap:
3889         case 0x200 ... 0x2ff:
3890                 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3891         case 0xcd: /* fsb frequency */
3892                 msr_info->data = 3;
3893                 break;
3894                 /*
3895                  * MSR_EBC_FREQUENCY_ID
3896                  * Conservative value valid for even the basic CPU models.
3897                  * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3898                  * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3899                  * and 266MHz for model 3, or 4. Set Core Clock
3900                  * Frequency to System Bus Frequency Ratio to 1 (bits
3901                  * 31:24) even though these are only valid for CPU
3902                  * models > 2, however guests may end up dividing or
3903                  * multiplying by zero otherwise.
3904                  */
3905         case MSR_EBC_FREQUENCY_ID:
3906                 msr_info->data = 1 << 24;
3907                 break;
3908         case MSR_IA32_APICBASE:
3909                 msr_info->data = kvm_get_apic_base(vcpu);
3910                 break;
3911         case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3912                 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3913         case MSR_IA32_TSC_DEADLINE:
3914                 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3915                 break;
3916         case MSR_IA32_TSC_ADJUST:
3917                 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3918                 break;
3919         case MSR_IA32_MISC_ENABLE:
3920                 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3921                 break;
3922         case MSR_IA32_SMBASE:
3923                 if (!msr_info->host_initiated)
3924                         return 1;
3925                 msr_info->data = vcpu->arch.smbase;
3926                 break;
3927         case MSR_SMI_COUNT:
3928                 msr_info->data = vcpu->arch.smi_count;
3929                 break;
3930         case MSR_IA32_PERF_STATUS:
3931                 /* TSC increment by tick */
3932                 msr_info->data = 1000ULL;
3933                 /* CPU multiplier */
3934                 msr_info->data |= (((uint64_t)4ULL) << 40);
3935                 break;
3936         case MSR_EFER:
3937                 msr_info->data = vcpu->arch.efer;
3938                 break;
3939         case MSR_KVM_WALL_CLOCK:
3940                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3941                         return 1;
3942
3943                 msr_info->data = vcpu->kvm->arch.wall_clock;
3944                 break;
3945         case MSR_KVM_WALL_CLOCK_NEW:
3946                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3947                         return 1;
3948
3949                 msr_info->data = vcpu->kvm->arch.wall_clock;
3950                 break;
3951         case MSR_KVM_SYSTEM_TIME:
3952                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3953                         return 1;
3954
3955                 msr_info->data = vcpu->arch.time;
3956                 break;
3957         case MSR_KVM_SYSTEM_TIME_NEW:
3958                 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3959                         return 1;
3960
3961                 msr_info->data = vcpu->arch.time;
3962                 break;
3963         case MSR_KVM_ASYNC_PF_EN:
3964                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3965                         return 1;
3966
3967                 msr_info->data = vcpu->arch.apf.msr_en_val;
3968                 break;
3969         case MSR_KVM_ASYNC_PF_INT:
3970                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3971                         return 1;
3972
3973                 msr_info->data = vcpu->arch.apf.msr_int_val;
3974                 break;
3975         case MSR_KVM_ASYNC_PF_ACK:
3976                 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3977                         return 1;
3978
3979                 msr_info->data = 0;
3980                 break;
3981         case MSR_KVM_STEAL_TIME:
3982                 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3983                         return 1;
3984
3985                 msr_info->data = vcpu->arch.st.msr_val;
3986                 break;
3987         case MSR_KVM_PV_EOI_EN:
3988                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3989                         return 1;
3990
3991                 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3992                 break;
3993         case MSR_KVM_POLL_CONTROL:
3994                 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3995                         return 1;
3996
3997                 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3998                 break;
3999         case MSR_IA32_P5_MC_ADDR:
4000         case MSR_IA32_P5_MC_TYPE:
4001         case MSR_IA32_MCG_CAP:
4002         case MSR_IA32_MCG_CTL:
4003         case MSR_IA32_MCG_STATUS:
4004         case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4005                 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4006                                    msr_info->host_initiated);
4007         case MSR_IA32_XSS:
4008                 if (!msr_info->host_initiated &&
4009                     !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4010                         return 1;
4011                 msr_info->data = vcpu->arch.ia32_xss;
4012                 break;
4013         case MSR_K7_CLK_CTL:
4014                 /*
4015                  * Provide expected ramp-up count for K7. All other
4016                  * are set to zero, indicating minimum divisors for
4017                  * every field.
4018                  *
4019                  * This prevents guest kernels on AMD host with CPU
4020                  * type 6, model 8 and higher from exploding due to
4021                  * the rdmsr failing.
4022                  */
4023                 msr_info->data = 0x20000000;
4024                 break;
4025         case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4026         case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4027         case HV_X64_MSR_SYNDBG_OPTIONS:
4028         case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4029         case HV_X64_MSR_CRASH_CTL:
4030         case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4031         case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4032         case HV_X64_MSR_TSC_EMULATION_CONTROL:
4033         case HV_X64_MSR_TSC_EMULATION_STATUS:
4034                 return kvm_hv_get_msr_common(vcpu,
4035                                              msr_info->index, &msr_info->data,
4036                                              msr_info->host_initiated);
4037         case MSR_IA32_BBL_CR_CTL3:
4038                 /* This legacy MSR exists but isn't fully documented in current
4039                  * silicon.  It is however accessed by winxp in very narrow
4040                  * scenarios where it sets bit #19, itself documented as
4041                  * a "reserved" bit.  Best effort attempt to source coherent
4042                  * read data here should the balance of the register be
4043                  * interpreted by the guest:
4044                  *
4045                  * L2 cache control register 3: 64GB range, 256KB size,
4046                  * enabled, latency 0x1, configured
4047                  */
4048                 msr_info->data = 0xbe702111;
4049                 break;
4050         case MSR_AMD64_OSVW_ID_LENGTH:
4051                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4052                         return 1;
4053                 msr_info->data = vcpu->arch.osvw.length;
4054                 break;
4055         case MSR_AMD64_OSVW_STATUS:
4056                 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4057                         return 1;
4058                 msr_info->data = vcpu->arch.osvw.status;
4059                 break;
4060         case MSR_PLATFORM_INFO:
4061                 if (!msr_info->host_initiated &&
4062                     !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4063                         return 1;
4064                 msr_info->data = vcpu->arch.msr_platform_info;
4065                 break;
4066         case MSR_MISC_FEATURES_ENABLES:
4067                 msr_info->data = vcpu->arch.msr_misc_features_enables;
4068                 break;
4069         case MSR_K7_HWCR:
4070                 msr_info->data = vcpu->arch.msr_hwcr;
4071                 break;
4072 #ifdef CONFIG_X86_64
4073         case MSR_IA32_XFD:
4074                 if (!msr_info->host_initiated &&
4075                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4076                         return 1;
4077
4078                 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4079                 break;
4080         case MSR_IA32_XFD_ERR:
4081                 if (!msr_info->host_initiated &&
4082                     !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4083                         return 1;
4084
4085                 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4086                 break;
4087 #endif
4088         default:
4089                 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4090                         return kvm_pmu_get_msr(vcpu, msr_info);
4091                 return KVM_MSR_RET_INVALID;
4092         }
4093         return 0;
4094 }
4095 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4096
4097 /*
4098  * Read or write a bunch of msrs. All parameters are kernel addresses.
4099  *
4100  * @return number of msrs set successfully.
4101  */
4102 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4103                     struct kvm_msr_entry *entries,
4104                     int (*do_msr)(struct kvm_vcpu *vcpu,
4105                                   unsigned index, u64 *data))
4106 {
4107         int i;
4108
4109         for (i = 0; i < msrs->nmsrs; ++i)
4110                 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4111                         break;
4112
4113         return i;
4114 }
4115
4116 /*
4117  * Read or write a bunch of msrs. Parameters are user addresses.
4118  *
4119  * @return number of msrs set successfully.
4120  */
4121 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4122                   int (*do_msr)(struct kvm_vcpu *vcpu,
4123                                 unsigned index, u64 *data),
4124                   int writeback)
4125 {
4126         struct kvm_msrs msrs;
4127         struct kvm_msr_entry *entries;
4128         int r, n;
4129         unsigned size;
4130
4131         r = -EFAULT;
4132         if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4133                 goto out;
4134
4135         r = -E2BIG;
4136         if (msrs.nmsrs >= MAX_IO_MSRS)
4137                 goto out;
4138
4139         size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4140         entries = memdup_user(user_msrs->entries, size);
4141         if (IS_ERR(entries)) {
4142                 r = PTR_ERR(entries);
4143                 goto out;
4144         }
4145
4146         r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4147         if (r < 0)
4148                 goto out_free;
4149
4150         r = -EFAULT;
4151         if (writeback && copy_to_user(user_msrs->entries, entries, size))
4152                 goto out_free;
4153
4154         r = n;
4155
4156 out_free:
4157         kfree(entries);
4158 out:
4159         return r;
4160 }
4161
4162 static inline bool kvm_can_mwait_in_guest(void)
4163 {
4164         return boot_cpu_has(X86_FEATURE_MWAIT) &&
4165                 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4166                 boot_cpu_has(X86_FEATURE_ARAT);
4167 }
4168
4169 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4170                                             struct kvm_cpuid2 __user *cpuid_arg)
4171 {
4172         struct kvm_cpuid2 cpuid;
4173         int r;
4174
4175         r = -EFAULT;
4176         if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4177                 return r;
4178
4179         r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4180         if (r)
4181                 return r;
4182
4183         r = -EFAULT;
4184         if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4185                 return r;
4186
4187         return 0;
4188 }
4189
4190 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4191 {
4192         int r = 0;
4193
4194         switch (ext) {
4195         case KVM_CAP_IRQCHIP:
4196         case KVM_CAP_HLT:
4197         case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4198         case KVM_CAP_SET_TSS_ADDR:
4199         case KVM_CAP_EXT_CPUID:
4200         case KVM_CAP_EXT_EMUL_CPUID:
4201         case KVM_CAP_CLOCKSOURCE:
4202         case KVM_CAP_PIT:
4203         case KVM_CAP_NOP_IO_DELAY:
4204         case KVM_CAP_MP_STATE:
4205         case KVM_CAP_SYNC_MMU:
4206         case KVM_CAP_USER_NMI:
4207         case KVM_CAP_REINJECT_CONTROL:
4208         case KVM_CAP_IRQ_INJECT_STATUS:
4209         case KVM_CAP_IOEVENTFD:
4210         case KVM_CAP_IOEVENTFD_NO_LENGTH:
4211         case KVM_CAP_PIT2:
4212         case KVM_CAP_PIT_STATE2:
4213         case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4214         case KVM_CAP_VCPU_EVENTS:
4215         case KVM_CAP_HYPERV:
4216         case KVM_CAP_HYPERV_VAPIC:
4217         case KVM_CAP_HYPERV_SPIN:
4218         case KVM_CAP_HYPERV_SYNIC:
4219         case KVM_CAP_HYPERV_SYNIC2:
4220         case KVM_CAP_HYPERV_VP_INDEX:
4221         case KVM_CAP_HYPERV_EVENTFD:
4222         case KVM_CAP_HYPERV_TLBFLUSH:
4223         case KVM_CAP_HYPERV_SEND_IPI:
4224         case KVM_CAP_HYPERV_CPUID:
4225         case KVM_CAP_HYPERV_ENFORCE_CPUID:
4226         case KVM_CAP_SYS_HYPERV_CPUID:
4227         case KVM_CAP_PCI_SEGMENT:
4228         case KVM_CAP_DEBUGREGS:
4229         case KVM_CAP_X86_ROBUST_SINGLESTEP:
4230         case KVM_CAP_XSAVE:
4231         case KVM_CAP_ASYNC_PF:
4232         case KVM_CAP_ASYNC_PF_INT:
4233         case KVM_CAP_GET_TSC_KHZ:
4234         case KVM_CAP_KVMCLOCK_CTRL:
4235         case KVM_CAP_READONLY_MEM:
4236         case KVM_CAP_HYPERV_TIME:
4237         case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4238         case KVM_CAP_TSC_DEADLINE_TIMER:
4239         case KVM_CAP_DISABLE_QUIRKS:
4240         case KVM_CAP_SET_BOOT_CPU_ID:
4241         case KVM_CAP_SPLIT_IRQCHIP:
4242         case KVM_CAP_IMMEDIATE_EXIT:
4243         case KVM_CAP_PMU_EVENT_FILTER:
4244         case KVM_CAP_GET_MSR_FEATURES:
4245         case KVM_CAP_MSR_PLATFORM_INFO:
4246         case KVM_CAP_EXCEPTION_PAYLOAD:
4247         case KVM_CAP_SET_GUEST_DEBUG:
4248         case KVM_CAP_LAST_CPU:
4249         case KVM_CAP_X86_USER_SPACE_MSR:
4250         case KVM_CAP_X86_MSR_FILTER:
4251         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4252 #ifdef CONFIG_X86_SGX_KVM
4253         case KVM_CAP_SGX_ATTRIBUTE:
4254 #endif
4255         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4256         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4257         case KVM_CAP_SREGS2:
4258         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4259         case KVM_CAP_VCPU_ATTRIBUTES:
4260         case KVM_CAP_SYS_ATTRIBUTES:
4261         case KVM_CAP_VAPIC:
4262                 r = 1;
4263                 break;
4264         case KVM_CAP_EXIT_HYPERCALL:
4265                 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4266                 break;
4267         case KVM_CAP_SET_GUEST_DEBUG2:
4268                 return KVM_GUESTDBG_VALID_MASK;
4269 #ifdef CONFIG_KVM_XEN
4270         case KVM_CAP_XEN_HVM:
4271                 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4272                     KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4273                     KVM_XEN_HVM_CONFIG_SHARED_INFO |
4274                     KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL;
4275                 if (sched_info_on())
4276                         r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4277                 break;
4278 #endif
4279         case KVM_CAP_SYNC_REGS:
4280                 r = KVM_SYNC_X86_VALID_FIELDS;
4281                 break;
4282         case KVM_CAP_ADJUST_CLOCK:
4283                 r = KVM_CLOCK_VALID_FLAGS;
4284                 break;
4285         case KVM_CAP_X86_DISABLE_EXITS:
4286                 r |=  KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4287                       KVM_X86_DISABLE_EXITS_CSTATE;
4288                 if(kvm_can_mwait_in_guest())
4289                         r |= KVM_X86_DISABLE_EXITS_MWAIT;
4290                 break;
4291         case KVM_CAP_X86_SMM:
4292                 /* SMBASE is usually relocated above 1M on modern chipsets,
4293                  * and SMM handlers might indeed rely on 4G segment limits,
4294                  * so do not report SMM to be available if real mode is
4295                  * emulated via vm86 mode.  Still, do not go to great lengths
4296                  * to avoid userspace's usage of the feature, because it is a
4297                  * fringe case that is not enabled except via specific settings
4298                  * of the module parameters.
4299                  */
4300                 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4301                 break;
4302         case KVM_CAP_NR_VCPUS:
4303                 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4304                 break;
4305         case KVM_CAP_MAX_VCPUS:
4306                 r = KVM_MAX_VCPUS;
4307                 break;
4308         case KVM_CAP_MAX_VCPU_ID:
4309                 r = KVM_MAX_VCPU_IDS;
4310                 break;
4311         case KVM_CAP_PV_MMU:    /* obsolete */
4312                 r = 0;
4313                 break;
4314         case KVM_CAP_MCE:
4315                 r = KVM_MAX_MCE_BANKS;
4316                 break;
4317         case KVM_CAP_XCRS:
4318                 r = boot_cpu_has(X86_FEATURE_XSAVE);
4319                 break;
4320         case KVM_CAP_TSC_CONTROL:
4321                 r = kvm_has_tsc_control;
4322                 break;
4323         case KVM_CAP_X2APIC_API:
4324                 r = KVM_X2APIC_API_VALID_FLAGS;
4325                 break;
4326         case KVM_CAP_NESTED_STATE:
4327                 r = kvm_x86_ops.nested_ops->get_state ?
4328                         kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4329                 break;
4330         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4331                 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4332                 break;
4333         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4334                 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4335                 break;
4336         case KVM_CAP_SMALLER_MAXPHYADDR:
4337                 r = (int) allow_smaller_maxphyaddr;
4338                 break;
4339         case KVM_CAP_STEAL_TIME:
4340                 r = sched_info_on();
4341                 break;
4342         case KVM_CAP_X86_BUS_LOCK_EXIT:
4343                 if (kvm_has_bus_lock_exit)
4344                         r = KVM_BUS_LOCK_DETECTION_OFF |
4345                             KVM_BUS_LOCK_DETECTION_EXIT;
4346                 else
4347                         r = 0;
4348                 break;
4349         case KVM_CAP_XSAVE2: {
4350                 u64 guest_perm = xstate_get_guest_group_perm();
4351
4352                 r = xstate_required_size(supported_xcr0 & guest_perm, false);
4353                 if (r < sizeof(struct kvm_xsave))
4354                         r = sizeof(struct kvm_xsave);
4355                 break;
4356         case KVM_CAP_PMU_CAPABILITY:
4357                 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4358                 break;
4359         }
4360         default:
4361                 break;
4362         }
4363         return r;
4364 }
4365
4366 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4367 {
4368         void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4369
4370         if ((u64)(unsigned long)uaddr != attr->addr)
4371                 return ERR_PTR_USR(-EFAULT);
4372         return uaddr;
4373 }
4374
4375 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4376 {
4377         u64 __user *uaddr = kvm_get_attr_addr(attr);
4378
4379         if (attr->group)
4380                 return -ENXIO;
4381
4382         if (IS_ERR(uaddr))
4383                 return PTR_ERR(uaddr);
4384
4385         switch (attr->attr) {
4386         case KVM_X86_XCOMP_GUEST_SUPP:
4387                 if (put_user(supported_xcr0, uaddr))
4388                         return -EFAULT;
4389                 return 0;
4390         default:
4391                 return -ENXIO;
4392                 break;
4393         }
4394 }
4395
4396 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4397 {
4398         if (attr->group)
4399                 return -ENXIO;
4400
4401         switch (attr->attr) {
4402         case KVM_X86_XCOMP_GUEST_SUPP:
4403                 return 0;
4404         default:
4405                 return -ENXIO;
4406         }
4407 }
4408
4409 long kvm_arch_dev_ioctl(struct file *filp,
4410                         unsigned int ioctl, unsigned long arg)
4411 {
4412         void __user *argp = (void __user *)arg;
4413         long r;
4414
4415         switch (ioctl) {
4416         case KVM_GET_MSR_INDEX_LIST: {
4417                 struct kvm_msr_list __user *user_msr_list = argp;
4418                 struct kvm_msr_list msr_list;
4419                 unsigned n;
4420
4421                 r = -EFAULT;
4422                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4423                         goto out;
4424                 n = msr_list.nmsrs;
4425                 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4426                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4427                         goto out;
4428                 r = -E2BIG;
4429                 if (n < msr_list.nmsrs)
4430                         goto out;
4431                 r = -EFAULT;
4432                 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4433                                  num_msrs_to_save * sizeof(u32)))
4434                         goto out;
4435                 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4436                                  &emulated_msrs,
4437                                  num_emulated_msrs * sizeof(u32)))
4438                         goto out;
4439                 r = 0;
4440                 break;
4441         }
4442         case KVM_GET_SUPPORTED_CPUID:
4443         case KVM_GET_EMULATED_CPUID: {
4444                 struct kvm_cpuid2 __user *cpuid_arg = argp;
4445                 struct kvm_cpuid2 cpuid;
4446
4447                 r = -EFAULT;
4448                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4449                         goto out;
4450
4451                 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4452                                             ioctl);
4453                 if (r)
4454                         goto out;
4455
4456                 r = -EFAULT;
4457                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4458                         goto out;
4459                 r = 0;
4460                 break;
4461         }
4462         case KVM_X86_GET_MCE_CAP_SUPPORTED:
4463                 r = -EFAULT;
4464                 if (copy_to_user(argp, &kvm_mce_cap_supported,
4465                                  sizeof(kvm_mce_cap_supported)))
4466                         goto out;
4467                 r = 0;
4468                 break;
4469         case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4470                 struct kvm_msr_list __user *user_msr_list = argp;
4471                 struct kvm_msr_list msr_list;
4472                 unsigned int n;
4473
4474                 r = -EFAULT;
4475                 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4476                         goto out;
4477                 n = msr_list.nmsrs;
4478                 msr_list.nmsrs = num_msr_based_features;
4479                 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4480                         goto out;
4481                 r = -E2BIG;
4482                 if (n < msr_list.nmsrs)
4483                         goto out;
4484                 r = -EFAULT;
4485                 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4486                                  num_msr_based_features * sizeof(u32)))
4487                         goto out;
4488                 r = 0;
4489                 break;
4490         }
4491         case KVM_GET_MSRS:
4492                 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4493                 break;
4494         case KVM_GET_SUPPORTED_HV_CPUID:
4495                 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4496                 break;
4497         case KVM_GET_DEVICE_ATTR: {
4498                 struct kvm_device_attr attr;
4499                 r = -EFAULT;
4500                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4501                         break;
4502                 r = kvm_x86_dev_get_attr(&attr);
4503                 break;
4504         }
4505         case KVM_HAS_DEVICE_ATTR: {
4506                 struct kvm_device_attr attr;
4507                 r = -EFAULT;
4508                 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4509                         break;
4510                 r = kvm_x86_dev_has_attr(&attr);
4511                 break;
4512         }
4513         default:
4514                 r = -EINVAL;
4515                 break;
4516         }
4517 out:
4518         return r;
4519 }
4520
4521 static void wbinvd_ipi(void *garbage)
4522 {
4523         wbinvd();
4524 }
4525
4526 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4527 {
4528         return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4529 }
4530
4531 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4532 {
4533         /* Address WBINVD may be executed by guest */
4534         if (need_emulate_wbinvd(vcpu)) {
4535                 if (static_call(kvm_x86_has_wbinvd_exit)())
4536                         cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4537                 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4538                         smp_call_function_single(vcpu->cpu,
4539                                         wbinvd_ipi, NULL, 1);
4540         }
4541
4542         static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4543
4544         /* Save host pkru register if supported */
4545         vcpu->arch.host_pkru = read_pkru();
4546
4547         /* Apply any externally detected TSC adjustments (due to suspend) */
4548         if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4549                 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4550                 vcpu->arch.tsc_offset_adjustment = 0;
4551                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4552         }
4553
4554         if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4555                 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4556                                 rdtsc() - vcpu->arch.last_host_tsc;
4557                 if (tsc_delta < 0)
4558                         mark_tsc_unstable("KVM discovered backwards TSC");
4559
4560                 if (kvm_check_tsc_unstable()) {
4561                         u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4562                                                 vcpu->arch.last_guest_tsc);
4563                         kvm_vcpu_write_tsc_offset(vcpu, offset);
4564                         vcpu->arch.tsc_catchup = 1;
4565                 }
4566
4567                 if (kvm_lapic_hv_timer_in_use(vcpu))
4568                         kvm_lapic_restart_hv_timer(vcpu);
4569
4570                 /*
4571                  * On a host with synchronized TSC, there is no need to update
4572                  * kvmclock on vcpu->cpu migration
4573                  */
4574                 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4575                         kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4576                 if (vcpu->cpu != cpu)
4577                         kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4578                 vcpu->cpu = cpu;
4579         }
4580
4581         kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4582 }
4583
4584 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4585 {
4586         struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4587         struct kvm_steal_time __user *st;
4588         struct kvm_memslots *slots;
4589         static const u8 preempted = KVM_VCPU_PREEMPTED;
4590
4591         if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4592                 return;
4593
4594         if (vcpu->arch.st.preempted)
4595                 return;
4596
4597         /* This happens on process exit */
4598         if (unlikely(current->mm != vcpu->kvm->mm))
4599                 return;
4600
4601         slots = kvm_memslots(vcpu->kvm);
4602
4603         if (unlikely(slots->generation != ghc->generation ||
4604                      kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4605                 return;
4606
4607         st = (struct kvm_steal_time __user *)ghc->hva;
4608         BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4609
4610         if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4611                 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4612
4613         mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4614 }
4615
4616 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4617 {
4618         int idx;
4619
4620         if (vcpu->preempted && !vcpu->arch.guest_state_protected)
4621                 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4622
4623         /*
4624          * Take the srcu lock as memslots will be accessed to check the gfn
4625          * cache generation against the memslots generation.
4626          */
4627         idx = srcu_read_lock(&vcpu->kvm->srcu);
4628         if (kvm_xen_msr_enabled(vcpu->kvm))
4629                 kvm_xen_runstate_set_preempted(vcpu);
4630         else
4631                 kvm_steal_time_set_preempted(vcpu);
4632         srcu_read_unlock(&vcpu->kvm->srcu, idx);
4633
4634         static_call(kvm_x86_vcpu_put)(vcpu);
4635         vcpu->arch.last_host_tsc = rdtsc();
4636 }
4637
4638 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4639                                     struct kvm_lapic_state *s)
4640 {
4641         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4642
4643         return kvm_apic_get_state(vcpu, s);
4644 }
4645
4646 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4647                                     struct kvm_lapic_state *s)
4648 {
4649         int r;
4650
4651         r = kvm_apic_set_state(vcpu, s);
4652         if (r)
4653                 return r;
4654         update_cr8_intercept(vcpu);
4655
4656         return 0;
4657 }
4658
4659 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4660 {
4661         /*
4662          * We can accept userspace's request for interrupt injection
4663          * as long as we have a place to store the interrupt number.
4664          * The actual injection will happen when the CPU is able to
4665          * deliver the interrupt.
4666          */
4667         if (kvm_cpu_has_extint(vcpu))
4668                 return false;
4669
4670         /* Acknowledging ExtINT does not happen if LINT0 is masked.  */
4671         return (!lapic_in_kernel(vcpu) ||
4672                 kvm_apic_accept_pic_intr(vcpu));
4673 }
4674
4675 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4676 {
4677         /*
4678          * Do not cause an interrupt window exit if an exception
4679          * is pending or an event needs reinjection; userspace
4680          * might want to inject the interrupt manually using KVM_SET_REGS
4681          * or KVM_SET_SREGS.  For that to work, we must be at an
4682          * instruction boundary and with no events half-injected.
4683          */
4684         return (kvm_arch_interrupt_allowed(vcpu) &&
4685                 kvm_cpu_accept_dm_intr(vcpu) &&
4686                 !kvm_event_needs_reinjection(vcpu) &&
4687                 !vcpu->arch.exception.pending);
4688 }
4689
4690 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4691                                     struct kvm_interrupt *irq)
4692 {
4693         if (irq->irq >= KVM_NR_INTERRUPTS)
4694                 return -EINVAL;
4695
4696         if (!irqchip_in_kernel(vcpu->kvm)) {
4697                 kvm_queue_interrupt(vcpu, irq->irq, false);
4698                 kvm_make_request(KVM_REQ_EVENT, vcpu);
4699                 return 0;
4700         }
4701
4702         /*
4703          * With in-kernel LAPIC, we only use this to inject EXTINT, so
4704          * fail for in-kernel 8259.
4705          */
4706         if (pic_in_kernel(vcpu->kvm))
4707                 return -ENXIO;
4708
4709         if (vcpu->arch.pending_external_vector != -1)
4710                 return -EEXIST;
4711
4712         vcpu->arch.pending_external_vector = irq->irq;
4713         kvm_make_request(KVM_REQ_EVENT, vcpu);
4714         return 0;
4715 }
4716
4717 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4718 {
4719         kvm_inject_nmi(vcpu);
4720
4721         return 0;
4722 }
4723
4724 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4725 {
4726         kvm_make_request(KVM_REQ_SMI, vcpu);
4727
4728         return 0;
4729 }
4730
4731 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4732                                            struct kvm_tpr_access_ctl *tac)
4733 {
4734         if (tac->flags)
4735                 return -EINVAL;
4736         vcpu->arch.tpr_access_reporting = !!tac->enabled;
4737         return 0;
4738 }
4739
4740 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4741                                         u64 mcg_cap)
4742 {
4743         int r;
4744         unsigned bank_num = mcg_cap & 0xff, bank;
4745
4746         r = -EINVAL;
4747         if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4748                 goto out;
4749         if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
4750                 goto out;
4751         r = 0;
4752         vcpu->arch.mcg_cap = mcg_cap;
4753         /* Init IA32_MCG_CTL to all 1s */
4754         if (mcg_cap & MCG_CTL_P)
4755                 vcpu->arch.mcg_ctl = ~(u64)0;
4756         /* Init IA32_MCi_CTL to all 1s */
4757         for (bank = 0; bank < bank_num; bank++)
4758                 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4759
4760         static_call(kvm_x86_setup_mce)(vcpu);
4761 out:
4762         return r;
4763 }
4764
4765 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4766                                       struct kvm_x86_mce *mce)
4767 {
4768         u64 mcg_cap = vcpu->arch.mcg_cap;
4769         unsigned bank_num = mcg_cap & 0xff;
4770         u64 *banks = vcpu->arch.mce_banks;
4771
4772         if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4773                 return -EINVAL;
4774         /*
4775          * if IA32_MCG_CTL is not all 1s, the uncorrected error
4776          * reporting is disabled
4777          */
4778         if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4779             vcpu->arch.mcg_ctl != ~(u64)0)
4780                 return 0;
4781         banks += 4 * mce->bank;
4782         /*
4783          * if IA32_MCi_CTL is not all 1s, the uncorrected error
4784          * reporting is disabled for the bank
4785          */
4786         if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4787                 return 0;
4788         if (mce->status & MCI_STATUS_UC) {
4789                 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
4790                     !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
4791                         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4792                         return 0;
4793                 }
4794                 if (banks[1] & MCI_STATUS_VAL)
4795                         mce->status |= MCI_STATUS_OVER;
4796                 banks[2] = mce->addr;
4797                 banks[3] = mce->misc;
4798                 vcpu->arch.mcg_status = mce->mcg_status;
4799                 banks[1] = mce->status;
4800                 kvm_queue_exception(vcpu, MC_VECTOR);
4801         } else if (!(banks[1] & MCI_STATUS_VAL)
4802                    || !(banks[1] & MCI_STATUS_UC)) {
4803                 if (banks[1] & MCI_STATUS_VAL)
4804                         mce->status |= MCI_STATUS_OVER;
4805                 banks[2] = mce->addr;
4806                 banks[3] = mce->misc;
4807                 banks[1] = mce->status;
4808         } else
4809                 banks[1] |= MCI_STATUS_OVER;
4810         return 0;
4811 }
4812
4813 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4814                                                struct kvm_vcpu_events *events)
4815 {
4816         process_nmi(vcpu);
4817
4818         if (kvm_check_request(KVM_REQ_SMI, vcpu))
4819                 process_smi(vcpu);
4820
4821         /*
4822          * In guest mode, payload delivery should be deferred,
4823          * so that the L1 hypervisor can intercept #PF before
4824          * CR2 is modified (or intercept #DB before DR6 is
4825          * modified under nVMX). Unless the per-VM capability,
4826          * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4827          * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4828          * opportunistically defer the exception payload, deliver it if the
4829          * capability hasn't been requested before processing a
4830          * KVM_GET_VCPU_EVENTS.
4831          */
4832         if (!vcpu->kvm->arch.exception_payload_enabled &&
4833             vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4834                 kvm_deliver_exception_payload(vcpu);
4835
4836         /*
4837          * The API doesn't provide the instruction length for software
4838          * exceptions, so don't report them. As long as the guest RIP
4839          * isn't advanced, we should expect to encounter the exception
4840          * again.
4841          */
4842         if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4843                 events->exception.injected = 0;
4844                 events->exception.pending = 0;
4845         } else {
4846                 events->exception.injected = vcpu->arch.exception.injected;
4847                 events->exception.pending = vcpu->arch.exception.pending;
4848                 /*
4849                  * For ABI compatibility, deliberately conflate
4850                  * pending and injected exceptions when
4851                  * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4852                  */
4853                 if (!vcpu->kvm->arch.exception_payload_enabled)
4854                         events->exception.injected |=
4855                                 vcpu->arch.exception.pending;
4856         }
4857         events->exception.nr = vcpu->arch.exception.nr;
4858         events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4859         events->exception.error_code = vcpu->arch.exception.error_code;
4860         events->exception_has_payload = vcpu->arch.exception.has_payload;
4861         events->exception_payload = vcpu->arch.exception.payload;
4862
4863         events->interrupt.injected =
4864                 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
4865         events->interrupt.nr = vcpu->arch.interrupt.nr;
4866         events->interrupt.soft = 0;
4867         events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
4868
4869         events->nmi.injected = vcpu->arch.nmi_injected;
4870         events->nmi.pending = vcpu->arch.nmi_pending != 0;
4871         events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
4872         events->nmi.pad = 0;
4873
4874         events->sipi_vector = 0; /* never valid when reporting to user space */
4875
4876         events->smi.smm = is_smm(vcpu);
4877         events->smi.pending = vcpu->arch.smi_pending;
4878         events->smi.smm_inside_nmi =
4879                 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4880         events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4881
4882         events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
4883                          | KVM_VCPUEVENT_VALID_SHADOW
4884                          | KVM_VCPUEVENT_VALID_SMM);
4885         if (vcpu->kvm->arch.exception_payload_enabled)
4886                 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4887
4888         memset(&events->reserved, 0, sizeof(events->reserved));
4889 }
4890
4891 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
4892
4893 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4894                                               struct kvm_vcpu_events *events)
4895 {
4896         if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
4897                               | KVM_VCPUEVENT_VALID_SIPI_VECTOR
4898                               | KVM_VCPUEVENT_VALID_SHADOW
4899                               | KVM_VCPUEVENT_VALID_SMM
4900                               | KVM_VCPUEVENT_VALID_PAYLOAD))
4901                 return -EINVAL;
4902
4903         if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4904                 if (!vcpu->kvm->arch.exception_payload_enabled)
4905                         return -EINVAL;
4906                 if (events->exception.pending)
4907                         events->exception.injected = 0;
4908                 else
4909                         events->exception_has_payload = 0;
4910         } else {
4911                 events->exception.pending = 0;
4912                 events->exception_has_payload = 0;
4913         }
4914
4915         if ((events->exception.injected || events->exception.pending) &&
4916             (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
4917                 return -EINVAL;
4918
4919         /* INITs are latched while in SMM */
4920         if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4921             (events->smi.smm || events->smi.pending) &&
4922             vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4923                 return -EINVAL;
4924
4925         process_nmi(vcpu);
4926         vcpu->arch.exception.injected = events->exception.injected;
4927         vcpu->arch.exception.pending = events->exception.pending;
4928         vcpu->arch.exception.nr = events->exception.nr;
4929         vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4930         vcpu->arch.exception.error_code = events->exception.error_code;
4931         vcpu->arch.exception.has_payload = events->exception_has_payload;
4932         vcpu->arch.exception.payload = events->exception_payload;
4933
4934         vcpu->arch.interrupt.injected = events->interrupt.injected;
4935         vcpu->arch.interrupt.nr = events->interrupt.nr;
4936         vcpu->arch.interrupt.soft = events->interrupt.soft;
4937         if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
4938                 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
4939                                                 events->interrupt.shadow);
4940
4941         vcpu->arch.nmi_injected = events->nmi.injected;
4942         if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4943                 vcpu->arch.nmi_pending = events->nmi.pending;
4944         static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
4945
4946         if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
4947             lapic_in_kernel(vcpu))
4948                 vcpu->arch.apic->sipi_vector = events->sipi_vector;
4949
4950         if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4951                 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4952                         kvm_x86_ops.nested_ops->leave_nested(vcpu);
4953                         kvm_smm_changed(vcpu, events->smi.smm);
4954                 }
4955
4956                 vcpu->arch.smi_pending = events->smi.pending;
4957
4958                 if (events->smi.smm) {
4959                         if (events->smi.smm_inside_nmi)
4960                                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
4961                         else
4962                                 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
4963                 }
4964
4965                 if (lapic_in_kernel(vcpu)) {
4966                         if (events->smi.latched_init)
4967                                 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4968                         else
4969                                 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4970                 }
4971         }
4972
4973         kvm_make_request(KVM_REQ_EVENT, vcpu);
4974
4975         return 0;
4976 }
4977
4978 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4979                                              struct kvm_debugregs *dbgregs)
4980 {
4981         unsigned long val;
4982
4983         memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
4984         kvm_get_dr(vcpu, 6, &val);
4985         dbgregs->dr6 = val;
4986         dbgregs->dr7 = vcpu->arch.dr7;
4987         dbgregs->flags = 0;
4988         memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
4989 }
4990
4991 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4992                                             struct kvm_debugregs *dbgregs)
4993 {
4994         if (dbgregs->flags)
4995                 return -EINVAL;
4996
4997         if (!kvm_dr6_valid(dbgregs->dr6))
4998                 return -EINVAL;
4999         if (!kvm_dr7_valid(dbgregs->dr7))
5000                 return -EINVAL;
5001
5002         memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5003         kvm_update_dr0123(vcpu);
5004         vcpu->arch.dr6 = dbgregs->dr6;
5005         vcpu->arch.dr7 = dbgregs->dr7;
5006         kvm_update_dr7(vcpu);
5007
5008         return 0;
5009 }
5010
5011 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5012                                          struct kvm_xsave *guest_xsave)
5013 {
5014         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5015                 return;
5016
5017         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5018                                        guest_xsave->region,
5019                                        sizeof(guest_xsave->region),
5020                                        vcpu->arch.pkru);
5021 }
5022
5023 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5024                                           u8 *state, unsigned int size)
5025 {
5026         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5027                 return;
5028
5029         fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5030                                        state, size, vcpu->arch.pkru);
5031 }
5032
5033 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5034                                         struct kvm_xsave *guest_xsave)
5035 {
5036         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5037                 return 0;
5038
5039         return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5040                                               guest_xsave->region,
5041                                               supported_xcr0, &vcpu->arch.pkru);
5042 }
5043
5044 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5045                                         struct kvm_xcrs *guest_xcrs)
5046 {
5047         if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5048                 guest_xcrs->nr_xcrs = 0;
5049                 return;
5050         }
5051
5052         guest_xcrs->nr_xcrs = 1;
5053         guest_xcrs->flags = 0;
5054         guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5055         guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5056 }
5057
5058 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5059                                        struct kvm_xcrs *guest_xcrs)
5060 {
5061         int i, r = 0;
5062
5063         if (!boot_cpu_has(X86_FEATURE_XSAVE))
5064                 return -EINVAL;
5065
5066         if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5067                 return -EINVAL;
5068
5069         for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5070                 /* Only support XCR0 currently */
5071                 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5072                         r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5073                                 guest_xcrs->xcrs[i].value);
5074                         break;
5075                 }
5076         if (r)
5077                 r = -EINVAL;
5078         return r;
5079 }
5080
5081 /*
5082  * kvm_set_guest_paused() indicates to the guest kernel that it has been
5083  * stopped by the hypervisor.  This function will be called from the host only.
5084  * EINVAL is returned when the host attempts to set the flag for a guest that
5085  * does not support pv clocks.
5086  */
5087 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5088 {
5089         if (!vcpu->arch.pv_time_enabled)
5090                 return -EINVAL;
5091         vcpu->arch.pvclock_set_guest_stopped_request = true;
5092         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5093         return 0;
5094 }
5095
5096 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5097                                  struct kvm_device_attr *attr)
5098 {
5099         int r;
5100
5101         switch (attr->attr) {
5102         case KVM_VCPU_TSC_OFFSET:
5103                 r = 0;
5104                 break;
5105         default:
5106                 r = -ENXIO;
5107         }
5108
5109         return r;
5110 }
5111
5112 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5113                                  struct kvm_device_attr *attr)
5114 {
5115         u64 __user *uaddr = kvm_get_attr_addr(attr);
5116         int r;
5117
5118         if (IS_ERR(uaddr))
5119                 return PTR_ERR(uaddr);
5120
5121         switch (attr->attr) {
5122         case KVM_VCPU_TSC_OFFSET:
5123                 r = -EFAULT;
5124                 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5125                         break;
5126                 r = 0;
5127                 break;
5128         default:
5129                 r = -ENXIO;
5130         }
5131
5132         return r;
5133 }
5134
5135 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5136                                  struct kvm_device_attr *attr)
5137 {
5138         u64 __user *uaddr = kvm_get_attr_addr(attr);
5139         struct kvm *kvm = vcpu->kvm;
5140         int r;
5141
5142         if (IS_ERR(uaddr))
5143                 return PTR_ERR(uaddr);
5144
5145         switch (attr->attr) {
5146         case KVM_VCPU_TSC_OFFSET: {
5147                 u64 offset, tsc, ns;
5148                 unsigned long flags;
5149                 bool matched;
5150
5151                 r = -EFAULT;
5152                 if (get_user(offset, uaddr))
5153                         break;
5154
5155                 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5156
5157                 matched = (vcpu->arch.virtual_tsc_khz &&
5158                            kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5159                            kvm->arch.last_tsc_offset == offset);
5160
5161                 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5162                 ns = get_kvmclock_base_ns();
5163
5164                 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5165                 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5166
5167                 r = 0;
5168                 break;
5169         }
5170         default:
5171                 r = -ENXIO;
5172         }
5173
5174         return r;
5175 }
5176
5177 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5178                                       unsigned int ioctl,
5179                                       void __user *argp)
5180 {
5181         struct kvm_device_attr attr;
5182         int r;
5183
5184         if (copy_from_user(&attr, argp, sizeof(attr)))
5185                 return -EFAULT;
5186
5187         if (attr.group != KVM_VCPU_TSC_CTRL)
5188                 return -ENXIO;
5189
5190         switch (ioctl) {
5191         case KVM_HAS_DEVICE_ATTR:
5192                 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5193                 break;
5194         case KVM_GET_DEVICE_ATTR:
5195                 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5196                 break;
5197         case KVM_SET_DEVICE_ATTR:
5198                 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5199                 break;
5200         }
5201
5202         return r;
5203 }
5204
5205 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5206                                      struct kvm_enable_cap *cap)
5207 {
5208         int r;
5209         uint16_t vmcs_version;
5210         void __user *user_ptr;
5211
5212         if (cap->flags)
5213                 return -EINVAL;
5214
5215         switch (cap->cap) {
5216         case KVM_CAP_HYPERV_SYNIC2:
5217                 if (cap->args[0])
5218                         return -EINVAL;
5219                 fallthrough;
5220
5221         case KVM_CAP_HYPERV_SYNIC:
5222                 if (!irqchip_in_kernel(vcpu->kvm))
5223                         return -EINVAL;
5224                 return kvm_hv_activate_synic(vcpu, cap->cap ==
5225                                              KVM_CAP_HYPERV_SYNIC2);
5226         case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5227                 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5228                         return -ENOTTY;
5229                 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5230                 if (!r) {
5231                         user_ptr = (void __user *)(uintptr_t)cap->args[0];
5232                         if (copy_to_user(user_ptr, &vmcs_version,
5233                                          sizeof(vmcs_version)))
5234                                 r = -EFAULT;
5235                 }
5236                 return r;
5237         case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5238                 if (!kvm_x86_ops.enable_direct_tlbflush)
5239                         return -ENOTTY;
5240
5241                 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5242
5243         case KVM_CAP_HYPERV_ENFORCE_CPUID:
5244                 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5245
5246         case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5247                 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5248                 if (vcpu->arch.pv_cpuid.enforce)
5249                         kvm_update_pv_runtime(vcpu);
5250
5251                 return 0;
5252         default:
5253                 return -EINVAL;
5254         }
5255 }
5256
5257 long kvm_arch_vcpu_ioctl(struct file *filp,
5258                          unsigned int ioctl, unsigned long arg)
5259 {
5260         struct kvm_vcpu *vcpu = filp->private_data;
5261         void __user *argp = (void __user *)arg;
5262         int r;
5263         union {
5264                 struct kvm_sregs2 *sregs2;
5265                 struct kvm_lapic_state *lapic;
5266                 struct kvm_xsave *xsave;
5267                 struct kvm_xcrs *xcrs;
5268                 void *buffer;
5269         } u;
5270
5271         vcpu_load(vcpu);
5272
5273         u.buffer = NULL;
5274         switch (ioctl) {
5275         case KVM_GET_LAPIC: {
5276                 r = -EINVAL;
5277                 if (!lapic_in_kernel(vcpu))
5278                         goto out;
5279                 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5280                                 GFP_KERNEL_ACCOUNT);
5281
5282                 r = -ENOMEM;
5283                 if (!u.lapic)
5284                         goto out;
5285                 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5286                 if (r)
5287                         goto out;
5288                 r = -EFAULT;
5289                 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5290                         goto out;
5291                 r = 0;
5292                 break;
5293         }
5294         case KVM_SET_LAPIC: {
5295                 r = -EINVAL;
5296                 if (!lapic_in_kernel(vcpu))
5297                         goto out;
5298                 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5299                 if (IS_ERR(u.lapic)) {
5300                         r = PTR_ERR(u.lapic);
5301                         goto out_nofree;
5302                 }
5303
5304                 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5305                 break;
5306         }
5307         case KVM_INTERRUPT: {
5308                 struct kvm_interrupt irq;
5309
5310                 r = -EFAULT;
5311                 if (copy_from_user(&irq, argp, sizeof(irq)))
5312                         goto out;
5313                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5314                 break;
5315         }
5316         case KVM_NMI: {
5317                 r = kvm_vcpu_ioctl_nmi(vcpu);
5318                 break;
5319         }
5320         case KVM_SMI: {
5321                 r = kvm_vcpu_ioctl_smi(vcpu);
5322                 break;
5323         }
5324         case KVM_SET_CPUID: {
5325                 struct kvm_cpuid __user *cpuid_arg = argp;
5326                 struct kvm_cpuid cpuid;
5327
5328                 r = -EFAULT;
5329                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5330                         goto out;
5331                 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5332                 break;
5333         }
5334         case KVM_SET_CPUID2: {
5335                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5336                 struct kvm_cpuid2 cpuid;
5337
5338                 r = -EFAULT;
5339                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5340                         goto out;
5341                 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5342                                               cpuid_arg->entries);
5343                 break;
5344         }
5345         case KVM_GET_CPUID2: {
5346                 struct kvm_cpuid2 __user *cpuid_arg = argp;
5347                 struct kvm_cpuid2 cpuid;
5348
5349                 r = -EFAULT;
5350                 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5351                         goto out;
5352                 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5353                                               cpuid_arg->entries);
5354                 if (r)
5355                         goto out;
5356                 r = -EFAULT;
5357                 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5358                         goto out;
5359                 r = 0;
5360                 break;
5361         }
5362         case KVM_GET_MSRS: {
5363                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5364                 r = msr_io(vcpu, argp, do_get_msr, 1);
5365                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5366                 break;
5367         }
5368         case KVM_SET_MSRS: {
5369                 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5370                 r = msr_io(vcpu, argp, do_set_msr, 0);
5371                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5372                 break;
5373         }
5374         case KVM_TPR_ACCESS_REPORTING: {
5375                 struct kvm_tpr_access_ctl tac;
5376
5377                 r = -EFAULT;
5378                 if (copy_from_user(&tac, argp, sizeof(tac)))
5379                         goto out;
5380                 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5381                 if (r)
5382                         goto out;
5383                 r = -EFAULT;
5384                 if (copy_to_user(argp, &tac, sizeof(tac)))
5385                         goto out;
5386                 r = 0;
5387                 break;
5388         };
5389         case KVM_SET_VAPIC_ADDR: {
5390                 struct kvm_vapic_addr va;
5391                 int idx;
5392
5393                 r = -EINVAL;
5394                 if (!lapic_in_kernel(vcpu))
5395                         goto out;
5396                 r = -EFAULT;
5397                 if (copy_from_user(&va, argp, sizeof(va)))
5398                         goto out;
5399                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5400                 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5401                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5402                 break;
5403         }
5404         case KVM_X86_SETUP_MCE: {
5405                 u64 mcg_cap;
5406
5407                 r = -EFAULT;
5408                 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5409                         goto out;
5410                 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5411                 break;
5412         }
5413         case KVM_X86_SET_MCE: {
5414                 struct kvm_x86_mce mce;
5415
5416                 r = -EFAULT;
5417                 if (copy_from_user(&mce, argp, sizeof(mce)))
5418                         goto out;
5419                 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5420                 break;
5421         }
5422         case KVM_GET_VCPU_EVENTS: {
5423                 struct kvm_vcpu_events events;
5424
5425                 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5426
5427                 r = -EFAULT;
5428                 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5429                         break;
5430                 r = 0;
5431                 break;
5432         }
5433         case KVM_SET_VCPU_EVENTS: {
5434                 struct kvm_vcpu_events events;
5435
5436                 r = -EFAULT;
5437                 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5438                         break;
5439
5440                 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5441                 break;
5442         }
5443         case KVM_GET_DEBUGREGS: {
5444                 struct kvm_debugregs dbgregs;
5445
5446                 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5447
5448                 r = -EFAULT;
5449                 if (copy_to_user(argp, &dbgregs,
5450                                  sizeof(struct kvm_debugregs)))
5451                         break;
5452                 r = 0;
5453                 break;
5454         }
5455         case KVM_SET_DEBUGREGS: {
5456                 struct kvm_debugregs dbgregs;
5457
5458                 r = -EFAULT;
5459                 if (copy_from_user(&dbgregs, argp,
5460                                    sizeof(struct kvm_debugregs)))
5461                         break;
5462
5463                 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5464                 break;
5465         }
5466         case KVM_GET_XSAVE: {
5467                 r = -EINVAL;
5468                 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5469                         break;
5470
5471                 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5472                 r = -ENOMEM;
5473                 if (!u.xsave)
5474                         break;
5475
5476                 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5477
5478                 r = -EFAULT;
5479                 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5480                         break;
5481                 r = 0;
5482                 break;
5483         }
5484         case KVM_SET_XSAVE: {
5485                 int size = vcpu->arch.guest_fpu.uabi_size;
5486
5487                 u.xsave = memdup_user(argp, size);
5488                 if (IS_ERR(u.xsave)) {
5489                         r = PTR_ERR(u.xsave);
5490                         goto out_nofree;
5491                 }
5492
5493                 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5494                 break;
5495         }
5496
5497         case KVM_GET_XSAVE2: {
5498                 int size = vcpu->arch.guest_fpu.uabi_size;
5499
5500                 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5501                 r = -ENOMEM;
5502                 if (!u.xsave)
5503                         break;
5504
5505                 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5506
5507                 r = -EFAULT;
5508                 if (copy_to_user(argp, u.xsave, size))
5509                         break;
5510
5511                 r = 0;
5512                 break;
5513         }
5514
5515         case KVM_GET_XCRS: {
5516                 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5517                 r = -ENOMEM;
5518                 if (!u.xcrs)
5519                         break;
5520
5521                 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5522
5523                 r = -EFAULT;
5524                 if (copy_to_user(argp, u.xcrs,
5525                                  sizeof(struct kvm_xcrs)))
5526                         break;
5527                 r = 0;
5528                 break;
5529         }
5530         case KVM_SET_XCRS: {
5531                 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5532                 if (IS_ERR(u.xcrs)) {
5533                         r = PTR_ERR(u.xcrs);
5534                         goto out_nofree;
5535                 }
5536
5537                 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5538                 break;
5539         }
5540         case KVM_SET_TSC_KHZ: {
5541                 u32 user_tsc_khz;
5542
5543                 r = -EINVAL;
5544                 user_tsc_khz = (u32)arg;
5545
5546                 if (kvm_has_tsc_control &&
5547                     user_tsc_khz >= kvm_max_guest_tsc_khz)
5548                         goto out;
5549
5550                 if (user_tsc_khz == 0)
5551                         user_tsc_khz = tsc_khz;
5552
5553                 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5554                         r = 0;
5555
5556                 goto out;
5557         }
5558         case KVM_GET_TSC_KHZ: {
5559                 r = vcpu->arch.virtual_tsc_khz;
5560                 goto out;
5561         }
5562         case KVM_KVMCLOCK_CTRL: {
5563                 r = kvm_set_guest_paused(vcpu);
5564                 goto out;
5565         }
5566         case KVM_ENABLE_CAP: {
5567                 struct kvm_enable_cap cap;
5568
5569                 r = -EFAULT;
5570                 if (copy_from_user(&cap, argp, sizeof(cap)))
5571                         goto out;
5572                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5573                 break;
5574         }
5575         case KVM_GET_NESTED_STATE: {
5576                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5577                 u32 user_data_size;
5578
5579                 r = -EINVAL;
5580                 if (!kvm_x86_ops.nested_ops->get_state)
5581                         break;
5582
5583                 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5584                 r = -EFAULT;
5585                 if (get_user(user_data_size, &user_kvm_nested_state->size))
5586                         break;
5587
5588                 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5589                                                      user_data_size);
5590                 if (r < 0)
5591                         break;
5592
5593                 if (r > user_data_size) {
5594                         if (put_user(r, &user_kvm_nested_state->size))
5595                                 r = -EFAULT;
5596                         else
5597                                 r = -E2BIG;
5598                         break;
5599                 }
5600
5601                 r = 0;
5602                 break;
5603         }
5604         case KVM_SET_NESTED_STATE: {
5605                 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5606                 struct kvm_nested_state kvm_state;
5607                 int idx;
5608
5609                 r = -EINVAL;
5610                 if (!kvm_x86_ops.nested_ops->set_state)
5611                         break;
5612
5613                 r = -EFAULT;
5614                 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5615                         break;
5616
5617                 r = -EINVAL;
5618                 if (kvm_state.size < sizeof(kvm_state))
5619                         break;
5620
5621                 if (kvm_state.flags &
5622                     ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5623                       | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5624                       | KVM_STATE_NESTED_GIF_SET))
5625                         break;
5626
5627                 /* nested_run_pending implies guest_mode.  */
5628                 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5629                     && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5630                         break;
5631
5632                 idx = srcu_read_lock(&vcpu->kvm->srcu);
5633                 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5634                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5635                 break;
5636         }
5637         case KVM_GET_SUPPORTED_HV_CPUID:
5638                 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5639                 break;
5640 #ifdef CONFIG_KVM_XEN
5641         case KVM_XEN_VCPU_GET_ATTR: {
5642                 struct kvm_xen_vcpu_attr xva;
5643
5644                 r = -EFAULT;
5645                 if (copy_from_user(&xva, argp, sizeof(xva)))
5646                         goto out;
5647                 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5648                 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5649                         r = -EFAULT;
5650                 break;
5651         }
5652         case KVM_XEN_VCPU_SET_ATTR: {
5653                 struct kvm_xen_vcpu_attr xva;
5654
5655                 r = -EFAULT;
5656                 if (copy_from_user(&xva, argp, sizeof(xva)))
5657                         goto out;
5658                 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5659                 break;
5660         }
5661 #endif
5662         case KVM_GET_SREGS2: {
5663                 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5664                 r = -ENOMEM;
5665                 if (!u.sregs2)
5666                         goto out;
5667                 __get_sregs2(vcpu, u.sregs2);
5668                 r = -EFAULT;
5669                 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5670                         goto out;
5671                 r = 0;
5672                 break;
5673         }
5674         case KVM_SET_SREGS2: {
5675                 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5676                 if (IS_ERR(u.sregs2)) {
5677                         r = PTR_ERR(u.sregs2);
5678                         u.sregs2 = NULL;
5679                         goto out;
5680                 }
5681                 r = __set_sregs2(vcpu, u.sregs2);
5682                 break;
5683         }
5684         case KVM_HAS_DEVICE_ATTR:
5685         case KVM_GET_DEVICE_ATTR:
5686         case KVM_SET_DEVICE_ATTR:
5687                 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5688                 break;
5689         default:
5690                 r = -EINVAL;
5691         }
5692 out:
5693         kfree(u.buffer);
5694 out_nofree:
5695         vcpu_put(vcpu);
5696         return r;
5697 }
5698
5699 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5700 {
5701         return VM_FAULT_SIGBUS;
5702 }
5703
5704 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5705 {
5706         int ret;
5707
5708         if (addr > (unsigned int)(-3 * PAGE_SIZE))
5709                 return -EINVAL;
5710         ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5711         return ret;
5712 }
5713
5714 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5715                                               u64 ident_addr)
5716 {
5717         return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5718 }
5719
5720 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5721                                          unsigned long kvm_nr_mmu_pages)
5722 {
5723         if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5724                 return -EINVAL;
5725
5726         mutex_lock(&kvm->slots_lock);
5727
5728         kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5729         kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5730
5731         mutex_unlock(&kvm->slots_lock);
5732         return 0;
5733 }
5734
5735 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5736 {
5737         return kvm->arch.n_max_mmu_pages;
5738 }
5739
5740 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5741 {
5742         struct kvm_pic *pic = kvm->arch.vpic;
5743         int r;
5744
5745         r = 0;
5746         switch (chip->chip_id) {
5747         case KVM_IRQCHIP_PIC_MASTER:
5748                 memcpy(&chip->chip.pic, &pic->pics[0],
5749                         sizeof(struct kvm_pic_state));
5750                 break;
5751         case KVM_IRQCHIP_PIC_SLAVE:
5752                 memcpy(&chip->chip.pic, &pic->pics[1],
5753                         sizeof(struct kvm_pic_state));
5754                 break;
5755         case KVM_IRQCHIP_IOAPIC:
5756                 kvm_get_ioapic(kvm, &chip->chip.ioapic);
5757                 break;
5758         default:
5759                 r = -EINVAL;
5760                 break;
5761         }
5762         return r;
5763 }
5764
5765 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5766 {
5767         struct kvm_pic *pic = kvm->arch.vpic;
5768         int r;
5769
5770         r = 0;
5771         switch (chip->chip_id) {
5772         case KVM_IRQCHIP_PIC_MASTER:
5773                 spin_lock(&pic->lock);
5774                 memcpy(&pic->pics[0], &chip->chip.pic,
5775                         sizeof(struct kvm_pic_state));
5776                 spin_unlock(&pic->lock);
5777                 break;
5778         case KVM_IRQCHIP_PIC_SLAVE:
5779                 spin_lock(&pic->lock);
5780                 memcpy(&pic->pics[1], &chip->chip.pic,
5781                         sizeof(struct kvm_pic_state));
5782                 spin_unlock(&pic->lock);
5783                 break;
5784         case KVM_IRQCHIP_IOAPIC:
5785                 kvm_set_ioapic(kvm, &chip->chip.ioapic);
5786                 break;
5787         default:
5788                 r = -EINVAL;
5789                 break;
5790         }
5791         kvm_pic_update_irq(pic);
5792         return r;
5793 }
5794
5795 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5796 {
5797         struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5798
5799         BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5800
5801         mutex_lock(&kps->lock);
5802         memcpy(ps, &kps->channels, sizeof(*ps));
5803         mutex_unlock(&kps->lock);
5804         return 0;
5805 }
5806
5807 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5808 {
5809         int i;
5810         struct kvm_pit *pit = kvm->arch.vpit;
5811
5812         mutex_lock(&pit->pit_state.lock);
5813         memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
5814         for (i = 0; i < 3; i++)
5815                 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5816         mutex_unlock(&pit->pit_state.lock);
5817         return 0;
5818 }
5819
5820 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5821 {
5822         mutex_lock(&kvm->arch.vpit->pit_state.lock);
5823         memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5824                 sizeof(ps->channels));
5825         ps->flags = kvm->arch.vpit->pit_state.flags;
5826         mutex_unlock(&kvm->arch.vpit->pit_state.lock);
5827         memset(&ps->reserved, 0, sizeof(ps->reserved));
5828         return 0;
5829 }
5830
5831 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5832 {
5833         int start = 0;
5834         int i;
5835         u32 prev_legacy, cur_legacy;
5836         struct kvm_pit *pit = kvm->arch.vpit;
5837
5838         mutex_lock(&pit->pit_state.lock);
5839         prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
5840         cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5841         if (!prev_legacy && cur_legacy)
5842                 start = 1;
5843         memcpy(&pit->pit_state.channels, &ps->channels,
5844                sizeof(pit->pit_state.channels));
5845         pit->pit_state.flags = ps->flags;
5846         for (i = 0; i < 3; i++)
5847                 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
5848                                    start && i == 0);
5849         mutex_unlock(&pit->pit_state.lock);
5850         return 0;
5851 }
5852
5853 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5854                                  struct kvm_reinject_control *control)
5855 {
5856         struct kvm_pit *pit = kvm->arch.vpit;
5857
5858         /* pit->pit_state.lock was overloaded to prevent userspace from getting
5859          * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5860          * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
5861          */
5862         mutex_lock(&pit->pit_state.lock);
5863         kvm_pit_set_reinject(pit, control->pit_reinject);
5864         mutex_unlock(&pit->pit_state.lock);
5865
5866         return 0;
5867 }
5868
5869 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5870 {
5871
5872         /*
5873          * Flush all CPUs' dirty log buffers to the  dirty_bitmap.  Called
5874          * before reporting dirty_bitmap to userspace.  KVM flushes the buffers
5875          * on all VM-Exits, thus we only need to kick running vCPUs to force a
5876          * VM-Exit.
5877          */
5878         struct kvm_vcpu *vcpu;
5879         unsigned long i;
5880
5881         kvm_for_each_vcpu(i, vcpu, kvm)
5882                 kvm_vcpu_kick(vcpu);
5883 }
5884
5885 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5886                         bool line_status)
5887 {
5888         if (!irqchip_in_kernel(kvm))
5889                 return -ENXIO;
5890
5891         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
5892                                         irq_event->irq, irq_event->level,
5893                                         line_status);
5894         return 0;
5895 }
5896
5897 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5898                             struct kvm_enable_cap *cap)
5899 {
5900         int r;
5901
5902         if (cap->flags)
5903                 return -EINVAL;
5904
5905         switch (cap->cap) {
5906         case KVM_CAP_DISABLE_QUIRKS:
5907                 kvm->arch.disabled_quirks = cap->args[0];
5908                 r = 0;
5909                 break;
5910         case KVM_CAP_SPLIT_IRQCHIP: {
5911                 mutex_lock(&kvm->lock);
5912                 r = -EINVAL;
5913                 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5914                         goto split_irqchip_unlock;
5915                 r = -EEXIST;
5916                 if (irqchip_in_kernel(kvm))
5917                         goto split_irqchip_unlock;
5918                 if (kvm->created_vcpus)
5919                         goto split_irqchip_unlock;
5920                 r = kvm_setup_empty_irq_routing(kvm);
5921                 if (r)
5922                         goto split_irqchip_unlock;
5923                 /* Pairs with irqchip_in_kernel. */
5924                 smp_wmb();
5925                 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
5926                 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
5927                 kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
5928                 r = 0;
5929 split_irqchip_unlock:
5930                 mutex_unlock(&kvm->lock);
5931                 break;
5932         }
5933         case KVM_CAP_X2APIC_API:
5934                 r = -EINVAL;
5935                 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5936                         break;
5937
5938                 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5939                         kvm->arch.x2apic_format = true;
5940                 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5941                         kvm->arch.x2apic_broadcast_quirk_disabled = true;
5942
5943                 r = 0;
5944                 break;
5945         case KVM_CAP_X86_DISABLE_EXITS:
5946                 r = -EINVAL;
5947                 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5948                         break;
5949
5950                 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5951                         kvm_can_mwait_in_guest())
5952                         kvm->arch.mwait_in_guest = true;
5953                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
5954                         kvm->arch.hlt_in_guest = true;
5955                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5956                         kvm->arch.pause_in_guest = true;
5957                 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5958                         kvm->arch.cstate_in_guest = true;
5959                 r = 0;
5960                 break;
5961         case KVM_CAP_MSR_PLATFORM_INFO:
5962                 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5963                 r = 0;
5964                 break;
5965         case KVM_CAP_EXCEPTION_PAYLOAD:
5966                 kvm->arch.exception_payload_enabled = cap->args[0];
5967                 r = 0;
5968                 break;
5969         case KVM_CAP_X86_USER_SPACE_MSR:
5970                 kvm->arch.user_space_msr_mask = cap->args[0];
5971                 r = 0;
5972                 break;
5973         case KVM_CAP_X86_BUS_LOCK_EXIT:
5974                 r = -EINVAL;
5975                 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
5976                         break;
5977
5978                 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
5979                     (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
5980                         break;
5981
5982                 if (kvm_has_bus_lock_exit &&
5983                     cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
5984                         kvm->arch.bus_lock_detection_enabled = true;
5985                 r = 0;
5986                 break;
5987 #ifdef CONFIG_X86_SGX_KVM
5988         case KVM_CAP_SGX_ATTRIBUTE: {
5989                 unsigned long allowed_attributes = 0;
5990
5991                 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
5992                 if (r)
5993                         break;
5994
5995                 /* KVM only supports the PROVISIONKEY privileged attribute. */
5996                 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
5997                     !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
5998                         kvm->arch.sgx_provisioning_allowed = true;
5999                 else
6000                         r = -EINVAL;
6001                 break;
6002         }
6003 #endif
6004         case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6005                 r = -EINVAL;
6006                 if (!kvm_x86_ops.vm_copy_enc_context_from)
6007                         break;
6008
6009                 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6010                 break;
6011         case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6012                 r = -EINVAL;
6013                 if (!kvm_x86_ops.vm_move_enc_context_from)
6014                         break;
6015
6016                 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6017                 break;
6018         case KVM_CAP_EXIT_HYPERCALL:
6019                 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6020                         r = -EINVAL;
6021                         break;
6022                 }
6023                 kvm->arch.hypercall_exit_enabled = cap->args[0];
6024                 r = 0;
6025                 break;
6026         case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6027                 r = -EINVAL;
6028                 if (cap->args[0] & ~1)
6029                         break;
6030                 kvm->arch.exit_on_emulation_error = cap->args[0];
6031                 r = 0;
6032                 break;
6033         case KVM_CAP_PMU_CAPABILITY:
6034                 r = -EINVAL;
6035                 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6036                         break;
6037
6038                 mutex_lock(&kvm->lock);
6039                 if (!kvm->created_vcpus) {
6040                         kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6041                         r = 0;
6042                 }
6043                 mutex_unlock(&kvm->lock);
6044                 break;
6045         default:
6046                 r = -EINVAL;
6047                 break;
6048         }
6049         return r;
6050 }
6051
6052 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6053 {
6054         struct kvm_x86_msr_filter *msr_filter;
6055
6056         msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6057         if (!msr_filter)
6058                 return NULL;
6059
6060         msr_filter->default_allow = default_allow;
6061         return msr_filter;
6062 }
6063
6064 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6065 {
6066         u32 i;
6067
6068         if (!msr_filter)
6069                 return;
6070
6071         for (i = 0; i < msr_filter->count; i++)
6072                 kfree(msr_filter->ranges[i].bitmap);
6073
6074         kfree(msr_filter);
6075 }
6076
6077 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6078                               struct kvm_msr_filter_range *user_range)
6079 {
6080         unsigned long *bitmap = NULL;
6081         size_t bitmap_size;
6082
6083         if (!user_range->nmsrs)
6084                 return 0;
6085
6086         if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6087                 return -EINVAL;
6088
6089         if (!user_range->flags)
6090                 return -EINVAL;
6091
6092         bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6093         if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6094                 return -EINVAL;
6095
6096         bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6097         if (IS_ERR(bitmap))
6098                 return PTR_ERR(bitmap);
6099
6100         msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6101                 .flags = user_range->flags,
6102                 .base = user_range->base,
6103                 .nmsrs = user_range->nmsrs,
6104                 .bitmap = bitmap,
6105         };
6106
6107         msr_filter->count++;
6108         return 0;
6109 }
6110
6111 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
6112 {
6113         struct kvm_msr_filter __user *user_msr_filter = argp;
6114         struct kvm_x86_msr_filter *new_filter, *old_filter;
6115         struct kvm_msr_filter filter;
6116         bool default_allow;
6117         bool empty = true;
6118         int r = 0;
6119         u32 i;
6120
6121         if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6122                 return -EFAULT;
6123
6124         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
6125                 empty &= !filter.ranges[i].nmsrs;
6126
6127         default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
6128         if (empty && !default_allow)
6129                 return -EINVAL;
6130
6131         new_filter = kvm_alloc_msr_filter(default_allow);
6132         if (!new_filter)
6133                 return -ENOMEM;
6134
6135         for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6136                 r = kvm_add_msr_filter(new_filter, &filter.ranges[i]);
6137                 if (r) {
6138                         kvm_free_msr_filter(new_filter);
6139                         return r;
6140                 }
6141         }
6142
6143         mutex_lock(&kvm->lock);
6144
6145         /* The per-VM filter is protected by kvm->lock... */
6146         old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6147
6148         rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6149         synchronize_srcu(&kvm->srcu);
6150
6151         kvm_free_msr_filter(old_filter);
6152
6153         kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6154         mutex_unlock(&kvm->lock);
6155
6156         return 0;
6157 }
6158
6159 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6160 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6161 {
6162         struct kvm_vcpu *vcpu;
6163         unsigned long i;
6164         int ret = 0;
6165
6166         mutex_lock(&kvm->lock);
6167         kvm_for_each_vcpu(i, vcpu, kvm) {
6168                 if (!vcpu->arch.pv_time_enabled)
6169                         continue;
6170
6171                 ret = kvm_set_guest_paused(vcpu);
6172                 if (ret) {
6173                         kvm_err("Failed to pause guest VCPU%d: %d\n",
6174                                 vcpu->vcpu_id, ret);
6175                         break;
6176                 }
6177         }
6178         mutex_unlock(&kvm->lock);
6179
6180         return ret ? NOTIFY_BAD : NOTIFY_DONE;
6181 }
6182
6183 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6184 {
6185         switch (state) {
6186         case PM_HIBERNATION_PREPARE:
6187         case PM_SUSPEND_PREPARE:
6188                 return kvm_arch_suspend_notifier(kvm);
6189         }
6190
6191         return NOTIFY_DONE;
6192 }
6193 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6194
6195 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6196 {
6197         struct kvm_clock_data data = { 0 };
6198
6199         get_kvmclock(kvm, &data);
6200         if (copy_to_user(argp, &data, sizeof(data)))
6201                 return -EFAULT;
6202
6203         return 0;
6204 }
6205
6206 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6207 {
6208         struct kvm_arch *ka = &kvm->arch;
6209         struct kvm_clock_data data;
6210         u64 now_raw_ns;
6211
6212         if (copy_from_user(&data, argp, sizeof(data)))
6213                 return -EFAULT;
6214
6215         /*
6216          * Only KVM_CLOCK_REALTIME is used, but allow passing the
6217          * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6218          */
6219         if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6220                 return -EINVAL;
6221
6222         kvm_hv_invalidate_tsc_page(kvm);
6223         kvm_start_pvclock_update(kvm);
6224         pvclock_update_vm_gtod_copy(kvm);
6225
6226         /*
6227          * This pairs with kvm_guest_time_update(): when masterclock is
6228          * in use, we use master_kernel_ns + kvmclock_offset to set
6229          * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6230          * is slightly ahead) here we risk going negative on unsigned
6231          * 'system_time' when 'data.clock' is very small.
6232          */
6233         if (data.flags & KVM_CLOCK_REALTIME) {
6234                 u64 now_real_ns = ktime_get_real_ns();
6235
6236                 /*
6237                  * Avoid stepping the kvmclock backwards.
6238                  */
6239                 if (now_real_ns > data.realtime)
6240                         data.clock += now_real_ns - data.realtime;
6241         }
6242
6243         if (ka->use_master_clock)
6244                 now_raw_ns = ka->master_kernel_ns;
6245         else
6246                 now_raw_ns = get_kvmclock_base_ns();
6247         ka->kvmclock_offset = data.clock - now_raw_ns;
6248         kvm_end_pvclock_update(kvm);
6249         return 0;
6250 }
6251
6252 long kvm_arch_vm_ioctl(struct file *filp,
6253                        unsigned int ioctl, unsigned long arg)
6254 {
6255         struct kvm *kvm = filp->private_data;
6256         void __user *argp = (void __user *)arg;
6257         int r = -ENOTTY;
6258         /*
6259          * This union makes it completely explicit to gcc-3.x
6260          * that these two variables' stack usage should be
6261          * combined, not added together.
6262          */
6263         union {
6264                 struct kvm_pit_state ps;
6265                 struct kvm_pit_state2 ps2;
6266                 struct kvm_pit_config pit_config;
6267         } u;
6268
6269         switch (ioctl) {
6270         case KVM_SET_TSS_ADDR:
6271                 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6272                 break;
6273         case KVM_SET_IDENTITY_MAP_ADDR: {
6274                 u64 ident_addr;
6275
6276                 mutex_lock(&kvm->lock);
6277                 r = -EINVAL;
6278                 if (kvm->created_vcpus)
6279                         goto set_identity_unlock;
6280                 r = -EFAULT;
6281                 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6282                         goto set_identity_unlock;
6283                 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6284 set_identity_unlock:
6285                 mutex_unlock(&kvm->lock);
6286                 break;
6287         }
6288         case KVM_SET_NR_MMU_PAGES:
6289                 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6290                 break;
6291         case KVM_GET_NR_MMU_PAGES:
6292                 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6293                 break;
6294         case KVM_CREATE_IRQCHIP: {
6295                 mutex_lock(&kvm->lock);
6296
6297                 r = -EEXIST;
6298                 if (irqchip_in_kernel(kvm))
6299                         goto create_irqchip_unlock;
6300
6301                 r = -EINVAL;
6302                 if (kvm->created_vcpus)
6303                         goto create_irqchip_unlock;
6304
6305                 r = kvm_pic_init(kvm);
6306                 if (r)
6307                         goto create_irqchip_unlock;
6308
6309                 r = kvm_ioapic_init(kvm);
6310                 if (r) {
6311                         kvm_pic_destroy(kvm);
6312                         goto create_irqchip_unlock;
6313                 }
6314
6315                 r = kvm_setup_default_irq_routing(kvm);
6316                 if (r) {
6317                         kvm_ioapic_destroy(kvm);
6318                         kvm_pic_destroy(kvm);
6319                         goto create_irqchip_unlock;
6320                 }
6321                 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6322                 smp_wmb();
6323                 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6324                 kvm_request_apicv_update(kvm, true, APICV_INHIBIT_REASON_ABSENT);
6325         create_irqchip_unlock:
6326                 mutex_unlock(&kvm->lock);
6327                 break;
6328         }
6329         case KVM_CREATE_PIT:
6330                 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6331                 goto create_pit;
6332         case KVM_CREATE_PIT2:
6333                 r = -EFAULT;
6334                 if (copy_from_user(&u.pit_config, argp,
6335                                    sizeof(struct kvm_pit_config)))
6336                         goto out;
6337         create_pit:
6338                 mutex_lock(&kvm->lock);
6339                 r = -EEXIST;
6340                 if (kvm->arch.vpit)
6341                         goto create_pit_unlock;
6342                 r = -ENOMEM;
6343                 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6344                 if (kvm->arch.vpit)
6345                         r = 0;
6346         create_pit_unlock:
6347                 mutex_unlock(&kvm->lock);
6348                 break;
6349         case KVM_GET_IRQCHIP: {
6350                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6351                 struct kvm_irqchip *chip;
6352
6353                 chip = memdup_user(argp, sizeof(*chip));
6354                 if (IS_ERR(chip)) {
6355                         r = PTR_ERR(chip);
6356                         goto out;
6357                 }
6358
6359                 r = -ENXIO;
6360                 if (!irqchip_kernel(kvm))
6361                         goto get_irqchip_out;
6362                 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6363                 if (r)
6364                         goto get_irqchip_out;
6365                 r = -EFAULT;
6366                 if (copy_to_user(argp, chip, sizeof(*chip)))
6367                         goto get_irqchip_out;
6368                 r = 0;
6369         get_irqchip_out:
6370                 kfree(chip);
6371                 break;
6372         }
6373         case KVM_SET_IRQCHIP: {
6374                 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6375                 struct kvm_irqchip *chip;
6376
6377                 chip = memdup_user(argp, sizeof(*chip));
6378                 if (IS_ERR(chip)) {
6379                         r = PTR_ERR(chip);
6380                         goto out;
6381                 }
6382
6383                 r = -ENXIO;
6384                 if (!irqchip_kernel(kvm))
6385                         goto set_irqchip_out;
6386                 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6387         set_irqchip_out:
6388                 kfree(chip);
6389                 break;
6390         }
6391         case KVM_GET_PIT: {
6392                 r = -EFAULT;
6393                 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6394                         goto out;
6395                 r = -ENXIO;
6396                 if (!kvm->arch.vpit)
6397                         goto out;
6398                 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6399                 if (r)
6400                         goto out;
6401                 r = -EFAULT;
6402                 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6403                         goto out;
6404                 r = 0;
6405                 break;
6406         }
6407         case KVM_SET_PIT: {
6408                 r = -EFAULT;
6409                 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6410                         goto out;
6411                 mutex_lock(&kvm->lock);
6412                 r = -ENXIO;
6413                 if (!kvm->arch.vpit)
6414                         goto set_pit_out;
6415                 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6416 set_pit_out:
6417                 mutex_unlock(&kvm->lock);
6418                 break;
6419         }
6420         case KVM_GET_PIT2: {
6421                 r = -ENXIO;
6422                 if (!kvm->arch.vpit)
6423                         goto out;
6424                 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6425                 if (r)
6426                         goto out;
6427                 r = -EFAULT;
6428                 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6429                         goto out;
6430                 r = 0;
6431                 break;
6432         }
6433         case KVM_SET_PIT2: {
6434                 r = -EFAULT;
6435                 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6436                         goto out;
6437                 mutex_lock(&kvm->lock);
6438                 r = -ENXIO;
6439                 if (!kvm->arch.vpit)
6440                         goto set_pit2_out;
6441                 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6442 set_pit2_out:
6443                 mutex_unlock(&kvm->lock);
6444                 break;
6445         }
6446         case KVM_REINJECT_CONTROL: {
6447                 struct kvm_reinject_control control;
6448                 r =  -EFAULT;
6449                 if (copy_from_user(&control, argp, sizeof(control)))
6450                         goto out;
6451                 r = -ENXIO;
6452                 if (!kvm->arch.vpit)
6453                         goto out;
6454                 r = kvm_vm_ioctl_reinject(kvm, &control);
6455                 break;
6456         }
6457         case KVM_SET_BOOT_CPU_ID:
6458                 r = 0;
6459                 mutex_lock(&kvm->lock);
6460                 if (kvm->created_vcpus)
6461                         r = -EBUSY;
6462                 else
6463                         kvm->arch.bsp_vcpu_id = arg;
6464                 mutex_unlock(&kvm->lock);
6465                 break;
6466 #ifdef CONFIG_KVM_XEN
6467         case KVM_XEN_HVM_CONFIG: {
6468                 struct kvm_xen_hvm_config xhc;
6469                 r = -EFAULT;
6470                 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6471                         goto out;
6472                 r = kvm_xen_hvm_config(kvm, &xhc);
6473                 break;
6474         }
6475         case KVM_XEN_HVM_GET_ATTR: {
6476                 struct kvm_xen_hvm_attr xha;
6477
6478                 r = -EFAULT;
6479                 if (copy_from_user(&xha, argp, sizeof(xha)))
6480                         goto out;
6481                 r = kvm_xen_hvm_get_attr(kvm, &xha);
6482                 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6483                         r = -EFAULT;
6484                 break;
6485         }
6486         case KVM_XEN_HVM_SET_ATTR: {
6487                 struct kvm_xen_hvm_attr xha;
6488
6489                 r = -EFAULT;
6490                 if (copy_from_user(&xha, argp, sizeof(xha)))
6491                         goto out;
6492                 r = kvm_xen_hvm_set_attr(kvm, &xha);
6493                 break;
6494         }
6495 #endif
6496         case KVM_SET_CLOCK:
6497                 r = kvm_vm_ioctl_set_clock(kvm, argp);
6498                 break;
6499         case KVM_GET_CLOCK:
6500                 r = kvm_vm_ioctl_get_clock(kvm, argp);
6501                 break;
6502         case KVM_MEMORY_ENCRYPT_OP: {
6503                 r = -ENOTTY;
6504                 if (!kvm_x86_ops.mem_enc_ioctl)
6505                         goto out;
6506
6507                 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6508                 break;
6509         }
6510         case KVM_MEMORY_ENCRYPT_REG_REGION: {
6511                 struct kvm_enc_region region;
6512
6513                 r = -EFAULT;
6514                 if (copy_from_user(&region, argp, sizeof(region)))
6515                         goto out;
6516
6517                 r = -ENOTTY;
6518                 if (!kvm_x86_ops.mem_enc_register_region)
6519                         goto out;
6520
6521                 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
6522                 break;
6523         }
6524         case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6525                 struct kvm_enc_region region;
6526
6527                 r = -EFAULT;
6528                 if (copy_from_user(&region, argp, sizeof(region)))
6529                         goto out;
6530
6531                 r = -ENOTTY;
6532                 if (!kvm_x86_ops.mem_enc_unregister_region)
6533                         goto out;
6534
6535                 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
6536                 break;
6537         }
6538         case KVM_HYPERV_EVENTFD: {
6539                 struct kvm_hyperv_eventfd hvevfd;
6540
6541                 r = -EFAULT;
6542                 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6543                         goto out;
6544                 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6545                 break;
6546         }
6547         case KVM_SET_PMU_EVENT_FILTER:
6548                 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6549                 break;
6550         case KVM_X86_SET_MSR_FILTER:
6551                 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
6552                 break;
6553         default:
6554                 r = -ENOTTY;
6555         }
6556 out:
6557         return r;
6558 }
6559
6560 static void kvm_init_msr_list(void)
6561 {
6562         struct x86_pmu_capability x86_pmu;
6563         u32 dummy[2];
6564         unsigned i;
6565
6566         BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
6567                          "Please update the fixed PMCs in msrs_to_saved_all[]");
6568
6569         perf_get_x86_pmu_capability(&x86_pmu);
6570
6571         num_msrs_to_save = 0;
6572         num_emulated_msrs = 0;
6573         num_msr_based_features = 0;
6574
6575         for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
6576                 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
6577                         continue;
6578
6579                 /*
6580                  * Even MSRs that are valid in the host may not be exposed
6581                  * to the guests in some cases.
6582                  */
6583                 switch (msrs_to_save_all[i]) {
6584                 case MSR_IA32_BNDCFGS:
6585                         if (!kvm_mpx_supported())
6586                                 continue;
6587                         break;
6588                 case MSR_TSC_AUX:
6589                         if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
6590                             !kvm_cpu_cap_has(X86_FEATURE_RDPID))
6591                                 continue;
6592                         break;
6593                 case MSR_IA32_UMWAIT_CONTROL:
6594                         if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
6595                                 continue;
6596                         break;
6597                 case MSR_IA32_RTIT_CTL:
6598                 case MSR_IA32_RTIT_STATUS:
6599                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
6600                                 continue;
6601                         break;
6602                 case MSR_IA32_RTIT_CR3_MATCH:
6603                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6604                             !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
6605                                 continue;
6606                         break;
6607                 case MSR_IA32_RTIT_OUTPUT_BASE:
6608                 case MSR_IA32_RTIT_OUTPUT_MASK:
6609                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6610                                 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
6611                                  !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
6612                                 continue;
6613                         break;
6614                 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
6615                         if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
6616                                 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
6617                                 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
6618                                 continue;
6619                         break;
6620                 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
6621                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
6622                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6623                                 continue;
6624                         break;
6625                 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
6626                         if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
6627                             min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
6628                                 continue;
6629                         break;
6630                 case MSR_IA32_XFD:
6631                 case MSR_IA32_XFD_ERR:
6632                         if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
6633                                 continue;
6634                         break;
6635                 default:
6636                         break;
6637                 }
6638
6639                 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
6640         }
6641
6642         for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
6643                 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
6644                         continue;
6645
6646                 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
6647         }
6648
6649         for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
6650                 struct kvm_msr_entry msr;
6651
6652                 msr.index = msr_based_features_all[i];
6653                 if (kvm_get_msr_feature(&msr))
6654                         continue;
6655
6656                 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
6657         }
6658 }
6659
6660 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
6661                            const void *v)
6662 {
6663         int handled = 0;
6664         int n;
6665
6666         do {
6667                 n = min(len, 8);
6668                 if (!(lapic_in_kernel(vcpu) &&
6669                       !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
6670                     && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
6671                         break;
6672                 handled += n;
6673                 addr += n;
6674                 len -= n;
6675                 v += n;
6676         } while (len);
6677
6678         return handled;
6679 }
6680
6681 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
6682 {
6683         int handled = 0;
6684         int n;
6685
6686         do {
6687                 n = min(len, 8);
6688                 if (!(lapic_in_kernel(vcpu) &&
6689                       !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
6690                                          addr, n, v))
6691                     && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
6692                         break;
6693                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
6694                 handled += n;
6695                 addr += n;
6696                 len -= n;
6697                 v += n;
6698         } while (len);
6699
6700         return handled;
6701 }
6702
6703 static void kvm_set_segment(struct kvm_vcpu *vcpu,
6704                         struct kvm_segment *var, int seg)
6705 {
6706         static_call(kvm_x86_set_segment)(vcpu, var, seg);
6707 }
6708
6709 void kvm_get_segment(struct kvm_vcpu *vcpu,
6710                      struct kvm_segment *var, int seg)
6711 {
6712         static_call(kvm_x86_get_segment)(vcpu, var, seg);
6713 }
6714
6715 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
6716                            struct x86_exception *exception)
6717 {
6718         struct kvm_mmu *mmu = vcpu->arch.mmu;
6719         gpa_t t_gpa;
6720
6721         BUG_ON(!mmu_is_nested(vcpu));
6722
6723         /* NPT walks are always user-walks */
6724         access |= PFERR_USER_MASK;
6725         t_gpa  = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
6726
6727         return t_gpa;
6728 }
6729
6730 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
6731                               struct x86_exception *exception)
6732 {
6733         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6734
6735         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6736         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6737 }
6738 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
6739
6740  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
6741                                 struct x86_exception *exception)
6742 {
6743         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6744
6745         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6746         access |= PFERR_FETCH_MASK;
6747         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6748 }
6749
6750 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
6751                                struct x86_exception *exception)
6752 {
6753         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6754
6755         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6756         access |= PFERR_WRITE_MASK;
6757         return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6758 }
6759 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
6760
6761 /* uses this to access any guest's mapped memory without checking CPL */
6762 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
6763                                 struct x86_exception *exception)
6764 {
6765         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6766
6767         return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
6768 }
6769
6770 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6771                                       struct kvm_vcpu *vcpu, u32 access,
6772                                       struct x86_exception *exception)
6773 {
6774         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6775         void *data = val;
6776         int r = X86EMUL_CONTINUE;
6777
6778         while (bytes) {
6779                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6780                 unsigned offset = addr & (PAGE_SIZE-1);
6781                 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
6782                 int ret;
6783
6784                 if (gpa == UNMAPPED_GVA)
6785                         return X86EMUL_PROPAGATE_FAULT;
6786                 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
6787                                                offset, toread);
6788                 if (ret < 0) {
6789                         r = X86EMUL_IO_NEEDED;
6790                         goto out;
6791                 }
6792
6793                 bytes -= toread;
6794                 data += toread;
6795                 addr += toread;
6796         }
6797 out:
6798         return r;
6799 }
6800
6801 /* used for instruction fetching */
6802 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
6803                                 gva_t addr, void *val, unsigned int bytes,
6804                                 struct x86_exception *exception)
6805 {
6806         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6807         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6808         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6809         unsigned offset;
6810         int ret;
6811
6812         /* Inline kvm_read_guest_virt_helper for speed.  */
6813         gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
6814                                     exception);
6815         if (unlikely(gpa == UNMAPPED_GVA))
6816                 return X86EMUL_PROPAGATE_FAULT;
6817
6818         offset = addr & (PAGE_SIZE-1);
6819         if (WARN_ON(offset + bytes > PAGE_SIZE))
6820                 bytes = (unsigned)PAGE_SIZE - offset;
6821         ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
6822                                        offset, bytes);
6823         if (unlikely(ret < 0))
6824                 return X86EMUL_IO_NEEDED;
6825
6826         return X86EMUL_CONTINUE;
6827 }
6828
6829 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
6830                                gva_t addr, void *val, unsigned int bytes,
6831                                struct x86_exception *exception)
6832 {
6833         u32 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
6834
6835         /*
6836          * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
6837          * is returned, but our callers are not ready for that and they blindly
6838          * call kvm_inject_page_fault.  Ensure that they at least do not leak
6839          * uninitialized kernel stack memory into cr2 and error code.
6840          */
6841         memset(exception, 0, sizeof(*exception));
6842         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
6843                                           exception);
6844 }
6845 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
6846
6847 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
6848                              gva_t addr, void *val, unsigned int bytes,
6849                              struct x86_exception *exception, bool system)
6850 {
6851         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6852         u32 access = 0;
6853
6854         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6855                 access |= PFERR_USER_MASK;
6856
6857         return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
6858 }
6859
6860 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
6861                 unsigned long addr, void *val, unsigned int bytes)
6862 {
6863         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6864         int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
6865
6866         return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
6867 }
6868
6869 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
6870                                       struct kvm_vcpu *vcpu, u32 access,
6871                                       struct x86_exception *exception)
6872 {
6873         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6874         void *data = val;
6875         int r = X86EMUL_CONTINUE;
6876
6877         while (bytes) {
6878                 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
6879                 unsigned offset = addr & (PAGE_SIZE-1);
6880                 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
6881                 int ret;
6882
6883                 if (gpa == UNMAPPED_GVA)
6884                         return X86EMUL_PROPAGATE_FAULT;
6885                 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
6886                 if (ret < 0) {
6887                         r = X86EMUL_IO_NEEDED;
6888                         goto out;
6889                 }
6890
6891                 bytes -= towrite;
6892                 data += towrite;
6893                 addr += towrite;
6894         }
6895 out:
6896         return r;
6897 }
6898
6899 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
6900                               unsigned int bytes, struct x86_exception *exception,
6901                               bool system)
6902 {
6903         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6904         u32 access = PFERR_WRITE_MASK;
6905
6906         if (!system && static_call(kvm_x86_get_cpl)(vcpu) == 3)
6907                 access |= PFERR_USER_MASK;
6908
6909         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6910                                            access, exception);
6911 }
6912
6913 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6914                                 unsigned int bytes, struct x86_exception *exception)
6915 {
6916         /* kvm_write_guest_virt_system can pull in tons of pages. */
6917         vcpu->arch.l1tf_flush_l1d = true;
6918
6919         return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6920                                            PFERR_WRITE_MASK, exception);
6921 }
6922 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
6923
6924 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
6925                                 void *insn, int insn_len)
6926 {
6927         return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
6928                                                             insn, insn_len);
6929 }
6930
6931 int handle_ud(struct kvm_vcpu *vcpu)
6932 {
6933         static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6934         int emul_type = EMULTYPE_TRAP_UD;
6935         char sig[5]; /* ud2; .ascii "kvm" */
6936         struct x86_exception e;
6937
6938         if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
6939                 return 1;
6940
6941         if (force_emulation_prefix &&
6942             kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6943                                 sig, sizeof(sig), &e) == 0 &&
6944             memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6945                 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
6946                 emul_type = EMULTYPE_TRAP_UD_FORCED;
6947         }
6948
6949         return kvm_emulate_instruction(vcpu, emul_type);
6950 }
6951 EXPORT_SYMBOL_GPL(handle_ud);
6952
6953 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6954                             gpa_t gpa, bool write)
6955 {
6956         /* For APIC access vmexit */
6957         if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6958                 return 1;
6959
6960         if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6961                 trace_vcpu_match_mmio(gva, gpa, write, true);
6962                 return 1;
6963         }
6964
6965         return 0;
6966 }
6967
6968 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6969                                 gpa_t *gpa, struct x86_exception *exception,
6970                                 bool write)
6971 {
6972         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
6973         u32 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
6974                 | (write ? PFERR_WRITE_MASK : 0);
6975
6976         /*
6977          * currently PKRU is only applied to ept enabled guest so
6978          * there is no pkey in EPT page table for L1 guest or EPT
6979          * shadow page table for L2 guest.
6980          */
6981         if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
6982             !permission_fault(vcpu, vcpu->arch.walk_mmu,
6983                               vcpu->arch.mmio_access, 0, access))) {
6984                 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6985                                         (gva & (PAGE_SIZE - 1));
6986                 trace_vcpu_match_mmio(gva, *gpa, write, false);
6987                 return 1;
6988         }
6989
6990         *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
6991
6992         if (*gpa == UNMAPPED_GVA)
6993                 return -1;
6994
6995         return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
6996 }
6997
6998 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
6999                         const void *val, int bytes)
7000 {
7001         int ret;
7002
7003         ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7004         if (ret < 0)
7005                 return 0;
7006         kvm_page_track_write(vcpu, gpa, val, bytes);
7007         return 1;
7008 }
7009
7010 struct read_write_emulator_ops {
7011         int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7012                                   int bytes);
7013         int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7014                                   void *val, int bytes);
7015         int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7016                                int bytes, void *val);
7017         int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7018                                     void *val, int bytes);
7019         bool write;
7020 };
7021
7022 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7023 {
7024         if (vcpu->mmio_read_completed) {
7025                 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7026                                vcpu->mmio_fragments[0].gpa, val);
7027                 vcpu->mmio_read_completed = 0;
7028                 return 1;
7029         }
7030
7031         return 0;
7032 }
7033
7034 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7035                         void *val, int bytes)
7036 {
7037         return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7038 }
7039
7040 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7041                          void *val, int bytes)
7042 {
7043         return emulator_write_phys(vcpu, gpa, val, bytes);
7044 }
7045
7046 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7047 {
7048         trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7049         return vcpu_mmio_write(vcpu, gpa, bytes, val);
7050 }
7051
7052 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7053                           void *val, int bytes)
7054 {
7055         trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7056         return X86EMUL_IO_NEEDED;
7057 }
7058
7059 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7060                            void *val, int bytes)
7061 {
7062         struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7063
7064         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7065         return X86EMUL_CONTINUE;
7066 }
7067
7068 static const struct read_write_emulator_ops read_emultor = {
7069         .read_write_prepare = read_prepare,
7070         .read_write_emulate = read_emulate,
7071         .read_write_mmio = vcpu_mmio_read,
7072         .read_write_exit_mmio = read_exit_mmio,
7073 };
7074
7075 static const struct read_write_emulator_ops write_emultor = {
7076         .read_write_emulate = write_emulate,
7077         .read_write_mmio = write_mmio,
7078         .read_write_exit_mmio = write_exit_mmio,
7079         .write = true,
7080 };
7081
7082 static int emulator_read_write_onepage(unsigned long addr, void *val,
7083                                        unsigned int bytes,
7084                                        struct x86_exception *exception,
7085                                        struct kvm_vcpu *vcpu,
7086                                        const struct read_write_emulator_ops *ops)
7087 {
7088         gpa_t gpa;
7089         int handled, ret;
7090         bool write = ops->write;
7091         struct kvm_mmio_fragment *frag;
7092         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7093
7094         /*
7095          * If the exit was due to a NPF we may already have a GPA.
7096          * If the GPA is present, use it to avoid the GVA to GPA table walk.
7097          * Note, this cannot be used on string operations since string
7098          * operation using rep will only have the initial GPA from the NPF
7099          * occurred.
7100          */
7101         if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7102             (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7103                 gpa = ctxt->gpa_val;
7104                 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7105         } else {
7106                 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7107                 if (ret < 0)
7108                         return X86EMUL_PROPAGATE_FAULT;
7109         }
7110
7111         if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7112                 return X86EMUL_CONTINUE;
7113
7114         /*
7115          * Is this MMIO handled locally?
7116          */
7117         handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7118         if (handled == bytes)
7119                 return X86EMUL_CONTINUE;
7120
7121         gpa += handled;
7122         bytes -= handled;
7123         val += handled;
7124
7125         WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7126         frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7127         frag->gpa = gpa;
7128         frag->data = val;
7129         frag->len = bytes;
7130         return X86EMUL_CONTINUE;
7131 }
7132
7133 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7134                         unsigned long addr,
7135                         void *val, unsigned int bytes,
7136                         struct x86_exception *exception,
7137                         const struct read_write_emulator_ops *ops)
7138 {
7139         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7140         gpa_t gpa;
7141         int rc;
7142
7143         if (ops->read_write_prepare &&
7144                   ops->read_write_prepare(vcpu, val, bytes))
7145                 return X86EMUL_CONTINUE;
7146
7147         vcpu->mmio_nr_fragments = 0;
7148
7149         /* Crossing a page boundary? */
7150         if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7151                 int now;
7152
7153                 now = -addr & ~PAGE_MASK;
7154                 rc = emulator_read_write_onepage(addr, val, now, exception,
7155                                                  vcpu, ops);
7156
7157                 if (rc != X86EMUL_CONTINUE)
7158                         return rc;
7159                 addr += now;
7160                 if (ctxt->mode != X86EMUL_MODE_PROT64)
7161                         addr = (u32)addr;
7162                 val += now;
7163                 bytes -= now;
7164         }
7165
7166         rc = emulator_read_write_onepage(addr, val, bytes, exception,
7167                                          vcpu, ops);
7168         if (rc != X86EMUL_CONTINUE)
7169                 return rc;
7170
7171         if (!vcpu->mmio_nr_fragments)
7172                 return rc;
7173
7174         gpa = vcpu->mmio_fragments[0].gpa;
7175
7176         vcpu->mmio_needed = 1;
7177         vcpu->mmio_cur_fragment = 0;
7178
7179         vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7180         vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7181         vcpu->run->exit_reason = KVM_EXIT_MMIO;
7182         vcpu->run->mmio.phys_addr = gpa;
7183
7184         return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7185 }
7186
7187 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7188                                   unsigned long addr,
7189                                   void *val,
7190                                   unsigned int bytes,
7191                                   struct x86_exception *exception)
7192 {
7193         return emulator_read_write(ctxt, addr, val, bytes,
7194                                    exception, &read_emultor);
7195 }
7196
7197 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7198                             unsigned long addr,
7199                             const void *val,
7200                             unsigned int bytes,
7201                             struct x86_exception *exception)
7202 {
7203         return emulator_read_write(ctxt, addr, (void *)val, bytes,
7204                                    exception, &write_emultor);
7205 }
7206
7207 #define CMPXCHG_TYPE(t, ptr, old, new) \
7208         (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
7209
7210 #ifdef CONFIG_X86_64
7211 #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
7212 #else
7213 #  define CMPXCHG64(ptr, old, new) \
7214         (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
7215 #endif
7216
7217 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7218                                      unsigned long addr,
7219                                      const void *old,
7220                                      const void *new,
7221                                      unsigned int bytes,
7222                                      struct x86_exception *exception)
7223 {
7224         struct kvm_host_map map;
7225         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7226         u64 page_line_mask;
7227         gpa_t gpa;
7228         char *kaddr;
7229         bool exchanged;
7230
7231         /* guests cmpxchg8b have to be emulated atomically */
7232         if (bytes > 8 || (bytes & (bytes - 1)))
7233                 goto emul_write;
7234
7235         gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7236
7237         if (gpa == UNMAPPED_GVA ||
7238             (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7239                 goto emul_write;
7240
7241         /*
7242          * Emulate the atomic as a straight write to avoid #AC if SLD is
7243          * enabled in the host and the access splits a cache line.
7244          */
7245         if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7246                 page_line_mask = ~(cache_line_size() - 1);
7247         else
7248                 page_line_mask = PAGE_MASK;
7249
7250         if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7251                 goto emul_write;
7252
7253         if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
7254                 goto emul_write;
7255
7256         kaddr = map.hva + offset_in_page(gpa);
7257
7258         switch (bytes) {
7259         case 1:
7260                 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
7261                 break;
7262         case 2:
7263                 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
7264                 break;
7265         case 4:
7266                 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
7267                 break;
7268         case 8:
7269                 exchanged = CMPXCHG64(kaddr, old, new);
7270                 break;
7271         default:
7272                 BUG();
7273         }
7274
7275         kvm_vcpu_unmap(vcpu, &map, true);
7276
7277         if (!exchanged)
7278                 return X86EMUL_CMPXCHG_FAILED;
7279
7280         kvm_page_track_write(vcpu, gpa, new, bytes);
7281
7282         return X86EMUL_CONTINUE;
7283
7284 emul_write:
7285         printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7286
7287         return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7288 }
7289
7290 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
7291 {
7292         int r = 0, i;
7293
7294         for (i = 0; i < vcpu->arch.pio.count; i++) {
7295                 if (vcpu->arch.pio.in)
7296                         r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
7297                                             vcpu->arch.pio.size, pd);
7298                 else
7299                         r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
7300                                              vcpu->arch.pio.port, vcpu->arch.pio.size,
7301                                              pd);
7302                 if (r)
7303                         break;
7304                 pd += vcpu->arch.pio.size;
7305         }
7306         return r;
7307 }
7308
7309 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7310                                unsigned short port,
7311                                unsigned int count, bool in)
7312 {
7313         vcpu->arch.pio.port = port;
7314         vcpu->arch.pio.in = in;
7315         vcpu->arch.pio.count  = count;
7316         vcpu->arch.pio.size = size;
7317
7318         if (!kernel_pio(vcpu, vcpu->arch.pio_data))
7319                 return 1;
7320
7321         vcpu->run->exit_reason = KVM_EXIT_IO;
7322         vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7323         vcpu->run->io.size = size;
7324         vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7325         vcpu->run->io.count = count;
7326         vcpu->run->io.port = port;
7327
7328         return 0;
7329 }
7330
7331 static int __emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7332                              unsigned short port, unsigned int count)
7333 {
7334         WARN_ON(vcpu->arch.pio.count);
7335         memset(vcpu->arch.pio_data, 0, size * count);
7336         return emulator_pio_in_out(vcpu, size, port, count, true);
7337 }
7338
7339 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7340 {
7341         int size = vcpu->arch.pio.size;
7342         unsigned count = vcpu->arch.pio.count;
7343         memcpy(val, vcpu->arch.pio_data, size * count);
7344         trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7345         vcpu->arch.pio.count = 0;
7346 }
7347
7348 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7349                            unsigned short port, void *val, unsigned int count)
7350 {
7351         if (vcpu->arch.pio.count) {
7352                 /*
7353                  * Complete a previous iteration that required userspace I/O.
7354                  * Note, @count isn't guaranteed to match pio.count as userspace
7355                  * can modify ECX before rerunning the vCPU.  Ignore any such
7356                  * shenanigans as KVM doesn't support modifying the rep count,
7357                  * and the emulator ensures @count doesn't overflow the buffer.
7358                  */
7359         } else {
7360                 int r = __emulator_pio_in(vcpu, size, port, count);
7361                 if (!r)
7362                         return r;
7363
7364                 /* Results already available, fall through.  */
7365         }
7366
7367         complete_emulator_pio_in(vcpu, val);
7368         return 1;
7369 }
7370
7371 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7372                                     int size, unsigned short port, void *val,
7373                                     unsigned int count)
7374 {
7375         return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
7376
7377 }
7378
7379 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7380                             unsigned short port, const void *val,
7381                             unsigned int count)
7382 {
7383         int ret;
7384
7385         memcpy(vcpu->arch.pio_data, val, size * count);
7386         trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
7387         ret = emulator_pio_in_out(vcpu, size, port, count, false);
7388         if (ret)
7389                 vcpu->arch.pio.count = 0;
7390
7391         return ret;
7392 }
7393
7394 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7395                                      int size, unsigned short port,
7396                                      const void *val, unsigned int count)
7397 {
7398         return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7399 }
7400
7401 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7402 {
7403         return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7404 }
7405
7406 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7407 {
7408         kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7409 }
7410
7411 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7412 {
7413         if (!need_emulate_wbinvd(vcpu))
7414                 return X86EMUL_CONTINUE;
7415
7416         if (static_call(kvm_x86_has_wbinvd_exit)()) {
7417                 int cpu = get_cpu();
7418
7419                 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7420                 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7421                                 wbinvd_ipi, NULL, 1);
7422                 put_cpu();
7423                 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7424         } else
7425                 wbinvd();
7426         return X86EMUL_CONTINUE;
7427 }
7428
7429 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7430 {
7431         kvm_emulate_wbinvd_noskip(vcpu);
7432         return kvm_skip_emulated_instruction(vcpu);
7433 }
7434 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7435
7436
7437
7438 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7439 {
7440         kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7441 }
7442
7443 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7444                             unsigned long *dest)
7445 {
7446         kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7447 }
7448
7449 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7450                            unsigned long value)
7451 {
7452
7453         return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7454 }
7455
7456 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7457 {
7458         return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7459 }
7460
7461 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7462 {
7463         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7464         unsigned long value;
7465
7466         switch (cr) {
7467         case 0:
7468                 value = kvm_read_cr0(vcpu);
7469                 break;
7470         case 2:
7471                 value = vcpu->arch.cr2;
7472                 break;
7473         case 3:
7474                 value = kvm_read_cr3(vcpu);
7475                 break;
7476         case 4:
7477                 value = kvm_read_cr4(vcpu);
7478                 break;
7479         case 8:
7480                 value = kvm_get_cr8(vcpu);
7481                 break;
7482         default:
7483                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7484                 return 0;
7485         }
7486
7487         return value;
7488 }
7489
7490 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7491 {
7492         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7493         int res = 0;
7494
7495         switch (cr) {
7496         case 0:
7497                 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7498                 break;
7499         case 2:
7500                 vcpu->arch.cr2 = val;
7501                 break;
7502         case 3:
7503                 res = kvm_set_cr3(vcpu, val);
7504                 break;
7505         case 4:
7506                 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7507                 break;
7508         case 8:
7509                 res = kvm_set_cr8(vcpu, val);
7510                 break;
7511         default:
7512                 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7513                 res = -1;
7514         }
7515
7516         return res;
7517 }
7518
7519 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7520 {
7521         return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7522 }
7523
7524 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7525 {
7526         static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7527 }
7528
7529 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7530 {
7531         static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7532 }
7533
7534 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7535 {
7536         static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7537 }
7538
7539 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7540 {
7541         static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7542 }
7543
7544 static unsigned long emulator_get_cached_segment_base(
7545         struct x86_emulate_ctxt *ctxt, int seg)
7546 {
7547         return get_segment_base(emul_to_vcpu(ctxt), seg);
7548 }
7549
7550 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7551                                  struct desc_struct *desc, u32 *base3,
7552                                  int seg)
7553 {
7554         struct kvm_segment var;
7555
7556         kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7557         *selector = var.selector;
7558
7559         if (var.unusable) {
7560                 memset(desc, 0, sizeof(*desc));
7561                 if (base3)
7562                         *base3 = 0;
7563                 return false;
7564         }
7565
7566         if (var.g)
7567                 var.limit >>= 12;
7568         set_desc_limit(desc, var.limit);
7569         set_desc_base(desc, (unsigned long)var.base);
7570 #ifdef CONFIG_X86_64
7571         if (base3)
7572                 *base3 = var.base >> 32;
7573 #endif
7574         desc->type = var.type;
7575         desc->s = var.s;
7576         desc->dpl = var.dpl;
7577         desc->p = var.present;
7578         desc->avl = var.avl;
7579         desc->l = var.l;
7580         desc->d = var.db;
7581         desc->g = var.g;
7582
7583         return true;
7584 }
7585
7586 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
7587                                  struct desc_struct *desc, u32 base3,
7588                                  int seg)
7589 {
7590         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7591         struct kvm_segment var;
7592
7593         var.selector = selector;
7594         var.base = get_desc_base(desc);
7595 #ifdef CONFIG_X86_64
7596         var.base |= ((u64)base3) << 32;
7597 #endif
7598         var.limit = get_desc_limit(desc);
7599         if (desc->g)
7600                 var.limit = (var.limit << 12) | 0xfff;
7601         var.type = desc->type;
7602         var.dpl = desc->dpl;
7603         var.db = desc->d;
7604         var.s = desc->s;
7605         var.l = desc->l;
7606         var.g = desc->g;
7607         var.avl = desc->avl;
7608         var.present = desc->p;
7609         var.unusable = !var.present;
7610         var.padding = 0;
7611
7612         kvm_set_segment(vcpu, &var, seg);
7613         return;
7614 }
7615
7616 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
7617                             u32 msr_index, u64 *pdata)
7618 {
7619         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7620         int r;
7621
7622         r = kvm_get_msr(vcpu, msr_index, pdata);
7623
7624         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
7625                                     complete_emulated_rdmsr, r)) {
7626                 /* Bounce to user space */
7627                 return X86EMUL_IO_NEEDED;
7628         }
7629
7630         return r;
7631 }
7632
7633 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
7634                             u32 msr_index, u64 data)
7635 {
7636         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7637         int r;
7638
7639         r = kvm_set_msr(vcpu, msr_index, data);
7640
7641         if (r && kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
7642                                     complete_emulated_msr_access, r)) {
7643                 /* Bounce to user space */
7644                 return X86EMUL_IO_NEEDED;
7645         }
7646
7647         return r;
7648 }
7649
7650 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
7651 {
7652         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7653
7654         return vcpu->arch.smbase;
7655 }
7656
7657 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
7658 {
7659         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7660
7661         vcpu->arch.smbase = smbase;
7662 }
7663
7664 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
7665                               u32 pmc)
7666 {
7667         if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
7668                 return 0;
7669         return -EINVAL;
7670 }
7671
7672 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
7673                              u32 pmc, u64 *pdata)
7674 {
7675         return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
7676 }
7677
7678 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
7679 {
7680         emul_to_vcpu(ctxt)->arch.halt_request = 1;
7681 }
7682
7683 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
7684                               struct x86_instruction_info *info,
7685                               enum x86_intercept_stage stage)
7686 {
7687         return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
7688                                             &ctxt->exception);
7689 }
7690
7691 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
7692                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
7693                               bool exact_only)
7694 {
7695         return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
7696 }
7697
7698 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
7699 {
7700         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
7701 }
7702
7703 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
7704 {
7705         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
7706 }
7707
7708 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
7709 {
7710         return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
7711 }
7712
7713 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
7714 {
7715         return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
7716 }
7717
7718 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
7719 {
7720         kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
7721 }
7722
7723 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
7724 {
7725         static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
7726 }
7727
7728 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
7729 {
7730         return emul_to_vcpu(ctxt)->arch.hflags;
7731 }
7732
7733 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
7734 {
7735         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7736
7737         kvm_smm_changed(vcpu, false);
7738 }
7739
7740 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
7741                                   const char *smstate)
7742 {
7743         return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
7744 }
7745
7746 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
7747 {
7748         kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
7749 }
7750
7751 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
7752 {
7753         return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
7754 }
7755
7756 static const struct x86_emulate_ops emulate_ops = {
7757         .read_gpr            = emulator_read_gpr,
7758         .write_gpr           = emulator_write_gpr,
7759         .read_std            = emulator_read_std,
7760         .write_std           = emulator_write_std,
7761         .read_phys           = kvm_read_guest_phys_system,
7762         .fetch               = kvm_fetch_guest_virt,
7763         .read_emulated       = emulator_read_emulated,
7764         .write_emulated      = emulator_write_emulated,
7765         .cmpxchg_emulated    = emulator_cmpxchg_emulated,
7766         .invlpg              = emulator_invlpg,
7767         .pio_in_emulated     = emulator_pio_in_emulated,
7768         .pio_out_emulated    = emulator_pio_out_emulated,
7769         .get_segment         = emulator_get_segment,
7770         .set_segment         = emulator_set_segment,
7771         .get_cached_segment_base = emulator_get_cached_segment_base,
7772         .get_gdt             = emulator_get_gdt,
7773         .get_idt             = emulator_get_idt,
7774         .set_gdt             = emulator_set_gdt,
7775         .set_idt             = emulator_set_idt,
7776         .get_cr              = emulator_get_cr,
7777         .set_cr              = emulator_set_cr,
7778         .cpl                 = emulator_get_cpl,
7779         .get_dr              = emulator_get_dr,
7780         .set_dr              = emulator_set_dr,
7781         .get_smbase          = emulator_get_smbase,
7782         .set_smbase          = emulator_set_smbase,
7783         .set_msr             = emulator_set_msr,
7784         .get_msr             = emulator_get_msr,
7785         .check_pmc           = emulator_check_pmc,
7786         .read_pmc            = emulator_read_pmc,
7787         .halt                = emulator_halt,
7788         .wbinvd              = emulator_wbinvd,
7789         .fix_hypercall       = emulator_fix_hypercall,
7790         .intercept           = emulator_intercept,
7791         .get_cpuid           = emulator_get_cpuid,
7792         .guest_has_long_mode = emulator_guest_has_long_mode,
7793         .guest_has_movbe     = emulator_guest_has_movbe,
7794         .guest_has_fxsr      = emulator_guest_has_fxsr,
7795         .set_nmi_mask        = emulator_set_nmi_mask,
7796         .get_hflags          = emulator_get_hflags,
7797         .exiting_smm         = emulator_exiting_smm,
7798         .leave_smm           = emulator_leave_smm,
7799         .triple_fault        = emulator_triple_fault,
7800         .set_xcr             = emulator_set_xcr,
7801 };
7802
7803 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
7804 {
7805         u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
7806         /*
7807          * an sti; sti; sequence only disable interrupts for the first
7808          * instruction. So, if the last instruction, be it emulated or
7809          * not, left the system with the INT_STI flag enabled, it
7810          * means that the last instruction is an sti. We should not
7811          * leave the flag on in this case. The same goes for mov ss
7812          */
7813         if (int_shadow & mask)
7814                 mask = 0;
7815         if (unlikely(int_shadow || mask)) {
7816                 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
7817                 if (!mask)
7818                         kvm_make_request(KVM_REQ_EVENT, vcpu);
7819         }
7820 }
7821
7822 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
7823 {
7824         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7825         if (ctxt->exception.vector == PF_VECTOR)
7826                 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
7827
7828         if (ctxt->exception.error_code_valid)
7829                 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
7830                                       ctxt->exception.error_code);
7831         else
7832                 kvm_queue_exception(vcpu, ctxt->exception.vector);
7833         return false;
7834 }
7835
7836 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
7837 {
7838         struct x86_emulate_ctxt *ctxt;
7839
7840         ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
7841         if (!ctxt) {
7842                 pr_err("kvm: failed to allocate vcpu's emulator\n");
7843                 return NULL;
7844         }
7845
7846         ctxt->vcpu = vcpu;
7847         ctxt->ops = &emulate_ops;
7848         vcpu->arch.emulate_ctxt = ctxt;
7849
7850         return ctxt;
7851 }
7852
7853 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
7854 {
7855         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7856         int cs_db, cs_l;
7857
7858         static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
7859
7860         ctxt->gpa_available = false;
7861         ctxt->eflags = kvm_get_rflags(vcpu);
7862         ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
7863
7864         ctxt->eip = kvm_rip_read(vcpu);
7865         ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
7866                      (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
7867                      (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
7868                      cs_db                              ? X86EMUL_MODE_PROT32 :
7869                                                           X86EMUL_MODE_PROT16;
7870         BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
7871         BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
7872         BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
7873
7874         ctxt->interruptibility = 0;
7875         ctxt->have_exception = false;
7876         ctxt->exception.vector = -1;
7877         ctxt->perm_ok = false;
7878
7879         init_decode_cache(ctxt);
7880         vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
7881 }
7882
7883 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
7884 {
7885         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7886         int ret;
7887
7888         init_emulate_ctxt(vcpu);
7889
7890         ctxt->op_bytes = 2;
7891         ctxt->ad_bytes = 2;
7892         ctxt->_eip = ctxt->eip + inc_eip;
7893         ret = emulate_int_real(ctxt, irq);
7894
7895         if (ret != X86EMUL_CONTINUE) {
7896                 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7897         } else {
7898                 ctxt->eip = ctxt->_eip;
7899                 kvm_rip_write(vcpu, ctxt->eip);
7900                 kvm_set_rflags(vcpu, ctxt->eflags);
7901         }
7902 }
7903 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
7904
7905 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7906                                            u8 ndata, u8 *insn_bytes, u8 insn_size)
7907 {
7908         struct kvm_run *run = vcpu->run;
7909         u64 info[5];
7910         u8 info_start;
7911
7912         /*
7913          * Zero the whole array used to retrieve the exit info, as casting to
7914          * u32 for select entries will leave some chunks uninitialized.
7915          */
7916         memset(&info, 0, sizeof(info));
7917
7918         static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
7919                                            &info[2], (u32 *)&info[3],
7920                                            (u32 *)&info[4]);
7921
7922         run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7923         run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
7924
7925         /*
7926          * There's currently space for 13 entries, but 5 are used for the exit
7927          * reason and info.  Restrict to 4 to reduce the maintenance burden
7928          * when expanding kvm_run.emulation_failure in the future.
7929          */
7930         if (WARN_ON_ONCE(ndata > 4))
7931                 ndata = 4;
7932
7933         /* Always include the flags as a 'data' entry. */
7934         info_start = 1;
7935         run->emulation_failure.flags = 0;
7936
7937         if (insn_size) {
7938                 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
7939                               sizeof(run->emulation_failure.insn_bytes) != 16));
7940                 info_start += 2;
7941                 run->emulation_failure.flags |=
7942                         KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
7943                 run->emulation_failure.insn_size = insn_size;
7944                 memset(run->emulation_failure.insn_bytes, 0x90,
7945                        sizeof(run->emulation_failure.insn_bytes));
7946                 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
7947         }
7948
7949         memcpy(&run->internal.data[info_start], info, sizeof(info));
7950         memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
7951                ndata * sizeof(data[0]));
7952
7953         run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
7954 }
7955
7956 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
7957 {
7958         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7959
7960         prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
7961                                        ctxt->fetch.end - ctxt->fetch.data);
7962 }
7963
7964 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
7965                                           u8 ndata)
7966 {
7967         prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
7968 }
7969 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
7970
7971 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
7972 {
7973         __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
7974 }
7975 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
7976
7977 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
7978 {
7979         struct kvm *kvm = vcpu->kvm;
7980
7981         ++vcpu->stat.insn_emulation_fail;
7982         trace_kvm_emulate_insn_failed(vcpu);
7983
7984         if (emulation_type & EMULTYPE_VMWARE_GP) {
7985                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7986                 return 1;
7987         }
7988
7989         if (kvm->arch.exit_on_emulation_error ||
7990             (emulation_type & EMULTYPE_SKIP)) {
7991                 prepare_emulation_ctxt_failure_exit(vcpu);
7992                 return 0;
7993         }
7994
7995         kvm_queue_exception(vcpu, UD_VECTOR);
7996
7997         if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
7998                 prepare_emulation_ctxt_failure_exit(vcpu);
7999                 return 0;
8000         }
8001
8002         return 1;
8003 }
8004
8005 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8006                                   bool write_fault_to_shadow_pgtable,
8007                                   int emulation_type)
8008 {
8009         gpa_t gpa = cr2_or_gpa;
8010         kvm_pfn_t pfn;
8011
8012         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8013                 return false;
8014
8015         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8016             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8017                 return false;
8018
8019         if (!vcpu->arch.mmu->direct_map) {
8020                 /*
8021                  * Write permission should be allowed since only
8022                  * write access need to be emulated.
8023                  */
8024                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8025
8026                 /*
8027                  * If the mapping is invalid in guest, let cpu retry
8028                  * it to generate fault.
8029                  */
8030                 if (gpa == UNMAPPED_GVA)
8031                         return true;
8032         }
8033
8034         /*
8035          * Do not retry the unhandleable instruction if it faults on the
8036          * readonly host memory, otherwise it will goto a infinite loop:
8037          * retry instruction -> write #PF -> emulation fail -> retry
8038          * instruction -> ...
8039          */
8040         pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8041
8042         /*
8043          * If the instruction failed on the error pfn, it can not be fixed,
8044          * report the error to userspace.
8045          */
8046         if (is_error_noslot_pfn(pfn))
8047                 return false;
8048
8049         kvm_release_pfn_clean(pfn);
8050
8051         /* The instructions are well-emulated on direct mmu. */
8052         if (vcpu->arch.mmu->direct_map) {
8053                 unsigned int indirect_shadow_pages;
8054
8055                 write_lock(&vcpu->kvm->mmu_lock);
8056                 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8057                 write_unlock(&vcpu->kvm->mmu_lock);
8058
8059                 if (indirect_shadow_pages)
8060                         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8061
8062                 return true;
8063         }
8064
8065         /*
8066          * if emulation was due to access to shadowed page table
8067          * and it failed try to unshadow page and re-enter the
8068          * guest to let CPU execute the instruction.
8069          */
8070         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8071
8072         /*
8073          * If the access faults on its page table, it can not
8074          * be fixed by unprotecting shadow page and it should
8075          * be reported to userspace.
8076          */
8077         return !write_fault_to_shadow_pgtable;
8078 }
8079
8080 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8081                               gpa_t cr2_or_gpa,  int emulation_type)
8082 {
8083         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8084         unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8085
8086         last_retry_eip = vcpu->arch.last_retry_eip;
8087         last_retry_addr = vcpu->arch.last_retry_addr;
8088
8089         /*
8090          * If the emulation is caused by #PF and it is non-page_table
8091          * writing instruction, it means the VM-EXIT is caused by shadow
8092          * page protected, we can zap the shadow page and retry this
8093          * instruction directly.
8094          *
8095          * Note: if the guest uses a non-page-table modifying instruction
8096          * on the PDE that points to the instruction, then we will unmap
8097          * the instruction and go to an infinite loop. So, we cache the
8098          * last retried eip and the last fault address, if we meet the eip
8099          * and the address again, we can break out of the potential infinite
8100          * loop.
8101          */
8102         vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8103
8104         if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8105                 return false;
8106
8107         if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8108             WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8109                 return false;
8110
8111         if (x86_page_table_writing_insn(ctxt))
8112                 return false;
8113
8114         if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8115                 return false;
8116
8117         vcpu->arch.last_retry_eip = ctxt->eip;
8118         vcpu->arch.last_retry_addr = cr2_or_gpa;
8119
8120         if (!vcpu->arch.mmu->direct_map)
8121                 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8122
8123         kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8124
8125         return true;
8126 }
8127
8128 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8129 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8130
8131 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8132 {
8133         trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8134
8135         if (entering_smm) {
8136                 vcpu->arch.hflags |= HF_SMM_MASK;
8137         } else {
8138                 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8139
8140                 /* Process a latched INIT or SMI, if any.  */
8141                 kvm_make_request(KVM_REQ_EVENT, vcpu);
8142
8143                 /*
8144                  * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8145                  * on SMM exit we still need to reload them from
8146                  * guest memory
8147                  */
8148                 vcpu->arch.pdptrs_from_userspace = false;
8149         }
8150
8151         kvm_mmu_reset_context(vcpu);
8152 }
8153
8154 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8155                                 unsigned long *db)
8156 {
8157         u32 dr6 = 0;
8158         int i;
8159         u32 enable, rwlen;
8160
8161         enable = dr7;
8162         rwlen = dr7 >> 16;
8163         for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8164                 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8165                         dr6 |= (1 << i);
8166         return dr6;
8167 }
8168
8169 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8170 {
8171         struct kvm_run *kvm_run = vcpu->run;
8172
8173         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8174                 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8175                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8176                 kvm_run->debug.arch.exception = DB_VECTOR;
8177                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8178                 return 0;
8179         }
8180         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8181         return 1;
8182 }
8183
8184 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8185 {
8186         unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8187         int r;
8188
8189         r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8190         if (unlikely(!r))
8191                 return 0;
8192
8193         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8194
8195         /*
8196          * rflags is the old, "raw" value of the flags.  The new value has
8197          * not been saved yet.
8198          *
8199          * This is correct even for TF set by the guest, because "the
8200          * processor will not generate this exception after the instruction
8201          * that sets the TF flag".
8202          */
8203         if (unlikely(rflags & X86_EFLAGS_TF))
8204                 r = kvm_vcpu_do_singlestep(vcpu);
8205         return r;
8206 }
8207 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8208
8209 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
8210 {
8211         if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8212             (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8213                 struct kvm_run *kvm_run = vcpu->run;
8214                 unsigned long eip = kvm_get_linear_rip(vcpu);
8215                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8216                                            vcpu->arch.guest_debug_dr7,
8217                                            vcpu->arch.eff_db);
8218
8219                 if (dr6 != 0) {
8220                         kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8221                         kvm_run->debug.arch.pc = eip;
8222                         kvm_run->debug.arch.exception = DB_VECTOR;
8223                         kvm_run->exit_reason = KVM_EXIT_DEBUG;
8224                         *r = 0;
8225                         return true;
8226                 }
8227         }
8228
8229         if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8230             !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
8231                 unsigned long eip = kvm_get_linear_rip(vcpu);
8232                 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8233                                            vcpu->arch.dr7,
8234                                            vcpu->arch.db);
8235
8236                 if (dr6 != 0) {
8237                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8238                         *r = 1;
8239                         return true;
8240                 }
8241         }
8242
8243         return false;
8244 }
8245
8246 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8247 {
8248         switch (ctxt->opcode_len) {
8249         case 1:
8250                 switch (ctxt->b) {
8251                 case 0xe4:      /* IN */
8252                 case 0xe5:
8253                 case 0xec:
8254                 case 0xed:
8255                 case 0xe6:      /* OUT */
8256                 case 0xe7:
8257                 case 0xee:
8258                 case 0xef:
8259                 case 0x6c:      /* INS */
8260                 case 0x6d:
8261                 case 0x6e:      /* OUTS */
8262                 case 0x6f:
8263                         return true;
8264                 }
8265                 break;
8266         case 2:
8267                 switch (ctxt->b) {
8268                 case 0x33:      /* RDPMC */
8269                         return true;
8270                 }
8271                 break;
8272         }
8273
8274         return false;
8275 }
8276
8277 /*
8278  * Decode to be emulated instruction. Return EMULATION_OK if success.
8279  */
8280 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8281                                     void *insn, int insn_len)
8282 {
8283         int r = EMULATION_OK;
8284         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8285
8286         init_emulate_ctxt(vcpu);
8287
8288         /*
8289          * We will reenter on the same instruction since we do not set
8290          * complete_userspace_io. This does not handle watchpoints yet,
8291          * those would be handled in the emulate_ops.
8292          */
8293         if (!(emulation_type & EMULTYPE_SKIP) &&
8294             kvm_vcpu_check_breakpoint(vcpu, &r))
8295                 return r;
8296
8297         r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8298
8299         trace_kvm_emulate_insn_start(vcpu);
8300         ++vcpu->stat.insn_emulation;
8301
8302         return r;
8303 }
8304 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8305
8306 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8307                             int emulation_type, void *insn, int insn_len)
8308 {
8309         int r;
8310         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8311         bool writeback = true;
8312         bool write_fault_to_spt;
8313
8314         if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8315                 return 1;
8316
8317         vcpu->arch.l1tf_flush_l1d = true;
8318
8319         /*
8320          * Clear write_fault_to_shadow_pgtable here to ensure it is
8321          * never reused.
8322          */
8323         write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8324         vcpu->arch.write_fault_to_shadow_pgtable = false;
8325
8326         if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8327                 kvm_clear_exception_queue(vcpu);
8328
8329                 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8330                                                     insn, insn_len);
8331                 if (r != EMULATION_OK)  {
8332                         if ((emulation_type & EMULTYPE_TRAP_UD) ||
8333                             (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8334                                 kvm_queue_exception(vcpu, UD_VECTOR);
8335                                 return 1;
8336                         }
8337                         if (reexecute_instruction(vcpu, cr2_or_gpa,
8338                                                   write_fault_to_spt,
8339                                                   emulation_type))
8340                                 return 1;
8341                         if (ctxt->have_exception) {
8342                                 /*
8343                                  * #UD should result in just EMULATION_FAILED, and trap-like
8344                                  * exception should not be encountered during decode.
8345                                  */
8346                                 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8347                                              exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8348                                 inject_emulated_exception(vcpu);
8349                                 return 1;
8350                         }
8351                         return handle_emulation_failure(vcpu, emulation_type);
8352                 }
8353         }
8354
8355         if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8356             !is_vmware_backdoor_opcode(ctxt)) {
8357                 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8358                 return 1;
8359         }
8360
8361         /*
8362          * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8363          * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8364          * The caller is responsible for updating interruptibility state and
8365          * injecting single-step #DBs.
8366          */
8367         if (emulation_type & EMULTYPE_SKIP) {
8368                 if (ctxt->mode != X86EMUL_MODE_PROT64)
8369                         ctxt->eip = (u32)ctxt->_eip;
8370                 else
8371                         ctxt->eip = ctxt->_eip;
8372
8373                 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8374                         r = 1;
8375                         goto writeback;
8376                 }
8377
8378                 kvm_rip_write(vcpu, ctxt->eip);
8379                 if (ctxt->eflags & X86_EFLAGS_RF)
8380                         kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8381                 return 1;
8382         }
8383
8384         if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8385                 return 1;
8386
8387         /* this is needed for vmware backdoor interface to work since it
8388            changes registers values  during IO operation */
8389         if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8390                 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8391                 emulator_invalidate_register_cache(ctxt);
8392         }
8393
8394 restart:
8395         if (emulation_type & EMULTYPE_PF) {
8396                 /* Save the faulting GPA (cr2) in the address field */
8397                 ctxt->exception.address = cr2_or_gpa;
8398
8399                 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8400                 if (vcpu->arch.mmu->direct_map) {
8401                         ctxt->gpa_available = true;
8402                         ctxt->gpa_val = cr2_or_gpa;
8403                 }
8404         } else {
8405                 /* Sanitize the address out of an abundance of paranoia. */
8406                 ctxt->exception.address = 0;
8407         }
8408
8409         r = x86_emulate_insn(ctxt);
8410
8411         if (r == EMULATION_INTERCEPTED)
8412                 return 1;
8413
8414         if (r == EMULATION_FAILED) {
8415                 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8416                                         emulation_type))
8417                         return 1;
8418
8419                 return handle_emulation_failure(vcpu, emulation_type);
8420         }
8421
8422         if (ctxt->have_exception) {
8423                 r = 1;
8424                 if (inject_emulated_exception(vcpu))
8425                         return r;
8426         } else if (vcpu->arch.pio.count) {
8427                 if (!vcpu->arch.pio.in) {
8428                         /* FIXME: return into emulator if single-stepping.  */
8429                         vcpu->arch.pio.count = 0;
8430                 } else {
8431                         writeback = false;
8432                         vcpu->arch.complete_userspace_io = complete_emulated_pio;
8433                 }
8434                 r = 0;
8435         } else if (vcpu->mmio_needed) {
8436                 ++vcpu->stat.mmio_exits;
8437
8438                 if (!vcpu->mmio_is_write)
8439                         writeback = false;
8440                 r = 0;
8441                 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8442         } else if (vcpu->arch.complete_userspace_io) {
8443                 writeback = false;
8444                 r = 0;
8445         } else if (r == EMULATION_RESTART)
8446                 goto restart;
8447         else
8448                 r = 1;
8449
8450 writeback:
8451         if (writeback) {
8452                 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8453                 toggle_interruptibility(vcpu, ctxt->interruptibility);
8454                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8455                 if (!ctxt->have_exception ||
8456                     exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8457                         kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8458                         if (ctxt->is_branch)
8459                                 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8460                         kvm_rip_write(vcpu, ctxt->eip);
8461                         if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8462                                 r = kvm_vcpu_do_singlestep(vcpu);
8463                         static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8464                         __kvm_set_rflags(vcpu, ctxt->eflags);
8465                 }
8466
8467                 /*
8468                  * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8469                  * do nothing, and it will be requested again as soon as
8470                  * the shadow expires.  But we still need to check here,
8471                  * because POPF has no interrupt shadow.
8472                  */
8473                 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8474                         kvm_make_request(KVM_REQ_EVENT, vcpu);
8475         } else
8476                 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8477
8478         return r;
8479 }
8480
8481 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8482 {
8483         return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8484 }
8485 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8486
8487 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8488                                         void *insn, int insn_len)
8489 {
8490         return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8491 }
8492 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
8493
8494 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
8495 {
8496         vcpu->arch.pio.count = 0;
8497         return 1;
8498 }
8499
8500 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
8501 {
8502         vcpu->arch.pio.count = 0;
8503
8504         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
8505                 return 1;
8506
8507         return kvm_skip_emulated_instruction(vcpu);
8508 }
8509
8510 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
8511                             unsigned short port)
8512 {
8513         unsigned long val = kvm_rax_read(vcpu);
8514         int ret = emulator_pio_out(vcpu, size, port, &val, 1);
8515
8516         if (ret)
8517                 return ret;
8518
8519         /*
8520          * Workaround userspace that relies on old KVM behavior of %rip being
8521          * incremented prior to exiting to userspace to handle "OUT 0x7e".
8522          */
8523         if (port == 0x7e &&
8524             kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
8525                 vcpu->arch.complete_userspace_io =
8526                         complete_fast_pio_out_port_0x7e;
8527                 kvm_skip_emulated_instruction(vcpu);
8528         } else {
8529                 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8530                 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
8531         }
8532         return 0;
8533 }
8534
8535 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
8536 {
8537         unsigned long val;
8538
8539         /* We should only ever be called with arch.pio.count equal to 1 */
8540         BUG_ON(vcpu->arch.pio.count != 1);
8541
8542         if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
8543                 vcpu->arch.pio.count = 0;
8544                 return 1;
8545         }
8546
8547         /* For size less than 4 we merge, else we zero extend */
8548         val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8549
8550         /*
8551          * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8552          * the copy and tracing
8553          */
8554         emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
8555         kvm_rax_write(vcpu, val);
8556
8557         return kvm_skip_emulated_instruction(vcpu);
8558 }
8559
8560 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
8561                            unsigned short port)
8562 {
8563         unsigned long val;
8564         int ret;
8565
8566         /* For size less than 4 we merge, else we zero extend */
8567         val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8568
8569         ret = emulator_pio_in(vcpu, size, port, &val, 1);
8570         if (ret) {
8571                 kvm_rax_write(vcpu, val);
8572                 return ret;
8573         }
8574
8575         vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8576         vcpu->arch.complete_userspace_io = complete_fast_pio_in;
8577
8578         return 0;
8579 }
8580
8581 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
8582 {
8583         int ret;
8584
8585         if (in)
8586                 ret = kvm_fast_pio_in(vcpu, size, port);
8587         else
8588                 ret = kvm_fast_pio_out(vcpu, size, port);
8589         return ret && kvm_skip_emulated_instruction(vcpu);
8590 }
8591 EXPORT_SYMBOL_GPL(kvm_fast_pio);
8592
8593 static int kvmclock_cpu_down_prep(unsigned int cpu)
8594 {
8595         __this_cpu_write(cpu_tsc_khz, 0);
8596         return 0;
8597 }
8598
8599 static void tsc_khz_changed(void *data)
8600 {
8601         struct cpufreq_freqs *freq = data;
8602         unsigned long khz = 0;
8603
8604         if (data)
8605                 khz = freq->new;
8606         else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8607                 khz = cpufreq_quick_get(raw_smp_processor_id());
8608         if (!khz)
8609                 khz = tsc_khz;
8610         __this_cpu_write(cpu_tsc_khz, khz);
8611 }
8612
8613 #ifdef CONFIG_X86_64
8614 static void kvm_hyperv_tsc_notifier(void)
8615 {
8616         struct kvm *kvm;
8617         int cpu;
8618
8619         mutex_lock(&kvm_lock);
8620         list_for_each_entry(kvm, &vm_list, vm_list)
8621                 kvm_make_mclock_inprogress_request(kvm);
8622
8623         /* no guest entries from this point */
8624         hyperv_stop_tsc_emulation();
8625
8626         /* TSC frequency always matches when on Hyper-V */
8627         for_each_present_cpu(cpu)
8628                 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
8629         kvm_max_guest_tsc_khz = tsc_khz;
8630
8631         list_for_each_entry(kvm, &vm_list, vm_list) {
8632                 __kvm_start_pvclock_update(kvm);
8633                 pvclock_update_vm_gtod_copy(kvm);
8634                 kvm_end_pvclock_update(kvm);
8635         }
8636
8637         mutex_unlock(&kvm_lock);
8638 }
8639 #endif
8640
8641 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
8642 {
8643         struct kvm *kvm;
8644         struct kvm_vcpu *vcpu;
8645         int send_ipi = 0;
8646         unsigned long i;
8647
8648         /*
8649          * We allow guests to temporarily run on slowing clocks,
8650          * provided we notify them after, or to run on accelerating
8651          * clocks, provided we notify them before.  Thus time never
8652          * goes backwards.
8653          *
8654          * However, we have a problem.  We can't atomically update
8655          * the frequency of a given CPU from this function; it is
8656          * merely a notifier, which can be called from any CPU.
8657          * Changing the TSC frequency at arbitrary points in time
8658          * requires a recomputation of local variables related to
8659          * the TSC for each VCPU.  We must flag these local variables
8660          * to be updated and be sure the update takes place with the
8661          * new frequency before any guests proceed.
8662          *
8663          * Unfortunately, the combination of hotplug CPU and frequency
8664          * change creates an intractable locking scenario; the order
8665          * of when these callouts happen is undefined with respect to
8666          * CPU hotplug, and they can race with each other.  As such,
8667          * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
8668          * undefined; you can actually have a CPU frequency change take
8669          * place in between the computation of X and the setting of the
8670          * variable.  To protect against this problem, all updates of
8671          * the per_cpu tsc_khz variable are done in an interrupt
8672          * protected IPI, and all callers wishing to update the value
8673          * must wait for a synchronous IPI to complete (which is trivial
8674          * if the caller is on the CPU already).  This establishes the
8675          * necessary total order on variable updates.
8676          *
8677          * Note that because a guest time update may take place
8678          * anytime after the setting of the VCPU's request bit, the
8679          * correct TSC value must be set before the request.  However,
8680          * to ensure the update actually makes it to any guest which
8681          * starts running in hardware virtualization between the set
8682          * and the acquisition of the spinlock, we must also ping the
8683          * CPU after setting the request bit.
8684          *
8685          */
8686
8687         smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8688
8689         mutex_lock(&kvm_lock);
8690         list_for_each_entry(kvm, &vm_list, vm_list) {
8691                 kvm_for_each_vcpu(i, vcpu, kvm) {
8692                         if (vcpu->cpu != cpu)
8693                                 continue;
8694                         kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8695                         if (vcpu->cpu != raw_smp_processor_id())
8696                                 send_ipi = 1;
8697                 }
8698         }
8699         mutex_unlock(&kvm_lock);
8700
8701         if (freq->old < freq->new && send_ipi) {
8702                 /*
8703                  * We upscale the frequency.  Must make the guest
8704                  * doesn't see old kvmclock values while running with
8705                  * the new frequency, otherwise we risk the guest sees
8706                  * time go backwards.
8707                  *
8708                  * In case we update the frequency for another cpu
8709                  * (which might be in guest context) send an interrupt
8710                  * to kick the cpu out of guest context.  Next time
8711                  * guest context is entered kvmclock will be updated,
8712                  * so the guest will not see stale values.
8713                  */
8714                 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
8715         }
8716 }
8717
8718 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
8719                                      void *data)
8720 {
8721         struct cpufreq_freqs *freq = data;
8722         int cpu;
8723
8724         if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
8725                 return 0;
8726         if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
8727                 return 0;
8728
8729         for_each_cpu(cpu, freq->policy->cpus)
8730                 __kvmclock_cpufreq_notifier(freq, cpu);
8731
8732         return 0;
8733 }
8734
8735 static struct notifier_block kvmclock_cpufreq_notifier_block = {
8736         .notifier_call  = kvmclock_cpufreq_notifier
8737 };
8738
8739 static int kvmclock_cpu_online(unsigned int cpu)
8740 {
8741         tsc_khz_changed(NULL);
8742         return 0;
8743 }
8744
8745 static void kvm_timer_init(void)
8746 {
8747         max_tsc_khz = tsc_khz;
8748
8749         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
8750 #ifdef CONFIG_CPU_FREQ
8751                 struct cpufreq_policy *policy;
8752                 int cpu;
8753
8754                 cpu = get_cpu();
8755                 policy = cpufreq_cpu_get(cpu);
8756                 if (policy) {
8757                         if (policy->cpuinfo.max_freq)
8758                                 max_tsc_khz = policy->cpuinfo.max_freq;
8759                         cpufreq_cpu_put(policy);
8760                 }
8761                 put_cpu();
8762 #endif
8763                 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
8764                                           CPUFREQ_TRANSITION_NOTIFIER);
8765         }
8766
8767         cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
8768                           kvmclock_cpu_online, kvmclock_cpu_down_prep);
8769 }
8770
8771 #ifdef CONFIG_X86_64
8772 static void pvclock_gtod_update_fn(struct work_struct *work)
8773 {
8774         struct kvm *kvm;
8775         struct kvm_vcpu *vcpu;
8776         unsigned long i;
8777
8778         mutex_lock(&kvm_lock);
8779         list_for_each_entry(kvm, &vm_list, vm_list)
8780                 kvm_for_each_vcpu(i, vcpu, kvm)
8781                         kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
8782         atomic_set(&kvm_guest_has_master_clock, 0);
8783         mutex_unlock(&kvm_lock);
8784 }
8785
8786 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
8787
8788 /*
8789  * Indirection to move queue_work() out of the tk_core.seq write held
8790  * region to prevent possible deadlocks against time accessors which
8791  * are invoked with work related locks held.
8792  */
8793 static void pvclock_irq_work_fn(struct irq_work *w)
8794 {
8795         queue_work(system_long_wq, &pvclock_gtod_work);
8796 }
8797
8798 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
8799
8800 /*
8801  * Notification about pvclock gtod data update.
8802  */
8803 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
8804                                void *priv)
8805 {
8806         struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
8807         struct timekeeper *tk = priv;
8808
8809         update_pvclock_gtod(tk);
8810
8811         /*
8812          * Disable master clock if host does not trust, or does not use,
8813          * TSC based clocksource. Delegate queue_work() to irq_work as
8814          * this is invoked with tk_core.seq write held.
8815          */
8816         if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
8817             atomic_read(&kvm_guest_has_master_clock) != 0)
8818                 irq_work_queue(&pvclock_irq_work);
8819         return 0;
8820 }
8821
8822 static struct notifier_block pvclock_gtod_notifier = {
8823         .notifier_call = pvclock_gtod_notify,
8824 };
8825 #endif
8826
8827 int kvm_arch_init(void *opaque)
8828 {
8829         struct kvm_x86_init_ops *ops = opaque;
8830         int r;
8831
8832         if (kvm_x86_ops.hardware_enable) {
8833                 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
8834                 r = -EEXIST;
8835                 goto out;
8836         }
8837
8838         if (!ops->cpu_has_kvm_support()) {
8839                 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
8840                                    ops->runtime_ops->name);
8841                 r = -EOPNOTSUPP;
8842                 goto out;
8843         }
8844         if (ops->disabled_by_bios()) {
8845                 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
8846                                    ops->runtime_ops->name);
8847                 r = -EOPNOTSUPP;
8848                 goto out;
8849         }
8850
8851         /*
8852          * KVM explicitly assumes that the guest has an FPU and
8853          * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
8854          * vCPU's FPU state as a fxregs_state struct.
8855          */
8856         if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8857                 printk(KERN_ERR "kvm: inadequate fpu\n");
8858                 r = -EOPNOTSUPP;
8859                 goto out;
8860         }
8861
8862         r = -ENOMEM;
8863
8864         x86_emulator_cache = kvm_alloc_emulator_cache();
8865         if (!x86_emulator_cache) {
8866                 pr_err("kvm: failed to allocate cache for x86 emulator\n");
8867                 goto out;
8868         }
8869
8870         user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
8871         if (!user_return_msrs) {
8872                 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
8873                 goto out_free_x86_emulator_cache;
8874         }
8875         kvm_nr_uret_msrs = 0;
8876
8877         r = kvm_mmu_module_init();
8878         if (r)
8879                 goto out_free_percpu;
8880
8881         kvm_timer_init();
8882
8883         if (boot_cpu_has(X86_FEATURE_XSAVE)) {
8884                 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
8885                 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
8886         }
8887
8888         if (pi_inject_timer == -1)
8889                 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
8890 #ifdef CONFIG_X86_64
8891         pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
8892
8893         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8894                 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
8895 #endif
8896
8897         return 0;
8898
8899 out_free_percpu:
8900         free_percpu(user_return_msrs);
8901 out_free_x86_emulator_cache:
8902         kmem_cache_destroy(x86_emulator_cache);
8903 out:
8904         return r;
8905 }
8906
8907 void kvm_arch_exit(void)
8908 {
8909 #ifdef CONFIG_X86_64
8910         if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
8911                 clear_hv_tscchange_cb();
8912 #endif
8913         kvm_lapic_exit();
8914
8915         if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
8916                 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
8917                                             CPUFREQ_TRANSITION_NOTIFIER);
8918         cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
8919 #ifdef CONFIG_X86_64
8920         pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
8921         irq_work_sync(&pvclock_irq_work);
8922         cancel_work_sync(&pvclock_gtod_work);
8923 #endif
8924         kvm_x86_ops.hardware_enable = NULL;
8925         kvm_mmu_module_exit();
8926         free_percpu(user_return_msrs);
8927         kmem_cache_destroy(x86_emulator_cache);
8928 #ifdef CONFIG_KVM_XEN
8929         static_key_deferred_flush(&kvm_xen_enabled);
8930         WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
8931 #endif
8932 }
8933
8934 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8935 {
8936         /*
8937          * The vCPU has halted, e.g. executed HLT.  Update the run state if the
8938          * local APIC is in-kernel, the run loop will detect the non-runnable
8939          * state and halt the vCPU.  Exit to userspace if the local APIC is
8940          * managed by userspace, in which case userspace is responsible for
8941          * handling wake events.
8942          */
8943         ++vcpu->stat.halt_exits;
8944         if (lapic_in_kernel(vcpu)) {
8945                 vcpu->arch.mp_state = state;
8946                 return 1;
8947         } else {
8948                 vcpu->run->exit_reason = reason;
8949                 return 0;
8950         }
8951 }
8952
8953 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
8954 {
8955         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
8956 }
8957 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
8958
8959 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
8960 {
8961         int ret = kvm_skip_emulated_instruction(vcpu);
8962         /*
8963          * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
8964          * KVM_EXIT_DEBUG here.
8965          */
8966         return kvm_emulate_halt_noskip(vcpu) && ret;
8967 }
8968 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
8969
8970 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
8971 {
8972         int ret = kvm_skip_emulated_instruction(vcpu);
8973
8974         return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
8975                                         KVM_EXIT_AP_RESET_HOLD) && ret;
8976 }
8977 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
8978
8979 #ifdef CONFIG_X86_64
8980 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
8981                                 unsigned long clock_type)
8982 {
8983         struct kvm_clock_pairing clock_pairing;
8984         struct timespec64 ts;
8985         u64 cycle;
8986         int ret;
8987
8988         if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
8989                 return -KVM_EOPNOTSUPP;
8990
8991         if (!kvm_get_walltime_and_clockread(&ts, &cycle))
8992                 return -KVM_EOPNOTSUPP;
8993
8994         clock_pairing.sec = ts.tv_sec;
8995         clock_pairing.nsec = ts.tv_nsec;
8996         clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
8997         clock_pairing.flags = 0;
8998         memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
8999
9000         ret = 0;
9001         if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9002                             sizeof(struct kvm_clock_pairing)))
9003                 ret = -KVM_EFAULT;
9004
9005         return ret;
9006 }
9007 #endif
9008
9009 /*
9010  * kvm_pv_kick_cpu_op:  Kick a vcpu.
9011  *
9012  * @apicid - apicid of vcpu to be kicked.
9013  */
9014 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9015 {
9016         struct kvm_lapic_irq lapic_irq;
9017
9018         lapic_irq.shorthand = APIC_DEST_NOSHORT;
9019         lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
9020         lapic_irq.level = 0;
9021         lapic_irq.dest_id = apicid;
9022         lapic_irq.msi_redir_hint = false;
9023
9024         lapic_irq.delivery_mode = APIC_DM_REMRD;
9025         kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9026 }
9027
9028 bool kvm_apicv_activated(struct kvm *kvm)
9029 {
9030         return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9031 }
9032 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9033
9034 static void kvm_apicv_init(struct kvm *kvm)
9035 {
9036         init_rwsem(&kvm->arch.apicv_update_lock);
9037
9038         set_bit(APICV_INHIBIT_REASON_ABSENT,
9039                 &kvm->arch.apicv_inhibit_reasons);
9040         if (!enable_apicv)
9041                 set_bit(APICV_INHIBIT_REASON_DISABLE,
9042                         &kvm->arch.apicv_inhibit_reasons);
9043 }
9044
9045 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9046 {
9047         struct kvm_vcpu *target = NULL;
9048         struct kvm_apic_map *map;
9049
9050         vcpu->stat.directed_yield_attempted++;
9051
9052         if (single_task_running())
9053                 goto no_yield;
9054
9055         rcu_read_lock();
9056         map = rcu_dereference(vcpu->kvm->arch.apic_map);
9057
9058         if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9059                 target = map->phys_map[dest_id]->vcpu;
9060
9061         rcu_read_unlock();
9062
9063         if (!target || !READ_ONCE(target->ready))
9064                 goto no_yield;
9065
9066         /* Ignore requests to yield to self */
9067         if (vcpu == target)
9068                 goto no_yield;
9069
9070         if (kvm_vcpu_yield_to(target) <= 0)
9071                 goto no_yield;
9072
9073         vcpu->stat.directed_yield_successful++;
9074
9075 no_yield:
9076         return;
9077 }
9078
9079 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9080 {
9081         u64 ret = vcpu->run->hypercall.ret;
9082
9083         if (!is_64_bit_mode(vcpu))
9084                 ret = (u32)ret;
9085         kvm_rax_write(vcpu, ret);
9086         ++vcpu->stat.hypercalls;
9087         return kvm_skip_emulated_instruction(vcpu);
9088 }
9089
9090 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9091 {
9092         unsigned long nr, a0, a1, a2, a3, ret;
9093         int op_64_bit;
9094
9095         if (kvm_xen_hypercall_enabled(vcpu->kvm))
9096                 return kvm_xen_hypercall(vcpu);
9097
9098         if (kvm_hv_hypercall_enabled(vcpu))
9099                 return kvm_hv_hypercall(vcpu);
9100
9101         nr = kvm_rax_read(vcpu);
9102         a0 = kvm_rbx_read(vcpu);
9103         a1 = kvm_rcx_read(vcpu);
9104         a2 = kvm_rdx_read(vcpu);
9105         a3 = kvm_rsi_read(vcpu);
9106
9107         trace_kvm_hypercall(nr, a0, a1, a2, a3);
9108
9109         op_64_bit = is_64_bit_hypercall(vcpu);
9110         if (!op_64_bit) {
9111                 nr &= 0xFFFFFFFF;
9112                 a0 &= 0xFFFFFFFF;
9113                 a1 &= 0xFFFFFFFF;
9114                 a2 &= 0xFFFFFFFF;
9115                 a3 &= 0xFFFFFFFF;
9116         }
9117
9118         if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9119                 ret = -KVM_EPERM;
9120                 goto out;
9121         }
9122
9123         ret = -KVM_ENOSYS;
9124
9125         switch (nr) {
9126         case KVM_HC_VAPIC_POLL_IRQ:
9127                 ret = 0;
9128                 break;
9129         case KVM_HC_KICK_CPU:
9130                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9131                         break;
9132
9133                 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9134                 kvm_sched_yield(vcpu, a1);
9135                 ret = 0;
9136                 break;
9137 #ifdef CONFIG_X86_64
9138         case KVM_HC_CLOCK_PAIRING:
9139                 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9140                 break;
9141 #endif
9142         case KVM_HC_SEND_IPI:
9143                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9144                         break;
9145
9146                 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9147                 break;
9148         case KVM_HC_SCHED_YIELD:
9149                 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9150                         break;
9151
9152                 kvm_sched_yield(vcpu, a0);
9153                 ret = 0;
9154                 break;
9155         case KVM_HC_MAP_GPA_RANGE: {
9156                 u64 gpa = a0, npages = a1, attrs = a2;
9157
9158                 ret = -KVM_ENOSYS;
9159                 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9160                         break;
9161
9162                 if (!PAGE_ALIGNED(gpa) || !npages ||
9163                     gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9164                         ret = -KVM_EINVAL;
9165                         break;
9166                 }
9167
9168                 vcpu->run->exit_reason        = KVM_EXIT_HYPERCALL;
9169                 vcpu->run->hypercall.nr       = KVM_HC_MAP_GPA_RANGE;
9170                 vcpu->run->hypercall.args[0]  = gpa;
9171                 vcpu->run->hypercall.args[1]  = npages;
9172                 vcpu->run->hypercall.args[2]  = attrs;
9173                 vcpu->run->hypercall.longmode = op_64_bit;
9174                 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9175                 return 0;
9176         }
9177         default:
9178                 ret = -KVM_ENOSYS;
9179                 break;
9180         }
9181 out:
9182         if (!op_64_bit)
9183                 ret = (u32)ret;
9184         kvm_rax_write(vcpu, ret);
9185
9186         ++vcpu->stat.hypercalls;
9187         return kvm_skip_emulated_instruction(vcpu);
9188 }
9189 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9190
9191 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9192 {
9193         struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9194         char instruction[3];
9195         unsigned long rip = kvm_rip_read(vcpu);
9196
9197         static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9198
9199         return emulator_write_emulated(ctxt, rip, instruction, 3,
9200                 &ctxt->exception);
9201 }
9202
9203 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9204 {
9205         return vcpu->run->request_interrupt_window &&
9206                 likely(!pic_in_kernel(vcpu->kvm));
9207 }
9208
9209 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9210 {
9211         struct kvm_run *kvm_run = vcpu->run;
9212
9213         kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9214         kvm_run->cr8 = kvm_get_cr8(vcpu);
9215         kvm_run->apic_base = kvm_get_apic_base(vcpu);
9216
9217         /*
9218          * The call to kvm_ready_for_interrupt_injection() may end up in
9219          * kvm_xen_has_interrupt() which may require the srcu lock to be
9220          * held, to protect against changes in the vcpu_info address.
9221          */
9222         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
9223         kvm_run->ready_for_interrupt_injection =
9224                 pic_in_kernel(vcpu->kvm) ||
9225                 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9226         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
9227
9228         if (is_smm(vcpu))
9229                 kvm_run->flags |= KVM_RUN_X86_SMM;
9230 }
9231
9232 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9233 {
9234         int max_irr, tpr;
9235
9236         if (!kvm_x86_ops.update_cr8_intercept)
9237                 return;
9238
9239         if (!lapic_in_kernel(vcpu))
9240                 return;
9241
9242         if (vcpu->arch.apicv_active)
9243                 return;
9244
9245         if (!vcpu->arch.apic->vapic_addr)
9246                 max_irr = kvm_lapic_find_highest_irr(vcpu);
9247         else
9248                 max_irr = -1;
9249
9250         if (max_irr != -1)
9251                 max_irr >>= 4;
9252
9253         tpr = kvm_lapic_get_cr8(vcpu);
9254
9255         static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9256 }
9257
9258
9259 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9260 {
9261         if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9262                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9263                 return 1;
9264         }
9265
9266         return kvm_x86_ops.nested_ops->check_events(vcpu);
9267 }
9268
9269 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9270 {
9271         if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9272                 vcpu->arch.exception.error_code = false;
9273         static_call(kvm_x86_queue_exception)(vcpu);
9274 }
9275
9276 static int inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
9277 {
9278         int r;
9279         bool can_inject = true;
9280
9281         /* try to reinject previous events if any */
9282
9283         if (vcpu->arch.exception.injected) {
9284                 kvm_inject_exception(vcpu);
9285                 can_inject = false;
9286         }
9287         /*
9288          * Do not inject an NMI or interrupt if there is a pending
9289          * exception.  Exceptions and interrupts are recognized at
9290          * instruction boundaries, i.e. the start of an instruction.
9291          * Trap-like exceptions, e.g. #DB, have higher priority than
9292          * NMIs and interrupts, i.e. traps are recognized before an
9293          * NMI/interrupt that's pending on the same instruction.
9294          * Fault-like exceptions, e.g. #GP and #PF, are the lowest
9295          * priority, but are only generated (pended) during instruction
9296          * execution, i.e. a pending fault-like exception means the
9297          * fault occurred on the *previous* instruction and must be
9298          * serviced prior to recognizing any new events in order to
9299          * fully complete the previous instruction.
9300          */
9301         else if (!vcpu->arch.exception.pending) {
9302                 if (vcpu->arch.nmi_injected) {
9303                         static_call(kvm_x86_inject_nmi)(vcpu);
9304                         can_inject = false;
9305                 } else if (vcpu->arch.interrupt.injected) {
9306                         static_call(kvm_x86_inject_irq)(vcpu);
9307                         can_inject = false;
9308                 }
9309         }
9310
9311         WARN_ON_ONCE(vcpu->arch.exception.injected &&
9312                      vcpu->arch.exception.pending);
9313
9314         /*
9315          * Call check_nested_events() even if we reinjected a previous event
9316          * in order for caller to determine if it should require immediate-exit
9317          * from L2 to L1 due to pending L1 events which require exit
9318          * from L2 to L1.
9319          */
9320         if (is_guest_mode(vcpu)) {
9321                 r = kvm_check_nested_events(vcpu);
9322                 if (r < 0)
9323                         goto out;
9324         }
9325
9326         /* try to inject new event if pending */
9327         if (vcpu->arch.exception.pending) {
9328                 trace_kvm_inj_exception(vcpu->arch.exception.nr,
9329                                         vcpu->arch.exception.has_error_code,
9330                                         vcpu->arch.exception.error_code);
9331
9332                 vcpu->arch.exception.pending = false;
9333                 vcpu->arch.exception.injected = true;
9334
9335                 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
9336                         __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9337                                              X86_EFLAGS_RF);
9338
9339                 if (vcpu->arch.exception.nr == DB_VECTOR) {
9340                         kvm_deliver_exception_payload(vcpu);
9341                         if (vcpu->arch.dr7 & DR7_GD) {
9342                                 vcpu->arch.dr7 &= ~DR7_GD;
9343                                 kvm_update_dr7(vcpu);
9344                         }
9345                 }
9346
9347                 kvm_inject_exception(vcpu);
9348                 can_inject = false;
9349         }
9350
9351         /* Don't inject interrupts if the user asked to avoid doing so */
9352         if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9353                 return 0;
9354
9355         /*
9356          * Finally, inject interrupt events.  If an event cannot be injected
9357          * due to architectural conditions (e.g. IF=0) a window-open exit
9358          * will re-request KVM_REQ_EVENT.  Sometimes however an event is pending
9359          * and can architecturally be injected, but we cannot do it right now:
9360          * an interrupt could have arrived just now and we have to inject it
9361          * as a vmexit, or there could already an event in the queue, which is
9362          * indicated by can_inject.  In that case we request an immediate exit
9363          * in order to make progress and get back here for another iteration.
9364          * The kvm_x86_ops hooks communicate this by returning -EBUSY.
9365          */
9366         if (vcpu->arch.smi_pending) {
9367                 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
9368                 if (r < 0)
9369                         goto out;
9370                 if (r) {
9371                         vcpu->arch.smi_pending = false;
9372                         ++vcpu->arch.smi_count;
9373                         enter_smm(vcpu);
9374                         can_inject = false;
9375                 } else
9376                         static_call(kvm_x86_enable_smi_window)(vcpu);
9377         }
9378
9379         if (vcpu->arch.nmi_pending) {
9380                 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
9381                 if (r < 0)
9382                         goto out;
9383                 if (r) {
9384                         --vcpu->arch.nmi_pending;
9385                         vcpu->arch.nmi_injected = true;
9386                         static_call(kvm_x86_inject_nmi)(vcpu);
9387                         can_inject = false;
9388                         WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
9389                 }
9390                 if (vcpu->arch.nmi_pending)
9391                         static_call(kvm_x86_enable_nmi_window)(vcpu);
9392         }
9393
9394         if (kvm_cpu_has_injectable_intr(vcpu)) {
9395                 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
9396                 if (r < 0)
9397                         goto out;
9398                 if (r) {
9399                         kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
9400                         static_call(kvm_x86_inject_irq)(vcpu);
9401                         WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
9402                 }
9403                 if (kvm_cpu_has_injectable_intr(vcpu))
9404                         static_call(kvm_x86_enable_irq_window)(vcpu);
9405         }
9406
9407         if (is_guest_mode(vcpu) &&
9408             kvm_x86_ops.nested_ops->hv_timer_pending &&
9409             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
9410                 *req_immediate_exit = true;
9411
9412         WARN_ON(vcpu->arch.exception.pending);
9413         return 0;
9414
9415 out:
9416         if (r == -EBUSY) {
9417                 *req_immediate_exit = true;
9418                 r = 0;
9419         }
9420         return r;
9421 }
9422
9423 static void process_nmi(struct kvm_vcpu *vcpu)
9424 {
9425         unsigned limit = 2;
9426
9427         /*
9428          * x86 is limited to one NMI running, and one NMI pending after it.
9429          * If an NMI is already in progress, limit further NMIs to just one.
9430          * Otherwise, allow two (and we'll inject the first one immediately).
9431          */
9432         if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
9433                 limit = 1;
9434
9435         vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
9436         vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
9437         kvm_make_request(KVM_REQ_EVENT, vcpu);
9438 }
9439
9440 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
9441 {
9442         u32 flags = 0;
9443         flags |= seg->g       << 23;
9444         flags |= seg->db      << 22;
9445         flags |= seg->l       << 21;
9446         flags |= seg->avl     << 20;
9447         flags |= seg->present << 15;
9448         flags |= seg->dpl     << 13;
9449         flags |= seg->s       << 12;
9450         flags |= seg->type    << 8;
9451         return flags;
9452 }
9453
9454 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
9455 {
9456         struct kvm_segment seg;
9457         int offset;
9458
9459         kvm_get_segment(vcpu, &seg, n);
9460         put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
9461
9462         if (n < 3)
9463                 offset = 0x7f84 + n * 12;
9464         else
9465                 offset = 0x7f2c + (n - 3) * 12;
9466
9467         put_smstate(u32, buf, offset + 8, seg.base);
9468         put_smstate(u32, buf, offset + 4, seg.limit);
9469         put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
9470 }
9471
9472 #ifdef CONFIG_X86_64
9473 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
9474 {
9475         struct kvm_segment seg;
9476         int offset;
9477         u16 flags;
9478
9479         kvm_get_segment(vcpu, &seg, n);
9480         offset = 0x7e00 + n * 16;
9481
9482         flags = enter_smm_get_segment_flags(&seg) >> 8;
9483         put_smstate(u16, buf, offset, seg.selector);
9484         put_smstate(u16, buf, offset + 2, flags);
9485         put_smstate(u32, buf, offset + 4, seg.limit);
9486         put_smstate(u64, buf, offset + 8, seg.base);
9487 }
9488 #endif
9489
9490 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
9491 {
9492         struct desc_ptr dt;
9493         struct kvm_segment seg;
9494         unsigned long val;
9495         int i;
9496
9497         put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
9498         put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
9499         put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
9500         put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
9501
9502         for (i = 0; i < 8; i++)
9503                 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
9504
9505         kvm_get_dr(vcpu, 6, &val);
9506         put_smstate(u32, buf, 0x7fcc, (u32)val);
9507         kvm_get_dr(vcpu, 7, &val);
9508         put_smstate(u32, buf, 0x7fc8, (u32)val);
9509
9510         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9511         put_smstate(u32, buf, 0x7fc4, seg.selector);
9512         put_smstate(u32, buf, 0x7f64, seg.base);
9513         put_smstate(u32, buf, 0x7f60, seg.limit);
9514         put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
9515
9516         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9517         put_smstate(u32, buf, 0x7fc0, seg.selector);
9518         put_smstate(u32, buf, 0x7f80, seg.base);
9519         put_smstate(u32, buf, 0x7f7c, seg.limit);
9520         put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
9521
9522         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9523         put_smstate(u32, buf, 0x7f74, dt.address);
9524         put_smstate(u32, buf, 0x7f70, dt.size);
9525
9526         static_call(kvm_x86_get_idt)(vcpu, &dt);
9527         put_smstate(u32, buf, 0x7f58, dt.address);
9528         put_smstate(u32, buf, 0x7f54, dt.size);
9529
9530         for (i = 0; i < 6; i++)
9531                 enter_smm_save_seg_32(vcpu, buf, i);
9532
9533         put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
9534
9535         /* revision id */
9536         put_smstate(u32, buf, 0x7efc, 0x00020000);
9537         put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
9538 }
9539
9540 #ifdef CONFIG_X86_64
9541 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
9542 {
9543         struct desc_ptr dt;
9544         struct kvm_segment seg;
9545         unsigned long val;
9546         int i;
9547
9548         for (i = 0; i < 16; i++)
9549                 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
9550
9551         put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
9552         put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
9553
9554         kvm_get_dr(vcpu, 6, &val);
9555         put_smstate(u64, buf, 0x7f68, val);
9556         kvm_get_dr(vcpu, 7, &val);
9557         put_smstate(u64, buf, 0x7f60, val);
9558
9559         put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
9560         put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
9561         put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
9562
9563         put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
9564
9565         /* revision id */
9566         put_smstate(u32, buf, 0x7efc, 0x00020064);
9567
9568         put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
9569
9570         kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
9571         put_smstate(u16, buf, 0x7e90, seg.selector);
9572         put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
9573         put_smstate(u32, buf, 0x7e94, seg.limit);
9574         put_smstate(u64, buf, 0x7e98, seg.base);
9575
9576         static_call(kvm_x86_get_idt)(vcpu, &dt);
9577         put_smstate(u32, buf, 0x7e84, dt.size);
9578         put_smstate(u64, buf, 0x7e88, dt.address);
9579
9580         kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
9581         put_smstate(u16, buf, 0x7e70, seg.selector);
9582         put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
9583         put_smstate(u32, buf, 0x7e74, seg.limit);
9584         put_smstate(u64, buf, 0x7e78, seg.base);
9585
9586         static_call(kvm_x86_get_gdt)(vcpu, &dt);
9587         put_smstate(u32, buf, 0x7e64, dt.size);
9588         put_smstate(u64, buf, 0x7e68, dt.address);
9589
9590         for (i = 0; i < 6; i++)
9591                 enter_smm_save_seg_64(vcpu, buf, i);
9592 }
9593 #endif
9594
9595 static void enter_smm(struct kvm_vcpu *vcpu)
9596 {
9597         struct kvm_segment cs, ds;
9598         struct desc_ptr dt;
9599         unsigned long cr0;
9600         char buf[512];
9601
9602         memset(buf, 0, 512);
9603 #ifdef CONFIG_X86_64
9604         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9605                 enter_smm_save_state_64(vcpu, buf);
9606         else
9607 #endif
9608                 enter_smm_save_state_32(vcpu, buf);
9609
9610         /*
9611          * Give enter_smm() a chance to make ISA-specific changes to the vCPU
9612          * state (e.g. leave guest mode) after we've saved the state into the
9613          * SMM state-save area.
9614          */
9615         static_call(kvm_x86_enter_smm)(vcpu, buf);
9616
9617         kvm_smm_changed(vcpu, true);
9618         kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
9619
9620         if (static_call(kvm_x86_get_nmi_mask)(vcpu))
9621                 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
9622         else
9623                 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
9624
9625         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
9626         kvm_rip_write(vcpu, 0x8000);
9627
9628         cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
9629         static_call(kvm_x86_set_cr0)(vcpu, cr0);
9630         vcpu->arch.cr0 = cr0;
9631
9632         static_call(kvm_x86_set_cr4)(vcpu, 0);
9633
9634         /* Undocumented: IDT limit is set to zero on entry to SMM.  */
9635         dt.address = dt.size = 0;
9636         static_call(kvm_x86_set_idt)(vcpu, &dt);
9637
9638         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
9639
9640         cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
9641         cs.base = vcpu->arch.smbase;
9642
9643         ds.selector = 0;
9644         ds.base = 0;
9645
9646         cs.limit    = ds.limit = 0xffffffff;
9647         cs.type     = ds.type = 0x3;
9648         cs.dpl      = ds.dpl = 0;
9649         cs.db       = ds.db = 0;
9650         cs.s        = ds.s = 1;
9651         cs.l        = ds.l = 0;
9652         cs.g        = ds.g = 1;
9653         cs.avl      = ds.avl = 0;
9654         cs.present  = ds.present = 1;
9655         cs.unusable = ds.unusable = 0;
9656         cs.padding  = ds.padding = 0;
9657
9658         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9659         kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
9660         kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
9661         kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
9662         kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
9663         kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
9664
9665 #ifdef CONFIG_X86_64
9666         if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
9667                 static_call(kvm_x86_set_efer)(vcpu, 0);
9668 #endif
9669
9670         kvm_update_cpuid_runtime(vcpu);
9671         kvm_mmu_reset_context(vcpu);
9672 }
9673
9674 static void process_smi(struct kvm_vcpu *vcpu)
9675 {
9676         vcpu->arch.smi_pending = true;
9677         kvm_make_request(KVM_REQ_EVENT, vcpu);
9678 }
9679
9680 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
9681                                        unsigned long *vcpu_bitmap)
9682 {
9683         kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
9684 }
9685
9686 void kvm_make_scan_ioapic_request(struct kvm *kvm)
9687 {
9688         kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
9689 }
9690
9691 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
9692 {
9693         bool activate;
9694
9695         if (!lapic_in_kernel(vcpu))
9696                 return;
9697
9698         down_read(&vcpu->kvm->arch.apicv_update_lock);
9699
9700         activate = kvm_apicv_activated(vcpu->kvm);
9701         if (vcpu->arch.apicv_active == activate)
9702                 goto out;
9703
9704         vcpu->arch.apicv_active = activate;
9705         kvm_apic_update_apicv(vcpu);
9706         static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
9707
9708         /*
9709          * When APICv gets disabled, we may still have injected interrupts
9710          * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
9711          * still active when the interrupt got accepted. Make sure
9712          * inject_pending_event() is called to check for that.
9713          */
9714         if (!vcpu->arch.apicv_active)
9715                 kvm_make_request(KVM_REQ_EVENT, vcpu);
9716
9717 out:
9718         up_read(&vcpu->kvm->arch.apicv_update_lock);
9719 }
9720 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
9721
9722 void __kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9723 {
9724         unsigned long old, new;
9725
9726         lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
9727
9728         if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(bit))
9729                 return;
9730
9731         old = new = kvm->arch.apicv_inhibit_reasons;
9732
9733         if (activate)
9734                 __clear_bit(bit, &new);
9735         else
9736                 __set_bit(bit, &new);
9737
9738         if (!!old != !!new) {
9739                 trace_kvm_apicv_update_request(activate, bit);
9740                 /*
9741                  * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
9742                  * false positives in the sanity check WARN in svm_vcpu_run().
9743                  * This task will wait for all vCPUs to ack the kick IRQ before
9744                  * updating apicv_inhibit_reasons, and all other vCPUs will
9745                  * block on acquiring apicv_update_lock so that vCPUs can't
9746                  * redo svm_vcpu_run() without seeing the new inhibit state.
9747                  *
9748                  * Note, holding apicv_update_lock and taking it in the read
9749                  * side (handling the request) also prevents other vCPUs from
9750                  * servicing the request with a stale apicv_inhibit_reasons.
9751                  */
9752                 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
9753                 kvm->arch.apicv_inhibit_reasons = new;
9754                 if (new) {
9755                         unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
9756                         kvm_zap_gfn_range(kvm, gfn, gfn+1);
9757                 }
9758         } else
9759                 kvm->arch.apicv_inhibit_reasons = new;
9760 }
9761
9762 void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
9763 {
9764         if (!enable_apicv)
9765                 return;
9766
9767         down_write(&kvm->arch.apicv_update_lock);
9768         __kvm_request_apicv_update(kvm, activate, bit);
9769         up_write(&kvm->arch.apicv_update_lock);
9770 }
9771 EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
9772
9773 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
9774 {
9775         if (!kvm_apic_present(vcpu))
9776                 return;
9777
9778         bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
9779
9780         if (irqchip_split(vcpu->kvm))
9781                 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
9782         else {
9783                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
9784                 if (ioapic_in_kernel(vcpu->kvm))
9785                         kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
9786         }
9787
9788         if (is_guest_mode(vcpu))
9789                 vcpu->arch.load_eoi_exitmap_pending = true;
9790         else
9791                 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
9792 }
9793
9794 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
9795 {
9796         u64 eoi_exit_bitmap[4];
9797
9798         if (!kvm_apic_hw_enabled(vcpu->arch.apic))
9799                 return;
9800
9801         if (to_hv_vcpu(vcpu)) {
9802                 bitmap_or((ulong *)eoi_exit_bitmap,
9803                           vcpu->arch.ioapic_handled_vectors,
9804                           to_hv_synic(vcpu)->vec_bitmap, 256);
9805                 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
9806                 return;
9807         }
9808
9809         static_call_cond(kvm_x86_load_eoi_exitmap)(
9810                 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
9811 }
9812
9813 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
9814                                             unsigned long start, unsigned long end)
9815 {
9816         unsigned long apic_address;
9817
9818         /*
9819          * The physical address of apic access page is stored in the VMCS.
9820          * Update it when it becomes invalid.
9821          */
9822         apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
9823         if (start <= apic_address && apic_address < end)
9824                 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
9825 }
9826
9827 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
9828 {
9829         if (!lapic_in_kernel(vcpu))
9830                 return;
9831
9832         static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
9833 }
9834
9835 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
9836 {
9837         smp_send_reschedule(vcpu->cpu);
9838 }
9839 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
9840
9841 /*
9842  * Returns 1 to let vcpu_run() continue the guest execution loop without
9843  * exiting to the userspace.  Otherwise, the value will be returned to the
9844  * userspace.
9845  */
9846 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
9847 {
9848         int r;
9849         bool req_int_win =
9850                 dm_request_for_irq_injection(vcpu) &&
9851                 kvm_cpu_accept_dm_intr(vcpu);
9852         fastpath_t exit_fastpath;
9853
9854         bool req_immediate_exit = false;
9855
9856         /* Forbid vmenter if vcpu dirty ring is soft-full */
9857         if (unlikely(vcpu->kvm->dirty_ring_size &&
9858                      kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
9859                 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
9860                 trace_kvm_dirty_ring_exit(vcpu);
9861                 r = 0;
9862                 goto out;
9863         }
9864
9865         if (kvm_request_pending(vcpu)) {
9866                 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
9867                         r = -EIO;
9868                         goto out;
9869                 }
9870                 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9871                         if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
9872                                 r = 0;
9873                                 goto out;
9874                         }
9875                 }
9876                 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
9877                         kvm_mmu_unload(vcpu);
9878                 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
9879                         __kvm_migrate_timers(vcpu);
9880                 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
9881                         kvm_update_masterclock(vcpu->kvm);
9882                 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
9883                         kvm_gen_kvmclock_update(vcpu);
9884                 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
9885                         r = kvm_guest_time_update(vcpu);
9886                         if (unlikely(r))
9887                                 goto out;
9888                 }
9889                 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
9890                         kvm_mmu_sync_roots(vcpu);
9891                 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
9892                         kvm_mmu_load_pgd(vcpu);
9893                 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
9894                         kvm_vcpu_flush_tlb_all(vcpu);
9895
9896                         /* Flushing all ASIDs flushes the current ASID... */
9897                         kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
9898                 }
9899                 kvm_service_local_tlb_flush_requests(vcpu);
9900
9901                 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
9902                         vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
9903                         r = 0;
9904                         goto out;
9905                 }
9906                 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9907                         if (is_guest_mode(vcpu)) {
9908                                 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9909                         } else {
9910                                 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
9911                                 vcpu->mmio_needed = 0;
9912                                 r = 0;
9913                                 goto out;
9914                         }
9915                 }
9916                 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
9917                         /* Page is swapped out. Do synthetic halt */
9918                         vcpu->arch.apf.halted = true;
9919                         r = 1;
9920                         goto out;
9921                 }
9922                 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
9923                         record_steal_time(vcpu);
9924                 if (kvm_check_request(KVM_REQ_SMI, vcpu))
9925                         process_smi(vcpu);
9926                 if (kvm_check_request(KVM_REQ_NMI, vcpu))
9927                         process_nmi(vcpu);
9928                 if (kvm_check_request(KVM_REQ_PMU, vcpu))
9929                         kvm_pmu_handle_event(vcpu);
9930                 if (kvm_check_request(KVM_REQ_PMI, vcpu))
9931                         kvm_pmu_deliver_pmi(vcpu);
9932                 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
9933                         BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
9934                         if (test_bit(vcpu->arch.pending_ioapic_eoi,
9935                                      vcpu->arch.ioapic_handled_vectors)) {
9936                                 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
9937                                 vcpu->run->eoi.vector =
9938                                                 vcpu->arch.pending_ioapic_eoi;
9939                                 r = 0;
9940                                 goto out;
9941                         }
9942                 }
9943                 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
9944                         vcpu_scan_ioapic(vcpu);
9945                 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
9946                         vcpu_load_eoi_exitmap(vcpu);
9947                 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
9948                         kvm_vcpu_reload_apic_access_page(vcpu);
9949                 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
9950                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9951                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
9952                         r = 0;
9953                         goto out;
9954                 }
9955                 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
9956                         vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
9957                         vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
9958                         r = 0;
9959                         goto out;
9960                 }
9961                 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9962                         struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
9963
9964                         vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9965                         vcpu->run->hyperv = hv_vcpu->exit;
9966                         r = 0;
9967                         goto out;
9968                 }
9969
9970                 /*
9971                  * KVM_REQ_HV_STIMER has to be processed after
9972                  * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
9973                  * depend on the guest clock being up-to-date
9974                  */
9975                 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
9976                         kvm_hv_process_stimers(vcpu);
9977                 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
9978                         kvm_vcpu_update_apicv(vcpu);
9979                 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
9980                         kvm_check_async_pf_completion(vcpu);
9981                 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
9982                         static_call(kvm_x86_msr_filter_changed)(vcpu);
9983
9984                 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
9985                         static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
9986         }
9987
9988         if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
9989             kvm_xen_has_interrupt(vcpu)) {
9990                 ++vcpu->stat.req_event;
9991                 r = kvm_apic_accept_events(vcpu);
9992                 if (r < 0) {
9993                         r = 0;
9994                         goto out;
9995                 }
9996                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
9997                         r = 1;
9998                         goto out;
9999                 }
10000
10001                 r = inject_pending_event(vcpu, &req_immediate_exit);
10002                 if (r < 0) {
10003                         r = 0;
10004                         goto out;
10005                 }
10006                 if (req_int_win)
10007                         static_call(kvm_x86_enable_irq_window)(vcpu);
10008
10009                 if (kvm_lapic_enabled(vcpu)) {
10010                         update_cr8_intercept(vcpu);
10011                         kvm_lapic_sync_to_vapic(vcpu);
10012                 }
10013         }
10014
10015         r = kvm_mmu_reload(vcpu);
10016         if (unlikely(r)) {
10017                 goto cancel_injection;
10018         }
10019
10020         preempt_disable();
10021
10022         static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10023
10024         /*
10025          * Disable IRQs before setting IN_GUEST_MODE.  Posted interrupt
10026          * IPI are then delayed after guest entry, which ensures that they
10027          * result in virtual interrupt delivery.
10028          */
10029         local_irq_disable();
10030
10031         /* Store vcpu->apicv_active before vcpu->mode.  */
10032         smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10033
10034         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10035
10036         /*
10037          * 1) We should set ->mode before checking ->requests.  Please see
10038          * the comment in kvm_vcpu_exiting_guest_mode().
10039          *
10040          * 2) For APICv, we should set ->mode before checking PID.ON. This
10041          * pairs with the memory barrier implicit in pi_test_and_set_on
10042          * (see vmx_deliver_posted_interrupt).
10043          *
10044          * 3) This also orders the write to mode from any reads to the page
10045          * tables done while the VCPU is running.  Please see the comment
10046          * in kvm_flush_remote_tlbs.
10047          */
10048         smp_mb__after_srcu_read_unlock();
10049
10050         /*
10051          * Process pending posted interrupts to handle the case where the
10052          * notification IRQ arrived in the host, or was never sent (because the
10053          * target vCPU wasn't running).  Do this regardless of the vCPU's APICv
10054          * status, KVM doesn't update assigned devices when APICv is inhibited,
10055          * i.e. they can post interrupts even if APICv is temporarily disabled.
10056          */
10057         if (kvm_lapic_enabled(vcpu))
10058                 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10059
10060         if (kvm_vcpu_exit_request(vcpu)) {
10061                 vcpu->mode = OUTSIDE_GUEST_MODE;
10062                 smp_wmb();
10063                 local_irq_enable();
10064                 preempt_enable();
10065                 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10066                 r = 1;
10067                 goto cancel_injection;
10068         }
10069
10070         if (req_immediate_exit) {
10071                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10072                 static_call(kvm_x86_request_immediate_exit)(vcpu);
10073         }
10074
10075         fpregs_assert_state_consistent();
10076         if (test_thread_flag(TIF_NEED_FPU_LOAD))
10077                 switch_fpu_return();
10078
10079         if (vcpu->arch.guest_fpu.xfd_err)
10080                 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10081
10082         if (unlikely(vcpu->arch.switch_db_regs)) {
10083                 set_debugreg(0, 7);
10084                 set_debugreg(vcpu->arch.eff_db[0], 0);
10085                 set_debugreg(vcpu->arch.eff_db[1], 1);
10086                 set_debugreg(vcpu->arch.eff_db[2], 2);
10087                 set_debugreg(vcpu->arch.eff_db[3], 3);
10088         } else if (unlikely(hw_breakpoint_active())) {
10089                 set_debugreg(0, 7);
10090         }
10091
10092         guest_timing_enter_irqoff();
10093
10094         for (;;) {
10095                 /*
10096                  * Assert that vCPU vs. VM APICv state is consistent.  An APICv
10097                  * update must kick and wait for all vCPUs before toggling the
10098                  * per-VM state, and responsing vCPUs must wait for the update
10099                  * to complete before servicing KVM_REQ_APICV_UPDATE.
10100                  */
10101                 WARN_ON_ONCE(kvm_apicv_activated(vcpu->kvm) != kvm_vcpu_apicv_active(vcpu));
10102
10103                 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10104                 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10105                         break;
10106
10107                 if (kvm_lapic_enabled(vcpu))
10108                         static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10109
10110                 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10111                         exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10112                         break;
10113                 }
10114         }
10115
10116         /*
10117          * Do this here before restoring debug registers on the host.  And
10118          * since we do this before handling the vmexit, a DR access vmexit
10119          * can (a) read the correct value of the debug registers, (b) set
10120          * KVM_DEBUGREG_WONT_EXIT again.
10121          */
10122         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10123                 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10124                 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10125                 kvm_update_dr0123(vcpu);
10126                 kvm_update_dr7(vcpu);
10127         }
10128
10129         /*
10130          * If the guest has used debug registers, at least dr7
10131          * will be disabled while returning to the host.
10132          * If we don't have active breakpoints in the host, we don't
10133          * care about the messed up debug address registers. But if
10134          * we have some of them active, restore the old state.
10135          */
10136         if (hw_breakpoint_active())
10137                 hw_breakpoint_restore();
10138
10139         vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10140         vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10141
10142         vcpu->mode = OUTSIDE_GUEST_MODE;
10143         smp_wmb();
10144
10145         /*
10146          * Sync xfd before calling handle_exit_irqoff() which may
10147          * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10148          * in #NM irqoff handler).
10149          */
10150         if (vcpu->arch.xfd_no_write_intercept)
10151                 fpu_sync_guest_vmexit_xfd_state();
10152
10153         static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10154
10155         if (vcpu->arch.guest_fpu.xfd_err)
10156                 wrmsrl(MSR_IA32_XFD_ERR, 0);
10157
10158         /*
10159          * Consume any pending interrupts, including the possible source of
10160          * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10161          * An instruction is required after local_irq_enable() to fully unblock
10162          * interrupts on processors that implement an interrupt shadow, the
10163          * stat.exits increment will do nicely.
10164          */
10165         kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10166         local_irq_enable();
10167         ++vcpu->stat.exits;
10168         local_irq_disable();
10169         kvm_after_interrupt(vcpu);
10170
10171         /*
10172          * Wait until after servicing IRQs to account guest time so that any
10173          * ticks that occurred while running the guest are properly accounted
10174          * to the guest.  Waiting until IRQs are enabled degrades the accuracy
10175          * of accounting via context tracking, but the loss of accuracy is
10176          * acceptable for all known use cases.
10177          */
10178         guest_timing_exit_irqoff();
10179
10180         if (lapic_in_kernel(vcpu)) {
10181                 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
10182                 if (delta != S64_MIN) {
10183                         trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
10184                         vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
10185                 }
10186         }
10187
10188         local_irq_enable();
10189         preempt_enable();
10190
10191         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10192
10193         /*
10194          * Profile KVM exit RIPs:
10195          */
10196         if (unlikely(prof_on == KVM_PROFILING)) {
10197                 unsigned long rip = kvm_rip_read(vcpu);
10198                 profile_hit(KVM_PROFILING, (void *)rip);
10199         }
10200
10201         if (unlikely(vcpu->arch.tsc_always_catchup))
10202                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10203
10204         if (vcpu->arch.apic_attention)
10205                 kvm_lapic_sync_from_vapic(vcpu);
10206
10207         r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10208         return r;
10209
10210 cancel_injection:
10211         if (req_immediate_exit)
10212                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10213         static_call(kvm_x86_cancel_injection)(vcpu);
10214         if (unlikely(vcpu->arch.apic_attention))
10215                 kvm_lapic_sync_from_vapic(vcpu);
10216 out:
10217         return r;
10218 }
10219
10220 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
10221 {
10222         bool hv_timer;
10223
10224         if (!kvm_arch_vcpu_runnable(vcpu)) {
10225                 /*
10226                  * Switch to the software timer before halt-polling/blocking as
10227                  * the guest's timer may be a break event for the vCPU, and the
10228                  * hypervisor timer runs only when the CPU is in guest mode.
10229                  * Switch before halt-polling so that KVM recognizes an expired
10230                  * timer before blocking.
10231                  */
10232                 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10233                 if (hv_timer)
10234                         kvm_lapic_switch_to_sw_timer(vcpu);
10235
10236                 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10237                 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10238                         kvm_vcpu_halt(vcpu);
10239                 else
10240                         kvm_vcpu_block(vcpu);
10241                 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10242
10243                 if (hv_timer)
10244                         kvm_lapic_switch_to_hv_timer(vcpu);
10245
10246                 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
10247                         return 1;
10248         }
10249
10250         if (kvm_apic_accept_events(vcpu) < 0)
10251                 return 0;
10252         switch(vcpu->arch.mp_state) {
10253         case KVM_MP_STATE_HALTED:
10254         case KVM_MP_STATE_AP_RESET_HOLD:
10255                 vcpu->arch.pv.pv_unhalted = false;
10256                 vcpu->arch.mp_state =
10257                         KVM_MP_STATE_RUNNABLE;
10258                 fallthrough;
10259         case KVM_MP_STATE_RUNNABLE:
10260                 vcpu->arch.apf.halted = false;
10261                 break;
10262         case KVM_MP_STATE_INIT_RECEIVED:
10263                 break;
10264         default:
10265                 return -EINTR;
10266         }
10267         return 1;
10268 }
10269
10270 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10271 {
10272         if (is_guest_mode(vcpu))
10273                 kvm_check_nested_events(vcpu);
10274
10275         return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10276                 !vcpu->arch.apf.halted);
10277 }
10278
10279 static int vcpu_run(struct kvm_vcpu *vcpu)
10280 {
10281         int r;
10282         struct kvm *kvm = vcpu->kvm;
10283
10284         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10285         vcpu->arch.l1tf_flush_l1d = true;
10286
10287         for (;;) {
10288                 if (kvm_vcpu_running(vcpu)) {
10289                         r = vcpu_enter_guest(vcpu);
10290                 } else {
10291                         r = vcpu_block(kvm, vcpu);
10292                 }
10293
10294                 if (r <= 0)
10295                         break;
10296
10297                 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10298                 if (kvm_cpu_has_pending_timer(vcpu))
10299                         kvm_inject_pending_timer_irqs(vcpu);
10300
10301                 if (dm_request_for_irq_injection(vcpu) &&
10302                         kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10303                         r = 0;
10304                         vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10305                         ++vcpu->stat.request_irq_exits;
10306                         break;
10307                 }
10308
10309                 if (__xfer_to_guest_mode_work_pending()) {
10310                         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10311                         r = xfer_to_guest_mode_handle_work(vcpu);
10312                         if (r)
10313                                 return r;
10314                         vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
10315                 }
10316         }
10317
10318         srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
10319
10320         return r;
10321 }
10322
10323 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
10324 {
10325         int r;
10326
10327         vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
10328         r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
10329         srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
10330         return r;
10331 }
10332
10333 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
10334 {
10335         BUG_ON(!vcpu->arch.pio.count);
10336
10337         return complete_emulated_io(vcpu);
10338 }
10339
10340 /*
10341  * Implements the following, as a state machine:
10342  *
10343  * read:
10344  *   for each fragment
10345  *     for each mmio piece in the fragment
10346  *       write gpa, len
10347  *       exit
10348  *       copy data
10349  *   execute insn
10350  *
10351  * write:
10352  *   for each fragment
10353  *     for each mmio piece in the fragment
10354  *       write gpa, len
10355  *       copy data
10356  *       exit
10357  */
10358 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
10359 {
10360         struct kvm_run *run = vcpu->run;
10361         struct kvm_mmio_fragment *frag;
10362         unsigned len;
10363
10364         BUG_ON(!vcpu->mmio_needed);
10365
10366         /* Complete previous fragment */
10367         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
10368         len = min(8u, frag->len);
10369         if (!vcpu->mmio_is_write)
10370                 memcpy(frag->data, run->mmio.data, len);
10371
10372         if (frag->len <= 8) {
10373                 /* Switch to the next fragment. */
10374                 frag++;
10375                 vcpu->mmio_cur_fragment++;
10376         } else {
10377                 /* Go forward to the next mmio piece. */
10378                 frag->data += len;
10379                 frag->gpa += len;
10380                 frag->len -= len;
10381         }
10382
10383         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
10384                 vcpu->mmio_needed = 0;
10385
10386                 /* FIXME: return into emulator if single-stepping.  */
10387                 if (vcpu->mmio_is_write)
10388                         return 1;
10389                 vcpu->mmio_read_completed = 1;
10390                 return complete_emulated_io(vcpu);
10391         }
10392
10393         run->exit_reason = KVM_EXIT_MMIO;
10394         run->mmio.phys_addr = frag->gpa;
10395         if (vcpu->mmio_is_write)
10396                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
10397         run->mmio.len = min(8u, frag->len);
10398         run->mmio.is_write = vcpu->mmio_is_write;
10399         vcpu->arch.complete_userspace_io = complete_emulated_mmio;
10400         return 0;
10401 }
10402
10403 /* Swap (qemu) user FPU context for the guest FPU context. */
10404 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
10405 {
10406         /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
10407         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
10408         trace_kvm_fpu(1);
10409 }
10410
10411 /* When vcpu_run ends, restore user space FPU context. */
10412 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
10413 {
10414         fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
10415         ++vcpu->stat.fpu_reload;
10416         trace_kvm_fpu(0);
10417 }
10418
10419 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
10420 {
10421         struct kvm_run *kvm_run = vcpu->run;
10422         int r;
10423
10424         vcpu_load(vcpu);
10425         kvm_sigset_activate(vcpu);
10426         kvm_run->flags = 0;
10427         kvm_load_guest_fpu(vcpu);
10428
10429         if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
10430                 if (kvm_run->immediate_exit) {
10431                         r = -EINTR;
10432                         goto out;
10433                 }
10434                 /*
10435                  * It should be impossible for the hypervisor timer to be in
10436                  * use before KVM has ever run the vCPU.
10437                  */
10438                 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
10439                 kvm_vcpu_block(vcpu);
10440                 if (kvm_apic_accept_events(vcpu) < 0) {
10441                         r = 0;
10442                         goto out;
10443                 }
10444                 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
10445                 r = -EAGAIN;
10446                 if (signal_pending(current)) {
10447                         r = -EINTR;
10448                         kvm_run->exit_reason = KVM_EXIT_INTR;
10449                         ++vcpu->stat.signal_exits;
10450                 }
10451                 goto out;
10452         }
10453
10454         if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
10455             (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
10456                 r = -EINVAL;
10457                 goto out;
10458         }
10459
10460         if (kvm_run->kvm_dirty_regs) {
10461                 r = sync_regs(vcpu);
10462                 if (r != 0)
10463                         goto out;
10464         }
10465
10466         /* re-sync apic's tpr */
10467         if (!lapic_in_kernel(vcpu)) {
10468                 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
10469                         r = -EINVAL;
10470                         goto out;
10471                 }
10472         }
10473
10474         if (unlikely(vcpu->arch.complete_userspace_io)) {
10475                 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
10476                 vcpu->arch.complete_userspace_io = NULL;
10477                 r = cui(vcpu);
10478                 if (r <= 0)
10479                         goto out;
10480         } else
10481                 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
10482
10483         if (kvm_run->immediate_exit) {
10484                 r = -EINTR;
10485                 goto out;
10486         }
10487
10488         r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
10489         if (r <= 0)
10490                 goto out;
10491
10492         r = vcpu_run(vcpu);
10493
10494 out:
10495         kvm_put_guest_fpu(vcpu);
10496         if (kvm_run->kvm_valid_regs)
10497                 store_regs(vcpu);
10498         post_kvm_run_save(vcpu);
10499         kvm_sigset_deactivate(vcpu);
10500
10501         vcpu_put(vcpu);
10502         return r;
10503 }
10504
10505 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10506 {
10507         if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
10508                 /*
10509                  * We are here if userspace calls get_regs() in the middle of
10510                  * instruction emulation. Registers state needs to be copied
10511                  * back from emulation context to vcpu. Userspace shouldn't do
10512                  * that usually, but some bad designed PV devices (vmware
10513                  * backdoor interface) need this to work
10514                  */
10515                 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
10516                 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10517         }
10518         regs->rax = kvm_rax_read(vcpu);
10519         regs->rbx = kvm_rbx_read(vcpu);
10520         regs->rcx = kvm_rcx_read(vcpu);
10521         regs->rdx = kvm_rdx_read(vcpu);
10522         regs->rsi = kvm_rsi_read(vcpu);
10523         regs->rdi = kvm_rdi_read(vcpu);
10524         regs->rsp = kvm_rsp_read(vcpu);
10525         regs->rbp = kvm_rbp_read(vcpu);
10526 #ifdef CONFIG_X86_64
10527         regs->r8 = kvm_r8_read(vcpu);
10528         regs->r9 = kvm_r9_read(vcpu);
10529         regs->r10 = kvm_r10_read(vcpu);
10530         regs->r11 = kvm_r11_read(vcpu);
10531         regs->r12 = kvm_r12_read(vcpu);
10532         regs->r13 = kvm_r13_read(vcpu);
10533         regs->r14 = kvm_r14_read(vcpu);
10534         regs->r15 = kvm_r15_read(vcpu);
10535 #endif
10536
10537         regs->rip = kvm_rip_read(vcpu);
10538         regs->rflags = kvm_get_rflags(vcpu);
10539 }
10540
10541 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10542 {
10543         vcpu_load(vcpu);
10544         __get_regs(vcpu, regs);
10545         vcpu_put(vcpu);
10546         return 0;
10547 }
10548
10549 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10550 {
10551         vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
10552         vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
10553
10554         kvm_rax_write(vcpu, regs->rax);
10555         kvm_rbx_write(vcpu, regs->rbx);
10556         kvm_rcx_write(vcpu, regs->rcx);
10557         kvm_rdx_write(vcpu, regs->rdx);
10558         kvm_rsi_write(vcpu, regs->rsi);
10559         kvm_rdi_write(vcpu, regs->rdi);
10560         kvm_rsp_write(vcpu, regs->rsp);
10561         kvm_rbp_write(vcpu, regs->rbp);
10562 #ifdef CONFIG_X86_64
10563         kvm_r8_write(vcpu, regs->r8);
10564         kvm_r9_write(vcpu, regs->r9);
10565         kvm_r10_write(vcpu, regs->r10);
10566         kvm_r11_write(vcpu, regs->r11);
10567         kvm_r12_write(vcpu, regs->r12);
10568         kvm_r13_write(vcpu, regs->r13);
10569         kvm_r14_write(vcpu, regs->r14);
10570         kvm_r15_write(vcpu, regs->r15);
10571 #endif
10572
10573         kvm_rip_write(vcpu, regs->rip);
10574         kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
10575
10576         vcpu->arch.exception.pending = false;
10577
10578         kvm_make_request(KVM_REQ_EVENT, vcpu);
10579 }
10580
10581 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
10582 {
10583         vcpu_load(vcpu);
10584         __set_regs(vcpu, regs);
10585         vcpu_put(vcpu);
10586         return 0;
10587 }
10588
10589 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10590 {
10591         struct desc_ptr dt;
10592
10593         if (vcpu->arch.guest_state_protected)
10594                 goto skip_protected_regs;
10595
10596         kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10597         kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10598         kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10599         kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10600         kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10601         kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10602
10603         kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10604         kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10605
10606         static_call(kvm_x86_get_idt)(vcpu, &dt);
10607         sregs->idt.limit = dt.size;
10608         sregs->idt.base = dt.address;
10609         static_call(kvm_x86_get_gdt)(vcpu, &dt);
10610         sregs->gdt.limit = dt.size;
10611         sregs->gdt.base = dt.address;
10612
10613         sregs->cr2 = vcpu->arch.cr2;
10614         sregs->cr3 = kvm_read_cr3(vcpu);
10615
10616 skip_protected_regs:
10617         sregs->cr0 = kvm_read_cr0(vcpu);
10618         sregs->cr4 = kvm_read_cr4(vcpu);
10619         sregs->cr8 = kvm_get_cr8(vcpu);
10620         sregs->efer = vcpu->arch.efer;
10621         sregs->apic_base = kvm_get_apic_base(vcpu);
10622 }
10623
10624 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10625 {
10626         __get_sregs_common(vcpu, sregs);
10627
10628         if (vcpu->arch.guest_state_protected)
10629                 return;
10630
10631         if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
10632                 set_bit(vcpu->arch.interrupt.nr,
10633                         (unsigned long *)sregs->interrupt_bitmap);
10634 }
10635
10636 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10637 {
10638         int i;
10639
10640         __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
10641
10642         if (vcpu->arch.guest_state_protected)
10643                 return;
10644
10645         if (is_pae_paging(vcpu)) {
10646                 for (i = 0 ; i < 4 ; i++)
10647                         sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
10648                 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
10649         }
10650 }
10651
10652 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
10653                                   struct kvm_sregs *sregs)
10654 {
10655         vcpu_load(vcpu);
10656         __get_sregs(vcpu, sregs);
10657         vcpu_put(vcpu);
10658         return 0;
10659 }
10660
10661 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
10662                                     struct kvm_mp_state *mp_state)
10663 {
10664         int r;
10665
10666         vcpu_load(vcpu);
10667         if (kvm_mpx_supported())
10668                 kvm_load_guest_fpu(vcpu);
10669
10670         r = kvm_apic_accept_events(vcpu);
10671         if (r < 0)
10672                 goto out;
10673         r = 0;
10674
10675         if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
10676              vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
10677             vcpu->arch.pv.pv_unhalted)
10678                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
10679         else
10680                 mp_state->mp_state = vcpu->arch.mp_state;
10681
10682 out:
10683         if (kvm_mpx_supported())
10684                 kvm_put_guest_fpu(vcpu);
10685         vcpu_put(vcpu);
10686         return r;
10687 }
10688
10689 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
10690                                     struct kvm_mp_state *mp_state)
10691 {
10692         int ret = -EINVAL;
10693
10694         vcpu_load(vcpu);
10695
10696         if (!lapic_in_kernel(vcpu) &&
10697             mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
10698                 goto out;
10699
10700         /*
10701          * KVM_MP_STATE_INIT_RECEIVED means the processor is in
10702          * INIT state; latched init should be reported using
10703          * KVM_SET_VCPU_EVENTS, so reject it here.
10704          */
10705         if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
10706             (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
10707              mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
10708                 goto out;
10709
10710         if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
10711                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
10712                 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
10713         } else
10714                 vcpu->arch.mp_state = mp_state->mp_state;
10715         kvm_make_request(KVM_REQ_EVENT, vcpu);
10716
10717         ret = 0;
10718 out:
10719         vcpu_put(vcpu);
10720         return ret;
10721 }
10722
10723 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
10724                     int reason, bool has_error_code, u32 error_code)
10725 {
10726         struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
10727         int ret;
10728
10729         init_emulate_ctxt(vcpu);
10730
10731         ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
10732                                    has_error_code, error_code);
10733         if (ret) {
10734                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
10735                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
10736                 vcpu->run->internal.ndata = 0;
10737                 return 0;
10738         }
10739
10740         kvm_rip_write(vcpu, ctxt->eip);
10741         kvm_set_rflags(vcpu, ctxt->eflags);
10742         return 1;
10743 }
10744 EXPORT_SYMBOL_GPL(kvm_task_switch);
10745
10746 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10747 {
10748         if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
10749                 /*
10750                  * When EFER.LME and CR0.PG are set, the processor is in
10751                  * 64-bit mode (though maybe in a 32-bit code segment).
10752                  * CR4.PAE and EFER.LMA must be set.
10753                  */
10754                 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
10755                         return false;
10756                 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
10757                         return false;
10758         } else {
10759                 /*
10760                  * Not in 64-bit mode: EFER.LMA is clear and the code
10761                  * segment cannot be 64-bit.
10762                  */
10763                 if (sregs->efer & EFER_LMA || sregs->cs.l)
10764                         return false;
10765         }
10766
10767         return kvm_is_valid_cr4(vcpu, sregs->cr4);
10768 }
10769
10770 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
10771                 int *mmu_reset_needed, bool update_pdptrs)
10772 {
10773         struct msr_data apic_base_msr;
10774         int idx;
10775         struct desc_ptr dt;
10776
10777         if (!kvm_is_valid_sregs(vcpu, sregs))
10778                 return -EINVAL;
10779
10780         apic_base_msr.data = sregs->apic_base;
10781         apic_base_msr.host_initiated = true;
10782         if (kvm_set_apic_base(vcpu, &apic_base_msr))
10783                 return -EINVAL;
10784
10785         if (vcpu->arch.guest_state_protected)
10786                 return 0;
10787
10788         dt.size = sregs->idt.limit;
10789         dt.address = sregs->idt.base;
10790         static_call(kvm_x86_set_idt)(vcpu, &dt);
10791         dt.size = sregs->gdt.limit;
10792         dt.address = sregs->gdt.base;
10793         static_call(kvm_x86_set_gdt)(vcpu, &dt);
10794
10795         vcpu->arch.cr2 = sregs->cr2;
10796         *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
10797         vcpu->arch.cr3 = sregs->cr3;
10798         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
10799         static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
10800
10801         kvm_set_cr8(vcpu, sregs->cr8);
10802
10803         *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
10804         static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
10805
10806         *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
10807         static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
10808         vcpu->arch.cr0 = sregs->cr0;
10809
10810         *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
10811         static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
10812
10813         if (update_pdptrs) {
10814                 idx = srcu_read_lock(&vcpu->kvm->srcu);
10815                 if (is_pae_paging(vcpu)) {
10816                         load_pdptrs(vcpu, kvm_read_cr3(vcpu));
10817                         *mmu_reset_needed = 1;
10818                 }
10819                 srcu_read_unlock(&vcpu->kvm->srcu, idx);
10820         }
10821
10822         kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
10823         kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
10824         kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
10825         kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
10826         kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
10827         kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
10828
10829         kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
10830         kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
10831
10832         update_cr8_intercept(vcpu);
10833
10834         /* Older userspace won't unhalt the vcpu on reset. */
10835         if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
10836             sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
10837             !is_protmode(vcpu))
10838                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10839
10840         return 0;
10841 }
10842
10843 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
10844 {
10845         int pending_vec, max_bits;
10846         int mmu_reset_needed = 0;
10847         int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
10848
10849         if (ret)
10850                 return ret;
10851
10852         if (mmu_reset_needed)
10853                 kvm_mmu_reset_context(vcpu);
10854
10855         max_bits = KVM_NR_INTERRUPTS;
10856         pending_vec = find_first_bit(
10857                 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
10858
10859         if (pending_vec < max_bits) {
10860                 kvm_queue_interrupt(vcpu, pending_vec, false);
10861                 pr_debug("Set back pending irq %d\n", pending_vec);
10862                 kvm_make_request(KVM_REQ_EVENT, vcpu);
10863         }
10864         return 0;
10865 }
10866
10867 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
10868 {
10869         int mmu_reset_needed = 0;
10870         bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
10871         bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
10872                 !(sregs2->efer & EFER_LMA);
10873         int i, ret;
10874
10875         if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
10876                 return -EINVAL;
10877
10878         if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
10879                 return -EINVAL;
10880
10881         ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
10882                                  &mmu_reset_needed, !valid_pdptrs);
10883         if (ret)
10884                 return ret;
10885
10886         if (valid_pdptrs) {
10887                 for (i = 0; i < 4 ; i++)
10888                         kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
10889
10890                 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
10891                 mmu_reset_needed = 1;
10892                 vcpu->arch.pdptrs_from_userspace = true;
10893         }
10894         if (mmu_reset_needed)
10895                 kvm_mmu_reset_context(vcpu);
10896         return 0;
10897 }
10898
10899 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
10900                                   struct kvm_sregs *sregs)
10901 {
10902         int ret;
10903
10904         vcpu_load(vcpu);
10905         ret = __set_sregs(vcpu, sregs);
10906         vcpu_put(vcpu);
10907         return ret;
10908 }
10909
10910 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
10911 {
10912         bool inhibit = false;
10913         struct kvm_vcpu *vcpu;
10914         unsigned long i;
10915
10916         down_write(&kvm->arch.apicv_update_lock);
10917
10918         kvm_for_each_vcpu(i, vcpu, kvm) {
10919                 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
10920                         inhibit = true;
10921                         break;
10922                 }
10923         }
10924         __kvm_request_apicv_update(kvm, !inhibit, APICV_INHIBIT_REASON_BLOCKIRQ);
10925         up_write(&kvm->arch.apicv_update_lock);
10926 }
10927
10928 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
10929                                         struct kvm_guest_debug *dbg)
10930 {
10931         unsigned long rflags;
10932         int i, r;
10933
10934         if (vcpu->arch.guest_state_protected)
10935                 return -EINVAL;
10936
10937         vcpu_load(vcpu);
10938
10939         if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
10940                 r = -EBUSY;
10941                 if (vcpu->arch.exception.pending)
10942                         goto out;
10943                 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
10944                         kvm_queue_exception(vcpu, DB_VECTOR);
10945                 else
10946                         kvm_queue_exception(vcpu, BP_VECTOR);
10947         }
10948
10949         /*
10950          * Read rflags as long as potentially injected trace flags are still
10951          * filtered out.
10952          */
10953         rflags = kvm_get_rflags(vcpu);
10954
10955         vcpu->guest_debug = dbg->control;
10956         if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
10957                 vcpu->guest_debug = 0;
10958
10959         if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
10960                 for (i = 0; i < KVM_NR_DB_REGS; ++i)
10961                         vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
10962                 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
10963         } else {
10964                 for (i = 0; i < KVM_NR_DB_REGS; i++)
10965                         vcpu->arch.eff_db[i] = vcpu->arch.db[i];
10966         }
10967         kvm_update_dr7(vcpu);
10968
10969         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10970                 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
10971
10972         /*
10973          * Trigger an rflags update that will inject or remove the trace
10974          * flags.
10975          */
10976         kvm_set_rflags(vcpu, rflags);
10977
10978         static_call(kvm_x86_update_exception_bitmap)(vcpu);
10979
10980         kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
10981
10982         r = 0;
10983
10984 out:
10985         vcpu_put(vcpu);
10986         return r;
10987 }
10988
10989 /*
10990  * Translate a guest virtual address to a guest physical address.
10991  */
10992 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
10993                                     struct kvm_translation *tr)
10994 {
10995         unsigned long vaddr = tr->linear_address;
10996         gpa_t gpa;
10997         int idx;
10998
10999         vcpu_load(vcpu);
11000
11001         idx = srcu_read_lock(&vcpu->kvm->srcu);
11002         gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11003         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11004         tr->physical_address = gpa;
11005         tr->valid = gpa != UNMAPPED_GVA;
11006         tr->writeable = 1;
11007         tr->usermode = 0;
11008
11009         vcpu_put(vcpu);
11010         return 0;
11011 }
11012
11013 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11014 {
11015         struct fxregs_state *fxsave;
11016
11017         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11018                 return 0;
11019
11020         vcpu_load(vcpu);
11021
11022         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11023         memcpy(fpu->fpr, fxsave->st_space, 128);
11024         fpu->fcw = fxsave->cwd;
11025         fpu->fsw = fxsave->swd;
11026         fpu->ftwx = fxsave->twd;
11027         fpu->last_opcode = fxsave->fop;
11028         fpu->last_ip = fxsave->rip;
11029         fpu->last_dp = fxsave->rdp;
11030         memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11031
11032         vcpu_put(vcpu);
11033         return 0;
11034 }
11035
11036 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11037 {
11038         struct fxregs_state *fxsave;
11039
11040         if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11041                 return 0;
11042
11043         vcpu_load(vcpu);
11044
11045         fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11046
11047         memcpy(fxsave->st_space, fpu->fpr, 128);
11048         fxsave->cwd = fpu->fcw;
11049         fxsave->swd = fpu->fsw;
11050         fxsave->twd = fpu->ftwx;
11051         fxsave->fop = fpu->last_opcode;
11052         fxsave->rip = fpu->last_ip;
11053         fxsave->rdp = fpu->last_dp;
11054         memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11055
11056         vcpu_put(vcpu);
11057         return 0;
11058 }
11059
11060 static void store_regs(struct kvm_vcpu *vcpu)
11061 {
11062         BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11063
11064         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11065                 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11066
11067         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11068                 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11069
11070         if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11071                 kvm_vcpu_ioctl_x86_get_vcpu_events(
11072                                 vcpu, &vcpu->run->s.regs.events);
11073 }
11074
11075 static int sync_regs(struct kvm_vcpu *vcpu)
11076 {
11077         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11078                 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11079                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11080         }
11081         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11082                 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11083                         return -EINVAL;
11084                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11085         }
11086         if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11087                 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11088                                 vcpu, &vcpu->run->s.regs.events))
11089                         return -EINVAL;
11090                 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11091         }
11092
11093         return 0;
11094 }
11095
11096 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11097 {
11098         if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
11099                 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11100                              "guest TSC will not be reliable\n");
11101
11102         return 0;
11103 }
11104
11105 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11106 {
11107         struct page *page;
11108         int r;
11109
11110         vcpu->arch.last_vmentry_cpu = -1;
11111         vcpu->arch.regs_avail = ~0;
11112         vcpu->arch.regs_dirty = ~0;
11113
11114         if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11115                 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11116         else
11117                 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11118
11119         r = kvm_mmu_create(vcpu);
11120         if (r < 0)
11121                 return r;
11122
11123         if (irqchip_in_kernel(vcpu->kvm)) {
11124                 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11125                 if (r < 0)
11126                         goto fail_mmu_destroy;
11127                 if (kvm_apicv_activated(vcpu->kvm))
11128                         vcpu->arch.apicv_active = true;
11129         } else
11130                 static_branch_inc(&kvm_has_noapic_vcpu);
11131
11132         r = -ENOMEM;
11133
11134         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11135         if (!page)
11136                 goto fail_free_lapic;
11137         vcpu->arch.pio_data = page_address(page);
11138
11139         vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
11140                                        GFP_KERNEL_ACCOUNT);
11141         if (!vcpu->arch.mce_banks)
11142                 goto fail_free_pio_data;
11143         vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11144
11145         if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11146                                 GFP_KERNEL_ACCOUNT))
11147                 goto fail_free_mce_banks;
11148
11149         if (!alloc_emulate_ctxt(vcpu))
11150                 goto free_wbinvd_dirty_mask;
11151
11152         if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11153                 pr_err("kvm: failed to allocate vcpu's fpu\n");
11154                 goto free_emulate_ctxt;
11155         }
11156
11157         vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11158         vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11159
11160         vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11161
11162         kvm_async_pf_hash_reset(vcpu);
11163         kvm_pmu_init(vcpu);
11164
11165         vcpu->arch.pending_external_vector = -1;
11166         vcpu->arch.preempted_in_kernel = false;
11167
11168 #if IS_ENABLED(CONFIG_HYPERV)
11169         vcpu->arch.hv_root_tdp = INVALID_PAGE;
11170 #endif
11171
11172         r = static_call(kvm_x86_vcpu_create)(vcpu);
11173         if (r)
11174                 goto free_guest_fpu;
11175
11176         vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11177         vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11178         kvm_vcpu_mtrr_init(vcpu);
11179         vcpu_load(vcpu);
11180         kvm_set_tsc_khz(vcpu, max_tsc_khz);
11181         kvm_vcpu_reset(vcpu, false);
11182         kvm_init_mmu(vcpu);
11183         vcpu_put(vcpu);
11184         return 0;
11185
11186 free_guest_fpu:
11187         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11188 free_emulate_ctxt:
11189         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11190 free_wbinvd_dirty_mask:
11191         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11192 fail_free_mce_banks:
11193         kfree(vcpu->arch.mce_banks);
11194 fail_free_pio_data:
11195         free_page((unsigned long)vcpu->arch.pio_data);
11196 fail_free_lapic:
11197         kvm_free_lapic(vcpu);
11198 fail_mmu_destroy:
11199         kvm_mmu_destroy(vcpu);
11200         return r;
11201 }
11202
11203 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11204 {
11205         struct kvm *kvm = vcpu->kvm;
11206
11207         if (mutex_lock_killable(&vcpu->mutex))
11208                 return;
11209         vcpu_load(vcpu);
11210         kvm_synchronize_tsc(vcpu, 0);
11211         vcpu_put(vcpu);
11212
11213         /* poll control enabled by default */
11214         vcpu->arch.msr_kvm_poll_control = 1;
11215
11216         mutex_unlock(&vcpu->mutex);
11217
11218         if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11219                 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11220                                                 KVMCLOCK_SYNC_PERIOD);
11221 }
11222
11223 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11224 {
11225         int idx;
11226
11227         kvmclock_reset(vcpu);
11228
11229         static_call(kvm_x86_vcpu_free)(vcpu);
11230
11231         kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11232         free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11233         fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11234
11235         kvm_hv_vcpu_uninit(vcpu);
11236         kvm_pmu_destroy(vcpu);
11237         kfree(vcpu->arch.mce_banks);
11238         kvm_free_lapic(vcpu);
11239         idx = srcu_read_lock(&vcpu->kvm->srcu);
11240         kvm_mmu_destroy(vcpu);
11241         srcu_read_unlock(&vcpu->kvm->srcu, idx);
11242         free_page((unsigned long)vcpu->arch.pio_data);
11243         kvfree(vcpu->arch.cpuid_entries);
11244         if (!lapic_in_kernel(vcpu))
11245                 static_branch_dec(&kvm_has_noapic_vcpu);
11246 }
11247
11248 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11249 {
11250         struct kvm_cpuid_entry2 *cpuid_0x1;
11251         unsigned long old_cr0 = kvm_read_cr0(vcpu);
11252         unsigned long new_cr0;
11253
11254         /*
11255          * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11256          * to handle side effects.  RESET emulation hits those flows and relies
11257          * on emulated/virtualized registers, including those that are loaded
11258          * into hardware, to be zeroed at vCPU creation.  Use CRs as a sentinel
11259          * to detect improper or missing initialization.
11260          */
11261         WARN_ON_ONCE(!init_event &&
11262                      (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
11263
11264         kvm_lapic_reset(vcpu, init_event);
11265
11266         vcpu->arch.hflags = 0;
11267
11268         vcpu->arch.smi_pending = 0;
11269         vcpu->arch.smi_count = 0;
11270         atomic_set(&vcpu->arch.nmi_queued, 0);
11271         vcpu->arch.nmi_pending = 0;
11272         vcpu->arch.nmi_injected = false;
11273         kvm_clear_interrupt_queue(vcpu);
11274         kvm_clear_exception_queue(vcpu);
11275
11276         memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
11277         kvm_update_dr0123(vcpu);
11278         vcpu->arch.dr6 = DR6_ACTIVE_LOW;
11279         vcpu->arch.dr7 = DR7_FIXED_1;
11280         kvm_update_dr7(vcpu);
11281
11282         vcpu->arch.cr2 = 0;
11283
11284         kvm_make_request(KVM_REQ_EVENT, vcpu);
11285         vcpu->arch.apf.msr_en_val = 0;
11286         vcpu->arch.apf.msr_int_val = 0;
11287         vcpu->arch.st.msr_val = 0;
11288
11289         kvmclock_reset(vcpu);
11290
11291         kvm_clear_async_pf_completion_queue(vcpu);
11292         kvm_async_pf_hash_reset(vcpu);
11293         vcpu->arch.apf.halted = false;
11294
11295         if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
11296                 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
11297
11298                 /*
11299                  * To avoid have the INIT path from kvm_apic_has_events() that be
11300                  * called with loaded FPU and does not let userspace fix the state.
11301                  */
11302                 if (init_event)
11303                         kvm_put_guest_fpu(vcpu);
11304
11305                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
11306                 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
11307
11308                 if (init_event)
11309                         kvm_load_guest_fpu(vcpu);
11310         }
11311
11312         if (!init_event) {
11313                 kvm_pmu_reset(vcpu);
11314                 vcpu->arch.smbase = 0x30000;
11315
11316                 vcpu->arch.msr_misc_features_enables = 0;
11317
11318                 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
11319                 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
11320         }
11321
11322         /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
11323         memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
11324         kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
11325
11326         /*
11327          * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
11328          * if no CPUID match is found.  Note, it's impossible to get a match at
11329          * RESET since KVM emulates RESET before exposing the vCPU to userspace,
11330          * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
11331          * on RESET.  But, go through the motions in case that's ever remedied.
11332          */
11333         cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1, 0);
11334         kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
11335
11336         static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
11337
11338         kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
11339         kvm_rip_write(vcpu, 0xfff0);
11340
11341         vcpu->arch.cr3 = 0;
11342         kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11343
11344         /*
11345          * CR0.CD/NW are set on RESET, preserved on INIT.  Note, some versions
11346          * of Intel's SDM list CD/NW as being set on INIT, but they contradict
11347          * (or qualify) that with a footnote stating that CD/NW are preserved.
11348          */
11349         new_cr0 = X86_CR0_ET;
11350         if (init_event)
11351                 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
11352         else
11353                 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
11354
11355         static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
11356         static_call(kvm_x86_set_cr4)(vcpu, 0);
11357         static_call(kvm_x86_set_efer)(vcpu, 0);
11358         static_call(kvm_x86_update_exception_bitmap)(vcpu);
11359
11360         /*
11361          * On the standard CR0/CR4/EFER modification paths, there are several
11362          * complex conditions determining whether the MMU has to be reset and/or
11363          * which PCIDs have to be flushed.  However, CR0.WP and the paging-related
11364          * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
11365          * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
11366          * CR0 will be '0' prior to RESET).  So we only need to check CR0.PG here.
11367          */
11368         if (old_cr0 & X86_CR0_PG) {
11369                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11370                 kvm_mmu_reset_context(vcpu);
11371         }
11372
11373         /*
11374          * Intel's SDM states that all TLB entries are flushed on INIT.  AMD's
11375          * APM states the TLBs are untouched by INIT, but it also states that
11376          * the TLBs are flushed on "External initialization of the processor."
11377          * Flush the guest TLB regardless of vendor, there is no meaningful
11378          * benefit in relying on the guest to flush the TLB immediately after
11379          * INIT.  A spurious TLB flush is benign and likely negligible from a
11380          * performance perspective.
11381          */
11382         if (init_event)
11383                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
11384 }
11385 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
11386
11387 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
11388 {
11389         struct kvm_segment cs;
11390
11391         kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
11392         cs.selector = vector << 8;
11393         cs.base = vector << 12;
11394         kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
11395         kvm_rip_write(vcpu, 0);
11396 }
11397 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
11398
11399 int kvm_arch_hardware_enable(void)
11400 {
11401         struct kvm *kvm;
11402         struct kvm_vcpu *vcpu;
11403         unsigned long i;
11404         int ret;
11405         u64 local_tsc;
11406         u64 max_tsc = 0;
11407         bool stable, backwards_tsc = false;
11408
11409         kvm_user_return_msr_cpu_online();
11410         ret = static_call(kvm_x86_hardware_enable)();
11411         if (ret != 0)
11412                 return ret;
11413
11414         local_tsc = rdtsc();
11415         stable = !kvm_check_tsc_unstable();
11416         list_for_each_entry(kvm, &vm_list, vm_list) {
11417                 kvm_for_each_vcpu(i, vcpu, kvm) {
11418                         if (!stable && vcpu->cpu == smp_processor_id())
11419                                 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
11420                         if (stable && vcpu->arch.last_host_tsc > local_tsc) {
11421                                 backwards_tsc = true;
11422                                 if (vcpu->arch.last_host_tsc > max_tsc)
11423                                         max_tsc = vcpu->arch.last_host_tsc;
11424                         }
11425                 }
11426         }
11427
11428         /*
11429          * Sometimes, even reliable TSCs go backwards.  This happens on
11430          * platforms that reset TSC during suspend or hibernate actions, but
11431          * maintain synchronization.  We must compensate.  Fortunately, we can
11432          * detect that condition here, which happens early in CPU bringup,
11433          * before any KVM threads can be running.  Unfortunately, we can't
11434          * bring the TSCs fully up to date with real time, as we aren't yet far
11435          * enough into CPU bringup that we know how much real time has actually
11436          * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
11437          * variables that haven't been updated yet.
11438          *
11439          * So we simply find the maximum observed TSC above, then record the
11440          * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
11441          * the adjustment will be applied.  Note that we accumulate
11442          * adjustments, in case multiple suspend cycles happen before some VCPU
11443          * gets a chance to run again.  In the event that no KVM threads get a
11444          * chance to run, we will miss the entire elapsed period, as we'll have
11445          * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
11446          * loose cycle time.  This isn't too big a deal, since the loss will be
11447          * uniform across all VCPUs (not to mention the scenario is extremely
11448          * unlikely). It is possible that a second hibernate recovery happens
11449          * much faster than a first, causing the observed TSC here to be
11450          * smaller; this would require additional padding adjustment, which is
11451          * why we set last_host_tsc to the local tsc observed here.
11452          *
11453          * N.B. - this code below runs only on platforms with reliable TSC,
11454          * as that is the only way backwards_tsc is set above.  Also note
11455          * that this runs for ALL vcpus, which is not a bug; all VCPUs should
11456          * have the same delta_cyc adjustment applied if backwards_tsc
11457          * is detected.  Note further, this adjustment is only done once,
11458          * as we reset last_host_tsc on all VCPUs to stop this from being
11459          * called multiple times (one for each physical CPU bringup).
11460          *
11461          * Platforms with unreliable TSCs don't have to deal with this, they
11462          * will be compensated by the logic in vcpu_load, which sets the TSC to
11463          * catchup mode.  This will catchup all VCPUs to real time, but cannot
11464          * guarantee that they stay in perfect synchronization.
11465          */
11466         if (backwards_tsc) {
11467                 u64 delta_cyc = max_tsc - local_tsc;
11468                 list_for_each_entry(kvm, &vm_list, vm_list) {
11469                         kvm->arch.backwards_tsc_observed = true;
11470                         kvm_for_each_vcpu(i, vcpu, kvm) {
11471                                 vcpu->arch.tsc_offset_adjustment += delta_cyc;
11472                                 vcpu->arch.last_host_tsc = local_tsc;
11473                                 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
11474                         }
11475
11476                         /*
11477                          * We have to disable TSC offset matching.. if you were
11478                          * booting a VM while issuing an S4 host suspend....
11479                          * you may have some problem.  Solving this issue is
11480                          * left as an exercise to the reader.
11481                          */
11482                         kvm->arch.last_tsc_nsec = 0;
11483                         kvm->arch.last_tsc_write = 0;
11484                 }
11485
11486         }
11487         return 0;
11488 }
11489
11490 void kvm_arch_hardware_disable(void)
11491 {
11492         static_call(kvm_x86_hardware_disable)();
11493         drop_user_return_notifiers();
11494 }
11495
11496 int kvm_arch_hardware_setup(void *opaque)
11497 {
11498         struct kvm_x86_init_ops *ops = opaque;
11499         int r;
11500
11501         rdmsrl_safe(MSR_EFER, &host_efer);
11502
11503         if (boot_cpu_has(X86_FEATURE_XSAVES))
11504                 rdmsrl(MSR_IA32_XSS, host_xss);
11505
11506         r = ops->hardware_setup();
11507         if (r != 0)
11508                 return r;
11509
11510         memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
11511         kvm_ops_static_call_update();
11512
11513         kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
11514
11515         if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
11516                 supported_xss = 0;
11517
11518 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
11519         cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
11520 #undef __kvm_cpu_cap_has
11521
11522         if (kvm_has_tsc_control) {
11523                 /*
11524                  * Make sure the user can only configure tsc_khz values that
11525                  * fit into a signed integer.
11526                  * A min value is not calculated because it will always
11527                  * be 1 on all machines.
11528                  */
11529                 u64 max = min(0x7fffffffULL,
11530                               __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
11531                 kvm_max_guest_tsc_khz = max;
11532
11533                 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
11534         }
11535
11536         kvm_init_msr_list();
11537         return 0;
11538 }
11539
11540 void kvm_arch_hardware_unsetup(void)
11541 {
11542         kvm_unregister_perf_callbacks();
11543
11544         static_call(kvm_x86_hardware_unsetup)();
11545 }
11546
11547 int kvm_arch_check_processor_compat(void *opaque)
11548 {
11549         struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
11550         struct kvm_x86_init_ops *ops = opaque;
11551
11552         WARN_ON(!irqs_disabled());
11553
11554         if (__cr4_reserved_bits(cpu_has, c) !=
11555             __cr4_reserved_bits(cpu_has, &boot_cpu_data))
11556                 return -EIO;
11557
11558         return ops->check_processor_compatibility();
11559 }
11560
11561 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
11562 {
11563         return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
11564 }
11565 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
11566
11567 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
11568 {
11569         return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
11570 }
11571
11572 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
11573 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
11574
11575 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
11576 {
11577         struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
11578
11579         vcpu->arch.l1tf_flush_l1d = true;
11580         if (pmu->version && unlikely(pmu->event_count)) {
11581                 pmu->need_cleanup = true;
11582                 kvm_make_request(KVM_REQ_PMU, vcpu);
11583         }
11584         static_call(kvm_x86_sched_in)(vcpu, cpu);
11585 }
11586
11587 void kvm_arch_free_vm(struct kvm *kvm)
11588 {
11589         kfree(to_kvm_hv(kvm)->hv_pa_pg);
11590         __kvm_arch_free_vm(kvm);
11591 }
11592
11593
11594 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
11595 {
11596         int ret;
11597         unsigned long flags;
11598
11599         if (type)
11600                 return -EINVAL;
11601
11602         ret = kvm_page_track_init(kvm);
11603         if (ret)
11604                 return ret;
11605
11606         INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
11607         INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
11608         INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
11609         INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
11610         INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
11611         atomic_set(&kvm->arch.noncoherent_dma_count, 0);
11612
11613         /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
11614         set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
11615         /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
11616         set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
11617                 &kvm->arch.irq_sources_bitmap);
11618
11619         raw_spin_lock_init(&kvm->arch.tsc_write_lock);
11620         mutex_init(&kvm->arch.apic_map_lock);
11621         seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
11622         kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
11623
11624         raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
11625         pvclock_update_vm_gtod_copy(kvm);
11626         raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
11627
11628         kvm->arch.guest_can_read_msr_platform_info = true;
11629         kvm->arch.enable_pmu = enable_pmu;
11630
11631 #if IS_ENABLED(CONFIG_HYPERV)
11632         spin_lock_init(&kvm->arch.hv_root_tdp_lock);
11633         kvm->arch.hv_root_tdp = INVALID_PAGE;
11634 #endif
11635
11636         INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
11637         INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
11638
11639         kvm_apicv_init(kvm);
11640         kvm_hv_init_vm(kvm);
11641         kvm_mmu_init_vm(kvm);
11642         kvm_xen_init_vm(kvm);
11643
11644         return static_call(kvm_x86_vm_init)(kvm);
11645 }
11646
11647 int kvm_arch_post_init_vm(struct kvm *kvm)
11648 {
11649         return kvm_mmu_post_init_vm(kvm);
11650 }
11651
11652 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
11653 {
11654         vcpu_load(vcpu);
11655         kvm_mmu_unload(vcpu);
11656         vcpu_put(vcpu);
11657 }
11658
11659 static void kvm_free_vcpus(struct kvm *kvm)
11660 {
11661         unsigned long i;
11662         struct kvm_vcpu *vcpu;
11663
11664         /*
11665          * Unpin any mmu pages first.
11666          */
11667         kvm_for_each_vcpu(i, vcpu, kvm) {
11668                 kvm_clear_async_pf_completion_queue(vcpu);
11669                 kvm_unload_vcpu_mmu(vcpu);
11670         }
11671
11672         kvm_destroy_vcpus(kvm);
11673 }
11674
11675 void kvm_arch_sync_events(struct kvm *kvm)
11676 {
11677         cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
11678         cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
11679         kvm_free_pit(kvm);
11680 }
11681
11682 /**
11683  * __x86_set_memory_region: Setup KVM internal memory slot
11684  *
11685  * @kvm: the kvm pointer to the VM.
11686  * @id: the slot ID to setup.
11687  * @gpa: the GPA to install the slot (unused when @size == 0).
11688  * @size: the size of the slot. Set to zero to uninstall a slot.
11689  *
11690  * This function helps to setup a KVM internal memory slot.  Specify
11691  * @size > 0 to install a new slot, while @size == 0 to uninstall a
11692  * slot.  The return code can be one of the following:
11693  *
11694  *   HVA:           on success (uninstall will return a bogus HVA)
11695  *   -errno:        on error
11696  *
11697  * The caller should always use IS_ERR() to check the return value
11698  * before use.  Note, the KVM internal memory slots are guaranteed to
11699  * remain valid and unchanged until the VM is destroyed, i.e., the
11700  * GPA->HVA translation will not change.  However, the HVA is a user
11701  * address, i.e. its accessibility is not guaranteed, and must be
11702  * accessed via __copy_{to,from}_user().
11703  */
11704 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
11705                                       u32 size)
11706 {
11707         int i, r;
11708         unsigned long hva, old_npages;
11709         struct kvm_memslots *slots = kvm_memslots(kvm);
11710         struct kvm_memory_slot *slot;
11711
11712         /* Called with kvm->slots_lock held.  */
11713         if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
11714                 return ERR_PTR_USR(-EINVAL);
11715
11716         slot = id_to_memslot(slots, id);
11717         if (size) {
11718                 if (slot && slot->npages)
11719                         return ERR_PTR_USR(-EEXIST);
11720
11721                 /*
11722                  * MAP_SHARED to prevent internal slot pages from being moved
11723                  * by fork()/COW.
11724                  */
11725                 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
11726                               MAP_SHARED | MAP_ANONYMOUS, 0);
11727                 if (IS_ERR((void *)hva))
11728                         return (void __user *)hva;
11729         } else {
11730                 if (!slot || !slot->npages)
11731                         return NULL;
11732
11733                 old_npages = slot->npages;
11734                 hva = slot->userspace_addr;
11735         }
11736
11737         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
11738                 struct kvm_userspace_memory_region m;
11739
11740                 m.slot = id | (i << 16);
11741                 m.flags = 0;
11742                 m.guest_phys_addr = gpa;
11743                 m.userspace_addr = hva;
11744                 m.memory_size = size;
11745                 r = __kvm_set_memory_region(kvm, &m);
11746                 if (r < 0)
11747                         return ERR_PTR_USR(r);
11748         }
11749
11750         if (!size)
11751                 vm_munmap(hva, old_npages * PAGE_SIZE);
11752
11753         return (void __user *)hva;
11754 }
11755 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
11756
11757 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
11758 {
11759         kvm_mmu_pre_destroy_vm(kvm);
11760 }
11761
11762 void kvm_arch_destroy_vm(struct kvm *kvm)
11763 {
11764         if (current->mm == kvm->mm) {
11765                 /*
11766                  * Free memory regions allocated on behalf of userspace,
11767                  * unless the the memory map has changed due to process exit
11768                  * or fd copying.
11769                  */
11770                 mutex_lock(&kvm->slots_lock);
11771                 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
11772                                         0, 0);
11773                 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
11774                                         0, 0);
11775                 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
11776                 mutex_unlock(&kvm->slots_lock);
11777         }
11778         static_call_cond(kvm_x86_vm_destroy)(kvm);
11779         kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
11780         kvm_pic_destroy(kvm);
11781         kvm_ioapic_destroy(kvm);
11782         kvm_free_vcpus(kvm);
11783         kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
11784         kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
11785         kvm_mmu_uninit_vm(kvm);
11786         kvm_page_track_cleanup(kvm);
11787         kvm_xen_destroy_vm(kvm);
11788         kvm_hv_destroy_vm(kvm);
11789 }
11790
11791 static void memslot_rmap_free(struct kvm_memory_slot *slot)
11792 {
11793         int i;
11794
11795         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11796                 kvfree(slot->arch.rmap[i]);
11797                 slot->arch.rmap[i] = NULL;
11798         }
11799 }
11800
11801 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
11802 {
11803         int i;
11804
11805         memslot_rmap_free(slot);
11806
11807         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11808                 kvfree(slot->arch.lpage_info[i - 1]);
11809                 slot->arch.lpage_info[i - 1] = NULL;
11810         }
11811
11812         kvm_page_track_free_memslot(slot);
11813 }
11814
11815 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
11816 {
11817         const int sz = sizeof(*slot->arch.rmap[0]);
11818         int i;
11819
11820         for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
11821                 int level = i + 1;
11822                 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11823
11824                 if (slot->arch.rmap[i])
11825                         continue;
11826
11827                 slot->arch.rmap[i] = kvcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
11828                 if (!slot->arch.rmap[i]) {
11829                         memslot_rmap_free(slot);
11830                         return -ENOMEM;
11831                 }
11832         }
11833
11834         return 0;
11835 }
11836
11837 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
11838                                       struct kvm_memory_slot *slot)
11839 {
11840         unsigned long npages = slot->npages;
11841         int i, r;
11842
11843         /*
11844          * Clear out the previous array pointers for the KVM_MR_MOVE case.  The
11845          * old arrays will be freed by __kvm_set_memory_region() if installing
11846          * the new memslot is successful.
11847          */
11848         memset(&slot->arch, 0, sizeof(slot->arch));
11849
11850         if (kvm_memslots_have_rmaps(kvm)) {
11851                 r = memslot_rmap_alloc(slot, npages);
11852                 if (r)
11853                         return r;
11854         }
11855
11856         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11857                 struct kvm_lpage_info *linfo;
11858                 unsigned long ugfn;
11859                 int lpages;
11860                 int level = i + 1;
11861
11862                 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
11863
11864                 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
11865                 if (!linfo)
11866                         goto out_free;
11867
11868                 slot->arch.lpage_info[i - 1] = linfo;
11869
11870                 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
11871                         linfo[0].disallow_lpage = 1;
11872                 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
11873                         linfo[lpages - 1].disallow_lpage = 1;
11874                 ugfn = slot->userspace_addr >> PAGE_SHIFT;
11875                 /*
11876                  * If the gfn and userspace address are not aligned wrt each
11877                  * other, disable large page support for this slot.
11878                  */
11879                 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
11880                         unsigned long j;
11881
11882                         for (j = 0; j < lpages; ++j)
11883                                 linfo[j].disallow_lpage = 1;
11884                 }
11885         }
11886
11887         if (kvm_page_track_create_memslot(kvm, slot, npages))
11888                 goto out_free;
11889
11890         return 0;
11891
11892 out_free:
11893         memslot_rmap_free(slot);
11894
11895         for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
11896                 kvfree(slot->arch.lpage_info[i - 1]);
11897                 slot->arch.lpage_info[i - 1] = NULL;
11898         }
11899         return -ENOMEM;
11900 }
11901
11902 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
11903 {
11904         struct kvm_vcpu *vcpu;
11905         unsigned long i;
11906
11907         /*
11908          * memslots->generation has been incremented.
11909          * mmio generation may have reached its maximum value.
11910          */
11911         kvm_mmu_invalidate_mmio_sptes(kvm, gen);
11912
11913         /* Force re-initialization of steal_time cache */
11914         kvm_for_each_vcpu(i, vcpu, kvm)
11915                 kvm_vcpu_kick(vcpu);
11916 }
11917
11918 int kvm_arch_prepare_memory_region(struct kvm *kvm,
11919                                    const struct kvm_memory_slot *old,
11920                                    struct kvm_memory_slot *new,
11921                                    enum kvm_mr_change change)
11922 {
11923         if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
11924                 return kvm_alloc_memslot_metadata(kvm, new);
11925
11926         if (change == KVM_MR_FLAGS_ONLY)
11927                 memcpy(&new->arch, &old->arch, sizeof(old->arch));
11928         else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
11929                 return -EIO;
11930
11931         return 0;
11932 }
11933
11934
11935 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
11936 {
11937         struct kvm_arch *ka = &kvm->arch;
11938
11939         if (!kvm_x86_ops.cpu_dirty_log_size)
11940                 return;
11941
11942         if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
11943             (!enable && --ka->cpu_dirty_logging_count == 0))
11944                 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
11945
11946         WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
11947 }
11948
11949 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
11950                                      struct kvm_memory_slot *old,
11951                                      const struct kvm_memory_slot *new,
11952                                      enum kvm_mr_change change)
11953 {
11954         u32 old_flags = old ? old->flags : 0;
11955         u32 new_flags = new ? new->flags : 0;
11956         bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
11957
11958         /*
11959          * Update CPU dirty logging if dirty logging is being toggled.  This
11960          * applies to all operations.
11961          */
11962         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
11963                 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
11964
11965         /*
11966          * Nothing more to do for RO slots (which can't be dirtied and can't be
11967          * made writable) or CREATE/MOVE/DELETE of a slot.
11968          *
11969          * For a memslot with dirty logging disabled:
11970          * CREATE:      No dirty mappings will already exist.
11971          * MOVE/DELETE: The old mappings will already have been cleaned up by
11972          *              kvm_arch_flush_shadow_memslot()
11973          *
11974          * For a memslot with dirty logging enabled:
11975          * CREATE:      No shadow pages exist, thus nothing to write-protect
11976          *              and no dirty bits to clear.
11977          * MOVE/DELETE: The old mappings will already have been cleaned up by
11978          *              kvm_arch_flush_shadow_memslot().
11979          */
11980         if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
11981                 return;
11982
11983         /*
11984          * READONLY and non-flags changes were filtered out above, and the only
11985          * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
11986          * logging isn't being toggled on or off.
11987          */
11988         if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
11989                 return;
11990
11991         if (!log_dirty_pages) {
11992                 /*
11993                  * Dirty logging tracks sptes in 4k granularity, meaning that
11994                  * large sptes have to be split.  If live migration succeeds,
11995                  * the guest in the source machine will be destroyed and large
11996                  * sptes will be created in the destination.  However, if the
11997                  * guest continues to run in the source machine (for example if
11998                  * live migration fails), small sptes will remain around and
11999                  * cause bad performance.
12000                  *
12001                  * Scan sptes if dirty logging has been stopped, dropping those
12002                  * which can be collapsed into a single large-page spte.  Later
12003                  * page faults will create the large-page sptes.
12004                  */
12005                 kvm_mmu_zap_collapsible_sptes(kvm, new);
12006         } else {
12007                 /*
12008                  * Initially-all-set does not require write protecting any page,
12009                  * because they're all assumed to be dirty.
12010                  */
12011                 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12012                         return;
12013
12014                 if (READ_ONCE(eager_page_split))
12015                         kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12016
12017                 if (kvm_x86_ops.cpu_dirty_log_size) {
12018                         kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12019                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12020                 } else {
12021                         kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12022                 }
12023         }
12024 }
12025
12026 void kvm_arch_commit_memory_region(struct kvm *kvm,
12027                                 struct kvm_memory_slot *old,
12028                                 const struct kvm_memory_slot *new,
12029                                 enum kvm_mr_change change)
12030 {
12031         if (!kvm->arch.n_requested_mmu_pages &&
12032             (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12033                 unsigned long nr_mmu_pages;
12034
12035                 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12036                 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12037                 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12038         }
12039
12040         kvm_mmu_slot_apply_flags(kvm, old, new, change);
12041
12042         /* Free the arrays associated with the old memslot. */
12043         if (change == KVM_MR_MOVE)
12044                 kvm_arch_free_memslot(kvm, old);
12045 }
12046
12047 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12048 {
12049         kvm_mmu_zap_all(kvm);
12050 }
12051
12052 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12053                                    struct kvm_memory_slot *slot)
12054 {
12055         kvm_page_track_flush_slot(kvm, slot);
12056 }
12057
12058 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12059 {
12060         return (is_guest_mode(vcpu) &&
12061                 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12062 }
12063
12064 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12065 {
12066         if (!list_empty_careful(&vcpu->async_pf.done))
12067                 return true;
12068
12069         if (kvm_apic_has_events(vcpu))
12070                 return true;
12071
12072         if (vcpu->arch.pv.pv_unhalted)
12073                 return true;
12074
12075         if (vcpu->arch.exception.pending)
12076                 return true;
12077
12078         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12079             (vcpu->arch.nmi_pending &&
12080              static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12081                 return true;
12082
12083         if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12084             (vcpu->arch.smi_pending &&
12085              static_call(kvm_x86_smi_allowed)(vcpu, false)))
12086                 return true;
12087
12088         if (kvm_arch_interrupt_allowed(vcpu) &&
12089             (kvm_cpu_has_interrupt(vcpu) ||
12090             kvm_guest_apic_has_interrupt(vcpu)))
12091                 return true;
12092
12093         if (kvm_hv_has_stimer_pending(vcpu))
12094                 return true;
12095
12096         if (is_guest_mode(vcpu) &&
12097             kvm_x86_ops.nested_ops->hv_timer_pending &&
12098             kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
12099                 return true;
12100
12101         return false;
12102 }
12103
12104 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12105 {
12106         return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12107 }
12108
12109 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12110 {
12111         if (vcpu->arch.apicv_active && static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12112                 return true;
12113
12114         return false;
12115 }
12116
12117 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12118 {
12119         if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12120                 return true;
12121
12122         if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12123                 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12124                  kvm_test_request(KVM_REQ_EVENT, vcpu))
12125                 return true;
12126
12127         return kvm_arch_dy_has_pending_interrupt(vcpu);
12128 }
12129
12130 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12131 {
12132         if (vcpu->arch.guest_state_protected)
12133                 return true;
12134
12135         return vcpu->arch.preempted_in_kernel;
12136 }
12137
12138 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12139 {
12140         return kvm_rip_read(vcpu);
12141 }
12142
12143 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12144 {
12145         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12146 }
12147
12148 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12149 {
12150         return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12151 }
12152
12153 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12154 {
12155         /* Can't read the RIP when guest state is protected, just return 0 */
12156         if (vcpu->arch.guest_state_protected)
12157                 return 0;
12158
12159         if (is_64_bit_mode(vcpu))
12160                 return kvm_rip_read(vcpu);
12161         return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12162                      kvm_rip_read(vcpu));
12163 }
12164 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12165
12166 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12167 {
12168         return kvm_get_linear_rip(vcpu) == linear_rip;
12169 }
12170 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12171
12172 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12173 {
12174         unsigned long rflags;
12175
12176         rflags = static_call(kvm_x86_get_rflags)(vcpu);
12177         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
12178                 rflags &= ~X86_EFLAGS_TF;
12179         return rflags;
12180 }
12181 EXPORT_SYMBOL_GPL(kvm_get_rflags);
12182
12183 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12184 {
12185         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
12186             kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
12187                 rflags |= X86_EFLAGS_TF;
12188         static_call(kvm_x86_set_rflags)(vcpu, rflags);
12189 }
12190
12191 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12192 {
12193         __kvm_set_rflags(vcpu, rflags);
12194         kvm_make_request(KVM_REQ_EVENT, vcpu);
12195 }
12196 EXPORT_SYMBOL_GPL(kvm_set_rflags);
12197
12198 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
12199 {
12200         int r;
12201
12202         if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
12203               work->wakeup_all)
12204                 return;
12205
12206         r = kvm_mmu_reload(vcpu);
12207         if (unlikely(r))
12208                 return;
12209
12210         if (!vcpu->arch.mmu->direct_map &&
12211               work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
12212                 return;
12213
12214         kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
12215 }
12216
12217 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12218 {
12219         BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12220
12221         return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12222 }
12223
12224 static inline u32 kvm_async_pf_next_probe(u32 key)
12225 {
12226         return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
12227 }
12228
12229 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12230 {
12231         u32 key = kvm_async_pf_hash_fn(gfn);
12232
12233         while (vcpu->arch.apf.gfns[key] != ~0)
12234                 key = kvm_async_pf_next_probe(key);
12235
12236         vcpu->arch.apf.gfns[key] = gfn;
12237 }
12238
12239 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12240 {
12241         int i;
12242         u32 key = kvm_async_pf_hash_fn(gfn);
12243
12244         for (i = 0; i < ASYNC_PF_PER_VCPU &&
12245                      (vcpu->arch.apf.gfns[key] != gfn &&
12246                       vcpu->arch.apf.gfns[key] != ~0); i++)
12247                 key = kvm_async_pf_next_probe(key);
12248
12249         return key;
12250 }
12251
12252 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12253 {
12254         return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12255 }
12256
12257 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12258 {
12259         u32 i, j, k;
12260
12261         i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
12262
12263         if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
12264                 return;
12265
12266         while (true) {
12267                 vcpu->arch.apf.gfns[i] = ~0;
12268                 do {
12269                         j = kvm_async_pf_next_probe(j);
12270                         if (vcpu->arch.apf.gfns[j] == ~0)
12271                                 return;
12272                         k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
12273                         /*
12274                          * k lies cyclically in ]i,j]
12275                          * |    i.k.j |
12276                          * |....j i.k.| or  |.k..j i...|
12277                          */
12278                 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
12279                 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
12280                 i = j;
12281         }
12282 }
12283
12284 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
12285 {
12286         u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
12287
12288         return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
12289                                       sizeof(reason));
12290 }
12291
12292 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
12293 {
12294         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12295
12296         return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12297                                              &token, offset, sizeof(token));
12298 }
12299
12300 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
12301 {
12302         unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
12303         u32 val;
12304
12305         if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
12306                                          &val, offset, sizeof(val)))
12307                 return false;
12308
12309         return !val;
12310 }
12311
12312 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
12313 {
12314
12315         if (!kvm_pv_async_pf_enabled(vcpu))
12316                 return false;
12317
12318         if (vcpu->arch.apf.send_user_only &&
12319             static_call(kvm_x86_get_cpl)(vcpu) == 0)
12320                 return false;
12321
12322         if (is_guest_mode(vcpu)) {
12323                 /*
12324                  * L1 needs to opt into the special #PF vmexits that are
12325                  * used to deliver async page faults.
12326                  */
12327                 return vcpu->arch.apf.delivery_as_pf_vmexit;
12328         } else {
12329                 /*
12330                  * Play it safe in case the guest temporarily disables paging.
12331                  * The real mode IDT in particular is unlikely to have a #PF
12332                  * exception setup.
12333                  */
12334                 return is_paging(vcpu);
12335         }
12336 }
12337
12338 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
12339 {
12340         if (unlikely(!lapic_in_kernel(vcpu) ||
12341                      kvm_event_needs_reinjection(vcpu) ||
12342                      vcpu->arch.exception.pending))
12343                 return false;
12344
12345         if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
12346                 return false;
12347
12348         /*
12349          * If interrupts are off we cannot even use an artificial
12350          * halt state.
12351          */
12352         return kvm_arch_interrupt_allowed(vcpu);
12353 }
12354
12355 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
12356                                      struct kvm_async_pf *work)
12357 {
12358         struct x86_exception fault;
12359
12360         trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
12361         kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
12362
12363         if (kvm_can_deliver_async_pf(vcpu) &&
12364             !apf_put_user_notpresent(vcpu)) {
12365                 fault.vector = PF_VECTOR;
12366                 fault.error_code_valid = true;
12367                 fault.error_code = 0;
12368                 fault.nested_page_fault = false;
12369                 fault.address = work->arch.token;
12370                 fault.async_page_fault = true;
12371                 kvm_inject_page_fault(vcpu, &fault);
12372                 return true;
12373         } else {
12374                 /*
12375                  * It is not possible to deliver a paravirtualized asynchronous
12376                  * page fault, but putting the guest in an artificial halt state
12377                  * can be beneficial nevertheless: if an interrupt arrives, we
12378                  * can deliver it timely and perhaps the guest will schedule
12379                  * another process.  When the instruction that triggered a page
12380                  * fault is retried, hopefully the page will be ready in the host.
12381                  */
12382                 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
12383                 return false;
12384         }
12385 }
12386
12387 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
12388                                  struct kvm_async_pf *work)
12389 {
12390         struct kvm_lapic_irq irq = {
12391                 .delivery_mode = APIC_DM_FIXED,
12392                 .vector = vcpu->arch.apf.vec
12393         };
12394
12395         if (work->wakeup_all)
12396                 work->arch.token = ~0; /* broadcast wakeup */
12397         else
12398                 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
12399         trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
12400
12401         if ((work->wakeup_all || work->notpresent_injected) &&
12402             kvm_pv_async_pf_enabled(vcpu) &&
12403             !apf_put_user_ready(vcpu, work->arch.token)) {
12404                 vcpu->arch.apf.pageready_pending = true;
12405                 kvm_apic_set_irq(vcpu, &irq, NULL);
12406         }
12407
12408         vcpu->arch.apf.halted = false;
12409         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
12410 }
12411
12412 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
12413 {
12414         kvm_make_request(KVM_REQ_APF_READY, vcpu);
12415         if (!vcpu->arch.apf.pageready_pending)
12416                 kvm_vcpu_kick(vcpu);
12417 }
12418
12419 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
12420 {
12421         if (!kvm_pv_async_pf_enabled(vcpu))
12422                 return true;
12423         else
12424                 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
12425 }
12426
12427 void kvm_arch_start_assignment(struct kvm *kvm)
12428 {
12429         if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
12430                 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
12431 }
12432 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
12433
12434 void kvm_arch_end_assignment(struct kvm *kvm)
12435 {
12436         atomic_dec(&kvm->arch.assigned_device_count);
12437 }
12438 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
12439
12440 bool kvm_arch_has_assigned_device(struct kvm *kvm)
12441 {
12442         return atomic_read(&kvm->arch.assigned_device_count);
12443 }
12444 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
12445
12446 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
12447 {
12448         atomic_inc(&kvm->arch.noncoherent_dma_count);
12449 }
12450 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
12451
12452 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
12453 {
12454         atomic_dec(&kvm->arch.noncoherent_dma_count);
12455 }
12456 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
12457
12458 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
12459 {
12460         return atomic_read(&kvm->arch.noncoherent_dma_count);
12461 }
12462 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
12463
12464 bool kvm_arch_has_irq_bypass(void)
12465 {
12466         return true;
12467 }
12468
12469 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
12470                                       struct irq_bypass_producer *prod)
12471 {
12472         struct kvm_kernel_irqfd *irqfd =
12473                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12474         int ret;
12475
12476         irqfd->producer = prod;
12477         kvm_arch_start_assignment(irqfd->kvm);
12478         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
12479                                          prod->irq, irqfd->gsi, 1);
12480
12481         if (ret)
12482                 kvm_arch_end_assignment(irqfd->kvm);
12483
12484         return ret;
12485 }
12486
12487 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
12488                                       struct irq_bypass_producer *prod)
12489 {
12490         int ret;
12491         struct kvm_kernel_irqfd *irqfd =
12492                 container_of(cons, struct kvm_kernel_irqfd, consumer);
12493
12494         WARN_ON(irqfd->producer != prod);
12495         irqfd->producer = NULL;
12496
12497         /*
12498          * When producer of consumer is unregistered, we change back to
12499          * remapped mode, so we can re-use the current implementation
12500          * when the irq is masked/disabled or the consumer side (KVM
12501          * int this case doesn't want to receive the interrupts.
12502         */
12503         ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
12504         if (ret)
12505                 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
12506                        " fails: %d\n", irqfd->consumer.token, ret);
12507
12508         kvm_arch_end_assignment(irqfd->kvm);
12509 }
12510
12511 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
12512                                    uint32_t guest_irq, bool set)
12513 {
12514         return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
12515 }
12516
12517 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
12518                                   struct kvm_kernel_irq_routing_entry *new)
12519 {
12520         if (new->type != KVM_IRQ_ROUTING_MSI)
12521                 return true;
12522
12523         return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
12524 }
12525
12526 bool kvm_vector_hashing_enabled(void)
12527 {
12528         return vector_hashing;
12529 }
12530
12531 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
12532 {
12533         return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
12534 }
12535 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
12536
12537
12538 int kvm_spec_ctrl_test_value(u64 value)
12539 {
12540         /*
12541          * test that setting IA32_SPEC_CTRL to given value
12542          * is allowed by the host processor
12543          */
12544
12545         u64 saved_value;
12546         unsigned long flags;
12547         int ret = 0;
12548
12549         local_irq_save(flags);
12550
12551         if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
12552                 ret = 1;
12553         else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
12554                 ret = 1;
12555         else
12556                 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
12557
12558         local_irq_restore(flags);
12559
12560         return ret;
12561 }
12562 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
12563
12564 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
12565 {
12566         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
12567         struct x86_exception fault;
12568         u32 access = error_code &
12569                 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
12570
12571         if (!(error_code & PFERR_PRESENT_MASK) ||
12572             mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != UNMAPPED_GVA) {
12573                 /*
12574                  * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
12575                  * tables probably do not match the TLB.  Just proceed
12576                  * with the error code that the processor gave.
12577                  */
12578                 fault.vector = PF_VECTOR;
12579                 fault.error_code_valid = true;
12580                 fault.error_code = error_code;
12581                 fault.nested_page_fault = false;
12582                 fault.address = gva;
12583         }
12584         vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
12585 }
12586 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
12587
12588 /*
12589  * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
12590  * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
12591  * indicates whether exit to userspace is needed.
12592  */
12593 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
12594                               struct x86_exception *e)
12595 {
12596         if (r == X86EMUL_PROPAGATE_FAULT) {
12597                 kvm_inject_emulated_page_fault(vcpu, e);
12598                 return 1;
12599         }
12600
12601         /*
12602          * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
12603          * while handling a VMX instruction KVM could've handled the request
12604          * correctly by exiting to userspace and performing I/O but there
12605          * doesn't seem to be a real use-case behind such requests, just return
12606          * KVM_EXIT_INTERNAL_ERROR for now.
12607          */
12608         kvm_prepare_emulation_failure_exit(vcpu);
12609
12610         return 0;
12611 }
12612 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
12613
12614 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
12615 {
12616         bool pcid_enabled;
12617         struct x86_exception e;
12618         struct {
12619                 u64 pcid;
12620                 u64 gla;
12621         } operand;
12622         int r;
12623
12624         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
12625         if (r != X86EMUL_CONTINUE)
12626                 return kvm_handle_memory_failure(vcpu, r, &e);
12627
12628         if (operand.pcid >> 12 != 0) {
12629                 kvm_inject_gp(vcpu, 0);
12630                 return 1;
12631         }
12632
12633         pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
12634
12635         switch (type) {
12636         case INVPCID_TYPE_INDIV_ADDR:
12637                 if ((!pcid_enabled && (operand.pcid != 0)) ||
12638                     is_noncanonical_address(operand.gla, vcpu)) {
12639                         kvm_inject_gp(vcpu, 0);
12640                         return 1;
12641                 }
12642                 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
12643                 return kvm_skip_emulated_instruction(vcpu);
12644
12645         case INVPCID_TYPE_SINGLE_CTXT:
12646                 if (!pcid_enabled && (operand.pcid != 0)) {
12647                         kvm_inject_gp(vcpu, 0);
12648                         return 1;
12649                 }
12650
12651                 kvm_invalidate_pcid(vcpu, operand.pcid);
12652                 return kvm_skip_emulated_instruction(vcpu);
12653
12654         case INVPCID_TYPE_ALL_NON_GLOBAL:
12655                 /*
12656                  * Currently, KVM doesn't mark global entries in the shadow
12657                  * page tables, so a non-global flush just degenerates to a
12658                  * global flush. If needed, we could optimize this later by
12659                  * keeping track of global entries in shadow page tables.
12660                  */
12661
12662                 fallthrough;
12663         case INVPCID_TYPE_ALL_INCL_GLOBAL:
12664                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12665                 return kvm_skip_emulated_instruction(vcpu);
12666
12667         default:
12668                 kvm_inject_gp(vcpu, 0);
12669                 return 1;
12670         }
12671 }
12672 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
12673
12674 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
12675 {
12676         struct kvm_run *run = vcpu->run;
12677         struct kvm_mmio_fragment *frag;
12678         unsigned int len;
12679
12680         BUG_ON(!vcpu->mmio_needed);
12681
12682         /* Complete previous fragment */
12683         frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
12684         len = min(8u, frag->len);
12685         if (!vcpu->mmio_is_write)
12686                 memcpy(frag->data, run->mmio.data, len);
12687
12688         if (frag->len <= 8) {
12689                 /* Switch to the next fragment. */
12690                 frag++;
12691                 vcpu->mmio_cur_fragment++;
12692         } else {
12693                 /* Go forward to the next mmio piece. */
12694                 frag->data += len;
12695                 frag->gpa += len;
12696                 frag->len -= len;
12697         }
12698
12699         if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
12700                 vcpu->mmio_needed = 0;
12701
12702                 // VMG change, at this point, we're always done
12703                 // RIP has already been advanced
12704                 return 1;
12705         }
12706
12707         // More MMIO is needed
12708         run->mmio.phys_addr = frag->gpa;
12709         run->mmio.len = min(8u, frag->len);
12710         run->mmio.is_write = vcpu->mmio_is_write;
12711         if (run->mmio.is_write)
12712                 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
12713         run->exit_reason = KVM_EXIT_MMIO;
12714
12715         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12716
12717         return 0;
12718 }
12719
12720 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12721                           void *data)
12722 {
12723         int handled;
12724         struct kvm_mmio_fragment *frag;
12725
12726         if (!data)
12727                 return -EINVAL;
12728
12729         handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12730         if (handled == bytes)
12731                 return 1;
12732
12733         bytes -= handled;
12734         gpa += handled;
12735         data += handled;
12736
12737         /*TODO: Check if need to increment number of frags */
12738         frag = vcpu->mmio_fragments;
12739         vcpu->mmio_nr_fragments = 1;
12740         frag->len = bytes;
12741         frag->gpa = gpa;
12742         frag->data = data;
12743
12744         vcpu->mmio_needed = 1;
12745         vcpu->mmio_cur_fragment = 0;
12746
12747         vcpu->run->mmio.phys_addr = gpa;
12748         vcpu->run->mmio.len = min(8u, frag->len);
12749         vcpu->run->mmio.is_write = 1;
12750         memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
12751         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12752
12753         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12754
12755         return 0;
12756 }
12757 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
12758
12759 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
12760                          void *data)
12761 {
12762         int handled;
12763         struct kvm_mmio_fragment *frag;
12764
12765         if (!data)
12766                 return -EINVAL;
12767
12768         handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
12769         if (handled == bytes)
12770                 return 1;
12771
12772         bytes -= handled;
12773         gpa += handled;
12774         data += handled;
12775
12776         /*TODO: Check if need to increment number of frags */
12777         frag = vcpu->mmio_fragments;
12778         vcpu->mmio_nr_fragments = 1;
12779         frag->len = bytes;
12780         frag->gpa = gpa;
12781         frag->data = data;
12782
12783         vcpu->mmio_needed = 1;
12784         vcpu->mmio_cur_fragment = 0;
12785
12786         vcpu->run->mmio.phys_addr = gpa;
12787         vcpu->run->mmio.len = min(8u, frag->len);
12788         vcpu->run->mmio.is_write = 0;
12789         vcpu->run->exit_reason = KVM_EXIT_MMIO;
12790
12791         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
12792
12793         return 0;
12794 }
12795 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
12796
12797 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12798                            unsigned int port);
12799
12800 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
12801 {
12802         int size = vcpu->arch.pio.size;
12803         int port = vcpu->arch.pio.port;
12804
12805         vcpu->arch.pio.count = 0;
12806         if (vcpu->arch.sev_pio_count)
12807                 return kvm_sev_es_outs(vcpu, size, port);
12808         return 1;
12809 }
12810
12811 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
12812                            unsigned int port)
12813 {
12814         for (;;) {
12815                 unsigned int count =
12816                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12817                 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
12818
12819                 /* memcpy done already by emulator_pio_out.  */
12820                 vcpu->arch.sev_pio_count -= count;
12821                 vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12822                 if (!ret)
12823                         break;
12824
12825                 /* Emulation done by the kernel.  */
12826                 if (!vcpu->arch.sev_pio_count)
12827                         return 1;
12828         }
12829
12830         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
12831         return 0;
12832 }
12833
12834 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12835                           unsigned int port);
12836
12837 static void advance_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12838 {
12839         unsigned count = vcpu->arch.pio.count;
12840         complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
12841         vcpu->arch.sev_pio_count -= count;
12842         vcpu->arch.sev_pio_data += count * vcpu->arch.pio.size;
12843 }
12844
12845 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
12846 {
12847         int size = vcpu->arch.pio.size;
12848         int port = vcpu->arch.pio.port;
12849
12850         advance_sev_es_emulated_ins(vcpu);
12851         if (vcpu->arch.sev_pio_count)
12852                 return kvm_sev_es_ins(vcpu, size, port);
12853         return 1;
12854 }
12855
12856 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
12857                           unsigned int port)
12858 {
12859         for (;;) {
12860                 unsigned int count =
12861                         min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
12862                 if (!__emulator_pio_in(vcpu, size, port, count))
12863                         break;
12864
12865                 /* Emulation done by the kernel.  */
12866                 advance_sev_es_emulated_ins(vcpu);
12867                 if (!vcpu->arch.sev_pio_count)
12868                         return 1;
12869         }
12870
12871         vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
12872         return 0;
12873 }
12874
12875 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
12876                          unsigned int port, void *data,  unsigned int count,
12877                          int in)
12878 {
12879         vcpu->arch.sev_pio_data = data;
12880         vcpu->arch.sev_pio_count = count;
12881         return in ? kvm_sev_es_ins(vcpu, size, port)
12882                   : kvm_sev_es_outs(vcpu, size, port);
12883 }
12884 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
12885
12886 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
12887 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
12888 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
12889 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
12890 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
12891 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
12892 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
12893 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
12894 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
12895 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
12896 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
12897 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
12898 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
12899 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
12900 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
12901 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
12902 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
12903 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
12904 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
12905 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
12906 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
12907 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
12908 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);
12909 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
12910 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
12911 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
12912 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
12913 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);