]> git.samba.org - sfrench/cifs-2.6.git/blob - arch/x86/kvm/vmx/nested.c
Merge tag 'selinux-pr-20210629' of git://git.kernel.org/pub/scm/linux/kernel/git...
[sfrench/cifs-2.6.git] / arch / x86 / kvm / vmx / nested.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8
9 #include "cpuid.h"
10 #include "hyperv.h"
11 #include "mmu.h"
12 #include "nested.h"
13 #include "pmu.h"
14 #include "sgx.h"
15 #include "trace.h"
16 #include "vmx.h"
17 #include "x86.h"
18
19 static bool __read_mostly enable_shadow_vmcs = 1;
20 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
21
22 static bool __read_mostly nested_early_check = 0;
23 module_param(nested_early_check, bool, S_IRUGO);
24
25 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
26
27 /*
28  * Hyper-V requires all of these, so mark them as supported even though
29  * they are just treated the same as all-context.
30  */
31 #define VMX_VPID_EXTENT_SUPPORTED_MASK          \
32         (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |  \
33         VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |    \
34         VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |    \
35         VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
36
37 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
38
39 enum {
40         VMX_VMREAD_BITMAP,
41         VMX_VMWRITE_BITMAP,
42         VMX_BITMAP_NR
43 };
44 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
45
46 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
47 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
48
49 struct shadow_vmcs_field {
50         u16     encoding;
51         u16     offset;
52 };
53 static struct shadow_vmcs_field shadow_read_only_fields[] = {
54 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
55 #include "vmcs_shadow_fields.h"
56 };
57 static int max_shadow_read_only_fields =
58         ARRAY_SIZE(shadow_read_only_fields);
59
60 static struct shadow_vmcs_field shadow_read_write_fields[] = {
61 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
62 #include "vmcs_shadow_fields.h"
63 };
64 static int max_shadow_read_write_fields =
65         ARRAY_SIZE(shadow_read_write_fields);
66
67 static void init_vmcs_shadow_fields(void)
68 {
69         int i, j;
70
71         memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
72         memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
73
74         for (i = j = 0; i < max_shadow_read_only_fields; i++) {
75                 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
76                 u16 field = entry.encoding;
77
78                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
79                     (i + 1 == max_shadow_read_only_fields ||
80                      shadow_read_only_fields[i + 1].encoding != field + 1))
81                         pr_err("Missing field from shadow_read_only_field %x\n",
82                                field + 1);
83
84                 clear_bit(field, vmx_vmread_bitmap);
85                 if (field & 1)
86 #ifdef CONFIG_X86_64
87                         continue;
88 #else
89                         entry.offset += sizeof(u32);
90 #endif
91                 shadow_read_only_fields[j++] = entry;
92         }
93         max_shadow_read_only_fields = j;
94
95         for (i = j = 0; i < max_shadow_read_write_fields; i++) {
96                 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
97                 u16 field = entry.encoding;
98
99                 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
100                     (i + 1 == max_shadow_read_write_fields ||
101                      shadow_read_write_fields[i + 1].encoding != field + 1))
102                         pr_err("Missing field from shadow_read_write_field %x\n",
103                                field + 1);
104
105                 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
106                           field <= GUEST_TR_AR_BYTES,
107                           "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
108
109                 /*
110                  * PML and the preemption timer can be emulated, but the
111                  * processor cannot vmwrite to fields that don't exist
112                  * on bare metal.
113                  */
114                 switch (field) {
115                 case GUEST_PML_INDEX:
116                         if (!cpu_has_vmx_pml())
117                                 continue;
118                         break;
119                 case VMX_PREEMPTION_TIMER_VALUE:
120                         if (!cpu_has_vmx_preemption_timer())
121                                 continue;
122                         break;
123                 case GUEST_INTR_STATUS:
124                         if (!cpu_has_vmx_apicv())
125                                 continue;
126                         break;
127                 default:
128                         break;
129                 }
130
131                 clear_bit(field, vmx_vmwrite_bitmap);
132                 clear_bit(field, vmx_vmread_bitmap);
133                 if (field & 1)
134 #ifdef CONFIG_X86_64
135                         continue;
136 #else
137                         entry.offset += sizeof(u32);
138 #endif
139                 shadow_read_write_fields[j++] = entry;
140         }
141         max_shadow_read_write_fields = j;
142 }
143
144 /*
145  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
146  * set the success or error code of an emulated VMX instruction (as specified
147  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
148  * instruction.
149  */
150 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
151 {
152         vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
153                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
154                             X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
155         return kvm_skip_emulated_instruction(vcpu);
156 }
157
158 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
159 {
160         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
161                         & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
162                             X86_EFLAGS_SF | X86_EFLAGS_OF))
163                         | X86_EFLAGS_CF);
164         return kvm_skip_emulated_instruction(vcpu);
165 }
166
167 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
168                                 u32 vm_instruction_error)
169 {
170         vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
171                         & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
172                             X86_EFLAGS_SF | X86_EFLAGS_OF))
173                         | X86_EFLAGS_ZF);
174         get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
175         /*
176          * We don't need to force sync to shadow VMCS because
177          * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
178          * fields and thus must be synced.
179          */
180         if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
181                 to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
182
183         return kvm_skip_emulated_instruction(vcpu);
184 }
185
186 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
187 {
188         struct vcpu_vmx *vmx = to_vmx(vcpu);
189
190         /*
191          * failValid writes the error number to the current VMCS, which
192          * can't be done if there isn't a current VMCS.
193          */
194         if (vmx->nested.current_vmptr == -1ull &&
195             !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
196                 return nested_vmx_failInvalid(vcpu);
197
198         return nested_vmx_failValid(vcpu, vm_instruction_error);
199 }
200
201 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
202 {
203         /* TODO: not to reset guest simply here. */
204         kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
205         pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
206 }
207
208 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
209 {
210         return fixed_bits_valid(control, low, high);
211 }
212
213 static inline u64 vmx_control_msr(u32 low, u32 high)
214 {
215         return low | ((u64)high << 32);
216 }
217
218 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
219 {
220         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
221         vmcs_write64(VMCS_LINK_POINTER, -1ull);
222         vmx->nested.need_vmcs12_to_shadow_sync = false;
223 }
224
225 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
226 {
227         struct vcpu_vmx *vmx = to_vmx(vcpu);
228
229         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
230                 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
231                 vmx->nested.hv_evmcs = NULL;
232         }
233
234         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
235 }
236
237 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
238                                      struct loaded_vmcs *prev)
239 {
240         struct vmcs_host_state *dest, *src;
241
242         if (unlikely(!vmx->guest_state_loaded))
243                 return;
244
245         src = &prev->host_state;
246         dest = &vmx->loaded_vmcs->host_state;
247
248         vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
249         dest->ldt_sel = src->ldt_sel;
250 #ifdef CONFIG_X86_64
251         dest->ds_sel = src->ds_sel;
252         dest->es_sel = src->es_sel;
253 #endif
254 }
255
256 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
257 {
258         struct vcpu_vmx *vmx = to_vmx(vcpu);
259         struct loaded_vmcs *prev;
260         int cpu;
261
262         if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
263                 return;
264
265         cpu = get_cpu();
266         prev = vmx->loaded_vmcs;
267         vmx->loaded_vmcs = vmcs;
268         vmx_vcpu_load_vmcs(vcpu, cpu, prev);
269         vmx_sync_vmcs_host_state(vmx, prev);
270         put_cpu();
271
272         vmx_register_cache_reset(vcpu);
273 }
274
275 /*
276  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
277  * just stops using VMX.
278  */
279 static void free_nested(struct kvm_vcpu *vcpu)
280 {
281         struct vcpu_vmx *vmx = to_vmx(vcpu);
282
283         if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
284                 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
285
286         if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
287                 return;
288
289         kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
290
291         vmx->nested.vmxon = false;
292         vmx->nested.smm.vmxon = false;
293         free_vpid(vmx->nested.vpid02);
294         vmx->nested.posted_intr_nv = -1;
295         vmx->nested.current_vmptr = -1ull;
296         if (enable_shadow_vmcs) {
297                 vmx_disable_shadow_vmcs(vmx);
298                 vmcs_clear(vmx->vmcs01.shadow_vmcs);
299                 free_vmcs(vmx->vmcs01.shadow_vmcs);
300                 vmx->vmcs01.shadow_vmcs = NULL;
301         }
302         kfree(vmx->nested.cached_vmcs12);
303         vmx->nested.cached_vmcs12 = NULL;
304         kfree(vmx->nested.cached_shadow_vmcs12);
305         vmx->nested.cached_shadow_vmcs12 = NULL;
306         /* Unpin physical memory we referred to in the vmcs02 */
307         if (vmx->nested.apic_access_page) {
308                 kvm_release_page_clean(vmx->nested.apic_access_page);
309                 vmx->nested.apic_access_page = NULL;
310         }
311         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
312         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
313         vmx->nested.pi_desc = NULL;
314
315         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
316
317         nested_release_evmcs(vcpu);
318
319         free_loaded_vmcs(&vmx->nested.vmcs02);
320 }
321
322 /*
323  * Ensure that the current vmcs of the logical processor is the
324  * vmcs01 of the vcpu before calling free_nested().
325  */
326 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
327 {
328         vcpu_load(vcpu);
329         vmx_leave_nested(vcpu);
330         vcpu_put(vcpu);
331 }
332
333 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
334                 struct x86_exception *fault)
335 {
336         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
337         struct vcpu_vmx *vmx = to_vmx(vcpu);
338         u32 vm_exit_reason;
339         unsigned long exit_qualification = vcpu->arch.exit_qualification;
340
341         if (vmx->nested.pml_full) {
342                 vm_exit_reason = EXIT_REASON_PML_FULL;
343                 vmx->nested.pml_full = false;
344                 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
345         } else if (fault->error_code & PFERR_RSVD_MASK)
346                 vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
347         else
348                 vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
349
350         nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
351         vmcs12->guest_physical_address = fault->address;
352 }
353
354 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
355 {
356         kvm_init_shadow_ept_mmu(vcpu,
357                                 to_vmx(vcpu)->nested.msrs.ept_caps &
358                                 VMX_EPT_EXECUTE_ONLY_BIT,
359                                 nested_ept_ad_enabled(vcpu),
360                                 nested_ept_get_eptp(vcpu));
361 }
362
363 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
364 {
365         WARN_ON(mmu_is_nested(vcpu));
366
367         vcpu->arch.mmu = &vcpu->arch.guest_mmu;
368         nested_ept_new_eptp(vcpu);
369         vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
370         vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
371         vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
372
373         vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
374 }
375
376 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
377 {
378         vcpu->arch.mmu = &vcpu->arch.root_mmu;
379         vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
380 }
381
382 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
383                                             u16 error_code)
384 {
385         bool inequality, bit;
386
387         bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
388         inequality =
389                 (error_code & vmcs12->page_fault_error_code_mask) !=
390                  vmcs12->page_fault_error_code_match;
391         return inequality ^ bit;
392 }
393
394
395 /*
396  * KVM wants to inject page-faults which it got to the guest. This function
397  * checks whether in a nested guest, we need to inject them to L1 or L2.
398  */
399 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
400 {
401         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
402         unsigned int nr = vcpu->arch.exception.nr;
403         bool has_payload = vcpu->arch.exception.has_payload;
404         unsigned long payload = vcpu->arch.exception.payload;
405
406         if (nr == PF_VECTOR) {
407                 if (vcpu->arch.exception.nested_apf) {
408                         *exit_qual = vcpu->arch.apf.nested_apf_token;
409                         return 1;
410                 }
411                 if (nested_vmx_is_page_fault_vmexit(vmcs12,
412                                                     vcpu->arch.exception.error_code)) {
413                         *exit_qual = has_payload ? payload : vcpu->arch.cr2;
414                         return 1;
415                 }
416         } else if (vmcs12->exception_bitmap & (1u << nr)) {
417                 if (nr == DB_VECTOR) {
418                         if (!has_payload) {
419                                 payload = vcpu->arch.dr6;
420                                 payload &= ~DR6_BT;
421                                 payload ^= DR6_ACTIVE_LOW;
422                         }
423                         *exit_qual = payload;
424                 } else
425                         *exit_qual = 0;
426                 return 1;
427         }
428
429         return 0;
430 }
431
432
433 static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
434                 struct x86_exception *fault)
435 {
436         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
437
438         WARN_ON(!is_guest_mode(vcpu));
439
440         if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
441                 !to_vmx(vcpu)->nested.nested_run_pending) {
442                 vmcs12->vm_exit_intr_error_code = fault->error_code;
443                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
444                                   PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
445                                   INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
446                                   fault->address);
447         } else {
448                 kvm_inject_page_fault(vcpu, fault);
449         }
450 }
451
452 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
453                                                struct vmcs12 *vmcs12)
454 {
455         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
456                 return 0;
457
458         if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
459             CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
460                 return -EINVAL;
461
462         return 0;
463 }
464
465 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
466                                                 struct vmcs12 *vmcs12)
467 {
468         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
469                 return 0;
470
471         if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
472                 return -EINVAL;
473
474         return 0;
475 }
476
477 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
478                                                 struct vmcs12 *vmcs12)
479 {
480         if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
481                 return 0;
482
483         if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
484                 return -EINVAL;
485
486         return 0;
487 }
488
489 /*
490  * Check if MSR is intercepted for L01 MSR bitmap.
491  */
492 static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
493 {
494         unsigned long *msr_bitmap;
495         int f = sizeof(unsigned long);
496
497         if (!cpu_has_vmx_msr_bitmap())
498                 return true;
499
500         msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
501
502         if (msr <= 0x1fff) {
503                 return !!test_bit(msr, msr_bitmap + 0x800 / f);
504         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
505                 msr &= 0x1fff;
506                 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
507         }
508
509         return true;
510 }
511
512 /*
513  * If a msr is allowed by L0, we should check whether it is allowed by L1.
514  * The corresponding bit will be cleared unless both of L0 and L1 allow it.
515  */
516 static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
517                                                unsigned long *msr_bitmap_nested,
518                                                u32 msr, int type)
519 {
520         int f = sizeof(unsigned long);
521
522         /*
523          * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
524          * have the write-low and read-high bitmap offsets the wrong way round.
525          * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
526          */
527         if (msr <= 0x1fff) {
528                 if (type & MSR_TYPE_R &&
529                    !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
530                         /* read-low */
531                         __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
532
533                 if (type & MSR_TYPE_W &&
534                    !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
535                         /* write-low */
536                         __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
537
538         } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
539                 msr &= 0x1fff;
540                 if (type & MSR_TYPE_R &&
541                    !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
542                         /* read-high */
543                         __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
544
545                 if (type & MSR_TYPE_W &&
546                    !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
547                         /* write-high */
548                         __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
549
550         }
551 }
552
553 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
554 {
555         int msr;
556
557         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
558                 unsigned word = msr / BITS_PER_LONG;
559
560                 msr_bitmap[word] = ~0;
561                 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
562         }
563 }
564
565 /*
566  * Merge L0's and L1's MSR bitmap, return false to indicate that
567  * we do not use the hardware.
568  */
569 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
570                                                  struct vmcs12 *vmcs12)
571 {
572         int msr;
573         unsigned long *msr_bitmap_l1;
574         unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
575         struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
576
577         /* Nothing to do if the MSR bitmap is not in use.  */
578         if (!cpu_has_vmx_msr_bitmap() ||
579             !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
580                 return false;
581
582         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
583                 return false;
584
585         msr_bitmap_l1 = (unsigned long *)map->hva;
586
587         /*
588          * To keep the control flow simple, pay eight 8-byte writes (sixteen
589          * 4-byte writes on 32-bit systems) up front to enable intercepts for
590          * the x2APIC MSR range and selectively disable them below.
591          */
592         enable_x2apic_msr_intercepts(msr_bitmap_l0);
593
594         if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
595                 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
596                         /*
597                          * L0 need not intercept reads for MSRs between 0x800
598                          * and 0x8ff, it just lets the processor take the value
599                          * from the virtual-APIC page; take those 256 bits
600                          * directly from the L1 bitmap.
601                          */
602                         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
603                                 unsigned word = msr / BITS_PER_LONG;
604
605                                 msr_bitmap_l0[word] = msr_bitmap_l1[word];
606                         }
607                 }
608
609                 nested_vmx_disable_intercept_for_msr(
610                         msr_bitmap_l1, msr_bitmap_l0,
611                         X2APIC_MSR(APIC_TASKPRI),
612                         MSR_TYPE_R | MSR_TYPE_W);
613
614                 if (nested_cpu_has_vid(vmcs12)) {
615                         nested_vmx_disable_intercept_for_msr(
616                                 msr_bitmap_l1, msr_bitmap_l0,
617                                 X2APIC_MSR(APIC_EOI),
618                                 MSR_TYPE_W);
619                         nested_vmx_disable_intercept_for_msr(
620                                 msr_bitmap_l1, msr_bitmap_l0,
621                                 X2APIC_MSR(APIC_SELF_IPI),
622                                 MSR_TYPE_W);
623                 }
624         }
625
626         /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
627 #ifdef CONFIG_X86_64
628         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
629                                              MSR_FS_BASE, MSR_TYPE_RW);
630
631         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
632                                              MSR_GS_BASE, MSR_TYPE_RW);
633
634         nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
635                                              MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
636 #endif
637
638         /*
639          * Checking the L0->L1 bitmap is trying to verify two things:
640          *
641          * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
642          *    ensures that we do not accidentally generate an L02 MSR bitmap
643          *    from the L12 MSR bitmap that is too permissive.
644          * 2. That L1 or L2s have actually used the MSR. This avoids
645          *    unnecessarily merging of the bitmap if the MSR is unused. This
646          *    works properly because we only update the L01 MSR bitmap lazily.
647          *    So even if L0 should pass L1 these MSRs, the L01 bitmap is only
648          *    updated to reflect this when L1 (or its L2s) actually write to
649          *    the MSR.
650          */
651         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
652                 nested_vmx_disable_intercept_for_msr(
653                                         msr_bitmap_l1, msr_bitmap_l0,
654                                         MSR_IA32_SPEC_CTRL,
655                                         MSR_TYPE_R | MSR_TYPE_W);
656
657         if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
658                 nested_vmx_disable_intercept_for_msr(
659                                         msr_bitmap_l1, msr_bitmap_l0,
660                                         MSR_IA32_PRED_CMD,
661                                         MSR_TYPE_W);
662
663         kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
664
665         return true;
666 }
667
668 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
669                                        struct vmcs12 *vmcs12)
670 {
671         struct kvm_host_map map;
672         struct vmcs12 *shadow;
673
674         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
675             vmcs12->vmcs_link_pointer == -1ull)
676                 return;
677
678         shadow = get_shadow_vmcs12(vcpu);
679
680         if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
681                 return;
682
683         memcpy(shadow, map.hva, VMCS12_SIZE);
684         kvm_vcpu_unmap(vcpu, &map, false);
685 }
686
687 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
688                                               struct vmcs12 *vmcs12)
689 {
690         struct vcpu_vmx *vmx = to_vmx(vcpu);
691
692         if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
693             vmcs12->vmcs_link_pointer == -1ull)
694                 return;
695
696         kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
697                         get_shadow_vmcs12(vcpu), VMCS12_SIZE);
698 }
699
700 /*
701  * In nested virtualization, check if L1 has set
702  * VM_EXIT_ACK_INTR_ON_EXIT
703  */
704 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
705 {
706         return get_vmcs12(vcpu)->vm_exit_controls &
707                 VM_EXIT_ACK_INTR_ON_EXIT;
708 }
709
710 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
711                                           struct vmcs12 *vmcs12)
712 {
713         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
714             CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
715                 return -EINVAL;
716         else
717                 return 0;
718 }
719
720 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
721                                            struct vmcs12 *vmcs12)
722 {
723         if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
724             !nested_cpu_has_apic_reg_virt(vmcs12) &&
725             !nested_cpu_has_vid(vmcs12) &&
726             !nested_cpu_has_posted_intr(vmcs12))
727                 return 0;
728
729         /*
730          * If virtualize x2apic mode is enabled,
731          * virtualize apic access must be disabled.
732          */
733         if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
734                nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
735                 return -EINVAL;
736
737         /*
738          * If virtual interrupt delivery is enabled,
739          * we must exit on external interrupts.
740          */
741         if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
742                 return -EINVAL;
743
744         /*
745          * bits 15:8 should be zero in posted_intr_nv,
746          * the descriptor address has been already checked
747          * in nested_get_vmcs12_pages.
748          *
749          * bits 5:0 of posted_intr_desc_addr should be zero.
750          */
751         if (nested_cpu_has_posted_intr(vmcs12) &&
752            (CC(!nested_cpu_has_vid(vmcs12)) ||
753             CC(!nested_exit_intr_ack_set(vcpu)) ||
754             CC((vmcs12->posted_intr_nv & 0xff00)) ||
755             CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
756                 return -EINVAL;
757
758         /* tpr shadow is needed by all apicv features. */
759         if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
760                 return -EINVAL;
761
762         return 0;
763 }
764
765 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
766                                        u32 count, u64 addr)
767 {
768         if (count == 0)
769                 return 0;
770
771         if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
772             !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
773                 return -EINVAL;
774
775         return 0;
776 }
777
778 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
779                                                      struct vmcs12 *vmcs12)
780 {
781         if (CC(nested_vmx_check_msr_switch(vcpu,
782                                            vmcs12->vm_exit_msr_load_count,
783                                            vmcs12->vm_exit_msr_load_addr)) ||
784             CC(nested_vmx_check_msr_switch(vcpu,
785                                            vmcs12->vm_exit_msr_store_count,
786                                            vmcs12->vm_exit_msr_store_addr)))
787                 return -EINVAL;
788
789         return 0;
790 }
791
792 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
793                                                       struct vmcs12 *vmcs12)
794 {
795         if (CC(nested_vmx_check_msr_switch(vcpu,
796                                            vmcs12->vm_entry_msr_load_count,
797                                            vmcs12->vm_entry_msr_load_addr)))
798                 return -EINVAL;
799
800         return 0;
801 }
802
803 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
804                                          struct vmcs12 *vmcs12)
805 {
806         if (!nested_cpu_has_pml(vmcs12))
807                 return 0;
808
809         if (CC(!nested_cpu_has_ept(vmcs12)) ||
810             CC(!page_address_valid(vcpu, vmcs12->pml_address)))
811                 return -EINVAL;
812
813         return 0;
814 }
815
816 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
817                                                         struct vmcs12 *vmcs12)
818 {
819         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
820                !nested_cpu_has_ept(vmcs12)))
821                 return -EINVAL;
822         return 0;
823 }
824
825 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
826                                                          struct vmcs12 *vmcs12)
827 {
828         if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
829                !nested_cpu_has_ept(vmcs12)))
830                 return -EINVAL;
831         return 0;
832 }
833
834 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
835                                                  struct vmcs12 *vmcs12)
836 {
837         if (!nested_cpu_has_shadow_vmcs(vmcs12))
838                 return 0;
839
840         if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
841             CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
842                 return -EINVAL;
843
844         return 0;
845 }
846
847 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
848                                        struct vmx_msr_entry *e)
849 {
850         /* x2APIC MSR accesses are not allowed */
851         if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
852                 return -EINVAL;
853         if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
854             CC(e->index == MSR_IA32_UCODE_REV))
855                 return -EINVAL;
856         if (CC(e->reserved != 0))
857                 return -EINVAL;
858         return 0;
859 }
860
861 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
862                                      struct vmx_msr_entry *e)
863 {
864         if (CC(e->index == MSR_FS_BASE) ||
865             CC(e->index == MSR_GS_BASE) ||
866             CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
867             nested_vmx_msr_check_common(vcpu, e))
868                 return -EINVAL;
869         return 0;
870 }
871
872 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
873                                       struct vmx_msr_entry *e)
874 {
875         if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
876             nested_vmx_msr_check_common(vcpu, e))
877                 return -EINVAL;
878         return 0;
879 }
880
881 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
882 {
883         struct vcpu_vmx *vmx = to_vmx(vcpu);
884         u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
885                                        vmx->nested.msrs.misc_high);
886
887         return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
888 }
889
890 /*
891  * Load guest's/host's msr at nested entry/exit.
892  * return 0 for success, entry index for failure.
893  *
894  * One of the failure modes for MSR load/store is when a list exceeds the
895  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
896  * as possible, process all valid entries before failing rather than precheck
897  * for a capacity violation.
898  */
899 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
900 {
901         u32 i;
902         struct vmx_msr_entry e;
903         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
904
905         for (i = 0; i < count; i++) {
906                 if (unlikely(i >= max_msr_list_size))
907                         goto fail;
908
909                 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
910                                         &e, sizeof(e))) {
911                         pr_debug_ratelimited(
912                                 "%s cannot read MSR entry (%u, 0x%08llx)\n",
913                                 __func__, i, gpa + i * sizeof(e));
914                         goto fail;
915                 }
916                 if (nested_vmx_load_msr_check(vcpu, &e)) {
917                         pr_debug_ratelimited(
918                                 "%s check failed (%u, 0x%x, 0x%x)\n",
919                                 __func__, i, e.index, e.reserved);
920                         goto fail;
921                 }
922                 if (kvm_set_msr(vcpu, e.index, e.value)) {
923                         pr_debug_ratelimited(
924                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
925                                 __func__, i, e.index, e.value);
926                         goto fail;
927                 }
928         }
929         return 0;
930 fail:
931         /* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
932         return i + 1;
933 }
934
935 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
936                                             u32 msr_index,
937                                             u64 *data)
938 {
939         struct vcpu_vmx *vmx = to_vmx(vcpu);
940
941         /*
942          * If the L0 hypervisor stored a more accurate value for the TSC that
943          * does not include the time taken for emulation of the L2->L1
944          * VM-exit in L0, use the more accurate value.
945          */
946         if (msr_index == MSR_IA32_TSC) {
947                 int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
948                                                     MSR_IA32_TSC);
949
950                 if (i >= 0) {
951                         u64 val = vmx->msr_autostore.guest.val[i].value;
952
953                         *data = kvm_read_l1_tsc(vcpu, val);
954                         return true;
955                 }
956         }
957
958         if (kvm_get_msr(vcpu, msr_index, data)) {
959                 pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
960                         msr_index);
961                 return false;
962         }
963         return true;
964 }
965
966 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
967                                      struct vmx_msr_entry *e)
968 {
969         if (kvm_vcpu_read_guest(vcpu,
970                                 gpa + i * sizeof(*e),
971                                 e, 2 * sizeof(u32))) {
972                 pr_debug_ratelimited(
973                         "%s cannot read MSR entry (%u, 0x%08llx)\n",
974                         __func__, i, gpa + i * sizeof(*e));
975                 return false;
976         }
977         if (nested_vmx_store_msr_check(vcpu, e)) {
978                 pr_debug_ratelimited(
979                         "%s check failed (%u, 0x%x, 0x%x)\n",
980                         __func__, i, e->index, e->reserved);
981                 return false;
982         }
983         return true;
984 }
985
986 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
987 {
988         u64 data;
989         u32 i;
990         struct vmx_msr_entry e;
991         u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
992
993         for (i = 0; i < count; i++) {
994                 if (unlikely(i >= max_msr_list_size))
995                         return -EINVAL;
996
997                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
998                         return -EINVAL;
999
1000                 if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1001                         return -EINVAL;
1002
1003                 if (kvm_vcpu_write_guest(vcpu,
1004                                          gpa + i * sizeof(e) +
1005                                              offsetof(struct vmx_msr_entry, value),
1006                                          &data, sizeof(data))) {
1007                         pr_debug_ratelimited(
1008                                 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1009                                 __func__, i, e.index, data);
1010                         return -EINVAL;
1011                 }
1012         }
1013         return 0;
1014 }
1015
1016 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1017 {
1018         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1019         u32 count = vmcs12->vm_exit_msr_store_count;
1020         u64 gpa = vmcs12->vm_exit_msr_store_addr;
1021         struct vmx_msr_entry e;
1022         u32 i;
1023
1024         for (i = 0; i < count; i++) {
1025                 if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1026                         return false;
1027
1028                 if (e.index == msr_index)
1029                         return true;
1030         }
1031         return false;
1032 }
1033
1034 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1035                                            u32 msr_index)
1036 {
1037         struct vcpu_vmx *vmx = to_vmx(vcpu);
1038         struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1039         bool in_vmcs12_store_list;
1040         int msr_autostore_slot;
1041         bool in_autostore_list;
1042         int last;
1043
1044         msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1045         in_autostore_list = msr_autostore_slot >= 0;
1046         in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1047
1048         if (in_vmcs12_store_list && !in_autostore_list) {
1049                 if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1050                         /*
1051                          * Emulated VMEntry does not fail here.  Instead a less
1052                          * accurate value will be returned by
1053                          * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1054                          * instead of reading the value from the vmcs02 VMExit
1055                          * MSR-store area.
1056                          */
1057                         pr_warn_ratelimited(
1058                                 "Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1059                                 msr_index);
1060                         return;
1061                 }
1062                 last = autostore->nr++;
1063                 autostore->val[last].index = msr_index;
1064         } else if (!in_vmcs12_store_list && in_autostore_list) {
1065                 last = --autostore->nr;
1066                 autostore->val[msr_autostore_slot] = autostore->val[last];
1067         }
1068 }
1069
1070 /*
1071  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1072  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1073  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1074  * @entry_failure_code.
1075  */
1076 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1077                                bool nested_ept, bool reload_pdptrs,
1078                                enum vm_entry_failure_code *entry_failure_code)
1079 {
1080         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1081                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
1082                 return -EINVAL;
1083         }
1084
1085         /*
1086          * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1087          * must not be dereferenced.
1088          */
1089         if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1090             CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
1091                 *entry_failure_code = ENTRY_FAIL_PDPTE;
1092                 return -EINVAL;
1093         }
1094
1095         if (!nested_ept)
1096                 kvm_mmu_new_pgd(vcpu, cr3);
1097
1098         vcpu->arch.cr3 = cr3;
1099         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1100
1101         /* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1102         kvm_init_mmu(vcpu);
1103
1104         return 0;
1105 }
1106
1107 /*
1108  * Returns if KVM is able to config CPU to tag TLB entries
1109  * populated by L2 differently than TLB entries populated
1110  * by L1.
1111  *
1112  * If L0 uses EPT, L1 and L2 run with different EPTP because
1113  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1114  * are tagged with different EPTP.
1115  *
1116  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1117  * with different VPID (L1 entries are tagged with vmx->vpid
1118  * while L2 entries are tagged with vmx->nested.vpid02).
1119  */
1120 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1121 {
1122         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1123
1124         return enable_ept ||
1125                (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1126 }
1127
1128 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1129                                             struct vmcs12 *vmcs12,
1130                                             bool is_vmenter)
1131 {
1132         struct vcpu_vmx *vmx = to_vmx(vcpu);
1133
1134         /*
1135          * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1136          * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1137          * full TLB flush from the guest's perspective.  This is required even
1138          * if VPID is disabled in the host as KVM may need to synchronize the
1139          * MMU in response to the guest TLB flush.
1140          *
1141          * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1142          * EPT is a special snowflake, as guest-physical mappings aren't
1143          * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1144          * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1145          * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1146          * those mappings.
1147          */
1148         if (!nested_cpu_has_vpid(vmcs12)) {
1149                 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1150                 return;
1151         }
1152
1153         /* L2 should never have a VPID if VPID is disabled. */
1154         WARN_ON(!enable_vpid);
1155
1156         /*
1157          * If VPID is enabled and used by vmc12, but L2 does not have a unique
1158          * TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
1159          * a VPID for L2, flush the current context as the effective ASID is
1160          * common to both L1 and L2.
1161          *
1162          * Defer the flush so that it runs after vmcs02.EPTP has been set by
1163          * KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
1164          * redundant flushes further down the nested pipeline.
1165          *
1166          * If a TLB flush isn't required due to any of the above, and vpid12 is
1167          * changing then the new "virtual" VPID (vpid12) will reuse the same
1168          * "real" VPID (vpid02), and so needs to be flushed.  There's no direct
1169          * mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
1170          * all nested vCPUs.  Remember, a flush on VM-Enter does not invalidate
1171          * guest-physical mappings, so there is no need to sync the nEPT MMU.
1172          */
1173         if (!nested_has_guest_tlb_tag(vcpu)) {
1174                 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1175         } else if (is_vmenter &&
1176                    vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1177                 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1178                 vpid_sync_context(nested_get_vpid02(vcpu));
1179         }
1180 }
1181
1182 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1183 {
1184         superset &= mask;
1185         subset &= mask;
1186
1187         return (superset | subset) == superset;
1188 }
1189
1190 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1191 {
1192         const u64 feature_and_reserved =
1193                 /* feature (except bit 48; see below) */
1194                 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1195                 /* reserved */
1196                 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1197         u64 vmx_basic = vmx->nested.msrs.basic;
1198
1199         if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1200                 return -EINVAL;
1201
1202         /*
1203          * KVM does not emulate a version of VMX that constrains physical
1204          * addresses of VMX structures (e.g. VMCS) to 32-bits.
1205          */
1206         if (data & BIT_ULL(48))
1207                 return -EINVAL;
1208
1209         if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1210             vmx_basic_vmcs_revision_id(data))
1211                 return -EINVAL;
1212
1213         if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1214                 return -EINVAL;
1215
1216         vmx->nested.msrs.basic = data;
1217         return 0;
1218 }
1219
1220 static int
1221 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1222 {
1223         u64 supported;
1224         u32 *lowp, *highp;
1225
1226         switch (msr_index) {
1227         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1228                 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1229                 highp = &vmx->nested.msrs.pinbased_ctls_high;
1230                 break;
1231         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1232                 lowp = &vmx->nested.msrs.procbased_ctls_low;
1233                 highp = &vmx->nested.msrs.procbased_ctls_high;
1234                 break;
1235         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1236                 lowp = &vmx->nested.msrs.exit_ctls_low;
1237                 highp = &vmx->nested.msrs.exit_ctls_high;
1238                 break;
1239         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1240                 lowp = &vmx->nested.msrs.entry_ctls_low;
1241                 highp = &vmx->nested.msrs.entry_ctls_high;
1242                 break;
1243         case MSR_IA32_VMX_PROCBASED_CTLS2:
1244                 lowp = &vmx->nested.msrs.secondary_ctls_low;
1245                 highp = &vmx->nested.msrs.secondary_ctls_high;
1246                 break;
1247         default:
1248                 BUG();
1249         }
1250
1251         supported = vmx_control_msr(*lowp, *highp);
1252
1253         /* Check must-be-1 bits are still 1. */
1254         if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1255                 return -EINVAL;
1256
1257         /* Check must-be-0 bits are still 0. */
1258         if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1259                 return -EINVAL;
1260
1261         *lowp = data;
1262         *highp = data >> 32;
1263         return 0;
1264 }
1265
1266 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1267 {
1268         const u64 feature_and_reserved_bits =
1269                 /* feature */
1270                 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1271                 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1272                 /* reserved */
1273                 GENMASK_ULL(13, 9) | BIT_ULL(31);
1274         u64 vmx_misc;
1275
1276         vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1277                                    vmx->nested.msrs.misc_high);
1278
1279         if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1280                 return -EINVAL;
1281
1282         if ((vmx->nested.msrs.pinbased_ctls_high &
1283              PIN_BASED_VMX_PREEMPTION_TIMER) &&
1284             vmx_misc_preemption_timer_rate(data) !=
1285             vmx_misc_preemption_timer_rate(vmx_misc))
1286                 return -EINVAL;
1287
1288         if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1289                 return -EINVAL;
1290
1291         if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1292                 return -EINVAL;
1293
1294         if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1295                 return -EINVAL;
1296
1297         vmx->nested.msrs.misc_low = data;
1298         vmx->nested.msrs.misc_high = data >> 32;
1299
1300         return 0;
1301 }
1302
1303 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1304 {
1305         u64 vmx_ept_vpid_cap;
1306
1307         vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1308                                            vmx->nested.msrs.vpid_caps);
1309
1310         /* Every bit is either reserved or a feature bit. */
1311         if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1312                 return -EINVAL;
1313
1314         vmx->nested.msrs.ept_caps = data;
1315         vmx->nested.msrs.vpid_caps = data >> 32;
1316         return 0;
1317 }
1318
1319 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1320 {
1321         u64 *msr;
1322
1323         switch (msr_index) {
1324         case MSR_IA32_VMX_CR0_FIXED0:
1325                 msr = &vmx->nested.msrs.cr0_fixed0;
1326                 break;
1327         case MSR_IA32_VMX_CR4_FIXED0:
1328                 msr = &vmx->nested.msrs.cr4_fixed0;
1329                 break;
1330         default:
1331                 BUG();
1332         }
1333
1334         /*
1335          * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1336          * must be 1 in the restored value.
1337          */
1338         if (!is_bitwise_subset(data, *msr, -1ULL))
1339                 return -EINVAL;
1340
1341         *msr = data;
1342         return 0;
1343 }
1344
1345 /*
1346  * Called when userspace is restoring VMX MSRs.
1347  *
1348  * Returns 0 on success, non-0 otherwise.
1349  */
1350 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1351 {
1352         struct vcpu_vmx *vmx = to_vmx(vcpu);
1353
1354         /*
1355          * Don't allow changes to the VMX capability MSRs while the vCPU
1356          * is in VMX operation.
1357          */
1358         if (vmx->nested.vmxon)
1359                 return -EBUSY;
1360
1361         switch (msr_index) {
1362         case MSR_IA32_VMX_BASIC:
1363                 return vmx_restore_vmx_basic(vmx, data);
1364         case MSR_IA32_VMX_PINBASED_CTLS:
1365         case MSR_IA32_VMX_PROCBASED_CTLS:
1366         case MSR_IA32_VMX_EXIT_CTLS:
1367         case MSR_IA32_VMX_ENTRY_CTLS:
1368                 /*
1369                  * The "non-true" VMX capability MSRs are generated from the
1370                  * "true" MSRs, so we do not support restoring them directly.
1371                  *
1372                  * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1373                  * should restore the "true" MSRs with the must-be-1 bits
1374                  * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1375                  * DEFAULT SETTINGS".
1376                  */
1377                 return -EINVAL;
1378         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1379         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1380         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1381         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1382         case MSR_IA32_VMX_PROCBASED_CTLS2:
1383                 return vmx_restore_control_msr(vmx, msr_index, data);
1384         case MSR_IA32_VMX_MISC:
1385                 return vmx_restore_vmx_misc(vmx, data);
1386         case MSR_IA32_VMX_CR0_FIXED0:
1387         case MSR_IA32_VMX_CR4_FIXED0:
1388                 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1389         case MSR_IA32_VMX_CR0_FIXED1:
1390         case MSR_IA32_VMX_CR4_FIXED1:
1391                 /*
1392                  * These MSRs are generated based on the vCPU's CPUID, so we
1393                  * do not support restoring them directly.
1394                  */
1395                 return -EINVAL;
1396         case MSR_IA32_VMX_EPT_VPID_CAP:
1397                 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1398         case MSR_IA32_VMX_VMCS_ENUM:
1399                 vmx->nested.msrs.vmcs_enum = data;
1400                 return 0;
1401         case MSR_IA32_VMX_VMFUNC:
1402                 if (data & ~vmx->nested.msrs.vmfunc_controls)
1403                         return -EINVAL;
1404                 vmx->nested.msrs.vmfunc_controls = data;
1405                 return 0;
1406         default:
1407                 /*
1408                  * The rest of the VMX capability MSRs do not support restore.
1409                  */
1410                 return -EINVAL;
1411         }
1412 }
1413
1414 /* Returns 0 on success, non-0 otherwise. */
1415 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1416 {
1417         switch (msr_index) {
1418         case MSR_IA32_VMX_BASIC:
1419                 *pdata = msrs->basic;
1420                 break;
1421         case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1422         case MSR_IA32_VMX_PINBASED_CTLS:
1423                 *pdata = vmx_control_msr(
1424                         msrs->pinbased_ctls_low,
1425                         msrs->pinbased_ctls_high);
1426                 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1427                         *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1428                 break;
1429         case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1430         case MSR_IA32_VMX_PROCBASED_CTLS:
1431                 *pdata = vmx_control_msr(
1432                         msrs->procbased_ctls_low,
1433                         msrs->procbased_ctls_high);
1434                 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1435                         *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1436                 break;
1437         case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1438         case MSR_IA32_VMX_EXIT_CTLS:
1439                 *pdata = vmx_control_msr(
1440                         msrs->exit_ctls_low,
1441                         msrs->exit_ctls_high);
1442                 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1443                         *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1444                 break;
1445         case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1446         case MSR_IA32_VMX_ENTRY_CTLS:
1447                 *pdata = vmx_control_msr(
1448                         msrs->entry_ctls_low,
1449                         msrs->entry_ctls_high);
1450                 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1451                         *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1452                 break;
1453         case MSR_IA32_VMX_MISC:
1454                 *pdata = vmx_control_msr(
1455                         msrs->misc_low,
1456                         msrs->misc_high);
1457                 break;
1458         case MSR_IA32_VMX_CR0_FIXED0:
1459                 *pdata = msrs->cr0_fixed0;
1460                 break;
1461         case MSR_IA32_VMX_CR0_FIXED1:
1462                 *pdata = msrs->cr0_fixed1;
1463                 break;
1464         case MSR_IA32_VMX_CR4_FIXED0:
1465                 *pdata = msrs->cr4_fixed0;
1466                 break;
1467         case MSR_IA32_VMX_CR4_FIXED1:
1468                 *pdata = msrs->cr4_fixed1;
1469                 break;
1470         case MSR_IA32_VMX_VMCS_ENUM:
1471                 *pdata = msrs->vmcs_enum;
1472                 break;
1473         case MSR_IA32_VMX_PROCBASED_CTLS2:
1474                 *pdata = vmx_control_msr(
1475                         msrs->secondary_ctls_low,
1476                         msrs->secondary_ctls_high);
1477                 break;
1478         case MSR_IA32_VMX_EPT_VPID_CAP:
1479                 *pdata = msrs->ept_caps |
1480                         ((u64)msrs->vpid_caps << 32);
1481                 break;
1482         case MSR_IA32_VMX_VMFUNC:
1483                 *pdata = msrs->vmfunc_controls;
1484                 break;
1485         default:
1486                 return 1;
1487         }
1488
1489         return 0;
1490 }
1491
1492 /*
1493  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1494  * been modified by the L1 guest.  Note, "writable" in this context means
1495  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1496  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1497  * VM-exit information fields (which are actually writable if the vCPU is
1498  * configured to support "VMWRITE to any supported field in the VMCS").
1499  */
1500 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1501 {
1502         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1503         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1504         struct shadow_vmcs_field field;
1505         unsigned long val;
1506         int i;
1507
1508         if (WARN_ON(!shadow_vmcs))
1509                 return;
1510
1511         preempt_disable();
1512
1513         vmcs_load(shadow_vmcs);
1514
1515         for (i = 0; i < max_shadow_read_write_fields; i++) {
1516                 field = shadow_read_write_fields[i];
1517                 val = __vmcs_readl(field.encoding);
1518                 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1519         }
1520
1521         vmcs_clear(shadow_vmcs);
1522         vmcs_load(vmx->loaded_vmcs->vmcs);
1523
1524         preempt_enable();
1525 }
1526
1527 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1528 {
1529         const struct shadow_vmcs_field *fields[] = {
1530                 shadow_read_write_fields,
1531                 shadow_read_only_fields
1532         };
1533         const int max_fields[] = {
1534                 max_shadow_read_write_fields,
1535                 max_shadow_read_only_fields
1536         };
1537         struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1538         struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1539         struct shadow_vmcs_field field;
1540         unsigned long val;
1541         int i, q;
1542
1543         if (WARN_ON(!shadow_vmcs))
1544                 return;
1545
1546         vmcs_load(shadow_vmcs);
1547
1548         for (q = 0; q < ARRAY_SIZE(fields); q++) {
1549                 for (i = 0; i < max_fields[q]; i++) {
1550                         field = fields[q][i];
1551                         val = vmcs12_read_any(vmcs12, field.encoding,
1552                                               field.offset);
1553                         __vmcs_writel(field.encoding, val);
1554                 }
1555         }
1556
1557         vmcs_clear(shadow_vmcs);
1558         vmcs_load(vmx->loaded_vmcs->vmcs);
1559 }
1560
1561 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1562 {
1563         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1564         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1565
1566         /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1567         vmcs12->tpr_threshold = evmcs->tpr_threshold;
1568         vmcs12->guest_rip = evmcs->guest_rip;
1569
1570         if (unlikely(!(hv_clean_fields &
1571                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1572                 vmcs12->guest_rsp = evmcs->guest_rsp;
1573                 vmcs12->guest_rflags = evmcs->guest_rflags;
1574                 vmcs12->guest_interruptibility_info =
1575                         evmcs->guest_interruptibility_info;
1576         }
1577
1578         if (unlikely(!(hv_clean_fields &
1579                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1580                 vmcs12->cpu_based_vm_exec_control =
1581                         evmcs->cpu_based_vm_exec_control;
1582         }
1583
1584         if (unlikely(!(hv_clean_fields &
1585                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1586                 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1587         }
1588
1589         if (unlikely(!(hv_clean_fields &
1590                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1591                 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1592         }
1593
1594         if (unlikely(!(hv_clean_fields &
1595                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1596                 vmcs12->vm_entry_intr_info_field =
1597                         evmcs->vm_entry_intr_info_field;
1598                 vmcs12->vm_entry_exception_error_code =
1599                         evmcs->vm_entry_exception_error_code;
1600                 vmcs12->vm_entry_instruction_len =
1601                         evmcs->vm_entry_instruction_len;
1602         }
1603
1604         if (unlikely(!(hv_clean_fields &
1605                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1606                 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1607                 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1608                 vmcs12->host_cr0 = evmcs->host_cr0;
1609                 vmcs12->host_cr3 = evmcs->host_cr3;
1610                 vmcs12->host_cr4 = evmcs->host_cr4;
1611                 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1612                 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1613                 vmcs12->host_rip = evmcs->host_rip;
1614                 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1615                 vmcs12->host_es_selector = evmcs->host_es_selector;
1616                 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1617                 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1618                 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1619                 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1620                 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1621                 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1622         }
1623
1624         if (unlikely(!(hv_clean_fields &
1625                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1626                 vmcs12->pin_based_vm_exec_control =
1627                         evmcs->pin_based_vm_exec_control;
1628                 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1629                 vmcs12->secondary_vm_exec_control =
1630                         evmcs->secondary_vm_exec_control;
1631         }
1632
1633         if (unlikely(!(hv_clean_fields &
1634                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1635                 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1636                 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1637         }
1638
1639         if (unlikely(!(hv_clean_fields &
1640                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1641                 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1642         }
1643
1644         if (unlikely(!(hv_clean_fields &
1645                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1646                 vmcs12->guest_es_base = evmcs->guest_es_base;
1647                 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1648                 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1649                 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1650                 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1651                 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1652                 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1653                 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1654                 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1655                 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1656                 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1657                 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1658                 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1659                 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1660                 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1661                 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1662                 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1663                 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1664                 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1665                 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1666                 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1667                 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1668                 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1669                 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1670                 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1671                 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1672                 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1673                 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1674                 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1675                 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1676                 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1677                 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1678                 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1679                 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1680                 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1681                 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1682         }
1683
1684         if (unlikely(!(hv_clean_fields &
1685                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1686                 vmcs12->tsc_offset = evmcs->tsc_offset;
1687                 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1688                 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1689         }
1690
1691         if (unlikely(!(hv_clean_fields &
1692                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1693                 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1694                 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1695                 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1696                 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1697                 vmcs12->guest_cr0 = evmcs->guest_cr0;
1698                 vmcs12->guest_cr3 = evmcs->guest_cr3;
1699                 vmcs12->guest_cr4 = evmcs->guest_cr4;
1700                 vmcs12->guest_dr7 = evmcs->guest_dr7;
1701         }
1702
1703         if (unlikely(!(hv_clean_fields &
1704                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1705                 vmcs12->host_fs_base = evmcs->host_fs_base;
1706                 vmcs12->host_gs_base = evmcs->host_gs_base;
1707                 vmcs12->host_tr_base = evmcs->host_tr_base;
1708                 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1709                 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1710                 vmcs12->host_rsp = evmcs->host_rsp;
1711         }
1712
1713         if (unlikely(!(hv_clean_fields &
1714                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1715                 vmcs12->ept_pointer = evmcs->ept_pointer;
1716                 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1717         }
1718
1719         if (unlikely(!(hv_clean_fields &
1720                        HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1721                 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1722                 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1723                 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1724                 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1725                 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1726                 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1727                 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1728                 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1729                 vmcs12->guest_pending_dbg_exceptions =
1730                         evmcs->guest_pending_dbg_exceptions;
1731                 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1732                 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1733                 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1734                 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1735                 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1736         }
1737
1738         /*
1739          * Not used?
1740          * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1741          * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1742          * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1743          * vmcs12->page_fault_error_code_mask =
1744          *              evmcs->page_fault_error_code_mask;
1745          * vmcs12->page_fault_error_code_match =
1746          *              evmcs->page_fault_error_code_match;
1747          * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1748          * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1749          * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1750          * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1751          */
1752
1753         /*
1754          * Read only fields:
1755          * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1756          * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1757          * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1758          * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1759          * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1760          * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1761          * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1762          * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1763          * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1764          * vmcs12->exit_qualification = evmcs->exit_qualification;
1765          * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1766          *
1767          * Not present in struct vmcs12:
1768          * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1769          * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1770          * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1771          * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1772          */
1773
1774         return;
1775 }
1776
1777 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1778 {
1779         struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1780         struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1781
1782         /*
1783          * Should not be changed by KVM:
1784          *
1785          * evmcs->host_es_selector = vmcs12->host_es_selector;
1786          * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1787          * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1788          * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1789          * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1790          * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1791          * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1792          * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1793          * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1794          * evmcs->host_cr0 = vmcs12->host_cr0;
1795          * evmcs->host_cr3 = vmcs12->host_cr3;
1796          * evmcs->host_cr4 = vmcs12->host_cr4;
1797          * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1798          * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1799          * evmcs->host_rip = vmcs12->host_rip;
1800          * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1801          * evmcs->host_fs_base = vmcs12->host_fs_base;
1802          * evmcs->host_gs_base = vmcs12->host_gs_base;
1803          * evmcs->host_tr_base = vmcs12->host_tr_base;
1804          * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1805          * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1806          * evmcs->host_rsp = vmcs12->host_rsp;
1807          * sync_vmcs02_to_vmcs12() doesn't read these:
1808          * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1809          * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1810          * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1811          * evmcs->ept_pointer = vmcs12->ept_pointer;
1812          * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1813          * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1814          * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1815          * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1816          * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1817          * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1818          * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1819          * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1820          * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1821          * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1822          * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1823          * evmcs->page_fault_error_code_mask =
1824          *              vmcs12->page_fault_error_code_mask;
1825          * evmcs->page_fault_error_code_match =
1826          *              vmcs12->page_fault_error_code_match;
1827          * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1828          * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1829          * evmcs->tsc_offset = vmcs12->tsc_offset;
1830          * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1831          * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1832          * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1833          * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1834          * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1835          * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1836          * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1837          * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1838          *
1839          * Not present in struct vmcs12:
1840          * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1841          * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1842          * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1843          * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1844          */
1845
1846         evmcs->guest_es_selector = vmcs12->guest_es_selector;
1847         evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1848         evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1849         evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1850         evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1851         evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1852         evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1853         evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1854
1855         evmcs->guest_es_limit = vmcs12->guest_es_limit;
1856         evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1857         evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1858         evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1859         evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1860         evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1861         evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1862         evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1863         evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1864         evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1865
1866         evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1867         evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1868         evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1869         evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1870         evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1871         evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1872         evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1873         evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1874
1875         evmcs->guest_es_base = vmcs12->guest_es_base;
1876         evmcs->guest_cs_base = vmcs12->guest_cs_base;
1877         evmcs->guest_ss_base = vmcs12->guest_ss_base;
1878         evmcs->guest_ds_base = vmcs12->guest_ds_base;
1879         evmcs->guest_fs_base = vmcs12->guest_fs_base;
1880         evmcs->guest_gs_base = vmcs12->guest_gs_base;
1881         evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1882         evmcs->guest_tr_base = vmcs12->guest_tr_base;
1883         evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1884         evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1885
1886         evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1887         evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1888
1889         evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1890         evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1891         evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1892         evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1893
1894         evmcs->guest_pending_dbg_exceptions =
1895                 vmcs12->guest_pending_dbg_exceptions;
1896         evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1897         evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1898
1899         evmcs->guest_activity_state = vmcs12->guest_activity_state;
1900         evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1901
1902         evmcs->guest_cr0 = vmcs12->guest_cr0;
1903         evmcs->guest_cr3 = vmcs12->guest_cr3;
1904         evmcs->guest_cr4 = vmcs12->guest_cr4;
1905         evmcs->guest_dr7 = vmcs12->guest_dr7;
1906
1907         evmcs->guest_physical_address = vmcs12->guest_physical_address;
1908
1909         evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1910         evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1911         evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1912         evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1913         evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1914         evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1915         evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1916         evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1917
1918         evmcs->exit_qualification = vmcs12->exit_qualification;
1919
1920         evmcs->guest_linear_address = vmcs12->guest_linear_address;
1921         evmcs->guest_rsp = vmcs12->guest_rsp;
1922         evmcs->guest_rflags = vmcs12->guest_rflags;
1923
1924         evmcs->guest_interruptibility_info =
1925                 vmcs12->guest_interruptibility_info;
1926         evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1927         evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1928         evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1929         evmcs->vm_entry_exception_error_code =
1930                 vmcs12->vm_entry_exception_error_code;
1931         evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1932
1933         evmcs->guest_rip = vmcs12->guest_rip;
1934
1935         evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1936
1937         return;
1938 }
1939
1940 /*
1941  * This is an equivalent of the nested hypervisor executing the vmptrld
1942  * instruction.
1943  */
1944 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1945         struct kvm_vcpu *vcpu, bool from_launch)
1946 {
1947         struct vcpu_vmx *vmx = to_vmx(vcpu);
1948         bool evmcs_gpa_changed = false;
1949         u64 evmcs_gpa;
1950
1951         if (likely(!vmx->nested.enlightened_vmcs_enabled))
1952                 return EVMPTRLD_DISABLED;
1953
1954         if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1955                 nested_release_evmcs(vcpu);
1956                 return EVMPTRLD_DISABLED;
1957         }
1958
1959         if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1960                 vmx->nested.current_vmptr = -1ull;
1961
1962                 nested_release_evmcs(vcpu);
1963
1964                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1965                                  &vmx->nested.hv_evmcs_map))
1966                         return EVMPTRLD_ERROR;
1967
1968                 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
1969
1970                 /*
1971                  * Currently, KVM only supports eVMCS version 1
1972                  * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1973                  * value to first u32 field of eVMCS which should specify eVMCS
1974                  * VersionNumber.
1975                  *
1976                  * Guest should be aware of supported eVMCS versions by host by
1977                  * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1978                  * expected to set this CPUID leaf according to the value
1979                  * returned in vmcs_version from nested_enable_evmcs().
1980                  *
1981                  * However, it turns out that Microsoft Hyper-V fails to comply
1982                  * to their own invented interface: When Hyper-V use eVMCS, it
1983                  * just sets first u32 field of eVMCS to revision_id specified
1984                  * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1985                  * which is one of the supported versions specified in
1986                  * CPUID.0x4000000A.EAX[0:15].
1987                  *
1988                  * To overcome Hyper-V bug, we accept here either a supported
1989                  * eVMCS version or VMCS12 revision_id as valid values for first
1990                  * u32 field of eVMCS.
1991                  */
1992                 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1993                     (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1994                         nested_release_evmcs(vcpu);
1995                         return EVMPTRLD_VMFAIL;
1996                 }
1997
1998                 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
1999
2000                 evmcs_gpa_changed = true;
2001                 /*
2002                  * Unlike normal vmcs12, enlightened vmcs12 is not fully
2003                  * reloaded from guest's memory (read only fields, fields not
2004                  * present in struct hv_enlightened_vmcs, ...). Make sure there
2005                  * are no leftovers.
2006                  */
2007                 if (from_launch) {
2008                         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2009                         memset(vmcs12, 0, sizeof(*vmcs12));
2010                         vmcs12->hdr.revision_id = VMCS12_REVISION;
2011                 }
2012
2013         }
2014
2015         /*
2016          * Clean fields data can't be used on VMLAUNCH and when we switch
2017          * between different L2 guests as KVM keeps a single VMCS12 per L1.
2018          */
2019         if (from_launch || evmcs_gpa_changed)
2020                 vmx->nested.hv_evmcs->hv_clean_fields &=
2021                         ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2022
2023         return EVMPTRLD_SUCCEEDED;
2024 }
2025
2026 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2027 {
2028         struct vcpu_vmx *vmx = to_vmx(vcpu);
2029
2030         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2031                 copy_vmcs12_to_enlightened(vmx);
2032         else
2033                 copy_vmcs12_to_shadow(vmx);
2034
2035         vmx->nested.need_vmcs12_to_shadow_sync = false;
2036 }
2037
2038 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2039 {
2040         struct vcpu_vmx *vmx =
2041                 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2042
2043         vmx->nested.preemption_timer_expired = true;
2044         kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2045         kvm_vcpu_kick(&vmx->vcpu);
2046
2047         return HRTIMER_NORESTART;
2048 }
2049
2050 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2051 {
2052         struct vcpu_vmx *vmx = to_vmx(vcpu);
2053         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2054
2055         u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2056                             VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2057
2058         if (!vmx->nested.has_preemption_timer_deadline) {
2059                 vmx->nested.preemption_timer_deadline =
2060                         vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2061                 vmx->nested.has_preemption_timer_deadline = true;
2062         }
2063         return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2064 }
2065
2066 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2067                                         u64 preemption_timeout)
2068 {
2069         struct vcpu_vmx *vmx = to_vmx(vcpu);
2070
2071         /*
2072          * A timer value of zero is architecturally guaranteed to cause
2073          * a VMExit prior to executing any instructions in the guest.
2074          */
2075         if (preemption_timeout == 0) {
2076                 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2077                 return;
2078         }
2079
2080         if (vcpu->arch.virtual_tsc_khz == 0)
2081                 return;
2082
2083         preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2084         preemption_timeout *= 1000000;
2085         do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2086         hrtimer_start(&vmx->nested.preemption_timer,
2087                       ktime_add_ns(ktime_get(), preemption_timeout),
2088                       HRTIMER_MODE_ABS_PINNED);
2089 }
2090
2091 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2092 {
2093         if (vmx->nested.nested_run_pending &&
2094             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2095                 return vmcs12->guest_ia32_efer;
2096         else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2097                 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2098         else
2099                 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2100 }
2101
2102 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2103 {
2104         /*
2105          * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2106          * according to L0's settings (vmcs12 is irrelevant here).  Host
2107          * fields that come from L0 and are not constant, e.g. HOST_CR3,
2108          * will be set as needed prior to VMLAUNCH/VMRESUME.
2109          */
2110         if (vmx->nested.vmcs02_initialized)
2111                 return;
2112         vmx->nested.vmcs02_initialized = true;
2113
2114         /*
2115          * We don't care what the EPTP value is we just need to guarantee
2116          * it's valid so we don't get a false positive when doing early
2117          * consistency checks.
2118          */
2119         if (enable_ept && nested_early_check)
2120                 vmcs_write64(EPT_POINTER,
2121                              construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2122
2123         /* All VMFUNCs are currently emulated through L0 vmexits.  */
2124         if (cpu_has_vmx_vmfunc())
2125                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
2126
2127         if (cpu_has_vmx_posted_intr())
2128                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2129
2130         if (cpu_has_vmx_msr_bitmap())
2131                 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2132
2133         /*
2134          * PML is emulated for L2, but never enabled in hardware as the MMU
2135          * handles A/D emulation.  Disabling PML for L2 also avoids having to
2136          * deal with filtering out L2 GPAs from the buffer.
2137          */
2138         if (enable_pml) {
2139                 vmcs_write64(PML_ADDRESS, 0);
2140                 vmcs_write16(GUEST_PML_INDEX, -1);
2141         }
2142
2143         if (cpu_has_vmx_encls_vmexit())
2144                 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2145
2146         /*
2147          * Set the MSR load/store lists to match L0's settings.  Only the
2148          * addresses are constant (for vmcs02), the counts can change based
2149          * on L2's behavior, e.g. switching to/from long mode.
2150          */
2151         vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2152         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2153         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2154
2155         vmx_set_constant_host_state(vmx);
2156 }
2157
2158 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2159                                       struct vmcs12 *vmcs12)
2160 {
2161         prepare_vmcs02_constant_state(vmx);
2162
2163         vmcs_write64(VMCS_LINK_POINTER, -1ull);
2164
2165         if (enable_vpid) {
2166                 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2167                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2168                 else
2169                         vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2170         }
2171 }
2172
2173 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2174 {
2175         u32 exec_control;
2176         u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2177
2178         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2179                 prepare_vmcs02_early_rare(vmx, vmcs12);
2180
2181         /*
2182          * PIN CONTROLS
2183          */
2184         exec_control = vmx_pin_based_exec_ctrl(vmx);
2185         exec_control |= (vmcs12->pin_based_vm_exec_control &
2186                          ~PIN_BASED_VMX_PREEMPTION_TIMER);
2187
2188         /* Posted interrupts setting is only taken from vmcs12.  */
2189         if (nested_cpu_has_posted_intr(vmcs12)) {
2190                 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2191                 vmx->nested.pi_pending = false;
2192         } else {
2193                 exec_control &= ~PIN_BASED_POSTED_INTR;
2194         }
2195         pin_controls_set(vmx, exec_control);
2196
2197         /*
2198          * EXEC CONTROLS
2199          */
2200         exec_control = vmx_exec_control(vmx); /* L0's desires */
2201         exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2202         exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2203         exec_control &= ~CPU_BASED_TPR_SHADOW;
2204         exec_control |= vmcs12->cpu_based_vm_exec_control;
2205
2206         vmx->nested.l1_tpr_threshold = -1;
2207         if (exec_control & CPU_BASED_TPR_SHADOW)
2208                 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2209 #ifdef CONFIG_X86_64
2210         else
2211                 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2212                                 CPU_BASED_CR8_STORE_EXITING;
2213 #endif
2214
2215         /*
2216          * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2217          * for I/O port accesses.
2218          */
2219         exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2220         exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2221
2222         /*
2223          * This bit will be computed in nested_get_vmcs12_pages, because
2224          * we do not have access to L1's MSR bitmap yet.  For now, keep
2225          * the same bit as before, hoping to avoid multiple VMWRITEs that
2226          * only set/clear this bit.
2227          */
2228         exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2229         exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2230
2231         exec_controls_set(vmx, exec_control);
2232
2233         /*
2234          * SECONDARY EXEC CONTROLS
2235          */
2236         if (cpu_has_secondary_exec_ctrls()) {
2237                 exec_control = vmx->secondary_exec_control;
2238
2239                 /* Take the following fields only from vmcs12 */
2240                 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2241                                   SECONDARY_EXEC_ENABLE_INVPCID |
2242                                   SECONDARY_EXEC_ENABLE_RDTSCP |
2243                                   SECONDARY_EXEC_XSAVES |
2244                                   SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2245                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2246                                   SECONDARY_EXEC_APIC_REGISTER_VIRT |
2247                                   SECONDARY_EXEC_ENABLE_VMFUNC |
2248                                   SECONDARY_EXEC_TSC_SCALING);
2249                 if (nested_cpu_has(vmcs12,
2250                                    CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2251                         exec_control |= vmcs12->secondary_vm_exec_control;
2252
2253                 /* PML is emulated and never enabled in hardware for L2. */
2254                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2255
2256                 /* VMCS shadowing for L2 is emulated for now */
2257                 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2258
2259                 /*
2260                  * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2261                  * will not have to rewrite the controls just for this bit.
2262                  */
2263                 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2264                     (vmcs12->guest_cr4 & X86_CR4_UMIP))
2265                         exec_control |= SECONDARY_EXEC_DESC;
2266
2267                 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2268                         vmcs_write16(GUEST_INTR_STATUS,
2269                                 vmcs12->guest_intr_status);
2270
2271                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2272                     exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2273
2274                 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2275                         vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2276
2277                 secondary_exec_controls_set(vmx, exec_control);
2278         }
2279
2280         /*
2281          * ENTRY CONTROLS
2282          *
2283          * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2284          * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2285          * on the related bits (if supported by the CPU) in the hope that
2286          * we can avoid VMWrites during vmx_set_efer().
2287          */
2288         exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2289                         ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2290         if (cpu_has_load_ia32_efer()) {
2291                 if (guest_efer & EFER_LMA)
2292                         exec_control |= VM_ENTRY_IA32E_MODE;
2293                 if (guest_efer != host_efer)
2294                         exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2295         }
2296         vm_entry_controls_set(vmx, exec_control);
2297
2298         /*
2299          * EXIT CONTROLS
2300          *
2301          * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2302          * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2303          * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2304          */
2305         exec_control = vmx_vmexit_ctrl();
2306         if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2307                 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2308         vm_exit_controls_set(vmx, exec_control);
2309
2310         /*
2311          * Interrupt/Exception Fields
2312          */
2313         if (vmx->nested.nested_run_pending) {
2314                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2315                              vmcs12->vm_entry_intr_info_field);
2316                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2317                              vmcs12->vm_entry_exception_error_code);
2318                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2319                              vmcs12->vm_entry_instruction_len);
2320                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2321                              vmcs12->guest_interruptibility_info);
2322                 vmx->loaded_vmcs->nmi_known_unmasked =
2323                         !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2324         } else {
2325                 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2326         }
2327 }
2328
2329 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2330 {
2331         struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2332
2333         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2334                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2335                 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2336                 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2337                 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2338                 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2339                 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2340                 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2341                 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2342                 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2343                 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2344                 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2345                 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2346                 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2347                 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2348                 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2349                 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2350                 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2351                 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2352                 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2353                 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2354                 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2355                 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2356                 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2357                 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2358                 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2359                 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2360                 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2361                 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2362                 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2363                 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2364                 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2365                 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2366                 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2367                 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2368                 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2369                 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2370                 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2371
2372                 vmx->segment_cache.bitmask = 0;
2373         }
2374
2375         if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2376                            HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2377                 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2378                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2379                             vmcs12->guest_pending_dbg_exceptions);
2380                 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2381                 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2382
2383                 /*
2384                  * L1 may access the L2's PDPTR, so save them to construct
2385                  * vmcs12
2386                  */
2387                 if (enable_ept) {
2388                         vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2389                         vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2390                         vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2391                         vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2392                 }
2393
2394                 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2395                     (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2396                         vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2397         }
2398
2399         if (nested_cpu_has_xsaves(vmcs12))
2400                 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2401
2402         /*
2403          * Whether page-faults are trapped is determined by a combination of
2404          * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2405          * doesn't care about page faults then we should set all of these to
2406          * L1's desires. However, if L0 does care about (some) page faults, it
2407          * is not easy (if at all possible?) to merge L0 and L1's desires, we
2408          * simply ask to exit on each and every L2 page fault. This is done by
2409          * setting MASK=MATCH=0 and (see below) EB.PF=1.
2410          * Note that below we don't need special code to set EB.PF beyond the
2411          * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2412          * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2413          * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2414          */
2415         if (vmx_need_pf_intercept(&vmx->vcpu)) {
2416                 /*
2417                  * TODO: if both L0 and L1 need the same MASK and MATCH,
2418                  * go ahead and use it?
2419                  */
2420                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2421                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2422         } else {
2423                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2424                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2425         }
2426
2427         if (cpu_has_vmx_apicv()) {
2428                 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2429                 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2430                 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2431                 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2432         }
2433
2434         /*
2435          * Make sure the msr_autostore list is up to date before we set the
2436          * count in the vmcs02.
2437          */
2438         prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2439
2440         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2441         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2442         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2443
2444         set_cr4_guest_host_mask(vmx);
2445 }
2446
2447 /*
2448  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2449  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2450  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2451  * guest in a way that will both be appropriate to L1's requests, and our
2452  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2453  * function also has additional necessary side-effects, like setting various
2454  * vcpu->arch fields.
2455  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2456  * is assigned to entry_failure_code on failure.
2457  */
2458 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2459                           bool from_vmentry,
2460                           enum vm_entry_failure_code *entry_failure_code)
2461 {
2462         struct vcpu_vmx *vmx = to_vmx(vcpu);
2463         bool load_guest_pdptrs_vmcs12 = false;
2464
2465         if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2466                 prepare_vmcs02_rare(vmx, vmcs12);
2467                 vmx->nested.dirty_vmcs12 = false;
2468
2469                 load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2470                         !(vmx->nested.hv_evmcs->hv_clean_fields &
2471                           HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2472         }
2473
2474         if (vmx->nested.nested_run_pending &&
2475             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2476                 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2477                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2478         } else {
2479                 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2480                 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2481         }
2482         if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2483             !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2484                 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2485         vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2486
2487         /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2488          * bitwise-or of what L1 wants to trap for L2, and what we want to
2489          * trap. Note that CR0.TS also needs updating - we do this later.
2490          */
2491         vmx_update_exception_bitmap(vcpu);
2492         vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2493         vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2494
2495         if (vmx->nested.nested_run_pending &&
2496             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2497                 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2498                 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2499         } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2500                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2501         }
2502
2503         vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2504                         vcpu->arch.l1_tsc_offset,
2505                         vmx_get_l2_tsc_offset(vcpu),
2506                         vmx_get_l2_tsc_multiplier(vcpu));
2507
2508         vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2509                         vcpu->arch.l1_tsc_scaling_ratio,
2510                         vmx_get_l2_tsc_multiplier(vcpu));
2511
2512         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2513         if (kvm_has_tsc_control)
2514                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2515
2516         nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2517
2518         if (nested_cpu_has_ept(vmcs12))
2519                 nested_ept_init_mmu_context(vcpu);
2520
2521         /*
2522          * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2523          * bits which we consider mandatory enabled.
2524          * The CR0_READ_SHADOW is what L2 should have expected to read given
2525          * the specifications by L1; It's not enough to take
2526          * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2527          * have more bits than L1 expected.
2528          */
2529         vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2530         vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2531
2532         vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2533         vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2534
2535         vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2536         /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2537         vmx_set_efer(vcpu, vcpu->arch.efer);
2538
2539         /*
2540          * Guest state is invalid and unrestricted guest is disabled,
2541          * which means L1 attempted VMEntry to L2 with invalid state.
2542          * Fail the VMEntry.
2543          */
2544         if (CC(!vmx_guest_state_valid(vcpu))) {
2545                 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2546                 return -EINVAL;
2547         }
2548
2549         /* Shadow page tables on either EPT or shadow page tables. */
2550         if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2551                                 from_vmentry, entry_failure_code))
2552                 return -EINVAL;
2553
2554         /*
2555          * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2556          * on nested VM-Exit, which can occur without actually running L2 and
2557          * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2558          * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2559          * transition to HLT instead of running L2.
2560          */
2561         if (enable_ept)
2562                 vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2563
2564         /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2565         if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2566             is_pae_paging(vcpu)) {
2567                 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2568                 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2569                 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2570                 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2571         }
2572
2573         if (!enable_ept)
2574                 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2575
2576         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2577             WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2578                                      vmcs12->guest_ia32_perf_global_ctrl)))
2579                 return -EINVAL;
2580
2581         kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2582         kvm_rip_write(vcpu, vmcs12->guest_rip);
2583
2584         /*
2585          * It was observed that genuine Hyper-V running in L1 doesn't reset
2586          * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2587          * bits when it changes a field in eVMCS. Mark all fields as clean
2588          * here.
2589          */
2590         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2591                 vmx->nested.hv_evmcs->hv_clean_fields |=
2592                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2593
2594         return 0;
2595 }
2596
2597 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2598 {
2599         if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2600                nested_cpu_has_virtual_nmis(vmcs12)))
2601                 return -EINVAL;
2602
2603         if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2604                nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2605                 return -EINVAL;
2606
2607         return 0;
2608 }
2609
2610 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2611 {
2612         struct vcpu_vmx *vmx = to_vmx(vcpu);
2613
2614         /* Check for memory type validity */
2615         switch (new_eptp & VMX_EPTP_MT_MASK) {
2616         case VMX_EPTP_MT_UC:
2617                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2618                         return false;
2619                 break;
2620         case VMX_EPTP_MT_WB:
2621                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2622                         return false;
2623                 break;
2624         default:
2625                 return false;
2626         }
2627
2628         /* Page-walk levels validity. */
2629         switch (new_eptp & VMX_EPTP_PWL_MASK) {
2630         case VMX_EPTP_PWL_5:
2631                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2632                         return false;
2633                 break;
2634         case VMX_EPTP_PWL_4:
2635                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2636                         return false;
2637                 break;
2638         default:
2639                 return false;
2640         }
2641
2642         /* Reserved bits should not be set */
2643         if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2644                 return false;
2645
2646         /* AD, if set, should be supported */
2647         if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2648                 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2649                         return false;
2650         }
2651
2652         return true;
2653 }
2654
2655 /*
2656  * Checks related to VM-Execution Control Fields
2657  */
2658 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2659                                               struct vmcs12 *vmcs12)
2660 {
2661         struct vcpu_vmx *vmx = to_vmx(vcpu);
2662
2663         if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2664                                    vmx->nested.msrs.pinbased_ctls_low,
2665                                    vmx->nested.msrs.pinbased_ctls_high)) ||
2666             CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2667                                    vmx->nested.msrs.procbased_ctls_low,
2668                                    vmx->nested.msrs.procbased_ctls_high)))
2669                 return -EINVAL;
2670
2671         if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2672             CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2673                                    vmx->nested.msrs.secondary_ctls_low,
2674                                    vmx->nested.msrs.secondary_ctls_high)))
2675                 return -EINVAL;
2676
2677         if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2678             nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2679             nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2680             nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2681             nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2682             nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2683             nested_vmx_check_nmi_controls(vmcs12) ||
2684             nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2685             nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2686             nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2687             nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2688             CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2689                 return -EINVAL;
2690
2691         if (!nested_cpu_has_preemption_timer(vmcs12) &&
2692             nested_cpu_has_save_preemption_timer(vmcs12))
2693                 return -EINVAL;
2694
2695         if (nested_cpu_has_ept(vmcs12) &&
2696             CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2697                 return -EINVAL;
2698
2699         if (nested_cpu_has_vmfunc(vmcs12)) {
2700                 if (CC(vmcs12->vm_function_control &
2701                        ~vmx->nested.msrs.vmfunc_controls))
2702                         return -EINVAL;
2703
2704                 if (nested_cpu_has_eptp_switching(vmcs12)) {
2705                         if (CC(!nested_cpu_has_ept(vmcs12)) ||
2706                             CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2707                                 return -EINVAL;
2708                 }
2709         }
2710
2711         return 0;
2712 }
2713
2714 /*
2715  * Checks related to VM-Exit Control Fields
2716  */
2717 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2718                                          struct vmcs12 *vmcs12)
2719 {
2720         struct vcpu_vmx *vmx = to_vmx(vcpu);
2721
2722         if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2723                                     vmx->nested.msrs.exit_ctls_low,
2724                                     vmx->nested.msrs.exit_ctls_high)) ||
2725             CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2726                 return -EINVAL;
2727
2728         return 0;
2729 }
2730
2731 /*
2732  * Checks related to VM-Entry Control Fields
2733  */
2734 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2735                                           struct vmcs12 *vmcs12)
2736 {
2737         struct vcpu_vmx *vmx = to_vmx(vcpu);
2738
2739         if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2740                                     vmx->nested.msrs.entry_ctls_low,
2741                                     vmx->nested.msrs.entry_ctls_high)))
2742                 return -EINVAL;
2743
2744         /*
2745          * From the Intel SDM, volume 3:
2746          * Fields relevant to VM-entry event injection must be set properly.
2747          * These fields are the VM-entry interruption-information field, the
2748          * VM-entry exception error code, and the VM-entry instruction length.
2749          */
2750         if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2751                 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2752                 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2753                 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2754                 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2755                 bool should_have_error_code;
2756                 bool urg = nested_cpu_has2(vmcs12,
2757                                            SECONDARY_EXEC_UNRESTRICTED_GUEST);
2758                 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2759
2760                 /* VM-entry interruption-info field: interruption type */
2761                 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2762                     CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2763                        !nested_cpu_supports_monitor_trap_flag(vcpu)))
2764                         return -EINVAL;
2765
2766                 /* VM-entry interruption-info field: vector */
2767                 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2768                     CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2769                     CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2770                         return -EINVAL;
2771
2772                 /* VM-entry interruption-info field: deliver error code */
2773                 should_have_error_code =
2774                         intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2775                         x86_exception_has_error_code(vector);
2776                 if (CC(has_error_code != should_have_error_code))
2777                         return -EINVAL;
2778
2779                 /* VM-entry exception error code */
2780                 if (CC(has_error_code &&
2781                        vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2782                         return -EINVAL;
2783
2784                 /* VM-entry interruption-info field: reserved bits */
2785                 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2786                         return -EINVAL;
2787
2788                 /* VM-entry instruction length */
2789                 switch (intr_type) {
2790                 case INTR_TYPE_SOFT_EXCEPTION:
2791                 case INTR_TYPE_SOFT_INTR:
2792                 case INTR_TYPE_PRIV_SW_EXCEPTION:
2793                         if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2794                             CC(vmcs12->vm_entry_instruction_len == 0 &&
2795                             CC(!nested_cpu_has_zero_length_injection(vcpu))))
2796                                 return -EINVAL;
2797                 }
2798         }
2799
2800         if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2801                 return -EINVAL;
2802
2803         return 0;
2804 }
2805
2806 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2807                                      struct vmcs12 *vmcs12)
2808 {
2809         if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2810             nested_check_vm_exit_controls(vcpu, vmcs12) ||
2811             nested_check_vm_entry_controls(vcpu, vmcs12))
2812                 return -EINVAL;
2813
2814         if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2815                 return nested_evmcs_check_controls(vmcs12);
2816
2817         return 0;
2818 }
2819
2820 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2821                                        struct vmcs12 *vmcs12)
2822 {
2823         bool ia32e;
2824
2825         if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2826             CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2827             CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2828                 return -EINVAL;
2829
2830         if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2831             CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2832                 return -EINVAL;
2833
2834         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2835             CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2836                 return -EINVAL;
2837
2838         if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2839             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2840                                            vmcs12->host_ia32_perf_global_ctrl)))
2841                 return -EINVAL;
2842
2843 #ifdef CONFIG_X86_64
2844         ia32e = !!(vcpu->arch.efer & EFER_LMA);
2845 #else
2846         ia32e = false;
2847 #endif
2848
2849         if (ia32e) {
2850                 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2851                     CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2852                         return -EINVAL;
2853         } else {
2854                 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2855                     CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2856                     CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2857                     CC((vmcs12->host_rip) >> 32))
2858                         return -EINVAL;
2859         }
2860
2861         if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2862             CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2863             CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2864             CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2865             CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2866             CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2867             CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2868             CC(vmcs12->host_cs_selector == 0) ||
2869             CC(vmcs12->host_tr_selector == 0) ||
2870             CC(vmcs12->host_ss_selector == 0 && !ia32e))
2871                 return -EINVAL;
2872
2873         if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2874             CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2875             CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2876             CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2877             CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2878             CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2879                 return -EINVAL;
2880
2881         /*
2882          * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2883          * IA32_EFER MSR must be 0 in the field for that register. In addition,
2884          * the values of the LMA and LME bits in the field must each be that of
2885          * the host address-space size VM-exit control.
2886          */
2887         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2888                 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2889                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2890                     CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2891                         return -EINVAL;
2892         }
2893
2894         return 0;
2895 }
2896
2897 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2898                                           struct vmcs12 *vmcs12)
2899 {
2900         int r = 0;
2901         struct vmcs12 *shadow;
2902         struct kvm_host_map map;
2903
2904         if (vmcs12->vmcs_link_pointer == -1ull)
2905                 return 0;
2906
2907         if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2908                 return -EINVAL;
2909
2910         if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
2911                 return -EINVAL;
2912
2913         shadow = map.hva;
2914
2915         if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2916             CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2917                 r = -EINVAL;
2918
2919         kvm_vcpu_unmap(vcpu, &map, false);
2920         return r;
2921 }
2922
2923 /*
2924  * Checks related to Guest Non-register State
2925  */
2926 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2927 {
2928         if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2929                vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2930                vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2931                 return -EINVAL;
2932
2933         return 0;
2934 }
2935
2936 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2937                                         struct vmcs12 *vmcs12,
2938                                         enum vm_entry_failure_code *entry_failure_code)
2939 {
2940         bool ia32e;
2941
2942         *entry_failure_code = ENTRY_FAIL_DEFAULT;
2943
2944         if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2945             CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
2946                 return -EINVAL;
2947
2948         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
2949             CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
2950                 return -EINVAL;
2951
2952         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
2953             CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
2954                 return -EINVAL;
2955
2956         if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2957                 *entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
2958                 return -EINVAL;
2959         }
2960
2961         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2962             CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2963                                            vmcs12->guest_ia32_perf_global_ctrl)))
2964                 return -EINVAL;
2965
2966         /*
2967          * If the load IA32_EFER VM-entry control is 1, the following checks
2968          * are performed on the field for the IA32_EFER MSR:
2969          * - Bits reserved in the IA32_EFER MSR must be 0.
2970          * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2971          *   the IA-32e mode guest VM-exit control. It must also be identical
2972          *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2973          *   CR0.PG) is 1.
2974          */
2975         if (to_vmx(vcpu)->nested.nested_run_pending &&
2976             (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2977                 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2978                 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2979                     CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2980                     CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2981                      ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
2982                         return -EINVAL;
2983         }
2984
2985         if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2986             (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2987              CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
2988                 return -EINVAL;
2989
2990         if (nested_check_guest_non_reg_state(vmcs12))
2991                 return -EINVAL;
2992
2993         return 0;
2994 }
2995
2996 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
2997 {
2998         struct vcpu_vmx *vmx = to_vmx(vcpu);
2999         unsigned long cr3, cr4;
3000         bool vm_fail;
3001
3002         if (!nested_early_check)
3003                 return 0;
3004
3005         if (vmx->msr_autoload.host.nr)
3006                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3007         if (vmx->msr_autoload.guest.nr)
3008                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3009
3010         preempt_disable();
3011
3012         vmx_prepare_switch_to_guest(vcpu);
3013
3014         /*
3015          * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3016          * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3017          * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3018          * there is no need to preserve other bits or save/restore the field.
3019          */
3020         vmcs_writel(GUEST_RFLAGS, 0);
3021
3022         cr3 = __get_current_cr3_fast();
3023         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3024                 vmcs_writel(HOST_CR3, cr3);
3025                 vmx->loaded_vmcs->host_state.cr3 = cr3;
3026         }
3027
3028         cr4 = cr4_read_shadow();
3029         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3030                 vmcs_writel(HOST_CR4, cr4);
3031                 vmx->loaded_vmcs->host_state.cr4 = cr4;
3032         }
3033
3034         vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3035                                  vmx->loaded_vmcs->launched);
3036
3037         if (vmx->msr_autoload.host.nr)
3038                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3039         if (vmx->msr_autoload.guest.nr)
3040                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3041
3042         if (vm_fail) {
3043                 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3044
3045                 preempt_enable();
3046
3047                 trace_kvm_nested_vmenter_failed(
3048                         "early hardware check VM-instruction error: ", error);
3049                 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3050                 return 1;
3051         }
3052
3053         /*
3054          * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3055          */
3056         if (hw_breakpoint_active())
3057                 set_debugreg(__this_cpu_read(cpu_dr7), 7);
3058         local_irq_enable();
3059         preempt_enable();
3060
3061         /*
3062          * A non-failing VMEntry means we somehow entered guest mode with
3063          * an illegal RIP, and that's just the tip of the iceberg.  There
3064          * is no telling what memory has been modified or what state has
3065          * been exposed to unknown code.  Hitting this all but guarantees
3066          * a (very critical) hardware issue.
3067          */
3068         WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3069                 VMX_EXIT_REASONS_FAILED_VMENTRY));
3070
3071         return 0;
3072 }
3073
3074 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3075 {
3076         struct vcpu_vmx *vmx = to_vmx(vcpu);
3077
3078         /*
3079          * hv_evmcs may end up being not mapped after migration (when
3080          * L2 was running), map it here to make sure vmcs12 changes are
3081          * properly reflected.
3082          */
3083         if (vmx->nested.enlightened_vmcs_enabled &&
3084             vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3085                 enum nested_evmptrld_status evmptrld_status =
3086                         nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3087
3088                 if (evmptrld_status == EVMPTRLD_VMFAIL ||
3089                     evmptrld_status == EVMPTRLD_ERROR)
3090                         return false;
3091
3092                 /*
3093                  * Post migration VMCS12 always provides the most actual
3094                  * information, copy it to eVMCS upon entry.
3095                  */
3096                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3097         }
3098
3099         return true;
3100 }
3101
3102 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3103 {
3104         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3105         struct vcpu_vmx *vmx = to_vmx(vcpu);
3106         struct kvm_host_map *map;
3107         struct page *page;
3108         u64 hpa;
3109
3110         if (!vcpu->arch.pdptrs_from_userspace &&
3111             !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3112                 /*
3113                  * Reload the guest's PDPTRs since after a migration
3114                  * the guest CR3 might be restored prior to setting the nested
3115                  * state which can lead to a load of wrong PDPTRs.
3116                  */
3117                 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3)))
3118                         return false;
3119         }
3120
3121
3122         if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3123                 /*
3124                  * Translate L1 physical address to host physical
3125                  * address for vmcs02. Keep the page pinned, so this
3126                  * physical address remains valid. We keep a reference
3127                  * to it so we can release it later.
3128                  */
3129                 if (vmx->nested.apic_access_page) { /* shouldn't happen */
3130                         kvm_release_page_clean(vmx->nested.apic_access_page);
3131                         vmx->nested.apic_access_page = NULL;
3132                 }
3133                 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3134                 if (!is_error_page(page)) {
3135                         vmx->nested.apic_access_page = page;
3136                         hpa = page_to_phys(vmx->nested.apic_access_page);
3137                         vmcs_write64(APIC_ACCESS_ADDR, hpa);
3138                 } else {
3139                         pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3140                                              __func__);
3141                         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3142                         vcpu->run->internal.suberror =
3143                                 KVM_INTERNAL_ERROR_EMULATION;
3144                         vcpu->run->internal.ndata = 0;
3145                         return false;
3146                 }
3147         }
3148
3149         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3150                 map = &vmx->nested.virtual_apic_map;
3151
3152                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3153                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3154                 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3155                            nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3156                            !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3157                         /*
3158                          * The processor will never use the TPR shadow, simply
3159                          * clear the bit from the execution control.  Such a
3160                          * configuration is useless, but it happens in tests.
3161                          * For any other configuration, failing the vm entry is
3162                          * _not_ what the processor does but it's basically the
3163                          * only possibility we have.
3164                          */
3165                         exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3166                 } else {
3167                         /*
3168                          * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3169                          * force VM-Entry to fail.
3170                          */
3171                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
3172                 }
3173         }
3174
3175         if (nested_cpu_has_posted_intr(vmcs12)) {
3176                 map = &vmx->nested.pi_desc_map;
3177
3178                 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3179                         vmx->nested.pi_desc =
3180                                 (struct pi_desc *)(((void *)map->hva) +
3181                                 offset_in_page(vmcs12->posted_intr_desc_addr));
3182                         vmcs_write64(POSTED_INTR_DESC_ADDR,
3183                                      pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3184                 } else {
3185                         /*
3186                          * Defer the KVM_INTERNAL_EXIT until KVM tries to
3187                          * access the contents of the VMCS12 posted interrupt
3188                          * descriptor. (Note that KVM may do this when it
3189                          * should not, per the architectural specification.)
3190                          */
3191                         vmx->nested.pi_desc = NULL;
3192                         pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3193                 }
3194         }
3195         if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3196                 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3197         else
3198                 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3199
3200         return true;
3201 }
3202
3203 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3204 {
3205         if (!nested_get_evmcs_page(vcpu)) {
3206                 pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3207                                      __func__);
3208                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3209                 vcpu->run->internal.suberror =
3210                         KVM_INTERNAL_ERROR_EMULATION;
3211                 vcpu->run->internal.ndata = 0;
3212
3213                 return false;
3214         }
3215
3216         if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3217                 return false;
3218
3219         return true;
3220 }
3221
3222 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3223 {
3224         struct vmcs12 *vmcs12;
3225         struct vcpu_vmx *vmx = to_vmx(vcpu);
3226         gpa_t dst;
3227
3228         if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3229                 return 0;
3230
3231         if (WARN_ON_ONCE(vmx->nested.pml_full))
3232                 return 1;
3233
3234         /*
3235          * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3236          * set is already checked as part of A/D emulation.
3237          */
3238         vmcs12 = get_vmcs12(vcpu);
3239         if (!nested_cpu_has_pml(vmcs12))
3240                 return 0;
3241
3242         if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3243                 vmx->nested.pml_full = true;
3244                 return 1;
3245         }
3246
3247         gpa &= ~0xFFFull;
3248         dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3249
3250         if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3251                                  offset_in_page(dst), sizeof(gpa)))
3252                 return 0;
3253
3254         vmcs12->guest_pml_index--;
3255
3256         return 0;
3257 }
3258
3259 /*
3260  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3261  * for running VMX instructions (except VMXON, whose prerequisites are
3262  * slightly different). It also specifies what exception to inject otherwise.
3263  * Note that many of these exceptions have priority over VM exits, so they
3264  * don't have to be checked again here.
3265  */
3266 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3267 {
3268         if (!to_vmx(vcpu)->nested.vmxon) {
3269                 kvm_queue_exception(vcpu, UD_VECTOR);
3270                 return 0;
3271         }
3272
3273         if (vmx_get_cpl(vcpu)) {
3274                 kvm_inject_gp(vcpu, 0);
3275                 return 0;
3276         }
3277
3278         return 1;
3279 }
3280
3281 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3282 {
3283         u8 rvi = vmx_get_rvi();
3284         u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3285
3286         return ((rvi & 0xf0) > (vppr & 0xf0));
3287 }
3288
3289 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3290                                    struct vmcs12 *vmcs12);
3291
3292 /*
3293  * If from_vmentry is false, this is being called from state restore (either RSM
3294  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3295  *
3296  * Returns:
3297  *      NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3298  *      NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3299  *      NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3300  *      NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3301  */
3302 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3303                                                         bool from_vmentry)
3304 {
3305         struct vcpu_vmx *vmx = to_vmx(vcpu);
3306         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3307         enum vm_entry_failure_code entry_failure_code;
3308         bool evaluate_pending_interrupts;
3309         union vmx_exit_reason exit_reason = {
3310                 .basic = EXIT_REASON_INVALID_STATE,
3311                 .failed_vmentry = 1,
3312         };
3313         u32 failed_index;
3314
3315         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3316                 kvm_vcpu_flush_tlb_current(vcpu);
3317
3318         evaluate_pending_interrupts = exec_controls_get(vmx) &
3319                 (CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3320         if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3321                 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3322
3323         if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3324                 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3325         if (kvm_mpx_supported() &&
3326                 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3327                 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3328
3329         /*
3330          * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3331          * nested early checks are disabled.  In the event of a "late" VM-Fail,
3332          * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3333          * software model to the pre-VMEntry host state.  When EPT is disabled,
3334          * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3335          * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3336          * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3337          * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3338          * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3339          * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3340          * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3341          * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3342          * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3343          * path would need to manually save/restore vmcs01.GUEST_CR3.
3344          */
3345         if (!enable_ept && !nested_early_check)
3346                 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3347
3348         vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3349
3350         prepare_vmcs02_early(vmx, vmcs12);
3351
3352         if (from_vmentry) {
3353                 if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3354                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3355                         return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3356                 }
3357
3358                 if (nested_vmx_check_vmentry_hw(vcpu)) {
3359                         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3360                         return NVMX_VMENTRY_VMFAIL;
3361                 }
3362
3363                 if (nested_vmx_check_guest_state(vcpu, vmcs12,
3364                                                  &entry_failure_code)) {
3365                         exit_reason.basic = EXIT_REASON_INVALID_STATE;
3366                         vmcs12->exit_qualification = entry_failure_code;
3367                         goto vmentry_fail_vmexit;
3368                 }
3369         }
3370
3371         enter_guest_mode(vcpu);
3372
3373         if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3374                 exit_reason.basic = EXIT_REASON_INVALID_STATE;
3375                 vmcs12->exit_qualification = entry_failure_code;
3376                 goto vmentry_fail_vmexit_guest_mode;
3377         }
3378
3379         if (from_vmentry) {
3380                 failed_index = nested_vmx_load_msr(vcpu,
3381                                                    vmcs12->vm_entry_msr_load_addr,
3382                                                    vmcs12->vm_entry_msr_load_count);
3383                 if (failed_index) {
3384                         exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3385                         vmcs12->exit_qualification = failed_index;
3386                         goto vmentry_fail_vmexit_guest_mode;
3387                 }
3388         } else {
3389                 /*
3390                  * The MMU is not initialized to point at the right entities yet and
3391                  * "get pages" would need to read data from the guest (i.e. we will
3392                  * need to perform gpa to hpa translation). Request a call
3393                  * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3394                  * have already been set at vmentry time and should not be reset.
3395                  */
3396                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3397         }
3398
3399         /*
3400          * If L1 had a pending IRQ/NMI until it executed
3401          * VMLAUNCH/VMRESUME which wasn't delivered because it was
3402          * disallowed (e.g. interrupts disabled), L0 needs to
3403          * evaluate if this pending event should cause an exit from L2
3404          * to L1 or delivered directly to L2 (e.g. In case L1 don't
3405          * intercept EXTERNAL_INTERRUPT).
3406          *
3407          * Usually this would be handled by the processor noticing an
3408          * IRQ/NMI window request, or checking RVI during evaluation of
3409          * pending virtual interrupts.  However, this setting was done
3410          * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3411          * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3412          */
3413         if (unlikely(evaluate_pending_interrupts))
3414                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3415
3416         /*
3417          * Do not start the preemption timer hrtimer until after we know
3418          * we are successful, so that only nested_vmx_vmexit needs to cancel
3419          * the timer.
3420          */
3421         vmx->nested.preemption_timer_expired = false;
3422         if (nested_cpu_has_preemption_timer(vmcs12)) {
3423                 u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3424                 vmx_start_preemption_timer(vcpu, timer_value);
3425         }
3426
3427         /*
3428          * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3429          * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3430          * returned as far as L1 is concerned. It will only return (and set
3431          * the success flag) when L2 exits (see nested_vmx_vmexit()).
3432          */
3433         return NVMX_VMENTRY_SUCCESS;
3434
3435         /*
3436          * A failed consistency check that leads to a VMExit during L1's
3437          * VMEnter to L2 is a variation of a normal VMexit, as explained in
3438          * 26.7 "VM-entry failures during or after loading guest state".
3439          */
3440 vmentry_fail_vmexit_guest_mode:
3441         if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3442                 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3443         leave_guest_mode(vcpu);
3444
3445 vmentry_fail_vmexit:
3446         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3447
3448         if (!from_vmentry)
3449                 return NVMX_VMENTRY_VMEXIT;
3450
3451         load_vmcs12_host_state(vcpu, vmcs12);
3452         vmcs12->vm_exit_reason = exit_reason.full;
3453         if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3454                 vmx->nested.need_vmcs12_to_shadow_sync = true;
3455         return NVMX_VMENTRY_VMEXIT;
3456 }
3457
3458 /*
3459  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3460  * for running an L2 nested guest.
3461  */
3462 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3463 {
3464         struct vmcs12 *vmcs12;
3465         enum nvmx_vmentry_status status;
3466         struct vcpu_vmx *vmx = to_vmx(vcpu);
3467         u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3468         enum nested_evmptrld_status evmptrld_status;
3469
3470         if (!nested_vmx_check_permission(vcpu))
3471                 return 1;
3472
3473         evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3474         if (evmptrld_status == EVMPTRLD_ERROR) {
3475                 kvm_queue_exception(vcpu, UD_VECTOR);
3476                 return 1;
3477         } else if (CC(evmptrld_status == EVMPTRLD_VMFAIL)) {
3478                 return nested_vmx_failInvalid(vcpu);
3479         }
3480
3481         if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3482                vmx->nested.current_vmptr == -1ull))
3483                 return nested_vmx_failInvalid(vcpu);
3484
3485         vmcs12 = get_vmcs12(vcpu);
3486
3487         /*
3488          * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3489          * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3490          * rather than RFLAGS.ZF, and no error number is stored to the
3491          * VM-instruction error field.
3492          */
3493         if (CC(vmcs12->hdr.shadow_vmcs))
3494                 return nested_vmx_failInvalid(vcpu);
3495
3496         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3497                 copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3498                 /* Enlightened VMCS doesn't have launch state */
3499                 vmcs12->launch_state = !launch;
3500         } else if (enable_shadow_vmcs) {
3501                 copy_shadow_to_vmcs12(vmx);
3502         }
3503
3504         /*
3505          * The nested entry process starts with enforcing various prerequisites
3506          * on vmcs12 as required by the Intel SDM, and act appropriately when
3507          * they fail: As the SDM explains, some conditions should cause the
3508          * instruction to fail, while others will cause the instruction to seem
3509          * to succeed, but return an EXIT_REASON_INVALID_STATE.
3510          * To speed up the normal (success) code path, we should avoid checking
3511          * for misconfigurations which will anyway be caught by the processor
3512          * when using the merged vmcs02.
3513          */
3514         if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3515                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3516
3517         if (CC(vmcs12->launch_state == launch))
3518                 return nested_vmx_fail(vcpu,
3519                         launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3520                                : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3521
3522         if (nested_vmx_check_controls(vcpu, vmcs12))
3523                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3524
3525         if (nested_vmx_check_host_state(vcpu, vmcs12))
3526                 return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3527
3528         /*
3529          * We're finally done with prerequisite checking, and can start with
3530          * the nested entry.
3531          */
3532         vmx->nested.nested_run_pending = 1;
3533         vmx->nested.has_preemption_timer_deadline = false;
3534         status = nested_vmx_enter_non_root_mode(vcpu, true);
3535         if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3536                 goto vmentry_failed;
3537
3538         /* Emulate processing of posted interrupts on VM-Enter. */
3539         if (nested_cpu_has_posted_intr(vmcs12) &&
3540             kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3541                 vmx->nested.pi_pending = true;
3542                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3543                 kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3544         }
3545
3546         /* Hide L1D cache contents from the nested guest.  */
3547         vmx->vcpu.arch.l1tf_flush_l1d = true;
3548
3549         /*
3550          * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3551          * also be used as part of restoring nVMX state for
3552          * snapshot restore (migration).
3553          *
3554          * In this flow, it is assumed that vmcs12 cache was
3555          * transferred as part of captured nVMX state and should
3556          * therefore not be read from guest memory (which may not
3557          * exist on destination host yet).
3558          */
3559         nested_cache_shadow_vmcs12(vcpu, vmcs12);
3560
3561         switch (vmcs12->guest_activity_state) {
3562         case GUEST_ACTIVITY_HLT:
3563                 /*
3564                  * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3565                  * awakened by event injection or by an NMI-window VM-exit or
3566                  * by an interrupt-window VM-exit, halt the vcpu.
3567                  */
3568                 if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3569                     !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3570                     !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3571                       (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3572                         vmx->nested.nested_run_pending = 0;
3573                         return kvm_vcpu_halt(vcpu);
3574                 }
3575                 break;
3576         case GUEST_ACTIVITY_WAIT_SIPI:
3577                 vmx->nested.nested_run_pending = 0;
3578                 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3579                 break;
3580         default:
3581                 break;
3582         }
3583
3584         return 1;
3585
3586 vmentry_failed:
3587         vmx->nested.nested_run_pending = 0;
3588         if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3589                 return 0;
3590         if (status == NVMX_VMENTRY_VMEXIT)
3591                 return 1;
3592         WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3593         return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3594 }
3595
3596 /*
3597  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3598  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3599  * This function returns the new value we should put in vmcs12.guest_cr0.
3600  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3601  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3602  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3603  *     didn't trap the bit, because if L1 did, so would L0).
3604  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3605  *     been modified by L2, and L1 knows it. So just leave the old value of
3606  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3607  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3608  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3609  *     changed these bits, and therefore they need to be updated, but L0
3610  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3611  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3612  */
3613 static inline unsigned long
3614 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3615 {
3616         return
3617         /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3618         /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3619         /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3620                         vcpu->arch.cr0_guest_owned_bits));
3621 }
3622
3623 static inline unsigned long
3624 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3625 {
3626         return
3627         /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3628         /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3629         /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3630                         vcpu->arch.cr4_guest_owned_bits));
3631 }
3632
3633 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3634                                       struct vmcs12 *vmcs12)
3635 {
3636         u32 idt_vectoring;
3637         unsigned int nr;
3638
3639         if (vcpu->arch.exception.injected) {
3640                 nr = vcpu->arch.exception.nr;
3641                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3642
3643                 if (kvm_exception_is_soft(nr)) {
3644                         vmcs12->vm_exit_instruction_len =
3645                                 vcpu->arch.event_exit_inst_len;
3646                         idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3647                 } else
3648                         idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3649
3650                 if (vcpu->arch.exception.has_error_code) {
3651                         idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3652                         vmcs12->idt_vectoring_error_code =
3653                                 vcpu->arch.exception.error_code;
3654                 }
3655
3656                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3657         } else if (vcpu->arch.nmi_injected) {
3658                 vmcs12->idt_vectoring_info_field =
3659                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3660         } else if (vcpu->arch.interrupt.injected) {
3661                 nr = vcpu->arch.interrupt.nr;
3662                 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3663
3664                 if (vcpu->arch.interrupt.soft) {
3665                         idt_vectoring |= INTR_TYPE_SOFT_INTR;
3666                         vmcs12->vm_entry_instruction_len =
3667                                 vcpu->arch.event_exit_inst_len;
3668                 } else
3669                         idt_vectoring |= INTR_TYPE_EXT_INTR;
3670
3671                 vmcs12->idt_vectoring_info_field = idt_vectoring;
3672         }
3673 }
3674
3675
3676 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3677 {
3678         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3679         gfn_t gfn;
3680
3681         /*
3682          * Don't need to mark the APIC access page dirty; it is never
3683          * written to by the CPU during APIC virtualization.
3684          */
3685
3686         if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3687                 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3688                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3689         }
3690
3691         if (nested_cpu_has_posted_intr(vmcs12)) {
3692                 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3693                 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3694         }
3695 }
3696
3697 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3698 {
3699         struct vcpu_vmx *vmx = to_vmx(vcpu);
3700         int max_irr;
3701         void *vapic_page;
3702         u16 status;
3703
3704         if (!vmx->nested.pi_pending)
3705                 return 0;
3706
3707         if (!vmx->nested.pi_desc)
3708                 goto mmio_needed;
3709
3710         vmx->nested.pi_pending = false;
3711
3712         if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3713                 return 0;
3714
3715         max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3716         if (max_irr != 256) {
3717                 vapic_page = vmx->nested.virtual_apic_map.hva;
3718                 if (!vapic_page)
3719                         goto mmio_needed;
3720
3721                 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3722                         vapic_page, &max_irr);
3723                 status = vmcs_read16(GUEST_INTR_STATUS);
3724                 if ((u8)max_irr > ((u8)status & 0xff)) {
3725                         status &= ~0xff;
3726                         status |= (u8)max_irr;
3727                         vmcs_write16(GUEST_INTR_STATUS, status);
3728                 }
3729         }
3730
3731         nested_mark_vmcs12_pages_dirty(vcpu);
3732         return 0;
3733
3734 mmio_needed:
3735         kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3736         return -ENXIO;
3737 }
3738
3739 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3740                                                unsigned long exit_qual)
3741 {
3742         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3743         unsigned int nr = vcpu->arch.exception.nr;
3744         u32 intr_info = nr | INTR_INFO_VALID_MASK;
3745
3746         if (vcpu->arch.exception.has_error_code) {
3747                 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3748                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3749         }
3750
3751         if (kvm_exception_is_soft(nr))
3752                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3753         else
3754                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3755
3756         if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3757             vmx_get_nmi_mask(vcpu))
3758                 intr_info |= INTR_INFO_UNBLOCK_NMI;
3759
3760         nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3761 }
3762
3763 /*
3764  * Returns true if a debug trap is pending delivery.
3765  *
3766  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3767  * exception may be inferred from the presence of an exception payload.
3768  */
3769 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3770 {
3771         return vcpu->arch.exception.pending &&
3772                         vcpu->arch.exception.nr == DB_VECTOR &&
3773                         vcpu->arch.exception.payload;
3774 }
3775
3776 /*
3777  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3778  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3779  * represents these debug traps with a payload that is said to be compatible
3780  * with the 'pending debug exceptions' field, write the payload to the VMCS
3781  * field if a VM-exit is delivered before the debug trap.
3782  */
3783 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3784 {
3785         if (vmx_pending_dbg_trap(vcpu))
3786                 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3787                             vcpu->arch.exception.payload);
3788 }
3789
3790 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3791 {
3792         return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3793                to_vmx(vcpu)->nested.preemption_timer_expired;
3794 }
3795
3796 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3797 {
3798         struct vcpu_vmx *vmx = to_vmx(vcpu);
3799         unsigned long exit_qual;
3800         bool block_nested_events =
3801             vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3802         bool mtf_pending = vmx->nested.mtf_pending;
3803         struct kvm_lapic *apic = vcpu->arch.apic;
3804
3805         /*
3806          * Clear the MTF state. If a higher priority VM-exit is delivered first,
3807          * this state is discarded.
3808          */
3809         if (!block_nested_events)
3810                 vmx->nested.mtf_pending = false;
3811
3812         if (lapic_in_kernel(vcpu) &&
3813                 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3814                 if (block_nested_events)
3815                         return -EBUSY;
3816                 nested_vmx_update_pending_dbg(vcpu);
3817                 clear_bit(KVM_APIC_INIT, &apic->pending_events);
3818                 if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3819                         nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3820                 return 0;
3821         }
3822
3823         if (lapic_in_kernel(vcpu) &&
3824             test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3825                 if (block_nested_events)
3826                         return -EBUSY;
3827
3828                 clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3829                 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3830                         nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3831                                                 apic->sipi_vector & 0xFFUL);
3832                 return 0;
3833         }
3834
3835         /*
3836          * Process any exceptions that are not debug traps before MTF.
3837          *
3838          * Note that only a pending nested run can block a pending exception.
3839          * Otherwise an injected NMI/interrupt should either be
3840          * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3841          * while delivering the pending exception.
3842          */
3843
3844         if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3845                 if (vmx->nested.nested_run_pending)
3846                         return -EBUSY;
3847                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3848                         goto no_vmexit;
3849                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3850                 return 0;
3851         }
3852
3853         if (mtf_pending) {
3854                 if (block_nested_events)
3855                         return -EBUSY;
3856                 nested_vmx_update_pending_dbg(vcpu);
3857                 nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3858                 return 0;
3859         }
3860
3861         if (vcpu->arch.exception.pending) {
3862                 if (vmx->nested.nested_run_pending)
3863                         return -EBUSY;
3864                 if (!nested_vmx_check_exception(vcpu, &exit_qual))
3865                         goto no_vmexit;
3866                 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3867                 return 0;
3868         }
3869
3870         if (nested_vmx_preemption_timer_pending(vcpu)) {
3871                 if (block_nested_events)
3872                         return -EBUSY;
3873                 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3874                 return 0;
3875         }
3876
3877         if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3878                 if (block_nested_events)
3879                         return -EBUSY;
3880                 goto no_vmexit;
3881         }
3882
3883         if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3884                 if (block_nested_events)
3885                         return -EBUSY;
3886                 if (!nested_exit_on_nmi(vcpu))
3887                         goto no_vmexit;
3888
3889                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3890                                   NMI_VECTOR | INTR_TYPE_NMI_INTR |
3891                                   INTR_INFO_VALID_MASK, 0);
3892                 /*
3893                  * The NMI-triggered VM exit counts as injection:
3894                  * clear this one and block further NMIs.
3895                  */
3896                 vcpu->arch.nmi_pending = 0;
3897                 vmx_set_nmi_mask(vcpu, true);
3898                 return 0;
3899         }
3900
3901         if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3902                 if (block_nested_events)
3903                         return -EBUSY;
3904                 if (!nested_exit_on_intr(vcpu))
3905                         goto no_vmexit;
3906                 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3907                 return 0;
3908         }
3909
3910 no_vmexit:
3911         return vmx_complete_nested_posted_interrupt(vcpu);
3912 }
3913
3914 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3915 {
3916         ktime_t remaining =
3917                 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3918         u64 value;
3919
3920         if (ktime_to_ns(remaining) <= 0)
3921                 return 0;
3922
3923         value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3924         do_div(value, 1000000);
3925         return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3926 }
3927
3928 static bool is_vmcs12_ext_field(unsigned long field)
3929 {
3930         switch (field) {
3931         case GUEST_ES_SELECTOR:
3932         case GUEST_CS_SELECTOR:
3933         case GUEST_SS_SELECTOR:
3934         case GUEST_DS_SELECTOR:
3935         case GUEST_FS_SELECTOR:
3936         case GUEST_GS_SELECTOR:
3937         case GUEST_LDTR_SELECTOR:
3938         case GUEST_TR_SELECTOR:
3939         case GUEST_ES_LIMIT:
3940         case GUEST_CS_LIMIT:
3941         case GUEST_SS_LIMIT:
3942         case GUEST_DS_LIMIT:
3943         case GUEST_FS_LIMIT:
3944         case GUEST_GS_LIMIT:
3945         case GUEST_LDTR_LIMIT:
3946         case GUEST_TR_LIMIT:
3947         case GUEST_GDTR_LIMIT:
3948         case GUEST_IDTR_LIMIT:
3949         case GUEST_ES_AR_BYTES:
3950         case GUEST_DS_AR_BYTES:
3951         case GUEST_FS_AR_BYTES:
3952         case GUEST_GS_AR_BYTES:
3953         case GUEST_LDTR_AR_BYTES:
3954         case GUEST_TR_AR_BYTES:
3955         case GUEST_ES_BASE:
3956         case GUEST_CS_BASE:
3957         case GUEST_SS_BASE:
3958         case GUEST_DS_BASE:
3959         case GUEST_FS_BASE:
3960         case GUEST_GS_BASE:
3961         case GUEST_LDTR_BASE:
3962         case GUEST_TR_BASE:
3963         case GUEST_GDTR_BASE:
3964         case GUEST_IDTR_BASE:
3965         case GUEST_PENDING_DBG_EXCEPTIONS:
3966         case GUEST_BNDCFGS:
3967                 return true;
3968         default:
3969                 break;
3970         }
3971
3972         return false;
3973 }
3974
3975 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3976                                        struct vmcs12 *vmcs12)
3977 {
3978         struct vcpu_vmx *vmx = to_vmx(vcpu);
3979
3980         vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3981         vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3982         vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3983         vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3984         vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3985         vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3986         vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3987         vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3988         vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3989         vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3990         vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3991         vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3992         vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3993         vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3994         vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3995         vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3996         vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3997         vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3998         vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3999         vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4000         vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4001         vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4002         vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4003         vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4004         vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4005         vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4006         vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4007         vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4008         vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4009         vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4010         vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4011         vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4012         vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4013         vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4014         vmcs12->guest_pending_dbg_exceptions =
4015                 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4016         if (kvm_mpx_supported())
4017                 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4018
4019         vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4020 }
4021
4022 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4023                                        struct vmcs12 *vmcs12)
4024 {
4025         struct vcpu_vmx *vmx = to_vmx(vcpu);
4026         int cpu;
4027
4028         if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4029                 return;
4030
4031
4032         WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4033
4034         cpu = get_cpu();
4035         vmx->loaded_vmcs = &vmx->nested.vmcs02;
4036         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4037
4038         sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4039
4040         vmx->loaded_vmcs = &vmx->vmcs01;
4041         vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4042         put_cpu();
4043 }
4044
4045 /*
4046  * Update the guest state fields of vmcs12 to reflect changes that
4047  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4048  * VM-entry controls is also updated, since this is really a guest
4049  * state bit.)
4050  */
4051 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4052 {
4053         struct vcpu_vmx *vmx = to_vmx(vcpu);
4054
4055         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4056                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4057
4058         vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4059                 !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4060
4061         vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4062         vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4063
4064         vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4065         vmcs12->guest_rip = kvm_rip_read(vcpu);
4066         vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4067
4068         vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4069         vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4070
4071         vmcs12->guest_interruptibility_info =
4072                 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4073
4074         if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4075                 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4076         else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4077                 vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4078         else
4079                 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4080
4081         if (nested_cpu_has_preemption_timer(vmcs12) &&
4082             vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4083             !vmx->nested.nested_run_pending)
4084                 vmcs12->vmx_preemption_timer_value =
4085                         vmx_get_preemption_timer_value(vcpu);
4086
4087         /*
4088          * In some cases (usually, nested EPT), L2 is allowed to change its
4089          * own CR3 without exiting. If it has changed it, we must keep it.
4090          * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4091          * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4092          *
4093          * Additionally, restore L2's PDPTR to vmcs12.
4094          */
4095         if (enable_ept) {
4096                 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4097                 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4098                         vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4099                         vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4100                         vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4101                         vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4102                 }
4103         }
4104
4105         vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4106
4107         if (nested_cpu_has_vid(vmcs12))
4108                 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4109
4110         vmcs12->vm_entry_controls =
4111                 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4112                 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4113
4114         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4115                 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4116
4117         if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4118                 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4119 }
4120
4121 /*
4122  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4123  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4124  * and this function updates it to reflect the changes to the guest state while
4125  * L2 was running (and perhaps made some exits which were handled directly by L0
4126  * without going back to L1), and to reflect the exit reason.
4127  * Note that we do not have to copy here all VMCS fields, just those that
4128  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4129  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4130  * which already writes to vmcs12 directly.
4131  */
4132 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4133                            u32 vm_exit_reason, u32 exit_intr_info,
4134                            unsigned long exit_qualification)
4135 {
4136         /* update exit information fields: */
4137         vmcs12->vm_exit_reason = vm_exit_reason;
4138         if (to_vmx(vcpu)->exit_reason.enclave_mode)
4139                 vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4140         vmcs12->exit_qualification = exit_qualification;
4141         vmcs12->vm_exit_intr_info = exit_intr_info;
4142
4143         vmcs12->idt_vectoring_info_field = 0;
4144         vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4145         vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4146
4147         if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4148                 vmcs12->launch_state = 1;
4149
4150                 /* vm_entry_intr_info_field is cleared on exit. Emulate this
4151                  * instead of reading the real value. */
4152                 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4153
4154                 /*
4155                  * Transfer the event that L0 or L1 may wanted to inject into
4156                  * L2 to IDT_VECTORING_INFO_FIELD.
4157                  */
4158                 vmcs12_save_pending_event(vcpu, vmcs12);
4159
4160                 /*
4161                  * According to spec, there's no need to store the guest's
4162                  * MSRs if the exit is due to a VM-entry failure that occurs
4163                  * during or after loading the guest state. Since this exit
4164                  * does not fall in that category, we need to save the MSRs.
4165                  */
4166                 if (nested_vmx_store_msr(vcpu,
4167                                          vmcs12->vm_exit_msr_store_addr,
4168                                          vmcs12->vm_exit_msr_store_count))
4169                         nested_vmx_abort(vcpu,
4170                                          VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4171         }
4172
4173         /*
4174          * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4175          * preserved above and would only end up incorrectly in L1.
4176          */
4177         vcpu->arch.nmi_injected = false;
4178         kvm_clear_exception_queue(vcpu);
4179         kvm_clear_interrupt_queue(vcpu);
4180 }
4181
4182 /*
4183  * A part of what we need to when the nested L2 guest exits and we want to
4184  * run its L1 parent, is to reset L1's guest state to the host state specified
4185  * in vmcs12.
4186  * This function is to be called not only on normal nested exit, but also on
4187  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4188  * Failures During or After Loading Guest State").
4189  * This function should be called when the active VMCS is L1's (vmcs01).
4190  */
4191 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4192                                    struct vmcs12 *vmcs12)
4193 {
4194         enum vm_entry_failure_code ignored;
4195         struct kvm_segment seg;
4196
4197         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4198                 vcpu->arch.efer = vmcs12->host_ia32_efer;
4199         else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4200                 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4201         else
4202                 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4203         vmx_set_efer(vcpu, vcpu->arch.efer);
4204
4205         kvm_rsp_write(vcpu, vmcs12->host_rsp);
4206         kvm_rip_write(vcpu, vmcs12->host_rip);
4207         vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4208         vmx_set_interrupt_shadow(vcpu, 0);
4209
4210         /*
4211          * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4212          * actually changed, because vmx_set_cr0 refers to efer set above.
4213          *
4214          * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4215          * (KVM doesn't change it);
4216          */
4217         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4218         vmx_set_cr0(vcpu, vmcs12->host_cr0);
4219
4220         /* Same as above - no reason to call set_cr4_guest_host_mask().  */
4221         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4222         vmx_set_cr4(vcpu, vmcs12->host_cr4);
4223
4224         nested_ept_uninit_mmu_context(vcpu);
4225
4226         /*
4227          * Only PDPTE load can fail as the value of cr3 was checked on entry and
4228          * couldn't have changed.
4229          */
4230         if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4231                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4232
4233         nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4234
4235         vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4236         vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4237         vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4238         vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4239         vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4240         vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4241         vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4242
4243         /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4244         if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4245                 vmcs_write64(GUEST_BNDCFGS, 0);
4246
4247         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4248                 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4249                 vcpu->arch.pat = vmcs12->host_ia32_pat;
4250         }
4251         if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
4252                 WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4253                                          vmcs12->host_ia32_perf_global_ctrl));
4254
4255         /* Set L1 segment info according to Intel SDM
4256             27.5.2 Loading Host Segment and Descriptor-Table Registers */
4257         seg = (struct kvm_segment) {
4258                 .base = 0,
4259                 .limit = 0xFFFFFFFF,
4260                 .selector = vmcs12->host_cs_selector,
4261                 .type = 11,
4262                 .present = 1,
4263                 .s = 1,
4264                 .g = 1
4265         };
4266         if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4267                 seg.l = 1;
4268         else
4269                 seg.db = 1;
4270         vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4271         seg = (struct kvm_segment) {
4272                 .base = 0,
4273                 .limit = 0xFFFFFFFF,
4274                 .type = 3,
4275                 .present = 1,
4276                 .s = 1,
4277                 .db = 1,
4278                 .g = 1
4279         };
4280         seg.selector = vmcs12->host_ds_selector;
4281         vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4282         seg.selector = vmcs12->host_es_selector;
4283         vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4284         seg.selector = vmcs12->host_ss_selector;
4285         vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4286         seg.selector = vmcs12->host_fs_selector;
4287         seg.base = vmcs12->host_fs_base;
4288         vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4289         seg.selector = vmcs12->host_gs_selector;
4290         seg.base = vmcs12->host_gs_base;
4291         vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4292         seg = (struct kvm_segment) {
4293                 .base = vmcs12->host_tr_base,
4294                 .limit = 0x67,
4295                 .selector = vmcs12->host_tr_selector,
4296                 .type = 11,
4297                 .present = 1
4298         };
4299         vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4300
4301         kvm_set_dr(vcpu, 7, 0x400);
4302         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4303
4304         if (cpu_has_vmx_msr_bitmap())
4305                 vmx_update_msr_bitmap(vcpu);
4306
4307         if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4308                                 vmcs12->vm_exit_msr_load_count))
4309                 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4310 }
4311
4312 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4313 {
4314         struct vmx_uret_msr *efer_msr;
4315         unsigned int i;
4316
4317         if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4318                 return vmcs_read64(GUEST_IA32_EFER);
4319
4320         if (cpu_has_load_ia32_efer())
4321                 return host_efer;
4322
4323         for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4324                 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4325                         return vmx->msr_autoload.guest.val[i].value;
4326         }
4327
4328         efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4329         if (efer_msr)
4330                 return efer_msr->data;
4331
4332         return host_efer;
4333 }
4334
4335 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4336 {
4337         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4338         struct vcpu_vmx *vmx = to_vmx(vcpu);
4339         struct vmx_msr_entry g, h;
4340         gpa_t gpa;
4341         u32 i, j;
4342
4343         vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4344
4345         if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4346                 /*
4347                  * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4348                  * as vmcs01.GUEST_DR7 contains a userspace defined value
4349                  * and vcpu->arch.dr7 is not squirreled away before the
4350                  * nested VMENTER (not worth adding a variable in nested_vmx).
4351                  */
4352                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4353                         kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4354                 else
4355                         WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4356         }
4357
4358         /*
4359          * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4360          * handle a variety of side effects to KVM's software model.
4361          */
4362         vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4363
4364         vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4365         vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4366
4367         vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4368         vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4369
4370         nested_ept_uninit_mmu_context(vcpu);
4371         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4372         kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4373
4374         /*
4375          * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4376          * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4377          * VMFail, like everything else we just need to ensure our
4378          * software model is up-to-date.
4379          */
4380         if (enable_ept && is_pae_paging(vcpu))
4381                 ept_save_pdptrs(vcpu);
4382
4383         kvm_mmu_reset_context(vcpu);
4384
4385         if (cpu_has_vmx_msr_bitmap())
4386                 vmx_update_msr_bitmap(vcpu);
4387
4388         /*
4389          * This nasty bit of open coding is a compromise between blindly
4390          * loading L1's MSRs using the exit load lists (incorrect emulation
4391          * of VMFail), leaving the nested VM's MSRs in the software model
4392          * (incorrect behavior) and snapshotting the modified MSRs (too
4393          * expensive since the lists are unbound by hardware).  For each
4394          * MSR that was (prematurely) loaded from the nested VMEntry load
4395          * list, reload it from the exit load list if it exists and differs
4396          * from the guest value.  The intent is to stuff host state as
4397          * silently as possible, not to fully process the exit load list.
4398          */
4399         for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4400                 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4401                 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4402                         pr_debug_ratelimited(
4403                                 "%s read MSR index failed (%u, 0x%08llx)\n",
4404                                 __func__, i, gpa);
4405                         goto vmabort;
4406                 }
4407
4408                 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4409                         gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4410                         if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4411                                 pr_debug_ratelimited(
4412                                         "%s read MSR failed (%u, 0x%08llx)\n",
4413                                         __func__, j, gpa);
4414                                 goto vmabort;
4415                         }
4416                         if (h.index != g.index)
4417                                 continue;
4418                         if (h.value == g.value)
4419                                 break;
4420
4421                         if (nested_vmx_load_msr_check(vcpu, &h)) {
4422                                 pr_debug_ratelimited(
4423                                         "%s check failed (%u, 0x%x, 0x%x)\n",
4424                                         __func__, j, h.index, h.reserved);
4425                                 goto vmabort;
4426                         }
4427
4428                         if (kvm_set_msr(vcpu, h.index, h.value)) {
4429                                 pr_debug_ratelimited(
4430                                         "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4431                                         __func__, j, h.index, h.value);
4432                                 goto vmabort;
4433                         }
4434                 }
4435         }
4436
4437         return;
4438
4439 vmabort:
4440         nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4441 }
4442
4443 /*
4444  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4445  * and modify vmcs12 to make it see what it would expect to see there if
4446  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4447  */
4448 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4449                        u32 exit_intr_info, unsigned long exit_qualification)
4450 {
4451         struct vcpu_vmx *vmx = to_vmx(vcpu);
4452         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4453
4454         /* trying to cancel vmlaunch/vmresume is a bug */
4455         WARN_ON_ONCE(vmx->nested.nested_run_pending);
4456
4457         /* Similarly, triple faults in L2 should never escape. */
4458         WARN_ON_ONCE(kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu));
4459
4460         if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4461                 /*
4462                  * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4463                  * Enlightened VMCS after migration and we still need to
4464                  * do that when something is forcing L2->L1 exit prior to
4465                  * the first L2 run.
4466                  */
4467                 (void)nested_get_evmcs_page(vcpu);
4468         }
4469
4470         /* Service the TLB flush request for L2 before switching to L1. */
4471         if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
4472                 kvm_vcpu_flush_tlb_current(vcpu);
4473
4474         /*
4475          * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4476          * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4477          * up-to-date before switching to L1.
4478          */
4479         if (enable_ept && is_pae_paging(vcpu))
4480                 vmx_ept_load_pdptrs(vcpu);
4481
4482         leave_guest_mode(vcpu);
4483
4484         if (nested_cpu_has_preemption_timer(vmcs12))
4485                 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4486
4487         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4488                 vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4489                 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4490                         vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4491         }
4492
4493         if (likely(!vmx->fail)) {
4494                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4495
4496                 if (vm_exit_reason != -1)
4497                         prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4498                                        exit_intr_info, exit_qualification);
4499
4500                 /*
4501                  * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4502                  * also be used to capture vmcs12 cache as part of
4503                  * capturing nVMX state for snapshot (migration).
4504                  *
4505                  * Otherwise, this flush will dirty guest memory at a
4506                  * point it is already assumed by user-space to be
4507                  * immutable.
4508                  */
4509                 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4510         } else {
4511                 /*
4512                  * The only expected VM-instruction error is "VM entry with
4513                  * invalid control field(s)." Anything else indicates a
4514                  * problem with L0.  And we should never get here with a
4515                  * VMFail of any type if early consistency checks are enabled.
4516                  */
4517                 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4518                              VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4519                 WARN_ON_ONCE(nested_early_check);
4520         }
4521
4522         vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4523
4524         /* Update any VMCS fields that might have changed while L2 ran */
4525         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4526         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4527         vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4528         if (kvm_has_tsc_control)
4529                 vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4530
4531         if (vmx->nested.l1_tpr_threshold != -1)
4532                 vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4533
4534         if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4535                 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4536                 vmx_set_virtual_apic_mode(vcpu);
4537         }
4538
4539         if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4540                 vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4541                 vmx_update_cpu_dirty_logging(vcpu);
4542         }
4543
4544         /* Unpin physical memory we referred to in vmcs02 */
4545         if (vmx->nested.apic_access_page) {
4546                 kvm_release_page_clean(vmx->nested.apic_access_page);
4547                 vmx->nested.apic_access_page = NULL;
4548         }
4549         kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4550         kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4551         vmx->nested.pi_desc = NULL;
4552
4553         if (vmx->nested.reload_vmcs01_apic_access_page) {
4554                 vmx->nested.reload_vmcs01_apic_access_page = false;
4555                 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4556         }
4557
4558         if ((vm_exit_reason != -1) &&
4559             (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4560                 vmx->nested.need_vmcs12_to_shadow_sync = true;
4561
4562         /* in case we halted in L2 */
4563         vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4564
4565         if (likely(!vmx->fail)) {
4566                 if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4567                     nested_exit_intr_ack_set(vcpu)) {
4568                         int irq = kvm_cpu_get_interrupt(vcpu);
4569                         WARN_ON(irq < 0);
4570                         vmcs12->vm_exit_intr_info = irq |
4571                                 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4572                 }
4573
4574                 if (vm_exit_reason != -1)
4575                         trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4576                                                        vmcs12->exit_qualification,
4577                                                        vmcs12->idt_vectoring_info_field,
4578                                                        vmcs12->vm_exit_intr_info,
4579                                                        vmcs12->vm_exit_intr_error_code,
4580                                                        KVM_ISA_VMX);
4581
4582                 load_vmcs12_host_state(vcpu, vmcs12);
4583
4584                 return;
4585         }
4586
4587         /*
4588          * After an early L2 VM-entry failure, we're now back
4589          * in L1 which thinks it just finished a VMLAUNCH or
4590          * VMRESUME instruction, so we need to set the failure
4591          * flag and the VM-instruction error field of the VMCS
4592          * accordingly, and skip the emulated instruction.
4593          */
4594         (void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4595
4596         /*
4597          * Restore L1's host state to KVM's software model.  We're here
4598          * because a consistency check was caught by hardware, which
4599          * means some amount of guest state has been propagated to KVM's
4600          * model and needs to be unwound to the host's state.
4601          */
4602         nested_vmx_restore_host_state(vcpu);
4603
4604         vmx->fail = 0;
4605 }
4606
4607 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4608 {
4609         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4610 }
4611
4612 /*
4613  * Decode the memory-address operand of a vmx instruction, as recorded on an
4614  * exit caused by such an instruction (run by a guest hypervisor).
4615  * On success, returns 0. When the operand is invalid, returns 1 and throws
4616  * #UD, #GP, or #SS.
4617  */
4618 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4619                         u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4620 {
4621         gva_t off;
4622         bool exn;
4623         struct kvm_segment s;
4624
4625         /*
4626          * According to Vol. 3B, "Information for VM Exits Due to Instruction
4627          * Execution", on an exit, vmx_instruction_info holds most of the
4628          * addressing components of the operand. Only the displacement part
4629          * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4630          * For how an actual address is calculated from all these components,
4631          * refer to Vol. 1, "Operand Addressing".
4632          */
4633         int  scaling = vmx_instruction_info & 3;
4634         int  addr_size = (vmx_instruction_info >> 7) & 7;
4635         bool is_reg = vmx_instruction_info & (1u << 10);
4636         int  seg_reg = (vmx_instruction_info >> 15) & 7;
4637         int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4638         bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4639         int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4640         bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4641
4642         if (is_reg) {
4643                 kvm_queue_exception(vcpu, UD_VECTOR);
4644                 return 1;
4645         }
4646
4647         /* Addr = segment_base + offset */
4648         /* offset = base + [index * scale] + displacement */
4649         off = exit_qualification; /* holds the displacement */
4650         if (addr_size == 1)
4651                 off = (gva_t)sign_extend64(off, 31);
4652         else if (addr_size == 0)
4653                 off = (gva_t)sign_extend64(off, 15);
4654         if (base_is_valid)
4655                 off += kvm_register_read(vcpu, base_reg);
4656         if (index_is_valid)
4657                 off += kvm_register_read(vcpu, index_reg) << scaling;
4658         vmx_get_segment(vcpu, &s, seg_reg);
4659
4660         /*
4661          * The effective address, i.e. @off, of a memory operand is truncated
4662          * based on the address size of the instruction.  Note that this is
4663          * the *effective address*, i.e. the address prior to accounting for
4664          * the segment's base.
4665          */
4666         if (addr_size == 1) /* 32 bit */
4667                 off &= 0xffffffff;
4668         else if (addr_size == 0) /* 16 bit */
4669                 off &= 0xffff;
4670
4671         /* Checks for #GP/#SS exceptions. */
4672         exn = false;
4673         if (is_long_mode(vcpu)) {
4674                 /*
4675                  * The virtual/linear address is never truncated in 64-bit
4676                  * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4677                  * address when using FS/GS with a non-zero base.
4678                  */
4679                 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4680                         *ret = s.base + off;
4681                 else
4682                         *ret = off;
4683
4684                 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4685                  * non-canonical form. This is the only check on the memory
4686                  * destination for long mode!
4687                  */
4688                 exn = is_noncanonical_address(*ret, vcpu);
4689         } else {
4690                 /*
4691                  * When not in long mode, the virtual/linear address is
4692                  * unconditionally truncated to 32 bits regardless of the
4693                  * address size.
4694                  */
4695                 *ret = (s.base + off) & 0xffffffff;
4696
4697                 /* Protected mode: apply checks for segment validity in the
4698                  * following order:
4699                  * - segment type check (#GP(0) may be thrown)
4700                  * - usability check (#GP(0)/#SS(0))
4701                  * - limit check (#GP(0)/#SS(0))
4702                  */
4703                 if (wr)
4704                         /* #GP(0) if the destination operand is located in a
4705                          * read-only data segment or any code segment.
4706                          */
4707                         exn = ((s.type & 0xa) == 0 || (s.type & 8));
4708                 else
4709                         /* #GP(0) if the source operand is located in an
4710                          * execute-only code segment
4711                          */
4712                         exn = ((s.type & 0xa) == 8);
4713                 if (exn) {
4714                         kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4715                         return 1;
4716                 }
4717                 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4718                  */
4719                 exn = (s.unusable != 0);
4720
4721                 /*
4722                  * Protected mode: #GP(0)/#SS(0) if the memory operand is
4723                  * outside the segment limit.  All CPUs that support VMX ignore
4724                  * limit checks for flat segments, i.e. segments with base==0,
4725                  * limit==0xffffffff and of type expand-up data or code.
4726                  */
4727                 if (!(s.base == 0 && s.limit == 0xffffffff &&
4728                      ((s.type & 8) || !(s.type & 4))))
4729                         exn = exn || ((u64)off + len - 1 > s.limit);
4730         }
4731         if (exn) {
4732                 kvm_queue_exception_e(vcpu,
4733                                       seg_reg == VCPU_SREG_SS ?
4734                                                 SS_VECTOR : GP_VECTOR,
4735                                       0);
4736                 return 1;
4737         }
4738
4739         return 0;
4740 }
4741
4742 void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
4743 {
4744         struct vcpu_vmx *vmx;
4745
4746         if (!nested_vmx_allowed(vcpu))
4747                 return;
4748
4749         vmx = to_vmx(vcpu);
4750         if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
4751                 vmx->nested.msrs.entry_ctls_high |=
4752                                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4753                 vmx->nested.msrs.exit_ctls_high |=
4754                                 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4755         } else {
4756                 vmx->nested.msrs.entry_ctls_high &=
4757                                 ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4758                 vmx->nested.msrs.exit_ctls_high &=
4759                                 ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4760         }
4761 }
4762
4763 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4764                                 int *ret)
4765 {
4766         gva_t gva;
4767         struct x86_exception e;
4768         int r;
4769
4770         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4771                                 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4772                                 sizeof(*vmpointer), &gva)) {
4773                 *ret = 1;
4774                 return -EINVAL;
4775         }
4776
4777         r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4778         if (r != X86EMUL_CONTINUE) {
4779                 *ret = kvm_handle_memory_failure(vcpu, r, &e);
4780                 return -EINVAL;
4781         }
4782
4783         return 0;
4784 }
4785
4786 /*
4787  * Allocate a shadow VMCS and associate it with the currently loaded
4788  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4789  * VMCS is also VMCLEARed, so that it is ready for use.
4790  */
4791 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4792 {
4793         struct vcpu_vmx *vmx = to_vmx(vcpu);
4794         struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4795
4796         /*
4797          * We should allocate a shadow vmcs for vmcs01 only when L1
4798          * executes VMXON and free it when L1 executes VMXOFF.
4799          * As it is invalid to execute VMXON twice, we shouldn't reach
4800          * here when vmcs01 already have an allocated shadow vmcs.
4801          */
4802         WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4803
4804         if (!loaded_vmcs->shadow_vmcs) {
4805                 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4806                 if (loaded_vmcs->shadow_vmcs)
4807                         vmcs_clear(loaded_vmcs->shadow_vmcs);
4808         }
4809         return loaded_vmcs->shadow_vmcs;
4810 }
4811
4812 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4813 {
4814         struct vcpu_vmx *vmx = to_vmx(vcpu);
4815         int r;
4816
4817         r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4818         if (r < 0)
4819                 goto out_vmcs02;
4820
4821         vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4822         if (!vmx->nested.cached_vmcs12)
4823                 goto out_cached_vmcs12;
4824
4825         vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4826         if (!vmx->nested.cached_shadow_vmcs12)
4827                 goto out_cached_shadow_vmcs12;
4828
4829         if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4830                 goto out_shadow_vmcs;
4831
4832         hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4833                      HRTIMER_MODE_ABS_PINNED);
4834         vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4835
4836         vmx->nested.vpid02 = allocate_vpid();
4837
4838         vmx->nested.vmcs02_initialized = false;
4839         vmx->nested.vmxon = true;
4840
4841         if (vmx_pt_mode_is_host_guest()) {
4842                 vmx->pt_desc.guest.ctl = 0;
4843                 pt_update_intercept_for_msr(vcpu);
4844         }
4845
4846         return 0;
4847
4848 out_shadow_vmcs:
4849         kfree(vmx->nested.cached_shadow_vmcs12);
4850
4851 out_cached_shadow_vmcs12:
4852         kfree(vmx->nested.cached_vmcs12);
4853
4854 out_cached_vmcs12:
4855         free_loaded_vmcs(&vmx->nested.vmcs02);
4856
4857 out_vmcs02:
4858         return -ENOMEM;
4859 }
4860
4861 /*
4862  * Emulate the VMXON instruction.
4863  * Currently, we just remember that VMX is active, and do not save or even
4864  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4865  * do not currently need to store anything in that guest-allocated memory
4866  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4867  * argument is different from the VMXON pointer (which the spec says they do).
4868  */
4869 static int handle_vmon(struct kvm_vcpu *vcpu)
4870 {
4871         int ret;
4872         gpa_t vmptr;
4873         uint32_t revision;
4874         struct vcpu_vmx *vmx = to_vmx(vcpu);
4875         const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4876                 | FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4877
4878         /*
4879          * The Intel VMX Instruction Reference lists a bunch of bits that are
4880          * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4881          * 1 (see vmx_is_valid_cr4() for when we allow the guest to set this).
4882          * Otherwise, we should fail with #UD.  But most faulting conditions
4883          * have already been checked by hardware, prior to the VM-exit for
4884          * VMXON.  We do test guest cr4.VMXE because processor CR4 always has
4885          * that bit set to 1 in non-root mode.
4886          */
4887         if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4888                 kvm_queue_exception(vcpu, UD_VECTOR);
4889                 return 1;
4890         }
4891
4892         /* CPL=0 must be checked manually. */
4893         if (vmx_get_cpl(vcpu)) {
4894                 kvm_inject_gp(vcpu, 0);
4895                 return 1;
4896         }
4897
4898         if (vmx->nested.vmxon)
4899                 return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4900
4901         if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4902                         != VMXON_NEEDED_FEATURES) {
4903                 kvm_inject_gp(vcpu, 0);
4904                 return 1;
4905         }
4906
4907         if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
4908                 return ret;
4909
4910         /*
4911          * SDM 3: 24.11.5
4912          * The first 4 bytes of VMXON region contain the supported
4913          * VMCS revision identifier
4914          *
4915          * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4916          * which replaces physical address width with 32
4917          */
4918         if (!page_address_valid(vcpu, vmptr))
4919                 return nested_vmx_failInvalid(vcpu);
4920
4921         if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4922             revision != VMCS12_REVISION)
4923                 return nested_vmx_failInvalid(vcpu);
4924
4925         vmx->nested.vmxon_ptr = vmptr;
4926         ret = enter_vmx_operation(vcpu);
4927         if (ret)
4928                 return ret;
4929
4930         return nested_vmx_succeed(vcpu);
4931 }
4932
4933 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4934 {
4935         struct vcpu_vmx *vmx = to_vmx(vcpu);
4936
4937         if (vmx->nested.current_vmptr == -1ull)
4938                 return;
4939
4940         copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4941
4942         if (enable_shadow_vmcs) {
4943                 /* copy to memory all shadowed fields in case
4944                    they were modified */
4945                 copy_shadow_to_vmcs12(vmx);
4946                 vmx_disable_shadow_vmcs(vmx);
4947         }
4948         vmx->nested.posted_intr_nv = -1;
4949
4950         /* Flush VMCS12 to guest memory */
4951         kvm_vcpu_write_guest_page(vcpu,
4952                                   vmx->nested.current_vmptr >> PAGE_SHIFT,
4953                                   vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4954
4955         kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4956
4957         vmx->nested.current_vmptr = -1ull;
4958 }
4959
4960 /* Emulate the VMXOFF instruction */
4961 static int handle_vmoff(struct kvm_vcpu *vcpu)
4962 {
4963         if (!nested_vmx_check_permission(vcpu))
4964                 return 1;
4965
4966         free_nested(vcpu);
4967
4968         /* Process a latched INIT during time CPU was in VMX operation */
4969         kvm_make_request(KVM_REQ_EVENT, vcpu);
4970
4971         return nested_vmx_succeed(vcpu);
4972 }
4973
4974 /* Emulate the VMCLEAR instruction */
4975 static int handle_vmclear(struct kvm_vcpu *vcpu)
4976 {
4977         struct vcpu_vmx *vmx = to_vmx(vcpu);
4978         u32 zero = 0;
4979         gpa_t vmptr;
4980         u64 evmcs_gpa;
4981         int r;
4982
4983         if (!nested_vmx_check_permission(vcpu))
4984                 return 1;
4985
4986         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
4987                 return r;
4988
4989         if (!page_address_valid(vcpu, vmptr))
4990                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
4991
4992         if (vmptr == vmx->nested.vmxon_ptr)
4993                 return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
4994
4995         /*
4996          * When Enlightened VMEntry is enabled on the calling CPU we treat
4997          * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4998          * way to distinguish it from VMCS12) and we must not corrupt it by
4999          * writing to the non-existent 'launch_state' field. The area doesn't
5000          * have to be the currently active EVMCS on the calling CPU and there's
5001          * nothing KVM has to do to transition it from 'active' to 'non-active'
5002          * state. It is possible that the area will stay mapped as
5003          * vmx->nested.hv_evmcs but this shouldn't be a problem.
5004          */
5005         if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5006                    !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5007                 if (vmptr == vmx->nested.current_vmptr)
5008                         nested_release_vmcs12(vcpu);
5009
5010                 kvm_vcpu_write_guest(vcpu,
5011                                      vmptr + offsetof(struct vmcs12,
5012                                                       launch_state),
5013                                      &zero, sizeof(zero));
5014         } else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5015                 nested_release_evmcs(vcpu);
5016         }
5017
5018         return nested_vmx_succeed(vcpu);
5019 }
5020
5021 /* Emulate the VMLAUNCH instruction */
5022 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5023 {
5024         return nested_vmx_run(vcpu, true);
5025 }
5026
5027 /* Emulate the VMRESUME instruction */
5028 static int handle_vmresume(struct kvm_vcpu *vcpu)
5029 {
5030
5031         return nested_vmx_run(vcpu, false);
5032 }
5033
5034 static int handle_vmread(struct kvm_vcpu *vcpu)
5035 {
5036         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5037                                                     : get_vmcs12(vcpu);
5038         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5039         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5040         struct vcpu_vmx *vmx = to_vmx(vcpu);
5041         struct x86_exception e;
5042         unsigned long field;
5043         u64 value;
5044         gva_t gva = 0;
5045         short offset;
5046         int len, r;
5047
5048         if (!nested_vmx_check_permission(vcpu))
5049                 return 1;
5050
5051         /*
5052          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5053          * any VMREAD sets the ALU flags for VMfailInvalid.
5054          */
5055         if (vmx->nested.current_vmptr == -1ull ||
5056             (is_guest_mode(vcpu) &&
5057              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5058                 return nested_vmx_failInvalid(vcpu);
5059
5060         /* Decode instruction info and find the field to read */
5061         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5062
5063         offset = vmcs_field_to_offset(field);
5064         if (offset < 0)
5065                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5066
5067         if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5068                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5069
5070         /* Read the field, zero-extended to a u64 value */
5071         value = vmcs12_read_any(vmcs12, field, offset);
5072
5073         /*
5074          * Now copy part of this value to register or memory, as requested.
5075          * Note that the number of bits actually copied is 32 or 64 depending
5076          * on the guest's mode (32 or 64 bit), not on the given field's length.
5077          */
5078         if (instr_info & BIT(10)) {
5079                 kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5080         } else {
5081                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5082                 if (get_vmx_mem_address(vcpu, exit_qualification,
5083                                         instr_info, true, len, &gva))
5084                         return 1;
5085                 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
5086                 r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5087                 if (r != X86EMUL_CONTINUE)
5088                         return kvm_handle_memory_failure(vcpu, r, &e);
5089         }
5090
5091         return nested_vmx_succeed(vcpu);
5092 }
5093
5094 static bool is_shadow_field_rw(unsigned long field)
5095 {
5096         switch (field) {
5097 #define SHADOW_FIELD_RW(x, y) case x:
5098 #include "vmcs_shadow_fields.h"
5099                 return true;
5100         default:
5101                 break;
5102         }
5103         return false;
5104 }
5105
5106 static bool is_shadow_field_ro(unsigned long field)
5107 {
5108         switch (field) {
5109 #define SHADOW_FIELD_RO(x, y) case x:
5110 #include "vmcs_shadow_fields.h"
5111                 return true;
5112         default:
5113                 break;
5114         }
5115         return false;
5116 }
5117
5118 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5119 {
5120         struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5121                                                     : get_vmcs12(vcpu);
5122         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5123         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5124         struct vcpu_vmx *vmx = to_vmx(vcpu);
5125         struct x86_exception e;
5126         unsigned long field;
5127         short offset;
5128         gva_t gva;
5129         int len, r;
5130
5131         /*
5132          * The value to write might be 32 or 64 bits, depending on L1's long
5133          * mode, and eventually we need to write that into a field of several
5134          * possible lengths. The code below first zero-extends the value to 64
5135          * bit (value), and then copies only the appropriate number of
5136          * bits into the vmcs12 field.
5137          */
5138         u64 value = 0;
5139
5140         if (!nested_vmx_check_permission(vcpu))
5141                 return 1;
5142
5143         /*
5144          * In VMX non-root operation, when the VMCS-link pointer is -1ull,
5145          * any VMWRITE sets the ALU flags for VMfailInvalid.
5146          */
5147         if (vmx->nested.current_vmptr == -1ull ||
5148             (is_guest_mode(vcpu) &&
5149              get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
5150                 return nested_vmx_failInvalid(vcpu);
5151
5152         if (instr_info & BIT(10))
5153                 value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5154         else {
5155                 len = is_64_bit_mode(vcpu) ? 8 : 4;
5156                 if (get_vmx_mem_address(vcpu, exit_qualification,
5157                                         instr_info, false, len, &gva))
5158                         return 1;
5159                 r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5160                 if (r != X86EMUL_CONTINUE)
5161                         return kvm_handle_memory_failure(vcpu, r, &e);
5162         }
5163
5164         field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5165
5166         offset = vmcs_field_to_offset(field);
5167         if (offset < 0)
5168                 return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5169
5170         /*
5171          * If the vCPU supports "VMWRITE to any supported field in the
5172          * VMCS," then the "read-only" fields are actually read/write.
5173          */
5174         if (vmcs_field_readonly(field) &&
5175             !nested_cpu_has_vmwrite_any_field(vcpu))
5176                 return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5177
5178         /*
5179          * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5180          * vmcs12, else we may crush a field or consume a stale value.
5181          */
5182         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5183                 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5184
5185         /*
5186          * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5187          * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5188          * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5189          * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5190          * from L1 will return a different value than VMREAD from L2 (L1 sees
5191          * the stripped down value, L2 sees the full value as stored by KVM).
5192          */
5193         if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5194                 value &= 0x1f0ff;
5195
5196         vmcs12_write_any(vmcs12, field, offset, value);
5197
5198         /*
5199          * Do not track vmcs12 dirty-state if in guest-mode as we actually
5200          * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5201          * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5202          * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5203          */
5204         if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5205                 /*
5206                  * L1 can read these fields without exiting, ensure the
5207                  * shadow VMCS is up-to-date.
5208                  */
5209                 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5210                         preempt_disable();
5211                         vmcs_load(vmx->vmcs01.shadow_vmcs);
5212
5213                         __vmcs_writel(field, value);
5214
5215                         vmcs_clear(vmx->vmcs01.shadow_vmcs);
5216                         vmcs_load(vmx->loaded_vmcs->vmcs);
5217                         preempt_enable();
5218                 }
5219                 vmx->nested.dirty_vmcs12 = true;
5220         }
5221
5222         return nested_vmx_succeed(vcpu);
5223 }
5224
5225 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5226 {
5227         vmx->nested.current_vmptr = vmptr;
5228         if (enable_shadow_vmcs) {
5229                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5230                 vmcs_write64(VMCS_LINK_POINTER,
5231                              __pa(vmx->vmcs01.shadow_vmcs));
5232                 vmx->nested.need_vmcs12_to_shadow_sync = true;
5233         }
5234         vmx->nested.dirty_vmcs12 = true;
5235 }
5236
5237 /* Emulate the VMPTRLD instruction */
5238 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5239 {
5240         struct vcpu_vmx *vmx = to_vmx(vcpu);
5241         gpa_t vmptr;
5242         int r;
5243
5244         if (!nested_vmx_check_permission(vcpu))
5245                 return 1;
5246
5247         if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5248                 return r;
5249
5250         if (!page_address_valid(vcpu, vmptr))
5251                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5252
5253         if (vmptr == vmx->nested.vmxon_ptr)
5254                 return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5255
5256         /* Forbid normal VMPTRLD if Enlightened version was used */
5257         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5258                 return 1;
5259
5260         if (vmx->nested.current_vmptr != vmptr) {
5261                 struct kvm_host_map map;
5262                 struct vmcs12 *new_vmcs12;
5263
5264                 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
5265                         /*
5266                          * Reads from an unbacked page return all 1s,
5267                          * which means that the 32 bits located at the
5268                          * given physical address won't match the required
5269                          * VMCS12_REVISION identifier.
5270                          */
5271                         return nested_vmx_fail(vcpu,
5272                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5273                 }
5274
5275                 new_vmcs12 = map.hva;
5276
5277                 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5278                     (new_vmcs12->hdr.shadow_vmcs &&
5279                      !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5280                         kvm_vcpu_unmap(vcpu, &map, false);
5281                         return nested_vmx_fail(vcpu,
5282                                 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5283                 }
5284
5285                 nested_release_vmcs12(vcpu);
5286
5287                 /*
5288                  * Load VMCS12 from guest memory since it is not already
5289                  * cached.
5290                  */
5291                 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
5292                 kvm_vcpu_unmap(vcpu, &map, false);
5293
5294                 set_current_vmptr(vmx, vmptr);
5295         }
5296
5297         return nested_vmx_succeed(vcpu);
5298 }
5299
5300 /* Emulate the VMPTRST instruction */
5301 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5302 {
5303         unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5304         u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5305         gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5306         struct x86_exception e;
5307         gva_t gva;
5308         int r;
5309
5310         if (!nested_vmx_check_permission(vcpu))
5311                 return 1;
5312
5313         if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5314                 return 1;
5315
5316         if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5317                                 true, sizeof(gpa_t), &gva))
5318                 return 1;
5319         /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5320         r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5321                                         sizeof(gpa_t), &e);
5322         if (r != X86EMUL_CONTINUE)
5323                 return kvm_handle_memory_failure(vcpu, r, &e);
5324
5325         return nested_vmx_succeed(vcpu);
5326 }
5327
5328 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
5329
5330 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
5331 {
5332         return VALID_PAGE(root_hpa) &&
5333                 ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
5334 }
5335
5336 /* Emulate the INVEPT instruction */
5337 static int handle_invept(struct kvm_vcpu *vcpu)
5338 {
5339         struct vcpu_vmx *vmx = to_vmx(vcpu);
5340         u32 vmx_instruction_info, types;
5341         unsigned long type, roots_to_free;
5342         struct kvm_mmu *mmu;
5343         gva_t gva;
5344         struct x86_exception e;
5345         struct {
5346                 u64 eptp, gpa;
5347         } operand;
5348         int i, r;
5349
5350         if (!(vmx->nested.msrs.secondary_ctls_high &
5351               SECONDARY_EXEC_ENABLE_EPT) ||
5352             !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5353                 kvm_queue_exception(vcpu, UD_VECTOR);
5354                 return 1;
5355         }
5356
5357         if (!nested_vmx_check_permission(vcpu))
5358                 return 1;
5359
5360         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5361         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5362
5363         types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5364
5365         if (type >= 32 || !(types & (1 << type)))
5366                 return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5367
5368         /* According to the Intel VMX instruction reference, the memory
5369          * operand is read even if it isn't needed (e.g., for type==global)
5370          */
5371         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5372                         vmx_instruction_info, false, sizeof(operand), &gva))
5373                 return 1;
5374         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5375         if (r != X86EMUL_CONTINUE)
5376                 return kvm_handle_memory_failure(vcpu, r, &e);
5377
5378         /*
5379          * Nested EPT roots are always held through guest_mmu,
5380          * not root_mmu.
5381          */
5382         mmu = &vcpu->arch.guest_mmu;
5383
5384         switch (type) {
5385         case VMX_EPT_EXTENT_CONTEXT:
5386                 if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5387                         return nested_vmx_fail(vcpu,
5388                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5389
5390                 roots_to_free = 0;
5391                 if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
5392                                             operand.eptp))
5393                         roots_to_free |= KVM_MMU_ROOT_CURRENT;
5394
5395                 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5396                         if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5397                                                     mmu->prev_roots[i].pgd,
5398                                                     operand.eptp))
5399                                 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5400                 }
5401                 break;
5402         case VMX_EPT_EXTENT_GLOBAL:
5403                 roots_to_free = KVM_MMU_ROOTS_ALL;
5404                 break;
5405         default:
5406                 BUG();
5407                 break;
5408         }
5409
5410         if (roots_to_free)
5411                 kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
5412
5413         return nested_vmx_succeed(vcpu);
5414 }
5415
5416 static int handle_invvpid(struct kvm_vcpu *vcpu)
5417 {
5418         struct vcpu_vmx *vmx = to_vmx(vcpu);
5419         u32 vmx_instruction_info;
5420         unsigned long type, types;
5421         gva_t gva;
5422         struct x86_exception e;
5423         struct {
5424                 u64 vpid;
5425                 u64 gla;
5426         } operand;
5427         u16 vpid02;
5428         int r;
5429
5430         if (!(vmx->nested.msrs.secondary_ctls_high &
5431               SECONDARY_EXEC_ENABLE_VPID) ||
5432                         !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5433                 kvm_queue_exception(vcpu, UD_VECTOR);
5434                 return 1;
5435         }
5436
5437         if (!nested_vmx_check_permission(vcpu))
5438                 return 1;
5439
5440         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5441         type = kvm_register_read(vcpu, (vmx_instruction_info >> 28) & 0xf);
5442
5443         types = (vmx->nested.msrs.vpid_caps &
5444                         VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5445
5446         if (type >= 32 || !(types & (1 << type)))
5447                 return nested_vmx_fail(vcpu,
5448                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5449
5450         /* according to the intel vmx instruction reference, the memory
5451          * operand is read even if it isn't needed (e.g., for type==global)
5452          */
5453         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5454                         vmx_instruction_info, false, sizeof(operand), &gva))
5455                 return 1;
5456         r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5457         if (r != X86EMUL_CONTINUE)
5458                 return kvm_handle_memory_failure(vcpu, r, &e);
5459
5460         if (operand.vpid >> 16)
5461                 return nested_vmx_fail(vcpu,
5462                         VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5463
5464         vpid02 = nested_get_vpid02(vcpu);
5465         switch (type) {
5466         case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5467                 if (!operand.vpid ||
5468                     is_noncanonical_address(operand.gla, vcpu))
5469                         return nested_vmx_fail(vcpu,
5470                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5471                 vpid_sync_vcpu_addr(vpid02, operand.gla);
5472                 break;
5473         case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5474         case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5475                 if (!operand.vpid)
5476                         return nested_vmx_fail(vcpu,
5477                                 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5478                 vpid_sync_context(vpid02);
5479                 break;
5480         case VMX_VPID_EXTENT_ALL_CONTEXT:
5481                 vpid_sync_context(vpid02);
5482                 break;
5483         default:
5484                 WARN_ON_ONCE(1);
5485                 return kvm_skip_emulated_instruction(vcpu);
5486         }
5487
5488         /*
5489          * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5490          * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5491          * roots as VPIDs are not tracked in the MMU role.
5492          *
5493          * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5494          * an MMU when EPT is disabled.
5495          *
5496          * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5497          */
5498         if (!enable_ept)
5499                 kvm_mmu_free_guest_mode_roots(vcpu, &vcpu->arch.root_mmu);
5500
5501         return nested_vmx_succeed(vcpu);
5502 }
5503
5504 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5505                                      struct vmcs12 *vmcs12)
5506 {
5507         u32 index = kvm_rcx_read(vcpu);
5508         u64 new_eptp;
5509
5510         if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5511                 return 1;
5512         if (index >= VMFUNC_EPTP_ENTRIES)
5513                 return 1;
5514
5515         if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5516                                      &new_eptp, index * 8, 8))
5517                 return 1;
5518
5519         /*
5520          * If the (L2) guest does a vmfunc to the currently
5521          * active ept pointer, we don't have to do anything else
5522          */
5523         if (vmcs12->ept_pointer != new_eptp) {
5524                 if (!nested_vmx_check_eptp(vcpu, new_eptp))
5525                         return 1;
5526
5527                 vmcs12->ept_pointer = new_eptp;
5528                 nested_ept_new_eptp(vcpu);
5529
5530                 if (!nested_cpu_has_vpid(vmcs12))
5531                         kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5532         }
5533
5534         return 0;
5535 }
5536
5537 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5538 {
5539         struct vcpu_vmx *vmx = to_vmx(vcpu);
5540         struct vmcs12 *vmcs12;
5541         u32 function = kvm_rax_read(vcpu);
5542
5543         /*
5544          * VMFUNC is only supported for nested guests, but we always enable the
5545          * secondary control for simplicity; for non-nested mode, fake that we
5546          * didn't by injecting #UD.
5547          */
5548         if (!is_guest_mode(vcpu)) {
5549                 kvm_queue_exception(vcpu, UD_VECTOR);
5550                 return 1;
5551         }
5552
5553         vmcs12 = get_vmcs12(vcpu);
5554
5555         /*
5556          * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5557          * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5558          */
5559         if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5560                 kvm_queue_exception(vcpu, UD_VECTOR);
5561                 return 1;
5562         }
5563
5564         if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5565                 goto fail;
5566
5567         switch (function) {
5568         case 0:
5569                 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5570                         goto fail;
5571                 break;
5572         default:
5573                 goto fail;
5574         }
5575         return kvm_skip_emulated_instruction(vcpu);
5576
5577 fail:
5578         /*
5579          * This is effectively a reflected VM-Exit, as opposed to a synthesized
5580          * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5581          * EXIT_REASON_VMFUNC as the exit reason.
5582          */
5583         nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5584                           vmx_get_intr_info(vcpu),
5585                           vmx_get_exit_qual(vcpu));
5586         return 1;
5587 }
5588
5589 /*
5590  * Return true if an IO instruction with the specified port and size should cause
5591  * a VM-exit into L1.
5592  */
5593 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5594                                  int size)
5595 {
5596         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5597         gpa_t bitmap, last_bitmap;
5598         u8 b;
5599
5600         last_bitmap = (gpa_t)-1;
5601         b = -1;
5602
5603         while (size > 0) {
5604                 if (port < 0x8000)
5605                         bitmap = vmcs12->io_bitmap_a;
5606                 else if (port < 0x10000)
5607                         bitmap = vmcs12->io_bitmap_b;
5608                 else
5609                         return true;
5610                 bitmap += (port & 0x7fff) / 8;
5611
5612                 if (last_bitmap != bitmap)
5613                         if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5614                                 return true;
5615                 if (b & (1 << (port & 7)))
5616                         return true;
5617
5618                 port++;
5619                 size--;
5620                 last_bitmap = bitmap;
5621         }
5622
5623         return false;
5624 }
5625
5626 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5627                                        struct vmcs12 *vmcs12)
5628 {
5629         unsigned long exit_qualification;
5630         unsigned short port;
5631         int size;
5632
5633         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5634                 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5635
5636         exit_qualification = vmx_get_exit_qual(vcpu);
5637
5638         port = exit_qualification >> 16;
5639         size = (exit_qualification & 7) + 1;
5640
5641         return nested_vmx_check_io_bitmaps(vcpu, port, size);
5642 }
5643
5644 /*
5645  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5646  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5647  * disinterest in the current event (read or write a specific MSR) by using an
5648  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5649  */
5650 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5651                                         struct vmcs12 *vmcs12,
5652                                         union vmx_exit_reason exit_reason)
5653 {
5654         u32 msr_index = kvm_rcx_read(vcpu);
5655         gpa_t bitmap;
5656
5657         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5658                 return true;
5659
5660         /*
5661          * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5662          * for the four combinations of read/write and low/high MSR numbers.
5663          * First we need to figure out which of the four to use:
5664          */
5665         bitmap = vmcs12->msr_bitmap;
5666         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5667                 bitmap += 2048;
5668         if (msr_index >= 0xc0000000) {
5669                 msr_index -= 0xc0000000;
5670                 bitmap += 1024;
5671         }
5672
5673         /* Then read the msr_index'th bit from this bitmap: */
5674         if (msr_index < 1024*8) {
5675                 unsigned char b;
5676                 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5677                         return true;
5678                 return 1 & (b >> (msr_index & 7));
5679         } else
5680                 return true; /* let L1 handle the wrong parameter */
5681 }
5682
5683 /*
5684  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5685  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5686  * intercept (via guest_host_mask etc.) the current event.
5687  */
5688 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5689         struct vmcs12 *vmcs12)
5690 {
5691         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5692         int cr = exit_qualification & 15;
5693         int reg;
5694         unsigned long val;
5695
5696         switch ((exit_qualification >> 4) & 3) {
5697         case 0: /* mov to cr */
5698                 reg = (exit_qualification >> 8) & 15;
5699                 val = kvm_register_read(vcpu, reg);
5700                 switch (cr) {
5701                 case 0:
5702                         if (vmcs12->cr0_guest_host_mask &
5703                             (val ^ vmcs12->cr0_read_shadow))
5704                                 return true;
5705                         break;
5706                 case 3:
5707                         if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5708                                 return true;
5709                         break;
5710                 case 4:
5711                         if (vmcs12->cr4_guest_host_mask &
5712                             (vmcs12->cr4_read_shadow ^ val))
5713                                 return true;
5714                         break;
5715                 case 8:
5716                         if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5717                                 return true;
5718                         break;
5719                 }
5720                 break;
5721         case 2: /* clts */
5722                 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5723                     (vmcs12->cr0_read_shadow & X86_CR0_TS))
5724                         return true;
5725                 break;
5726         case 1: /* mov from cr */
5727                 switch (cr) {
5728                 case 3:
5729                         if (vmcs12->cpu_based_vm_exec_control &
5730                             CPU_BASED_CR3_STORE_EXITING)
5731                                 return true;
5732                         break;
5733                 case 8:
5734                         if (vmcs12->cpu_based_vm_exec_control &
5735                             CPU_BASED_CR8_STORE_EXITING)
5736                                 return true;
5737                         break;
5738                 }
5739                 break;
5740         case 3: /* lmsw */
5741                 /*
5742                  * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5743                  * cr0. Other attempted changes are ignored, with no exit.
5744                  */
5745                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5746                 if (vmcs12->cr0_guest_host_mask & 0xe &
5747                     (val ^ vmcs12->cr0_read_shadow))
5748                         return true;
5749                 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5750                     !(vmcs12->cr0_read_shadow & 0x1) &&
5751                     (val & 0x1))
5752                         return true;
5753                 break;
5754         }
5755         return false;
5756 }
5757
5758 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5759                                           struct vmcs12 *vmcs12)
5760 {
5761         u32 encls_leaf;
5762
5763         if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5764             !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5765                 return false;
5766
5767         encls_leaf = kvm_rax_read(vcpu);
5768         if (encls_leaf > 62)
5769                 encls_leaf = 63;
5770         return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5771 }
5772
5773 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5774         struct vmcs12 *vmcs12, gpa_t bitmap)
5775 {
5776         u32 vmx_instruction_info;
5777         unsigned long field;
5778         u8 b;
5779
5780         if (!nested_cpu_has_shadow_vmcs(vmcs12))
5781                 return true;
5782
5783         /* Decode instruction info and find the field to access */
5784         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5785         field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5786
5787         /* Out-of-range fields always cause a VM exit from L2 to L1 */
5788         if (field >> 15)
5789                 return true;
5790
5791         if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5792                 return true;
5793
5794         return 1 & (b >> (field & 7));
5795 }
5796
5797 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5798 {
5799         u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5800
5801         if (nested_cpu_has_mtf(vmcs12))
5802                 return true;
5803
5804         /*
5805          * An MTF VM-exit may be injected into the guest by setting the
5806          * interruption-type to 7 (other event) and the vector field to 0. Such
5807          * is the case regardless of the 'monitor trap flag' VM-execution
5808          * control.
5809          */
5810         return entry_intr_info == (INTR_INFO_VALID_MASK
5811                                    | INTR_TYPE_OTHER_EVENT);
5812 }
5813
5814 /*
5815  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5816  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5817  */
5818 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5819                                      union vmx_exit_reason exit_reason)
5820 {
5821         u32 intr_info;
5822
5823         switch ((u16)exit_reason.basic) {
5824         case EXIT_REASON_EXCEPTION_NMI:
5825                 intr_info = vmx_get_intr_info(vcpu);
5826                 if (is_nmi(intr_info))
5827                         return true;
5828                 else if (is_page_fault(intr_info))
5829                         return vcpu->arch.apf.host_apf_flags || !enable_ept;
5830                 else if (is_debug(intr_info) &&
5831                          vcpu->guest_debug &
5832                          (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5833                         return true;
5834                 else if (is_breakpoint(intr_info) &&
5835                          vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5836                         return true;
5837                 else if (is_alignment_check(intr_info) &&
5838                          !vmx_guest_inject_ac(vcpu))
5839                         return true;
5840                 return false;
5841         case EXIT_REASON_EXTERNAL_INTERRUPT:
5842                 return true;
5843         case EXIT_REASON_MCE_DURING_VMENTRY:
5844                 return true;
5845         case EXIT_REASON_EPT_VIOLATION:
5846                 /*
5847                  * L0 always deals with the EPT violation. If nested EPT is
5848                  * used, and the nested mmu code discovers that the address is
5849                  * missing in the guest EPT table (EPT12), the EPT violation
5850                  * will be injected with nested_ept_inject_page_fault()
5851                  */
5852                 return true;
5853         case EXIT_REASON_EPT_MISCONFIG:
5854                 /*
5855                  * L2 never uses directly L1's EPT, but rather L0's own EPT
5856                  * table (shadow on EPT) or a merged EPT table that L0 built
5857                  * (EPT on EPT). So any problems with the structure of the
5858                  * table is L0's fault.
5859                  */
5860                 return true;
5861         case EXIT_REASON_PREEMPTION_TIMER:
5862                 return true;
5863         case EXIT_REASON_PML_FULL:
5864                 /*
5865                  * PML is emulated for an L1 VMM and should never be enabled in
5866                  * vmcs02, always "handle" PML_FULL by exiting to userspace.
5867                  */
5868                 return true;
5869         case EXIT_REASON_VMFUNC:
5870                 /* VM functions are emulated through L2->L0 vmexits. */
5871                 return true;
5872         default:
5873                 break;
5874         }
5875         return false;
5876 }
5877
5878 /*
5879  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
5880  * is_guest_mode (L2).
5881  */
5882 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
5883                                      union vmx_exit_reason exit_reason)
5884 {
5885         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5886         u32 intr_info;
5887
5888         switch ((u16)exit_reason.basic) {
5889         case EXIT_REASON_EXCEPTION_NMI:
5890                 intr_info = vmx_get_intr_info(vcpu);
5891                 if (is_nmi(intr_info))
5892                         return true;
5893                 else if (is_page_fault(intr_info))
5894                         return true;
5895                 return vmcs12->exception_bitmap &
5896                                 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5897         case EXIT_REASON_EXTERNAL_INTERRUPT:
5898                 return nested_exit_on_intr(vcpu);
5899         case EXIT_REASON_TRIPLE_FAULT:
5900                 return true;
5901         case EXIT_REASON_INTERRUPT_WINDOW:
5902                 return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
5903         case EXIT_REASON_NMI_WINDOW:
5904                 return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
5905         case EXIT_REASON_TASK_SWITCH:
5906                 return true;
5907         case EXIT_REASON_CPUID:
5908                 return true;
5909         case EXIT_REASON_HLT:
5910                 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5911         case EXIT_REASON_INVD:
5912                 return true;
5913         case EXIT_REASON_INVLPG:
5914                 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5915         case EXIT_REASON_RDPMC:
5916                 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5917         case EXIT_REASON_RDRAND:
5918                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5919         case EXIT_REASON_RDSEED:
5920                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5921         case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5922                 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5923         case EXIT_REASON_VMREAD:
5924                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5925                         vmcs12->vmread_bitmap);
5926         case EXIT_REASON_VMWRITE:
5927                 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5928                         vmcs12->vmwrite_bitmap);
5929         case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5930         case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5931         case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5932         case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5933         case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5934                 /*
5935                  * VMX instructions trap unconditionally. This allows L1 to
5936                  * emulate them for its L2 guest, i.e., allows 3-level nesting!
5937                  */
5938                 return true;
5939         case EXIT_REASON_CR_ACCESS:
5940                 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5941         case EXIT_REASON_DR_ACCESS:
5942                 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5943         case EXIT_REASON_IO_INSTRUCTION:
5944                 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5945         case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5946                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5947         case EXIT_REASON_MSR_READ:
5948         case EXIT_REASON_MSR_WRITE:
5949                 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5950         case EXIT_REASON_INVALID_STATE:
5951                 return true;
5952         case EXIT_REASON_MWAIT_INSTRUCTION:
5953                 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5954         case EXIT_REASON_MONITOR_TRAP_FLAG:
5955                 return nested_vmx_exit_handled_mtf(vmcs12);
5956         case EXIT_REASON_MONITOR_INSTRUCTION:
5957                 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5958         case EXIT_REASON_PAUSE_INSTRUCTION:
5959                 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5960                         nested_cpu_has2(vmcs12,
5961                                 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5962         case EXIT_REASON_MCE_DURING_VMENTRY:
5963                 return true;
5964         case EXIT_REASON_TPR_BELOW_THRESHOLD:
5965                 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5966         case EXIT_REASON_APIC_ACCESS:
5967         case EXIT_REASON_APIC_WRITE:
5968         case EXIT_REASON_EOI_INDUCED:
5969                 /*
5970                  * The controls for "virtualize APIC accesses," "APIC-
5971                  * register virtualization," and "virtual-interrupt
5972                  * delivery" only come from vmcs12.
5973                  */
5974                 return true;
5975         case EXIT_REASON_INVPCID:
5976                 return
5977                         nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5978                         nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5979         case EXIT_REASON_WBINVD:
5980                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5981         case EXIT_REASON_XSETBV:
5982                 return true;
5983         case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5984                 /*
5985                  * This should never happen, since it is not possible to
5986                  * set XSS to a non-zero value---neither in L1 nor in L2.
5987                  * If if it were, XSS would have to be checked against
5988                  * the XSS exit bitmap in vmcs12.
5989                  */
5990                 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5991         case EXIT_REASON_UMWAIT:
5992         case EXIT_REASON_TPAUSE:
5993                 return nested_cpu_has2(vmcs12,
5994                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
5995         case EXIT_REASON_ENCLS:
5996                 return nested_vmx_exit_handled_encls(vcpu, vmcs12);
5997         default:
5998                 return true;
5999         }
6000 }
6001
6002 /*
6003  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6004  * reflected into L1.
6005  */
6006 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6007 {
6008         struct vcpu_vmx *vmx = to_vmx(vcpu);
6009         union vmx_exit_reason exit_reason = vmx->exit_reason;
6010         unsigned long exit_qual;
6011         u32 exit_intr_info;
6012
6013         WARN_ON_ONCE(vmx->nested.nested_run_pending);
6014
6015         /*
6016          * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6017          * has already loaded L2's state.
6018          */
6019         if (unlikely(vmx->fail)) {
6020                 trace_kvm_nested_vmenter_failed(
6021                         "hardware VM-instruction error: ",
6022                         vmcs_read32(VM_INSTRUCTION_ERROR));
6023                 exit_intr_info = 0;
6024                 exit_qual = 0;
6025                 goto reflect_vmexit;
6026         }
6027
6028         trace_kvm_nested_vmexit(exit_reason.full, vcpu, KVM_ISA_VMX);
6029
6030         /* If L0 (KVM) wants the exit, it trumps L1's desires. */
6031         if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6032                 return false;
6033
6034         /* If L1 doesn't want the exit, handle it in L0. */
6035         if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6036                 return false;
6037
6038         /*
6039          * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6040          * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6041          * need to be synthesized by querying the in-kernel LAPIC, but external
6042          * interrupts are never reflected to L1 so it's a non-issue.
6043          */
6044         exit_intr_info = vmx_get_intr_info(vcpu);
6045         if (is_exception_with_error_code(exit_intr_info)) {
6046                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6047
6048                 vmcs12->vm_exit_intr_error_code =
6049                         vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6050         }
6051         exit_qual = vmx_get_exit_qual(vcpu);
6052
6053 reflect_vmexit:
6054         nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6055         return true;
6056 }
6057
6058 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6059                                 struct kvm_nested_state __user *user_kvm_nested_state,
6060                                 u32 user_data_size)
6061 {
6062         struct vcpu_vmx *vmx;
6063         struct vmcs12 *vmcs12;
6064         struct kvm_nested_state kvm_state = {
6065                 .flags = 0,
6066                 .format = KVM_STATE_NESTED_FORMAT_VMX,
6067                 .size = sizeof(kvm_state),
6068                 .hdr.vmx.flags = 0,
6069                 .hdr.vmx.vmxon_pa = -1ull,
6070                 .hdr.vmx.vmcs12_pa = -1ull,
6071                 .hdr.vmx.preemption_timer_deadline = 0,
6072         };
6073         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6074                 &user_kvm_nested_state->data.vmx[0];
6075
6076         if (!vcpu)
6077                 return kvm_state.size + sizeof(*user_vmx_nested_state);
6078
6079         vmx = to_vmx(vcpu);
6080         vmcs12 = get_vmcs12(vcpu);
6081
6082         if (nested_vmx_allowed(vcpu) &&
6083             (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6084                 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6085                 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6086
6087                 if (vmx_has_valid_vmcs12(vcpu)) {
6088                         kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6089
6090                         /* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6091                         if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6092                                 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6093
6094                         if (is_guest_mode(vcpu) &&
6095                             nested_cpu_has_shadow_vmcs(vmcs12) &&
6096                             vmcs12->vmcs_link_pointer != -1ull)
6097                                 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6098                 }
6099
6100                 if (vmx->nested.smm.vmxon)
6101                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6102
6103                 if (vmx->nested.smm.guest_mode)
6104                         kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6105
6106                 if (is_guest_mode(vcpu)) {
6107                         kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6108
6109                         if (vmx->nested.nested_run_pending)
6110                                 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6111
6112                         if (vmx->nested.mtf_pending)
6113                                 kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6114
6115                         if (nested_cpu_has_preemption_timer(vmcs12) &&
6116                             vmx->nested.has_preemption_timer_deadline) {
6117                                 kvm_state.hdr.vmx.flags |=
6118                                         KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6119                                 kvm_state.hdr.vmx.preemption_timer_deadline =
6120                                         vmx->nested.preemption_timer_deadline;
6121                         }
6122                 }
6123         }
6124
6125         if (user_data_size < kvm_state.size)
6126                 goto out;
6127
6128         if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6129                 return -EFAULT;
6130
6131         if (!vmx_has_valid_vmcs12(vcpu))
6132                 goto out;
6133
6134         /*
6135          * When running L2, the authoritative vmcs12 state is in the
6136          * vmcs02. When running L1, the authoritative vmcs12 state is
6137          * in the shadow or enlightened vmcs linked to vmcs01, unless
6138          * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6139          * vmcs12 state is in the vmcs12 already.
6140          */
6141         if (is_guest_mode(vcpu)) {
6142                 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6143                 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6144         } else  {
6145                 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6146                 if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6147                         if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6148                                 /*
6149                                  * L1 hypervisor is not obliged to keep eVMCS
6150                                  * clean fields data always up-to-date while
6151                                  * not in guest mode, 'hv_clean_fields' is only
6152                                  * supposed to be actual upon vmentry so we need
6153                                  * to ignore it here and do full copy.
6154                                  */
6155                                 copy_enlightened_to_vmcs12(vmx, 0);
6156                         else if (enable_shadow_vmcs)
6157                                 copy_shadow_to_vmcs12(vmx);
6158                 }
6159         }
6160
6161         BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6162         BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6163
6164         /*
6165          * Copy over the full allocated size of vmcs12 rather than just the size
6166          * of the struct.
6167          */
6168         if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6169                 return -EFAULT;
6170
6171         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6172             vmcs12->vmcs_link_pointer != -1ull) {
6173                 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6174                                  get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6175                         return -EFAULT;
6176         }
6177 out:
6178         return kvm_state.size;
6179 }
6180
6181 /*
6182  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6183  */
6184 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6185 {
6186         if (is_guest_mode(vcpu)) {
6187                 to_vmx(vcpu)->nested.nested_run_pending = 0;
6188                 nested_vmx_vmexit(vcpu, -1, 0, 0);
6189         }
6190         free_nested(vcpu);
6191 }
6192
6193 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6194                                 struct kvm_nested_state __user *user_kvm_nested_state,
6195                                 struct kvm_nested_state *kvm_state)
6196 {
6197         struct vcpu_vmx *vmx = to_vmx(vcpu);
6198         struct vmcs12 *vmcs12;
6199         enum vm_entry_failure_code ignored;
6200         struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6201                 &user_kvm_nested_state->data.vmx[0];
6202         int ret;
6203
6204         if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6205                 return -EINVAL;
6206
6207         if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
6208                 if (kvm_state->hdr.vmx.smm.flags)
6209                         return -EINVAL;
6210
6211                 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
6212                         return -EINVAL;
6213
6214                 /*
6215                  * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6216                  * enable eVMCS capability on vCPU. However, since then
6217                  * code was changed such that flag signals vmcs12 should
6218                  * be copied into eVMCS in guest memory.
6219                  *
6220                  * To preserve backwards compatability, allow user
6221                  * to set this flag even when there is no VMXON region.
6222                  */
6223                 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6224                         return -EINVAL;
6225         } else {
6226                 if (!nested_vmx_allowed(vcpu))
6227                         return -EINVAL;
6228
6229                 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6230                         return -EINVAL;
6231         }
6232
6233         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6234             (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6235                 return -EINVAL;
6236
6237         if (kvm_state->hdr.vmx.smm.flags &
6238             ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6239                 return -EINVAL;
6240
6241         if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6242                 return -EINVAL;
6243
6244         /*
6245          * SMM temporarily disables VMX, so we cannot be in guest mode,
6246          * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6247          * must be zero.
6248          */
6249         if (is_smm(vcpu) ?
6250                 (kvm_state->flags &
6251                  (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6252                 : kvm_state->hdr.vmx.smm.flags)
6253                 return -EINVAL;
6254
6255         if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6256             !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6257                 return -EINVAL;
6258
6259         if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6260                 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6261                         return -EINVAL;
6262
6263         vmx_leave_nested(vcpu);
6264
6265         if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
6266                 return 0;
6267
6268         vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6269         ret = enter_vmx_operation(vcpu);
6270         if (ret)
6271                 return ret;
6272
6273         /* Empty 'VMXON' state is permitted if no VMCS loaded */
6274         if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6275                 /* See vmx_has_valid_vmcs12.  */
6276                 if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6277                     (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6278                     (kvm_state->hdr.vmx.vmcs12_pa != -1ull))
6279                         return -EINVAL;
6280                 else
6281                         return 0;
6282         }
6283
6284         if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
6285                 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6286                     !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6287                         return -EINVAL;
6288
6289                 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6290         } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6291                 /*
6292                  * nested_vmx_handle_enlightened_vmptrld() cannot be called
6293                  * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6294                  * restored yet. EVMCS will be mapped from
6295                  * nested_get_vmcs12_pages().
6296                  */
6297                 vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6298                 kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6299         } else {
6300                 return -EINVAL;
6301         }
6302
6303         if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6304                 vmx->nested.smm.vmxon = true;
6305                 vmx->nested.vmxon = false;
6306
6307                 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6308                         vmx->nested.smm.guest_mode = true;
6309         }
6310
6311         vmcs12 = get_vmcs12(vcpu);
6312         if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6313                 return -EFAULT;
6314
6315         if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6316                 return -EINVAL;
6317
6318         if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6319                 return 0;
6320
6321         vmx->nested.nested_run_pending =
6322                 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6323
6324         vmx->nested.mtf_pending =
6325                 !!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6326
6327         ret = -EINVAL;
6328         if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6329             vmcs12->vmcs_link_pointer != -1ull) {
6330                 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6331
6332                 if (kvm_state->size <
6333                     sizeof(*kvm_state) +
6334                     sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6335                         goto error_guest_mode;
6336
6337                 if (copy_from_user(shadow_vmcs12,
6338                                    user_vmx_nested_state->shadow_vmcs12,
6339                                    sizeof(*shadow_vmcs12))) {
6340                         ret = -EFAULT;
6341                         goto error_guest_mode;
6342                 }
6343
6344                 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6345                     !shadow_vmcs12->hdr.shadow_vmcs)
6346                         goto error_guest_mode;
6347         }
6348
6349         vmx->nested.has_preemption_timer_deadline = false;
6350         if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6351                 vmx->nested.has_preemption_timer_deadline = true;
6352                 vmx->nested.preemption_timer_deadline =
6353                         kvm_state->hdr.vmx.preemption_timer_deadline;
6354         }
6355
6356         if (nested_vmx_check_controls(vcpu, vmcs12) ||
6357             nested_vmx_check_host_state(vcpu, vmcs12) ||
6358             nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6359                 goto error_guest_mode;
6360
6361         vmx->nested.dirty_vmcs12 = true;
6362         ret = nested_vmx_enter_non_root_mode(vcpu, false);
6363         if (ret)
6364                 goto error_guest_mode;
6365
6366         return 0;
6367
6368 error_guest_mode:
6369         vmx->nested.nested_run_pending = 0;
6370         return ret;
6371 }
6372
6373 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6374 {
6375         if (enable_shadow_vmcs) {
6376                 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6377                 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6378         }
6379 }
6380
6381 /*
6382  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6383  * that madness to get the encoding for comparison.
6384  */
6385 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6386
6387 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6388 {
6389         /*
6390          * Note these are the so called "index" of the VMCS field encoding, not
6391          * the index into vmcs12.
6392          */
6393         unsigned int max_idx, idx;
6394         int i;
6395
6396         /*
6397          * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6398          * vmcs12, regardless of whether or not the associated feature is
6399          * exposed to L1.  Simply find the field with the highest index.
6400          */
6401         max_idx = 0;
6402         for (i = 0; i < nr_vmcs12_fields; i++) {
6403                 /* The vmcs12 table is very, very sparsely populated. */
6404                 if (!vmcs_field_to_offset_table[i])
6405                         continue;
6406
6407                 idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6408                 if (idx > max_idx)
6409                         max_idx = idx;
6410         }
6411
6412         return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6413 }
6414
6415 /*
6416  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6417  * returned for the various VMX controls MSRs when nested VMX is enabled.
6418  * The same values should also be used to verify that vmcs12 control fields are
6419  * valid during nested entry from L1 to L2.
6420  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6421  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6422  * bit in the high half is on if the corresponding bit in the control field
6423  * may be on. See also vmx_control_verify().
6424  */
6425 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6426 {
6427         /*
6428          * Note that as a general rule, the high half of the MSRs (bits in
6429          * the control fields which may be 1) should be initialized by the
6430          * intersection of the underlying hardware's MSR (i.e., features which
6431          * can be supported) and the list of features we want to expose -
6432          * because they are known to be properly supported in our code.
6433          * Also, usually, the low half of the MSRs (bits which must be 1) can
6434          * be set to 0, meaning that L1 may turn off any of these bits. The
6435          * reason is that if one of these bits is necessary, it will appear
6436          * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6437          * fields of vmcs01 and vmcs02, will turn these bits off - and
6438          * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6439          * These rules have exceptions below.
6440          */
6441
6442         /* pin-based controls */
6443         rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6444                 msrs->pinbased_ctls_low,
6445                 msrs->pinbased_ctls_high);
6446         msrs->pinbased_ctls_low |=
6447                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6448         msrs->pinbased_ctls_high &=
6449                 PIN_BASED_EXT_INTR_MASK |
6450                 PIN_BASED_NMI_EXITING |
6451                 PIN_BASED_VIRTUAL_NMIS |
6452                 (enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6453         msrs->pinbased_ctls_high |=
6454                 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6455                 PIN_BASED_VMX_PREEMPTION_TIMER;
6456
6457         /* exit controls */
6458         rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6459                 msrs->exit_ctls_low,
6460                 msrs->exit_ctls_high);
6461         msrs->exit_ctls_low =
6462                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6463
6464         msrs->exit_ctls_high &=
6465 #ifdef CONFIG_X86_64
6466                 VM_EXIT_HOST_ADDR_SPACE_SIZE |
6467 #endif
6468                 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6469                 VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6470         msrs->exit_ctls_high |=
6471                 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6472                 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6473                 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6474
6475         /* We support free control of debug control saving. */
6476         msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6477
6478         /* entry controls */
6479         rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6480                 msrs->entry_ctls_low,
6481                 msrs->entry_ctls_high);
6482         msrs->entry_ctls_low =
6483                 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6484         msrs->entry_ctls_high &=
6485 #ifdef CONFIG_X86_64
6486                 VM_ENTRY_IA32E_MODE |
6487 #endif
6488                 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6489                 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6490         msrs->entry_ctls_high |=
6491                 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6492
6493         /* We support free control of debug control loading. */
6494         msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6495
6496         /* cpu-based controls */
6497         rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6498                 msrs->procbased_ctls_low,
6499                 msrs->procbased_ctls_high);
6500         msrs->procbased_ctls_low =
6501                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6502         msrs->procbased_ctls_high &=
6503                 CPU_BASED_INTR_WINDOW_EXITING |
6504                 CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6505                 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6506                 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6507                 CPU_BASED_CR3_STORE_EXITING |
6508 #ifdef CONFIG_X86_64
6509                 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6510 #endif
6511                 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6512                 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6513                 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6514                 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6515                 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6516         /*
6517          * We can allow some features even when not supported by the
6518          * hardware. For example, L1 can specify an MSR bitmap - and we
6519          * can use it to avoid exits to L1 - even when L0 runs L2
6520          * without MSR bitmaps.
6521          */
6522         msrs->procbased_ctls_high |=
6523                 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6524                 CPU_BASED_USE_MSR_BITMAPS;
6525
6526         /* We support free control of CR3 access interception. */
6527         msrs->procbased_ctls_low &=
6528                 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6529
6530         /*
6531          * secondary cpu-based controls.  Do not include those that
6532          * depend on CPUID bits, they are added later by
6533          * vmx_vcpu_after_set_cpuid.
6534          */
6535         if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6536                 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6537                       msrs->secondary_ctls_low,
6538                       msrs->secondary_ctls_high);
6539
6540         msrs->secondary_ctls_low = 0;
6541         msrs->secondary_ctls_high &=
6542                 SECONDARY_EXEC_DESC |
6543                 SECONDARY_EXEC_ENABLE_RDTSCP |
6544                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6545                 SECONDARY_EXEC_WBINVD_EXITING |
6546                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
6547                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6548                 SECONDARY_EXEC_RDRAND_EXITING |
6549                 SECONDARY_EXEC_ENABLE_INVPCID |
6550                 SECONDARY_EXEC_RDSEED_EXITING |
6551                 SECONDARY_EXEC_XSAVES |
6552                 SECONDARY_EXEC_TSC_SCALING;
6553
6554         /*
6555          * We can emulate "VMCS shadowing," even if the hardware
6556          * doesn't support it.
6557          */
6558         msrs->secondary_ctls_high |=
6559                 SECONDARY_EXEC_SHADOW_VMCS;
6560
6561         if (enable_ept) {
6562                 /* nested EPT: emulate EPT also to L1 */
6563                 msrs->secondary_ctls_high |=
6564                         SECONDARY_EXEC_ENABLE_EPT;
6565                 msrs->ept_caps =
6566                         VMX_EPT_PAGE_WALK_4_BIT |
6567                         VMX_EPT_PAGE_WALK_5_BIT |
6568                         VMX_EPTP_WB_BIT |
6569                         VMX_EPT_INVEPT_BIT |
6570                         VMX_EPT_EXECUTE_ONLY_BIT;
6571
6572                 msrs->ept_caps &= ept_caps;
6573                 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6574                         VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6575                         VMX_EPT_1GB_PAGE_BIT;
6576                 if (enable_ept_ad_bits) {
6577                         msrs->secondary_ctls_high |=
6578                                 SECONDARY_EXEC_ENABLE_PML;
6579                         msrs->ept_caps |= VMX_EPT_AD_BIT;
6580                 }
6581         }
6582
6583         if (cpu_has_vmx_vmfunc()) {
6584                 msrs->secondary_ctls_high |=
6585                         SECONDARY_EXEC_ENABLE_VMFUNC;
6586                 /*
6587                  * Advertise EPTP switching unconditionally
6588                  * since we emulate it
6589                  */
6590                 if (enable_ept)
6591                         msrs->vmfunc_controls =
6592                                 VMX_VMFUNC_EPTP_SWITCHING;
6593         }
6594
6595         /*
6596          * Old versions of KVM use the single-context version without
6597          * checking for support, so declare that it is supported even
6598          * though it is treated as global context.  The alternative is
6599          * not failing the single-context invvpid, and it is worse.
6600          */
6601         if (enable_vpid) {
6602                 msrs->secondary_ctls_high |=
6603                         SECONDARY_EXEC_ENABLE_VPID;
6604                 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6605                         VMX_VPID_EXTENT_SUPPORTED_MASK;
6606         }
6607
6608         if (enable_unrestricted_guest)
6609                 msrs->secondary_ctls_high |=
6610                         SECONDARY_EXEC_UNRESTRICTED_GUEST;
6611
6612         if (flexpriority_enabled)
6613                 msrs->secondary_ctls_high |=
6614                         SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6615
6616         if (enable_sgx)
6617                 msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6618
6619         /* miscellaneous data */
6620         rdmsr(MSR_IA32_VMX_MISC,
6621                 msrs->misc_low,
6622                 msrs->misc_high);
6623         msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6624         msrs->misc_low |=
6625                 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6626                 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6627                 VMX_MISC_ACTIVITY_HLT |
6628                 VMX_MISC_ACTIVITY_WAIT_SIPI;
6629         msrs->misc_high = 0;
6630
6631         /*
6632          * This MSR reports some information about VMX support. We
6633          * should return information about the VMX we emulate for the
6634          * guest, and the VMCS structure we give it - not about the
6635          * VMX support of the underlying hardware.
6636          */
6637         msrs->basic =
6638                 VMCS12_REVISION |
6639                 VMX_BASIC_TRUE_CTLS |
6640                 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6641                 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6642
6643         if (cpu_has_vmx_basic_inout())
6644                 msrs->basic |= VMX_BASIC_INOUT;
6645
6646         /*
6647          * These MSRs specify bits which the guest must keep fixed on
6648          * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6649          * We picked the standard core2 setting.
6650          */
6651 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6652 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6653         msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6654         msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6655
6656         /* These MSRs specify bits which the guest must keep fixed off. */
6657         rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6658         rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6659
6660         msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6661 }
6662
6663 void nested_vmx_hardware_unsetup(void)
6664 {
6665         int i;
6666
6667         if (enable_shadow_vmcs) {
6668                 for (i = 0; i < VMX_BITMAP_NR; i++)
6669                         free_page((unsigned long)vmx_bitmap[i]);
6670         }
6671 }
6672
6673 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6674 {
6675         int i;
6676
6677         if (!cpu_has_vmx_shadow_vmcs())
6678                 enable_shadow_vmcs = 0;
6679         if (enable_shadow_vmcs) {
6680                 for (i = 0; i < VMX_BITMAP_NR; i++) {
6681                         /*
6682                          * The vmx_bitmap is not tied to a VM and so should
6683                          * not be charged to a memcg.
6684                          */
6685                         vmx_bitmap[i] = (unsigned long *)
6686                                 __get_free_page(GFP_KERNEL);
6687                         if (!vmx_bitmap[i]) {
6688                                 nested_vmx_hardware_unsetup();
6689                                 return -ENOMEM;
6690                         }
6691                 }
6692
6693                 init_vmcs_shadow_fields();
6694         }
6695
6696         exit_handlers[EXIT_REASON_VMCLEAR]      = handle_vmclear;
6697         exit_handlers[EXIT_REASON_VMLAUNCH]     = handle_vmlaunch;
6698         exit_handlers[EXIT_REASON_VMPTRLD]      = handle_vmptrld;
6699         exit_handlers[EXIT_REASON_VMPTRST]      = handle_vmptrst;
6700         exit_handlers[EXIT_REASON_VMREAD]       = handle_vmread;
6701         exit_handlers[EXIT_REASON_VMRESUME]     = handle_vmresume;
6702         exit_handlers[EXIT_REASON_VMWRITE]      = handle_vmwrite;
6703         exit_handlers[EXIT_REASON_VMOFF]        = handle_vmoff;
6704         exit_handlers[EXIT_REASON_VMON]         = handle_vmon;
6705         exit_handlers[EXIT_REASON_INVEPT]       = handle_invept;
6706         exit_handlers[EXIT_REASON_INVVPID]      = handle_invvpid;
6707         exit_handlers[EXIT_REASON_VMFUNC]       = handle_vmfunc;
6708
6709         return 0;
6710 }
6711
6712 struct kvm_x86_nested_ops vmx_nested_ops = {
6713         .check_events = vmx_check_nested_events,
6714         .hv_timer_pending = nested_vmx_preemption_timer_pending,
6715         .triple_fault = nested_vmx_triple_fault,
6716         .get_state = vmx_get_nested_state,
6717         .set_state = vmx_set_nested_state,
6718         .get_nested_state_pages = vmx_get_nested_state_pages,
6719         .write_log_dirty = nested_vmx_write_pml_buffer,
6720         .enable_evmcs = nested_enable_evmcs,
6721         .get_evmcs_version = nested_get_evmcs_version,
6722 };